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Preface

A three-day workshop on distributed parameter modeling and control of flexible
aerospace systems was held in Williamsburg, Virginia, on June 8-10, 1992. The purpose
of the workshop was to assess the state of the art in continuum modeling and to evaluate
its current state of application in the control of flexible systems. This compendium of

presentations reflects the diversity in the use of continuum modeling as well as the extent

of its application to various control problems.

The conference was divided into a number of sessions dealing with such topics as

Structural Dynamics Modeling, Aeroelasticity Applications, Parameter Estimation,

Integrated Controls-Structures Design, Control of Flexible Systems, Simulation and
Modeling Software. These sessions were carried out in serial fashion to permit

participants to attend all presentations.

Use of trade names or names of manttfacturers in this report does not constitute an
official endorsement of such products or manufactttrers, either expressed or implied, by
the National Aeronautics and Space Administration.
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Foreword

Although significant advances have been made in modeling and controlling flexible
systems, there remains a need for improvements in model accuracy and in control
performance. The finite element models of flexible systems are unduly complex and are
almost intractable to optimum parameter estimation for refinement using experimental
data.

Distributed parameter or continuum modeling offers some advantages and some
challenges in both modeling and control. Continuum models often result in a
significantly reduced number of model parameters, thereby enabling optimum parameter
estimation. The dynamic equations of motion of continuum models provide the
advantage of allowing the embedding of the control system dynamics, thus forming a
complete set of system dynamics. There is also increased insight provided by the
continuum model approach.

The challenges of distributed parameter modeling include 1) overcoming the burden of
the complexity of partial derivative equations, 2) developing software for model making
and analysis, and 3) overcoming complacency. Workshops on continuum modeling and
control serve to educate and to encourage development of needed techniques. It is hoped
that these proceedings will be useful to practitioners of modeling and controlling flexible
systems.

Lawrence W. Taylor, Jr.
NASA Langley Research Center
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DEDICATED

to the Memory of

LAWRENCE W. TAYLOR, JR.

These proceedings are a compilation of papers presented at the conference organized by
Lawrence W. Taylor, Jr., on Distributed Parameter Modeling and Control of Flexible
Aerospace Systems. This publication is dedicated to the memory of Larry, who passed

away on January 15, 1993, at the age of 59.

Larry was the Chief Scientist of Langley's Guidance and Control Division and an
Associate Fellow of the AIAA. He received his bachelor's degree from the University of

Kansas and his master's degree from the University of Southern California. After

graduation he served two years in the U.S. Air Force as an aerospace engineer before
joining NASA in 1957 at the Dryden Flight Research Center (DFRC) in California. He
made major contributions at DFRC in the theoretical formulation and development of
modified Newton-Raphson techniques for applying maximum likelihood estimation to

system identification. These algorithms continue to be used throughout the world and
were the basis for three awards from NASA and AIAA. In 1970 Larry came to Langley

and later became manager of the Active Controls Project Office in 1974, with

responsibility for developing and coordinating the expanding NASA program in active
control.

In 1975 he was assigned to NASA Headquarters, serving three years as Deputy Director
for Guidance, Control, and Information Systems in the Office of Aeronautics and Space

Technology's Electronics Division. In that position he was responsible for managing
NASA's research program in aircraft avionics and control. He returned to Langley to
continue his research, was selected head of the Flight Dynamics Branch in 1980 and later

head of the Spacecraft Controls Branch. As branch head, he led research to develop
advanced system identification methodology lbr large space systems and was also
responsible for the development of new analytical techniques for the modeling and
analysis of post-stall and spin aircraft dynamics. Larry was appointed Chief Scientist of
the Guidance and Control Division in 1986. He then continued his personal research in

controls and distributed parameter modeling.

As an intemationally recognized expert in aircraft controls, Larry was asked to serve on a

wide range of technical planning committees. In addition to being author of over 60
technical papers, he was a member of the AIAA, Tau Beta Pi, and Sigma Gamma Tau.
Larry also received numerous NASA and AIAA awards.
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N94- 35866

Distributed Parameter Modelling

of Flexible Spacecraft: Where's

the Beef?

D. C. Hyland

Harris Corporation

Melbourne, Florida

Abstract

This presentationdiscussesvariousmisgivingsconcerning the directionsand productivityof

DistributedParameter System (DPS) theory as appliedto spacecraftvibrationcontrol.We try to

show the need forgreatercross-fertilizationbetween DPS theoristsand spacecraftcontroldesigners.

We recommend a shiftin researchdirectionstoward explorationof asymptotic frequencyresponse

characteristicsof criticalimportance to controldesigners.
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Distributed Parameter System Theory:

A knife without a blade for which

the handle is missing?

or

We used to worry about DPS theory's
relevance to Space Structure Control

but we're ok now[

D. C. Hyland
Harris Corporation
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Some time ago, Larry Taylor asked me to give the initial presentation for this workshop.

Larry encouraged me to share some of my misgivings on Distributed Parameter System (DPS)

theory as an area of ongoing research activity in hopes of arousing controversy and stimulating

discussions during the meeting.

Having agreed to help with the workshop, I found it quite a struggle to arrive at an

appropriate title. First, a broken arm and leg suffered early last year put me into a rather futile

mood, and gave rise to the melancholic thought expressed by the first title. But then, after my

broken limbs began to mend, I devised the second title, reflecting a mood of recovery and

optimism. Finally, backing away from undue optimism (we're not okay yet!), I settled on the

title indicated on the first page. This title strikes a better balance between futility and

enthusiasm. "Where's the beef?" means "What is the substantive contribution?" At least

implicitly, the question admits the possibility that there is substance. Indeed, I approach this field

as a worried friend, concerned to find precisely those areas in which DPS theory can truly

contribute.

- A Few Preliminary Observations -

Distributed Parameter System theory is a necessary part of our

engineering culture - should be widely taught and learned.

There are so many ways in which the usual lumped parameter

models differ from the actual system." A knowledge of DPS

theory heightens our awareness of these crucial differences.

Provides unifying framework for understanding -e.g. connections

between modal dynamics and wave propagation.

Crucial for settling matters of general principle - e.g., existence

questions, controllability, stability guarantees, etc.

5



In any case the criticisms voiced here have nothing to do with the intrinsic merit of the

DPS field as a valuable body of mathematical knowledge, but are concerned with where it has

been and is going as an unfolding research enterprise. We should take particular care to establish

how DPS theory fits in (or whether or not it fits in) to design practice. Unfortunately, many

people who build working systems consider DPS research as a form of "middle-class welfare."

To counter this perception we need to honestly identify the aspects of DPS theory that are truly

essential to control engineering.

First, it is reasonable to observe the intrinsic merits of DPS as a body of knowledge, apart

from its direct relevance to applications. These merits are listed in the panel. The reader will

note many papers in the Workshop that develop these crucial areas of value.

Having said all this, the problem with the DPS research enterprise can be stated in terms

of pins and angels. Recall the medieval theological controversy: "How many angels can fit on

the end of a pin?" If you are a theologian, then it's quite appropriate to argue this question. On

the other hand, if you are a pin manufacturer, the question is irrelevant and it is your duty to

worry about other aspects of pins. The trouble comes when theology is mixed in with

manufacturing!

6



First, one is witnessingtheology(not engineering)whenone hearsclaims of universal,

infallible truth. An example is the common argument for adopting a DPS theoretical setting,

namely that DPS models are the only models that truly capture the underlying physical reality

of aerospace structures. In the panel we list two of the many ways in which this claim is refuted.

Indeed, as are all other models, DPS models are also inherently approximate.

In fact, the claim considered here is essentially a claim to guru-hood -i.e., the unique

possession of arcane, transcendent knowledge.

Distributed Parameter System Models are Superior

Because They Capture the Underlying

Physical Reality of Aerospace Structures

Quantum Mechanics (not continuum mechanics) prevails at small

scales; at sufficiently high frequency there are no modes.

Real Sensors (for feedback control) have limited resolution

_r observable closed-loop system is necessarily finite (albeit

large) dimensional.

7



The trouble is, the claim of transcendentwisdom is a very heavy burden. The more

extremethepretension,themoreseveretheembarrassment.Oneof themostobviouspretensions

is that DPS theorycanmodel infinitely manymodes.

The panel sketchesthe behaviorof the "modecount," N(co)(numberof modesbelow a

givenfrequency)asa function of frequencyfor a "simple,"simply-supportedbeam. Themode

count function gives at least a rough idea of the frequencyspacingof adjacentmodes- a

significantcharacteristicfor controldesignconsiderations.It isobviousfrom theN(co)chartthat

the vast majority of DPS work that postulatesclassicalBernoulli-Euler models for beams,

succeedsin modellinginfinitely manymodescompletelyerroneously!

Distributed Parameter System Theory can Model

Infinitely Many Modes ...

... with infinitely many errors:

al.
_t

_L ,_L

N cco._

NAvIER /

,q=AT,C'N$ /+_ _(J_

/"
TIHOSHENKO _./

I I c_

For example, even the gross number of modes per octave band may be

completely wrong.
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Of course, the essence of guru-hood is the claim to secret, esoteric knowledge, without

which the engineering problems can not be solved. An often implied, subliminally repeated

message is that DPS theory is an absolute prerequisite to successful vibration control design. On

the contrary, numerous successful control designs have been arrived at without the use of DPS

theory (but using control theory) and have been verified experimentally. Indeed, we have yet to

see an experimental result that has used DPS theory in a truly substantive way for control design.

Of course there are interesting DPS theoretical results that pose qualitative warnings to

the designer -e.g., the nonconvergence of LQG design if system dissipation is neglected, the

inherent instability of infinite-dimensional systems under certain types of feedback when transport

delay is introduced, etc. However, most of these qualitative warnings that are relevant to design

could have been formulated without DPS theory. In place of the DPS postulate one could use

the hypothesis that the plant is a finite, but arbitrary large dimensional system.

At this point, enough said about theology. Let us consider DPS from the point of view

of pin manufacturers (make 'em good and cheap). Let us honestly discuss the aspects of DPS

modelling that are pertinent to vibration control design. To begin such a discussion, I think we

need to return to some elementary control design concepts, e.g., the concepts of phase

stabilization, gain stabilization and robust performance. These items are now discussed in turn.



DPS Theory is an Absolute Prerequisite

to Successful Vibration Control Design!

Numerous successful vibration control designs have been arrived

at without use of DPS theory (but using control theory) & verified

experimentally - see e.g., NASA CSI Guest Investigator Program,

Phase I.

Try to identify experimental results that have used DPS theory in

a substantive way for control design!

What aspects of DPS modelling are pertinent to vibration control

design?

To answer this, we need to get back to some elementary control

design concepts, e.g.:

• Phase Stabilization

• Gain Stabilization

• Robust Performance

l0



First recall the Nyquist diagram - that simple but comprehensive way of visualizing the

structure/control interaction and the basic design problem. As sketched here, the Nyquist diagram

(assuming rate sensing) is a sequence of loops. Where the loops are large, one tries to shape the

phase so that they fall into the 1st or 4 '_' quadrant (phase stabilization). Where phase is bad, one

tries to shape gain so that the magnitude is small, thereby avoiding -1 (gain stabilization). These

considerations provide a guide to modelling fidelity and simplification. For example, it is clear

that structural modes that have insignificant performance impact in the open-loop and are phase

stabilized can safely be deleted from both open and closed-loop models. The same can be said

for gain stabilized modes outside the controller bandwidth. There may be (and perhaps are)

infinitely many such ignorable modes. For practical fidelity, design models should include the

modes contributing most to open-loop performance degradation and the modes near the unity gain

cross over points or in the band over which cross overs occur frequently. The size of such

practical models is usually quite modest. Thus, ignoring elementary control design insights can

grossly exaggerate the dimensionality problem.

Remember Mr. Nyqtt|_t?

Im

Gain stabilized modes Phase stabilized and 0.I..

may be deleted from performance insignificant
O.L. and C.L. models modes can be deleted from

O.L. and C.L. models

There may be infinitely many

such "ignorable" modes

ht practice control design models must Include:

1. O.L., performance stgnt[tcan! modes

2. modes near (unity gain) cross over

Size o[ such models Is usually modest.

" Ignoring co,trol d_iglt insights can grossly exaggerate t11o

dimenslonality problem.
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To illustrate the occurrenceof numerousignorablemodesconsiderfrequencyresponse

testdataand modelling for the NASA/MSFC ACEStestbed'. This testbedstructureactually

has over 40 modesbelow 10 Hz, as determinedvia modal survey. But, as shown in this

frequencyresponsefunction(FRF)andcorrespondingEigensystemRealizationAlgorithm (ERA)

model, relatively few of the modesshowup in the actuators-to-sensorstransfer functionsthat

contain the information pertinent to control design. This occurs becausemost modes are

insignificant to performanceandcontrol. In fact, by appropriatecontrol design,we manageto

phasestabilizethesemodesso that they areignorablein the closed-loop.

AGS-X TO BGYRO-X
I0 D

10°1

l 100a

100_

I0 _

EILA MODEL

\\

1%, ,00,
FREQ IN HZ

AGS-X TO BGYRO-X
10 o

1001

10.1

10._

10-'

F'RF

10-1
10. 2 10-1 10 0 101 1_

FREQ IN HZ

The ERA model for the AGS-X to BGYRO-X loop closely resembles the FRF generated fro test data.

E. G. Collins, Jr., D. J. Phillips, and D. C. Hyland, "Design and Implementation of

Robust Decentralized Control Laws for the ACES Structure at Marshall Space Flight

Center," NASA Contractor Report 4310, Langley Research Center, July 1990.

12



For thereasonsdiscussedabove,reallife designmodelsareof modestdimensions.This

is illustrated here by tabulation of the dimensionsof modelsusedin our NASA CSI Guest

InvestigatorProgram'. As can be seenfor ACES, one can often break the problem into

decentralizedpieces;thesizeof the modelsfor eachpiecemay bevery low indeed.

To repeat: The dimensionalityrequiredof modelsis bestjudged using control design

insights.

A Compendium of Dimensions for Harris NASA

CSI GIP Phase I Models & Controllers

Test Article

ACES

(Has > 40 Modes

under 10 Hz)

Mini-MAST

Controller

AGS-X to BGYRO-X

AGS-Y to BGYRO-Y

IMC-X to DET-Y

IMC-Y to DET-X

Total, Decentralized

Decentralized

Centralized

Model Controller

Order Order

17

19

4

4

44

40

54

4

6

3

3

16

24

33

" See:

E. G. Collins, Jr., J. A. King, D. J. Phillips and D. C. Hyland, "High Performance

Accelerometer-Based Control of the Mini-Mast Structure," AIAA J. Guid. Contr. Dyn., Vol. 15,

pp. 885-892, July 1992.

E. G. Collins, Jr., D. J. Phillips, and D. C. Hyland, "Robust Decentralized Control Laws

for the ACES Structure," Contr. Sys. Mag., Vol. 11, pp. 62-70, April 1991.
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Next, let usdiscussstability robustnessandperformancerobustness.Themotivationfor

a concernwith robustnessis illustratedhere. Realstructuresdiffer from their idealizationsin

numerousways,includingnonuniformitiesin stiffnessandinertia,nonidealboundaryconditions,

etc. Evenwhensucherrorsappearto be insignificantlysmall, theremay bea very significant

impacton sufficientlyhigh frequencydynamics.Thuswe needcontrolsystemrobustnessto deal

with thesensitivity of structuralmodelcharacteristicsto modellingerrors. But robustnesswith

respectto what?

IDEAL

REAL

SENSITIVITY TO MODELLING OATA

S,

• SLIGHT ERRORS IN PHYSICAL MOOELLING - LARGE ERRORS
IN HIGH ORDER MODES

• DPS MODELS CAN ENCOMPASS ONLY LIMITED INFORMATION

• AflE SUCH MODELS MEANINGFUL WITHOUT CHARACTERIZATIONS
OF UNCERTAINTY?

• WHAT INFORMATION MUST OPS MODELS REFLECT?

• SURELY THOSE FEATURES THAT REMAIN "SHARP"
OESPITE ERRORS IN OETAIL

14



The usual concern is robustness with respect to stability. But even when one presumes

collocated actuators and sensors and, as in the reference cited in the panel, one adopts an LQG

design that is positive real (hence inherently stable), one does not resolve all robustness

questions. This is because robust stability does not imply robust performance, and it is reliable

performance that we must ultimately ,secure.

To illustrate the above point, the positive real LQG design recommended in the cited

reference was applied to a single mode (with a nominal value of 10 Hz for the resonant

frequency). The chart at the bottom of the panel shows, for various cases, the magnitude of the

transfer function from the disturbance to the structural velocity. When the model frequency

assumes the 10 Hz value used in the design model, it is seen that the controller greatly attenuates

the open loop response. However, a second pair of curves show the open and closed-loop

frequency response magnitudes for an off-nominal value (11.5 Hz) of the frequency. In this case,

the closed-loop performance is little better than the open-loop behavior. Thus, although the

system remains stable, the system performance is very sensitive to modelling error. To achieve

practical results that produce substantial and reliable performance benefits from active structural

control, we need to secure robustness with respect to performance. This need has been

appreciated for some time and some responsiveness on the part of DPS theorists is overdue.

15



Robust Performance _ Robust Stability

Example: Positive Real LQG Control

Explicit LQG Solution (One Mode) From:

A.V. Balakrishman, Proc. 5th NASA/DoD CSI Technology Conference, Lake Tahoe,

Nevada, March 1992.

Transfer function from

disturbance to structure

velocity

8
iNominal OL

......................................................................................................................Ps_rbed..OL ....................

° Perturbed CLt

12 12.5 13

r_
c!
l:l
lh
f:!

i:1
I:1

: I;i

i:1 .............................: ....................... I:1 ....... ,...........
................. : ......... : i:|

i _ ,:
i : I:1

: _ 1:o:1

: • I:1................................ _................i............... UJ. .............. , ...............................

i Nommal CL ::,,

..............................i , ......Y',
8 8.5 9 9.5 10 10.5 11 11.5

Frequency Hz

16



Note that LQR or LQG designs have been (and remain) the controls paradigms for DPS

developments. Unfortunately, it has been known for quite a long time that LQG design is not

robust* and that the complexity (dimension) of LQG controllers is often prohibitive for

implementation. For these and many other reasons, control theory has moved far beyond LQG

(p-synthesis, D-bounds, multivariable Popov synthesis, etc). We recommend that DPS control

developments need to more fully acknowledge the evolution of control theory over the past

decade.

Model of "DPS Control Theory Results" Generation

Finite-Dimensional

Setting
Semi-Group Theory,
w-dimensional Hilbert

Space

LQR or LQG design
result #1

Translate DPS control
assumptions _ result #1

& notation

LQR or LQG design
result #2

DPS Control
result #2

LQG design is not robust

* Complexity of LQG controllers often prohibitive

* For these and many other reasons, control theory has moved far beyond LQG

* For the famous counterexample, see:

J. C. Doyle, "Guaranteed Margins for LQG Regulations," IEEE Trans. Autom. Contr.,

Vol. AC-23, August 1978, pp. 756-757.

For nonrobust LQG performance in connection with realistically complex systems, see:

D. S. Bernstein and S. W. Greeley, "Robust Controller Synthesis Using the Maximum

Entropy Design Equations," IEEE Trans. Autom. Contr., Vol. AC-31, pp. 362-364, 1986.

17



Lest it be thought,at this point, that I would bury DPS theory, let me point out that it's

a friend's part to rebuke a friend's errors. We firmly believe that there are aspects of DPS

modelling that are pertinent to vibration control design. When all is said and done, there are

people facing real problems in controlling real distributed parameter systems.

To link up more fully with the real world, we need to acknowledge that in actual practice,

a control design model is tantamount to a complete set of transfer functions. This is rigorous if

all performance variables are also sensed variables and is approximately true otherwise. Control

designers want DPS theory to provide them the tools for modelling the external (frequency

domain) representation of DPS. In particular, we need the capability to estimate or over-bound

certain key aspects of the high frequency phenomena. The information needed is not the details

of all modes but just a few critical parameters. As is clear from the following discussion, these

critical high frequency parameters pertain to phenomena entirely beyond the reach of lumped-

parameter models and can only be addressed via DPS theory.

18



Control-Design Model is Equivalent to the set of

transfer functions from all actuator commands to all

sensor outputs - e.g.,
M.HPE LI Velocity Es_ma_; _ Loop vs. New Analog Closed Loop

! /% ! ! i /", '.

o ..................._.........:.'.,..i................_.................i......:...'_.....-i...................:-.....................................

.................. _ ............. _,................................................................

................ i'"

15 _o ,_ 30 ;5 _o I 0 )

i

FrequencyHz

2OO

150

lOO

50

It
_ -so

-10(

-151

-20
10

MHPE L1 Velocity E.cfimate, Open Loop vs. New Analog Closed Loop

k

i-, ..

', k/ ',

i; _o '23 30

Frequency l'Iz

i

Frequency Ilimit of modelling
or test-data

We need the ability to estimate certain key aspects of the high

frequency phenomena (not details of all modes but just a few critical

parameters).
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The most critical design information sought is: Where and how to roll-off? In this panel,

we highlight specific requirements. G denotes the compensator gain matrix and b_ and c_ are the

actuation and sensing "signature vectors" for the ffh mode. In other words the vector b,, contains

the actuator modal influence coefficients for the r 'h mode.

The graphs show, in histogram form, various components of closed-loop modal dampings.

The closed-loop modal dissipation has an inherent component, d_, and a control component given

as Re(b_Gc_) from a small gain asymptotic approximation. At high frequency, phase goes bad

(due to instrumentation, communication delay, etc.) and one needs to roll off IIGII. As

illustrated in the charts sketched here, the design challenge is to get from the large gain, phase-

stabilizing G at in-band modes to low gain, gain-stabilizing F on out-of-band modes. The lower

chart in the panel shows when this is properly done. "Rolling-oft" the controller to guarantee

the stability of high frequency dynamics requires key information on all modes above cross-over

that can only be provided by distributed parameter models. In particular, the minimum frequency

separation is needed to determine "how fast" to roll-off, while the minimum open-loop dissipation

and maximum modal signature gains are essential to knowing how small IIGII must be to gain-

stabilize.

If DPS theory can respond to the challenge of

characteristics of the types described above, then a truly

contribution will have been made.

illuminating key high frequency

substantive and practically useful
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Most critical design information:

Where and how to roll-off
GA

b_, c_ a

compensator gain matrix

(including actuator & sensor

dynamics)

P" mode actuation and sensing
signature vectors

Closed-loop
modal

dissipation

<

dlc

In-Band Modes
£ 2L

[iJ---)

>
Phase goes bad due to hardware

limitiations. If IGI is not rolled off,

unstability results

m

d_

Key DPS Information:

Minimum O.L. dissipation

Minimum frequency separation

Maximum modal signature gains

IGI

d_+,_-'_ _-_ t_--+

IGI properly rolled off, out-of-band

modes gain stabilized

: Min vl_Q _

: Min I_+I-D._ I

: Max |b_|, Max|cJ
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In closing, I fling down the gauntlet! Here's the Multi-Hex Prototype Experiment

(MHPE). This is one of the most "traceable" vibration control test beds. The MHPE has been

operational for the past four years at Harris and is open to guest researchers. If you disagree

with my criticisms, show how MHPE may be better modelled and/or controlled specifically by

virtue of application of DPS theory!

THE MULTI-ttEX PROTOTYPE
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SUMMARY

This paper is concerned with a flexible space robot capable of maneuvering payloads. The

robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector holding

a payload; the robot is mounted on a rigid platform floating in space. The equations of motion are

nonlinear and of high order. Based on the assumption that the maneuvering motions are one order

of magnitude larger than the elastic vibrations, a perturbation approach permits design of controls

for the two types of motion separately. The rigid-body maneuvering is carried out open loop, but

the elastic motions are controlled closed loop, by means of discrete-time linear quadratic regulator

theory with prescribed degree of stability. A numerical example demonstrates the approach. In the

example, the controls derived by the perturbation approach are applied to the original nonlinear
system and errors are found to be relatively small.

1. INTRODUCTION

A variety of space missions can be carried out effectively by space robots. These missions

include the collection of space debris, recovery of spacecraft stranded in a useless orbit, repair of

malfunctioning spacecraft, construction of a space station in orbit and servicing the space station

while in operation. 'Ib maximize the usefulness of the space robot, the manipulator arms should be

reasonably long. On the other hand, because of weight limitations, they must be relatively light.

To satisfy both requirements, the manipulator arms must be highly flexible. Hence, space robots

share some of the dynamics and control technology with articulated space structures.

Robotics has been an active research area for the past few clecades, but applications have been

concerned primarily with industrial robots, which are ground based and tend to be very stiff and

bulky. In contrast, space robots are based on a floating platform and tend to be highly flexible.

Hence, whereas industrial and space robots have a number of things in common, the differences are

significant. More recent investigations have been concerned with flexible industrial robots (Refs.

1-4). On the other hand, some investigations are concerned with space robots consisting of rigid

links (Refs. 5-7). Research on flexible space robots has come to light only recently (Refs. 8,9).
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* University Distinguished Professor
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This paperis concernedwith a flexiblespacerobot capableof maneuveringpayloads.The
robot is assumed to consist of two hinge-connected flexible arms and a rigid end-effector holding

a payload; the robot is mounted on a rigid platform floating in space (Fig. 1). The platform

is capable of translations and rotations, the flexible arms are capable of rotations and elastic

deformations and the end-effector/payload can undergo rotations relative to the connecting flexible

arm. Based on a consistent kinematical synthesis, the motions of one body in the chain take into

consideration the motions of the preceding body in the chain. This permits the derivation of the

equations of motion without the imposition of constraints. The equations of motion are derived by

the Lagrangian approach. The equations are nonlinear and of relatively high order.

Ideally, the maneuvering of payloads should be carried without exciting elastic vibration,

which is not possible in general. However, the elastic motions tend to be small compared to the

rigid-body maneuvering motions. Under such circumstances, a perturbation approach permits

separation of the problem into a zero-order problem (in a perturbation theory sense) for the

rigid-body maneuvering of the space robot and a first-order problem for the control of the elastic

motions and the perturbations from the rigid-body motions. The maneuvering can be carried out

open loop, but the elastic and rigid-body perturbations are controlled closed loop.

The robot mission consists of carrying a payload over a prescribed trajectory and placing it

in a certain orientation relative to the inertial space. For planar motion, the end-effector/payload

configuration is defined by three variables, two translations and one rotation. At the end of the

mission, the vibration should be damped out, so that the robot can be regarded as rigid at that

time. Still, the rigid robot possesses six degrees of freedom, two translations of the platform and

one rotation of each of the four bodies, including the platform. This implies that a kinematic

redundancy exists. This redundancy is removed in the trajectory planning so as to conserve fuel.

For a given end-effector/payload trajectory, the rigid-body maneuvering configuration of the

robot can be obtained by means of inverse kinematics. Then, the forces and torques required for

the robot trajectory realization are obtained from the zero-order equations by means of inverse

dynamics.

The first-order equations for the elastic motions and the perturbations in the rigid-body

maneuvering motions are linear, but of high order, time-varying and they are subjected to

persistent disturbances. The persistent disturbances are treated by means of feedforward control.
All other disturbances are controlled closed loop, with the feedback controls being designed by

means of discrete-time linear quadratic regulator (LQR) theory with prescribed degree of stability.

A numerical example demonstrates the approach. In the example, the controls derived by the

perturbation approach are applied to the original nonlinear system and the errors in the end-

effector/payload configuration were found to be relatively small during the maneuver and to vanish

soon after the termination of the maneuver.

2. A CONSISTENT KINEMATICAL SYNTHESIS

To describe the motion of the space robot, it is convenient to adopt a consistent kinematical

synthesis whereby the system is regarded as a chain of bodies and the motion of one body is
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definedwith dueconsiderationto the motionof the preceedingbody in the chain. Figure 1shows
themathematicalmodelof the spacerobot, consistingof a rigid platform (Body 1), two hinge-
connectedflexiblearms(Bodies2 and3) and a rigid end-effectorholding thepayload(Body 4).
Thevariousmotionsare referredto a set of inertial axesand setsof body axesto bedefined
shortly.

The object is to derivethe systemequationsof motion, whichcanbe doneby meansof
Lagrange'sequationsin termsof quasi-coordinates(Ref. 10). Becausein the caseat hand the
motion is planar, it is moreexpedientto usethestandardLagrange'sequations.This requiresthe

kinetic energy, potential energy and virtual work. The kinetic energy, in turn, requires the velocity
of a typical point in each of the bodies.

The position of a nominal point on the platform is given by

R1 = R0 + rl (1)

where R0 = [X y]T is the position vector of the origin O1 of the body axes xl,yl (Fig. 1) relative

to the inertial axes X, Y and in terms of X, Y components and rl = [Xl yl] T iS the position

vector of the nominal point on the platform relative to the body axes xl,yl and in terms of zl,yl

components. The velocity vector of a point on the platform can be expressed in terms of xl,yl
components as follows:

V 1 = CI t:t0 + 0)1ri

whore

(2)

[ c01 sO1 ]C1 = [_sO1 c01 (3)

is a matrix of direction cosines between axes xl,yl, and X, Y, in which sO1 = sin01, c01 = cos 01,

fi0=[2 _]r (4)

is the velocity vector of 01 in terms of X, Y components and

0 -0110)1:01 0 (5)

The second body is flexible, so that we must resolve the question of body axes. We define the

body axes x2, y2 as a set of axes with the origin at the hinge O2 and embedded in the undeformed

body such that z2 is tangent to the body at O2 (Fig. 2). Then, we define the motion of axes x2, y2

as rigid-body motion and measure the elastic motion relative to x2, y2. Hence, the velocity of a

point in the second body (first flexible arm) in terms of x2, y2 components is

V2 =C2_lV 1 (02) nt- 0) 2 (t" 2 + u2) nt- £12rel

=C21_0 + C_.-10)1rl (02) + 0)2(r2 + u2) + 6__,el (6)

where C_.-1 and C2 are matrices similar to Cl, Eq. (3), except that 01 is replaced by 02 - 01 and

02, respectively, 0)2 has the same structure as &l but with 02 replacing 01, r1(O2) = [dl hl] T, r2 =
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[.r2 0} T, u2 = [0 U2]T and fl2,el = [0 /t2], in which u2 = u2(z2, t) and ti2 =/t2(z2, t) are the elastic

displacement and velocity, respectively.

Using the analogy with the second body, the velocity of a point in the third body (second

flexible arm) in terms of za,y3 components can be shown to be

V3 =C3-2V2(L2) q- w3( r3 -4-u3) + fl3rel

=C31_0 + Ca-lg.'lrl(02) + Ca-2 {_2 [r2(L2) + u2(L_, t)] + 62,¢l(L2,t)}

q.- ff93(F3 -4- 113) + tl3rel
(7)

The fourth body consists of the end-effector and payload combined, and is treated as rigid.

Following the established pattern, the velocity of a point in the fourth body in terms of a:4, ?,'4

components is

V4 =C4-3V3(L3) + t2'4r4

=C4Ro + C4-1cbl rl(O_.) + C4-2 {w2 [r2(L2) + u2(L2, t)] + 62rel(L2, t)}

+ C4-3 {_3 [r3(L3) + ua(La,t)l + 63rel(La,t)} +_4r4
(8)

The consistent kinematical synthesis just described permits the formulation of the equations

of motion for the whole system without invoking constraint equations. Such constraint equations

must be used to eliminate redundant coordinates in a formulation in which equations of motion are

derived separately for each body.

3. SPATIAL DISCRETIZATION OF THE FLEXIBLE ARMS

The velocity expressions derived in Sec. 2 involve rigid-body motions depending on time

alone and elastic motions depending on the spatial position and time. Equations of motion

based on such formulations are hybrid, in the sense that the equations for the rigid-body motions

are ordinary differential equations and the ones for the elastic motions are partial differential

equations. Designing maneuvers and controls on the basis of hybrid differential equations is likely

to cause serious difficulties, so that the only viable alternative is to transform the hybrid system

into one consisting of ordinary differential equations alone. This amounts to discretization in space

of the elastic displacements, which can be done by means of series expansions. Assuming that the

flexible arms act as beams in bending, the elastic displacements can be expanded in the series

rt i

Ui(Zi, t) = _ _ij(xi)rlij(t) = dpT(zi)rli(t), i = 2,3 (9)

3=1

where 4)ij(:ci) are admissible functions, often referred to as shape functions, and rlid(t) are

generalized coordinates; qbj and 7/i are corresponding ni-dimensional vectors (i = 2,3; j =

1,2,... ,hi)

The question arises as to the nature of the admissible functions. Clearly, the object is to

approximate the displacements with as few terms in the series as possible. This is not a new
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problemin structural dynamics,and the verysamesubjecthasbeeninvestigatedrecentlyin
Ref. 11,in whicha newclassof functions,referredto asquasi-comparison functions, has been

introduced. Quasi-comparison functions are defined as linear combinations of admissible functions

capable of satisfying the boundary conditions of the elastic member. As shown in Fig. 2, the beam

is tangent to axis xi at Oi(i = 2, 3). Itence, the admissible functions must be zero and their slope

must be zero at xi = 0. At xi = Li, the displacement, slope, bending moment and shearing force

are generally nonzero. Quasi-comparison functions are linear combinations of functions possessing

these characteristics. Admissible functions from a single family of functions do not possess the

characteristics, but admissible functions from several suitable families can be combined to obtain

them. In the case at hand, quasi-comparison functions can be obtained in the form of suitable

linear combinations of clamped-free and clamped-clamped shape functions.

4. LAGRANGE'S EQUATIONS

Before we can derive Lagrange's equations, we must produce expressions for the kinetic energy,
potential energy and virtual work. To this end, and following the spatial discretization indicated
by Eqs. (9), we introduce the configuration vector

q(t) = [X(t) Y(t) O,(t) 02(0 0a(t) 04(t) r/T(t) r/T(/)] T

so that the velocity vectors, Eqs. (2), (6)-(8), can be written in tile compact form

(lO)

where

Vi = Di_l, i= 1,2,3,4 (11)

C01 SOl --Yl 0 ... 0 T]DI= -sO1 c01 xl 0 ... 0 T

c02 sO2 dls(O2-O1)-hlc(02-01)
D2 = -sO2 c02 dlc(O_ - O1) + his(02 - O1) --_T'12 o o o r o T]o o or (12)

Then, the kinetic energy is simply

where

T=_- _-
- i=l i

4

is the mass matrix. Typical entries in the mass matrix are

(13)

(14)

roll =m, m12 = O, rnla = -(m 2 4- rna + m4)(hlcO 1 -1- dlsOl)

'rtl4 _--- __ [_T + (m a @ rrz4)05T(L2) ] "2c02_ [32-_ (rr_ 3 + m4)L2]s02

............................... ,,° ............
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m22 =re, m23 ------(m2 + m3 + m4)(hlsOl - (/1c_l)

ross =/. ¢3¢rd'_ + m,¢3(L3)_r(L3)
ody 3

(15)

in which

' Lm = E m,, -_,=
i

i=1

dPidmi, i=2,3, Si = /mi
xidmi, i = 1,2,3,4 (16)

The potential energy, assumed to be entirely due to bending, has the form

I L_ . 2 1_ L3 ,, 2

in which EIi(i = 2, 3) are bending stiffnesses and primes denote spatial derivatives. Moreover,

K = block - diag[0 1(2 K3]

(17)

(18)

is the stiffness matrix, where

f0 Li ,r ,l TKi = EIich{ (chi) dxi, i=2,3 (19)

are stiffness matrices for the flexible arms.

Next, we propose to derive the virtual work expression. To this end, we must specify first the

actuators to be used. There are three actuators acting on the platform, two thrusters F_I and

Fyl acting in directions aligned with tile body axes and a torquer M1 acting at Ol. Three other

torquers M2, M3 and M4 are located at the hinges 02, 03 and 04, respectively, the first acting on

the platform and first arm, the second acting on the first and second arm and the third acting on

the second arm and end-effector. In view of this, the virtual work can be written as follows:

6W =F,_I (cos 016X + sin 016Y) + Fyl (- sin O16X "_-COS016Y) + M1601

+ M26(0_ - 01) + M36¢3 + M46_b4 + Ms6 [02 + dP_T (L213) q2]

where 6X, 6Y,... are virtual displacements. Moreover, denoting the angles between the two arms

and between the second arm and the end-effector by

Ou_[ =03_02_¢,f (r2), 2
¢3 =03- 02- 0-;_2I_,=L, (21)

o-31 = 0,_ 03_¢_T(L_)._
¢4 =04 - 03 - Oz3 I,_=r_
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we can write

&/'a = aea - _502- ¢,7" (L2) &/2, 6¢4 = 604 - a0a - ¢3"T (La) &'/a (22)

Inserting Eqs. (22) into Eq. (20), we can express the virtual work in terms of generalized forces
and generalized virtual displacements in tile form

aW = Qr6q (23)

where Q _--IF X Fy 01020304 N T N73"] T is the generalized force vector, in which

Fx =F_I cos Ol - Fvl sin 01, Fy = Fzl sin 01 + Fvl cos 01

O1 =M1 - M.,, 02 = M2 - M3 + M5 + M6

@3 =Ma - M4 + _I7 + Ms, 04 = M4 (24)

I /_ t --N, =Ms¢_(L,/3)+ r6¢2(2L2/a) M3¢_(L=)
Na --MrC_(La/3)+ MsC;(2La/3)-/l/4¢;(La)

and aq = [aX aY a0, a0e a0a aO4 a,7T a,Tr] r is the generalized virtual displacement vector.
Equations (24) express the generalized forces and torques in terms of the actual actuator forces

and torques and can be expressed in the compact form

Q = EF (25)

where F = [F_1 F_l MI M2 ... 1148]T is the actual control vector and

E = E(01)=
"COS 01 -- sin 01 0 0 0 0 0 0 0 0

sin Ol cos 01 0 0 0 0 0 0 0 0

0 0 1 -1 0 0 0 0 0 0

0 0 0 1 -1 0 1 1 0 0

0 0 0 0 1 -1 0 0 1 1

0 0 0 0 0 1 0 0 0 0

_l,L_, _, ,2L_,
0 0 0 0 -¢'2(L2) 0 q_2(--3" _ cp2[--_) 0 0

o o o o o -¢_(L_) o o ¢_(_) ¢_(_)

is a time-varying coefficient matrix, because 01 varies with time.

Lagrange's equation can be expressed in the general symbolic vector form

d(OT) OT OVd--i _ -_+ 0q =q

26)

(27)
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Observing that M = M(q), we can write

_q ---Mq, a \ 0ct,]

07" 1.TOM. OV _ Kq
ON = 9-q -_q q' Oq

Inserting Eqs. (28) into Eq. (27), we obtain Lagrange's equations in the more explicit form

I_tTOM _/119+ M-: --_-q,]ct+/(q=Q

in which

M= 6+2n 0alf. (:trOl_[ _=_
}--_-- 0q
j:l Oqj qJ'

[ itrOM/Oql

I qTOl_:/Oq2

LitT OM ) Oq6+z,,

(28)

(29)

(30)

• '' N5. A PERFURBAIIO APPROACtt TO TtIE CONTROL DESIGN

Equation (29) represents a high-order system of nonlinear differential equations, and is not

very suitable for control design. Hence, an approach capable of coping with the problems of high-

dimensionality and nonlinearity is highly desirable. Such an approach must be based on the

physics of the problem. The ideal maneuver is that in which the robot acts as if its arms were

rigid. In reality, the arms are flexible, so that some elastic vibrations are likely to take place. It
is reasonable to assume, however, that the elastic motions are one order of magnitude smaller

than the maneuvering motions. This permits treatment of the elastic motions as perturbations

on the maneuvering motions. In turn, the elastic perturbations give rise to perturbations in the

"rigid-body" maneuvering motions. This suggests a perturbation approach, whereby the problem

is separated into a zero-order problem for the "rigid-body" maneuvering of the payload and a

first-order problem for the control of the elastic motions and the perturbations in the rigid-body

maneuvering motions. The zero-order problem is nonlinear, albeit of relatively low dimension. It

can be solved independently and the control can be open loop. On the other ]land, the first-order

problem is linear, but of relatively high dimension. It is affected by the solution to the zero-order

problem, where the effect is in the form of time-varying coefficients and persistent disturbances.

The control for the first-order problem is to be closed loop.

We consider a first-order perturbation solution characterized by

q = q0 + ql, Q = Q0 + Q1 (31)

where the subscripts 0 and 1 denote zero-order and first-order quantities, with the zero-order

quantities being one order of magnitude larger than the first-order ones. Inserting Eqs. (31) into

Eq. (29) and separating quantities of different orders of magnitude, we obtain the equation for the

zero-order problem

Mo_lo + (My - 21My'I} Clo = Qo = EoFo (32)
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where qo = [Xo Iio 01o 020 03o 04o 0 ToT] T, Qo = [Fxo Fxo @lO 020 O3o 04o 0 ToT] T are

zero-order displacement and generalized control vectors, Eo = E(01o) is the matrix E, Eq. (26),

evaluated at 01 = 010, F0 = [F_0 Fro llllo M20 ... 1148o]T and

Mo = M(qo), My= [ OM. 0114. OM dl0][ (33a, b)_ql q° Oq----2q° "'" 0q6+2-----_ q=qo

Moreover, we obtain the equation for tile first-order problem

111 , K) Q1 + QdM'0(_ll + (My + 111'- 114T) (:I1 + (1_43 + 3lvv - "_ lvv + ql = (34)

TT
where ql = [Xl _ 011 021 031 041 _T n3 ] , Ql = [Yx1 YY1 Oll O21 O31 O41 N T NT] y are first-

order displacement and generalized control vectors, Qd - [0 0 0 0 0 0 FT2 FT3] T is a persistent
disturbance vector and

IlL, = [ OM .. OM .. 011f

6+2, 034

at': E - qj [q=qoqOJ
j=l

6+2,6+2, OZM I qlkqOJ¢lOM_vql = _ _ OqjOqk q=q0
j=l k=l

6+2n 0234
M'.ql = _!T E o-q-_-k q=qo qlkdl°

k=l

From Eqs. (25) and (26), however, we can write

(35b)

(35c)

(35d)

QI = EoFI + ElF0 = EoF1 + F_ql

where E1 = [0E/001[01 = 010]011. Moreover, the matrix F_ has the entries

(36)

F_11 = - (F_10 sin 0t0 + Fylo cos 010)

F_21 =Fzl 0 cos 010 - Fylo sin 010

F_i j =0, i=3,4,...,6+n2+n3; j=2,3,...,6+n2+n3

In view of this, the equation for the first-order problem can be rewritten as

1 i
Moth + (114. + M'- MT)/h + (M_ + M,_ - _Mv, , + K - F_)ql = EoF1 + Qd

(37)

(38)

6. TRAJECTORY PLANNING

The mission consists of delivering the payload to a certain point in space and placing it

in a certain orientation. For planar motion, the final payload configuration is defined by three

variables, two translations and one rotation. The trajectory planning, designed to realize this
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final configuration, will be carried out as if tile robot system were rigid, with the expectation that
all elastic motions and perturbations in the rigid-body maneuvering motions will be annihilated

by the end of the maneuver. The rigid-body motion of the robot is described by the zero-order

problem and it consists of six components, two translations of the platform and one rotation
of each of the four bodies. This implies that a kinematical redundancy exists, as there is an

infinity of ways a six-dimensional configuration can generate a three-dimensional trajectory.

This redundancy can be removed by controlling three of the configuration variables, such as the

translations and rotation of the platform, so as to conserve fuel. Under these circumstances, the

rigid space robot can be treated as a nonredundant manipulator.

Next, we denote the end-effector configuration by XE, so that from kinematics we can write

XE = f(qo) (39)

where f is a three-dimensional vector function. From differential kinematics,

XE = J(q0)ct0

we have

(40)

where
J(q0) = [0f/0q0] (41)

is the 3 x 6 Jacobian matrix. Introducing the notation

T

q0= [qT 1, qT/] (42)

where

qs = IX0 Y0 010] T , qm = [020 030 040]T

are the controlled platform configuration vector and the open-loop controlled manipulator

configuration vector, and partitioning the dacobian matrix accordingly, or

(43a, b)

J= [Js [ JM] (44)

Eq. (40) can be rewritten as
J(E ---- Js(:ts + JM (:lM (45)

Then, on the assumption that cls is determined so as to minimize the fuel consumption, and for a

given end-effector trajectory XE, we can determine the manipulator velocity vector from

= Jh' (fee- Jsqs) (46)

The end-effector trajectory was taken in the form of a sinusoidal function so as to prevent excessive

vibration. Finally, with q0 given, we can obtain the required open-loop control F0 by inverse

dynamics, which amounts to using Eq. (32).
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7. FEEDBACK CONTROL OF THE ELASTIC MOTIONS AND RIGID-BODY PERTURBATIONS

The elastic motions and the perturbations in the rigid-body maneuvering motions are governed
by the equation defining the first-order problem, Eq. (38). The persistent disturbances are

controlled open loop and all other disturbances are controlled closed loop. To this end, we express
the control vector in the form

F1 = Flo +Flc (47)

where the subscripts o and c indicate open loop and closed loop, respectively. Recognizing that E0
is a rectangular matrix, the open-loop control can be written as

in which

is the psuedo-inverse of E0.

F,o = -E_Qa (48)

E0'= (ErEo)-' E0 (49)

For the closed-loop control, we consider a linear quadratic regulator (LQR), which requires

recasting the equations of motion in state form. Adjoining the identity dtl = /ll, the state
equations can be expressed as

_¢(t) = A(t)x(t) + B(t)Eouc(t) + B(t)Dd(t) (50)

where x = [qT dIT]T is the state vector, Uc = Fie is the control vector, d = Qd is the disturbance
vector and

[ 0 , ]_ 1 , (51a)A= _MoI(M,, + M,,,, _M,,, + K- F_)) -Mo1(Mv + M'- M T)

0 1 ([ -- Eo"--[,,,o],
are coefficient matrices. It should be noted here that, if the matrix E0 is not square, the matrix

D is not zero, so that the open-loop control does not annihilate the persistent disturbances

completely. As the number of actuator approaches the number of degrees of freedom of the system,

the matrix E0 tends to become square. When the number of actuators coincides with the number

of degrees of freedom the matrix E0 is square, in which case the pseudo-inverse becomes an exact
inverse and the matrix D reduces to zero.

The state equations, Eq. (50), possess time-varying coefficients and are subject to residual

persistent disturbances. Due to difficulties in treating such systems in continuous time, we propose

to discretize the state equations in time. Following the usual steps (Ref. 12), the state equations in
discrete time can be shown to be

where

xk+l = q'kxk + FkE0kuck + FkDkdk, k = 0, 1,...

xk =x(kT), ud: -- uc(kT), dk = d(kT), k = 0, 1,...

(I'k =exp A,,T, Fj, = (exp AI, T - I)A{l Bk, k = O, 1,...

Eok =Eo(kT), Dj, = D(kT), k = 0, 1,...

(52)

(53)
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in which T is the sampling period. In view of the above discussion, we assume that the effect of

tile persistent disturbances has been reduced drastically by the feedforward control, and design the

feedback control in its absence. This design is according to a discrete-time LQR with prescribed

degree of stability. To this end, we consider the performance measure

N-I
Tj = + E  2ok(x Qkxk+uckRkUck) (54)

k=0

where PN and Qk are symmetric positive semidefinite matrices, Rk is a symmetric positive definite

matrix, a is a nonnegative constant defining the degree of stability and NT is the final sampling

time.

The optimization process using the performance measure given by Eq. (54) can be reduced to

a standard discrete-time LQR form by means of the transformation

:Xk = e_kxk, tick = eOtkUck, PN = e-20_N pN (55a, b,c)

Multiplying Eqs. (52) through by e_(k+l} using Eqs. (55a,b) and ignoring the small perturbing

term, we obtain the new state equations

_k+t = e_ (_k_k + FkE0k6ck), k = 0, 1,...,N - 1 (56)

Similarly, inserting Eqs. (55) into Eq. (54), we obtain the new performance measure

N-I

J : + E +a kRkack) (57)
k=O

It can be shown (Ref. 12) that the optimal control law has the form

tick = Gkxk, k = 0,1,...,N- 1 (58)

where Gk are gain matrices obtained from the discrete-time Riccati equations

20, T T ^ RN-i) e Eo,N_iF N_iPN + I-i_ N-i,GN-i -'- - (e Eo,N_iFN_iPN+I-i['N-iEo,N-i + -1 2_ T T "

i = 1,2,...,N;P = e-2c'NpN (59a)

PN-i ----e2a (_N-i q" F N-iEo,N-iGN-i) T PN+,-i (_N-i + F N-IEo,N-iGN-i),

T _ , ..o,+ GN_iRN-iGN-i + QN-i, i 1 2, N; PN = e-2°'NPN (59b)

Equations (59a) and (59b) are evaluated alternately for GN-1, Ply-l, GIv-2, P_v-2,..., Go, given

the final value of Pu.

Inserting the control law, Eqs. (58), into Eqs. (56), we obtain the closed-loop transformed

state equations
xk+l = e') ((I)k + FkE0kGk) :_k, k = 0,1,... (60)

34



Then, recalling Eq. (55a) and restoring the persistent disturbance term, the closed-loop state

equations for the original system can be written in the form

Xk+l = (_k q- FkE0kGk)xk + FkDkdk, k = 0,1,... (61)

8. NUMERICAL EXAMPLE

The example involves tile flexible space robot shown in Fig. 1. Numerical values for the system

parameters are as follows:

L1 =1 m, dl = 0.5 m, L_ = L3 = 5m, L4 = 1.66m

ml =10 kg, rn_. = m3 = lkg, m4 = 0.1 kg

J1 =20 kgm _', J2 = 3 kgm 2, E12 = EI3 = 122.28 Nm 2

The quasi-comparison functions for the flexible arm were chosen as a linear combination of

clamped-free and clamped-clamped shape functions. Both families of shape fimctions have the

functional form

1 [coshA x/L- cos (sinh - sin ,i = 1,2,...,n¢i=

The values of hi and cri are given in Table 1. They correspond to two clamped-free and three

clamped-clamped shape functions, for a total of n = 5 for each flexible arm.

The initial and final end-effector positions are defined by

Xi =9.757 m, Y_ = 1.914 m, 04i = 0 rad

X! =5.000 m, Yy = 1.914 m, 041 = rr/2 tad

and we note that the path from the initial to the final position represents a stralght-line

translation, while the orientation undergoes a 90 ° change. In terms of time, the translational and

rotational accelerations represent one-cycle sinusoidal curves.

The maneuver time is t[ = 2.5 s. The zero-order actuator forces and torques to carry out the

maneuver are shown in Fig. 3.

The control of the elastic motions and the perturbations in the rigid-body motions was

extended to t = 4 s. Not that for 2.5 s < t < 4 s the system is time-invariant, during which time

the control gains can be regarded as constant. The weighting matrices in the performance measure

are

Qt, = 10I, Rk = I, PN = 10I

The degree of stability constant is a = 0.1. Moreover, the samping period is T = 0.01 s and the

number of time increments is N = 350.

Time-lapse plots of the uncontrolled and controlled robot configuration are shown in Figs. 4a

and 4b, respectively, at the instants 0, 1, 1.5 and 2.5 s. Figures 5 and 6 show time histories of the
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errorsin the end-effectorposition. The discrete-timeopen-loopandclosed-looppolesaregivenin
Tables2 and 3. Forcomparison,Fig. 7 showsthe time historyof the errorsandTable4 givesthe
closed-looppolesfor c_= 1.

It shouldbepointedout that the actuatordynamicsis alsoincludedin the formulationand the
numericalresults,but the effect turned out to be small.

9. CONCLUSIONS

An orderly kinematic synthesis in conjunction with the Lagrangian approach permits the

derivation of the equations of motion for an articulated multibody system, such as those describing

the dynamical behavior of a flexible space robot, without the imposition of constraints. The

equations are nonlinear and of relatively high order. A perturbation approach permits the

separation of the problem into a zero-order problem (in a perturbation sense) for the rigid-body

maneuvering of the space robot and a first-order problem for the control of the elastic motions and

the perturbations from the rigid-body motions. The robot mission consists of carrying a payload

over a prescribed trajectory and placing it in a cerrtain orientation relative to the inertial space.

This represents the zero-order problem and the control can be carried out open loop. The first-

order equations defining the first-order problem (in a perturbation sense) are linear, time-varying,

of high-order and subject to persistent disturbances. The persistent disturbances are treated by

means of feedforward control. All other disturbances are controlled closed loop, with the feedback

control being designed by means of discrete-time LQR theory with prescribed degree of stability.

In a numerical example, the controls derived by the perturbation approach are found to work

satisfactorily when applied to the original nonlinear system.
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Table 1. Shape Function Coefficients

),_ Gi

1.87510407 0.734095514

4.69409113 1.018467319

7.85475744 0.999224497

10.99554073 1.000033553

14,13716839 0.999998550

Table 2. Discrete-Time Open-Loop Poles

No. Pole Location Mag. No. Pole Location Mag.

1,2 -0.840_+O.5431 1.000 17,18 0.991+0.135i 1.000

3,4 -O.778_+0.629i 1.000 19,20 0.994+0.107i 1.000

5,6 -O.700_+0.7141 1.000 21,22 1.000 1.000

7,8 -0.690-+O.724i 1.000 23,24 1.000 1.000

9,10 0.586+0.810i 1.000 2S,26 1.000 1.000

11,12 0.629__0.7781 1.000 27,28 1.000 1.000

13,14 0.902+0.4311 1.000 29,30 1.000 1.000

15,161 0.9Z1+0.390i 1.000 31,32 1.000 1.000
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Table 3. Discrete-Time Closed-Loop Poles

No. Pole Location

1,2 -O. 169 -'-'_.546i

3 0.493x10 "z

4 0.120x10 "T

S 0,125

6 0.204

7,8 0.30Z._0.148t

9,10 0.454_+0.4931

11,12 0.468_+0.323i

13,14 0.536-+0.500i

15,16

17

0.336 26

0.670 27

0.569 28,29

0.733 30

0.749_0.860x1"1_ i 0.754 31

0.792 0.792 32

Mag. No. Pele Loc3tion Mag.

0.572 18,19 0.803_+0.976x10 li 0.809

O.OOS 20 0.805 0.805

0.012 21 0.807 0.807

0,125 22,23 0.814-+0.362x1_i 0.814

0.204 24,25 0.817 0.817

0.817 0.817

0.819 0.819

0.821+ 0.366x102 i 0.821

0.822 :3.822

0.822 :3.822

0.827 3.827

Table 4. Discrete-Time Closed-Loop Poles
for o_= 1

No. Pole Location Mag.

1 -O.566 0.566

2.3 -0.160:_.186i 0.246

4,5 -O. 109_-_0.275i 0.296

63 O.062__0.088i 0.108

8 -0.177x10 "t 0.018

9,10 O.779xI_0.209i 0.209

11,12 0.072_+0.088i ).114

i
13,141 0.I 18_+0.016i 3,119

15,16:3.132_+o.gZOxl(_ 0,132

No. Pole Location

17,18 0.139-+0.844x l_Zi

19,20 0.150:tO.O22i

21,22 0.187-+0,1451

23,24 0.198±0.288x10 Ii

25 0.251

26,27 0.252-+0,180i

28,29 0.279_'_+0.490t

30,31 0.328:1:0,148i

32 0.430

Mag.

O.139

0.152

0.236

i0.200

0.251

0.310

0.564

0,360

0.430

Y3

m=, El=

Y

0 X

Figure 1. Flexible Space Robot,
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DISTRIBUTED PARAMETER MODELING OF

REPEATED TRUSS STRUCTURES

llanching Wang*

i)epartmeui, of Electrical l']nginee.ring

IJuivcrsit,y of California,, Los Angeles

Abstract

A new approach to find homogeneous models for beam-like repeated

flexible structures is proposed which conceptually involves two steps.

Step one: Approximation of 3-D non-homogeneous model by a
1-D periodic beam model. The structure is modeled as a 3-D non-

homogeneous continuum. The displacement field is approximated by
Taylor series expansion. Theu, the cross sectional mass and stiffuess

matrices are obtained by energy equivalence using their additive prop-
erties. Due to the repeated nature of the flexible bodies, the mass and

stiffness lnatrices are also periodic. This procedure is systematic and
requires less dynamics detail.

Step two: llomogenization from 1-D periodic beam model to 1-D

homogeneous beam model. The periodic beam model is homogenized

into an eq,ivalent homogeneous beam model using the additive prop-
erty of compliance along the generic axis. The major departure from

previous approaches in literature is using compliance instead of stiff-
hess in homogenization. An obvious justification is that the stiffness

is additiveat each cross section but not along the generic axis. The ho-

mogenized model preserves many properties of the original periodic
model.

*Grateful ack,owledgt:ment to Professor A. V. Balakrish.an for discussion. Research
supported in part under gra.t from NASA Langley FI{C.
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1 Introduction

As tile number of repeated cells ill a truss structure increases, the 3-1) model can

be approximated better and better by an equivalent I-D model. The repeated
structure then can be modeled as a homogeneous anisotropic continuum beam.

The parameters of the continuum beam are functions of tile element properties of

the truss structure.
Finding the I-D homogeneous anisotropic beam model from the reference model,

the 3-D non-homogeneousauisotropic model, of the truss structure may be referred

to as a honlogenizatioi_ process, of which there are tuauy examples.
The approach "presented here follows that of Noor's [1, 2] and Lions's [3]. See [3]

for mathematical details of the homogenization process, where some results are taken

by our paper lot granted. The Noor's method is a direct averaging method, which

justifies equivalence in the sense of equal kinetic energy and potential energy under
the condition of equa[ nodal displacements and velocities. It imposes a kinematic

assumption on the displacement field, then averages the stiffness and mass matrices

(by FEM) over a repeated cell. Although the stiffness matrix is additive at each
cross-section, it is not along the generic axis. Thus, this method always gives higher
stiffness than it should be. '['his shortcoming will be overcome by our approach.

Our approach consists of two steps, as illustrated in Figure (2). The first

step deals with the approximation of 3-D non-homogeneous model of a repeated
structure by the 1-D periodic beam model. The second step then homogenized

it to a I-D homogeneous beam model. The 3-I) non-homogeneous model is a

collection of the Eulerian Equation of Motion of each element of the sl.ructure,
and is referred to as a reference model for the successive approximation. By applying

the Tar Ior series expansion and ener _v equivalence, a 1- D periodic beat n model is fou nd

systelnatically. So)lid beam is used to clarify the basic idea, then an extension from
solid beam to non-solid structure(eg, lattice structure) is presented in section (5).

y,,__

Figure 1: Anisotropic Beam
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Consider a stmctuze constructed by linear elastic anisolwpic materials as shown

in figure (I). The material coordinates attached have x-axis as the geueuc axis

along the centroid_, and y-z as tile principal axes of the area ine_lia of cross

sections. This choice of _eference will be adopted throughout the paper.

Let the bounded open set t2 c /_3 denote the space occupied by tile structure

and F the boundary of t2. I.et U, V, and W be the displacements in x, y mid z

direction, respectively, measured w.r.t, the natural state (undeformed position).

observed from hlerlial coordinates, and represented in the material coordinates.
The equation of motion [4, 5] is

pO = _.... + o'y.,y + _r.... + f,:

PV = °'=y,._ + %y,g + cr_,z + fy in f2 (1)

pl,I' = o':_,,, + %,,_, + or**,. + f,

with well-posed initial and boundary conditions to render existence of unique solu-
tion, where

,, = p(z, ,v,_) _ L°_(f_)

and f(x,y,z) is the external body force. The constitutive law is

and

O" = {__'°e (2)

Cryy

o" _ °'zz

O-y z

o:ry

fyy

e = fzz =

7y z

Tzy

l'Yz
v: + w_

(a)

where o" denotes stresses ,e strains and C O a real symmetric positive-definite matrix
with

= e L°°(a)

llcre equation (I) is taken as the reference model of the beam. Our task is to ap-

proximate the 3-spatial-dimensional (3-D) equation (I) by a l-spatial-dimensional

(l-D) beam eq. to arbitrary accuracy of the displacement field. Instead of going
through the term by tern1 scrutinizing as in solid continuunl mechanics, we provide

a unified and systematic approach. This will insight the general pattern and prop-
erties of the I-D beam eq.

The final goal is the capability of modeling repeated truss structt,re as a I-D

beam. The properties of repeated truss structure, though non-homogeneous (i.e.

p = p(r,y,z)), are periodic along tile generic axis x. A homogenization process then
is needed as will be described in section g.
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2 Justification of Taylor's Expansion

Before applying the Taylor approximation in tile next section, let's justify its ap-

plicability to our problem first. Let 7_ = L'_(Ft) be real valued Hilbert space and

_(t,x,v,:.) = u" =
u3 iV

Let the equation of motion be written as, by equation (1),

"2.

pU + £U = f in 12 (4)

with well-posed homogeneous boundary conditions specified by forces or displace-

ments in F, and

ui(O,x,y,z) C V, ui(O,x,y,z) E Tt where_ = _l(Q)

If all coefficients are in L_(Ft) and the strain energy associated with E is positive

definite, then there exists a unique solution

ui E L2((O,T);/2) with u_ and i_i in L"((O,T);'H)

Proposition 1

3 H,_Xn --/,7 strongly in [L"((O,T);V)] 3

with X,, the solution of M.f(,_ + A,,X. = f,, , where

H., = H.(v,z) x,_ = x.(t,_.) _ [L_((0, T); ?)] _

(H.X,,)' _ I7' in [L2((0, T);7-/)] 3 = W1

2.

H_?_'n -- U in W1

X_ and J(. E [L3((0,fl_);//)]3 = )4;.. , with

fI = L2(O,L) V = H 1 and

Mo( ) = f £

[C.,x, ,.]w_ = [A.X,,, _,_]w_
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Proof:

For each ui (t, x, y, z)

3 uim ---* ui strongly in L2((0, T);];)

U_m _ U_ strongly in L2((O,T);7/)

him --* iLi strongly in L2((0, T);7[)

where Uim defined in (0, T) is analytic function in y and z. The strong convergence
is guaranteed since analytic functions are dense in L2((0, T); V)
Let

i=y,z

?l(2)(fl'b) -_ Z Z Oi,ju(c_)bibj

i=y,z j=y,z

u(Z)(a'b) = Z E Z Di,j,ku(a) bibjbk
i=y,z j=y,z k=y,z

(5)

By Taylor's theorem

_dim 1 (k)= ki ui"((t'x'O'O)'(t'x'y'zl)+H'O'T"
k=0

= H_(v,:)X_m,,(t,x)+ H.O.r.

By strong convergence of the Taylor series

HnXimn _ Uim strongly ill

(H_Xi,nn)' ---* U_r_ strongly in

H..fi(i. .... --_ hi,.. strongly in

L2((0, T); V)

L2((0, T); 7/)

L_((0 V) 7_)

(6)

Therefore, in general, we have

where

Hn = Ha(y, z)-

strongly in [L2((0,T); 12)]3

Xn = Xn(t,x) and Xn E [L2((0, T); V)]"

(HnX,_)' _ _' in W1

(7)
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ilso_

T._. --c by (H,_X,,)'--I _'

Therefore,

[/+ lzg, *]w, -- El,¢]w, v ¢ _ [F-((o,7')_v)]3

or,

lira {-[pIt,,.k',,, tI,,_,_]w, + [('o'l;,e_- %(_]w, } = [f, H,,_.]w,
_t

• " " ..... e.... [tf_f, *.]w_
fin, {-[H,*_plI.X.,_P,,]w_, + [7,,Col,, x,Cq,]w.,} =

tl

Using M,, (x) C,_(x)andf. (t, x) defined before, we have

lira {-[M,,._., qJ,,]w_ 4-[C,,¢_-, c_]w_} = [f., _,,]w._
N

lin, [M..;(',, + A,,X,,, *,,]w_ --[f., *,,]w.,

Equations (5) and (6) imply

tt,_X,, -- { with X. the solution of _t,,J(,, + A,,A,_ = f,,

This completes the proof and justilies the applicability of Taylor's expansion.

(_)

3 Taylor Series Approximation

Let cross sections with COllC(mtrated forces he taken as boundary sections (boundary

points in beam equations) and local effects of applied forces be neglected. Assum(_

the physical displacements U, V and W axe analytic in y and z so that the

Taylor series expansion is applicable. We apply the Taylor series expansion, using

equations (5) and (6), at each cross section x and any time t to have

Ol:" Or' O_U y2 O_t " z'- O2l ,'

l'(t'a"u'z)=l_+ 0!/v+ i)_=+ i)y 2 2 + 0='-' 2 +0,_0_ yz+ttO'T" (9)

where all terms on the RHS are evaluated at. (t,x,0,0). Similar equations can be

written down for V(t,x,y,z) and W(t,x,y,z).

The displacement field can well be approximated by a few dominant terms for

most physical beams. The generalized displacements of the beam eq. can be chosen

by order of magnitude analysis. For example, for an 8-generalized-displacement

(8-d) beam eq., we choose
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X =

'U

W

4,2
4,3

U

V

IV
I ( OIV OV

OU

--_U

Oy
02U

OyOz

Ol, i ' + _i'

(t,x,O,O)

(10)

We will call X the generalized displacements

The approxiination of the displacenient field u1) to the specified accuracy thell is.
by equations (9) and (10),

U(t, x, y, z) "-- u - ¢:sY + ¢2z + f_.yz

v(t, x, ,j, z) - v+(_:,-¢,_)_

;,_'(/,,x, v, z) --' w + (_2:_+ ¢,_)y
(li)

or

[ v -ssx (l'_)
L W

with cross sectional shape function H=ll(y,z) found from equation (11). The equa-
tion (11) is known as kinematic assumption in Structural Dynamics, viewed as a
polynomial approxiniation to the displacement fiehl.

Since dynanlic eq.of the beaniis completely characterized by mass arid constitutive

properties, the approxiinatiou oF 3-1) eq. by the 1-D beam is equivalent to transforming
the point properties to sectional properties, ie, froln mass density p and constitutive
matrix C o to mass matrix M and stiffness matrix C , respectively. The mass inertia

(M) and stiffness (C) have additive property at any given cross-section; therefore we

can find M and C by approximating the cross-sectional kinetic and potential energy.
respectively. This additive property justifies the validity of domain extension from
material-domahl to striiciure-douiain.

4 Energy Equivalence Method

We can find the sectional mass matrix by approximating the kinetic energy usiilg

equations (10) and (12). The kinetic energy of a piece of the beam (between auy
two cross sections) is

1 " /p(02 + ?2[ft7 - 2 _/ [ j + lil2)dA dx
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-- 21///p_THTHj(dAdz

1 ./_TMXdx2

It can be shown that,, for anti-symmetric mass distribution,

M = [ f P HTHdA = {'nO(x)}
JJ

roll

roll

roll

s y rn

7"O55q- m6_

--17"156

1n55 71156

/7166

/n57

77/67

Tr177

rn6G- m55 (13)

m55 q- 71/66

The M in eq. (13) is the most general pattern of mass matrix for anti-symmetric

anisotropic 8-d beams. The first (6 x 6) part of M is the general pattern of mass

matrix for Timoshenko beams.

We can also find the sectional stiffness matrix C by approximating the potential

energy of the beam. From equations (2) and (11), we have

., - ¢_y + ¢_z + _'yz
0

0

2e23

¢2 + w' + (_ + 63 + ¢])y
--¢3 q- y' q- (tt -I- ¢'_3 -- ¢])Z

{[2*x

(yy

(zz

7yz

7xz

7xy

= Te (14)

where T=T(y,z) is a (6 x 9) matrix ;

ii t

Vt -- 03 : "/12

w' + ¢2 = 713

¢'1

12 "4- _123

2¢23 : "_23

= KX' + GX

IX' ]
0

0

--03

0

+ 0

0

0 !

li

2_23

(15)
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G

03x3 LI 03×2

03x3 03×3 03x2

0 0

03×3 03X3 1 0

0 2
9×8

[ooo]L1 = 0 0 --1 and K = Is×s
0 1 0 01x8 9x8

The potential energy of a piece of tile beam is

PE =

'Ill= - cTTTCOTE dA dx
2

_ 1 / ¢Wce dx2

The stiffness matrix for anti-symmetric of c°j is

C = /fTrC°TdA={eij(z)}

Cll C12 C13

C22 C23

C33

s y rtt

C44 C45

C55

C17

C27

C37

C46 C47 C48

C56 C57 C58

C66 C67 C68

C77 C78

C88

C19

C29

C39

(16)

C79

C99

The stiffness matrix C in eq. (16) is the most general pattern for anti-symmetric

anisotropic 8-d beams. The first (6 x 6) part is that of Timoshenko beams. Knowing
the general patterns of M and C is very useful, especially in assuming the model
structure in system identification. Since most of the truss structures ever built are

at least cross-sectional anti-symmetric, we consider this case only hereafter.

5 Extension to Lattice Structures

For non-solid beams, we need to apply the concept, of domain extension, from
material-domain to structure-domain, so that the results in the above sections can
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beapplied.Let'stakea rectangularlatticestructureasanexample.Thespace
physicallyoccupiedby thestructurematerialis calledthematerial-domain.The
smallestsimple-connectedrectangularspaceenclosingthestructureis calledthe
structure-domain(_),whichincludesthe spacenot occupiedby the structure
material(f2_).

A displacementfieldis assumedfor thespacenotoccupiedbythestructure
materialsothatthedisplacementfieldonstructure-domainisin "H1(f2). Therefore,

the Taylor series expansion and energy equivalence method for calculating sectional

properties can be applied directly. The sectional properties shall not be affected

by the introducing of the displacement field in [_e, since both the kinetic energy and

potential energy are zero m f_e. We can then pretend we are dealing with a solid flexible

structure in regular shape.

6 Generalized Beam Equations

The governing eq. can be found from integrating by parts of potential energy.

2PE= /cTc(x)_dx=J eTFdx

= f(KX' + GX)TFdx

= JXT[-KTF'+GrF]dx+XT(KTF)Ito

The dynamic eq. in force-acceleration form is

M(x)X - KT F ' + G r F = 0 (17)

or
N !

Qi2
Qi3

M_ (t 8)
M(x)J( = KTF ' - GTF = I_,I_- Qt3

M_ + Q_
M_3- M4

M:_- 2Q_3

The above two equations are valid for beams which are nonhomogeneous along the

generic axis.
From equation (15),

F = C_ = C(KX' + GX)

50



we have, for a special case of homogeneous beams.

-I£TF' +GTb' = -IfTC'KX" (KTc6 ' GTcK)x ' + G 6G,\.

The dynamic eq. in mass-stiffness form is

Mj(" KTcKx '' (h'TCG _T _ - .,- - -G (I,i)A +GTCGX=O

where

m

F ;ql 1 I

1II22

??_33

s y 77]

?}217

77/44 ?1148

11_55 i'1_56 ?rl57

i1_66 1D67

1D77

HI88.

A'TcK

Cll C12 C13

C22 C23

C33

_s y _n

C,t4 C45 C46

C55 C56

e6G

CI7

C27

C37

C47

C57

C67

C77

C48

e58

C68

C78

C88.

(19)

(_o)

(21)

I_TcG_ GT('7, K =

k

.8 y

C

('13

C23

C33

_7

--el, 2

--C22

--C23

C48

C58 -- C37

C68 + o27

2c19

2c_9

2C39

2e79-- c88

(22)

GTCG =

C33 --C23

(:2'2

2('39

(?88

('_)9

(%)
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with mlj from equation (13) and cij from equation (16) .
The end boundary conditions are either Xi = 0 or F, = 0. There are 2s

possible combinations, theoretically. For example:Xb = 0 for clamped end, KTFb =

(KTCK)X'b + KTCGXb = 0 for free end.
If there are lumped masses, then the conditions become :

(a) for interior points
mbJ_'b - (I'(TCK) AX_ = 0

where
,:xxb = x(b +) - x(b-)

(b) for exterior points

MbXb + sig[(Kr C K )X_ + (KT CG)Xb] = 0

where

sig = { 1 1,
for positive ends (ends with positive outward normal);

for negative ends.

and

KT CG =

.... Cl 3 --C12 2C19"

.... C23 --C22 2C29

.... C33 --C23 2c39

.... C48

.... C58

.... C68

.... C37 --C27 C78 _C79

.... Cs8

(24)

7 Timoshenko Beams

The Timoshenko beam eq. is obtained by deleting the last two generalized dis-

placements (ie., _ and e23 in X) in equation (19), to have

MtJit - CtX_' - A_X_ + AoXt = 0 (25)

where

mt -_- 1_1222

m33

7rt44

g rn m55 m56

In56 m663
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Cft z

Cll C12 C13

C22 C23

C33

y _'n

C44 C45

C55

_ C1

C46 03×3

C56 /
C66 -1

03x3 ]

c2 j

L ____

C13

(:23

C33

____[ 03x303×3 elL1 ]03×3

Aa = L- L T

A0 --

03×3

sym

C33

= 03x3

--C23 03× 3

C22 J

03×3 ]LTC1L1

The force boundary conditions are

Mbfi[b -- Ct AX_ - L AXb = F6

and the geometric boundary conditions are Xb = specified value.

(26)

8 Multi-scale Averaging Method

For Periodic Beam-like structure, M and C are periodic in x with period g.

M = M(x), C = C(x), K and G are constant matrices

The equation of motion of Timoshenko beam from equation (17) in section 6 can
be rewritten as

Let

We have

M J( - (KTCKX ' + KTCGX) , + GTcKx , + GTCGX = f (27)

BI = KTcK B2 = KTcG B3 _GTcG

Mr( - (BtX')'- (B2X)' + Bf X' + B3X = f (28)
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Let
AX = -(B1X')' - (B2X)' + f3_X' + B3X

We will consider the following structure

M2 + AX = f

X(O) = 0 , KTcKx r +KTCGX = B1X'÷BeX = 0

A=A*, A>0

T
Let _= i C R, C_(x)=C(_)=C(s), B_(x)= BI(_),

B_(.) = B2(_), B_(x) = t33(.)
For X/(t,x) : Xi(t,*,_) = Xi(t,x,s)

OXi g 10Xi
x_ = O--x-+ - Os

, at X _ L

We }lave

AXi
,I T .I

= --(B12(i) ' -- (B2Xi)' + B2 "Y'i + BaXi

= _-2AoX i + t_-IA1Xi +_°A>\'i

where

Let [3, 6]

AoX_ = -_ (B, -OV)

dB10Xi 2Bl c92Xi (B2 - B_ )@_i dB2 Xi
A1Xi- ds Ox OxOs • - ds

_ BT. OXi. 0 2Xi (B2 ÷ [_3Xi

Xe(t,x) = Xo + gXI + g'X'_ + _eaXa+ ""

Xi = Xi(t,x,s) i = O, 1,2 "" periodic in s

= AX +M2
= g-2(AoXo + _AoX1 + C2Ao X_- + f'aAoXa + " " ")

+ g-I(AIXo+fA1XI+i'_AIX2 +gaAIXa+'')

+ (A_Xo + gA2X1 + g_A_X,2 + gaA2X3 + • " ")

+ M(Xo + e2_ + e'_2..+ ea2a)
= f-2(AoXo)+g-I(A1Xo+AoX1)

+ (A2Xo + A1X1 + AoX2 + MJ(o)

+ f(A_XI+A1X2+AoXa+MJ£'I)

+ ("(...)

(29)

(30)

(31)

(32)

(33)

(34)

(35)
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The above is valid for all g. Thus, we need

AoXo = 0

A1Xo + AoX1 = 0

M._'o + A2Xo + A1X1 + AoX_ = f

/_1-_1 + A2XI + A1X2 + AoX 3 = 0

Proposition 2

Proposition 3

(36}

(37)

(38)

with

Xo = Xo(t,x) {not depend on s) (39)

(40)xl{t,x,s) = -YI ox° - Y_Xo + 21(t,x)
Ox

AoY1 dB1
= - -ds- {41)

.40 ]'_ - dB2
ds (42)

}/1 and ]/2 are periodic in s since X_ is. Moreover }'1 and }I2 can be independent

of t and x and unique up to a constant additive. Note that solution of }_ and Y_
are guaranteed since

=0

Proposition 4

_s I dB2 ._s as

Is n dYl ,, 02Xo1 (B1 - ._ _s-jas Ox2f(x) - ISI I

1 )(is (B2 - B_ - [h d_IS] I cls + BT dY1 )ds OXod_ "-0_

1 (B3 - BTd}_-)dsXo + M(s)ds 20

= AhXo + MhJ(o (43)

The above is the homogenized eq. found by the multi-scale perturbatwn method.
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Proof:

From eq.(38), to render the sol. of X_, we need

I Jlsl

02 X° - ( B2 B_" OX°
A2Xo = -B1 _- - )_-z q- B3Xo

OoX1 riB202X1 - (:82 B_) X1dBl OX1 2B1
A1X1 - ds Oz _ ds

riB1 (-Y1 02 Xo Y20Xo 021- ,is O: 0-; + _)
dY1 O2Xo dY_ OXo

-2B1( ds Ox _ ds Ox )

- (Z_ - By)( -dY10Xo dr2 _o)
ds Ox ds"

dB2(_y_ OXo _ Y2Xo+ X_(_))
ds Ox

(Note that terms associated with _ and )(l(x) are 0 after integration.)

dB1 . O2Xo= (2B1 + _-S-Y,)

(dB1 Y2 dY2 dY1 dB2 YI) OXo2BIG + (B_- B_) ++ t,-DTd + -d-2 _ ) o_

+ (B_-B{)_;+ d, ]x°

= (B_ dY_'c32X° dY2 BTdY1)OXo TdY2)x o
_s )_-x2 + (B1 d-_ dss -_x + (-B_ d_s

Collecting terms together, we have eq.(43) immediately.

9 Properties of Homogenized Operator

1 fls M(s)dsMh =_ I

M(s) > O, M*(s) = M(s) Y s

1 /s[M(s)X'X]ds>O VX¢O[MhX, X] = _ I

:a Mh >0

(44)

(45)
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M_ = _1/siM*(s)ds = 1/s_i IM(S)ds=Mh

::_ Mh self -- adjoint

Consider the special case where X(t, x) = Xh(t)

KE¢ = [ [MhJ_'h,)(h]ds = IS[[MhfG, J_h]
Jls I

- KE_ = [MdRd, X'd]

Let

Then

Rd -- T_Rh

_SI(T T _ (46)Mh = M _rIm )

Therefore, equivalent mass matrix found by Noor's method agrees with that by

homogenization theory, though not the case in the stiffness matrix.

Is d_ )ds1 (B1 - B1 ds& - b_l ,

- i1Si/sl[Bld(ls-Y_),d(ls)]ds (47)

By eq.(41)
dB1

Ao ?] = - --
ds

or

/S[[-- d (B 1 dY1)d8- "JV _-8'dUl *]ds = 0 V_ E {Hi: periodic}

odls d_ dOJ]d s[B_ _7 - BI, = 0
I ds

flls d (?'1 - Is), i)q_]ds = 0[B1 G
I

Take • = Y1

from eq.(47) and (48)

1 /s[BlJs(lS_,_),d(ls_Y1)]ds

which is positive-definite and self-adjoint.

1 _s [(B2 - B1 d Y..) _ BT(I _ dY1 )]ds&- ISl , ds -_-_

(48)

(49)

(50)

flls ([B-_(B_ ds (B2- B_ d Y2)]'_
1 _B dY_),B1(I_dY1)]_BFl[B1(I_ dye. ds

Isl , ds _ )' ds ]
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I)_,"

L dY_

'q [B1 d'_L,
1t,,), deC�is] = 0 V_ G {tI 1 " periodic}

- (tb'

'lak,' qJ = _-,, we have

• _1 d._ -B._), ds =0

or

Sl B11[(B1 ds - B2),B1 ds = 0

9(Is d"2 d_/2 ffls d}';/_I-I[(/_I d8 - /_2)'(ml d_ - B2)] = [-Bf-L"
I I

Therefore,

B_= iSi I

Let L2 = L2(0, L)

+ BfB_lB..]ds

where

Proposition 5

d_;, d}'_ _/3_)]) ds (51)(B:_- _B_-'B_) + _i-'[(_, Z - 1_),(th d_

[AhXo,Xo]L2
i _s [B_-IV' VjL_ ds

1 f [(__ B_Bi_l_:)Xo,Xo]ds

d ... OXo dY_V=Bt (Is-_l) Ox +(Blds- B2)X0

Ah = A_ Ah > 0

(52)

f(x) : _/3, _02''0_/)20Xo
Ox 2 Ox

+ /)a Xo + MhJ(o

: AhXo + AlhJ('O (53)

where [31 [_2 [33 Mhare constant matrices given in eq.(49) (50) (51) (45), respec-
tively. Also, Ah and Mh are self-adjoint and positive-definite.

All the above procedures are formal. In general, B's are not differentiable and the

differential eq. should be interpreted in the weak sense. Note that it can be shown
that the homogenized operators do not depend on B.C.
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10 Calculation of Operator's Parameter

By eq.(41)

( }11

dB1
Ao Y1 = - -

ds

d B dY'l dB1
-ds ( __2 ) - ds

dY_
1

d)'] = I - B-(1C1
-ds

/11_ d}iperiodic) => ds ds = 0
I

Therefore,

By eq.(43), therefore,

From eq.(42)

(}"l function of s only)

(B1 > 0 Cla constant matrix)

t
periodic _ [ (I- tT_ l C1)ds = 0

JI,sl

Cj, 1 = ( IS[1 _]S[ Ftll ds)-I
(54)

BI [ B dY_ )ds
1 JIs(BI- l-d- s-Isl ,

1 L C_dsIsI _,
= (21

= (_L B_lds)-I

1 f 171ds
B1 >0, Bl <_ -[-S-iJisi

d _[:2
ds - Bll B2 - B_IC2

_s (B_-I B2 - B_l(/_)ds = 0• I

(55)

C'2
= (_12l Bllds)-l_] "s'l Bll[)2ds

I illSl B_iB'2ds= ('_ ISi
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Using the above results and eq.(43)

B2

By (43)

B3

Proposition 6

Proof:

ffls _ dY2 7"di'l )ds_ 1 (B2- B_'- _17., +B2-d_-

= -1--ffl s [B2 - B T - Bl(B71B2 -B;1C2)ISl _

+B_(I - B?lC,)]ds

_ [SI1/IsI(C2- BTBltC1)ds

1 J{Is B_BFldsC1= C2- [S I I

= Cl_flslB_lB2ds-_ls I B_ B_ t dsC1

- J(Is BT dY2 )ds1 (Ba- 2_
ISl I

= _lSl_s, flBa- B_(BftB2 - BTaC2)]ds

_ ISI1LI(B3-BTBrIB2)ds

1 1

+ _sl[B_BllCl_lslBllB2ds] ds

- ISI1/iSl(B 3- BTBflB2)ds

+ (_-SIJ[IsBTB_'ds)CI(_J[IsIB_tB'2ds)

1);_ = B3 and Ba _> 0

C > 0 _ [C(KZ1 -_- GZ2), (I_Zl -t- 622] _ 0

::_ GTCK GTCG Z2 ' Z2 -

( B1 B2 )>0, Vs, V Z_,Z.2=1" 872 ' B 3 -

(56)

(57)
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Take Z1 = -B_IB2Z2

B T B3 Z2 ) (z1)]' Z'2 = [(B3 - BTBllB2)Z2,Z2]

=> Ba - B_ B_ I B2 >_ O V s Q E D.

Proposition 7 The homogenized eq. is

02 X° [_2
f(x) = -B1 Ox 2

+ 143Xo+Mh20

= ,4hXo + MhJ_'o

OXo

Oz

(58)

where B1 B2 B3 can be calculated directly from the original B's parameters as in

eq.(55), (56) and (57) , respectively. Also, Ah is self-adjoint and semi-positive

definite.

Proof:
This is a similar result to the Proposition (5). llere we use the numerically calculable

equations to prove it. The equations for/)'s have been shown already and the self-

adjoint and positiveness are as follows:

02 X° Xo]
[AhXo,Xo] = [-Cl _-x_ ,

+ [_C1I_I IB_lB2ds+ isil IBm'm1 ast-ql_o_" 'X°

+ [_sil I(B3-BTB-ilB2)ds+" _1 EBTB1 ds(l_[ I BT'B2ds]X°'X°

= [Ct (OXo , 1B2dsXo) (OXo+ 1 flslB_lB2dsXo)]\ _; + gsi _ B1 ' \-a; i_l

l fs (59)+ [_i ¢B_-B_B?_B_dsXo,Xo]>-0, V XoI

and

[Ah Xo, %] 0 "2Xo B20Xo= [-& Ox2 _-+BaXo,Yo]

O2Yo -, OYo
= [Xo,-B;-bx2-- + B_ aT + B_Yo]

OYo
02Y'° - B_ + B3Yo]

= [X°'-&-Ox2 -0_

= [Xo,A;Yo] self- adjoint (60)
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11 Conclusion

The differences between our approach and the direct, averaging method [1, 2] are
two fold.

These

We km)w that the stiffness is additive at, each cross section and the compliance

is additiw' along tile generic axis. The energy equivalence method averages

the stitfness ow_r one repeated cell and thus violates the add itivity principle.

Our approach intrinsically follows the additivit, y principle.

Our approach finds the periodic governing equation tirst, then homogenizes it,.

Nanlely, we replace the real structure by a 1-D periodic one, then average

the four matrices to replace it. again by a homogeneous beam. The direct

aw_raging method averages the properties then finds the gow_rning equation.

Namely, the method averages two matrices for replacing 1he real structure

by a homogeneous beam, then finds its governing e.quat.iot_.

are the major reasons why our approach is more _t(:Clll'ate [hli[l _lIly previous.

References

[I] A. K. Noor et al. Continuum models for beam-and platelike lattice structures.

AIAA Journal, Vol 16(No. 12):pp. 1219 1228, Dec. 1978.

[2] A.K. Noor and W.C. Russell. Anisotropic continuum models for beam-like

lattice trusses. Computer Methods in Applied Mechanics and Engineering, Vol.

57:pp.257 277, Sept,. 1986.

[3] J. L. Lions. Some Methods in The Mathematical A'nalysis of ._S'ystem_ and 7'hew

Control. Scieace Press, Beijing, China, 1981.

[4] J. E. Marsden and T. a. tlughes. Mathematical Foundations of Elasticity.

Prentice-Hall, N.J., 1983.

[5] Y. C. Fung. FouT_datwns of Solid Mechanics. Prentice-tlall, N.J., 1965.

[6] J. L. Lions, A. Bensoussan and G. Papanicolaou. Asymptotic Almlysis for Pe-

rwdtc Struct_,res. North-Holland Publishing Co., Amsterdam, 1978.

62



l/ 3-D REPEATED STRUCTURE

\\

(
I I I

I I I I I
t I I I I

1-O PERIODIC MODEL

1-D HOMO®ENEOU8 MODEL

Figure 2: Schematics of Approximation
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Integrated Design of Structures, Controls, and Materials

G.L. Blankenship _

Techno-Sciences, Inc.

7833 Walker Drive, Suite 620
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Abstract: In this talk we shall discuss algorithms and CAD tools for the design and

analysis of structures for high performance applications using advanced composite

materials. An extensive mathematical theory for optimal structural (e.g., shape) design
has been developed over the past thirty years. Aspects of this theory have been used

in the design of components for hypersonic vehicles and thermal diffusion systems
based on homogeneous materials. Enhancement of the design methods to include

optimization of the microstructure of the component is a significant innovation which

can lead to major enhancements in component performance. Our work is focused on

the adaptation of existing theories of optimal structural design, e.g., optimal shape

design, to treat the design of structures using advanced composite materials, e.g.,
fiber reinforced, resin matrix materials. In this talk we shall discuss models and

algorithms for the design of simple structures from composite materials, focussing on

a problem in thermal management. We shall also discuss methods for the integration
of active structural controls into the design process.

Also with the Electrical Engineering Dept, University of Maryland, College Park, MD.



Problem: Integrated design of structures, their

materials, and embedded active controls

Issues;

1. Shape optimization

2. Material analysis and design

3. Actuator design and placement

Shape Design: Find shape of an object to

optimize a design criterion and satisfy design

constraints.

Abstract Formulation:

• _ C IR_ the object shape

• A(u,_) = 0 defines u(_) e R ra, x E

• Given f(_,_-) a real-valued function

Optimal Shape Design Problem:

_n_g{f(u, £z), A(u, _) = o}
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Two essential problems:

1. Select the topology for the structure (cylin-

drical, rectangular, etc.); and

2. Within the designated topology find the

best shape.

Remarks:

• The first problem is very difficult; e.g., in-

troduction of internal holes in a structure

to reduce the weight without violating de-

sign constraints

• The second problem (initial and final topolo-

gies are the same) can usually be treated

by gradient methods.

Example: Optimal Compliance Design of an

Elastic Structure

Problem: Design an elastic structure contain-

ing a large number of "cells" in a continuous

array; e.g., fiber reinforced structure.

Remark: If the array is locally periodic, the

macroscopic moduli may be computed using

homogenization theory.

Design Parameters: dimensions (a,b) and ori-

entation 0 of the microscopic elements.
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Design Parameters

T
b

:_::._::_'_ _<._::":_:!:_._ ._:._:_::::::_.::::.

_::_::'_'::_:_, ._._!_.;_:_i_!iL-_!_:_Ii..........._:,:t_,_,_._:_:,:::_:il

[i1!!!i_iiii_!_ii!::ii::_!_liii_iiii_i_ili::i_i::i::i_ii!::i!i::ii::ii::ii!

Design Algorithm:

1. Use homogenization to compute the local

effective elasticity tensor EE(_, (_, b, c, 0)).

2. Compute gradient of performance func-

tion

3. Steepest descent on design parameters
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Matrix

Heterogeneous Structure

i

Fiber / ---_-'

', ( ( "_

( :' _ (

EfFective Parameter Model:

"Effective" elasticity tensor EH(_) may be

computed using homogenization theory.

1. Solve cell problem

f E.. ox_e)a._
i,j,m,n=l jY *3ran Oyn oyjdY --

2

Jr - o,,i •Eijmn _--2-dY
i,j,m,n= l Oy j

for the characteristic deformation X(mkl)

2. Compute the homogenized elasticity ten-
5or
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Displacement Model: Assume smooth varia-

tion across structure.

2
EH,(a,b,8),

IJKL=I

Rfj[O( z )]RkK[O( =)]RtL[O( = ) ]

cosO -sin6]R[O(m)] = sinO cosO

is the (local) rotation matrix.

Macroscopic Behavior: (For each e = (a, b, 8))

2

E
ijkl=I

2 2

i=1 "=

f{,i = 1,2 are the applied body forces in £Z,

o,J = 1,2 are the tractions applied on the

boundary r, c F = 09.
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Optimal Compliance Design

min _. f E_(_) £Z

{®=(_,b,e)} _jkl"&l Z j

subject to the constraint (*) and

n(1 - _(_)b(.))dn < Inrl

CZF -- the maximum volume fraction allocat-

ed to the reinforcing material.

Using a penalty method, the optimization prob-

lem is approximated by

max min n_(u)
® u6V

where FV(u) is the total potential energy

1 2 E,® _)vk aui

Fl'(_)= 2 k_..=ifn Ei]kt(z)_noxtaz]

1 2

•= -_(vi --gi)2dF

2 2

i=i /=I r
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Introduce the Lagrangian

= n _- _(/(_ - _b)d_ - _F)

where _ _< 0 is a Lagrange multiplier.

Taking the variation of £ with respect to u

and the design variables ® -- (a,b,O) gives

the optimality conditions:

/_ 1 ijkl Ou k Ou i
ijkl=l _ Oct Oz l Ozj Jr" Ab gadDZ > 0

V6a : a* - a, 0 < a* < 1 E

Optimality conditions:

f l ijkt Oftk Ou i

a=min max O,a-pa_ _ OztOzi+Ab ,l

b=min max O,b-pb_ _ _--_t_--_y +-Xa ,1j

A----min{O,A-P_(/(1-ab)dE2-_F)}

oEH, ®
1 ijkt i_'u k Ou i

----0
2 O0 O_ t Oz i

for arbitrary positive numbers Pa, Pb, P_
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Example: Optimal design of a thermal diffus-

er using composites

Problem: Select the shape _Q of the diffus-

er and the parameterization e of £Z/ (vol-

ume fraction, orientation, packing, etc.) of

the material infrastructure to minimize the

weight of the diffuser and meet operational

objectives.

(i) the maximum temperature at the payload

- diffuser interface must not exceed Tin;

(ii) no part of the diffuser can be thinner than

some constant d; and

(iii) for convective cooling, the flux on the

transmission interface of the diffuser must be

below qm.

Composite Material Thermal Diffuser

I
i

L

i
I

Constant
Fibers,', Axz temperature

i '

..... R(z)
i

-- Adiabatic
[

: Surface

AAAAA
i i

x 3

x 1
Flux
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Model:

Assume: Conductivity of the fiber material is

k, conductivity of the matrix material is K

(could be anisotropic)

Conductivity tensor: {a_(m, y, z), i, j -- 1, 2, 3}

® OT=j )a a_j(=) = 0
Ozi

with the boundary conditions

aTe -- qin on Y-l; aTe - o on 5"- 2

O_a® Orla®

OT---_O4- x_(T®)P = q, on 5- 3
Orla®

O/Orla® is the conormal derivative at the sur-

face.

Design Parameters: e, the fiber orientation

and packing, and R(z),0 <_ z _< L the curve

defining the shape of the boundary, and L.

Performance Index: Mass of diffuser

p®(=, y, z)R(z)2d=dydz
n(®, R(.), L) = _ (_)

pe(_,y,z) is the mass density in a cross sec-

tion C(z).

The optimal design problem is

min FI(®, R(.), L)
®,R(.),Z
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Homogenization.. (local)

EfFective Conductivity:

i/a. oxJ _

Macroscopic Behavior:

iX 02u O
=Au= .... =f

c% OmiOmj

"Corrector-"

-_Yi aij(Y) XJ -- Oy i

Optimal Design:

Adjoin constraints to performance function:

rl_(®, R(.), L)(u) = rl(®, R(.), L)

2
1 ® 0_, 01.,

ij= 1

1 2 I_
+2i j,_l _ (_ - "q)2dr2

/t > 0 is a small parameter.
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Define the Lagrangian:

z(,,, e, R(.), L, A) = n_,(,,)

pFdxdy dz - M/F]

Lagrange multiplier A _( O.

Optimality Criteria:

Obtained from variation of £ with respect to

state u and design variables (®, £('), L).
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Abstract

It is beneficial to use a distributed parameter model for large space
structures, because the approach minimizes the number of model

parameters. Holzer's transfer matrix method provides a useful means to

simplify and standardize the procedure for solving the system of partial
differential equations. Any large space structures can be broken down into

sub-structures with simple elastic and dynamical properties. For each single

element, such as beam, tether, or rigid body, we can derive the
corresponding transfer matrix. Combining these elements' matrices enables

the solution of the global system equations. The characteristic equation can
then be formed by satisfying the appropriate boundary conditions. Then

natural frequencies and mode shapes can be determined by searching the
roots of the characteristic equation at frequencies within the range of

interest. This paper applies this methodology, and the maximum
likelihood estimation method, to refine the modal characteristics of the

NASA Mini-Mast Truss by successively matching the theoretical response to

the test data of the truss. The method is being applied to more complex
configurations.

I. Introduction

Control of flexible spacecraft is best analyzed by representing, in a

single set of equations, all of the structural modes and the control system

dynamics. Distributed parameter models enable this approach based upon
the classical partial differential equation theories. In the early 1960's, the

distributed parameter approach was developed simultaneously with the

lumped parameter approach [i-3]. With the event of high-speed and large-

memory computers the finite element method has been developed much

more extensively than the distributed parameter approach. However, the

advantages of the distributed parameter approach to control synthesis,

parameter estimation and integrated design have been largely neglected by
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the technical community. It is the purpose of this paper to show the
advantage of employing the distributed parameter approach to large space
structures.

Holzer's transfer matrix method provides a useful means to simplify
and standardize the procedure for solving the system of partial differential
equations. Also, the transfer matrix method enables the construction of a
relatively simple mathematical model for complicated structures. It is of
great practical value to take advantage of catalogs of the most important
transfer matrices readily available. A complex structure, then, only requires
combining individual matrices to represent the structure which consists of
connected elements. The similarity of this concept to that of the transfer
function is particularly useful to control analysis.

The transfer matrix method itself has been a matured method [4], and
its power has been shown in several technical areas [5,6]. But, little use of
the transfer matrix method has been made for the distributed modeling,
parameter estimation and control of large flexible space structures.

In this paper we applied the transfer matrix method, accompanied by
the maximum likelihood estimation technique, to estimate the lateral
bending characteristics of the NASA Mini-Mast truss (Fig. 1.1)[7] by matching
the theoretical transient response to test data. The Mini-Mast truss is a
ground testbed for the Control-Structure Interaction (CSI) program. The
total height of the truss is 20.16 meters, containing 18 deployable bays.
Two instrumentation platforms have been installed at Bay10 and BaylS.
Mini-Mast has 162 major structural elements. Finite element models of the
truss involve thousands of elements. The distributed parameter model of
the Mini-Mast truss used in this paper consists of two flexible beam elements
and two rigid bodies.

The shear deformation of the truss requires a Timoshenko beam
model in order to match the frequencies at higher mode numbers. It is also
necessary to extend the simple model by adding the so-called "appendage
model" to account for the effects of dynamics of diagonal struts and
associated hinge bodies. The method of this paper is shown to be applicable
to more complex configurations.

2. Derivation of Transfer Matrix

Holzer's transfer matrix method [4] provides a useful means to simplify
and standardize the procedure for solving the partial differential equations.
Any large space structures can be broken down into sub-structures with
simple elastic and dynamical properties. For each single element, such as
beam in bending, rigid body, we can derive the corresponding field matrix
and point matrix. Combining these elements' matrices in a required
manner, one can calculate the responses, i.e. the solution to the global
system equation, by proceeding from one point of the system to the other.

This paper concentrates on the estimation of the lateral bending
frequency of the NASA Mini-Mast Truss. The truss is modeled as two
successive beam elements with two rigid bodies at the Bay10, and Bayl8 (tip

of the truss), respectively. To derive the transfer matrix we consider a
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Fig. I. I NASA Mini-Mast Truss

"original photo not available"
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cascaded beam-body system (Fig.2.1). The jth section consists of a flexible
beam whose elastic and dynamical properties will be described by a field

matrix, and a rigid body whose dynamical property is presented by a point
matrix. When necessary, we will designate any corresponding quantities to

the left and right of a rigid body by superscripts L and R.

Y

T/x> z

U .1

F_. 2.1 A_ Baam-lkn'y _

The lateral bending of the beam is represented by the Bernoulli-Euler

beam equation,

_4..._y O2y+1__

Oz4 a2 Ot2

=0 (2.1)

where, y(z,t) is the lateral displacement, and a2=k/m where k=EI bending

stiffness and m=pA mass per length of the beam. By separation of variables

y(z,t)=Y(z)T(t), we have two ordinary differential equations in Y(z) and T(t),

Y"'(z) - [_4 Y(z) = 0 (2.2)

and
T(t) + 0)2 T(t) = 0 (2.3)

where, _4=0)2/a2. The solution to the Eq.(2.2) has the form,

Y(z) = Asin[3z + Bcos[3z + Csinh_z + Dcosh[3z (2.4)

At the left end of the beam (z=0), the displacement Y(0), slope Y'(0), shear

Q(0), and bending moment M(0) will be
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YR 1 = Bj +Dj

Y'R 1 = Aj]3j + Cj_j

_,-- -_;"(o_--_ -c_
MR1 =-kjYj"(0) = Bjkj_ - Djkj#

or written in matrix form as,

Thus,

0

k_ 3

0

1 0 1

o ]3 o

0 -k_ 3 0

k]3 2 0 -k]3 2

AcfjD

tlj:I ].ljA 0 I 0 1

B _ o _ o

/C k_3 0-k_30 I
D 0 k_ 2 0 -k_ 2 j

y,

°/
M j-1

o I_L 1 o
2_ 2k_ 3

i o o 1

2 2k_2

_1_ . 1 o
0 2_ 2k_ 3

i o o ___A__
2 2k_2 _

/;tR
(2.5)

Similarly, at the right end of the beam (z=Lj), the corresponding quantities
are,

yL = Ajsinl3jLj + Bjcos_jLj + Cjsinh]3jLj + Djcosh]3jLj

y,L = Aj]3jcos]3jLj - Bj]3jsingLj + Cj_jcosh]3jLj + Dj_jsinh]3jLj

-k "" 3 3 . 3 3 .
@j- Yj (L)=-AjkjI3jcos]3jLj + Bjkj[lisxn[3jLj + Cjkj_3jcoshl3jLj + Djkj]3]smhI3jLj
ML_k ,, 2 . 2 2 . 2

J- YJ (L)=-AjkjlBJ s'n]3jLj - Bjkj]3icos_jLj + Cjkj]3j slnh_jLj + Djkj]3jcoshj3jLj

or written in matrix form as,

sin]3L cos]3L sinh]3L cosh]3L

]3cos]3L -]3sin]3L [3coshl3L ]3sinh]3L

-k]33cos_L k_3sin_3L k]33cosh]3Lk_3sinh]3L

k 2- ]3 sinl3L -k]32cos]3L k]32sinh]3L k132cosh]3L

A

B/
Col

J

(2.6)

Substituting Eq.(2.5) into Eq.(2.6) we obtain
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where, the field matrix of the jth beam element,

[FM] j =

-(cosI3L+cosh_L)

- 2_--(sin_L-sinh_L)

_3(sin_L÷si.hl3t.)

__-k_(cos_t.-coshl_L)

2-_-(sin_L+sinh_L)

(cos_L+cosh[3L)

- lk_2(cos_L-cosh_L)

- _k_(sin_L-sinh_L)

---1__sin[_L-sinh[3L)
2k_ 3

1-k4cosl_L-coshBL)
2k[32

- _(cos[3L+cosh_L)

- 2--_(sin_L+sinh[3L)

_0

(2.7)

---1-_cos[3L-cosh_L)
2k_ 2

- 2--_sin[3L+sinhl3L)

2_--(sin_L-sinh_L)

- _cos[_L_oshl_L)

f

q

F_g. 2.2 Free Diagram oi' a Rig_ l_ly

Next, let us consider the jth body (Fig.2.2). The translational and

rotational motions of the body can be described by the following equations,

mj_cm=Q_j -Q_j

Ij_'L=MR-ML-Q_jr_j -Q_j_

(2.8)

(2.9)

For homogeneous motions, Eqs.(2.8) and (2.9) can be written as,

Q]t = @j_ mjo,CZYcm (2.10)

MR = M L + Q_jrR + @j+-Ij c02Y'L (2.11)

But, the displacement of the center of mass, Ycm, is related to yjR and yjL by,
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From Eq.(2.13), we see that

YR = Vcm - _ y'R

gL=Vcm+ jr]-,,y'L

Ycm= Y]_- _ y 'L

To keep the compatibility of the deflection, it must be that

y,_=y_

Substitution of Eqs.(2.14) and (2.15) into Eq.(2.12) gives

_=_} F,Y_
where, rj=rC+_.

Substituting Eq.(2.14) into Eq.(2.10) we obtain

Q_j =@j-mj_2(yL-_y 'L)

Substituting Eq.(2.17) into Eq.(2.1 1) we can derive

a_=M}+rjQ_mj_>} _Ij mj_ _yC

Collecting Eqs.(2.16), (2.15), (2.17) and (2.18), and writing
form we obtain

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

in the matrix

/i}L
where, the point matrix of the rigid body element,

I -rj 0

[PM]j =
0 1 0

- mJ °.)2 mj ¢--o2rL 1

_mjo,2_ _(Ij_md+),.o2 rj

0

0

0

1

(2.19)

Substituting Eq.(2.7) into Eq.(2.19) we obtain
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/Y/R
Y' = [O] j, j-1 Y'

where, the transfer matrix of the jth section,

I (_11 O12 O13

[O]j j-1 =[PM]j[FM]j= O21 O22 O23
' O31 Oxz 033

O41 042 043

°141O_

034

O_ j, j-1

The elements of the transfer matrix are listed below:

Oll = _--(cos[3L + cosh_L) + l[3r(sin_L - sinh[3L)

O12 = -!-(sin[3L + sinh[3L) - 2L(cos[_L + cosh[3L)

O13 = 1--l-=(sin[3L- sinhl3L) - --L--(cos[3L- coshl3L)

2k_ _ 2k_ 2

014 = --L--(c°s_ L- cosh_L) + --L--(sin_L + sinh_L)

2k[32 2k[_

(2.20)

O21 = - _(sin[3L - sinh_L)

022 = l(cos[3L + cosh[3L)

023 = ---L-(cos_ L " cosh_L)

2k_ 2

024 =- -J--(sin[3L + sinh_L)
2k_

031=_ 2Lmm2(cos[3L + cosh[3L)- 21-[_mm2rL(sin[ 3L- sinh[3L) + 2!-k[33(sin_L + sinh[_L)

032 =- l-!-mto2(sin_ L + sinh_L) + ½mc02rL(cos[ 3L + cosh_L) - }k_g(cos[3L - cosh_L)

033 = - I!l_(sin_L - sinh_L) + mD--_(cos[3L - cosh[_L) - _(cosi3L + cosh_L)

2k_ 3 2k_ 2

034 = - mm2(cos[ _L - cosh[_L) - m°"2rL(sin[_L + sinh[3L) + _2--(sin[3L - sinh[3L)

2kl3 z 2k[_

041 =- ½mto2rR(c°s_ L + cosh_L) + _2---(I-mrRrL)to2(sin_ L- sinh_L)

+ }k_3r(sin[_L + sinh[3L)- ½k_2(cos_L - cosh_L)
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_42 = - 1--!-mco2rR(sinl3L + sinhl3L) - l(I-mrRrL)co2(cosl3L + coshl3L)

1 2
- _kl3 r(cosl3L - coshl3L) - lkl3(sin_L - sinhl3L)

(I)43 =_ 1 mco2rR(sinl]L - sinhl3L) _ ___l__i_mrRrL)co2(cosl] L _ cosh_L)
2k133 2k_ z

- _-(cosl3L + coshl3L) - _1 (sinl3L + sinhl3L)

(I)44 =- 1----k--mco2rR(cosl3L - coshl3L) + 1---L--(I-mrgrL)co2(sinl]L + sinhl3L)
2k_ 2 2k[_

+ l_r(sinl 3L- sinhl3L) - l(cosl3L + coshl3L)

3. Characteristic Equation: Eigenvalue and Eigenfunction

After establishing the equation of motion of a global system by
combining the transfer functions of all necessary elements, the natural

frequency and mode shape function can be solved by satisfying the
appropriate boundary conditions.

Bayl8 ] m 2

Beam2

Bayl0 F

Beam I

R

12

I

R

L I. 11

L

[.11

Fig. 3.1 The _ Model for NASA Mini-Mast

As a mathematical model of the NASA Mini-Mast truss, it consists of two

successive beam elements with two rigid bodies at the Bay10 and Bayl8
(Fig.3.1). Using the transfer function in Eq.(2.20) we can see

85



have

fy R Iy Ry, y'

Now let us consider the boundary conditions.

Yo = Y'o = 0

(3.1)

At the fixed end we

(3.2)

at the free end,
Q2 = M2 = 0 (3.3)

Applying the BC.'s to the Eq.(3.1)we get

ioJ t 2o oo2  .fo
(3.4)

Rearranging the state vector we will have

Y2 / R

Y'2 =[0] (3.5)

The condition for Eq.(3.5) having non-trivial solution is that the determinant

of the coefficient matrix equals to zero, that is,

- 1 0 _13 (_114 1

Det[A]=Det 0 -1 _23 _
0 0 _33 _

0 0 _43 q)44

= 0 (3.6)

where, (1)i,j'S (i= i to 4, j=3,4) are the elements of the transfer matrix [(1)12,0.

Eq.(3.6) is the so-called characteristic equation. Expanding the determinant

in Eq.(3.6) we can rewrite the characteristic equation as

(_)33 (I)44 - (I)34 CI)43 = 0 (3.7)

Solving for the roots of the characteristic equation, Eq.(3.7), we can get the

eigenvalue's [Ys. To verify the theoretical derivation we have deduced the

characteristic equations for two simple examples from the foregoing

characteristic equation (Eq.3.7) as foUows:

For a cantilevered beam:
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cos_L.coshI3L = -1

For a cantilevered beam with a tip body.

1 + cosI3L-coshl]L = - W I3L ( cosl3Lsinhl]L - sinl3Lcoshl3L )
Wb

where W b is the weight of the beam; W is the weight of the body. These

results are identical with those given in commonly used textbooks [8].

To establish the mode shape functions we must solve the Eqs.(3.5) and
(2.19) simultaneously, that is,

- 1 0 (I)13 (I)14

0 - 1 (I)23 (I)24

0 0 (D33 1_34

0 0 (I)43 (I)44

Y2 1 R
Y'2 0 (3.8)

and

(3.9)

The later equation represents the compatible conditions of the deflections,
forces, and moments between the two sides of the Body1. Because of the

translational and rotary inertias of the Body1, the shear and bending
moment have jumps at the connection point of the two beam elements,
while the deflection functions are still continuous.

According to the solution function, Eq.(2.4), we can express the state

vectors in Eqs.(3.8) and (3.9) in terms of the coefficients Aj, Bj, Cj and Dj
(j= 1,2) by using the following relations:

Q_o = Alkl[3_ - Clkl_

M_ = Blkl_ 2 - Dlkl_ 2

yL = Alsin131L1 + BlCOS_IL I + Casinh_lL1 + Dlcosh131L1

y,L = Al[31cosl31L 1 _ Bl_31sin_lL1 + Cl]31coshl31L1 + Dll31sinhl]lL1

3 3 3.=- Alkl131cos131L1 + Blkll31sin_]lL1 + Clkll3_cosh_31L1 + D1kl131slnh_1L1

M1L=- Alkl[32sin_lL1 - Blkl_COs_IL1 + Clkl_2sinh_lL1 + Dlkl_2Cosh_iL1

yR = B2 + D2

y'l R = A2_32 + C2_ 2

(3.10)
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= k 3 k 3A2 2f52-Ca 292
= k 2 k 2B2292-O 

yR ___yL = A2sin_2L2 + B2cos_2L2 + C2sinh_2L2 + D2cosh_2L2

y,R = y,L = AE_2COS_EL2 _ B2_2sin_2L2 + C2_2cosh_EL2 + D2_Esinh_2L2

Substituting the quantities in Eq.(3.10) into Eqs.(3.8) and (3.9) we

obtain a matrix equation in the coefficients Aj, Bj, Cj and Dj ( j= 1,2 ),

Ctl5 _16 0t17 _18

(X25 0t26 0t27 IX2$

0 0 0 0

0 0 0 0

0 -1 0 -1

- i32 0 - _2 0

-k_ o k_ o

o -k_ o k_

- k1[_t3 kd3t2014- kd3_*13"kl[32.I'

3 2 3
kt_icb23kt[31_24-kilt4)23-k1[_t24_

3 2 3
kd_i033 kd3t4)3*-kd31¢I_3-kl[324>_

3 2 3 2
kt[_icD43 kI[_I_44 - kI[_I(l)43 - kl_I ¢l)'u,

_51 _52 0t53 _5.t

¢X6t a,62 Ct63 Ct64

01.71 131.72 1_73 0[,74

(XS1 Ct82 0t83 (X84

AI

Bi

Cl

=[ol
A2

B2

C2
D2

(3.11)

The elements expressed in ¢Zij'S in coefficient matrix are listed below:

¢x15 =- sin132L2

¢_16 =- COs_2L2

(_17 = " sinh_2L2

_lS =- cosh_2L2

(X25 =- _2c0s_2L2

(_26 = _2sin_2L2

0_27 =- _2cosh_2L2

0_28 =- _2sinh_2L2

CtS1 = sin_lL1 - rl[51c°S_lL1

0_52 = cos[51L1 + rl[51sin_lL1

_53 = sinh131L1 - rl_lCosh[51L1

o_54 = cosh_lL1 - ra_lsinh_lL1

iX61 = _lCOS_lL1

(x62 = - [31sin_lL1

ct63 = _lCOSh_lL1

£t64 = _lsinh_lL1
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1X71 mlto2sin_lL1 + mlco2rlfl_lCOSlg1L1 3=- - kl_lCOS_lL1
3

ct72 = - mltoXcosl31L1 - mlto2rlfll31sin_lL 1 + kl131sin131L1

ix73 =- mlco2sinhl31L1 + mlo32rlfl131cosh_1L1 + kl_3CoSh_lL1

1X74 =- mlto2coshlg1L1 + m1_2r1L131sinh131L1 + kl133sinh131L1

_81 = - mlc°21_l sinl]lL1 - (II-ml_)O2_lCOSl_lL1 - rlkl_COS_lL1 - kl_lSln_lL12"

0_82 =- mlco2r_lcOS_lL1 + (Ii-ml_)tO2_lsin_lL1 + rlkl_sin_lL1 - kl_2cos131L1

3 kl_2sinh_lL1¢x83 =-mlo2rRsinh_aL1 - (Ii-ml_rL)to2131cosh_lL 1 + rlk1131cosh131L1 +

3 2
(x84 =- mlto2rlRcosh131L1 - (Ii-mlrR_)O2_lsinhl31L 1 + rlkl_lsinhl31L 1 + kll31coshl31L1

The solution to the Eq.(3.11) will give infinite sets of coefficients

corresponding to each order of eigenvalue, which are usually called the
modal participant coefficients. Assume that the solution is normalized with

respect to D2, that is, D2=I. Then we will have a specific set of coefficients

corresponding to an eigenvalue 13ji, which is now assumed in the form of

A1 = Cli, B1 = C2 i, C1 = c31, D1 = c4i For Beaml
A2 = csi, B2 = c61, C2 = CTi, D2 = 1 For Beam2 (3.12)

Substituting the coefficients in Eq.(3.12) into the solution equation Eq.(2.4),
we obtain the eigenfunctions, or the mode shape functions,

Yi(z) = J c lrsin131_.+c2,c0sl31_+c3rsinhl3 Lz+c4,coshl_ 1

/ c5sin _2z+c6c°s_2z+c7,sinh _2,z+cosh_2z

For Beaml
(3.13)

For Beam2

4. Theoretical Response

When the proportional damping is taken into account the Bernoulli-
Euler beam equation will be

m --02Y+ c 0Y + k --_O4Y_ 0

Ot2 Ot Oz4
(4.1)

where, c is a damping constant of proportionality which is

c=2bm. After separation of variables and introducing the
coordinates Ti(t), we obtain

assumed as

generalized

[mYiYj] dz + i_ "I'if L L[cYiYj] dz + i_. Ti [kYiYj] dz = 0
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which yields all zeros except for the one term in each when i=j according to

the orthogonal property of the eigenfunctions, that is,

mi Ti(t) + ci q'i(t) + ki Ti(t) = 0 (4.2)

where,
L

mi =Io mYi 2dz

ki = k y2 dz

ci = c Yi2 dz = 2bmi

Expressing Eq.(4.2) in modal form we obtain

2T i = 0Ti + 2_i(9i I"i + toi

generalized mass

generalized stiffness

generalized damping

(4.3)

where, 2_i coi = ci/mi and C0i2 = k't/mi. The solution to Eq.(4.3) is now

Ti ( t ) = e -_o_ ( Ai cos to_ t + Bi sin eo_ t ) (4.4)

where, Ai and Bi are the coefficients dependent on the initial conditions. By

superposition, the solution to the Eq.(4.1) can be written as

y(z, t) = Z Yi(z) e -_ ( Ai cos to4 t + Bi sin o_ t ) (4.5)
i

where, the eigenfunction Yi(z) has been derived in Eq.(3.13). Recall that we

have defined that

a2=k/m, 2b--c/m, and _4=co2/a 2 (4.6)

Then the damping ratio _i and the damped natural frequency COdi can be

expressed in terms of the parameters a and b,

_i- Ci _ __.b_-.-, and rod, = O)i 'if-i-- _2 = ,_ (a_2) 2 - b 2 (4.7)

2mit0i a[5i2

By superposition, finally, the solution to the Eq.(4.1) can also be written in

terms of the parameters a and b,
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y(z, t) = Z Yi(z) e -bt ( Aicos t4 (a[_i2)2- b 2 + Bisin t_ (a[3i2)2- b 2 )

i

(4.8)

5. Estimation of Modal Characteristics of NASA Mini-Mast

The maximum likelihood estimation method (MLE) is used to estimate

the modal characteristics of the NASA Mini-Mast truss. The iterative formula

for the MLE estimator has been derived in Ref.[9],

It Ift 1= )T -1 )T0 0o+ (Voy j R-1 (VoYj) (VoYj R- 1 (Yj-Y]o) (5.1)

j=l 3=1

where,

Y0

0o

VoYj

R

nominal response calculated by using 0 0

nominal 0 vector

gradient of y with respect to 0
covariance of the measurement noise

The unknown parameter vector 0 will be defined as

0 = [a, b, A1, A2 ..... An, B1, B2 ..... Brd T (5.2)

Because we have got the closed-form solution y(z,t) (Eq.4.8), the gradient

VoYj can be easily obtained by directly taking the derivatives of y with

respect to the unknowns. The closed-form expressions of the gradients
have been derived,

[3i2 at
-_--(z,t) = _ Yi(z) e -bt

0a i 3/ (a[32) 2 - b 2

0Y (z,t)= Z Yi(z) te -bt{ -Aicost3/ (a_2) 2-b 2-Bisint3/ (a_2) 2-b 2

Ob i

+ b [ mi sin t_ (a_2) 2- b 2- Bi cos t_ (a[_2) 2- b 2 ]

3/ (a[_2) 2- b 2

0y (z,t)=Yi(z)e_btcost 4 (a13i2)2_ b 2

0Ai

0--_-Y(z,t)= Yi(z)e-bt sin t4 (a[3i2)2- b2

0Bi

[- Ai sin t3/ (a[3_) 2- b 2 + Bi cos t4 (a[3iz)2- b 2 ]

(5.3)
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Now we use Eq.(5.1) iteratively, considering yj as the measurements

on a certain location of the beam at each time instant, and -YJoas the iterative
response values calculated by using the updated e0, at the same location and

instant When the innovation of the unknown parameter vector reaches the
A

required criterion we may obtain the estimate e of e. All the modal

properties are related to the parameters a and b (Eq.4.7), thus we can obtain

the modal properties as long as these unknown parameters are determined.

The test data is contained in Ref.[10], which was measured by one
displacement sensor installed at Bay18, mounted parallel to the fiat face on

the corner joints of the structure and positioned to measure deflections
normal to the face.

Table 5.1 shows the estimated frequencies which are compared with

those obtained from Finite Element Analysis (FEA) and an Eigensystem
Realization Algorithm (ERA) [11]. Fig.5.1 shows that the reconstructed

response obtained from the estimated parameters and the measured response
have a reasonably good fit.

6. Concluding Remarks

This paper has demonstrated the principles for applying a transfer
matrix method to the parameter estimation of large space structures. The

transfer matrix for the system with flexible beam elements and rigid bodies

has been derived. The procedure for establishing natural frequency and
mode shape has been described in detail. Maximum likelihood estimation

method has served to conduct the parameter estimation. Comparing with
the finite element model, the decrease in the number of unknown

parameters by the present method is significant. The calculation, therefore,

becomes highly efficient. The estimated results are compatible with those
obtained by other traditional methods.

Further research is needed to formulate a more general method for

more complicated structures. Some problems require coordinate
transformation for non-perpendicular attachment elements. Transfer

matrix for a branched structure must be considered. It is also desirable to

develop a more efficient computer software based on the transfer matrix

method, such as the new version of PDEMOD [12].
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Fig. 5.1 Comparison of Reconstructed and Measured Responses
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ABSTRACT

Technology Is being developed to process signals from distributed sensors using
distributed computations. These distributed sensors provide a new feedback capability
for vlbratio¢ control that has not been exploited. Additionally, the sensors proposed
are of an optical and distributed nature and could be employed with known techniques
of distributed optical computation {Fourier optics, etc.} to accomplish the control
system functions of filtering and regulation in a distributed computer. This paper
extends the traditional digital, optimal estimation and control theory to Include
distributed sensing and processing for this application. The design model assumes a
finite number of modes which make It amenable to empirical determlnaUon of the
design model via familiar modal-test techniques. The sensors are assumed to be
distributed, but a finite number of point actuators are used. The design process Is
Illustrated by application to a Euler beam. A simulation of the beam Is used to design
an optimal vibration control system that uses a distributed deflection sensor and nine
linear force actuators. Simulations are also used to study the Influence of design and
processing errors on the performance.
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PRESENTATION OUTLINE

• MOTIVATION

• OPTICAL SENSING AND PROCESSING

• DESIGN PHILOSOPHY

• OVERVIEW OFTHEORY

• EXAMPLE AND SENSITIVITY STUDIES

• CONCLUSIONS AND FUTURE PLANS
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Technologyisbeingdevelopedfor opticalsensingand processingof imagesthatcan represent
distributeddeflectionsof space structures.The motivationfor this issummarizedbelow.

MOTIVATION

ADVANTAGES OF OPTICAL DISTRIBUTED SENSING
AND PROCESSING

• Non-contacting, high precision distributed position
and velocity measurements

• Parallel computations

• Immunity to Electromagnetic Interference

COMBINE TRADITIONAL, EMPIRICAL, MODEL-BASED
CONTROLLER DESIGN WITH OPTICAL

DISTRIBUTED SENSING AND PROCESSING
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A portion of the BEAM is illuminated by a coherent laser source which is gathered by LENS

optics and optically input to a DISTRIBUTED OPTICAL SENSOR which produces as its
SENSOR OUTPUT a coherent light wherein position or velocity information over the illuminated

portion of the simply-supported beam is represented by spatial intensity variations.

OPTICAL SENSOR

LENS

BEAM

DISTRIBUTED

OPTICAL SENSOR

SENSOR
OUTPUT

!

Yk

Spatial Coordinate, s
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Images from the sensor output are then processed by a distributed optical processor the features
of which are listed below.

OPTICAL PROCESSING

• SAMPLED-DATA IMAGE PROCESSING

SIGNALS REPRESENTED BY IMAGES WITH
SPATIAL INTENSITY VARIATIONS

ADDITION AND SUBTRACTION USING
COHERENT BEAMS

INTEGRAL AND DIFFERENTIAL

OPERATORS VIA FOURIER OPTICS
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Distributedsensingis combinedwith traditionalKalmanfilteringandoptimalcontroltechniques
for control systemdesign.Thetechniqueis model-basedandusesa finitenumberof modes.
Also,the numberof actuatorsconsideredisfinite, implementationisperformedby distributed

processing.

DESIGN PHILOSOPHY

• DESIGN MODEL-- EMPIRICALLY DERIVED

• FINITE NUMBER OF MODES
• DISTRIBUTED SENSOR
• FINITE NUMBER OF ACTUATORS

• coNT_o,,AwDESlG.--DISCRETEKA,MA.
FI,TE.A.DREGUU_TO.T,EO.Y

rModal Amplitude]
x= L Modal Velocity]

IMPLEMENTATION VIA DISTRIBUTED
PROCESSING
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The form of measurement is shown below. It is similar to the form used for point sensors
except that the finite dimensional vector representing locations of point sensors in traditional
formulation is replaced by a spatial coordinate, s, which is defined over the segment that lies
in the sensors "field of view". The sensor noise characteristics at any point are assumed to be
independent of any other point as shown by the last equation on this page.

MEASUREMENT MODEL -- FINITE
MODES with DISTRIBUTED SENSING

FORM OF MEASUREMENT

Yk = Y(S,tk) = H'(s)xk + nk(s)

8_ _M

SENSOR NOISE Spatial Coordinate, a

E{nk(s) nk'(Sl)} = R(s) tS(S-Sl)
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The state is assumed to be distributed and defined over the entire structure and can be expressed
in terms of mode-shapes and corresponding modal amplitudes. The modal amplitude can be
recovered from the modal state by integrating over the domain of the structure as shown by the last

equation on this page.

DISTRIBUTED PROCESSING
SIGNAL REPRESENTATION

u = u(s,tk) = ¢'(s) [I I01 x(t k)

sc_

I

Iq x(t k) u ] JL'- _k.¢'(s) [0
I

Spatial Coordinate, s

[I[O]x(tk) =!t_(_(c)u(c,tk)d_
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With the assumption of finite modes, an appropriate model for the evolution of the modal state
as a sampled data system is shown below. The noise term is added to account for processnoise.

DYNAMICS MODEL--FINITE MODES
with DISTRIBUTED SENSING

MODAL STATE [Amplitude]
x k = x(t k) = [ Velocity J

DYNAMICS Xk+ 1 = ¢ Xk + F fk + Wk

PROCESS NOISE E(wj W'k) = Q 8jk

103



Noise is introduced during distributed processing. The noise terms W, N and M appearing in the
prediction, update and regulator equations, respectively, are modeled as white Gaussian noise.

OPTICAL PROCESSING
WITH NOISE

PREDICTOR Uk+l (-)(S) = _ Uk(+)(S) + 0'(S) F fk + W

where _ = { _)'(s) (I) I_'_ (_(O) ( " ) do}

UPDATE Uk(+)(S) = Uk(')(S)

_M

REGULATOR fk = If_ G _(rl) uk(+)(rl) drl + M
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The methodwas appliedto a simplysupportedbeamwithnine linearforce actuatorsand
a distributeddeflectionsensor. Distributedprocessingwassimulatedon a digitalcomputer.

SIMULATION STUDIED

, SIMPLY SUPPORTED BEAM

• 9 LINEAR FORCE ACTUATORS

• DISTRIBUTED DEFLECTION SENSOR

• DIGITAL SIMULATION OF DISTRIBUTED
PROCESSING
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For simulation only the first three modes were used. The characteristics of the first three modes

of the beam are summarized below.

MODAL CHARACTERISTICS OF
THE BEAM

MODE

1

FREQ. DAMPING MODE-SHAPE
(HZ)
0.600 0.0100 i_ "_

2 2.400 o.ooso __

3 5.400 0.0045 _'_-_
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In empirically derived models, errors can be introduced from different sources in the identification
process. The model errors can be found in frequency, damping and mode-shape.

MODEL-ERRORS AND NOISE

• MODEL- ERRORS

Frequency
Damping
Mode-shape

• NOISE

Sensor noise : included in K-Filter Design

Process noise : included in K-Filter Design

Distributed processing noise: W, M, N -cannot
be included Kalman Filter Design
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The beam was allowed to vibrate freely from an initial displacement (0.1An, n=1,2,3). Al_er ten

seconds of free vibration an LQG based controller designed for the first mode was activated.

The response below shows the measurements obtained at one point (.36L from the left

end) and the corresponding estimations. It takes about five seconds for the estimations to

converge to the measurements. The closed-loop segment of the response shows that the

vibrations are effectively damped out.

CONTROLLER PERFORMANCE
NOMINAL DESIGN

DISPLACEMENT AT .36L FROM LEFT END

0.1

0.05

DISPLACEMENT

°'i-0.05

-0,]
0 1o 15

Controlled

response

estimate

20

TIME, 5EC,
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Parameters of the model were varied to study its effect on the performance of the estimator

and controller. The verified ranges in which the variation of frequency, damping-ratio and

mode-shape of the first mode did not produce instability during closed-loop simulations is
listed below. The first mode shape was varied by superposing a triangle shaped error on the

mode shape with the height of the error triangle represented as a percentage of the amplitude

of the nominal mode shape.

VERIFIED STABILITY RANGE
Mode I

FREQUENCY -50 % to 100 %

DAMPING RATIO -80% to 100%

MODE SHAPE -5 %* to 100 %

Error

Spatial Coordinate, a

* Unstable <-5 %
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The reponse below shows the controller perfromance with 100% mode-1 frequency error.
In the open-loop segment the estimations are erroneous as expected but after the controller is
activated, the frequency errors observed in the open-loop estimations are eliminated and the
vibrations are controlled effectively.

CONTROLLER PERFORMANCE
100% MODE 1 FREQUENCY ERROR

DISPLACEMENT AT .36L FROM LEFT END

0.1

DISPLACEMENT _[ tl " fl..,: 1

0 i:ig ::_ ._"

-0.05

-13.1
0

ESTIMATION I CONTROL

_, fl _ sensor

/I/IIIA "

; 10 15

TIME, SEC.

2O
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The response below shows the effect of optical prediction noise with RMS noise intensity of 0.01
which is 10 percent of the initial displacement of .1 units. The noise intensity level is indicated as
a thick horizontal line. The solid line represents the measurement and the broken line, its estimation.
Both the open-loop and the closed -loop estimations are noisy because the filter does not take into
account the optical processing noise. In the closed-loop segment the response does not show any
unbounded growth, thus demonstrating the robustness of the system to optical processing noise.

RESPONSE WITH PREDICTION NOISE

DISPLACEMENT AT .36L FROM LEFT END

RMS Noise Intensity • 0.01

.12

.O9

.06

.O3

Lu

IM
O 0

Q.
¢n
¢3

-.03

-.06

-.09

-,12
10 15 20 25

TIME, SEC.

RESPONSE AND ITS ESTIMATE AT S=.36

!

30 35 40
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A simulation study was also made with RMS noise intensityof 0.08, an eight-fold increase over the
previous study. As before, the noise intensity level is indicated as a thick horizontal line. The solid line
represents the measurement and the broken line, its estimation. The estimations are noisy and do not
bear any similarity with the measurements. In the closed-loop segment the plant responds to the
actuator noise only and does not show any unbounded growth, thereby demonstrating again the
robustness of the system to optical prediction noise.

RESPONSE WITH PREDICTION

DISPLACEMENT AT .36L FROM LEFT END

RMS Noise Intensity : 0.08

NOISE

.6

.4

.2

i °
-.2

o.4

-.6

-.8
10 15 20 25

TIME, SEC.

RESPONSE AND ITS ESTIMATE AT S=.36

i
I

30 35 4o
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The response below shows the effect of actuator command generation noise with
RMS noise intensity of 0.1. After the controller is activated the response amplitudes
are reduced, albeit noisy because of the command generation noise. The closed -loop
estimations are also noisy because the filter does not take into account the actuator
command generation noise.

RESPONSE WITH ACTUATOR
COMMAND GENERATION NOISE

DISPLACEMENT AT .36L FROM LEFT END

RMS Noise Intensity : 0.10

I,-
Z
LU
:J
U,I
(.1

,.L
O.

,,.,.

.04

-.02

".08

".1
0

10 lS 20 25

TIME. SEC.

RESPONSE AND ITS ESTIMATE AT S=.36

30 35 40
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Inthispresentationa designprocessfor distributedsensingandprocessingwasdeveloped
anddemonstratedusinga distributedprocessingsimulator. Itwas shownthat the processis
robustto modellingerrorsanddistributedprocessingnoise. Futureplansincludeexperimental
verificationofthe conceptsoutlined.

CONCLUSIONS AND FUTURE PLANS

DEVELOPED DESIGN PROCESS FOR
DISTRIBUTED SENSING AND PROCESSING

TESTED USING A DISTRIBUTED PROCESSING
SIMULATOR

PROCESS IS ROBUST TO MODELLIING ERRORS
IN FREQUENCY, DAMPING, AND MODE-SHAPE
AND DISTRIBUTED PROCESSING NOISE

EXPERIMENTAL VERIFICATION OF THE CONCEPTS
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SUMMARY

The equations of motion for a two-segment deploying telescopic beam are derived through application

of Lagrange's equation. The outer tube of the beam is fixed at one end and the inner tube slides freely

relative to the fixed segment. The resulting nonlinear, non-autonomous set of equations is linearized

and simplified to the standard Euler-Bernoulli partial differential equations for an elastic beam by

freezing the deployment process at various stages of deployment, and examining the small amplitude

and natural modes of vibration of the resulting configuration. Application of the natural boundary

conditions and compatibility of motion relations for the two segments in their common region of

overlap leads to a transcendental characteristic equation in the frequency parameter I3L, where

L = length ofbeam

m = mass / unit length of fixed beam segment

E1 = flexural rigidity of the beam

09 = frequency

Numerical solution of the equation for the characteristic roots determines the modal frequencies, and

the corresponding mode shapes are obtained from the general solution of the Euler-Bernoulli equation
tailored to the natural boundary conditions.

Sample results of modal frequencies and shapes are presented for various stages of deployment and

discussed. It is shown that for all intermediate stages of deployment (between 0% and 100%) the

spectral distribution is drastically altered by the appearance of regions of very closely spaced modal
frequencies. The sources of this modal agglomeration are explored.

t Professor of Aerospace Engineering
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INTRODUCTION

The dynamics of spacecraft in earth orbit or interplanetary travel is uniquely different from earth-

bound system dynamics in as much as equilibrium and stability result from the strong interactions

among the laws of rigid body dynamics and those of flexible vibrational motions. If in addition, the

spacecraft undergoes spatial and temporal redistribution of inertial and stiffness properties as during

deployment and assembly operations, the dynamics of this configuration evolution must also be ac-
commodated in this self-contained dynamic system, without uncontrollable deviations from desired

flight paths and attitude configurations.

The material presented in this paper is part of an ongoing basic research effort to develop greater

understanding of and appreciation for these interactions, and in the process to develop analytical pro-

cedures for high fidelity simulations of on-orbit operations needed for the validation of designs of

future systems prior to their construction on-orbit. Both of these research objectives have high rele-

vance to future civilian and military space systems which are expected to be constructed on orbit. For

many of the members used in the construction, critical design loads can be expected to occur from

handling loads during construction.

One major thrust of the ongoing research is the modeling of selected deployment mechanisms isolated

from their orbiting parent spacecraft, and the systematic investigation of their dynamic characteristics

as influenced by design, configurational and deployment parameters. A two-segment telescoping

beam is one such mechanism, and the subject of this paper.

Problem Definition

Determination of the natural modes of vibration of a deploying two-segment telescopic beam at vari-

ous stages of deployment is the specific problem addressed in this paper. The conceptual physical

model is that of a non-uniform beam comprised of an inner tube sliding freely inside an outer tube

which is cantilevered from one end. Figure 1 illustrates the physical model, with the beam in a par-

tially deployed configuration. Both tubes are considered to be thin-walled, and their diameters are

sufficiently large compared to the wall thickness so that the two tubes can be considered to have the

same flexural rigidity (I), area (A), and mass per unit length(m). The natural vibration frequencies and

mode shapes of this model are to be determined for several stages of deployment between 0% and

100%.

\ FIXED SEGMENT
III

SLIDING SEGMENT

Figure 1: Telescopic Beam
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Equationsof Motion

MATHEMATICAL MODELING

The idealized model comprises two beams sliding freely relative to each other, as shown in Figure 2

below. The overlapping segments of the two are constrained to move together as a unit. The equa-
tions of motion are developed from application of Lagrange's equation which can be stated as:

0
where (1)

T = Kinetic energy of the system

V = Potential energy of the system

=U-W 

U = Strain Energy of the system

W = Virtual Work of external forces

qj = Generalized coordinate

y I-" L ._f
Sd _ Sr _

So---*l /

Figure 2:

Equations for the sliding segment:

Idealized Telescopic Beam

With reference to the above figure, let

S o be the position of the overlap end of the sliding

segment at some reference time t o

S d is the displacement of the end due to deployment

motion

S, is the deformed position of the reference point A

X, is the Eulerian coordinate of A

v is the displacement of A in the y- direction

w is the displacement of A in the z- direction
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Then

S a = _ Undt

o_ 2

_,:x,+'-TJoLt_)
where

Uo = Deployment velocity

u, = Displacement of A due to elasticity

The velocity vector of A is then given by:

l(_3V+v_._+.o_w " ^ ^ .^

Now define a displacement u such that

_ V--_ "I-_=uo+u, 7t _ wX X)

(2)

(3)

(4)

(5)

Then

The kinetic energy of the system can now be determined as

= --#rl li 2 +
2

The strain energy and virtual work quantities can be expressed as

(6)

(7)

07u 2xL,, 2v 2

_ : j_(,.v+,.w)_:wherepy andp_ are external distributed loads.

(8)

(9)
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It should be noted that in the above equations, the variable u introduced by definition is not a

state variable like v and w, but is rather a function of the last two and the elastic displacement ue.
Hence the generalized coordinates are Ue, v, and w.

Performing the variations indicated in the Lagrange's equations, and noting that, as in Hamilton's

Principle, admissible variations all vanish at the boundaries of the integration domain, the
following nonlinear and non-autonomous equations result.

• O_2Ue

m//- EA--_-T = 0

1 .. o_v d4v

Equations for the Fixed Segment:

(lO)

(11)

(12)

The above equations are directly applicable to the fixed segments with the modification that the
quantity u is defined without the deployment velocity UD, i.e.

u = u, -_(v-_+ v _+ w___+ w_l

Characteristic Equations

(13)

For the purpose of determining the modal characteristics, the above equations of motion are

reduced to a quasi-static form by dropping the deployment velocity related terms and all
nonlinear terms to yield

EA o32u, 0
mii- ..-_-

E134v
mr,+ -_ = 0

(14A)

(14B)

mfb+El--_4 = 0 (14C)
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The equations are completely uncoupled and can be studied independently of one another. The

following treatment is therefore confined to vibrations in the x-z plane, governed by the last of

the three equations above. This is a standard beam equation of the Euler-Bernoulli type. The

homogeneous part defines the modal characteristics of the beam system.

The general solution of the homogeneous equation is given by:

w(x, t)= (a_ cosh/_c + A 2 sinh fix + a 3 cos _ + A4 sin floe)sin(rot- q_) (15)

= {p(x)sin(a,_t- q_)

where

fl' =to 2m (16)
E1

At any stage of deployment, the telescopic beam can be idealized as a three segment beam as

shown in Figure 3.

:!

I L

Figure 3: Uniform segments of the idealized telescopic beam.

The general solution above is applicable to each of the segments to yield

/ AI cosh fllx + A_ sinh fllx + A3 cos fllx + A, sin fllx; 0 < x < Xs }{p(x) = _ B_ cosh f12x + B2 sinh f12x + B3 cos fl2x + B, sin fl2x; Xs < x < L

Ct cosh fl3x + C2 sinh fl3x + C3 cos flsx + C, sin fl3x; L < x < L + Xs (17)

where

m:. (18)
Elt

m_, m2, m3 are the mass per unit length of the respective segments;

Ell, EI2, and EI s are bending rigidities of the respective segments.

The constants in these displacement expressions are to be evaluated from a set of boundary

conditions and compatibility relations at the two interfaces of the segments.
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The boundary conditions are given by:

_(o)--o

e¢,(o____2=o
a_

d:¢3(£+x.)
=0

dx:

u3C,_(L+x.)
dx 3 - 0

and the compatibility conditions are given by

(19)

dx dx

el a2C,_(x,,) a2o_(x,,)
" dx 2 = EI 2 dr, 2

Ell a3ck_(X") a'ck2(xR)
dx 3 = EI 2 dx 3

¢_(L)= O,(L)

a¢2(L)_ a¢3(£)

(20)

b

dx dx

El2 ax 2 =EI_ ax 2

EI 2 d302(L) d303(L)
dx 3 = EI 3 dx 3

Introducing the appropriate functions into these conditions results in twelve homogeneous

equations. The determinant of the coefficient matrix must vanish for non-trivial solution of the
constants. Hence

=0

(21)
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where

I[A]=0 1 0

cosh al

__ fll sinh al

[B]-[ EI 1 cosh al

[.EI 1sinh a 1

- cosh a2

I - f12 sinh a2

[C]= l -;h2El2 cosh (x2

L-_3El2sinha2

sinh a t cos al

fll cosh al - fll sin al

EI 1sinh oq -EI 1cosal

EII coshal Ell sin(x x

-sinha2 - cos.2

-_ cosh a2 _ sin a2

-_2EI2 sinh a 2 ,_2E12 c°sa2

-_3EI2 cosh a 2 -_3EI2 sin. 2

sinai 1

_cos._ |
-El 1sin all
-EI 1cosalJ

-sin (X2 1

-_ cos(x2/
)q2EIE sin (x2 I

213E I2 cos(x2_l

Icosh(x3 sinh(x3 cos(x3 sin(x3 1

/sinh(x3 cosh(x3 -sin(x3 cos(x3 /

t°l=/co h., sinh(x3 -cos(x3 -sin(x3|
Lsinha3 cosh (x3 sin(x3 - cos(x3_l

I -cosh(x4 -sinh(x, -cos(x, -sin., 1sin(x, -22 cos(xs|

-22sinh(x,cosh(x4 -22cosh(x4 22222[E]=/_222 _222 sinh(x , cos(x, 222 sin(x4 /

/L_22 3sinh(x, _223 cosh (x, _223sin(x, 223coso_aj

[-cosh(x 5 sinha5 -cos-5 -sin(x5 1

F]= [sinh(x 5 cosh a5 sin-5 - cos(x5 J

(22)

(23)

(24)

(25)

(26)

(27)

and

(x, = fl3L; 22= fl_2..3

The determinant equation is nondimensionalized by introducing

k =#,L; _ = -_

(28)

(29)
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Then

al = k a2 = &k

as = 2 k; a. = 21 as =  k(l+ R ) (30)

SAMPLE RESULTS AND DISCUSSION

A numerical algorithm has been developed for solving the determinant equation for a specified

number of the first consecutive eigenvalues (kn) of the system and the corresponding

eigenvectors representing the unknown coefficients of the displacement functions. The mode
shapes are also calculated from the eigenvectors.

Table 1 lists the first 10 eigenvalues for a number of deployment stages. The first and last

columns represent data for straight beams at the fully collapsed and at the fully deployed lengths.
Figure 4 is a graphical display of the same data.

Mode #

1

2

3

4

5

6

7

8

9

10

0

1.8751

4.6941

7.8548

10.996

14.137

17.279

20.420

23.562

26.704

29.845

_t De__loyrnent Sta_

11_%_ I 50,,, I 75 J 90 I 95__
.7739 1.6959 1.5325 1.3527 1.2115 1.1360 1.1120

4.4846 4.3572 4.0142 3.2388 2.6482 2.a.a,a.2 2.3985
7.5461

10.400

10.503

10.712

10.812

10.910

11.000

11.100

7.3600

9.2000

9.2001

9.7300

9.8100

9.9112

10.010

10.600

6.4243

8.5100

8.8400

9.0030

9.1010

9.2004

9.6100

9.7200

5.0683

7.2910

7.3110

7.4015

7.5011

7.6000

8.1545

8.2100

4.4664

6.2220

7.0904

7.1000

7.9100

8.0100

8.1120

8.20O4

4.1495

5.7000

6.7390

6.8010

7.3003

7.6293

7.7002

7.9401

4.0468

5.5600

7.0318

7.1000

7.3103

7.8314

8.0000
R l_f_

100

0.9375

2.3470

3.9274

5.4980

7.0685

8.6395

10.210

11.781

13.352
1A 0"_

Table 1: Frequency Parameter Variations with Deployment

Two trends are immediately evident from the data:

1. A compaction of the frequencies towards the lower end as deployment proceeds, thus

increasing the modal density in regions of normal dynamic interest, and

2. The appearance of very close, nearly repeated roots from about the third mode upwards,
for all the partially deployed configurations

The mode shapes provide clues as to the basis for these trends. Figures 5 through 10 show the

first six mode shapes for the 0% and 5% deployment configurations. The first four mode shapes

are very similar for the two configurations. The fifth and sixth differ markedly between the two

configurations. The partially deployed configuration shows large motions in that portion of the

deploying segment that protrudes from the fixed segment in comparison with the motions of the

fixed segment. These modes can properly be described as" tip whip "modes, in analogy with the

classical " antenna whip "motions of automobile radio antennas. The fixed segment is seen to be
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vibrating essentially in its third

mode under both the fifth and sixth

coupled modes. It is clear that these
two modes are the result of a

coupling between the cantilevered

modes of the fixed segment, and

those of the protruding portion of

the deploying segment. This

coupling is believed to be the

primary mechanism for the

agglomeration of the modes.

As the protruding portion of the

deploying segment increases in

length with deployment, its natural

frequencies decrease and the

coupling with fixed segment modes
occurs at lower frequencies.

Figures 11 through 13 illustrate the
first five mode shapes at 25%, 50%

and 90% deployment stages.

The observed changes in modal

characteristics with deployment can

30
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$
•$ 20

a_

10 '

°-. • O

5 __ ------o- .... _]_

-- : m •

0 I I I I ,

0 20 40 60 80 113(

% Deployment

Figure 4: Variation of Modal Parameter with %

Deployment

be expected to have serious impacts. Control design for such a system would be made more

difficult by virtue of the increased modal density and near coalescence of certain of the modes.

Transient dynamic analyses cannot be readily performed by modal synthesis due to the

continuous variations in the basis functions (mode shapes). Stability implications of the modal

agglomeration can also be serious and will be explored in future studies.

CONCLUSION

The modal characteristics of the two-segment telescopic beam at all stages of partial deployment

have been shown to vary drastically from those of either the completely collapsed or fully

extended configurations. This variation manifests itself in an agglomeration of the modal

frequencies near the lower end of the spectrum, and is attributable to the sharp discontinuities in
mass and stiffness distributions between the region of overlap between the inner and outer

segments and the non-overlap regions near the root and the free end respectively.
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FLUTTER SUPPRESSION DIGITAL CONTROL LAW DESIGN
AND TESTING FOR THE AFW WIND-TUNNEL MODEL

Vivek Mukhopadhyay
NASA Langley Research Center,

Hampton, Virginia

SUMMARY
//_)

Design of a control law for simultaneously suppressing the symmetric and
antisymmetric flutter modes of a sting mounted fixed-in-roll aeroelastic wind-tunnel model

is described. The flutter suppression control law was designed using linear quadratic

Gaussian theory, and involved control law order reduction, a gain root-locus study and use
of previous experimental results. A 23% increase in the open-loop flutter dynamic pressure
was demonstrated during the wind-tunnel test. Rapid roll maneuvers at 11% above the
symmetric flutter boundary were also performed when the model was in a free-to-roll
configuration.

INTRODUCTION

A summary of the Active Flexible Wing (AFW) Program is presented in Ref. 1. Within

the operating range of the Langley Research Center Transonic Dynamics Tunnel, the sting
mounted AFW aeroelastic model had both symmetric and antisymmetric flutter modes, in a
fixed-in-roll configuration, and a symmetric flutter mode only, when the model was in a

free-to-roll configuration. The active flutter suppression system (FSS) test goals were to
demonstrate: a) simultaneous symmetric and antisymmetric flutter suppression for the
fixed-in-roll configuration, and b) symmetric flutter suppression in the free-to-roll

configuration. An additional goal was to test a rolling maneuver load alleviation system
along with the FSS above the open-loop flutter boundary. Since the free-to-roll symmetric
flutter and the fixed-in-roll symmetric and antisymmetric flutter modes had very similar
characteristics, a single FSS control law was designed and demonstrated for both the flutter
test configurations, a) and b) as stated above. This paper addresses the mathematical
modeling, control law design and wind-tunnel test results.

NOMENCLATURE

A,B
C,D
Bo

Co
E

F,G
Gw

g
H

control law state-space matrices
control law output matrices
Kalman state estimator gain matrix

optimal regulator gain matrix

expectation operator
plant state-space matrices

gust input matrix
gravitational acceleration constant

sensor output matrix

............... .4, .'-,_!:_.,_A, = f _.r.'d¢
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I identity matrix
M Mach number
p estimator Riccati equation solution

q dynamic pressure, psf
qf flutter dynamic pressure, psf
Q1 plant output weighting matrix

Q2 control input weighting matrix
Rv measurement noise intensity matrix

Rw gust input noise intensity
S regulator Riccafi equation solution

s Laplace variable
T sample period, seconds
t time, seconds

u control input vector
v measurement noise vector

w gust input noise

co frequency, radians/second

x plant state vector
Xc control law state vector
y measurement vector

_. accelerometer output, g's

control surface angular position, degrees

LEI wing leading edge inboard
LEO wing leading edge outboard
TEI wing trailing edge inboard
TEO wing trailing edge outboard

tip wing tip
Abbreviations:
AFW active flexible wing
CL
CPE
FSS

LQG
OL

psf
RMLA

l'rns

SISO

closed loop
controller performance evaluation
flutter suppression system
linear quadratic Gaussian

open loop
pounds per square foot
roiling maneuver load alleviation
root mean square
single-input single-output

AFW EQUATIONS OF MOTION

The description of the AFW aeroelastic wind-tunnel model and the wing-tip ballast
stores, including details of the accelerometer sensor positions and multiple control surface
actuation capabilities, are provided in Ref. 2. The accelerometer sensors and the control
surface locations on the wing-plan form are shown in figure 1. The development of the

aeroelastic equations of motion is described in Ref. 3. The equations for the symmetric and

antisymmetric motion were developed separately, using ten flexible modes for each
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configuration. The flexible mode shapes and natural frequencies were derived from a finite-
element modal analysis and were corrected using ground vibration test data.

State-space Equations

A set of state-space mathematical models were developed 3 for control law design. For
the aeroelastic equations, the doublet-lattice oscillatory aerodynamics approximation used
four aerodynamic lag terms for each flexible mode. In addition, the state-space models
included corrections for control surface effectiveness based on results from the 1989 wind-

tunnel test 2, and the third-order transfer functions of the actuator dynamics derived from

ground test of the unloaded control surfaces. A Dryden gust spectrum transfer function,
driven by a white noise process, was used to simulate the random vertical gust of the wind-
tunnel. The complete linear equations of motion at a specified dynamic pressure were
expressed by the state-space equations,

dx/dt = Fx + Gu + Gww (1)
and y = Hx+ v (2)

where x is the state vector, u is the control input vector, w is the gust input noise, y is the
accelerometer sensor output vector, and v is the measurement noise vector. Equations (1)
and (2) were scaled such that the units of the control inputs were in degrees, the units of the
sensor outputs were in g's, and the gust input unit was in feet/second.

Open-loop Dynamic Pressure Root-locus

Using these state-space mathematical models at six dynamic pressures, q = 100, 150,
200, 250, 300 and 350 psf, the flexible-mode root-loci with dynamic pressure were

studied. The open-loop, dynamic pressure root-locus of the first four flexible symmetric
and antisymmetric modes, for the fixed-in-roll configuration, are shown in figures 2 and 3,
respectively. The figures 2 and 3 indicate that the second and third flexible mode

frequencies coalesced to produce the flutter instability. The unstable mode was primarily
wing-tip torsion, for both the symmetric and the antisymmetric motions. The sixth and

seventh symmetric flexible mode frequencies also tended to coalesce (not shown in figure
2). At Mach 0.5, the analytical open-loop symmetric flutter dynamic pressure was
estimated to be 248 psf at 11.2 Hz. The analytical open-loop antisymmetric flutter dynamic
pressure was estimated to be 233 psf at 10.9 Hz. The closed-loop dynamic-pressure root-
locus is also shown in figures 2 and 3 and will be discussed later.

CONTROL LAW DESIGN

The flutter suppression design objective was to develop low-order robust digital control
laws which would simultaneously suppress the symmetric and antisymmetric flutter modes

of the model in the fixed-in-roll configuration with allowable control surface activity. The
maximum permissible control surface rms deflection and rates were 1.0 degree (at 11.2 Hz

flutter frequency) and 75 degrees/second, respectively. From the 1989 test 2, the
antisymmetric flutter frequency was known to be 1.8 Hz below the analytical value. The
control law was also required to be sufficiently robust to compensate for this difference.
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The FSS control laws were designed using linear quadratic Gaussian (LQG) theory and

involved control law order reduction, a gain root-locus study, and use of previous

experimental results 2. Since the symmetric and antisymmetric flutter modes had very
similar characteristics for the fixed-in-roll configuration (see figures 2 and 3), a single FSS

control law was designed to suppress both the flutter modes. This control law used the _tip

pair of accelerometers and the TEO pair of control surfaces on the right and left wings. The

block diagram for digital implementatio n2 of the symmetric and antisymmetric FSS control
laws is shown in Figure 4. The accelerometer outputs from the left and right wing were

passed through 25 Hz fh'st-order antialiasing filters, modeled by the transfer function
157/(s+157) and converted into digital data at a sampling rate of 200 Hz. The digital
controller separated the data into symmetric and antisymmetric components, computed the

digital control law outputs and then distributed the processed feedback signals to the right
and left actuators after 0.005 seconds computational delay.

Design Plant Model

The 68th order antisymmetric state-space equation at q = 350 psf for the fixed-in-roll

configuration was used as the design plant model, since from the analysis and the 1989
test, the antisymmetric flutter mode was found to be most critical and was encountered at a

lower dynamic pressure than the symmetric flutter mode. The accelerometer sensors and
control surfaces were selected based on the frequency response analysis of the open-loop

system. The _'EO and Etip accelerometer responses were predominant at the wing-tip
torsion frequencies due to the excitation from TEl and TEO control surfaces. In addition,

the _tip sensor exhibited relatively low response at frequencies above 25 Hz. Therefore,

Z_rEOand Etip accelerometer sensors and TEl and TEO control surfaces were initially studied
as candidates for measurement inputs and control outputs, respectively.

Full-order LQG Design

A full order LQG control law was designed using the design plant model state-space

equations (1) and (2). The full-order LQG control law which is given by equations (3) and

(4), minimizes a weighted quadratic cost function defined by E[yTQIy + uTQ2u], where QI

and Q2 are the plant output and control input weighting matrices 4,5.

dxc/dt = Aoxc + Boy, (3)
u = Coxc, (4)

where

Ao = IF - Boll + GCo]

Bo = pHTRv -1

Co =- Q2 "IGTS.

The matrices Bo and Co are the Kalman state estimator gains and the full-state optimal

regulator gains, respectively. The matrices P and S are the positive definite solution of the

steady state dual matrix Riccati equations, given by

FP + PF T + GwRwGw T - pHTRv-IHp = 0

SF + FTs + HTQ1H - SGQ2 -1GTS = 0,

138



where Rwand Rv denote the intensity matrices of the gust input and measurement

Gaussian white noise processes, w and v, respectively. To obtain the LQG control law,
full-state optimal regulator gain matrix Co was first determined using a unit output
weighting matrix, Q1 = I, and a control weighting matrix Q2 = 0.001 I, where I is a 2x2

identity matrix. Then the Kalman state estimator gain matrix Bo was determined using Rw
= 0 and Rv = I. The final selection of these weighting and noise intensity matrices for the

full order control law, and the subsequent order reduction process were determined after
several design iterations, until a stabilizing low order controller was found for the nominal
design plant model. The control law order reduction process is described next.

Order Reduction

The full 68th order LQG control law given by equations (3) and (4) was first block-

diagonalized, and then reduced to 1 lth order by residualization of all the damped modes
above 19 Hz. Equations (3) and (4), in block-diagonalized form, are shown in equations (5)
and (6), where the vector xcl represents the retained states and the vector Xc2 represents the

remaining states associated with the damped higher frequency dynamics.

d _Xcl _ [_ol 0 "_Xcl _ [Bol 1_- [xc2j = Ao2__x¢2j + t_o2 ] y (5)

c AXc,l
u =[Col oZSXc2 J (6)

In the residualization procedure, only the steady state part of the stable higher frequency
dynamics in equation (5) were retained. This was accomplished by setting the state

derivative dxc2/dt to zero and solving for Xc2, provided the matrix Ao2 is nonsingular 4.
The reduced state space model of the control law is given by equations (7) and (8).

where

dxc/dt = A Xc + B y (7)

u = C xc + D y (8)

Xc = Xcl, B = Bol, C = Col

and D = - Co2 Ao2 -1 Bo2.

This procedure introduced a direct feedthrough matrix D in equation (8). The
residualized 11 th-order control law was subsequently reduced to a second-order control

law by balanced realization and truncation of the balanced system. The balanced realization

procedure finds a linear transformation in which the control law states have equal

controllability and observability properties 4. The weakly controllable and observable states

are then truncated. Even with the elimination of these states, the resulting set of equations
retained the most important input-output characteristics of the original system. This second-
order, two-input two-output control law, is given by equations (9) and (10).

646 dt = -64.6 -5.2 xc + -0.45 -0.73 (9)

--[-o.4 2.1lx , I -o.06-0.091I.. l3.6 -9.4J c t. 0.13 0.21 J[Z'tip J (10)
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The corresponding Bode diagrams of the four components of this 2x2 control law are
shown in Figure 5. This figure indicates that the maximum gain of this control law was 2.5

deg/g (8 dB) with a peak gain at 10.3 Hz. The primary stabilizing gain of this control law

was from the sensor _'tip to the control surface _o. Although this control law stabilized

the symmetric and antisymrnetric plant models at 350 psf, the step responses contained
high frequency components. With the addition of 25 Hz antialiasing filters to each
accelerometer channel, the high frequency components of the step responses were
eliminated. However, with the addition of T=0.005 second computational delay ( modeled

by the first-order Pade approximation (2/T-s)/(2/T+s)), the system was marginally stable.
It was also noted that, when this control law was reduced to a single-input single-output

(SISO) control law by retaining only the control law input _tip and the output _'rEO. the

nominal design plant was also stable. This simplified SISO control law was therefore,
studied further in order to compensate for the computational delay effects, and possible

uncertainty in the actual flutter frequencies, as mentioned earlier.

SISO Control Law

This simplified SISO control law (plot labeled by _'rvA_p, in figure 5) was improved

further via gain augmentation. The required gain level was determined using a gain root-
locus analysis. The output gain feedback root-locus of the design plant model at 350 psf,

with 8TEO as plant input, and _tip as plant output, is shown in figure 6. This root-locus

indicated that the open-loop unstable pole (mode 3) near 11 Hz migrated into the stable left

half plane, with a negative feedback gain of 1.3 deg/g from Ztip to _rEO. However, the

actuator poles near 50 Hz become unstable at a gain of 0.75 deg/g. Therefore, a gain level
of at least 1.3 deg/g in the 8 to 12 Hz frequency range, with subsequent gain attenuation at

higher frequencies, was necessary to stabilize the system, and accommodate the possible
difference between the analytical and experimental flutter frequencies. In addition,

compensation for the phase lag effects of the antialiasing filter and one cycle computational
delay was also required. The total phase lag introduced by these two effects was about 40

degrees at the frequency 10 Hz.

The gain and phase compensations were achieved by varying the three elements of C
and D in the SISO control law, and studying the gain and phase diagrams and the closed

loop stability responses. An increase in C1 and decrease in IC21 resulted in a desirable phase
increase at low frequencies. An increase in D reduced the phase (towards zero) at high

frequencies, which was also beneficial. These three parameters were varied, until a gain-
level near 1.3 deg/g (2.3 dB) was maintained over the frequency range 8 to 12 Hz, and

sufficient phase lead was obtained. The real part of the control law complex pole was also
moved from - 5.2 to - 6.0 to achieve a wider gain range. The high frequency gain was

kept below 0.75 deg/g. This modified SISO control law is given by equations (11) and

(12), assuming negative feedback.

dxc - I-6"0 64.6 ] [ 1.95 ] (11)dt -64.6 -6.0] xc + -0.73] _tip

8TEo = [ 14.4 --3.1]x c + 0.63 Ztip (12)
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Thecorrespondinggainandphaseplotsareshownin figure5 andarelabeledi_,rEO/;/tip
(SISO).Thecomplexpolesandzerosof thiscontrollaw were-6+j64.6and-30+_j56,
respectively.A second-ordernotchfilter, givenbythetransferfunction(s2+42s+44100)/
(s2+84+44100),wasaddedto increasethesymmetricmodelgainmarginto 6 dB, near33
Hz. This filter attenuateda33Hz lightly dampedoscillationdueto theinteractionof the
sixthandseventhsymmetricflexiblemodes.A first-orderwashoutfilter, givenby the
transferfunction s/(s+6),wasalsoaddedto removeanysteadystateinputbiasto thesensor
signal.

Discretization. The resulting 5th order SISO control law in Laplace domain was

discretized using the Tustin transformation z = (l+sT/2)/(1-sT/2), where T is the sampling
interval. For the 200 Hz sampling rate used by the digital controller, T = 0.005 seconds.

With the Tustin transformation at this sampling rate, the Bode diagrams in the Laplace
domain and the discrete domain were almost identical below 15 Hz. Hence no frequency
warping corrections were applied.

Dynamic-pressure root-locus: The open- and closed-loop dynamic pressure root-locus
plots are compared in figures 2 and 3. These comparisons indicated that both the symmetric
and antisymmetric models were stable, up to dynamic pressure q = 350 psf. The closed-
loop frequency decoupling was due to lowering of the frequency of mode 2 to about 6.8

Hz. The frequency of mode 3 was increased to 11.6 Hz, but the damping ratio was only of
the order 0.010 at 300 psf.

Sensitivity studies. The closed-loop system sensitivity was studied by perturbing the
second and third modal frequencies in the state-space block-diagonalized plant model by
+10% and the nominal gains by +4 dB at q = 250 psf and examining the closed-loop
system step responses, for all possible combinations. These studies indicated that the

design could accommodate simultaneous gain and frequency changes for all cases except
when the second and third mode frequencies were perturbed to approach each other.
Sensitivity studies were also done using the state-space model with and without the 25 Hz

antialiasing filters, with and without one cycle delay, with additional delays, and with + 6
dB gain perturbations at 250 psf. These studies indicated that the symmetric configuratTon
could tolerate one additional delay (or phase lag of 1.8 degrees/Hz) at half the nominal
gain, but the antisymmetric configuration would become unstable with an 11 Hz
oscillation. The phase and gain margin comparisons with the experimental results,
described in the next section, indicated that this particular situation may have been
encountered during the experiment. The gain loss was apparent from the experimental Bode
diagram.

SUMMARY OF TEST RESULTS

Open-loop Flutter. Based on examination of the peak-hold data obtained during the wind
tunnel test with the tip ballast store coupled, the open-loop (OL) flutter dynamic pressures
were as follows: The free-to-roll OL symmetric flutter was at a dynamic pressure of 235
psf, at a frequency of 9.6 Hz. The fixed-in-roll OL antisymmetric flutter was at a dynamic
pressure of 219 psf, at a frequency of 9.1 Hz. These experimental symmetric and
antisymmetric OL flutter dynamic pressures were, respectively, 13 and 14 psf below the
predicted values, and the flutter frequencies were, respectively, 1.6 Hz and 1.8 Hz below
the predicted values.
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Open-loop frequency responses. Figures 7 and 8 show the OL frequency responses of

Ldp due to _'rEO from analysis and experiment at 250 psf, for the symmetric and
antisymmeWic (fixed-in-roll) cases, respectively. At this dynamic pressure, the OL plant is
unstable. So, the OL frequency responses were computed from closed-loop (CL)

experimental data, using the Controller Performance Evaluation (CPE 6,7) procedure.
Figure 7 indicates good agreement below 9 Hz and qualitative agreement above 12 Hz.
Above 12 Hz, the magnitudes differ by about 5 dB while the phase angles are nearly equal.

Figure 8 indicates fair agreement, below 7 Hz, and qualitative agreement above 12 Hz.
Above 12 Hz, the magnitudes differ by 6 to 8 dB and the phase angles differ by 10 to 20

degrees. Note, that for each phase diagram, the 180 degree crossing occurs near the
respective OL flutter frequencies, and the difference between their predicted and

experimental values is quite apparent.
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Closed-loop Tests

The active flutter suppression test results are summarized in figures 9 through 13.

Figures 9 and 10 show the wind-tunnel test dynamic pressures versus the free stream Mach
number. During the wind-tunnel test, in the fixed-in-roll configuration, with both the

symmetric and antisymmetric FSS control laws operating, the CL system was stable up to
q = 270 psf, at Mach 0.46. This augmented q represents a 23% increase over the OL

antisymmetric qf.

During the wind-tunnel test, in the free-to-roll configuration, with the symmetric FSS
control law operating, the CL system was stable up to q = 290 psf, at Mach 0.48. This

augmented q represents a 23% increase over the OL symmetric qf as shown in figure 10.
This FSS control law also suppressed the flutter when a Rolling Maneuver Load

Alleviation (RMLA 8) system was tested with rapid roll maneuvers at q = 260 psf, 11%
above the OL symmetric flutter boundary. This RMLA control law used LEO and TEl
control surfaces, so the interaction with the FSS control law was minimal.

The rms deflection and deflection rate of the fight and left side TEO control surface

were computed from the data sampled at 200 Hz at each fixed-in-roll FSS test condition. If
the value of the right and left differed, the maximum is plotted in figure 11. The maximum
rms deflection and rates were less than 0.4 degrees and 25 degrees/second, respectively.
These maximum rms deflection and rate demands of the actuators were well below the

maximum allowable values of 1 deg and 75 deg/sec as stated earlier in the paper.

The Nyquist-diagram-based gain- and phase-margins were estimated using the CPE
technique, during the experiment. These estimates were compared with corresponding

analytical quantities in figures 12 and 13, for the symmetric free-to-roll and the . "1
antisymmetric fixed-in-roll configurations, respectively. For me symmetric, tree-to-rot
configuration (figure 12), the analytical and experimental gain margins were above +6 dB
up to 270 psf. The analytical positive phase margins (at or below 7 Hz) were about 20
degrees, but the negative phase margins (at or above 12 Hz) were well above 45 degrees.
The analytical phase margins were close to experimental results up to about 270 psf.

For the antisymmetric, fixed-in-roll configuration (figure 13), the analytical negative
gain margins were only -3 dB.The analytical positive phase margins (at or below 7 Hz)
were about 20 degrees, but the negative phase margins (at or above 12 Hz) were 45

degrees. The analytical phase margins were close to the experimental data at 250 psf,
because the design model was fairly accurate at frequencies below 7 Hz (see figure 8). The
negative gain and phase margins at the high frequency end were primarily responsible for



preservingthesystemstability.Thesourceof additionalphaselagwith increasingdynamic
pressurewaspossiblydueto highly loadedactuators.Thegain losswasapparentfrom the
experimentalBodediagramshownin figure8 in the8to 12Hz frequencyrange.

CONCLUDINGREMARKS

A single-inputsingle-outputcontrollaw wasdesignedfor flutter suppressionusing
linearquadraticGaussiantheoryandinvolvedcontrollaw orderreduction,againroot-
locusstudyanduseof previousexperimentalresults.Thecontrollaw wasdigitally
implementedandtested.Simultaneoussuppressionof symmetricandantisymmetricflutter
modesin closeproximity wasdemonstratedto 23%abovetheopen-loopantisymmetric
flutter boundarywhenthemodelwasin afixed-in-rollconfiguration.Symmetricflutter
suppressionsystemoperatingsimultaneouslywith arolling maneuverloadalleviation
systemwastestedto 23%abovetheopen-loopsymmetricflutter boundary,whenthe
modelwasin afree-to-rollconfiguration.With thiscombinedsystem,rapidroll maneuvers
werealsoperformedat 11%abovethesymmetricflutter boundary.
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ABSTRACT

This paper describes in a concise manner three selected topics on the active control

of helicopter aeromechanieal and vibration problems. The three topics are: (1) The active

control of helicopter air-resonance using an LQG/LTR approach; (2) Simulation of higher

harmonic control (HHC) applied to a four bladed hingeless helicopter rotor in forward

flight; and (3) Vibration suppression in forward flight on a hingeless helicopter rotor using

an actively controlled partial span trailing edge flap, mounted on the blade. Only a few

selected illustrative results are presented. The results obtained clearly indicate that the

partial span actively controlled flap has considerable potential for vibration reduction in

helicopter rotors.
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NOMENCLATURE •

system dynamic matrix

control distribution matrix

output matrix

helicopter weight coefficient, Cw = W/ (TcR4 p,_f_ 2)

quadratic cost function

compensator matrix

feedback gains

filter gains from solution of Riceati equations
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fuselage mass, nondimensional

control surface hinge moment

number of blades

power required to implement conventional IBC

power required to implement control based on actively controlled

flap

rotor radius

HHC transfer matrix

control input vector

diagonal weighting matrix on actively controlled flap deflection

angles

helicopter weight

diagonal weighting matrix on change in actively controlled flap

deflection angles

diagonal weighting matrix on vibrations

diagonal weighting matrix on control amplitudes

state variable vector

vector of vibration amplitudes

vector of baseline vibrations

Lock number

control surface deflection angle

N/rev cosine and sine amplitudes of control input

additional pitch inputs for conventional IBC

optimal HHC input vector

HHC input vector

change in ItHC input vector

pitch input to the U h blade for air resonance suppression

collective pitch angle

cyclic pitch components required for trim



/_Ols, /_Olc
sine and cosine conLrol components introduced through a non-

rotating swashplate

0my higher harmonic control angle in rotating frame

00s,0cs,0ss amplitudes of HHC sine input in collective, longitudinal, and

lateral control degrees of freedom

00c, 0c_, 0_s amplitudes of HHC cosine input in collective, longitudinal and

lateral degrees of freedom

# advance ratio

o blade solidity

pa air density

_b blade azimuth

_bk k th blade azimuth

COF1,taJLl, 0-)T1 rotating first flap, lag and torsional blade frequencies nondimen-

sionalized with respect to f_

_,H HHC frequency

g/ rotor angular speed

(') derivative with respect to _b

INTRODUCTION

The use of active controls whereby tile pitch of a helicopter rotor blade is modified

by a control system so as to alleviate dynamic effects represents a typical aeroservoelastic

problem. The level and scope of the research activity in this area have been increasing

steadily during the last twenty years, and the body of related literature is quite substantial.

A recent comprehensive survey article has described these topics with considerable detail

(ref. 1).

The purpose of this paper is to present in a concise manner three selected topics on

the active control of helicopter aeromechanical and vibration problems. The three topics

described here are:

(1) The active control of helicopter air resonance using an LQG/LTR approach (refs. 2-5).

(2) Simulation of higher harmonic control (HHC) applied to a four bladed hingeless rotor

in forward flight (refs. 6-8).
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(3) Vibration suppressionin forward flight on a hingelesshelicopter rotor using anactively

controlled, partial spanflap, mountedon the blade (refs. 9 and 25).

It shouldbe emphasizedthat only concisedescriptionsand selectedresultsare

presentedhere; the interestedreadercan find considerableadditional material in refs. 1-9,

and 25.

ACTIVE CONTROL OF HELICOPTER AIR RESONANCE

Air resonanceis an aeromechanicalinstability experiencedby a helicopter in hoveror

forward flight. It is causedby couplingbetweenthe blade lead-lagdegreeof freedomwith

fuselagepitch or roll. Air resonanceis a fairly mild type of instability when comparedto

ground resonance(refs. 10-12).

Improved understandingof aeromechanicalphenomenasuchasair resonancein

hover and forward flight combinedwith advancesin modern control technologyoffer the

potential for practical activecontrol of air resonancein hoverand in forward flight.

Previousstudies (refs. 13-14)neglectedthe important effectsof blade torsional flexibility,

forward flight, and unsteadyaerodynamics.Furthermore,for practical applications onehas

to demonstratethe ability of the control systemto operatethroughout a wide rangeof

operating conditions encountered,while usinga small number of measurementsand control

inputs. Theseproblemswereaddressedin detail in a fundamental and innovative seriesof

studies(refs. 2-5). Thesecomprehensivestudiesdemonstratedthe feasibility of designinga

simple active controller capableof suppressingair resonancethroughout the complete

rangeof operating conditions which may be encounteredby a hingelessrotor helicopter.

The coupledrotor/fuselagemodel usedin this study is shownin Fig. 1. Tile

fuselageis assumedto be a rigid body with three translational degreesof freedomand two

rotational degreesof freedom,namely pitch and roll. Yaw is ignored sinceits effecton the

air resonanceproblem is known to be small. An offsethingedspring restrainedblade

model, shownin Fig. 2, is usedto representthe hingelessblade. In this model, the blade

elasticity is concentratedat a singlepoint called the hingeoffsetpoint, and torsional

springsareusedto representthis flexibility. This assumptionsimplifies the equationsof
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motion, while retaining the essential features of the air resonance problem. The dynamic

behavior of the rotor blade is represented by three degrees of freedom, which are flap, lag,

and torsional motions. The aerodynamic loads of the rotor blades are calculated using a

quasi-steady two dimensional potential flow strip theory. Compressibility and dynamic stall

effects are neglected, although they could be important at high advance ratios. Unsteady

aerodynamic effects, which are created by the time dependent wake shed by the airfoil as it

undergoes arbitrary time dependent motion, are accounted for by using a dynamic inflow

model. This model is described by a 3-state linear model forced by perturbations in the

aerodynamic thrust, roll moment, and pitch moment at the rotor hub. The three states in

these equations describe the behavior of the perturbations in the induced inflow through

the rotor plane.

The equations of motion of the coupled rotor/fuselage system are complex and

contain geometrically nonlinear terms due to moderate blade deflections in the

aerodynamic, inertial, and structural forces. For this reason, the equations were derived

and analytically linearized about the helicopter trim using a symbolic manipulation

program (ref. 5). An ordering scheme was applied to the problem to further simplify tile

derivation. Despite the simplifications used, the mathematical model is quite substantial.

The fuselage has 5 degrees of freedom; each blade has 3 degrees of freedom, thus the four

bladed hingeless rotor is represented by 12 degrees of freedom; and there are three

aerodynamic states associated with the dynamic inflow model. Thus the equations of

motion are represented by 37 states.

The active control inputs to suppress the air resonance instability are introduced

through a conventional swashplate; the pitch of the k th rotor blade is given by the

expression

0pk = (00 + A00) ÷ (0l¢ ÷ A0,c) cos_pk + (01s + A01s) sin _pk (1)

The terms with A are small and these represent tile active control inputs, while

those without A are the inputs necessary to trim the vehicle.

The stability of the system is determined through the linearization of the equations

of motion about a blade equilibrium solution and the helicopter trim solution. The

helicopter trim and equilibrium are extracted simultaneously using harmonic balance for a
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straight and level flight condition. After linearization, a multiblade coordinate

transformation is applied, which transformsthe set of rotating blade degreesof freedomto a

set of hub fixed non-rotating coordinates.The transformation is introduced in order to take

advantageof the favorablepropertiesof the non-rotating coordinate representation.The

original system,before the transformation, hasperiodic coefficientswith a fundamental

frequencyof 1/rev; however,the transformedsystemhas coefficientswith higher

fundamental frequency.Thesehigher frequencyperiodic terms havea reducedinfluenceon

the behavior of the systemand canbe ignored in someanalysesat low advanceratios. In

hover,the original systemhasperiodic coefficientswith a frequencyof 1/rev, but the

transformed systemhas constant coefficients.Two other propertiesof the model in hover are

that the collectivemodesdecouplefrom the sineand cosinemodesof the system,and

differential modesbecomeuncontrollable. Thus, in hover, dependingon what outputs and

inputs are selected,the model may haveuncontrollableand unobservablemodes.

Oncethe multiblade coordinate transformation is carried out, the systemis

rewritten in first order form

{:_} = [A(_b)l{x} + [B(W)I{u} (2)

The systemis constant coefficientin hover and becomesperiodic asthe forward

flight speedis increased.Stability canbe determinedby using an eigenvalueanalysisor by

using Floquet theory for the periodic problem in forward flight (ref. 10). An approximate

stability analysis in forward flight is also possibleby performing an eigenvalueanalysison

the constant coefficientportion of the systemmatricesin Eq. (2).

The study describedin refs. 2-5consistedof two stages. In the first stage(ref. 2)

linear quadratic optimal control theory wasusedto designfull state feedbackcontrollers. It

was found that the periodic terms in the model play only a small role for advanceratios

below # = 0.40. However,the torsionaldegreeof freedomand unsteadyaerodynamicswere

found to be important. It wasalsodeterminedthat full state feedbackwasimpractical and

partial state feedbackis unreliable.

Figure 3, taken from ref. 2, illustrates the effectof unsteady aerodynamicsand

periodic coefficientson the openloop system. The coupledrotor/fuselage configuration

selectedwasa four bladed, soft-in-plane,hingelessrotor helicopter somewhatsimilar to the
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MBB B0105 helicopter, in which certain parameters were modified, so as to induce an

unstable air resonance mode, which manifests itself in the regressing lead-lag mode. Figure

3 depicts the damping in the lead-lag mode. Tile two sets of curves represent air resonance

damping with quasi-steady aerodynamics and dynamic inflow, at various advance ratios.

Dynamic inflow captures primarily the low frequency unsteady aerodynamic effect which is

important for air resonance, and therefore this effect should be included in the controller

design. It is also evident from the figure that the effect of periodic coefficients is relatively

minor, thus controller design can be based on the constant coefficient approximation of the

system represented by Eq. (2).

In the second stage of the research (refs. 3-5), a multivariable compensator was

designed using two swashplate inputs and a single body roll rate measurement. The

controller design is based on the LQG technique and the Loop Transfer Recovery Method

(refs. 15-18). The controller is based on the optimal state estimator in conjunction with

optimal feedback gains. A constant coefficient model is assumed, since the results shown in

Fig. 3 as well as preliminary control studies (ref. 2) indicated that a periodic model was

unnecessary. The compensator has the form (refs. 3-5).

[K(s)] = [Kc](S[I]- [A] + [B][Kc] + [K/][C])-'[K/] (3)

To introduce "robustness" into the controller the multivariable frequency domain

design methods of refs. 15 and 16 were used. The representation of the model error is

based on unstructured multiplicative uncertainty at the model output. Details on the

design process can be found in refs. 3-5.

The controller design approach used was based on the selection of an operating

point to design a constant gain controller, and used this controller throughout the

operating range of the helicopter. The design point chosen is at hover (# = 0) with the

nominal weight (MF = 32), which is a point near the region of worst instability for the

configuration. A single roll rate measurement of the fuselage and the sine and cosine

swashplate inputs are chosen to control the instability.

In order to keep the compensator order low, a reduced model is formed and used in

the design process. This reduction is accomplished by transforming the full system to block

diagonal form and then removing the modes from the full model that are deemed
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unnecessary to characterize the system dynamics in tile frequency range of interest. An

acceptable design model is one consisting of the' body roll, body pitch, lead-lag progressing

and the lead-lag regressing modes (refs. 3 and 5).

Typical results demonstrating the effectiveness of this controller are shown in Figs. 4

and 5. The open loop lead-lag regressing mode damping of the helicopter configuration

throughout its flight regime is presented in Fig. 4. The horizontal axis is the advance ratio,

while the vertical axis is the fuselage mass MF nondimensionalized by the blade mass of 52

Kg. The figure indicates that the system experiences an air resonance instability

throughout most of the flight regime. Marginal stability exists at an advance ratio greater

than # = 0.35 and the point of deepest instability is at MF = 30 and in tile vicinity of

hover. Figure 5 shows the same system after the controller, designed according to

methodology discussed above, has been applied on the helicopter. From the figure it is

clear that the lead-lag regressing mode is stabl(' over tile whole flight regime, and its

stability is lowest in the neighborhood of MF = 23 and # = 0.11. Time simulations were

also conducted to check the controller and to verify that the periodic terms in the full

model do not significantly alter the stability results. The time simulation also showed that

the closed loop system could suppress angular roll rates as large as 6.5 deg/sec with less

than two degrees of swashplate input.

However, it should be mentioned that these studies (refs. 2-5) did not consider

interactions between the controller for air resonance suppression and the flight mechanics

of the complete helicopter. Therefore, possible interactions between active control systems

aimed at air or ground resonance and the conventional stability augmentation system

(SAS) present on all helicopters have to be carefully studied in the future to avoid

potentially negative interactions from a handling qualities point of view.

AEROELASTIC SIMULATION OF ItIGHER HARMONIC CONTROL

One of the most important topics, from a practical point of view, is vibration

reduction in forward flight using higher harmonic control (HHC), applied through a

conventional swashplate. This approach reduccs vibration levels in the fuselage, or at the

hub, by modifying the vibratory aerodynamic loads on the blades. Thus vibratory forces
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and loadsaremodified, at their source,beforethey propagateinto the airframe. This is in

contrast to conventionalmeansof vibration control which dealswith the vibratory loads

after they havebeengenerated.Furthermore, it shouldbenoted that this approachalso

has the potential for reducing vibration in the fuselagecausedby rotor fuselageunsteady

aerodynamicinterference(ref. 1).

The majority of theseHHC studies,either analytical or experimental (ref. 1), have

beenbasedon linear, quasistatic,frequencydomain representationsof the helicopter

responseto control. Least squaresor Kalman filter type identification of helicopter control

parametershasbeenusedtogetherwith a minimum varianceof quadratic performance

function type controllers to determinethe optimal control harmonicsfor vibration

alleviation. A detailed description of the control algorithm usedin thesestudiescan be

found in refs. 6, 8, 19-21. In thesestudiesthe generalHHC input is expressedas

OHH = [OOS sin&HH¢ + Ooc cos C_)HH_Y]

+ [Ocs sin (JHH_.) Jr- OCC COS _-)HH_3] COS _) (4)

+ [Oss sin _-2HH ¢ + OSC COS O.2HH¢] sin _b

where Ooc, Oos, Ocs, Occ, Oss, and Osc are independent of _b.

Minimum variance controllers are obtained by minimization of the cost functional

j= + + (5)

Typically {Z}, {0}, and {A0} consist of the sine and cosine components of N/rev.

vibrations and HHC inputs. The weightings of each of the parameters may be changed to make

a particular component more or less important than the other components.

The minimum variance controllers are obtained by taking the partial derivative of J

with respect to {0(i)}
OJ

-- -0 (6)
0{0(i))

the resulting set of equations may be solved for the optimal HHC input denoted by {O*(i)}.

The form of the final algorithm will depend on whether the global or local system

model is used and whether a deterministic or cautious controller is desired.

The global model of helicopter response to HHC is based on assuming linearity over

the entire range of control application:
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{z(i + 1)} = {z.} + [v]{0(i)} (7)

The vibration vector {Z} at step i + 1 is equal to the baseline uncontrolled

vibration level {Z0} plus the product of the transfer matrix [T] and the control vector {0}

at step i. This implies that [T], which is the transfer matrix relating HHC inputs to

vibration outputs, is independent of {O(i)}.

The local model of helicopter response to HHC is a linearization of the response

about the response to the current value of the control vector:

{Z(i + 1)} = {Z(i)} + [7]({0(i + 1)} - {O(i)}) (8)

or

{AZ(i + 1)} = [W]{A0(i+ 1)} (9)

which implies that the transfer matrix [T] varies with the input {0}.

Each of these two algorithms has two versions, deterministic and cautious; this

depends on the assumptions made on the noise characteristics for each row of the {Z0} and

[T] matrices.

Another ingredient in this algorithm is associated with identification. In applying

HHC algorithms to vibration reduction, it is assumed that the HHC inputs {0(i)} are

known without error. Based on the measurements, different parameters may be identified.

For the local model only the transfer matrix IT] is identified. For the global model the

transfer matrix IT] and the baseline vibration vector {Z0} are identified. The general

discrete Kalman filter is frequently used in the identification process (refs. 19-21).

Recently a comprehensive aeroelastic simulation capability has been developed

(refs. 6-8) and used to study a number of fundamental issues in higher harmonic control.

The analysis is based on a coupled flap-lag-torsional blade model in forward flight, with

time domain unsteady aerodynamics and completely coupled aeroelastic response and trim

analysis. The response analysis is based on three flap, two lag and the fundamental

torsional mode. The four bladed hingeless rotor is assumed to be attached to a fixed, rigid

fuselage; thus only hub shears and moments are simulated analytically. The higher

harmonic control input is represented by Eq. (d). A deterministic and cautious minimum

variance controller was programmed into algorithms, one for local and one for global HHC
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models (refs. 6-8, 21).

The typical hingeless rotor blade considered in refs. 6-8 is shown in Fig. 6. Using

this model various aspects of the HHC implementation on a soft-in-plane hingeless rotor

were carefully studied. A few useful results and conclusions in these studies are briefly

summarized below.

An interesting test of the ability of the controllers to adapt to changing flight

conditions was performed by introducing a step change in advance ratio from # = 0.30 and

# = 0.35. Results for a soft-in-plane hingeless rotor are shown in Fig. 7. A comparison of the

three hub shear components and their values for the local and global controllers are shown.

It is evident that the global controller has been more successful in reducing shears.

Comparison of the effectiveness of the HHC to reduce vibration levels in a four bladed

hingeless rotor and an equivalent four bladed articulated rotor was also conducted (ref. 8)

and it was found that much larger HHC angles were required to reduce shears for the

hingeless rotor. Careful comparisons of the power requirements needed for application of

HHC to these two rotor configurations were also conducted, and it was found that the

hingeless rotor required substantially more power.

Blade root loads and pitch link loads were also increased substantially when HHC

was applied to the hingeless rotor. The conclusions imply that vibration reduction in the

hingeless rotor using HHC could be more difficult to implement than in articulated rotors.

The effect of HHC on aeroelastie stability margins was also studied in ref. 6 and it

was found that overall aeroelastic stability margins were not significantly degraded by

application of HHC to either the articulated or the hingeless rotor configurations.

In another study (ref. 22) an important and closely related question was examined;

namely, is vibration reduction at the hub equivalent to vibration reduction at various

locations on a flexible fuselage when using HHC? Most analytical studies (refs. 6-8, 19-21)

were based on the assumption that the fuselage is rigid and vibration reduction at the hub

was assumed to be equivalent to vibration reduction at various fuselage locations. The

fundamental study described in ref. 22 was based on a somewhat idealized nonlinear

coupled rotor/flexible fuselage analysis capable of modeling the system shown in Fig. 8. It

was found that conventional HHC inputs through a conventional swashplate, aimed at hub
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shearreduction, causean increasein the fuselageaccelerationand viceversa. Furthermoreit

was found that for simultaneousreduction of both hub shearsand fuselageaccelerations,a

pitch input consistingof a combinationof two higher harmonic components}laving different

frequencieswasneeded.Howeverthis input couldnot be introduced through a conventional

swashplate,and it could only be implementedin the rotating referenceframe. This study

hasalso produceda new insight on the vibration reduction in coupledrotor/flexible

fuselagesystemsby examining the sensitivity of hub shearsto the frequencyand amplitude

of the openloop bladepitch input signalsintroduced in the rotating referenceframe. The

role of fuselageflexibility for this class of problems was also determined in ref. 22.

VIBRATION REDUCTION IN HELICOPTER ROTORS USING AN

ACTIVELY CONTROLLED FLAP LOCATED ON THE BLADE

Recently a (ref. 9) detailed feasibility study was conducted to exam{ne the

potential for vibration reduction in hingeless (or bearingless) helicopter rotors by using an

actively controlled flap located on the blade. Recall that comparative studies of vibration

reduction in forward flight using HHC were conducted for similar articulated and hingeless

rotors in refs. 6 and 8. For both configurations substantial vibration reduction was

achieved with HHC angles under 3 degrees. However, a comparison of power requirements

revealed that the power required to implement HHC on hingeless rotor blades is

significantly higher than for equivalent articulated rotor blades. These higher power

requirements appear to be associated with the need to drive harmonically the fairly large

and coupled structural dynamic system represented by the hingeless blade.

This provided the motivation for exploring an alternative concept where the

tailoring of the aerodynamic loads on the blade, for vibration reduction in forward flight, is

accomplished through the active control of an aerodynamic surface located on the blade,

similar to the partial span flap shown in Fig. 9. It was postulated that such a device would

produce substantial reduction in power requirements when compared with HHC or

conventional individual blade control (IBC) which require the introduction of cyclic pitch

changes for the whole blade. Furthermore, such an actively controlled flap can be operated

by a control loop which is separate from the primary control system; thus it will have no
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influenceon vehicleairworthiness,becauseit is not part of the primary control systemof

the vehicleand it will enableone to retain the conventionalswashplatefor flight control

purposes.It shouldalsobe mentionedthat this conceptis not new. Almost twenty years

agoLemniosand Smith (ref. 23) useda servoflap in the context of their researchon the

controllable twist rotor (CTR). Usinga combinationof collectiveand cyclically varying

twist distribution on the blade they demonstrateda considerableincreasein performance

and a 3070decreasein bladebendingamplitudes.

The useof an actively controlled aerodynamicsurfaceon eachblade to reduce

vibrations in forward flight falls into the categoryof IBC sinceeachaerodynamicsurfaceis

individually controlled in the rotating referenceframe. Sucha configuration has the

potential for reducing vibrations, requireslesspower,and retains the versatility of

conventionalIBC, without requiring the replacementof the conventionalswashplateby a

morecomplexmechanicalsystem.

In the first stageof the feasibility study (ref. 9) a simpleblade model consistingof

an offset-hingedspring restrainedbladewith coupledflap, lead-lagand torsional dynamics

wasselected.This modelwassimilar to that shownin Fig. 2, except that a partial span

flap, shownin Fig. 9, hasbeenaddedto the blademodel. This partial spanis used to

introduce the appropriate control inputs for vibration reduction. The control surface

deflection for the k th blade is represented by a sum of harmonic input signals, in the

rotating reference frame, having frequencies which are integer multiples of the rotor

angular frequency, but greater than the 1/rev frequency needed for vehicle trim, i.e.,

Nc rna.r

= [6Nceos(N  ) +  Nssin(;VW )] (:0)
N=2

where Nc ,_o_, represents the largest integer multiple of the rotor frequency used in the

harmonic control input. In this study Nc ma_ was set at 5.

The inertial loads obtained in ref. 9 included the inertial effect associated with the

flap mounted on the blade. The aerodynamic loads on the blade were obtained from

quasi-steady Greenberg theory and the reversed flow region was included; however

compressibility and dynamic stall were neglected. The aerodynamic loads associated with

the actively controlled flap were based on a quasi-steady version of Theodorsen's theory.

The structural, inertial and aerodynamic loads on the isolated blade are obtained in explicit
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form using MACSYMA (ref. 24). The bladeequationsof motion contain geometrically

nonlinear terms due to moderatebladedeflections.An ordering schemeis usedto keepthe

explicit expressionsto a manageablesize(ref. 10). The resulting equationsaresolvedfor

steady trimmed flight, assumingpropulsivetrim. The coupledtrim/aeroelastic response

solution for the blade is obtained using the harmonicbalancemethod.

The control law is obtained by minimizing the objective function representedby

Eq. (5). Both global and local controllerswerestudied. The global controller usesthe

following optimal control law

{5'(i)} = [DI-I(-[TIT[WzI{Z(i- 1)} + [WAe]{5*(i- 1)}) (11)

where

[D]= + +

The local controller is governed by

(12)

{5"(i) _-- [D]-I(-[T]T[Wz]{Z(i- 1)} + [WA_]{5"(i- 1)} + [T]T[wz][T]{5"(i - 1)} (13)

Additional algebraic details can be found in ref. 9. Equation (13) represents a closed loop

controller where the control input of the i th step is obtained by feedback of the measured

response during the (i - 1) step {Z(i - 1)}. The local controller converges quickly to the

true optimal control law, usually in less than three steps.

Operating the control surface actuators needed to implement the control will of

course require power from the helicopter powerplant. As a measure of the power required,

the instantaneous power required to drive one control surface is averaged over one rotor

revolution and multiplied by the number of blades (four in this case). The instantaneous

power consists of the product of the instantaneous control surface hinge moment and the

instantaneous angular velocity of the control surface. The net hinge moment consists of the

sum of the inertial and aerodynamic moments _bout the hinge. Detailed expressions for

the aerodynamic hinge moment are presented in ref. 9.

The average power required to implement the control using an active control

surface on each blade is defined as:
Nb=4 1 2_r
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Oncethe trim and responsesolution hasbeenobtained, the rotor vibratory hub

loadscan be determinedby summingthe contribution from eachbladeof the rotor. The

hub forcesand hub momentsof eachbladeare obtained in the rotating referenceframe by

integrating the distributed loadsover the span of the blade. Subsequentlythe hub loads

are transformedto the nonrotating hub fixed referenceframe and the contribution from

eachblade in the rotor is summedover the number of blades. For a four bladed rotor the

principal contribution to the rotor vibratory hub loads,after variousalgebraicand

trigonometric manipulations arecarried out, is the 4/rev vibratory component.

To illustrate the feasibility of this new approachto vibration reduction a numberof

active control studies werecarriedout on a soft-in-plane bladeconfiguration at an advance

ratio of # = .30. The pertinent details on this configurationcan be found in ref. 9. The

basicproperties of this four bladedrotor are included here,so asto provide "physical feel"

for the configuration considered.The fundamental rotating frequencies,for the baseline

configuration, in flap, lag and torsion, respectively,were:a_-i = 1.5;aJL1= 0.57and a3T1=

2.5. The thrust coefficient was Cw = 0.005, and cr = 0.05; O' = 5.0. The control surface

was modeled as a 20% span, 1/4 chord partial span trailing edge flap centered about tile

75% blade span station. The control input for minimizing the vibratory hub shears and

moments consisted of a sum 2,3,4, and 5/rev harmonic input signal. The 3,4 and 5/rev

input frequencies were selected because a 4/rev pitch input signal introduced in the

nonrotating system through a conventional swashplate, which is frequently used in HHC

studies on four bladed rotors, generates a signal consisting of 3,4 and 5/rev components in

the rotating reference frame. The 2/rev component was added since it was found in ref. 22,

that its role in vibration reduction is as significant as that of the other three components

mentioned.

For the results presented here, only the vibration levels were penalized, i.e.,

W_ = W/,e = 0. For this case the quadratic cost functional Y(i) consists of the weighted

sum of the squares of the hub shears and hub moments, as evident from Eq. (5). The

non-dimensional values of the baseline hub moments were an order of magnitude smaller

than the hub shears. Therefore, the weights on the hub moments were set at 100 times the

weights on the hub shears in order to ensure that an equivalent degree of vibration

165



reduction is achieved in all vibratory components.

Comparison of the vibration reduction obtained with the actively controlled flap,

and individual blade control used on the same blade is presented in Figs. 10 and 11.

Individual blade control (IBC) applied on the blade in the conventional sense implies that

pitch input is provided at the root of the blade and the whole blade is oscillated in pitch,

as a rigid body. When IBC is applied through an actively controlled flap, the pitch input is

applied only to the small partial span flap. Figure 10 shows comparison of baseline hub

shears and hub moments acting on blade, with those which are present when vibration

reduction is implemented by the actively controlled flap. Figure 11 presents a similar

comparison for the case of conventional IBC. In both figures results are presented for both

the global and local controllers. These results indicate that similar degrees of vibration

reduction are obtained for both the global and local approaches. It is also evident from

Figs. 10 and 11 that the vertical hub shear was reduced to within 10% of its baseline value

when using an actively controlled flap, compared to an average reduction to within 5% of

its baseline value using conventional IBC. Very similar results were also obtained for the

other five components of the vibratory hub loads. Overall, it appears that conventional

IBC is slightly more effective in reducing the vibratory hub leads. However, tile difference

in the degree of vibration reduction achieved by the two control approaches is very small.

A comparison of the optimal control input for vibration reduction using the individually

controlled flap and conventional IBC for a blade having a fundamental torsional frequency

of 2.5 is shown in Fig. 12. Examination of the optimal input signals reveals that somewhat

larger control input amplitudes are required for vibration reduction when using the actively

controlled flap compared to the angles required by conventional IBC. A maximum control

surface deflection angle of d degrees is required compared to a maximum control

angle of 0.9 degrees for conventional IBC. Numerous additional results, presented in ref. 9,

indicate that larger control input amplitudes were required to achieve approximately the

same degree of vibration reduction, when the torsional frequency of the blade is increased.

A comparison of the average power required (per revolution) for the

implementation of the vibration reduction using the two control approaches is presented in

Fig. 13. The power required for conventional IBC is defined as the average power needed to
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drive the blade root pitch actuatorsduring one revolution:
Nb=4 1 27r

PIBC = _ _ fO A/[x3(l/)k)OIBC(_k)dl_k (]5)
k=l

where Oiuc(¢) represents the instantaneous additional IBC pitch input of the k th blade

and M:_3(¢) represents the instantaneous blade root feathering moment.

An examination of Fig. 13 reveals that substantially more power is required to

implement vibration reduction using the conventional IBC approach than for vibration

reduction based on the actively controlled flap. Vibration reduction using conventional IBC

required about 800% more power at the lower blade torsional frequencies, and about 400%

more power at the higher blade torsional frequencies. These higher power requirements

appear to be associated with the need to drive harmonically tile fairly large and coupled

structural dynamic system represented by the entire blade, as opposed to the need to drive

harmonically a relatively small aerodynamic control surface. It is also evident from this

figure that as the torsional frequency of the blade increases, the power required to implement

the control increases for both control approaches.

The results presented here together with the additional results presented in ref. 9

clearly indicate that the actively controlled flap is a feasible and very attractive concept,

because it can produce the same vibration reduction as conventional IBC, with reasonable

control angles and requires substantially less power (4 to 8 times less). Furthermore, it has

the additional advantage of having no effect on the airworthiness when compared to

conventional IBC.

Further studies on the practical implementation of an actively controlled flap to

reduce vibrations in forward flight were presented in ref. 25. In this study, which represents

a sequel to ref. 9, the offset hinged spring restrained blade model used previously was

replaced by a completely flexible blade model. Control studies based upon the flexible

blade model and the spring restrained blade model are compared. It was found that

despite large increases in vibration levels due to the more realistic flexible blade model,

vibration reduction could still be accomplished without excessive power expenditure or

control angle inputs. A careful parametric study in which variations of torsional frequenw,

spanwise location of the control surface, and hinge moment correction factor was

conducted. The results further reinforced the feasibility of this new approach to vibration
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reduction. Numerousresultsobtained in this study canbe found in ref. 25.

CONCLUDING REMARKS

During the last few yearsthere hasbeena steadyevolution of the application of

active control technologyto both stabilization of aeromechanicalproblemssuchasair and

ground resonanceaswell asvibration reduction in forward flight.

Aeromechanicalproblemssuchasair and ground resonanceare due to tile low

damping level associatedwith the inplane (lead-lag)degreeof freedomand its coupling with

fuselageroll. Thus this instability canbe easilystabilized using active controls. Howeverit

is important to emphasizethat the expenseassociatedwith usingactive control technology

for aeromeehanicalstability augmentationcan not be justified. Only vibration reduction in

forward flight is sufficiently important soas to warrant the additional cost associatedwith

active control technology.Oncesucha vibration reduction systemhasbeeninstalled it can

also beused to stabilize aeromechanicalproblems. However,additional researchis needed

beforethe feasibility of stabilizing potential aeroelasticinstabilities in rotors is verified.

Sincemodernrotor systemsappearto movein the direction of hingelessand

bearinglessdesigns,the capability of conventionalHItC or IBC may be limited by the need

to oscillate the completeblade in pitch. In this context the actively controlled, partial

span, trailing edgeflap offers an attractive alternative which requiressubstantially less

powerand is fairly simpleto implement. Therefore,this conceptshouldbe carefully

studied using both simulation aswell mswind tunnel tests.
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Abstract

In this paper an active flutter suppression problem is studied for a thin airfoil in un-

steady aerodynamics. The mathematical model of this system is infinite dimensional,

because of Theodorsen's function which is irrational. Several second order approxima-

tions of Theodorsen's function are compared. A finite dimensional model is obtained

from such an approximation. We use H _ control techniques to find a robustly stabi-

lizing controller for active flutter suppression.

1 Introduction

In this paper an active flutter suppression problem is studied for a thin airfoil in unsteady

aerodynamics. Because of the interaction between the structure and the flow, flutter

(dynamic instability) occurs at a certain flow speed. Therefore, it is important to de-

sign active feedback controllers stabilizing the airfoil. A r_)bustly stabilizing feedback

compensator is obtained from the H °_ control theory. This theory gives us the largest

amount of uncertainty (due to neglected aerodynamics) which can be tolerated in

the problem of active flutter suppression.

In general, mathematical models for airfoils in unsteady aerodynamics are linear

time invariant infinite dimensional systems. The basic difficulty in such systems is

1e-mail: ozbay@ee.eng.ohio-state.edu
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to compute the aerodynamic loads due to unsteady flow. The simplest models (in

the frequency domain) for the unsteady aerodynamics contain Theodorsen's function

as the infinite dimensional part. There are several techniques for designing feedback

controllers directly from the infinite dimensional airfoil model see e.g. [1]. In this

method the controller itself is infinite dimensional, and hence one has to approximate

it in order to obtain an implementable finite dimensional controller. Another method

is to approximate the infinite dimensional part of the system and design a finite

dimensional controller from the finite dimensional approximate model. In this paper

we consider the second method, and design a robust controller, which stabilizes not

only the finite dimensional model, but also the infinite dimensional model. The main

tool used here in the robust controller design is the H °_ control theory.

In the next section we define a mathematical model for a thin airfoil. Several

second order approximations for the Theodorsen's function are compared in Section

3. In Section 4 we present a robust stabilization algorithm for flutter suppression in

the presence of unmodeled aerodynamics. Concluding remarks are made in the last

section.

2 A mathematical model for the airfoil

We consider the following mathematical model (see e.g. [1], [2]), for a thin airfoil

shown in Figure 1,

M,'4t) + B,_(t) + K,z(t) = iF(t) + C_(t),
rrl s

(1)

where z(t) = [h(t),a(t),_(t)] T, and u(t) represents the control input.

-_ 0 ,b
.......................................... Reference axis

', , :
I

c

Figure 1: Thin airfoil

180



The matrices Ms, Bs, K, and G are in the form

1 x_ xZ 1 oo
0 2,-_(_,.,z

I_ s

_ o o

2 _ 0
rctCd o

0 2 2
r 3w z

, G=

where all the constants are related to the geometry and physical properties of the
structure.

In order to apply Laplace transform techniques, we will assume that z(t) = 0 for

t _< 0. This corresponds to the indicial problem (see e.g. [1], and [3]). Aeroelastic

loads are represented by F(t)= [P(t),M_(t),M_(t)]T. We can represent F(t) as

F(t) = M_2(t) + B_k(t) + K_z(t) + F¢(t) (2)

where Fc(t) is the "circulatory" part of F(t). The matrices M_, B_ and K_ can be

computed in terms of the problem data [9] [8]

M_ = -pb 2 rr - rcba - Tl b ]

-T_b -(Tr + (c- a)T_)b 2 _Tzb2/rr j

B_ = -pb_V rr(0.5 - a)b

(T4(a - 0.5) - T1 - 2Tg)b
(T_ - Ts - (_ - _)T_ + 0.5T,_)b

-T4Tllb/2rr

[i° ° 1K_ = -pb2V 2 0 T4 + Tlo .

0 (T5 - r4T, o)/Tr J

where T/'s are Theodorsen's constants, see e.g. [9].

Using Theodorsen's formulation, F_(t) can be expressed in the frequency domain

as (see e.g. [9] pp. 395-396, or [8] pp. 26-28)

-Fc(S) = C(s)(Bcl + sBc2)Z(S) (3)
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where s is the Laplace transform variable, ^ represents the Laplace transformed ver-

sion of a time signal, C(jw) is the Theodorsen's function, and Bd,Bc2 are con-

-27r 1
2_rb(a + 0.5) ,

T12b
stant matrices given by Be1 = blcl and Be2 = blc2 where bl = pVb

cl = V[0 1 T,o/r ], and c2 = [ 1 b(0.5 - a) bTll/2TC].

Suppose that the measured output for feedback is

v(t) := e,z(t) +

Then, taking the Laplace transforms of (1) and (2), and then using (3) we obtain a

transfer function from u to y, denoted by P(s):

_(s) _ P(s) = Co(sI- A)-_Bo
_(s) 1 -Co(sI- A) -_B, C(s)

where C(s) is the Theodorsen's function, and

[ 03x3 ",,3 ]A = (M,- M:)-I(K,_ - K,) (M,- Mc,)-'(B,, - B,)

Co= [Cl c2], B, = [ b, , Bo= (M,_ M_)- G "

(4)

Note that the plant can be seen as a feedback system whose feedback path consists

of the aerodynamics represented by Theodorsen's function, as shown below.

(sl-A) [

F _ r I

Figure 2: Structure of the plant

The function C(s) is irrational, and in practice it is approximated by a low order

rational function, say C,(s). This leads to an approximate model for the plant to be

controlled

Co(sI - A)-IBo

P(,(s) = I-Co(M-A)-_B_ C_(s)"
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In Section 4 we will see that a rational feedback controller Ka, which stabilizes

P_, stabilizes the original infinite dimensional model P if and only if the H _ norm

of the "weighted" closed loop transfer function is less than the inverse of the L _
approximation error

IIC- Calloo:: supIC(j_) - C_,(j_)I.
_d3

Therefore, we have a better chance of stabilizing P by a rational K_ if we can make

the L _ error in Theodorsen's function approximation. In the next section we compare

the L _ errors of several second order approximates of the Theodorsen's function.

3 L _ Approximation of the Theodorsen's func-
tion

As mentioned above, the Theodorsen's function, C(s) which appears in the feedback

path of the plant model, is infinite dimensional. For controller design (synthesis) and

simulation (analysis) purposes we would like to use a finite dimensional approximate

Ca(s) instead of the exact irrational C(s), which is given by (see e.g. [9])

C(jw) = Re[C(jw)] + jIm[C(jw)] (5)

where

Re[C(jw)] = Jl(w)(Jl(w) -4-Yo(w)) + }i (w)(}i (w)- Jo(_))
(Jl(w) -4- Jo(_Z)) 2 _- (Y] (_) - Jo(_Z))2

Im[C(jw)] = (Y_(w)Yo(w)+ J,(o-.,)Jo(,.,))
(J,(-,) + Jo(_))_+ (Y,(,-)- Jo(_))_"

(J0, J1, Y0, _ are the Bessel functions). Several second order approximations of (5)

can be found in the literature, see for example [8]. These approximations are in the
form

(1 + rls)(1 + r2s)

Ca(s) = (1 + ras)(1 + r4s) (6)
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whererl, r2, r3, r4 are positive real constants to be chosen. For example, the following

sets of numerical values are proposed by R. Jones, W. P. Jones and R. L. Moore

respectively

rl =18.6, r2=1.97, r3=21.98, 7"4=3.33 (7)

r_ =20.62, r2= 1.85, r3=24.39, T4=3.125 (8)

rl =10.61 , r2=1.774, rj= 13.51 , r4=2.744. (9)

For each of these sets of numbers the error function IC(jw) - C,_(Jw)l is plotted in

Figure 3.

O.m

0.015

0.01

0.005

i

03 -2.5 -2 . l -_ .1 4).5 0 0.5 1 1.3 2

Figure 3: Error function for R. Jones, W. P. Jones and R. L. Moore

approximates of the Theodorsen's function .

As we can see from this figure, R. Jones's approximation is the best one (in the L °°

norm) among the three second order approximates listed above. In different norms,

other approximations may be better than the one which is best in L °° norm. But

since we are going to use H °_ control techniques (in order to guarantee the robustness

of the controllers derived from the approximate plant), we will need an error bound

in the L °° norm. Below we will show that it is possible to improve the L °° error of

the R. Jones approximation by fine tuning the values of rl,. •., r4.
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We found that the valuesof

rl =18.57, r2=2.057, r3=21.93, r4=3.446 (lO)

give a function Ca(jw) whose magnitude is "close" to being a Chebyshev approxima-

tion for the magnitude of C(jw), (i.e. the error function [ ICa(jw)[- Ic(jw)l [, shown

in Figure 4, "nearly" satisfies the necessary and sufficient conditions for [Ca(jw)] to
be a Chebyshev approximation of IC(jw)l ).

0.012,

O.Ol

0.001

0.006

0.004

i

Figure 4: ICa(jaj)l- IC(jw)l I versus log(w)

We have obtained the above values for ri's by slightly modifying the approximation

scheme proposed in [11]. We would like to determine if this choice for Ca is a "good"

L _ approximate of C. For this purpose we first point out the following relationship

between the L _ error and the error in magnitude and phase functions:

Lemma: Let ¢(w) and ¢_(w) denote the phase of C(jw) and C_(jw) respectively, i.e.

C(jw) = C<,(jw) = IC,_(jw)jd*o(_).

Then we have

(11)
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Proof: By definition following equalitieshold

Ic(j )- co(j )l = IC(J ) I

= iC(j_)ld (e(_')-e°(_)) -IC(j_)l + IC(j_)l- ICo(j_)l I

= IC(jw)l(eJ(e_( _)-e_(<°))- 1) + (IC(ja_)l- IC_(JaJ)l) I'

On the other hand, for any 0 C [-Tr , 7r] we have

Id° - 1l 5 10[.

Hence we conclude that

[]

This lemma says that the Chebyshev approximation error 2 for the magnitude

function plus the corresponding "normalized" phase error is an upper bound for the

overall L _ error. We also deduce from this lemma that in order to get a good L _

error bound we may try to develop an approximation scheme such that whenever the

magnitude error is large, the normalized phase error is small and vice versa. However,

if we obtain Ca from the Chebyshev approximate of IC(jw)l, this automatically fixes

the normalized phase error function, which does not necessarily satisfy the above

mentioned nice property. However, we will see from the following numerical example

that this property is satisfied for the second order approximation we have proposed by

(10). For Ca determined from (10), the two terms in the right hand side of (11), as well

as the function in the left hand side of (11), are shown in Figure 5. It is quite surprising

that the normalized phase error function alternates with the magnitude error function,

2What we mean by Chebyshev approximation for the magnitude function is the following: Sup-

pose IC(jw)l is known, and we want to approximate the real valued function in the L _ norm by a
function ICa(jw)l; the problem is to find a real rational Ca(s) (whose order is fixed) achieving the

smallest Chebyshev error

sup lIC(ja_)l - 'Ca(Ja:)' I"

In the text we use the term L °_ approximation for the approximation of the complex valued function

C(j_), and we use the term Chebyshev approximation for the approximation of the real valued

function IC(j_o)l.
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i.e. whenever the first term is large the second term is small and vice versa. Also

interesting is the fact that for this choice of C_ the function IC(j_) - Co(j_)[ is an

envelope of the two functions appearing in the right hand side of (11).

0.012

0.01

0.008

0.006

0.004

O.OQ2

0
-3 -2.5 -2 -1.5 -I -0.5 0 0.5 1 1.5 2

Figure 5: Relations between the L _ error function and

the magnitude error and normalized phase error functions.

The above observations can be generalized as follows:

Conjecture:

Let F(s) __ H _ be a minimum phase and positive real function (possibly

irrational), and let F_(s) C H _ be a fixed order real rational function

approximating F(s). If [Fa(j_)l is the best Chebyshev approximation of

If(j_)l, then Fa(s) is the best L _ approximate of F(s). []

4 Active flutter suppression

Let us consider the thin airfoil model obtained in Section 2. When flutter occurs the

plant P(s) is unstable, and we would like to design a feedback controller stabilizing

the closed loop system, shown in Figure 6. In our design we will use C= given by the

numerical values in (10). This gives us an approximate plant model P_. A robuslly

187



stabilizing finite dimensional controller K_(s) will be obtained from P_, and it will

be shown that under a certain condition, this controller stabilizes the original infinite

dimensional airfoil model, with a certain robustness level.

_Y

Figure 6: Feedback control system

Consider the approximate plant

Co(sI - A)-aBo

Pa(s) = 1 - Co(sI- A)-'B, C_(s)"

We can find rational transfer functions N1, N;, M E H °* such that

No(_)
Co(M- A)-aBo- M(s)

and
N_(_)

Co(M- A)-IB1 - M(s)"

Therefore we can express P and Pa in the form

No(e)
P_(s) = M(s)- Nl(s)C_(s)

No(_)
P(s) = M(s) - N,(s)C(s)"

Thus, P and P_ differ in their denominator, in the sense that

Np(s)
P(s)- Mp(s)

and

where Np(s) = No(s), Mp(s) = M(s)- Nl(s)C(s), Mp_(s) = Mp(s) + AM(S), and

AM(_)= N,(_)(C(s) - Co(_)).
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Let e= be an upper bound of the L _° approximation error for the Theodorsen's func-

tion, i.e.

IIC- Calloo<

(note that for the choice of Ca given by (10) we can choose e_ = 0.012). Then from

[4], [5] and [12] we can deduce that a controller I(a stabilizing P_ and achieving an

H °° performance

7(K_) = I[N1Mp-,_I(1 + PaK,_)-ll]oo (12)

stabilizes the infinite dimensional plant P if3

1
7(I_,) < --.

(a

One proves this as follows:

xv if the roots of
Mva-- A M

(13)

A controller Ka stabilizes all plants of the form Pa =

=o
1+ K (s) Mrs(s) _ AM(S)

are in the left half plane. This condition is satisfied if

Lzx := 1 - AMM_1(1 + PoK_) -1

is invertible in H °°. Since Ilzx.lloo_<(_lN,(jc0)[ and I(_ stabilizes Pa (meaning that

(1 + P_K=) -1 C H°°), a sufficient condition for L/, to be invertible in H °_ is (13).

In fact, if K_ stabilizes Po and satisfies (13), then it stabilizes P with a certain

robustness level, see e.g. [71. The controller If_°p_, which minimizes 7(Ka) over all

controllers stabilizing P=, has the best chance of satisfying (13). Note also that we

increase our chances of satisfying (13) by decreasing e_.

An interesting question about the stabilization of P by K= is: How much can we

increase e_ so that

7= := inf 7(K= ) _< _1 9
Ka stabilizing Pa _a

aWe would like to point out that the perturbation in the plant is in the denominator only, so the

term 7(Ka) is slightly different than the one in [5] and [12], where both numerator and denominator

perturbations are considered.
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The answerto this questiongives the largest L °° error we can tolerate in approxi-

mating C(jw) so that we can still find an active feedback controller stabilizing the

original plant. The problem of minimizing 7(Ka) over all controllers K_ stabilizing P_

is a special case of a one block H °_ optimal control problem, and can be solved easily

by finding the singular values and vectors of a Hankel whose symbol is a rational

function, or by using the Nevanlinna Pick interpolation, see e.g. [4] and references

therein.

5 Concluding remarks

An active controller design method is illustrated for a thin airfoil. The model P for

this system is infinite dimensional. By approximating the infinite dimensional part

of the plant we have obtained a finite dimensional approximate model P_. We have

illustrated that using a Chebyshev approximation for the magnitude function Ic(j )l

we obtain a finite dimensional approximate of C(joJ) which is nearly optimal in the

L °° norm.

A finite dimensional controller K °pt can be obtained by solving the one block H _

problem posed in Section 4. In the H °° problem formulation we used the finite dimen-

sional approximate model P_. We have shown that if the H _ optimal performance %

is less than the inverse of the L °° approximation error of the Theodorsen's function,

e_, then the controller I(_ stabilizes not only the finite dimensional model P_, but

also the original infinite dimensional model P.
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SUMMARY

A method for adaptive identification of reduced-order models for continuous

stable SISO and MIMO plants is presented. The method recursively finds a model

whose transfer function (matrix) matches that of the plant on a set of frequencies

chosen by the designer. The algorithm utilizes the Movin 9 Discrete Fourier Transform

(MDFT) to continuously monitor the frequency-domain profile of the system input and

output signals. The MDFT is an efficient method of monitoring discrete points in the

frequency domain of an evolving function of time. The model parameters are estimated

from MDFT data using standard recursive parameter estimation techniques. The

algorithm has been shown in simulations to be quite robust to additive noise in the

inputs and outputs. A significant advantage of the method is that it enables a type of

on-line model validation. This is accomplished by simultaneously identifying a number

of models and comparing each with the plant in the frequency domain. Simulations of

the method applied to an 8th-order SISO plant and a 10-state 2-input 2-output plant

are presented. An example of on-line model validation applied to the SISO plant is also
presented.
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1. INTRODUCTION

This paper presents a new method of robust adaptive identification for stable

continuous SISO and MIMO systems via recursive rational interpolation. Interpolation,

unlike many identification schemes, is frequency-domain based. It attempts to find a

model, frequently a reduced-order model (ROM), whose frequency response (matrix)

matches that of the plant at certain frequencies. In this case, the model is said to

interpolate the plant data at these frequencies. The goal, of course, is to find a model

whose transfer matrix closely matches that of the plant at all frequencies.

The interpolation approach has been studied by several researchers (e.g. [1]-[4]).

The method presented in this paper is most similar to [4]. In that reference, the

problem is cast in the form of a system of simultaneous linear algebraic equations in

which the unknowns are the plant parameters. We improve upon the method of [4],

however, in that the present method is recursive and therefore much more robust to

noise.

The algorithm presented in this paper monitors a number of points in the

frequency profiles of the plant inputs and outputs via a recursive version of the Discrete

Fourier Transform, which in this paper we call the Moving Discrete Fourier Transform,

or MDFT. This transform has been discussed in [4] in conjunction with SISO model

reduction. The transform was also used in another application in [5], where it was

called a frequency sampling filter. The MDFT has the advantage that it is recursive

and therefore gives the evolving DFT at every time step. It has the further advantage

that it is not necessary to calculate the DFT at all N frequencies (for an N-point DFT),

as is necessary for standard DFTs and FFTs, but only at those frequencies desired,

which are usually fax fewer than N in number. This makes the algorithm numerically

efficient.

The paper is organized as follows. Section 2 briefly discusses the MDFT

algorithm. Section 3 describes the SISO identification algorithm and gives a numerical

example in which a 2hal-order model is derived for an 8th-order plant. Section 4

describes a method of on-line model validation made possible by the algorithm and

gives a numerical example. Section 5 describes the MIMO extension of the algorithm

and gives a numerical example in which a 6-state model is derived for a 10-state, 2-

input, 2-output plant. This ROM is compared to several others for the same plant.

Conclusions are given in Section 6.

196



2. THE MOVING DISCRETE FOURIER TRANSFORM (MDFT)

Let {xi} , i=O, 1, 2, ..., N-1 be a set of N consecutive samples of a continuous

signal x(t) sampled every At seconds. The well-known Discrete Fourier Transform

(DEW) of {xi} is the set of complex numbers {X_}, k=0, 1, 2, ..., g-1 defined by ([6]):

N-1

Xk = _ x,W k_ , k=0,1,2,...,N-1 (2.1)

where W = exp(-j2rc/N). Since there are N points in the calculation, this is called an

N-point DFT. Under certain circumstances, the complex number Xj, can be considered

as a frequency component of x(t) at the frequency fk = k/NAt Hz. We will call the

frequencies f k DFT frequencies.

To make the process recursive, assume that a new sample of x becomes available,

x g. Our objective is to calculate a new DFT of x based on the latest N samples of x.

That is, we will create a "moving" DFT by discarding the oldest sample, in this case x0,

and calculating the DFT of the new sequence {xi} , i= 1, 2, ..., N. In general, we will be

interested in calculating the DFT of the (n + 1)th sequence of x, i.e. {Xn_N+2, ".., Xn+l},

recursively in terms of the DFT of the nth sequence of x, i.e. {x,,_N+l, "., x,}. If Xk{"}

is the kth frequency component of the DFT of the nth sequence of x, then it can be

shown (see [4]) that Xk {n+l} is expressed recursively in terms of Xk {"} as follows:

Xk {n+l} __ [Xk {n} -- Xn_N+ 1 + Xn+l ] W -k (2.2)

Equation (2.2) gives the algorithm for the 1-step-ahead MDFT. Note that the

algorithm is very efficient because it involves only the addition of a real number to

Xk {"} and multiplication by a complex constant W -k. Referring to (2.2), note that

Xk{"+l} depends only on Xk{"} and not on any other fre_luency component. This

means that it is only necessary to calculate the MDFT at those frequencies which are

desired, not all N frequencies, as is necessary in standard FFTs. This can result in

significant savings in calculations since usually derivation of a reduced-order model (see

Section 3) requires the DFT at a relatively small number of frequencies, whereas N is
usually large.
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3. RECURSIVE SISO REDUCED-ORDER MODELING

Assume that a kth-order model for a given stable plant is desired.

model can be described by a kth-order differential equation of the form:

a(D)y(t) = fl(D)u(t)

Then, the

(3.1)

where o(D) is a kth-order monic Hurwitz polynomial in the differential operator

D = d/dt, and fl(D) is a polynomial of order k-1 or less. That is,

k-, (3.2)
_(D) = D k + _ ai D_

i----O

k-, (3.3)
/3(D) = _ fli Di

i=0

Equation (3.1) can be rewritten in the form:

(3.4)

which can be rewritten as

Y(t)=e z(t) (3.5)

where

Y(t) = Dky (3.6)

_,T =I--O/k_1,...,--Ol0, _k-1,"""' /301
(3.7)

Z(t) =[Dk-ly, ... , Y, Dk-lu,'''' u] T
(3.8)

We now discuss a way by which the signals u, y, and all necessary derivatives of u

and y in (3.5) may be parameterized using MDFT data. It is well-known that the DFT,

hence the MDFT, gives an exact parameterization of a signal if the signal is sinusoidal

and its frequency is exactly equal to one of the DFT frequencies. Specifically, it can be

shown that, if n is an integer between 0 and N/2,
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(3.9)

at the frequency wn=27rn/NAt radians/sec, and is zero at all other frequencies. In

(3.9), A, 0, M, 4), N, and At are constants, with N and At defined as in Section 2.

That is, for the sinusoidal signal defined in (3.9), the magnitude of the time-domain

signal is given exactly by 2IN times the magnitude of the DFT, and the phase angle of

the time-domain signal is given exactly by 7r/2 plus the angle of the DFT. Therefore, if

the plant inputs are bandlimited and contain sinusoidal components at only the DFT

frequencies, u(t) and y(t) can be exactly parameterized in terms of MDFT data.

For the ideal case assume u(t) is of the form

N/2

u(t) = ___lU,,sin(w,t +_'0 (3.10)

where w, = 2ten�NAt and Un, a,, are constants. As stated in Section 2, the frequencies

own are the DFT frequencies. Note that, if N is large, u(t) can consist of a large number

of sinusoidal components. Assuming steady-state has been reached, the plant output

corresponding to (3.10) is

N/2

y(t)= Y] Y,, sin (w,J + 3,,) (3.11)

where Y,,,/3,, are constants.

Choose any desired set of k distinct DFT frequencies {W/1 , 0.112 , "", Wlk}" We call

these the identification frequencies. Taking MDFTs of u(t) and y(t) at the

identification frequencies and utilizing the appropriate magnitude and phase

information can be shown to yield the following parameterizations for u, y, Du, and Dy

[4]:

u - Utlsin(all ) + U12sin(cr12 ) + . . . + U/ksin(crlk) (3.12)

y -- Y/,sin(/3/,)+Yt2sin(/312)+ . . . + Ylksin(flik ) (3.13)

Du - WllUi1cos(oLll)-_Wl2Ul2COS(OQ2).__.. " __t_WlkUIkCOS(OQk) (3.14)

OQ 2"

Dy - I1} zxc°s(_I,)+wt2Yt2c°s(_12)+... "_-WlkrlkCOS(t_lk) (3.15)
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where Utj, a 0 are the magnitude and phase of the sinusoidal component in u(t) at

identification frequency w O, and YIj, _0 are the magnitude and phase of the sinusoidal

component in y(t) at identification frequency oatj. These magnitudes and phases are

derived from the MDFT as explained above. All higher derivatives of u(t) and y(t) may

be parameterized in a like manner (see [4]). In this way, all entries in the vectors Y(t)

and Z(t) in (3.5) can be parameterized with constants at every time step via the MDFT.

Therefore, the parameters _b can be estimated from (3.5) using standard parameter

estimation techniques.

Incidentally, note that, although parameterizations for derivatives of u and y are

obtained, no derivatives of the signals are actually taken. Noise in the signals introduces

errors in Y(t) and Z(t), but at worst the errors remain in the same proportion to the

signal magnitude with higher derivatives and do not increase in size relative to signal

magnitude, as they would if noisy signals were differentiated.

Example

Consider the following 8th-order plant [4]:

(3.16)

The plant input u(t) is chosen to be a 0.01 Hz, 4- 10 V square wave with an

additive noise component which is uniformly distributed between 4- 10 V. For the

MDFT, we choose N = 5000 and At = 0.02. The identification frequencies are then

chosen to be 0.01 Hz, 0.03 Ha, and 0.11 Hz, which correspond to DFT frequencies

and are present in u(t).

Figure 1 shows parameter estimates for a 2nd-order model found using the

recursive rational interpolation method described above and applying the recursive

least squares algorithm to find the parameters from (3.5). The model has the form

qs+c0 (3.17)
GR(s) = s2 + als + ao

where, from Figure 1, c1 = 15.021, Co= 4.798, a 1 = 5.958, a0 = 4.795.

A comparison of Gp(s) and Gn(s) is shown in Figure 2. There is good

agreement at all frequencies. It should be noted that u(t) is not bandlimited, as

specified in (3.10) for ideal inputs, and the noise level in u(t) is comparable to the
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magnitude of u(t) itself. This indicates that the algorithm is robust to nonideal

conditions.

4. ON-LINE MODEL VALIDATION

It is generally not automatically known whether or not an identified model is

good, in the sense that its frequency response closely matches that of the plant over a

range of frequencies. This usually necessitates a model validation stage following the

identification of a candidate model by any method.

It has been found in practice that the identification frequencies for interpolation-

based schemes must be chosen with care in order for the algorithm to find a good

model. Obviously, choosing correct identification frequencies is difficult if the plant is

unknown. This indicates the need for some type of model validation before a model

identified by this method can be used with confidence.

The identification algorithm presented in the previous section has the built-in

capability for on-line model validation due to the fact that frequency-domain plant data

are available via the MDFT. Thus, the algorithm may be given a measure of

"intelligence" by increasing the number of identification frequencies and simultaneously

deriving several models using different combinations of identification frequencies. The

frequency response of each model can then be compared with the plant at all

identification frequencies. The model with the least overall fit error can be taken as the

best model for the plant of those derived.

Example

Let us consider this strategy applied to the example of Section 3, i.e., we

attempt to find a 2nd-order model for the 8th-order plant (3.16). Since we are

unsure which identification frequencies to use for the identification, we specify a set

of frequencies which span the system passband, e.g., choose [wia , wi2 , w13 ' wi4, wts,

wx6]=27r[0.001, 0.01, 0.1, 1.0, 10.0, 100.0]. Of course, this necessitates an input

which is different from the square wave used in the previous example. It can be,

for instance, a sum of six sinusoids for this example. A model is derived using each

distinct pair of frequencies, i.e., we derive a model using (Wll , w12 ) as the

identification frequencies, another model using (Wll , WI3), etc. In all, 15 different

models can be derived taking the above identification frequencies two at a time. It

201



is important to remember that the 15 models are derived simultaneously.

If we take as an error measurement the distance between the plant and

model responses in magnitude and phase summed over all identification

frequencies, we get a figure of merit for each model. Note that these distances are

easily calculated because plant magnitude and phase data at the identification

frequencies are available via the MDFT. To illustrate, let us take the following as

the fit error:

Error = _{1201og10(mag(Gp(j03t')))-201°g'°(mag(GR(J03"))) I
i=l

+ ]arg(Gp(j031,)) - arg(Gn(j031i))[} (4.1)

where ] • I stands for absolute value, mag stands for magnitude, and arg stands for

argument in degrees. Of course, this definition of fit error is completely arbitrary.

Whatever the error criterion, however, it must give a single number which

quantifies the fit error between the plant and model and be capable of being quickly

calculated.

The model which yields the lowest error can be taken as the best model of

those derived. For the present example, we get the following errors corresponding

to the above-defined identification frequencies and error criterion:

I.D_.....__ Erro__.__A I.D_._____ Erro..___A I.D_._.._._ Error

(0311, 0312) 15.585 (0312, 0313) 14.394 (0313, 03is) 10.164

(03;_, 03t3) 14.405 (0312, 0314) 3.6617 (0313, 03t6) 10.242

(03tt, 03_4) 3.6938 (0312, 03t5) 4.2390 (0314, 0315) 81.438

(03tl, 0315) 4.2825 (0-712, 0316) 4.2805 (0314, 0316) 81.370

(0311, 0316) 4.3242 (wi3, 0314) 7.5107 (wi5, 0316) 78.089

Obviously, the model derived using the frequency pair (03n, 0314), or ROM #7,

yields the lowest error and therefore the best fit. This model is given by (3.17)

with c 1 = 17.392, Co= 5.315, al = 7.334, a0 = 5.320. A comparison of this model with

the plant is given in Figure 3. Notice that this model is better than the one

derived in Section 3, since we have "optimized" the identification frequencies via

on-line model validation.
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If no model can be found whose fit error is sufficiently small, the model order can

be easily increased. This amounts to changing the number of entries in Z(t) and

correspondingly in _b. Note that this can be done without changing the inputs or the

identification frequencies. The order of the calculation (3.5) is simply incremented in
the algorithm in real time.

Finally, since the input and output MDFTs are monitored in this method, it is

possible to make decisions on how fast to update the model parameters or whether to

update them at all. If the MDFTs are not changing and a suitable model has been

determined, the parameter estimation part of the algorithm can be shut off. In this

case, only the MDFTs would proceed as the plant signals evolve. Thus, the monitoring

of the plant continues, but the parameter estimation part of the algorithm rests if there
is no need for a parameter update.

5. AN EXTENSION TO MIMO SYSTEMS

The above scheme for SISO identification via recursive rational interpolation can

be extended to MIMO plants as follows. Assume the plant has input vector u(t)=[ul,

u2, ..., uq] T and output vector y(t)=[yl, Y2, ..., ypl m. The MIMO identification process

finds constant matrices Pi "" (P x p) and Qi _ (p x q), i= 0, 1, ..., m-1 such that the
model transfer matrix given by

where

T(s) = P-'(s)Q(s)
(5.1)

rn-1

P(D) = DmI + ._ piD i
*-_-0

m--1

Q(D) = _ Q,D'

matches the plant transfer matrix on a given set of frequencies.

The model can be described by the matrix differential equation

(5.2)

(5.3)

P(D)y(t) = Q(D)u(t)

which can be rewritten in the form:

(5.4)
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" D "-1 - PoY + Q,_ 1D'-lu + " " " + Q°u
D'*y = - t%,_1 Y - • • •

This can be put in a form analogous to (3.5):

y(t) =  ,Tz(t)

(5.5)

(5.6)

where now

r(t) = Dmy

_T = [__Pro-l, • • • ,- P0, Q,_-I, • •

(5.7)

., Q0] (5.s)

and

Z(t) = [Dm-lYT, " " " ' yT, D,,-luT, . . . , UT]T (5.9)

Note that Y(t) ,'. p x 1, _T ,.,p X m(p+q), and Z(t) ,'_ m(p+q) x 1.

Again, choose any set of k distinct DFT frequencies {wn, wi2, "", wlk}" Denote

the set of identification frequencies as S-{wtl, wz2, ..., wlk}" Choose integers li > 0,

i--1, ..., q such that

q (5.10)

i=1

Let Si, i=1, 2, ..., q be subsets of S such that Si contains li elements and SiI"ISj=0,

i # j. Now the input ui(t) is specified as containing frequency components at the

frequencies contained in Si. The input ui may contain any other frequency components

also, with the exception that the frequency components of Si must be unique to ul.

Again, MDFTs are taken of u(t) and y(t) at the appropriate identification

frequencies. Note that, in the MIMO case, MDFTs are taken of the input ui(t) at only

the identification frequencies contained is Si, but the MDFTs of the output yi(t) must

be taken at all identification frequencies.

As in the SISO case, the quantities in Y(t) and Z(t) in (5.6) are parameterized

from MDFT data at each time instant. Therefore, standard parameter estimation

techniques may be employed to solve for the parameter matrix # in (5.6). The

minimum number of identification frequencies necessary for unique identification and
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the minimum number of identification frequenciesper input axetopicsof current
research.

Example

As a numerical example, the 10-state, 2-input, 2-output plant TGEN given

in [7] is considered. This is a lineaxized model of a large turbo-generator. The

original nonlinear model is given in [8]. The A, B, and C matrices for the state-

space representation of the linearized model are given in [9]. The corresponding

plant transfer matrix is given by

(5.11)

Gp(s) is given in the Appendix.

A 6-state model with observability indices equal to 3 is chosen for this

system. Thus, for this example, p=2, q=2, m=3, and k is chosen as 6. The

identification frequencies are chosen as [wll , w12 , wx3 , 0.,I4 ' wls , w16]=2rr[0.01 , 0.1,

0.2, 0.5, 1.0, 2.0]. The plant inputs are specified as:

3

'Ul(t) = y_ sin_/it
i=l

6

u2(t) = y_sinw_it

(5.12a)

(5.12b)
i=4

The model transfer matrix identified for this system using rational

interpolation, GR(.s), is given in the Appendix. Also considered for comparison are

a 6-state model for this plant given in [9] (denoted as GM) , and a 6-state model

derived from a balanced realization of the plant (denoted as GB). These models

are also given in the Appendix. Figures 4 - 7 show comparisons of the magnitude

and phase characteristics of Gp with those of GR, GM, and GB.

To get a numerical measure of the closeness of the models to the plant, the

plant magnitude and phase responses are compared with those of the various

models at 100 frequencies logarithmically spaced between 10 -3 and 101 cycles/sec.

That is, the following fit error is calculated:
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Ex = _ _ [201°g,o(mag(GPo(Jw,,)))-2Ol°gl°(mag(Gx'J(Jw")))[
j----1 n=l

+ l arg(Ge,j(Jw,,)) - arg(Gxij(jw,))l} (5.13)

where X = R, M, and B, and w n = 2r x 10 -3+4(n-1)/99. This measure is, of

course, completely arbitrary. However, it is one that is easily and accurately

calculated and measures ROM fit in the frequency range 10 -3 - 101 cycles/sec,

which is the critical range for this plant. Note that this calculation has nothing to

do with on-line model validation (Section 4), but is being done simply to compare

the goodness of the various ROMs. The resulting fit errors are calculated to be

En = 3.0157 x 103, EM = 2.4135 × 104, and EB = 9.4244 × 103. Although Gn has

the lowest error, it should be kept in mind that Gn is designed specifically to

match the plant in the frequency range 10 -3 - 101 cycles/sec.

6. CONCLUSIONS

A method of adaptively identifying reduced-order models for SISO and MIMO

plants has been presented. The method is based on matching the plant and model

transfer matrices at a number of frequencies chosen by the designer. The method

recursively monitors frequency components in the plant inputs and outputs via the

Moving Discrete Fourier Transform (MDFT). This is a computationally efficient

method of recursively calculating the DFT of an evolving function of time. The

identification algorithm has the capability for on-line model validation.

There is no necessity in this method for the plant input and output signals to be

purely sinusoidal because the MDFT filters out sinusoidal components in these signals.

As always, better results are obtained if the system, whatever its order, has a good

reduced-order model. Computer simulations indicate that the algorithm is robust to

additive input and output noise and non-bandlimited inputs.

Areas of current research include error analysis of the algorithm for nonideal

inputs and stochastic disturbances, and determination of meaningful on-line figures of

merit for identified models.
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APPENDIX

The plant transfer matrix is given by (5.11) with

bTJ + b6s 6+...+bo
Gp11(s) = zle

with b7 =-4.6075 x 101, b6=-4.5705 x 103, b5 =-4.7153 x 106, b4=-1.8619 x 108,

ba= -2.4976 x 109, b2 = -1.2507 x 10 l°, bl = -1.5146 x 101°, bo =-3.9506 x 109,

Gp12(s ) b6s6+bssS+'"+b°
= _p

with b6=-2.0048 x 104, b5 =-1.7916 x 106, b4=-2.3909 x 109, b3=-1.1727 x 1011,

b2=-1.2373 x 1012 , b1=-2.8374 x 1012, bo =-1.8166 x 1012 ,

Gp21(s ) b7 s7 nt- b686 +... -t- bo
: Ap

with b7 =-1.1590 x 10 °, b6 =-6.9327 x 101, b5 = 5.6807 x 105, b4 = 2.3299 x 107,

b3 = 2.9400 x 10 s, b2 = 1.3118 x 109, bl = 1.4696 x 109, bo = 1.3869 x 109, and

Gm2(s) bss8 + bTsT +... + bo
= Ap

with b8=8.1715 x 102, b7 = 6.5386 x 10 4, b6 = 7.9770 x 107, b5 = 3.9454 x 10 9,

b4 = 4.6442 × 101°, b3--2.8534 × 1011, b2--1.8656 × 1012, bl = 3.7379 × 1012,

bo = 2.0592 x 1012.

In the above, Ap = s 1° + a9s9 +... + ao with % = 1.0098 x 102, a 8 = 1.0256 x 10 _,

a7 = 4.2252 x 106, a 6 = 6.5835 x 10T, a s = 5.4549 x 108, a 4 = 3.2781 x 109, a3 = 1.4535 x 10 l°,

%=2.7412 x 101°, a1=1.8901x 101° , %=3.1027x 109 .

The ROM transfer matrix Gn(s) is given by

GRll(S ) bss_ + b484 +... + bo
= An

with b5=-7.7158 x 10 -3, b4=7.6781 x 10 -2, b3=-4.6515 x 101 , b2=-4.3011 x 102 ,

bl = -5.8884 x 102, bo =-1.5861 x 10_,

GR12(S ) bas s + b4s4 +... + bo
= AR
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with b_ = 3.9934 x 10 °, b4 =-2.6408 × 10°, b3 = 1.1580 × 103, b2 =-3.6478 × 104,

b1 = -9.6222 × 104, bo =-6.4423 × 104,

Gn21(.s) = b5sS+b4s 4+...+bo
An

with b5=-5.9553 × 10 -3 , b4=3.2304 x 10 -2 , b3=6.0336 x 10 °, b2=4.6175 x 101 ,

b 1=5.2247x 101 , bo=5.5681 x 101 , and

Gn22(s ) b5ss -q- b454 +... q- bo
= AR

with b5=-1.6462 x 101, b4=1.1952× 103 , b3=3.1988 x 103 , b2=5.7420 x 104 ,

bl= 1.3469 x 105, bo = 7.4649 × 104.

In the above, An=s6-l-assS÷... +a o with a5=1.1105 x 101 , a4=7.2366 × 101 ,

a3=4.5892 × 102 , a2=1.0098 × 103 , a 1=7.4376 × 102 , ao=1.2457 × 102 .

The ROM transfer matrix GM(S ) is given by

bss 5+b4 s4 + . . . + bo
GMll(,S) = AM

with b5= 4.8290 × 10 -2, b4 = 1.8757 x 10°, b3 = 1.9494 x 10°, b2 = -1.2283 x 103,

b1 =-5.7616 × 10 3, bo=-2.3848 × 10 3,

b_s 5 + b454 +... + bo

GM12(S) = AM

with b5 = 2.9153 × 10 -2, b4 = 1.2889 x 10°, b3 =-3.0414 x 10 -1, b2=-2.3880 x 104,

bI =-8.2902 x 105, bo=-9.5445 x 10 _,

b5 s5 q- b4.s 4 -}-... + bo
GM21(S) : AM

with bs=-4.9194 x 10 -1, b4 =9.4826 × 10 °, b3 =-4.9046 × 101, b2 = 5.5164 x 102,

bI =-9.3964 × 102, bo = 9.0758 × 102, and

GM22(s ) b5 s5 -q- b4 s4 -I- • • • T b 0
= AM

with b5=-6.7159 × 10 -1 , b4=8.0447 × 102 , ba=2.7814 x 104 , b2=8.0852 x 104 ,

b1 = 1.2135 × 106, bo = 1.0820 × 106.
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In the above, AM:36+as,S5 ÷... ÷a 0 with a5 =2.8238 × 101, a4=2.5831 x 102,

a 3 = 1.4679 x 103, a 2 = 8.2145 × 103, a 1 = 8.8012 × 103, ao = 1.6306 x 103.

The ROM transfer matrix Gs(s) is given by

GB11(S ) = b6s6 + bss 5 +... + bo
As

with b6=-1.9102 x 10 -2, b5 =-6.0759 x 10 -1, b4 =-1.4699 x 101, b3= -4.5056 x 101,

b2 =-1.4480 x 103, b1 =-3.5314 x 103, bo=-1.1386 x 103,

Gs12(8) = b6se+bSs 5÷...+bo
As

with b6=-1.8202 x 10 -2, bs=-4.3626 × 10 -3, b4=-5.6174 × 10 °, b3 = 3.0908 × 102,

b2 =-3.1770 × 104, bI = -4.7812 × 105, bo=-5.2357 x 10 _,

Gs_l(s ) b6s6 + bss 5 +... + bo
= As

with b6=1.5093 × 10 -1 , b5=-2.9259 × 100 , b4=1.6680 × 101, b3=-1.1690 × 102 ,

b2=6.2777 × 102 , b 1=1.0947× 102 , bo=3.9972 × 102, and

Gs22(a ) b6s 6 + bss 5 +... + bo
= A_s

with b6= 1.6164 × 10 -1, b5 =-9.4448 × 10°, b4 = 1.0597 × 10 3, b3 = 1.5933 × 104,

b2=7.2009 × 104, b1=6.9226 × 105, bo=5.9350 × 10 _.

In the above, As=s6+assS+...+a o with a5=2.0310 × 101 , a4=1.6829 × 102,

a3 = 9.9166 × 10 _, a_ = 4.7178 × 10 3, al= 4.8675 × 10 3, %=8.9425 × 102.
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Figure 1 - Parameter estimates via recursive interpo-
lation, ID frequencies = 0.01 Hz, 0.03 Hz, and 0.11 Hz.
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Figure 2 - Comparison of 8th-order plant (GP) with
2nd-order model(GR) derived via recursive interpo-

lation, ID frequencies -- 0.01 Hz, 0.03 Hz, and 0.11 Hz
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OVERVIEW

Distributed Parameter Modeling - PDEMOD

@ Wittrick-Wiiliams Root Solving

® Time Simulation Capability

Parameter Estimation Formulation

• Modal Parameter

@ Time-Domain Data

Parameter Estimation Techniques

o Lee and Hossain Approach

® Modified Steepest Descent

o Genetic Algorithm Approach

• Examples - NASA Mini-Mast

® Concluding Remarks

Dynamic Systems and Control Laboratory

University of Florida

In this work, various parameter estimation techniques are investigated in the context of struc-

tural system identification utilizing distributed parameter models and "measured" time-do-
main data. Distributed parameter models are formulated using the PDEMOD software de-

veloped by Taylor [1]. Enhancements made to PDEMOD for this work include (i) a
Wittrick-Williams based root solving algorithm [2], (ii) a time simulation capability, and Off)

various parameter estimation algorithms. The parameter estimations schemes will be con-

trasted using the NASA Mini-Mast as the focus structure.
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PDEMOD- Partial Differential

Equation MODeling

Generic Configuration

ODY:: #2

3 - Dimensional Spacecraft

Rigid Bodies (Full Inertia Matrices)

Flexible Beams

o Bending - Euler-Bernoulli Equations

® Elongation, Torsion - String Equation

BEAM #2

@

Force, Moment and Constraint Equations Yield

Characteristic Equation

A(¢0)l = 0

Dimension of A = 12*Number of Beams

Dynamic Systems and Control Laboratory
University of Florida

Partial Differential Equation Modelling (PDEMOD-Release 1) is capable of modeling com-

plex flexible spacecraft which consist of a three-dimensional network of flexible beams and

rigid bodies. Each beam has bending (Euler-Bernoulli) in two directions, torsion, and elon-

gation degrees of freedom. The rigid bodies can be attached to the beam ends at any angle

or body location. The eigenvalues are determined by numerically solving fl_r the values of

frequencies which cause the determinant of a frequency-dependent matrix to become zero.

Eigenfunctions can then be calculated in closed-form at a finite number of specified points.
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EXTENSIONS TO PDEMOD

® Wittrick-Williams Root Solving Capability

Determines Number of E-values in Given

Frequency Range

Can Indicate Presence of Repeated Roots

Reduces Computational Burden When Used in

Conjunction with Root-Solving Technique

• Time-Domain Simulation Capabilities

Outputs at Discrete Points Calculated From

Modal Model

"Modal Initial Conditions" Determined From

Initial Conditions Using Finely Discretized

Eigenvectors

@ Closed-Form Modal Time Solutions Utilized

Dynamic Systems and Control Laboratory
University of Florida

In addition to the time-domain based parameter estimation techniques, two enhancements

to PDEMOD- 1 have been made. The first enhancement is a Wittrick-Williams based root-

solving enhancement to the bisection root-solving algorithm. Provided lower and upper fre-

quency limits, the Wittrick-Williams algorithm provides the number of frequencies that exist
between the two limits. This information, when used properly, can greatly reduce the compu-

tational burden of solving for the eigenvalues of the structure. The second enhancement is

the addition of time-simulation capabilities. Sensors can be placed at arbitrary points on the

structure. A finite-dimensional (user specified) modal model is then created. Physical initial

conditions are transformed to modal initial conditions using the eigenfunctions and mass dis-

tribution evaluated at a number of discrete points. It should be noted that for accurate results,

the number of discrete points must be chosen relatively "large". The modal time responses

are then calculated in closed-form. The resulting physical time response at the sensor loca-

tions can then be calculated.
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PARAMETER ESTIMATION FORMULATION

Frequency Domain Formulation

nmeas

re'o, : W, t2i )

Frequency
Satisfaction

-4- Hi II Uiexp- u_U__na Ilf

Eigenfunction
Satisfaction

wrt physical design parameters

Many Sensitivity Formulations Omit Eigenfunction Satisfacti,

®
Weights W and H Allow For Engineering Judgement on

Confidence of Measurements

Time-Domain Formulation - This Study

tf

nsens°r f i 2dtmin J = Wi (Yexp(t) - Yiana(t))
!)'--

to

wrt physical design parameters

Dynamic Systems and Control Laboratory
University of Florida

Many sensitivity-based (and other) parameter estimation techniques are driven by the mis-

match in analytical and "measured" modal properties. The parameter estimation problem

is then to adjust the physical parameters of the system such that there is an improved match

between measured and analytical modal properties, often times subject to various con-

straints. An alternate formulation is to work directly with time-history measurements and
analytical predictions. This is the approach investigated in this paper.
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PARAMETER ESTIMATION TECHNIQUES

Lee & Hossain - Time Domain

qk_Vector of Design Parameters

S k- Step Size Matrix (???)

0J Gradient
Oq

o Experience - Difficulty In Selecting Step Size Matrix

(Lee & Hossain Provide No Insight Into Selection)

Motivated by CHORDS (SDRC), Vary Only One Variable

With Corresponding Highest Gradient Value

e Uses I-D Line Search on Single Physical Variable

® Disadvantage: Loses Significant Gradient Information

o Genetic Algorithms

Dynamic Systems and Control Laboratory
University of Florida

Three parameter estimation techniques are investigated in this paper. The first is that pro-

posed by Lee & Hossain [3]. In this work, the parameter of physical properties, 9,, are modi-
fied based on gradient information. There was no discussion in Ref. [31 on how to select the

step-size matrix, Sk. Improper choice of Sk was found to lead to divergence of the solution

(S k to large), or in minimal improvement (S k to small). Motivated from an optimization tech-

nique utilized in the CHORDS software program, a simplified one-dimension line search
was investigated. In this approach, the variable with the highest sensitivity is chosen to be

varied, with all others held constant. The optimal step-size of the one-dimensional search

was calculated using a quadratic approximation. This approximation required an additional

function evaluation. Finally, a Genetic Algorithm [4,5] approach was investigated.
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GENETIC ALGORITHMS

e Based on Darwin's "Survival of the Fittest" Theories

o Shows Great Potential for

e Multi-Modal Objective Functions

o Discrete and/or Continuous Design Variables

e Discontinuous Design Space

o Works With a Coding of the Design Variables,

Not the Design Variables Themselves

o Searches From a Population of Designs,

Not a Single Design Point

@ Uses Payoff (Objective Function) Information,

Not Gradient Information

o Uses Probabilistic Transition Rules,

Not Deterministic Rules

Ib_ Dynamic Systems and Control Laboratory •

University of Florida

Genetic algorithms (GA's), as introduced by Holland [4], are one form of directed random

search. The form of direction is based on Darwin's "survival of the fittest" theories. GA's

are radically different from the more traditional design optimization techniques. GA's work

with a coding of the design variables, as opposed to working with the design variables directly.

The search is conducted fiom a population of designs (i.e., from a large number of points

in the design space), unlike the traditional algorithms which search from a single design point.

The GA requires only objective function information, as opposed to gradient or other auxilia-

Jy information. Finally, the GA is based on probabilistic transition rules, as opposed to deter-

ministic rules. These features allow the GA to attack problems with local-global minima,

discontinuous design spaces and mixed variable problems, all in a single, consistent frame-
work.
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r GA's - ALGORITHM OVERVIEW

® Initial Population of Designs Created - Random or Heuristic

® Initial Population Allowed to "Evolve" Over Generations

O Conjecture - Evolution is the Best Compromise Between

Determinism and Chance

O Motivation - GA's are Robust Over a Wide Range

of Problems

E
t_

Nonlinear Optimization

_ Genetic Algorithms

Random Walk

Problem Class
v

Dynamic Systems and Control Laboratory

University of Florida

in G_s, a finite number of candidate solutions or designs are randomly or heuristically gener-

ated to create an initial population of designs. This initial population is then allowed to

ew_lve over generations to produce new, and hopefully better designs. The basic conjecture
behind G_s is that ew_lution is the best compromise between determinism and chance. The

basic motivation behind the development of G,_s is that they are robust problem solvers for

a wide class of problems. However, it should be noted that they are not as efficient as nonlin-

ear optimization techniques over the class of problems which are ideally suited fl_r nonlinear

optimization: namely continuous design variables with a continuous differentiable unimodal

design space.
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GENETIC ALGORITHM MODULES

Design Variables Coded as a q-Bit Binary Number

o Continuous Variables Like A/D Converter

o Discrete Variables Have Unique Binary Strings

o A Population Member is Just a String of Design Variables

GA Evaluation - Level of Fitness Assigned to Each Member

o Fitness Chosen to be Related to Objective Function

@ GA's Maximize Fitness

GA Selection - Determination of Which Individuals in

Current Population Chosen to be Parents

o Biased Towards More Fit Members

@ Proportional Bias - p(mem, ber) = fitnessi
i npop

fitnessj

j=l

GA Crossover - Transfer of Design Information From

Parents to Prodigy

GA Mutation - Low Probability Random Switch of Bits

o Retains Design Information Over Entire Design Space

o Aids Search For Global Optimal Solution

Dynamic Systems and Control Laboratory
Universityof Florida

Each design variable is coded as a q-bit binary number. A continuous design variable is approximated by 2_1dis-

crete numbers between lower and upper bounds set fl_r the design variable. Discrete variables would each be

assigned a unique binary string. A population member is obtained by concatenating all design variables to obtain

a single string of ¢_nes and zeros. Evaluation is the process of assigning a fitness measure to each member of the

current population. Because GA's attempt to maximize the fitness of each member, an objective function which

is to be minimized must be converted into an equivalent maximization problem. Selection is biased towards the

most fit members of the population. Therefore, designs which are better as viewed from the fitness functicm,

and thcrefl_re the objective function, are more likely to be chosen as parents. Crossover is the process in which

design inf_rmation is transferred to the prodigy from the parents. Many crossover operators (l-point, 2-p¢fint,

unil'c_rm) have been investigated. Mutation is a low probability rand¢_m operation which may perturb the design

represented by the prodigy. The operator works cm a bit-by-bit basis and is governed by the probability of muta-

ti¢_n, Pro. At each bit, a biased coin toss is used to determine whether the bit should be logically "N()_li_d "'. The

mutad(m ¢_perator is used tc_ retain design infl_rmation over the entire domain ¢)f the design space during the
evolutionary process.
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GENETIC ALGORITHMS - SUMMARY

I Create InitialPopulation

I Fitness Evaluation

I Selection Criteria

Reproduction
_crossover)

[Mutation ]

I Stopping Criteria

$ os
I End I

No

Dynamic Systems and Control Laboratory
University of Flodda

In the implementation of the GA shown above, the prodigies are produced until the number

of prodigies created is equal to npop. the population size. At that point, the current population

of parents are discarded and the prodigies are in turn made parents which are capable of pro-

ducing the next generation of prodigies. Thus, the production of npop prodigies can be viewed

as the completion of one generation cycle in the ew_lutionary process. During this procedure,

it is possible that both the fitness of the most fit member and the average population fitness

can be temporarily reduced during the ew_iutionary process. To overcome this, the concept

of a steady-state GA was implemented. In a steady-state GA (SSGA), the fitness of the chil-

dren after they have been mutated is evaluated. These fitness values are then compared to

the fitness of the two least fit parents in the current population. If the mutated child's fitness

is higher than the least fit member in the population, the child will replace that member and

will instantly become a candidate parent. To keep intact the concept of a generation, a gener-
ation is defined to be complete when the number of children produced, but not necessarily

accepted into the population, is equal to n0o p.
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EXAMPLE - NASA MINI-MAST

16

14

12

10

8

6

4

2

o Mini-Mast Modeled With One or Two Beam PDEMOD

o Single Sensor at Tip (Bay 18)

o Initial Conditions:

0.6

y(x) = 66.243

v(x) = 0 ft/sec

x3 0.4- x ft
66.24

Dynamic Systems and Control Laboratory _1
University of Florida

The NASA Langley Research Center Mini-Mast is an eighteen bay truss structure cantile-

vered at one end and free at the other. The bays are numbered one to eighteen starting with

one at the cantilevered end. Discrete masses are located at bays ten and eighteen. Three
different models of the Mini-Mast were created. The first model was a two beam PDEMOD

resulting in a frequency matrix of dimension twenty-four. The second model, which was used

in the parameter estimation algorithms, was a one beam PDEMOD whose tip mass was ad-

justed to produce "good" agreement with the two beam model. The reduction in the frequen-

cy matrix from twenty-four to twelve greatly reduces the computational burden. In addition,

a 30 element FEM was created for comparison purposes. In all models, the single sensor

output (position) was located at the tip (bay 18).
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r NASA MINIMAST - IC AND RESPONSE

@

@

Initial Condition
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ib_ Dynamic Systems and Control Laboratory _1
University of Florida

The above figures provide the initial displacement and resulting time-history used in the pa-
rameter estimation scheme. The initial condition was selected such that multi-modal re-

sponse was present.
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PARAMETER ESTIMATION

@

Determine El and Q Using Measured vs Predicted Time
Responses

tf

nsens°r f i trnin J = E Wi (Yexp() - yiana(t))2dt
i = 0

to

Function Space Characteristics (tf= lsec, tf= 5sec)

1.5e 7 < El < 3.5e7 (EI* = 2.76e 7 lb-ft 2)

0.01 _< 0 < 0.21 (0" = 0.1075 slug/ft)

TIll sec

71_=1 sec

' i0.1

0.05

1.5 2 2,5 3 3.5 1.5 2 2.5 3 3.5

EI 0b-ft'ft) xlO 7 EI Ob-ft*ft) xl07

Dynamic Systems and Control Laboratory
University of Florida

The parameter estimation problem investigated is to minimize J with respect to EI and p. In

the above Figure, surface profiles of J are presented fi)r the cases of tf= 1 and tr= 5 seconds.

The upper figures are mesh ph)ts of J. The lower subfigures are contour ph)ts of J vs the de-

sign parameters. From all figures, it is apparent that the function exhibits local minima and

maxima. In addition, from the contour plots, it is evident that the "valley" is rippled, in that
there are local minima in the valley.

227



PARAMETER ESTIMATION PROBLEM

Contour Plot Expanded (tf= lsec)

CONTOURS: INTEORAL SQUARED ERROR

,I
- - - 3

Steep/Shallow Walled Problem - similar to classic "Banana
Valley Problem

The "Valley" is Rippled

Multi-Modal Function Space

tf= 5sec Case More Difficult Than lsec Case

Dynamic Systems and Control Laboratory
Universityof Florida

'ihe figure above is just an expanded view of the lower left figure of the previous slide. The
optimal solution is marked by the "+" symbol. From this, and the previous figure, it is seen
that the function has characteristics similar to Rosenbrocks "Banana Valley" problem. The

problem at hand has the characteristic steep walled/gentle gradient valley of the "Banana

Valley" Problem. 1"he tl = 5sec case represents the more difficult problem in that the walls

are steeper.
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LEE & HOSSAIN APPROACH

Parameter Divergence (Sk = diag(le5, 175): Large)

Parameter Convergence To Local Minimum

(S k= diag(le4, 95))

Dynamic Systems and Control Laboratory
University of Florida

The above figures show parameter value vs iteration number for the Lee & Hossain ap-
proach. The upper figure corresponds to the case where the step-size matrix, S k, has been

chosen to be to large. It is apparent that the parameter values are diverging and the actual

path fi)liowed by the design variables is uphill. The lower figure corresponds to the case that

there is convergence to a local minima. In comparing the two mass/length plots, it is apparent
that the case of choosing S k to large has caused the algorithm to miss the local minima.
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LEE & HOSSAIN APPROACH (cont'd)

Slower Convergence (S k= diag(le2, 55))

Algorithm Performance Sensitive To Selection of S k

e Convergence To Local Minima

Dynamic Systems and Control Laboratory
University of Florida

in this figure, the value of the step-size matrix was chosen to be lower than the previous case

of convergence. The algorithm converges to the same local minima, but requires a greater

number of iterations. These slides indicate the sensitivity of the algorithm to step-size selec-

tion. l.ee & Hossain provide no indication of how to select Sk. Thus, this remains an unre-

solved research issue for this algorithm.
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SIMPLIFIED 1- D SEARCH

® Convergence Criteria Set to

Convergence Histories For Four Different Starting Points

O.14

0.12

Starting Points - "o"; Converged Solution - "x"

One Solution Converges to Global Optimal

Starting/Converged Points

(2.55e7, 0.01) _>

(2.9e7, 0.096) _>

(2.9e7, 0.090) _>

(3.1e7, 0.150) _>

(2.55e7, 0.024)

(2.76e7, 0.1070) NOTE: OPTIMAL

(2.75e7, 0.077) NOTE:Close to Previous Start

(2.875e7, 0.1370)

Dynamic Systems and Control Laboratory

University of Florida

In the simplified 1-D search strategy, the variable with the corresponding highest gradient

is varied. A quadratic approximation technique is used to determine the optimal step-size.

The above plot shows the result of the algorithm for flmr different starting initial conditions.

The starting points are indicated by the "o's" and the ending points by "x's". Note that all

starting points were in the valley. The stopping criteria used to halt the iterations was when

the maximum gradient was lower than approximate machine precision. One of the fimr start-

ing points ended up near the global minima. However, another nearby starting point actually
converged to a farther away local minima.
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GENETIC ALGORITHM SOLUTION - Case I

Utilized Linear Ranking Scheme to Map Minimization
of Integral Into Maximization Problem

Random Initial Population Utilized for Case I

Convergence History

CONVERGENCE I-_STORY

Solid - Moot Fit Dosisn

Dashed - Averase Fit_em

Note Rapid Convergence: In reality, could stop at -ten
generations

Dynamic Systems and Control Laboratory
University of Florida

The above figure shows the convergence history of the Genetic Algorithm parameter estima-

tion approach. The solid line shows the integral value of the most fit member of the popula-

tion at any given generation. In a similar manner, the dashed line represents the integral val-

ue of the average member of the population at any given generation. Alinear ranking scheme

was utilized to transform the integral minimization problem into a fitness maximization prob-

lem. In this scheme, assuming a population size of 30, the member with the lowest integral

value (best member) is assigned a fitness of 30: the member with the highest integral value

(worst member) is assigned a fitness of 1. This linear ranking scheme was used to avoid the

creation of a "super individual". As is the case with most applications of G_s, there is rapid

convergence in early generations: this slows considerably as the generation number increases.
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GA's POPULATION MIGRATION

After Five Generations

POPULATION MIGRATION: FIVE OI]NERATIONS
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Dynamic Systems and Control Laboratory
University of Florida

This and the next slides show the population migration as a function of generation number.

in the figures, the "o's" represent the location of the random, initial population. The "*'s"

represent the population members at the stated generation number and the "+" indicates

the global minima. After only five generations, most of the members have migrated into the

valley. From generations, ten to fifty, it is seen that the migration of members is towards the
global minima.
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GA's POPULATION MIGRATION

@

After 20 Generations

pOPULATION MIORATIOIq: TWENTY OI_NERATIONS
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Dynamic Systems and Control Laboratory
University of Florida
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lI_
GA POPULATION/CONTOURS

o Population At Generation 20 on Contour Plot

CONTOURS: INTEGRAL SQUARED ERROR

EI (lb-ft*ft) xlO 7

@ All Members in the Valley Searching For Minima

I_ Dynamic Systems and Control Laboratory _1
University of Florida

The above figure superimposes the contour plot with the population location at generation

number 20. From this figure, it is clear that the search is now confined to the valley.
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GA's - CASE II

Initial Population Forced to Low Values of EI and Q
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Dynamic Systems and Control Laboratory _'_
University of Flodda

In the previous figures, the initial population was created randomly. Thus, some of the initial
members were possibly already in the valley. To truly judge the performance of the GA ap-

proach, the initial population in this case was constrained to low values of both design vari-
ables. In the lower figure, what appears as a solid dot is really all thirty initial members of

the population. After 50 generations, it is obvious that the population has migrated into the

valley. The top figure indicates that the majority of the migration was accomplished in the

first ten generations.
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GA's - CASE III (5 sec data)

@ Initial/20 Generation - Random Population

O.14

_> Population Converging
ToVailey; Not Yet at
Optima/Solution

e Initial/50 Generation Scewed Initial

_]> Population Converging,
But Possibly To Local
Solution (Would Need
Many Generations To

Achieve Optimal)

Dynamic Systems and Control Laboratory
University of Florida

In Case 11I, the integral was evaluated over a five second interval. The upper plot shows an

overlay of the contours, the initial population (same as in previous random case), and the final

population after 20 generations. Again, the population has converged to the valley, but has

not yet found the global optimal. In the lower figure, the initial population was constrained

to have low values of El, and high values of p. All thirty members are contained in the solid

"dot" in the upper left corner of the figure. After 50 generations, all members are in the

valley: however, they have not found the global minima. In fact, another 50 generations were

run with minimal change in population location. This indicates that although the GA solution

appears to perform better than gradient based algorithms for this particular cost function.

it still can become trapped in local minima (although theoretically if the number of genera-
tions goes to infinity the global minima will be found (by default)).
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CONCLUDING REMARKS

® Parameter Estimation Schemes Utilizing Measured Time
Domain Data and Distributed Parmeter Modelling
Investigated

"Enhancements" to PDEMOD Include Wittrick-Williams
Root Solving and Time-History Simulation

Demonstrated That "Simple" Time Domain Cost Functions
Yield "Difficult" Function Spaces

[_> Need to Search For Improved Time Domain CostFunctions

Gradient-Based Algorithms Experienced Difficulty With
Local Minima and Divergence

Genetic Algorithms Showed Promise In These Areas, But
Used More Function Evaluations

Note That Mismatch in Function Evaluations Is a Function
of Number of Design Variables

Increasing Number of Design Variables Favors
_> Genetic Algorithms

Dynamic Systems and ControlLaboratory
University of Florida

In this work, parameter estimation schemes utilizing measured time domain data were investigated. The models

used were developed using the PDEMOD approach. Two enhancements to PDEMOD-I were made in order

to develop the parameter estimation algorithms. The first (Wittrick-Williams) reduced the computational bur-

den associated with solving for the structure eigenvalues. The second provided time-simulation capabilities.

It was shown by example that a "simple" time-domain cost function actually yielded a difficult function space

for the parameter estimation algorithms. The function space was multi-modal and exhibited characteristics sirni-

lar to the classic "Banana Valley" problem. The gradient-based algorithms experienced severe difficulty. In fact,

it was diMcult to find starting conditions for which either gradient algorithm converged to the optimal solution.

Conversely, the GA approach appeared "toperform well. However, the GA used a much greater number of func-

tion evaluations. This would not be the case if there were a large number of design variables. For gradient based

algorithms, the number of function evaluations per iteration increases approximately linearly with the number

o1"design variables (i.e. each additional design variable requires a gradient calculation). However, because (;A's

do not require gradient calculations, the number of function evaluations per generation is independent of the

number of design variables.
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The objective of this study is to experimentally

determine an empirical model of the vibrational dynamics of

the Spacecraft COntrol Laboratory Experiment (SCOLE)

facility. The first two flexible modes of this test article

are identified using a linear least-square identification

procedure and the data utilized for this procedure are

obtained by exciting the structure from a quiescent state

with torque wheels. The time history data of rate gyro

sensors and accelerometers due to excitation and after

excitation in terms of free-decay are used in the parameter
estimation of the vibrational model.

The free-decay portion of the data is analyzed using the

Discrete Fourier transform to determine the optimal model

order to use in modelling the response. Linear least-square

analysis is then used to select the parameters that best fit

the output of an Autoregressive (AR).model to the data. The

control effectiveness of the torque wheels is then

determined using the excitation portion of the test data,
again using linear least squares.
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INTRODUCTION

Future NASA space missions may involve very large and

highly flexible spacecraft that require active structural

dynamics control. Large space structures would require

very stringent pointing and vibration suppression

requirements. The active controller that can achieve these

objectives will have to be designed with very accurate

knowledge of the dynamic behavior of the structure to ensure

performance robustness to a variety of disturbances and
uncertainties. It is recognized by control engineers that

there are certain inherent problems in the design of active

controllers for this class of large flexible spacecraft.

Because of these concerns and of the desire to offer a means

of comparing technical approaches directly, a NASA/IEEE

Design Challenge [i] was being offered to the technical

community. In 1983, the Spacecraft Control Branch at NASA

Langley Research Center in Hampton, VA. initiated the

Spacecraft Control Laboratory Experiment (SCOLE) program and

the NASA/IEEE Design Challenge to promote direct comparison

and a realistic test of different approaches to control design

against a common open to the public laboratory test article.

This facility provides researchers with a highly flexible

test article, sensors, actuators, and digital control

processing capability. The test article resembles a large

space antenna attached to the Space Shuttle Orbiter by a

long flexible mast, similar to proposed space flight

experiments and various space-based antenna systems. The

proposed model is shown in Figure i. Using SCOLE, control

laws for a multi-input output structural dynamics system can

be implemented in real time from any remote site that has a

computer terminal and modem communications capability. Much
interest has been expressed by the research community

concerning SCOLE. This is reflected in the technical output

of five workshops held since the conception of SCOLE in

1983.

SCOLE APPARATUS

The SCOLE hardware and software support is described in

detail in Refs. 2 and 3 and in this paper. For this work,

SCOLE contains two major structural elements of interest: a

planar, hexagonal tubular structure representing an antenna

reflector, and a single tubular flexible mast connecting the

antenna to the platform, as shown in Figure 2. The platform

is fixed to ground and only the mast and reflector portions

are dealt with in this experiment. The system actuators

consist of three mast-end mounted reaction wheels that

produce torque in three mutually orthogonal directions. The

system sensors are comprised of a three-axis reflector-
mounted rotational rate sensor and both mast-mounted and

reflector-mounted x and y-axis accelerometers. The

experiments are run on SCOLE using a digital M68000-based
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computer that has a UNiX-like operating system version

called UNOS. Programming is accomplished in a combination

of C and FORTRAN 77 programs. The computer has analog-to-

digital (A/D) converters used for sampling the rate sensor

data, digital-to-analog (D/A) converters used to command the

reaction torque wheels, and a process timer which achieves

precise internal timing of the data sampling process.

SYSTEM MODELS

The model we seek for SCOLE should incorporate the actual

natural frequencies, damping ratios, and control

effectiveness coefficients of the system. The viscous

damping can be modeled in terms of _ i, the damping ratio of

the i_ mode. To this end, each mode of the vibrational

dynamics of SCOLE is modeled as a single-input, single-

output system [3] described by the state-space equation

x(t) =Ax(_) +Bu( t), (I)

where

x:[n_]T (2)

0 1
A= (3)

__2 -2(_

S=_. (4)

In this equation,

e2=_k, (s)
m

c
2_e , (6)

m

where

- modal state vector

u - control input of reflector end reaction torque wheels

b - control effectiveness parameter of actuator location

- natural frequency of mode

243



- damping ratio of mode.

The output is of the form

y:Hx (7)

for a rate sensor,

H= [0,c], (8)

where c is the mode slope at the sensor location.

To obtain a difference equation model for digital

computer control, the control input is assumed constant over

the computer sample time interval of T seconds and the
continuous-time model is converted to its discrete-time

equivalent by integration over the interval.

Thus, the difference equation describing the motion

appears as

x_x_=_x_+P u_x, (9 )

where

_=eA_ (10)

T

F=f eAtdtB = (_-I) A-IB,
o

(11)

since A is nonsingular and I is the 2x2 identity matrix.

The model used in this work is a linear, constant-

coefficient, difference equation. To accomplish such a

model, an auto-regressive form of the discrete time model is

found by taking the z-transform of the last equation and

solving for the sampled sensor output, Yk, in terms of the

input actuator. The auto-regressive moving average (ARMA)

model appears as

YK=alYK_l+a2YK_2+(blUK_l+b2uK_2)b_, (12)

where

al =_)11 +_2:2 ( 13 )

(14)

bl =FI 2 (15 )
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b2 =_12F22-0nF1_ (16)

bTw=C'b. (17 )

Identification of the ARMA model parameters is performed

using the linear least-square estimation (LSE) algorithm.

This method was selected because of its computation

efficiency and implementation simplicity. The error
equation used in the estimation is defined to be

eK=Y K- [ alYK-1 + a2YK_ 2 + (b 1UK- 1 +b z u__ z ) brw] . (18)

The sum of the squared error,

2 K-0
(19)

is the performance measure to be minimized with respect to
the parameter desired to be found.

PARAMETER IDENTIFICATION TECHNIQUES

Linear least-square estimation (LSE) is used to identify
the ARMA model parameters. This method is selected because

of its computation efficiency and implementation simplicity.
The identification process is carried out for each reaction

torque wheel and for each mode. The test data in the

identification process of the SCOLE problem is processed in

a two-step operation.

For the first step, the AR coefficients a I and a 2 of the

ARMA are identified using the free-decay portion of the

collected data. The spectral content of the free-decay

portion of the data is examined using the Discrete Fourier

Transform and the Hamming window. The free-decay data are

filtered to suppress noise and signals due to any modes not

wanted in the model. The filtered data is processed using

the standard least-square estimation to identify the AR

coefficients, a I and a2, of the modelled mode. The

identification of the a I and a2 coefficients for each mode

generally depends on the data base used in the estimation.

As more significant data are added, the estimates should

converge to a value and the variance of the estimates will

improve to a limit, which depends on the measurement noise

and the model. After convergence occurs, the mean and
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variance of the estimates should remain constant.

Therefore, the variation of the estimates is examined as

data is added to the data base and the mean of the estimates

is taken over the last several data base additions. To

ascertain confidence in the estimates, the variance of the

estimates is also taken into consideration. Also, the

damping ratios and frequency of each mode can be computed

from the a I and a2 coefficients. In the second step of the

parameter identification procedure for the ARMA model, the
control effectiveness coefficient brw of the torque wheel

used is determined. Once the values of the a I and a 2

coefficients for the mode of interest are determined, a

similar linear least-square scheme is employed on the

excitation portion of the test data to obtain the control

effectiveness of the torque wheel actuator with respect to

the mode of interest. Again, the mean and variance of the

estimate of b_ is taken into consideration.

EXPERIMENTAL PROCEDURES

Experimental work and testing can be conducted on SCOLE

either at the NASA Langley Research Center in Hampton, VA,

where SCOLE is located, or at any remote site that has a

computer terminal and modem communications capability. The

work presented in this paper was conducted both at NASA and

from the UNC Charlotte College of Engineering.

A manual structural excitation test is performed wherein

data is collected and analyzed to verify physical modal

directions and frequencies as predicted by computer

simulations of SCOLE. Bias readings of all inertial sensors

are always taken before each run to establish a reference

frame. For mode 1 testing, the structure is hand held by

the reflector and pulled in the center of the +x and +y-axis

directions, as shown in Figure 3, approximately six inches

or until the displacement angle about the z-axis reaches

five degrees. When the reflector is released, free decay

data is recorded and collected. The same process occurs for

mode 2 testing, with the reflector being released from the

center of the -x and +y-axis directions as shown in Figure

4. Data is collected and verified against predicted natural

frequencies of modes 1 and 2.
The vibrational dynamic model we seek for SCOLE

incorporating the actual natural frequencies, damping

ratios, and control effectiveness coefficients are obtained

in this work by using the mast-end mounted reaction wheels

to excite the structure. Structural excitation tests are

individually conducted wherein the structure, initially at

rest, is sinusoidally forced by a single reaction wheel for

30 seconds at the predicted mode of interest. The data

recording is continued for 60 seconds to obtain free-decay
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data. Tests are carried out for each of the x,y, and z-axis

torque wheels and for both modes 1 and 2 and are summarized
in Table I.

DISCUSSIONS

Experimental data and results of the system

identification process are summarized and illustrated in

Table 2 and Figures 5 through I0. Tests and analysis using
each of the x, y, and z-axis torque wheels at both the first

and second modes, .4401 and .4764 Hz respectively, are

carried out. The identified parameters al, a2, b_, and the

computed values of £ and f for all of the tests are
tabulated in Table 2.

Figure 5 shows the input excitation signal of the

reaction torque wheel. Before each test, the structure was

steadied and bias readings of the sensors were taken and

accounted for. A sinusoidal forcing signal of amplitude 20

at the desired mode test frequency was applied to the

structure for 30 seconds. For mode 1 frequency of .4401 Hz,
the x-axis reaction torque wheel excited the structure the

most. This was in agreement with the predicted first

bending mode shape shown to occur closer to the pitch or y-

axis direction. The y-axis torque wheel had the greatest

effect on exciting the structure for mode 2 tests, which

agreed with the predicted second bending mode shape

occurring in the direction of the roll or x-axis. The z-

axis torque wheel had the least effect on exciting the

structure, as it tended to excite the structure in the yaw
or about the z-axis direction. Since the first two

vibrational modes occur dominantly in the x-y plane, the z-

axis torque wheel had little effect on exciting the

structure at the first two modal frequencies.

Figures 6 and 7 illustrate the frequency spectral

analysis on the free decay portion of the data using the DFT

and Hamming window. The structure would non-periodically
vibrate in both translational and rotational directions

after about 30 seconds of free decay. Therefore, only the

first 30 seconds were considered due to other modes becoming
dominant in the decay. The length of the data record used

by the DFT was chosen to be equal to an integer number of

periods of the sequence. The presence of leakage or

significant non-zero frequency components occurred when the

data record was improperly truncated. Therefore, an integer
number of periods represented by the value of N was chosen.

The frequency magnitudes were also proportional to the

number of periods included in the record length. The

greater the number of periods , the larger the magnitude.
To further reduce the effects of the discontinuities

introduced by truncating the sequence, Hamming windows were
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used. The Hamming windows represent a noticeable

improvement in suppressing the magnitude of the side lobes

and the unwanted non-zero frequencies while broadening the

main lobe frequency. The use of Hamming windows was

extremely valuable in detecting and identifying the first

and second modal frequencies, which were very close

together.
Figures 8 and 9 of each test provide a description of the

parameter identification process for the free decay
coefficients al and a 2. From these figures, the identified

parameters are seen to converge as data is added to the data

base for estimation. The identification process was

terminated when convergence was achieved based on the

deviation of each of the last three iterations from their

arithmetic average with a convergence bandwidth of 5

percent. The mean values of a I and a2 for each test are
shown in Table 2. The natural frequency and its damping

factor were computed based upon the coefficients al and a 2,

and are also shown in Table 2. The accuracy of the modal

frequency was affected by the characteristics of the LSE

identification technique. The frequency calculated from the

LSE varied slightly from the frequency given by the DFT as

shown on the figures. The characteristics and accuracies of

the LSE algorithm and the DFT accounted for a part of the

difference.
Figure I0 of each test shows the control effectiveness

parameter of the reaction torque wheel, b_. Control

effectiveness parameters were particularly difficult to

accurately determine because of weak actuators and were

small when compared to their associated frequency and

damping parameters. Also, due to the difference between the

forced and resonant frequencies of the system, the value of

bTw found may be highly inaccurate. The estimate converged
as more data was added. It is important to use the mean of

b_ taken over a converged portion of the data and not a

single point. The mean and variance of bTw are shown on the

figures. The presence of a disturbance was induced when the
reaction torque wheel was initially started. It is believed

that this was the result of start up friction of the

reaction torque wheel assembly. Therefore, the first 5

seconds of data were not included in the data base for

estimation.

SUMMARY

In this work, an empirical model of the vibrational

dynamics of the first two flexible modes of SCOLE was found

using the linear least square identification procedure. The

experimental apparatus and procedures followed and the

system model assumed were also discussed in this study.
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Testing was done by exciting the structure from a quiescent

state with torque wheels and recording the time history data

of rate gyro sensors and accelerometers. The torque wheels

were then shut down and free-decay data recorded. The DFT

and Hamming window were used to analyze the free decay

portion of the data. The coefficients of an autoregressive

model to the data were determined using linear least square

analysis. Next, the control effectiveness of the torque

wheels was found using the excitation portion of the test

data, again utilizing linear least squares. Experimental

data and graphs were also presented to provide a description

of the digital signal process algorithms and techniques used

in determining the first two flexible modes of SCOLE. The

experimental results presented in this paper have the

potential to be extremely useful in modelling vibrational

dynamics of large flexible spacecraft structures.
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Table 1

Test Parameters

TEST

#

I

3

4

5

6

REACTION MODE EXCITATION

TORQUE TIME

WHEEL {SECS)

X-AXIS 1 30

Y-AXIS 1 30

Z-AXIS 1 30

X-AXIS 2 30

Y-AXIS 2 30

Z-AXIS 2 30

FREQUENCY

(Hz)

0.4401

0.4401

04401

0.4764

0.4764

0.4764

AMPLITUDE

2O

20

20

20

20

20

FREE

DECAY TIME

(SECS)

6O

60

60

60

60

60

SAMPLE

INTERVAL

(SECS)

OI

Ol

0.1

0,1

0.1

0.1
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Table 2

Experimental Identification Results

TEST

#

1

2

3

4

5

6

REACTION

TORQUE

WHEEL

X-AXIS

Y-AXIS

Z-AXIS

X-AXIS

Y-AXIS

Z-AXIS

MODE

1

1

1

2

2

2

al a 2

1.5235475 -0.6120654

16931082 -0.7789838

1.5868783 -0.6751711

1.8732456 -0.6641920

1.7073690 -0.7947280

1.6953652 -0.7836996

GRAPH

FREQ

(Hz)

0 44715

0.44715

044715

0.46218

0.46218

0.46610

LSE

FREQ

(r-iz)

0.5351800

0.4978276

0.5223736

0.5164785

0.4997192

0.5042274

0 7299576

bTW

-5.5898004

0.3992480 0.0080636

0.5983680 -08804742

0.4766312 0.6327561

0.3658724 1.5270996

0.3846554 -1.4330764
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Nonlinear Control Design Approacll for SSF/MRMS

Modeling: Attitude Pointing Dynamics of Multi-Flex-Body Systems:

Hamiltons Principle

Attitude Control Decoupling/Linearizing Control by Nonlinear Feedback:

Partial Feedback Linearization

Adaptive Control: Modified Model Reference Adaptive Control (.MRAC):

Enhance Decoupling and PFL Robustness

CSI: Keei flexure and MRMS motion results in nonlinear inertial couplings which effect

attrtude control on short time scale

This study addresses attitude control of the SSF with MRMS motion and considers nonlinear

dynamic instabilities not previously considered in the work of Mah et at, Automatica 1989 and

Wie et al, AIAA GNC 1990. Stability issues considered in these previous works concentrated

on the slow time scale disturbance rejection of gravity gradient and cyclic aerodynamic

torques on the time scale of the orbital period. This study addresses control of short time

scale dynamic instability due to nonlinear inertia coupling which arises due to keel flexure

and MRMS motion. The study addressed the following points:

1. Nonlinear inertia coupling due to keel flexure seriously constrains the stabilization of

SSF attitude via linear control methods.

2. Feedback Linearization for Attitude Control and MRMS decoupling can achieve preci-

sion stabilization subject to limitations of: control authority, actuator bandwidth, and

model uncertainty.

3. MRAC based on nonlinear design model with explicit parameter dependence can be

effective for stabilization of SSF attitude with uncertain keel stiffness.

Work reported here in modeling and control design builds on previous work reported in:

1. Baillieul & Levi (1987) Physica D

2. Bennett, Kwatny, & Dwyer (1988) AFOSR Technical Report TSI-TR-88-07
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1,

2.

Lagrangian Dynamics for Mixed LPS/DPS

identify configuration space (generalized coordinates]

choose ©PS coordinates to eliminate _1 geometric B.C. 's

Hamiltons principle: motion is natural if:

[2(6L + QT6q)dt = ,3

System Lagrangian: L(,l,q) :.t,t x Zl.tl --_ _ obtains .k'= {natural B.C.'s}, or

3. solve Euler-Lagrange Eqns.

subject to BC.'s , t3 = c_]U._"i

d OL OL

,l--;o_)---[--o,_i Q_

The approach followed in this study for model construction utilizes quasi-coordinates and

generalized Lagrange equations often referred to as Poincare equations. The method in-

cludes explicit construction of Finite Element Methods (FEM) for flexure and spatial re-

cursive construction of Multi-Body systems introduced by Rodriguez and Jain (1991) AIAA
GNC.

The formalism of Lagrangian dynamics proceeds by identification of configuration space

in terms of generalized coordinates and their velocities. Hamilton's principle identifies the

natural motion as the solution of a variational problem. If the'coordinates are independent

then the usual Euler-Lagrange equations result. If the coordinate variations are constrained

(e.g. nonholonomic systems) then the d'Alembert-Lagrange equations apply (Neimark &
Fufaev 1972).
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Lagrangian Dynamics for Mixed LPS/DPS

we say u E lip if Ilvql_-- I0 IDP_I2 +-t-Ivt 2 d= < _o

u EftO satisfies B.C.'s up to ptlL order

1. Hamilton's Principle _ "weak" (distributional) solutions in H_,

2. Euler-Lagrange Eqns. _ "strong" (pointwise) solutions in H 2p

Finite Dimensional Modeling and FEM Approximations:

. Approximate weak solutions by discretization of Lagrangian

and apply Hamilton's Principle

• We use collocation by splines for FEM apDroximation

The extension of the L_agrangian approach to mixed Lumped Parameter and Distributed
Parameter Systems arising in Multi-Flex-Body systems involves reduction based on Finite
Element Methods. Our approach utilizes splines for construction of the elements with
continuity requirements at knots consistent with the variational problem.
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Lagrange's Equations using Quasi-Velocities

Given configuration space ,/ 6.t_1. Consider quasi-velocitiesp such that

,) = V(q)p = [c1' "2 ..... t',,,]P

_, = u(q),i = ["l. "2 ..... ,,,,,b

G generaity nc: related to valid set of coordinates = =p unless

<_,'r= U(,l)d q

is an exact differential

[] Hamilton's arinciple aDplied to Lagrangian in quasi-velocities L(q,p)= L(r/,,_)
Poincare equations (Arnold et al 1988)

.to2_
p --

Op 2
/_.<, o:i , '" oi .. + oZ_" Qt

OqtOp Oq

Xj ---- [[,,j,_jlJ[_,j,_,2J " [,'), cm]] w/ j = 1..... ,,,

t?l,

b----[

C % form rigid: invariant vector field on of Lie group G associated with .%l

[f._lis Lie gr.ouD and ci are independent, then :b are independent of q
U

Poincare equations are related to Boltzman-Hamel equations and Caplygin's equations in
quasi-coordinates. The use of quasi-velocities extends Lagrangian framework to nonholo-

nomicsystems. Poincare equations together with the quasi-velocity definition form a system
of first order ODE's describing the equations of motion for the N-body model.

1. Quasi-velocities are not time derivatives of physically significant coordinates.

2. Formulation of Poincare equations considered here is also related to the constructive
methods of Kane.

3. The modeling approach has also been applied to much simpler prototype spacecraft
attitude slewing of the SCOLE model in Bennett, Kwatny, I._aVigna 1991 ASMIE.
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Structure of Poincare's Equations in Quasi-Velocities

Kinetic Energy T('I,P) = p_._l(q)p

,Vl(,l)b 4"- C(q,p)p 4- S(q) = Q p

where rt_

j=l

Potential Energy: V(q)

f(,s) := vt('t) °_"
(,1)_

Oq t

Generalized Forces in p-frame:

_often convenient when quasi-velocities are referenced to body frame)

v := vt(q)q

Lagrangian formalism provides an explicit construction of the system dynamic coefficients,

The transformation of the generalized forces to the p-frame defined by the quasi-velocities

is more convenient for the actuator command frame. The construction facilitates the definition

of nonlinear control laws which include explicit model parameter dependence. This is useful

for evaluating tradeoffs in gain scheduled vs, adaptive control implementations.
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Conventional Linearization by Taylor Expansion

• conventional linearization Dy Taylor expansion is valid in the neighborhood of an equilibrium
( when ,,)= 0 and q = 0)

• assume p = 0, then equilibrium configuration is: _-(q) _-- O p

Linear Perturbation Dynamics:

,l = V(O)p

M(o)b + c(o,o)v + 0_-(ol =/,,_ _,

Conventional Linear Control Design Methods:

• fixed gain control limited to neighborhood of equilibrium

• extension to gain scheduled designs is ad hoc

System equilibria can be identified for the case of constant generalized forces defined in
the p-frame. Then conventional methods for identification of linear models proceed by
Taylor expansion. Note that dynamical changes in configuration such as deployment of
appendages, articulation of robot arms, etc. do not necessarily involve motions relative to
a well defined equilibrium.

Partial Feedback Linearization attempts to impose an I/O linear with reference to a nominal
system model. Explicit model construction for PFL provides explicit control dependence on
parametric model uncertainty.
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Recursive Formulation for Serial Chain of Bodies

Notation: velocity in body-frame at C

t'c = o(,co)to

t;. = . translation o(rco) = _ I

r',-,) - location of C in frame at 0 -rco

]OII1(

body 0

F,amet:_1_

J
Serial Chain ol Bodies

Serial Chain of Bodies

Joint parameters: _k of dimension n k
quasi-velocities: J(k)

Recursive Formulation for Serial Chain of Bodies

Notation

ILg((k/_) -mass-inertiatensor about CG / A.Icg(k) =

a(k) -location O in k-frame
Mcg(k)-spatial inertia about CG Mo(k) =

Mo(k)-spatial inertia tensor about O

• Coordinate free recursion (Jain & Rodriguez 1990)

V(k) = @(rco(k - 1))V(k - 1) 4- H(k)/3(k)

Chain model: (constructed from convenient choice of coordinates)

spatial velocity: V := [vt(1)...Vt(K)] t

joint quasi-velocity: t3 := [fit(t)...13t(K)lt

V = ¢H/3

[, o I@(2, i) I ... 0 /_/ __ "..
_:= : "'. 0

@(K, I) @(K, 2) ..- I

Chain Kinetic Energy: K. E.clmi n = _flt3"tI3

in terms of
Chain inertia matrix: jk4 = H*cb*diag{Mo(t)... Mo(K)}¢H

@"(a)Mcg@(a)

H(K) ]
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Model Formulation with Sliding I-DOF joints with Elastic Bodies

Sliding Joint 1 DOF relative motion along path iD defined in k- Z-frame

• _ defined by map ? • _ ---. _3 as imaoe of _ E [_0,_1]

F,ame l: k_ "CkO"C_ Frame "5 k
Ill b_tlv

delormed

(-)k __ Frame ]:k j _ h

undelormedSliding Joint configuration
for flexible bodies

Model Formulation with Sliding 1-DOF Joints

• relative velocity of point P on path P wrt (k- 1)-frame ffk-1.

_'- i 87.
t, p = --

inertial velocity of P

0"71)+up _--- , , _ __

• _ singleDOgtranslational quasi-velocity 3(k) such that spatial velocity has theform:

Vk(k) =,_(_ k-l(_))Vk-l(k- Z)-L Hk(k)Ak(k)

with

Hk(]c):: [ 03xl ]O_,/0_

The recursive construction for chains of bodies with revolute joints can be extended to

include sliding joints (such as the Mobile Remote Manipulator System) by defining the

velocities relative to the joint path constraint defined in a local body fixed frame. The

recursive construction for elastic bodies can be established by defining a local body frame

fixed at the preceeding joint. Elastic deformations are assumed small in the local body

frame but can contribute to large motions in the system inertia frame. Such dynamics can
be highly nonlinear.
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Dynamic Decoupting & PFL for Multi-Flex-Body Systems

Coordinate partitioning: Quasi-velocities:

\]{c_ _ body attitude (_'0 *- body ratesq= P=
tt

r - control torques applied to main body

Multi-Flex-Body Model: Poincare equations:

]_[_._' + NO 4- F._, = G,.cr

NtL ' + M,,L' -- Ft" : Gv_

-_ P_I_ (decoupiing) Control Law: r : .4(_,.,,u.v) -}- B(c,_'._,u)c_

such that in closed loop ¢_ is commanded attitude accelerations

Fact: exact system attitude PFLusing torques referenced to tlle principal body frame; i.e.,

Gw : [, G_ : 0

_ 1 0F'_' F
.4 = Fw- NMtT1Fv + [?C'_[v 1Bt M,..IF- -- *'

o_

L_ : [M,_. - .'vMvlNt]F -1

For multi-OOF revolute joints the angular coordinates can be expressed using Euler angles,

quaternions, or Gibbs parameters. Choice is significant for computational complexity and

numerical stability of inverse transformation for PFL.

PFL attitude control achieves decoupling of keel flexure, rigid body translational modes, and

MRMS motions from attitude dynamics. Moreover this is achieved consistently with nonlinear

large angte motions of multi-body articulation.

For application to decoupling of the MRMS motions from the SSF tl_e PFL control is

parametrized by the MRMS motions. Thus the attitude regulation includes direct feedfor-

ward of the MRMS motion, This is a form of gain scheduling using nonlinear models.

Construction of the inertia matrix using quasi-velocities based on the spatial chain recursion

together with the assumption of small deformations in the local body frame simplifies the

form inertia matrix to be inverted for PFL. The simplification for on-line PFL is related to

the efficiency of the order-n recursions currently in use for efficient simulation of multi-body

dynamics. Note the construction works for implementation of nonlinear PFL control laws.
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Design Considerations for PFL Attitude Control for SSF/MRMS

Performance Objectives:

• Achieve Decoupling of Independent Axis Attitude for Slewing/Pointing Control

• Achieve Decoupling of Flexible Interactions From Primary System Attitude Pointing

= Decouple sensitivity to MRMS motions

• DecouDle design of active structural control (smart structures) from principal body
attitude control

Practical Limitations

• Requires Additional Control Authority to Achieve Nonlinear Compensation

• Compensation Based on Nominal Design Model
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SSF/MRMS System Configuration

SSF keel structure _ _

Trackor,Ba,e
F]__bte Lower Arm V

Payload

Body

space station

moofle base

upper arm

lower 3rm

110 211.258

System Physical Data

inertia cg location
(m)

Jy=2.13,108 y=55
Jz=880,241.6 z=55

arameters

7.860,103

[kglm2]

elastic modulus 200,108 NIm 2

shear modulus

1.5 316.9

143 3169

143 3169

jx=178.25 x=0

=178.25 y=0
z=3565 z=0

Jx=54.002 x=O

Jy=54,002 y=O
jz=0 z=7 15

I jx=54,002 x=0
Jy=54.002 y=0

Jz=0 z=715

794108 N/m 2

The simplified SSF/MRMS model includes four articulated bodies: 1) SSF keel, 2) MRMS

base, 3) inner MRMS arm, 4) outer MIRMS arm. Each joint is 1 DOF. Bodies 1 and 2 are

connected by a sliding joint. The SSF/MRMSis modeled based on physical data taken from

Mah,et al. Automatica, 1989. The SSF keel is modeled as a uniform beam with a 5m square

cross section. The FEM model for the beam is reduced from Timoshenkoassumptions with

finite elements constructed from splines. Using 2 elements with 500I =. Simulations were

conducted on a reduced model with 4 DOF to eliminate fast time scale effects beyond the

control bandwidth. The joint velocities and SSF body rates are chosen as quasi-velocities.
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Performance Evaluation of PFL Control for SSF/MRMS

Control Laws:

• PFL SSF Attitude ©ecoupling

• SSF Attitude Decoupling based on linearized equations of motion

• Parameter Adaptive PFL SSF Attitude DecouDling (SSF keel stiffness estimated)

Maneuvers:

• 3 axis simultaneous attitude maneuver of 0.5 tad (Euler angles}

• I_IRMS 3 simultaneous ] DOF joint motions

(translation equivalent to 18m in 60 sec)

Simulated performance evaluation of SSF attitude control with MRMS decoupling was

performed for tl]ree control taw variations including: noniinear PFL, a linear decoupling

control law. and MRAC modified nonlinear PFL control. The maneuvers considered were

aggressive enough to differentiate the results.

MRAC PFL Attitude Decoupling Control for SSF/MRMS

MRAC comparator

=" PFL compensator MRMS joint motion

feedforward

(. - body rates

- attitude coordinates

u I MRMS joint & elastic coordinates

•3-- SSF keel stiffness

- SSF attitude control torque
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Tradeoff Studies for PFL Attitude Control for SSF/MRMS

1. Nonlinear C,auDling due to keel flexure in attitude control:

Nominal (precision model-based) PFL for attitude maneuver compared with Linear,

fixed-gain, c:ecouplin9 cof_trol

• tvlEMS feedforward accounted in both designs

•noniinear inertia variations due to keel flexure limit domain of attraction in linear

design

2 PFL robustness to SSF keel stiffness uncertainty

• marginally stable slew response with 5% uncertainty (reduction) in keet stiffness

• robustness limited by (active/passive) damping of keel flexure

3 Robustness of PFL attitude control w/ MRAC correction for keel stiffness

• improved slew response with 10% uncertainty (reduction) in keel stiffness

• marginal slew response with 20% reduction in keel stiffness

• guarantee of stability margin in keel flexure response with MRAC is difficult without

acbve _tructure control

SSF/MRMS Scaling of Control Gains

• Control gains chosen for Decoupled Attitude Linear Dynamics

Open Loop

0

0

0

0

0

0

o2
o2
o2

-I0.4212 ±I0.5963i

-10.8762 ±I 0.5876i

-0.2053 _+3.3267i

-0.2053 ± 3.3290i

System Ei_envalues

Closed Loop

Nominal (k)

0

0
0
0
0

0
-0.1763 _*
-0.1763 t
-0.1364 ±
-0.1364 t
-0.2000 ±
-0.2000 ±
-0.2000 +

3,3205i

3.3205i
1.6505i
1.6505i
0.20401
O,2040i
0.20401

Closed Loop

Detuned (k/B)

0
0

0
0
0
0

-0,1763 ± 3.3205i
-0.1763 ± 3.3205i
-0.1364 + 1,6505i
-0,1364 ± 1,6505i
-0,0250 *- 0.0979i
-0,0250 ± 0.0979i

-0.0250 ± 0.0979i

• Unear controller effective for .01 rad slewing with Detuned Gains
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SSF/MRMS Attitude Slew with Precision PFL & hARMS Decoupling

..... 10 ....

- .j

I)0 : =_ .........
IO 15 __0

time rsl

[)5 ................
_+' 0,

=++

0 -- < .... L: -:-: ..... O,l
I0 15 30 0

tDne t sJ

O-

-tO
5 Io

time (s)

++_t

15 20

5 I0 15 20

time is)

PFL with MRMS motion - regulator gains: (-0.8,-0.1632)

SSF/IV/RMS PFL attitude control nominal response for 3-body maneuver

SSF/MRMS Attitude Slew with Precision PFL _ MRMS Decoupling

2 L ]

"'A .2 _
0 5 10 t5 20 0 5 10 15 20

time (s) time (s)

i

, "- I
i " I

-5' I

_r' -5 L

' _1 " _ e _ _

.51 _.f
0 5 10 15 20 0 5 10 15 20

time (s) time (s)

SSF Keel Flexure Response with nominal maneuver
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SSF/MRMS PFL Attitude Slew with 5% Keel Stiffness Reduction

II10

] ' " t

0 .5 I0 15 2[) 0 5 LU 15 20

tilHe 15)thin" {sl

[,-- ............ ___ ]

U 5 10 15 20

time (_1

().5

> . ,

_ -().._.... 1
_, !

(; 5 10 15 20

tbne ts_

Nominal PFL slewing with 5% reduction in keel stiffness

SSF/MRMS response degradation is evident for nominai PFL attitude
control

SSF/MRMS Attitude Slew with MRAC PFL _. MRMS Decoupling

MRAC estimation of keel stiffness recovers nominal slew performance

0
0 5 I0 15 20 0 5 10 15 20

time (s) time {s)

0.5:

.2, 1 ,._

_J

_. I
-0.5

0 5 10 15 20 0 5 10 15

time (s) time (s)

0.1

.0,2t 20

PI=L with MRMS motion - regulator gains: (-0.8,-0.1632)

10% reduction in keel stiffness wrt nominal value for PFL t=O
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SS_/MRMS Keel Flexure with MRAC PFL _z MRMS DecouDling

PFL MRAC obtains stable res_Donse in keel flexure

4

u

.< .

0 :, I 0 I _": 20 0

Irate ! s)

] OL I','_ ................. __

-10 ................ i
0 5 I0 15 20

time (s)

keel flexure with MRAC

2o

0_

-20
0

-g IO I._ 20

time (si

I0 15 20

time (s)

10% reduction in keel stiffness
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Conclusions ,t-tom Sil_qut,3: ,:_s

observations ftom SSF/r',;1P N_l_- hJlocleling:

• Keel flexibility drastically alters nonlinear inertial cour.[ing in attitude maneuvers

• _IRI_J1S motion exacerbates nonlinear inertial coupling

Con:rol Law Comparsions:

• linear, fixed-gain control can achieve stabilization of small amplitude SSF att;tude

motions on a slow time scale

C3 stability robustness limitation is not evident from linear model

dommn of attraction is limited for fast time scale attitude regulation

• line_r, fixed-gain, decoupling control demonstrates e,_treme sensitivity to MRMS mo-

tions _z model uncertainty

• PFL stability sensitive to keel stiffness parameters

S 1S reduction in keel stiffness results in oscillations with magnitude on order of length

of keel

• Adaptive PFL attitude maneuver control with extrer_'e MFRMS multPDOF motions

demonstrated tolerance to initial model uncertainty :f up to 101_ reduction in keel

stif[_ess

The SSF/MRMS system model predictsa significantelast!c deformation response of SSF

keel during attitude slewing transients. This leads to large motions in the inertial frame

although the beam model assumes small relative displacements in local body frames.The result

is s_gnificant nonlinear cross axis coupling during attitude maneuvers. For short time scale

attitudecontroloftheSSF/MRMSsystemthesignificance of the nonlinearinert]acouptingdue

to keel flexure appears more significant than MRMS motion sensitivity_even for drastic,

worst-case maneuvers considered in this study.

The robustness and performance limits observed in the linear, decoupling attitude control

law appear to arise from a vanisllingly small domain of attraction for fast time scale attitude

regulation. The tradeoff of attitude control gains vs. domain of attraction cannot be

predicted from linear models alone.

PFL decoupling attitude control offers a direct design approach including feedforward of

MRMS motions which compensates for predictable inertia changes due to keel deforma-

tion. PFL attitude control sensitivity to keel stiffness uncertainty is improved over linear

decoupling control. Performance and bandwidth limits in PFL design are traded off against

stability of the decoupled dynamics (keel flexure dissipation).

Parameter adaptive methods based on MRAC underlie practical application of nonlinear

decoupling control designs where model uncertainty is due to unmeasureable parameter

variation.

OAI_IN.A&. PArlE
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AN OVERVIEW OF RECENT ADVANCES IN

SYSTEM IDENTIFICATION

Jer-Nan Juang *

NASA Langley Research Center

Hampton, Virginia 23681

ABSTRACT

This paper presents an overview of the recent ad-

vances in system identification for modal testing and

control of large flexible structures. Several techniques

are discussed including the Observer/Kalman Filter

Identification, the Observer/Controller Identification
and the State-Space System Identification in the Fre-

quency Domain. The System�Observer�Controller

Toolbox developed at NASA Langley Research Center

is used to show the applications of these techniques to

real aerospace structures such as the Hubble spacecraft
telescope and the active flexible aircraft wing.

INTRODUCTION

Since the mid-sixties the field of system identifi-
cation has been an important discipline with the au-

tomatic control area. 1 One reason is the requirement

that mathematical models within a specified accuracy
must be used to apply modern control methods. An-

other reason is the availability of digital computers

which can perform complex computations. Since then,

there are a multitude of approaches, perspectives and

techniques to be used for system identification. Most

techniques are found very useful for application to the

electrical engineeering problems. Nevertheless, most

techniques do have difficulties in application to other

areas such as the large aerospace structures which can
only be accurately described by a large-size model with

the dimension in the order of hundreds. In addition,
most large aerospace structures possess significant un-

certainties and nonlinearities which make system iden-

tification even more difficult, if not impossible.

In aerospace structures, there are basically three

types of identification work, namely modal parameter

identification, structural-model parameter identifica-

tion and control-model identification. All three types

of identification are important technology areas and
they have different principal objectives and histories of

development. The modal parameter identification and

structural-model parameter identification are used in

structural engineering whereas the control-model iden-
tification is used in control of flexible structures.

In this paper, we will focus on the modal parame-

* Principal Scientist, Spacecraft Dynamics Branch

ter identification and the control-model identification.

Modal parameter identification, which is generally re-

ferred to as modal testing in the field of structures,

means the process of measuring signals produced by

a structure and identifying modal parameters (i.e.,
damping, frequencies, mode shapes and modal partic-

ipation factors). System identification in the field of

controls means the process of measuring signals pro-

duced by a system and building a control-model to

represent the system for control design. If the identi-

fied model is a linear model in state space representa-

tion,' the eigensolution of the model provides eigenval-
ues and eigenvectors which in turn determine modal

parameters for structures. Correlation between the

fields of modal testing and system identification for
controls is evident.

In the past decade, many system identification

techniques were developed and/or applied to identify

a state space model for modal parameter identifica-
tion of large flexible structures. The identified state

space model is also used in controller design. Many
satisfactory results were reported in the literature. 2,3

Most techniques are based on sampled pulse or im-
pulse system response histories which are known as

Markov parameters. The usual practice uses the Fast

Fourier Transforms (FFT) of the inputs and measured

outputs to compute the sampled pulse response his-
tories. The discrete nature of the FFT causes one to

obtain pulse response rather than impulse response,

and a somewhat rich input is required to prevent nu-

merical ill-c6nditioning in the computation. Another

approach is to solve directly in the time domain for the

Markov parameters from the input and output data.
The drawbacks of this method include the need to in-

vert an input matrix which necessarily becomes par-
ticularly large for lightly damped systems. 4

Recently, a method has been developed to com-

pute the Markov parameters of a linear system, which
are the same as its pulse response history. 5-12 The

method, referred to as the Observer/Kalman Filter
Identification algorithm (OKID) is formulated entirely

in the time domain, and is capable of handling general

response data. A fundamental difference in this ap-
proach is the introduction of an observer in the iden-

tification equations. This makes identification possi-
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ble for not only the open-loop system, but also an
associated observer which can be later used in con-

troller design. Depending on the noise characteristics,
the method identifies a deadbeat observer which is the

fastest possible observer in the absence of noises, or a
Kaiman filter which is an optimal observer in the pres-

ence of noises, or any other observer with user specified

poles. The method has been successfully applied to
identification of real systems, including a linear model

of the space shuttle remote manipulator based on a
non-linear simulation code, 13 and the Hubble space

telescope. 14

An important extension of the above OKID
method is the identification of closed-loop systems.

There are several instances when such a need arises.

The system may be operating in closed-loop and only

closed-loop data is available for identification. An

open-loop model of the system may be required to
be identified from closed-loop data for the purpose

of structural analysis or controller re-design. Certain

systems such as an aircraft under the flutter condi-
tion are inherently unstable. For such systems, it may

not be desirable or even possible to remove the existing

feedback control system to perform open-loop identifi-
cation. For the case where the existing controller dy-

namics is assumed to be unknown, a method was devel-

oped in Ref. 15, referred to as the Observer/Controller
Identification algorithm (OCID), to identify an open-

loop model, and an effective observer/controller com-
bination. The case where the closed-loop system does

not possess a full state feedback structure, but rather
a controller with known output feedback dynamics, is

treated in a separate paper. 16 The mathematical for-
mulations for the two cases are entirely different since
the former case deals with known feedback control sig-

nals, whereas the latter case deals with known feed-

back controller dynamics.

It has been found that the OKID method can ef-

fectively identify tile state space models using time

domain input-output data. However, there are cases

in which frequency response data, rather than time
histories, are available. This is often the case with the

advent of sophisticated spectrum analyzers and asso-
ciated automatic test equipment. Therefore, the tech-

nique of obtaining state space models from frequency
response data is of practical interest. Classically, the
Inverse Discrete Fourier Transform method (IDFT) is

used to transform the frequency response data to time

domain data, that is, to transform the frequency re-

sponse function (FRF) of the system to its pulse re-

sponse. The pulse response of discrete-time systems is
also known as the Markov parameters. The disadvan-

tage of this approach is that the Markov parameter se-

quence obtained is distorted by time-aliasing effects.17

Recently, a method called the State Space Frequency

Domain (SSFD) identification algorithm TM has been

developed. This method can estimate Markov pa-
rameters from the FRF without windowing distortion

and an arbitrary frequency weighting can be intro-

duced to shape the estimation error. The method uses
a rational matrix description (the ratio of a matrix

polynomial and a monic scalar polynomial denomina-

tor) to curve-fit the frequency data and obtains the
Markov parameters from this equation. In obtaining

the state space models from the Markov parameters,
the Eigensystem Realization Algorithm (ERA), t9 or

its variant ERA/DC, 2° is used. The disadvantage of
this method is that the curve-fitting problem must ei-

ther be solved by non-linear optimization techniques

or by linear approximate algorithms requiring several

iterations TM. Using the same idea as derived for the

OKID, a novel method developed in Ref. 21 proposes

a simple yet effective way of curve-fitting the FRF data

and of constructing the Markov parameters. Instead

of using a rational matrix function, this method uses a
matrix-fraction for the curve-fitting. Thus the curve-

fitting is reformulated as a linear problem which can
be solved by the ordinary least-squares method in one

step; that is, no iteration is required. The method

can match the frequency response data perfectly if the
FRF is accurate in ideal cases, and will seek an optimal

match if noise and/or distortion are involved in the
data. This new approach retains all the advantages

associated with the SSFD while avoiding the iterative,

approximate curve-fitting procedures.

The objective of this paper is to present an
overview of the recent advances in system identifica-

tion for modal testing and control of large structures.

We focus on the Observer/Kalman Filter Identification

(OKID) s-11,12,22,23, the Observer/Controller Identifi-
cation (OCID) ls'1_ and the State Space System Iden-

tification in the Frequency Domain. is'2° Applications

to the real aerospace structures will be shown includ-

ing the Hubble spacecraft telescope TM and the active
flexible aircraft wing is.

OBSERVER/KALMAN FILTER IDENTIFI-
CATION

There are basically two ways to stochastically char-

acterize system uncertainties including process and

measurement noises (see Fig. 1). One way is to de-

scribe the input and output uncertainties directly in
terms of their covariances. Another way is to spec-

ify the Kalman filter equation with its steady state

Kalman gain, which is a function of the input and out-

put uncertainty covariances. In the OKID, an ob-

server is identified to characterize the input and output

uncertainties. If the data length is sufficiently long,
and the number of identified observer Markov parame-

ters (pulse response time histories) is sufficiently large,
then the identified observer of the system approaches

the Kalman filter.
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Figure 1: Characterization of system uncertainties

The OKID has two ways of processing the input
and output data for system identification. One is
the forward-in-time and the other is the backward-in-

time as shown in Fig. 2. The forward-in-time means

IIIIlr_ OKID Forward-in-time
Ii

0.1 . , .

41.1
0 50 1O0

Time (see)

91

RII_', OKID Bac_an:l-in-time

Figure 2: OKID forward and backward

that the current output measurement can be fully es-

timated by the previous inputs and outputs, and is

commonly used for the system identification. If one
reverses time in the model to be identified, 24,25 what

were damped true system modes become undamped

true system modes, growing as the reversed time in-

creases. Physically, it implies that the current output

measurement can be fully estimated by the future in-

puts and outputs. On the other hand, the noise modes
in the forward and backward identification still main-

tain the property that they are stable. This is intu-

itively reasonable. If the data set is sufficiently long, an

unstable noise mode would predict noise contributions

to the pulse response data that grow unbounded as the

time step in the data set increases. This is inconsistent
with the expected contribution of noise in data. There-

fore, the backward identification has the advantage of

shifting from positive damping to negative damping

of the true system modes to distinguish these modes

from noise modes. Real experiences have shown that

the backward identification may fail to indicate cer-

tain system modes in experimental data, perhaps due

to the unmatched uncertainty levels in forward and

backward identification.

Given a set of experimental input and output data,

the identification algorithm (see Fig. 3) proceeds as
follows:

[Input and Output Time Histories I

!

I Observer Markov IStep 1 IltlP- I Parameters

I

iSystem Markov I Observer Gain
Step211t_'[ Parameters I IIMarkov Parameters

I I
t

I System Matrices ,4,,B, C, D, IStep 3 IIIIBP- [Observe r Gain Matrix G

Modal Parameter IIStep 4 _ Identification II

Figure 3: Flow Chart for the OKID

l) Compute observer Markov parameters.

2) Recover the combined system and observer gain
pulse response samples from the identified ob-

server Markov parameters.

3) Realize a state space model of the system and the

corresponding observer gain from the recovered

pulse response samples using ERA or ERA/DC.

4) Find the eigensolution of the realized state
matrix and transform the realized model to

modal coordinates for modal parameter identi-

fication. The modal parameters include frequen-

cies, dampings, and mode shapes at the sensor
locations.

To demonstrate the identification procedure using

real experimental data, the flight data from the Hub-
ble Space Telescope shown in Fig. 4 is used. There are

six gyros located on the Optical Telescope Assembly
(OTA) and four torque wheels located on the Space-

craft Subsystem Module (SSM). The OTA is fixed in-

side the SSM. The gyros are used mainly to measure

the motion of the primary mirror. Data from four out
of the six gyros are recorded at a time. The mea-

surement resolution is 0.005 arcsec/sec, which implies
that the gyro data are not adequate because the re-

quirement is 0.007 arcsec pointing. The angular rates,

which are measured along the four gyro directions, are

combined and transformed using least-squares to re-
cover the three rates in vehicle coordinates. Least-

squares is used to smooth the poor resolution of the

data. The input commands are given in terms of an-
gular acceleration in the three rotational vehicle coor-

dinates and then projected on the four torque wheel
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Figure 4: Hubble Spacecraft Telescope

axes to excite the telescope mirror and the spacecraft.
The data were sampled at 40 Hz. Pulses combined

with sine-sweeping in the middle of an excitation pe-

riod (50.975 sec) were used as input commands to the

torque wheels. The excitation period was repeated
six times for a total of approximately 12,000 samples

taken for each experiment. The experiment was re-

peated three times for the other two vehicle coordi-
nates. As a result, there were three inputs and four

outputs for a total of three sets of 12,000 input sam-

pies and twelve sets of 12,000 output samples to be
used for identification of vibration parameters.

The usual practice of modal parameter identifica-
tion uses the Fast Fourier Transforms (FFT) of the

inputs and measured outputs to compute the pulse

response sequence (system Markov parameters). In
contrast, the OKID uses an asymptotically stable ob-

server to form a stable state space discrete model for

the system to be identified. The primary purpose of

introducing an observer is to compress the data and

improve system identification results in practice.

The first step is to compute the observer Markov

parameters. As shown in Fig. 5, the input and output
time histories are several orders longer than the ob-

server pulse response sequence (observer Markov pa-

rameters). For illustration, only the input and output
time histories from the first vehicle axis are shown.

The modal parameters which are excitable by the in-

puts and measurable by the output sensors are embed-
ded in the identified observer Markov parameters.

The second step is to compute system pulse re-

sponses (system Markov parameters) and observer

gain pulse responses (observer gain Markov parame-

ters). From the identified observer Markov parame-
ters, the system Markov parameters and the observer

gain Markov parameters can be easily computed. The
results for the first vehicle axis, V1, are graphically

21o' Input E,,xcltatlon

0 _ "--7 Observer Markov Pir, meter*,

t wt t_

v.i . , . l! _,,_...,.,..,l. ..I I .,IV" . l
o_ --..1 o T_, (.,_) 15
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Figure 5: Computation of observer Markov parameters

shown in Fig. 6. Although the number of identified ob-
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4
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Figure 6: Computation of system and observer gain

Markov parameters

server Markov parameters is finite and generally very

small, the number of system Markov parameters can
be as large as desired. Note that the maximum number

of independent system Markov parameters is equal to
the number of identified observer Markov parameters.

To solve for more system Markov parameters than the

number of identified observer Markov parameters, sim-

ply set the extra observer Markov parameters to zero.

The third step as shown in Fig. 7 is to compute the

system matrices and the observer gain matrix. Knowl-

edge of the actual system Markov parameters and the
observer gain Markov parameters allows one to use the

ERA or ERA/DC to obtain a state space realization

of the system of interest. Modal parameters including

natural frequencies, damping ratios, and mode shapes
can then be found from the system matrices. The

identified observer gain is related to the steady state
Kalman filter gain which may be used to characterize

the system uncertainties and measurement noises.

The system order identified from ERA/DC, after

some singular values truncation, was chosen to be 30

for the realization of system matrices. Seven dominant
modes were identified as shown in Table 1. The Mode

SV in the table describes the singular value contribu-

282



0.1s Syotem Pube Rellponoe

O.OS_

-O,OS
0 S 10

Time (lee)

Obeerver Gain Pulse Response

o S Io
Time (x¢)

_YSTEM MODEL:

Stab matrix (A)

Input matrix (B)

output mtrtx (C)

Direct bmnsnd,-,lon
mtrlx (D)

OBSERVER GAIN (G)

Figure 7: Computation of system and observer gain
matrices

Predicted Output
0.1

VIRal-- o k,u_J_A )l_Ix_J

210 s input #1 :arc-s/s)

Aoc.CMD "°_5 o

(rad/,2) 0 Tim_lT_iec) 200

0.1 EMimmt* d Output

150 176 200 V1RatN _J_ _J_ _ _iJTime (slc) :arc-s/|) 0

i,-,v v,1
-0.1 t , a i

150 175 200
Time (mc)

Figure 8: Comparison of predicted and estimated out-
put

Table l: Identified modal parameters for the Hubble

Space Telescope

Mode
No.

1 0.147

2 0.155

3 0.169

4 0.633

5 1.273

6 2.433

7 2.822

FrequencY(Hz) Daunting

55.6

58.4

67.4

57.3

4.06

5.23

6.33

Mode
SV

0.76

0.98

1.00

0.68

0.37

0.02

0.01

tion of each individual mode to the system Markov
parameters. It has been normalized relative to the

maximum singular value. The first three modes are
attitude modes. The 0.633 Hz mode is believed to

be an in-plane bending mode of the solar array, the

1.273 Hz mode is a coupled solar and membrane mode,

and the 2.433 Hz mode is the first mode of the primary

deployment mechanism with the solar array housing

attached. The identified dampings are higher than ex-
pected because there is an attitude control for maneu-

vering during testing, as well as inherent mechanical

friction of the solar array mechanism.

The left figure in Fig. 8 shows the excitation input

signal including pulse combined with sine-sweeping

components in the middle of an excitation period for

the first vehicle axis. The right figures in Fig. 8 show
overlapping 50 seconds of the reconstruction from the

identified system models, and the test data for the first

vehicle axis. The upper right corner in Fig. 8 shows the

predicted output in comparison with the real output

data. The lower right corner in Fig. 8 shows the esti-

mated output in comparison with the real output data.

The predicted output is the output reconstructed from
the identified model only whereas the estimated out-

put is the output reconstructed from the identified ob-

server. There are visible differences in the predicted

and estimated outputs. Comparison of the observer

output with the measured response shows extremely
good agreement, indicating that the observer is cor-

recting for the system uncertainties including nonlin-

earities. The covariance of the estimated output resid-
uals is about three orders less than the predicted out-

put residuals. Similar results of the predicted and esti-

mated outputs were obtained for the second and third

vehicle axes, and thus are not shown in this example.

Figure 9 shows the comparison of the forward and

backward identification results. The left figure shows
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Figure 9: Comparison of OKlD-forward and OKID-
backward results

the excitation input signal including pulse combined
with sine-sweeping components in the middle of an

excitation period (50.975 sec). The figures on the
right hand side show overlapping 50 seconds of the
reconstruction from the identified forward and back-

ward system models, and the test data for the first
vehicle axis. There are some visible differences in the

backward identification between test and reconstruc-

tion but overall the map from the input to the output
is reasonably well. The forward identification is some-

what better than the backward identification in damp-
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ing estimation. The damping ratio estimated from the

backward approach appears to be a little low. It is im-

portant that the system model be accurate because it
is this part that is used as a model for control design.

OBSERVER/CONTROLLER IDENTIFICA-
TION

This section presents a technique that identifies a

control system operating under closed-loop conditions
with an existing feedback controller, which may or may
not include feedback dynamics. The controller and

the open-loop system dynamics are assumed to be un-

known. The closed-loop system is excited by a known

excitation signal, and the closed-loop system output

responses and the feedback signal are measured. A

schematic diagram of the existing or actual closed-loop

system is given in Fig. 10 which shows the measured

r(k)

1. Excitation + [

y(k)
3, Closed-loop

SYSTEM ] Ra_insa -

(A,B,C,D)

CONTROLLER J_
withorwithout

dynamics

Figure 10: Existing (Actual) control system

eters for an observer, the open-loop system, and the

controller.

The OCID here means the Observer/Controller

Identification. Given a set of excitation signal, feed-

back signal, and cloeed-loop response data, the iden-

tification algorithm (see Fig. 12) proceeds as follows.

FeedbackSignal
,Response

Otserver Gain

parameter= Markov parameter=

I System Matrices A, B, C, D lStep $ I]_ll_. Observer Gain Matrix O
Controller Gain Matrix F

t
s".' [ IIdentification

Figure 12: Flow chart for the OCID

1) Compute observer/controller Markov parame-
ters.

quantities, and the open-loop system in state-space
representation given by the matrices A, B, C, D. An

algorithm is developed to identify the open-loop sys-

tem, an observer gain, and the existing controller gain
matrices from closed-loop test data which include the

time histories of the excitation signal, the resulting

closed-loop response, and the feedback control signal.

The technique assumes the identified controller to be of

a full state feedback type. A schematic diagram of the
identified or effective closed-loop system is shown in

Fig. 11, where A, B, C, D again represent the identified
y(k)

r(k) 3. Closed-loop

1. Excitatk)n + _[ SYSTEM J  nse __

I -I
2. Feedback l

Sign= / -

uf(k) t._ Controller J.._ CH_servargain F gain G

• Find A,B,C,D,G, and F from data at points 1, 2, and 3

Figure 11: Identified (Effective) control system

open-loop system; G and F represent the identified ob-
server and controller gains, respectively. The method

first identifies the Markov parameters of a closed-loop

observer, which in turn produce the Markov param-

2)

3)

4)

Recover system, observer gain, and controller

Markov parameters.

Realize a state space model of the system, the

corresponding observer and controller gains from
the recovered sequence of the system and ob-

server gain Markov parameters by using ERA

or ERA/DC.

Find the eigensolution of the realized state
matrix and transform the realized model to

modal coordinates for modal parameter identi-

fication. The modal parameters include frequen-

cies, dampings, and mode shapes at the sensor
locations.

The OCID method is illustrated by using actual

aircraft flutter test data. 26 Experimental data was ob-

tained from wind tunnel tests of an aeroelastic model

with active flutter control operating (see Fig. 13). The

model, known as the Active Flexible Wing (AFW), has

a digital controller which suppresses flutter by prop-

erly phased commands to actuators of eight control
surfaces on the wing leading and trailing edge surfaces.

During flutter suppression control law testing, acceler-
ation signals from sensors distributed on the model
were first filtered for anti-aliasing and then quantized
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Figure 13: Active flexible wing

at a 200Hz sample rate. The quantized signals ob-
tained from both sides of the model were then sym-

metrized in pairs. These symmetrized signals became

the inputs to the symmetric and antisymmetric flut-

ter suppression control laws and also the source of

the closed-loop response time histories to be used for

the identification process. Output signals of the feed-

back control laws and independent input excitation to

the wing provided the remaining time histories neces-
sary for identification of the closed-loop control sys-

tem. During tests, each of the actuator inputs was

excited individually by adding the excitation signal to

the feedback control output signal. This procedure al-

lowed the generation of all the responses necessary to

identify the multi-input/output control system. The

excitation signals themselves were either logarithmic

sine sweeps or so-called pseudo-random noise. The

excitation signal, the resultant closed-loop response
time histories, and the feedback control signal were

used with the OCID technique to identify all of the

elements of the AFW model including the open-loop

system matrices, an observer gain, and the existing

controller gains. The flutter mode is then identified

by solving the eigenvalues of the open-loop state ma-
trix.

Seven sets of experimental data were used corre-

sponding to different dynamic pressure conditions, 175

pounds per square foot (psf), 200 psf, 230 psf, 240 psf,

250 psf, 260 psf and 280 psf respectively. Results for

the 260 psf condition are shown in the following unless

otherwise specified. The number of data points used in

this case is 600, with a sampling interval of 0.005 sec.
apart (200 Hz sampling rate). The actual time his-
tories used in the identification and the identification

results are shown in Fig. 14, which are discussed in
more details below.

From the data histories shown in Fig. 14 for the

first 2 seconds, 30 observer/controller Markov param-

eters are computed. The identified observer/controller

Markov parameters are shown on the middle of Fig. 14
for a duration of 0.15 sec. There are four curves in this

plot. Using the identified observer/controller Markov

parameters, the system, observer gain, controller gain,

_m

Ct_r.NW_An_04U

MmiV,OV Pam*amom'e

i

o ol o:

S,$_m b F'wlm_mmm

(_JMnfw _ IMN4DV

_m

Figure 14: Identified Markov parameters
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and observer/controller gain Markov parameters are

computed, which are shown on the right hand side of

Fig. 14. Note that these time histories are not lim-

ited to the 0.15 sec. duration. In fact, the system,

observer gain, controller gain, and observer/controller

gain Markov parameters can be computed for any du-
ration as desired. The pulse responses increase in am-

plitudes with time, revealing open-loop instability.

Using the computed Markov parameters, a state

space model relating the system, the controller gain,

and the observer gain are then computed. The system

Markov parameters are simply its pulse response sam-

pies. The flutter mode is then identified by solving the
eigenvalues of the open-loop state matrix.

Figure 15 shows that the identified flutter mode
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Mode

Damping
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0
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8.8 Mode

_,,_q.
(l-lz)

_Dtmpl_ -_- Freq.

• °'°
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8.3

-5 7.8

150 300

Figure 15: Identified Markov parameters

for the 260 psf condition has an open-loop frequency
of 8.78 Hz and 3.34% negative damping, implying

open-loop instability. This example illustrates the case

where open-loop identification may not be possible

or practical for such a system. Similar analysis per-

formed on the six remaing sets of data revealed that

the identified flutter mode for the 250 psf condition

has an open-loop frequency of 9.06 Hz and 0.26% neg-

ative damping, indicating marginal open-loop instabil-
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ity. The final 280 psf condition was identified to have

an open-loop frequency of 8.76 Hz and 5.73% negative

damping, indicating even greater open-loop instabil-
ity. Comparison of the identified with the analytical
results showed excellent agreement in frequencies and

damping, indicating a coalescing mode switch in fre-

quency.
In general, a specific (or existing) observer is not

identifiable because the observer becomes ineffective

when the transient responses decay out and the er-

rors between the true states and the estimated states

become dominated by the system uncertainties and

measurement noises. Therefore, from given excitation

signals, feedback signals, and measurement data, one
identifies an effective observer determined by the sys-

tem uncertainties and measurement noises, instead of

the specific observer. However, this does not influ-
ence the identification of the open-loop system and

the feedback controller gain. When the data length

is sufficiently long, and the number p is chosen to be

sufficiently large, then the identified observer tends to
a Kalman filter which may not be the observer given

by the controller designer. Also, numerical studies in-
dicate that this technique particularly works well for

unstable systems because the signal to noise ratio for
an unstable mode is generally higher than that for a

stable mode.

FREQUENCY-DOMAIN SYSTEM IDENTI-

FICATION

The objectiveoffrequencydomain statespace sys-

tem identificationis to identifystate space models

from the givenfrequencyresponsedata--the frequency

response functions(FRF). The transferfunctionof a

multi-input and multi-output linearsystem has left

and rightmatrix-fractiondescriptions.From the left

matrix-fractiondescription(LMFD), one can derivea

simple observable canonical form, whereas from the

rightmatrix-fractiondescription(RMFD) one can de-

rive a simple controllablecanonical form, which is

shown as follows.Neitherobservablenor controllable

canonical form isa minimum realization.The min-

imum realizationmeans a model with the smallest

state space dimensions among allrealizablesystems

that have the same input-outputrelations.Insteadof

computing canonical-formrealizations,one may com-

pute the system Markov parameters and then obtain

a minimum statespace realizationusing ERA.

The computational steps for the matrix-fraction

descriptionmethods are shown in Fig. 16 and sum-

marized as follows:

1. Determine frequency response functions.

2. Curve-fit the frequency response function us-

ing the left or right matrix-fraction description
method.

Figure 16: Computational Steps for left of right
matrix-fraction description method.

3a. Construct a canonical-form realization. If the

left matrix-fraction description method is used,
an observable canonical form will be obtained.

If the right matrix-fraction description method

is used, a controllable canonical form will be ob-
tained.

3b. Compute system Markov parameters as many as
desired if a model with minimum order is to be

determined.

4. Determine a minimum order realization from the

computed system Markov parameters by using a
minimum realization technique such as ERA.

5. Find the eigensolution of the realized state
matrix and transform the realized model to

modal coordinates for modal parameter identi-

fication. The modal parameters include frequen-

cies, dampings, and mode shapes at the sensor
locations.

The left matrix-fraction description method is illus-

trated by using the structure shown in Fig. 17 which is
a NASA testbed 2v to study the controls and structures

interaction problem. The system has eight inputs and

8 Proportlonll Ind
Bi-directional

Thrustero

s so0_o{pc)
Accoloromotom

8 7 $

Figure 17: A NASA large space structure testbed.

eight collocated outputs for control. The inputs are
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air thrusters and the outputs are accelerometers. The

locations of the input-output pairs are depicted in

Fig. 17. In this example, the structure was excited

using random input signals to four thrusters located

at positions 1, 2, 6, 7. The input and output sig-
nals were filtered using low-pass digital filters with the

range set to 78% of the Nyquist frequency (12.8 Hz)
to concentrate the energy in the low frequency range

below 10 Hz. A total of 2048 data points at a sam-

pling rate of 25.6 Hz from each sensor are used for
identification.

Sixteen FRF's from four input and output pairs lo-

cated at positions 1, 2, 6, 7 are simultaneously used to

identify a state space system model to represent the
testbed. The order of the matrix polynomial is set to

25, which is sufficient to match as many as 50 modes

(a system of dimension 100). A state space model is

obtained using ERA/DC with the system order as-

signed to 100. The reconstructed frequency response

data (dash lines) are compared with the experimental

data (solid lines) in Figs. 18 and 19.
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Figure 18: Comparison of the test (solid line) and re-

constructed (dash line) input-I/output-1 FRF's. The
reconstructed FRF is obtained using the identified sys-

tem matrices.

Figure 18 is the frequency response of output 1
with respect to input 1, representing a case of a strong

signal, while Fig. 19 is the frequency response of out-
put 2 with respect to input 1, representing a case of

a weak signal. The signal is weak because sensor 2 is

orthogonal to input 1. Similar results are obtained for

other input/output pairs which are not shown. The
results show that the matching is better for the strong

signal cases. This is expected because the strong sig-

nal has a larger signal-to-noise ratio than the weaker

signal. The results for other input-output pairs are
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Figure 19: Comparison of the test (solid line) and re-

constructed (dash line) input-I/output-2 FRF's. The
reconstructed FRF is obtained using the identified sys-

tem matrices.

similar and hence omitted.

CONCLUDING REMARKS

The field of system identification has expanded

continuously and extensively over two decades. This

growth is largely associated with corresponding im-

provements in computer capabilities. These increases

in computer capability have permitted more accu-
rate and complete testing and data analysis to occur.

Algorithms and approaches thought too extensive in
the past are now feasible. In particular, many im-

portant numerical tools have been developed includ-
ing the singular value decomposition which is an es-
sential tool in the derivation of system identification

methods. In this paper, an overview of several re-

cently developed techniques are presented including
the Observer/Kalman Filter Identification, the Ob-

server/Controller Identification, and the State-Space
System Identification in the Frequency Domain. These

techniques have been successfully applied to many

aerospace structures. However, complex, built-up
structures still pose a significant challenge to the best

ground-based methodology now available.
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ABSTRACT

The use of Pontryagin's Maximum Principle for the large-angle slewing of large

flexible structures usually results in the so-called two-point boundary-value problem

(TPBVP), in which many requirements (c.g., minimum time, small flexible amplitude, and

limited control powers, etc.) must be satisfied simultaneously. The successful solution of

this problem depends largely on the use of an efficient numerical computational algorithm.

There are many candidate algorithms available fi_r this problcm (e.g., gluasilinearization,

gradient, and shooting, etc.) in this papcr, a proposed algorithm, which combines the

quasilinearization method with a time shortening technique and a shooting method, is

applied to the minimum-time, three-dimensional, and large-angle maneuver of flexible

spacecraft, particularly the orbiting Spacecraft Control Laboratory Experiment (SCOLE)

configuration.

Theoretically, the nonlinear TPBVP can bc solved only through the shooting method

to find the "exact" switching times for the bang-bang controls. However, computationaUy,

a suitable guess for the missing initial costates is crucial because the convergence range

of the unknown initial costates is usually narrow, especially for systems with high

dimensions and when a multi-bang-bang control strategy is needed. On the other hand,

the problems of near minimum time attitude maneuver ofgeneral rigid spacecraft and fast

slewing of flexible spacecraft have been examincd by the authors through a numerical

approach based on the quasilinearization algorithm with a time shortening technique.

Computational resulLs have demonstrated its broad convergence range and insensitivity
to initial costate choices.

Consequently, a combined approach is naturally suggested hcrc to solve the minimum

time slewing problem. That is, in the computational process, the quasilinearization method

is used first to obtain a near minimum timc solution. Thcn, the acquired converged initial

costates from the quasilinearization approach arc transformed (tailored) to and used as

the initial costate guess for starting the shooting method. Finally, the shooting method

takes over the remaining calculations until the minimum-time solution converges. The

nonlinear equations of motion of the SCOLE are formulated by using Lagrange's

equations, with the mast modeled as a continuous beam subject to three-dimensional

deformations. The numerical results will be prcscnted and some related computational

issues will also be discusscd.

* Research partially supported by NASA Grant NSG-1414 and supplements.
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INTRODUCTION

Future space missions (target acquisition, target tracking,

and surveying multiple targets, etc.) require:

• large-angle rotational (attitude) maneuver (slew);

• 3-dimensional (3-D, 3-axis) maneuver;

• large flexible spacecraft maneuver;

• minimum time maneuver.

Application of Pontryagin's Maximum Principle to the nonlinear

slewing problem:

I. Non-Minimum-Time Slews:

i. 3-D Rigid Spacecraft

Junkins, Turner, Vadali, Wie, Bainum and Li, etc.

2. 2-D (Single-Axis Rotation) Flexible Spacecraft

Turner, Junkins, Vadali, Chun, Thompson, Bainum and Li,

etc.

3. 3-D Flexible Spacecraft (SCOLE)

Bainum, Li and Tan.

II. Minimum-Time (Near-Minimum-Time) Slews:

i. 3-D Rigid Spacecraft

Bainum and Li, Vadali, Wie, etc.

2. 2-D Flexible Spacecraft

Singh, Junkins, Vadali, Byers, Bainum and Li.

3. 3-D Minimum-Time Flexible Spacecraft; Using

Quasilinearization Method and Shooting Method:

present paper.
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OUTLINE

i. 3-D Dynamics of Flexible Spacecraft

• State Equations

2. Time optimal Control Problem Formulation

• Two-Point Boundary-Value Problem (TPBVP)

3. Quasilinearization Method for Near Minimum Time Slew

4. Shooting Method

5. Initial Costate Transformation

• Scale Factors

• Combined Algorithm

6. Numerical Examples

7. Conclusions
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3-D DYNAMICS OF FLEXIBLE SPACECRAFT

I. 3-D Deformations of the SCOLE Mast (modal superposition):

u:_ i(z)ai(_), v:_ i(z)a_(_), @ :_Ci (z)a_(t)
i i i

where

U, V - bending in x and y directions;

- torsion in z direction;

_i, 9i' and _i -- modal shape function vector components;

_i - a scaled modal amplitude associated with the ith mode;

z - coordinate.

II. State Equations:

(i)

-___q, where 6_ =

0 --_i --_2 --_3

_I 0 _3 --_2

_3 _2 --_i 0

(2)

(3)

y

A
: (A +s=)6 + (Cp)6_ + Da +(E +F_) u

where

q is the 4 × 1 quaternion vector,

' B6G ]"''f

C3S], = , , F9G ]Fa [FI_ I F2_ ...., ,

A, Bi, Ci, D, E, F i -constant matrices;

u = [flx fly flz I f2x f2y I f3x f3y I f4x f4y] T"

(4)
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TIME OPTIMAL CONTROL PROBLEM FORMULATION

Two-Point Boundary-Value Problem (TPBVP)

Initial States and Final Required States:

q(o), _(o), _(o), _(o)

q(c_), _(_), _(_), _(c_)

Cost Function:

tftf = (1)dt

Saturation-Bounded Controls :

lui uib, i = i, 2, ..-,9.

(5)

(6)

(7)

(8)

Hamiltonia_:

H = 1 + yT_ + IT[(A +B_)_ +Cpo +D_ + (E +F.)u]

P, 7, l=[ll 12 ]T - costate vectors associated with q, _, o, B.

Costate Equations (by Pontryagin's Maximum Principle):

(9)

aH _ 1 _p (i0)
P = @q 2 -

@H _ _ DTI _ (B_I)_ - (F_A)u (ii)
Y = aa

_i : aH _ 1 [q]p _ [IT(A +Ba)]0 ) _ (C_)TI (12)

_.2 = aH _ _ y _ (c_r_,)(_ (13)
a13

Constraint Condition (a terminal condition to determine tf):

H _ 0, o _ t _ tf (14)

optimal control:

ui = _Uibsign[(E+Fa)Tl]i , i = 1 ..... 9. (15)
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QUASILINEARIZATION AND TIME SHORTENING METHOD (QTS)

The near minimum time slewing problem can be solved by using

an iteration approach based on the quasilinearization method.

Different Cost Function (Quadratic Cost Functional):

j : if
2_ (u_Ru)dt

where R are weighting matrices, tf is the slewing time.

Same Costate Equations Eqs. (I0)-(13).

Different Control Expression;

Unconstrained Optimal Control:

(16)

aH

a-_ = 0, _ u = -R -z(E +Fa)'rl

Constrained Optimal Control:

(17)

Ui = I Uic'

Uib sgn (uic) ,

if lUic I <uib

if lUlcl auib

i =I, 2 ..... 9.Uic : -[R-I(E +F=)T/]i,

tf can be obtained by sequentially shortening the slewing time.

Motivation:

(18)

(19)

Is this bang-bang control the same as that obtained by using

the shooting method? (Do these controls have the same time

histories?) If the answer is yes, the results from the QTS

approach may be used as the starting solution for the shooting

method. (Here, we use the numerical results to prove the

equivalence.)

299



SHOOTING METHOD

Formulation of the TPBVP_:

X(O) = K[D]

L[X(tf) , D, tf] = 0

ui = -sign {gi[X(t)] }, i = I,., m.

(20)

(21)

(22)

(23)

D - the n x 1 unknown initial costate vector;

L[X(tf), D, tf] - (n+l) × 1 terminal constraint vector;

gi (i=i, ..., m) - the switching functions.

Initial Boundar conditions Correction Process:

To satisfy: L[X(tf), D, tf] = 0, D and tf need to be corrected at

each iteration:

D (k+1)(k+l)
tf

(24)

where

(25)

D (k) and t_ k)

scalar _k (0 < _k < i) is chosen as:

uk = min II ' PU[D(k)' tf(k)]l I,11[8D (k) 8 t_k_] II

SD k) OL OL L[X (k) (tf) , D (k) , tf TM ]

- the values of D and tf at iteration k;

O<p<l

(26)

(27)
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A general algorithm suggested by Lastman has been used in our

calculations and can be recast into the following block diagram:

INITIALIZE:

Unknown Costates,(0)D(°) ISlewing Time, t t

!
INTEGRATE: X : F(X, u), 0_ t_ t (k)

f

u : -sign [g (x)]
i i

SOLVE: gl(X)=O, by Newton's Method,

Find Switching Times, t ck_
1

1
CHECK:

Terminal Constraints

[xCk'(t ) t ] II Ll f ' f

.o

CORRECT:
D(k+1)= D(k) + _D (k)

t(k*1)= t(k) + At (k)
f f f

YTEs

OP

Summary:

I. Difficulty in initialization for the present nonlinear, multi-

input system control problem. Improper choice of D and tf will

result in singular correction matrix, and program diverges.

II. Advantages and disadvantages of the two methods:

• Quasilinearization method and time shortening technique

has good convergence properties;

• Shooting method generates more accurate final results,

but is sensitive to starting solution;

• A combined technique is needed.
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INITIAL COSTATE TRANSFORMATION

Different Costate Solutions:

Although the costate equations are the same, the initial

costates from these two different formulations of the same problem

are different:

i. Initial costates, p(0), _(0), and _(0) from the QTS

method are large;

• p(0), 7(0), and _(0) from the shooting method are finite.

Assumed Relation Between Them:

p(0) --kI$(0),

Y(0) = k2¥(0),

where k I < i, and k 2 < 1

D

L_(o) = k_(O),

_2(0) = k2L 2(0).

are scale factors to be determined.

(28)

Scale Factors

Assllmed Eiqen-Axis Rotation for Riqid Spacecraft:

= ee, e = ee (29)

e = [e I e 2 e3] T - a unit vector representing the eigen-axis,

8 - the rotation angle about this axis.

Resultinq Four Related Equations (from rigid dynamic equations) :

e_ = f_2 + i-iSu (30)

f - 3 x 1 constant vector; and

= eTf _2 + eTI-IBU (31)

• Let "p" = the "principal" axis among the axes i, 2, and 3,

about which the rotation requires the largest tf;

• Let "4" = Eq. (31).
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Further Simplification of Equations:

=bivi, bi>0, ]v;I_1, i=1,2,3,4.

"Averaqe" Values of the Initial Costates:

Pa = 2/(ha8 £)I/2, la = 1�be, tea = 2 (O£/b a) I/2

ba = kpbp + k4b4, kp + k4 = 1

Of - the required rotation angle about the eigen-axis.

k I and k2:

k_ = Pa/[Fp(O)I, k2 = x,/l_(o) I

The Initial Costates for Startinq the Shootinq Method:

p(0) = kiF(0), _I(0) = k_(O),

m

y(0) =k2¥(0), _.2(o) =k2Z 2(0).
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NUMERICAL EXAMPLES

Given Slewinq Conditions (for all cases considered here):

1. Rest-to-rest slews, i.e.,

_(0) =0, _(t:) =0,

a(0)=0, _(0)=0, a(tf)=0, _(c_)=0•

2. Three (3) control variables are used•

Example 1 (a scaled rigid spacecraft, I = Ii):

q(tf)=[ 877582561, .434965534, 142572492, 142572492] T

q(0)=[l.0, 0.0, 0.0, 0.0] T, 8f =i rad, I = Diag(l.0, 0.9, 0.6),

R = Diag(l.0, 0•7, 0.4), p = i, k I = kp = k 4 = 0.5.

QTS Method Results:

tf = 1.8 sec. By transformation, the initial costates for

starting the shooting method are obtained:

-1.67968 ]
p(0) = -.248420 ,

.415782

_.(o) =
-•705333 ] tf=1.71209-.0955727 , (S)
•0481507

Shooting Method Results:

p = 0.i, solutions are obtained in 6 iterations (to 5 digits):

-1.74008
p*(0) = -.267243

•462349

, _'(0) =
-.770403 ] .
-. 115614 , tf =1 .76403

•0606796 (S)

The converged values of the switching times are:

u i

ti(s)

u 3

0.314356

u 2

0.701830

u I u 3 u 2

0.874531 1.18114 1.53158
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Maneuver of the rigidized SCOLE model. The scaled inertial

matrix (set 133 = i. 0) :

I _

•16902 -.001061798 .01619427

-•001061798 .9948471 -.007354633

.01619427 -.007354633 1.0

• Simultaneous 75 o 30° 45 ° slew about roll, pitch, yaw axes;

• u = three torquers on the Shuttle, Uib = i0,000 ft-lb;

• R = Diag(l, i, i);

• kp =k 3 =0.75, k 4 = 0.25.

Average Values:

Pa =1.01466, i a =.461915

Initial Costates for Starting Shooting Metho, l:

I .002383301
p(0) = 1.24510 ,

-1.01466 I -.00709927
l(0) = •456237

-.461519

The tf = 1.6407 sec from the QTS method is used as t_ 0) in the

shooting method, p = 0.0035. The final converged initial costates:

10oI 100Ip*(0) = 1.32922 , l'(0) = .496600 tf=1.64066

-I 08389 (s)• -•502920
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Example 3:

The maneuver of the both rigidized and flexible orbiting SCOLE

model is considered (using the original SCOLE challenge

parameters).

• 90 ° slew about roll axis. Although the expected motion is

"single-axis,, rotation, the minimum-time dynamic maneuver

process is not necessarily a single-axis rotation because of

the offset inertia distribution of the SCOLE model. (The three

axes for the three control torquers are not principal axes).

Therefore, the present slew is a 3-D slew.

• u = three torquers on the Shuttle, Uib = i0,000 ft-lb;

• R = Diag(l.E-4, I.E-4, I.E-4);

• kp =k I =i.

• Two flexible modes (the first and the second) are included.

Averaqe Values of Initial Costate_:

Pa =24.7475, la =120.242

Initial Costates for Startinq Shootinq Method:

p(0) v_0) 11(0 ) 12 0/9/__
(Rigid) (Flexible) (Rigid) (Flexible)

•00000E0 .00000E0 -.90512E-3 .12024E3 .12024E3

.24747E2 .24747E2 .46390E-2 .67830EI .51236EI

-.19219E0 -.I1478E0 .I1671E2 .I0969E2
.25248EI .23758EI

.I0717E-I

-.35993E-I

The tf = 27.3992 seconds from the QTS method is used as t_ O) in the

shooting method. The final converged initial costates:

p(0) _0) 41(0 ) 12 0/9/__
(Rigid) (Flexible) (Rigid) (Flexible)

•00000E0 .00000E0 -.87221E-3 .I1894E3 .I1587E3

•24422E2 .23767E2 .44563E-2 .67130EI .49375EI

-.18880E0 -.II001E0 .I1544E2 .I0570E2
•24825EI .22818EI

.I0331E-I

-.34685E-I
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The Hamiltonian, H, is observed as a constant during each iteration

and is iteratively reduced to the final value:

H = 1.2000E-9

The time histories of the slews are plotted in Fig. 3 to

Fig. 6. In these figures, the results for the attitude angles, the

mode amplitudes, the control torques, and the switching functions

are presented, whenever applicable.

Fig. 3 shows the rigid SCOLE maneuver by using the QTS method

and Fig. 4 shows the rigid SCOLE maneuver by using the shooting

method. The results show that the solutions by using the two

methods are very close. It is also noted that, during the slew, the

yawing control, u 3, switches twice consecutively before other

controls (rolling control u I or pitching control u 2) switch.

Figs. 5 and 6 show the flexible SCOLE maneuver by using

the QTS and the shooting methods, respectively. Again, the results

from both methods are close. Due to the inclusion of the flexible

modes, the switching number for every control is tripled or even

more (23 for u 3) compared with the results for the rigid SCOLE

maneuver. The modal amplitudes are very small and the associated

vibration of the reflector of the SCOLE and the "Line of sight" are

also very small.
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CONCLUSIONS

i. The QTS method is stable for relatively coarse choices of the

unknown initial costates, and the shooting method is not.

2. The QTS method usually results in very large values of the

costates which may lead to the numerical overflow in the

calculation process, if the "exact" (numerically) switching

times are to be found, while the shooting method does not have

this problem and exact switching times can be obtained

iteratively.

3. A technique to combine these two methods is proposed.

4. The estimated initial values of the costates, p(0), 7(0), and

l(0), based on the solution from the QTS method, are very

close to the converged values of these parameters in the

shooting method and hence the convergence of the shooting

method has been improved.

5. The costates from both methods are proportional.

6. The control histories from both methods are the same and may

imply the uniqueness of the control for the slewing problem.

7. The application of this method to the minimum time maneuver of

other flexible spacecraft is suggested.

314



REFERENCES

i. Taylor, L.W. and Balakrishnan, A.V ,• "A Mathematical Problem

and a Spacecraft Control Laboratory Experiment (SCOLE) used to

Evaluate Control Laws for Flexible Spacecraft ... NASA/IEEE

Design Challenge," Proceedings of the 4th VPI&SU Symposium on

Dynamics and Control of Large Structures, Blacksburg, VA, June
1983. Revised January 1984.

2. Junkins, J.L. and Turner, J.D., Optimal Spacecraft Rotational

Maneuvers, Elsevier, Amsterdam, 1986.

3. Vadali, S.R. and Junkins, J.L., "Spacecraft Large Angle

Rotational Maneuvers with Optimal Momentum Transfer,,, The

Journal of the Astronautical Sciences, Vol. 31, No. 2, 1983,
pp. 217-235•

4. Wie, B. and Barba, P.M., "Quaternion Feedback for Spacecraft

Large Angle Maneuvers,', Journal of Guidance, Control, and

Dynamics, Vol. 8, No. 3, 1985, pp. 360-365.

5. Li, F. and Bainum, P.M., "Numerical Approach for Solving Rigid

Spacecraft Minimum Time Attitude Maneuvers," Journal of

Guidance, Control, and Dynamics, Vol. 13, No. i, 1990, pp.
38-45.

6. Li, F. and Bainum, P.M., "An Improved Shooting Method for

Solving Minimum-Time Maneuver Problem," The ASME Winter Annual

Meeting, Dallas, Texas, Nov. 25-30, 1990, DSC-Vol. 20 pp.
13-18.

7. Turner, J.D. and Junkins, J.L., "Optimal Large-Angle

Single-Axis Rotational Maneuvers of Flexible Spacecraft,"

Journal of Guidance and Control, Vol. 3, No. 6, 1980, pp.
578-585.

8. Turner, J.D. and Chun, H.M., "Optimal Distributed Control of

a Flexible Spacecraft During a Large-Angle Maneuver," Journal

of Guidance, Control, and Dynamics, Vol. 7, No. 3, 1984, pp.
257-264•

9. Thompson, R.C., Junkins, J.L., and Vadali, S.R., "Near-Minimum

Time Open-Loop Slewing of Flexible Vehicles," Journal of

Guidance, Control, and Dynamics, Vol. 12, No. i, 1989, pp.
82-88.

i0. Singh, G., Kabamba, P.T., and McClamroch, N.H., "Planar,
Time-Optimal, Rest-to-Rest Slewing Maneuvers of Flexible

Spacecraft,,, Journal of Guidance, Control, and Dynamics, Vol.
12 No. i, 1989, pp. 71-81•

ii. Chun, H.M., Turner, J.D., and Juang, J.-N., "Frequency-Shaped

Large-Angle Maneuvers,,, The Journal of the Astronautical

Sciences, Vol. 36, No. 3, 1988. pp. 219-234.

315



12. Byers, R.M., Vadali, S.R., and Junkins, J.L., ,,Near-Minimum

Time, Closed-Loop Slewing of Flexible Spacecraft," Journal of

Guidance, Control, and Dynamics, Vol. 13, No. i, 1990, pp.

57-65.

13. Junkins, J.L., Rahman, Z.H., and Bang, H., ,,Near-Minimum-Time

Maneuvers of Flexible Vehicles: a Lyapunov Control Law Design

Method," 28th Aerospace sciences Meeting, January 8-11, 1990,

Reno, Nevada, AIAA Paper 90-0663.

14. Meirovitch, L. and Quinn, R.D., ,,Maneuvering and vibration

Control of Flexible Spacecraft," The Journal of the

Astronautical sciences, Vol. 35, No. 3, 1987, pp. 301-328.

15. Quinn, R.D. and Meirovitch L., ,,Maneuver and Vibration Control
,, Journal of Guidance, Control, and Dynamics Vol.of SCOLE,

Ii, No. 6, Nov.-Dec. 1988, pp. 542-553.

16. Kakad, Y.P., ,,Nonlinear Maneuver Dynamics of Large Flexible

Spacecraft," The ASME Winter Annual Meeting, Dallas, Texas,

Nov. 25-30, 1990, DSC-Vol. 20, pp. 19-27.

17. Bainum, P.M. and Li, F., Rapid In-Plane Maneuvering of the

Flexible Orbiting SCOLE," AAS/AIAA Astrodynamics Specialist

Conference, Stowe, Vermont, August 7-10, 1989, AAS Paper

89-422. To appear: The Journal of the Astronautical sciences,

Vol. 39, No. 2, 1991, pp. 233-248.

18. Bainum, P.M. and Li, F., "optimal Large Angle Maneuvers of a

Flexible Spacecraft," Proceedings of the International

Conference: Dynamics of Flexible Structures in Space,

Cranfield, Bedford, UK, May 15-18, 1990, pp. 65-71; Acta

Astronautica Vol. 25, No. 3, 1991, pp. 141-148.

19. Tan, Z., Bainum, P.M., and Li., F., ,,Minimum-Time Large Angle

Slew of an Orbiting Flexible Shallow Spherical Shell System,"

AAS/AIAA Spaceflight Mechanics Meeting, Houston, Texas,

February 11-13, 1991, AAS Paper 91-144.

20. Lastman, G.J., "A Shooting Method for Solving Two-Point

Boundary-Value Problems Arising from Non-Singular Bang-Bang

optimal Control Problems," International Journal of Control,

Vol. 27, No. 4, 1978, pp. 513-524.

21. Miele, A. and Iyer, R.R., ,,General Technique for Solving

Nonlinear Two-Point Boundary-Value Problems via the Method of

Particular Solutions," Journal of Optimization Theory and

Applications, Vol. 5, No. 5, 1970, pp. 382-399.

22. Robertson, D K., ,,Three-Dimensional Vibration Analysis of a• ,' NASA
Uniform Beam with Offset Inertial Masses at the Ends,

TM-86393, September 1985.

316



N94- 35882

OPTIMAL DISTURBANCE REJECTING CONTROL

OF tIYPERBOLIC SYSTEMS

Saroj K. Biswas

Department of Electrical Engineering

Temple University

Philadelphia, PA

N. U. Ahmed

Department of Electrical Engineering

University of Ottawa

Ottawa, Ontario, Canada

f)
5

ABSTRACT

Optimal regulation of hyperbolic systems in the presence of unknown disturbances is considered.

Necessary conditions for determining the optimal control that tracks a desired trajectory in the presence

of the worst possible perturbations are developed. The results also characterize the worst possible

disturbance that the system will be able to tolerate before any degradation of the system performance.

Numerical results on the control of a vibrating beam are presented.

I. INTRODUCTION

The H_ control problem for regulation of dynamical systems in the presence of perturbations has

been a subject of considerable research in recent years [4,5,6,7,10,16]. Although the original formulation

of the Hoo method was in terms of frequency domain terms, extensions in state space terms leading

to feedback control using Riccati type equations have been developed [4,7,10,16]. For the infinite

dimensional systems, the Ha control has started to gain momentum. For a summary of recent results,

see the survey paper [3]. Like its finite dimensional counterpart, the frequency domain approach [9,15] as

well as the state space analysis [11,12,] in the presence of both bounded and unbounded perturbations

has been considered in the literature. The problems pertinent to the Ha control design are: a)

input-output stability, b) disturbance decoupling, and c) disturbance attenuation.

This paper is concerned with disturbance attenuation of hyperbolic systems in the presence of worst

possible disturbances. We utilize the concepts of optimal control theory [1,8] for infinite dimensional

systems for deriving the control law for optimum regulation of the system in the presence of worst

possible disturbances. The method presented in this paper is a generalization of an H_-type method

developed in [13,14] for finite dimensional systems. The ratio of disturbance energy to the energy of

the controlled system is used as a measure of performance for disturbance attenuation. We present

conditions for estimation of the largest perturbation that can be attenuated and the corresponding

controller to attenuate this perturbation.

The paper is organized as follows: Section II introduces the H_ control problem. Necessary

conditions for optimum disturbance attenuation are presented in section III followed by numerical

results on control of a vibrating beam in section IV. Some concluding remarks are given in section V.

II. NOTATIONS AND PROBLEM STATEMENT

We shall use the following notations for abstract function spaces throughout the paper. Let H be a

Hilbert space, and V a linear subspace of H carrying the structure of a reflexive Banach space with the

injection VC.H continuous. We identify H with its dual so that VQHC.V', where V' is the topological

dual of V.
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SupposeA be a bounded linear self adjoint operator A E £(V,V') satisfying the conditions

I(A_,_)I _<c II_llvII_llv, c >__o, _,_ e v

(Acp,_)v',v + ZI_I_ ->'_11_11_',_ > 0, Z e R, _ e V
(1)

Consider the hyperbolic system

O2y
Ot-----f + Ay = Bu + Cv, t E I =_ (O,T),

y(o) = yo, _(o) = y_
Ub

(2)

where the operator A is as defined above. The control applied to the system is denoted u E H - L2(I, H),

and B is a bounded linear operator B E £(H). Suppose the system is perturbed by a disturbance

v E L2(I,H) through the operator C E £(H). The initial conditions y0 E V and _ E H are also

considered to be initial disturbances to the system.

With this introduction we now pose the control problem:

Given the perturbed system (2), find the control u E L2(I,H) that keeps the state trajectory as

close as possible to a desired trajectory in the presence of maximum possible additive disturbance

v E L2([, H) and maximum possible initial disturbances y0 E V and YD E H.

For a mathematical formulation of this control problem, we introduce a cost function:

½_'fa lyol2dx + ½_2fa lY;Izd_+ ½fz×a "21vl2d_dt

J(u,v, yo,yD) = lq 1 fIxftlY- ydl2dxdt + ½q2fZ×r_IY'-- Ydl2dxdt + ½fixgtrllul2dxdt (3)

where sl, s2, ql, q2, rl and r2 are scalar weighting factors, and yd and y_ are desired trajectories respec-

tively. Then the disturbance rejecting control problem is equivalent to the minimax problem of finding
a control u and a scalar A* so that

),* = inf sup J(u, v, yo, Jo) (4)
v?0 u E/.,/
_0_0
y;¢0

subject to the dynamics (2). The quantity A* can be interpreted as the disturbance rejection capacity of

the system. A larger A" implies a better controller in the sense that the system will be able to tolerate

larger amount perturbations before degradation of the system performance. A small A" means that the

system is too sensitive to disturbances; despite the effects of the control the state trajectory is not close

to the desired trajectory even in the presence of a small amount of perturbations.

We shall assume that a solution of this minimax problem exists. In what follows, we shall derive a

set of necessary conditions that must be satisfied by the optimal controller.

III. MAIN RESULTS

We first give a brief outline of derivation of the main results. The minimax problem introduced

above is solved in two steps, with the first step being finding the supremum of J over u assuming

that the perturbations v and y0, YD are known, and the second finding the infimum of J over nonzero

perturbations. The first step determines the optimal control that regulates the system, and the second

step characterizes the worst possible perturbation that the controller will be able to attenuate before a

serious degradation of the system performance.
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Clearly, the problem of finding the supremum of J over u is equivalent to minimizing the denomi-

nator of J given in (3) for fixed v, y0, and y_) subject to the dynamics (2). This is a well known problem

in infinite dimensional control theory for hyperbolic systems (see [1,2,8] for details). Theorems 1 and 2

presented below pertain to this problem. We omit the proofs for brevity.

THEOREM 1. For a given v E L2(I,H),yo E V, and Y_o E H,

y E L2(I,V)N C(i,V), yt E Lz(I,H)N C(i,H). Furthermore,

continuous from V x H x L2(I, H) ---* L2(I, V) x L2(I, H). •

the system (1) has a unique solution

the mapping (yo, Y'o, U) -4 (Y, YO is

For convenience of presentation, we introduce two new variables 41 = Y and ¢Z2= yt, and rewrite

the system (2) as a first order equation:

04
0-t- + A_ = t_u + Cv (5)

4(0) = (u0, - p

where

[0 O! ] B= [0] and C= [0].A-- A

Using the above notations, we also rewrite the denominator of the cost function (3) as

1/0 Jl(u) = _ (q_ _ _d, Q(_ _ _d))Hx H dt + _ (u, Rlu)tt dt (6)

where Q = diag(ql,q2) and R1 = rl. Let ql and q2 be nonnegative, and rl strictly positive.

The necessary and sufficient condition that u0 E L2(I,H) be optimal in the sense of minimization

of the cost (6) is that

J_(u0;u-u0)>0 for alluEli (7)

where J_(uo; u - uo) is the Gateaux derivative of J1 at uo E l,¢ in the direction u - u0. This is given in

the next theorem:

THEOREM 2. Consider the system (5)for fixed additive disturbance v E L2(I, H), fixed initial disturbance

p E ls x H, and the desired trajectory _a E L2(I, H) x L2(I, H). Then the optimal control uo E L2(I, H)

that minimizes the cost (6) is characterized by the solution of the two-point-boundary-value problem:

04
0--7+ + = 4(0) = p (8)

_0__ + .A*_ = Q(_ - _d), g,(T) = 0 (9)
Ot

The optimal control uo is then given by

u0 = -Rll/3"_ '. • (10)

At this point we return to the disturbance rejecting control problem introduced earlier. Clearly J(uo)

is a function of v and p which are yet to be determined. We substitute Jl(u0) into the denominator of

the cost function (3) leading to

lp:( ,Slg)H -t" ½ fl(V, R2v)Hdl (11)

J(v,p) = 21 L(_ - qzd, Q(_ - _d))HxH dt -F 1 fz(BR11B.v:,, g,) (It
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Then the disturbancerejectingcontrol problemis equivalentto finding a scalarA* so that

A* = inf J(v,p) (12)
v_0
p_0

subject to the dynamics (8) - (9). Note that since A* is the optimal solution, we have 0 < A* _< A = J(v, p).

Hence clearly, the following function

Je(v,p) = _(p, Sp)H+ _ (v, Rzv)Hdt- --_ (q_-qJ, Q(_-_d))HxHdt- --_ (13R-{1B*_,g,)dt (13)

is convex and nonnegative, and has a minimum at J2 = 0. Thus the problem of finding the infimum

indicated in (12) is equivalent to minimizing (13) subject to the system dynamics (8) - (9).

By virtue of Theorem 1, it is clear that for any v E L2(I, H), p E V × H, and pd E L2(I, H) × L2(I, H),

the equations (8) - (9) have a unique solution p E L2(1, V) × L2(I, H) and ¢ E L2(I, V) × L2(I, H). In

addition, the solution has a unique Gateaux derivative satisfying the following theorem:

THEOREM 3. The solution (_,_,) of the two-point-boundary-value problem (8) - (9) con'esponding to

v E L2(I,H) and p E V × H has a unique Gateaux derivative at every vo E Lz(I,H) and po E V × H
satisfying

oF
+ A_ + _n?lt3"_, = C(v

_0 _ _0---[

_ a.__ + .A'_ - Q_ = O, _(T) = 0
Ot

with _ E L2(I, V) x L2(I, H) and _ E re(I, v) x L2(I, ti) •

_(o) = p - po (14)

(15)

Necessary conditions of optimality for minimization of (13)are now derived with the help of the
above results and the fact that the Gateaux derivative

Jz(vo, po, v - vo, p - po) > 0 (16)

for all v E L2(I,H) and po E V x H, where J_ is the Gateaux derivative at vo,po in the direction

v- vo, p- Po. We present the result in the following theorem:

THEOREM 4. The worst additive disturbance vo and the worst initial d&turbance po that can be attenuated

by the optimal control uo are characterized by simultaneous solution of the following equations:

O_
O--[+ .A_p + BRl113"¢ = CR21C'(, (17)

O¢,
- o---/-+ A',¢ = Q(_ - _), (18)

o(
- O-t + .A'( - Qr/= A'Q(_ - _d) (19)

Or/
0-7 + Aq + BR[II3*_ = A*BR-{1B*g, (20)

with the boundary conditions

_(o) = po
_,(T) = 0

_(o) = Spo
_(T) = 0

,7(o)= o
(21)
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The worst disturbances are given by

vo = R_IC'(

Po = S-asc(O) (22)

The optimal control that regulates the system in the presence of the worst disturbance is given by

uo = -R-{113"_ (23)

PROOF: Taking the Gateaux derivative of the J2 at v0 E L2(I, H) and p0 E V x H, we have

0<_ J_(vo,po;v-vo, p-po) = (Spo, p-po)H+ f (Rzvo, v-vo)dt-A" fi(_,Q(_-_d))dt-A* f ( ,,t3R?at3 )dt

The result follows from Theorem (3) and adjoint system (19) - (20). •

It is worthwhile to mention here that equations (17) - (21) represent a two-point-boundary-value

problem with A* as a parameter which is unknown. The smallest value of A for which this TPBVP, i.e.,

(17) - (21) has a solution is the optimal A* or the disturbance rejection capacity of the system. The

corresponding control u0 is then obtained using (23) and the worst disturbance v0 and p0 that can be

attenuated is given by (22).

IV. EXAMPLE

We consider the cantilever beam equation (normalized)

02Y + 04y
Ot-----_ Ox----_ = g(x)u(t) + h(x)v(t), x E fl = (0, 1), t > 0 (24)

subject to boundary conditions

-_z 02Y El,t) = O, 03Y fl,Dy(0,t) = 0, (0, t) = 0, _z2, _z3, j = 0 (25)

Define the operator A in // = L2(gt) by

{ 02° 0 0. }AO - Oz4040, D(A) = 0 : 0 • H4(a),0(0) = 0, (0) = 0, _-_2 (1) _- 0, _x3[ 1) = 0

where H4(_) is the Sobolev space of order four on f/. For V we take V = {0 • HZ(f_),0(0) =
o, =0}

0,17 \ /

We assume that the desired state of the controlled system is the zero state, and that there is no

initial disturbance. We compute the disturbance rejection capacity of the system using Theorem 4.

Table I shows that a tighter regulation (i.e., higher Q) is possible only if less disturbance is allowed

to be attenuated. It is intuitively correct to say that a better regulation of the state trajectory can

be achieved if the disturbance amplitude is small. Similarly a cheaper control allows more disturbance

accommodation by the controller as shown in Table II. Stated in a different way, this means that

attenuation of larger amplitude disturbances will require more control energy.
TABLE I TABLE II

Q rl r2 S A*

1 1 1 10 0.5522

10 1 1 10 0.2130

20 1 1 10 0.1521

50 1 1 10 0.0922

100 1 1 10 0.0618

Q rl r2 S A*

20 1 1 10 0.1521

20 2 1 10 0.1065

20 5 1 10 0.0637

20 10 1 10 0.0420

32]



V. CONCLUSION

We presentan H_-like control method for hyperbolic systems. Necessary conditions in the form of

a two-point-boundary-value problem for determining the optimum controller and the worst exogenous

input that can be attenuated by the optimum controller have been derived. The results are related to

the H_ control problem in the sense that the H_ norm is given by the inverse of square root of A"

[14]. The disturbance rejection capacity has been computed for a cantilever beam. Further research

needs to be done to develop state feedback and output feedback controllers, and to extend the method

to the infinite horizon control problems.
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ABSTRACT

Ill optimal placcmenl of actuators for stochaslic syslems, it is commonly assumcd that

the aclualor noise variances are nol relalcd Io the feedback matrix and the aclualor locations.

In this paper, wc will discuss lhc iimilalion of Ihal assumption and dcvclop a morc practical

noise variance modcl. Various propcrlics associated with optimal aclualor placement under

Ihc assumption of lhis noise variance model arc discovered through the analytical sludy of a

second ol-der syslctn.

I ntroduction

Rcfs. il-41 arc typical works ill the litcraturc for actuator placcmcnt of stochastic

syslcms. In all of Ihcsc works, it is assumed Ihal the noisc slrcnglhs of the aclualors arc given

and not rclalcd to the fcedback and actuator Iocalions --- an assumplion made in tim LOG

theory. Howevcr, as shown in Rcf. [51, this noisc variancc model is 1101 always true in praclicc.

For cxamplc, Ihc noise slrenglh of an aclualor may dcpcnd on its capacity (Ihc largcsl signal it

can produce) and lhc magniludc of its producing signal. Clearly, if a person (aclualor) is

rcquircd lo push an object wilh 1 lbf (small signal), Ihc crror of lhe produced force will bc

probably scvcral ounces (small variancc), tlowcvcr, ifhc is rcquircd 1o push Ihc object with 100

Ibf (large signal), lhc crror of lhc prod uccd forcc will hc scvcrai or Ion pounds (lal gc variance).

Also, Ihe noise o f a react ion whccl (aclua to r) may he ca used by lhc bearing and ccccnlricily o f

Ihc whccl, etc. If a rcaclion wheel is rcquircd to produce a larger signal (largcr capacity), il is
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usually required to increase Ihe inertial of Ihe wheel and/or the maximum spinning speed, then

Ihe noise caused by the bearing and eccenfricily will be greater. These facts show that the

actuator noise slrength usually depends on the capacily and Ihe signal magnitude of the

actuator. Since the signal magnitude and tile required capacily of the actuator depend on the

feedback matrix and the actuator location, the noise slrenglh of the actuator implicitly

depends on Ihe feedback mal fix and lhe actuator location. Clearly, when an acluator is placed

at a carefully selected location, the control force and the required capacity of the aclualor will

be smaller. Also, the signal and capacity will depend on Ihe feedback malrix because a smaller

feedback (slower syslem) usually requires a smaller control force. Since the ordinary LQG

theory neglects these facts, i! cannot be used to reduce the noise variance of the actuator

through the selection of a feedback malrix and actuafor locations, and Ihus results in

unnecessarily noisy systems.

324

A New Noise Variance Model

In most practical applications, the aclualor noise variance increases with its capacity and

signal magnitude. Since the required capacity in steady slate is related to the signal variance of

the acluator, we can reasonably use the signal variance to represent the actuator capacity in

Ihe new noise variance model. To take into accounl the effects of the signal magnilude on the

noise variance, we may use the signal square in the noise variance model. However, this

method will result in time-dependent noise variance and make analysis very complicated. In

order to simplify the analysis, we can use the lime average method, then signal square again

becomes signal variance. According Io lhc discussion above, wc can develop a realistic noise

variance model of an actuator as

w =c_'cr 2 +a% 2 +IB `_ _-'__r2 +13 (l)
LI II _ LI

where cr] is the,cariance of the actuator signal in sleady slate, cz', _" and t3 are non-negative

constants which depend on manufacturing processes. The term _" cr_ reflects the contribution



of Ihc aclualor signal magniludc, and Ihc lerm (_'" (r_ rcflccls Ihc contribulion of Ihe aclualor's

capacily. An advanlage of lhis noise variance model is Ihal lhe noisc is slill white, Gaussian

with conslan! variance, and lhus analysis can bc simplified. The only difference from the

ordinary model is lhal lhc noise variance in Ihe new model will depend on Ihe capacily

and signal magniludc of lhc aclualor, and will lhus implicilly depend on Ihe feedback

and aclualor iocalions.

;>

M= 1

() ()
//////////////

Figure 1. A second order syslem.

u+w

w

A Physic'll System

The ncw noise variance modcl, Eq. (I), will bc applicd Io a second ordcr syslcm shown in

figure 1. In lhe syslem, w is the planl dislurbancc wilh given slrenglh VV,but w is actuator noise

whose slrcnglh is governed by Eq. (I). The aclualor oricntalion (location) is specified by angle,

0. Obviously, the aclualor is most efficient when 0 = 0, and is mosl desirable for a dclcrminislic

syslcm. However, as shown in Ref. [ II, lhc sclccliOll off:) = 0 may nol givc oplimal performance

for slochaslic syslems, especially when lhc ralio of planl dislurbance Io actualor noise is small.
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Tile slate equation is givcn by

x = Ax + B(u+w) + G v7
(2)

with

El E° '1 E°I E°,I{i . A= ; B = ; G = (3)
x= _ , 0 0 b

where b = cos 0. Without losing generality, we assume 0<b< 1. ClEarly, matrix G is fixed but

matrix B changes with actuator localion. The feedback control law is given by

u = -F x (4)

The objective of the problem is Io find tile optimal fccdback E and lhe optimal actuator

orientation b, so that the following cost function is minimized:

J = Eoo j q xrx + r u 2 J (5)

where q and r are given weights, Eoo is tile mean operator when the time period approaches

infinity.

Since the noise is still while and Gaussian with constant variance, we can use stochastic

control theory to find the variance of the stale, Px:

Px (A-BF) T + (A-BF)Px + BWBT + G_1GT =0 (6)

The solution of Eq. (6) is given by

Px = diag [Pxb Px2l (7)

with

Px 1=

Px2 =

b213 +@
2

212fl f2- o_ b2f_ - {_ b3flf2

bf I Px 1

{8)

(9)

The cosl function (5) can be rewrittcn as

J = (q + rf2)Pxl + (q + rf2)Px2
(10)
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wherc f_ and f2 arc clemcnls of the feedback real rix. When thc wcighls, noise paramcters and

the acluator orientalion are all given, Ihe cosl will be a function of fl and f2. Tile optimal

feedback can bc oblained by our equating the partial derivatives of Ihe cost with respect to fl

and f2 to zero. Afler substantial malhemalical manipulation, the equations for optimal

feedback become

2 bf2+ 2fl 0 (11)b fl- =

f_- qr (1-c,b f2) (12)

These equations give optimal feedback when tile actuator orientation is fixed. We can see Ihat

the feedback matrix does not depend on lhe plant dislurbance and 13since they correspond to

the ordinary noise variance in LOG theory. Eqs. (l 1-12) are a parabolic equation and a

hyperbolic equation. Those equations can be plotled in tile fl-f2 plane (Fig. 2), and may give up

I(7 4 intersection points. By inspection, only one point out of the 4 corresponds to a stable

system. It should be noted that for the new noise variance model the solution obtained from

ordinm 7 LQG method is no longer optimal. Tile solution of the feedback corresponding to

ordinary noise variance model (LOG) can be ()btaincd by our equating c_ to zero, and is also

plolled in the figure. The trends of Ihc new and ordinary solulions and their difference can be

seen clearly from the figure when q/r, b, or (_ is changed. II shows thai the optimal fz is between

0 and I/(cd_), and the optimal 1"2is between 0 and sqrl(q/r). When o_ becomes larger or q/r

becomes larger, lhe difference between the optimal solulidn and the ordinary LQG solution

becomes more significant. Both elements of the oplimal feedback matrix are smaller than

Ihose obtained by LOG method. Clearly, smaller feedback elements help to reduce the

aciualor noise.

To find optimal actuator orientalion, we differentiate tile cost with respect to b by

considering the feedback elements as funclions of b. By equaling the derivative to zero, we

()blain a really complicated equalion for optimal actuator location. After much mathematical

manipulation tile equation becomes:
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Unstable

Asympoto

o

°•

o,

fl

Old solution

•

New solution

I/_ bf2

i Unstable

Figure 2. Tile plo! of feedback for ordinary and new solutions.
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I

b2(l+bl)l_.__c_2(l+l.,i) 2 +4f__4c, flf2]_(3+bfl)[2f2_3czfl_bc_f_]2 W _ 0
[3
(13)

II can be seen lhal _V/J3does nol affect lhe feedback buI il does affecl Ihc oplimal aciualor

localion.The oplimal aCltlalor localion differs from lhal oblained by lhe ordinary noise variance

model in Ref. [If, and lhe laller can also be oblaincd by our equaling c_ Io zero in Eq. (13).

Eqs. (I 1-13) can be solved simullancously Io oblain lhe oplimal feedback and lhe

oplimal aclualor localion. Some properlics of Eqs. (11-13) can simplify [he compulalion of

lhc oplimal feedback and oplimal aclualor Iocalion. For example, there is one and only one

solulion of fl between 0 and sqrl(q/r) if c_ is nol z.ero, and lhe left side of Eq. (13) is a

monolonous ftlnclion of b.

II is parlicularly inlercsling lo investigale Eq. (13) when b = I. In Ihis case, for diffcrenl

values of_,, we can plol _7-V/13as a funclion of q/r, as shown in Fig. 3. In lhe _'/[3-qlr plane, fl)ra

specific c_, Ihe oplimal b in lhe area above lhe corrcsponding curve is larger lhan I, and lhe

opl imal b in Ihc area below lhc corresponding curve is smaller Ihan 1. Since b (= cos 0) can nol

be grcaler Ihan I, we musl usc b = ! i_1 lhe area above Ihe corresponding cun, e.

Fig. 4 shows Ihc oplimal b as a funclion of _, and q/r whcn _J/J3 = I. Clearly, oplimal h

decreases wilh c_ and q/r and could be significantly lcss Ihan 1. C:ompulalion also shows Ihal

when _-V/13decreascs lhe oplimal b will also decrease; when _r/[_ incrcascs Ihe oplimal b will

also increase.

Condusion

In many applicalions, a more praclical noise variance model of an aclualor Ihan Ihe one

in LOG lhcory is lha! ils noise variancc incrcascs wilh ils signal variance. In Ihis papcr, we

invesligaled lhc optimal conlrol and oplimal aclualor placemcnt when Ihe aclualor noise

variance increases linearly wilh ils signal variancc. In lhis case the fccdback and aclualor

Iocalion oblained by ordinav 3, LOG them 7 arc no longer optimal.
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1

0.1
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q/r

Vigmc 3. Thc arcas of b < 0 and b -- I for several valucs of c_.
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Optimal b
2

1.6

0.6

a=0. l

c_=0.2

c_-" 0.5

c_=l

0 t J _ I t I I I I

0 10 20 30 40 60 O0 70 80 90 100

q/r

Figure ,I. The (_plimal aclualov Iocali(m b as a funclioVl ofq/r and c_, whcn @/1_,= I.
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Sliding-Mode Control of Differential-

Difference Systems

Sliding modes in ordinary differential equa-

tions.

_(t) = Ax(t) + Bu(t).

u(t,_) = { u+(t,x),u-(t,=),

"Sliding modes"

ence systems.

x(t + T) = Ax(t) + Bu(t).

s(_(t + r)) = o _ u(t).

(z)

if s(x) > 0 (2)
if s(x) < 0

in continuous-time differ-

(3)

(4)
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We consider two configurations:

Configuration A

ie(t) = AllX(t) -t- A12z(t)

z(t -I- T) = A21x(t) 4- A22z(t) -Jr- Bou(t).

Configuration B

z(t-Jr- T) = Allz(t ) -I- A12x(t)

x(t) -- A21x(t ) -I- A22z(t) "t- Bou(t).

It is assumed that x 6 R nl, z 6 R n2 and

u 6 R m. All, AI2, A21, A22, B 0 are con-

stant matrices of appropriate dimensions.
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Sliding-Mode Control Design

A12 -- BIC2 (5)

Quasicontrol:

v = C2 z (6)

Configuration A

1. Sliding mode in differential subsystem.

v = v*(x) _ So(z) = o (7)

2. Sliding mode in difference subsystem.

u _ S(z, z) = v*(z) - C2z = 0 (8)



Configuration B

1. "Sliding mode" in difference subsystem.

v -- Dz(t) =_ So(z) -- 0 (9)

2. Sliding mode in differential subsystem.

u _ S -" Dz(t) - C2x(t ) -- 0 (10)
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Sliding Mode Control of Nondispersive

Flexible Structures

Flexible rod in compression.

°2Q(t'x) °2Q(t'x) (11)
Ot 2 Ox 2

OQ(t, O) _ -u(t)
Ot

oQ(t, 1) _ o.
Ot

Laplace transform approach.

p2C)(p,x) = Q"(v, x) (12)

Q'(p, O) = -fi(p) (13)

Q'(p, 1) -0, (14)

where Q(p,x) = £Q(t,:c), _(p) = £u(t).
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The solution of the boundary value problem

Q(p,z) -- eP(Z-1) 4-e -p(z-1)
ep _ e-p

If an output variable is

•1. _(p).(15)
P

then

y(t) -- Q(t, 1) (16)

_(p) = Q(p, 1) =

In the time domain"

2 1A

o' - e-p _u(p).

y(t 4- 1)- 9(t- 1)-- 2u(t)

_(t) - 9(t- 2) = 2u(t- 1).

or

(17)

(18)

(19)
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The equation can be written in the form of

the difference-differential system as

Configuration A"

_(t) = _(t)

Zl($ -_- 1) -- z2(t ) -t- 2u(t)

z2(t + 1) = zl(t)

or

Configuration B:

yl(t Jr 1) -- y2(t) -t- 2v(t)

y2(t Jr 1) "- yl(t)

iJ(t) -- u(t),

where y1(t) = y(t).
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Control Design

Configuration A

(20)

The equality is valid if

s(t) -- zl(t) + Asgn(y(t)) = O. (21)

To achieve this the control should be

1 1
u(t)-- 2z2(t)--_Asgn(y(t+ 1)). (22)

y(t -F 1) y(t) -t- [t+l-- Zl(r)dT.
,It

(23)
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As a result control is

1. 1) 1u(t)= -_(t- -_Xsgn(y(t)+

j{tt u('r)dr).y(t-1)- y(t- 2) 4- 2 -1

With this control the system is stabilized in

finite time.

Control Design

Configuration B

s(t) = (1 - A)y2(t) 4- 2v(t), (24)

where I_1 < 1. If the control is

u(t) -- -#sgn(2v(t) 4- (1 - A)y(t - 1)) -

(1 - ,k)y(t - 1)

then

= - 2#sg'n,(s ). (25)
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Rod with attached masses

O2Q(t,x) 02Q(t,x)

at 2 cox 2

OQ(t,o)
Ot = -u(t)

(26)

(27)

OQ(t, 1) O2Q(t, 1)

Ot Ot 2

Configuration A:

xl(t) -- x2(t)

x2(t) = -x2(t) + zz(t)

zl(t) -- z2(t- 1)-{- 2u(t- 1)

z2(t) = -Zl(t-1) + 2x2(t-1),

where y(t) -- Q(t, 1) - Xl(t).

(28)

u(t) 2-z2(t) - 1-2-#sgn( Ax i ( t -k 1 ) +

x2(t -t- 1)).
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State Estimation and Prediction

Extrapolator

x1(t Jr 1) -- (I)(1) -l-
x2(t Jr i) x2(t)

tt+l (:l)(tJr i - T)h(r)dT,

where

[ o 1h(r) = Zl(T- 2) -I-2U(T-- 1) --2X2(T -- 2) "

Observer

_l(t)
;x2(t)

_l(t)

_2(t)=

= _2(t) + Ll(_l(t) - y(t))

= -._2(t) + _'l(t) -I- L2(._l(t) - y(t))

= _2(t- 1)+2u(t- 1)+

L3(_l(t)-y(t))

-_l(t- 1) _- 2_2(t - 1) -4-

L4(_l(t) - y(t)).
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The same approach can be used for systems

of connected rods with many attached masses,

multiple controls and also for the case of dis-

tributed actuators

,2O Q(t,x) 02Q(t,x)
-" Jr- _p(x )u( t ) (29)

Ot 2 _x 2

where _o(x) is quasipolynomial. In all cases

the solution of the boundary value problem

for Laplace transformed variables leads to

Configuration A or Configuration B.

Dispersive Structures

Euler-Bernoulli beam.

a2Q(t,x) O4Q(t,x)

Ot 2 OX 4

Q(t,o) = o

(3O)

(31)

Q'(t, o) = o (32)

II
Q=x(t, 1) = 0 (33)

QIII_(t, 1)= u(t). (34)

Second order dispersive structure.

, a(x)O2Q(t, x)O2Q(t x)=

Ot 2 Ox 2
_-b(_)

oQ(t,x)
.(35)
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General fourth order equation.

O2Q(t,x) i)4o(t,x)
- -a(z) -_" t

Ot 2 OX 4

b, _02Q(t,x)
_z; ec(z)

The boundary condition_ z2

OQ(t,z)
_X

Q(t,o) = o (36)

oQ(t,o)
C_X

=0. (37)

02Q(t, 1)

_)x 2

O3Q(t, 1)

Ox 3

-- ul(t) (38)

= u2(t). (39)

Integral Transform

fO 1P(t, _) -- :D(_,x)Q(t,x)dx (40)

If D satisfies an adjoint homogeneous bound-

ary value problem then P(¢,x) satisfies

equation

O2p(t,_) O2p(t,_)

Ot 2 O_ 2

_(_) = -a(o)_(_, o).

l- _(_)u(t) (41)

(42)
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Euler-Bernoulli beam

If D is a solution of the boundary value prob-

lem:

m

_2 0x4
(43)

_)((, 0) -- 0 (44)

D'((, o) = o (45)

D"(_, 1) -- 0 (46)

D'"((, 1) -- 0. (47)

then P(t,() satisfies an equation'

02p(t,_) O2p(t,_)

_t 2 _2
+ _(().(t), (48)

where

_p(_) -- -_)(_c, 1). (49)
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Initial values: _D(0, x) and :D_(0, x).

If _(O,x)= 0 then

P_(t,o) = o. (5o)

The possibility to choose D(O,x) is an addi-

tional degree of freedom that can be used to

assign the desired value of _(_).

Nonsingularity condition

P=O=_Q=_O. (51)

Output

y(t)- P(t,O)-- L 1
JU

"D(O,x)Q(t,x)dx. (52)
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C_,ntPol lel _ s t Fu_?tIJT_

bo tlr, da l_y

controls

u(t) _ parameter system ]

differential-difference _-_

system I

observer/ex trapola tor ,_

switching function

Conclusions

Sliding mode control became very popular recently be-

cause it makes the closed loop system highly insensi-

tive to external disturbances and parameter variations.

Sliding algorithms for flexible structures have been
used previously, but these were based on finite-dimensional

models. An extension of this approach for differential-

difference systems is obtained. That makes it possible

to apply sliding-mode control algorithms to the vari-
ety of nondispersive flexible structures which can be

described as dif[erential-dif[erence systems.

The main idea of using this technique for dispersive

structures is to reduce the order of the controlled part

of the system by applying an integral transformation.
We can say that transformation "absorbs" the dis-

persive properties of the flexible structure as the con-

trolled part becomes dispersive.
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1. INTRODUCTION

(1) Assumptions

-- The reflector of SCOLE is a rigid body

-- The mast of SCOLE is an Euler beam

-- Actuators and sensors are collocated

(2) Objectives

-- Vibration suppression

-- Controller designs using continuum models

2. DERIVATION OF THE CONTINUUM MODEL

• Holzer's Transfer Matrix Method

Ix x x xL

EJ
1.1 i i-I U i-1
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• Application to the SCOLE configuration

x = [transformation of _/'/A,

u 3 _ a force system J3[uJ3 { }1

{:}i = [rigid b°dylC {:}iL dynamics Ja

{x}C = Itransf°rmati°n °fl {x} {u 2 L a force system _]2 u 2

{:} =[ beam llxl
2 [-dynamicsJl[UJl

"ILIA

location of
accelerometers &
force actuators

center of mass

(1) Rigid Body--inertia and gravitational effects

miwi = fi+l - fi - GliOi - fg

JiOi --" '[i+l--1_i' Wi+l -'Wi'

I: °1t°l0 -mg

where G 1= 0 0 ,fg= 0

0 OJ [mig J

Oi+l "-- Oi

{:):Ei ol(x)+(o}
i+1 s2"M + G I i u i Ug

where x={:},u={f},M=[o I OjI, G=[: G1],ug={ fg}
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(2) Rigid Body--transformation of a force system

Wi+ 1 -- W i +0 i X r i = W i -ri xO i = w i

Oi+l -" Oi' fi,l = fi

'l:i< = x'i - ri × fi = "t:i- Rifi

io-,rylwhere R i - rx= rz 0

-ry rx 0 i

{x}iool{x)
U i+l : U i

T I T I
where x:{O},u={:}, l=I0 IRI, 2=I_ R _1

-- RiO i

(3) Beam-- elongation

EiAiw" = PiAis2w

{w}=IcosoeL
f i+l [_-EAsinc_eL

=I ell el21 _w _
Le21 e22Ji I f Ji

where, cq = i

_,in.eLEAa e

f
-cos(zet i i
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(4) Beam-- torsion

GiJiO" = p_JisZO

i+l

= I c°satL

I -GJsincttL

I_t2_ t22_]i Z i

where, o_ i --i s

-coso(LJi i

(5) Beam-- bending

Eiliw"" - piI_s 2 + piAis2w = 0

fit 1=_

x i+l

sn sh sn sh cn ch
+ _ __ + .... .I- --

cn+ch [31 132 hl h2 h3 h4

_[31sn.132sh cn+ch -131 ca +132 ch 131sn+[_2 sh
h 1 h 2 h 3 h4

h 1 h 2
hl cn h2 ch -(cn+ch) --sn---sh

-(hlsn+h2sh) _ -_22 t13 ha

h3 h4 h3 sn h4 sh
h3cn-h4ch --sn---sh ..... (cn+ch)

131 [32 hl h2

_pls 2 +s_pIs) 2 -4pAEI 2 pls 2 +s4(pls) 2 -4pAEI

2El ' [_2 = 2EI
2

where _1 =

sn=sinl31L ' cn=cos131L ' sh=sinh132L, ch=cosh132L , k 1=El, k 2 =pl

h 1 =k113_ +k2131 s2, h 2 =k1133-k2132 s2, h3 =k113 2 , h 4 =k113 2

x i

i
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(6) Beam-- overall transfer matrix

"Wx

w
y

W z

Ox

Oy

O_

f_

f,
f_

Zx

i+l

bll 0 0 0 -b12 0 b13 0 0 0 b14 0

0 bn 0 b12 0 0 0 b13 0 -bl4 0 0

0 0 % 0 0 0 0 0 % 0 0 0

0 b2z 0 b22 0 0 0 b23 0 -b24 0 0

-b:l 0 0 0 b22 0 -b_ 0 0 0 -b24 0

0 0 0 0 0 t, 0 0 0 0 0 t_2

b31 0 0 0 -b32 0 b33 0 0 0 b_ 0

0 b31 0 b32 0 0 0 b33 0 -b34 0 0

0 0 e21 0 0 0 0 0 e. 2 0 0 0

0 -b41 0 -b42 0 0 0 -b43 0 b44 0 0

bnl 0 0 0 -b42 0 b43 0 0 0 b44 0

0 0 0 0 0 t21 0 0 0 0 0 t22

"w
x

w
y

W z

Ox

Oy

O_

f_i

f,
f_

_y

_z

2. DERIVATION OF THE CONTINUUM MODEL

s2 +oij2Lo {at,-'-°
2 1 Ug

Ms2x + K(s)x = u - Ug for boundary condition X1 = 0

c __ c c -1 c -1 -1 c-I

where M = [T213[M12[TI] 3 , K = [T213(G + [T212[F4]l[F2]l [Tll 2 )[T113

c

x = x3, u = u 3, _g = [T213ug

• Feedforward control

U=Kox d +Ug whereK 0

• Continuum Model

MSzX + K(s)x = u, where u is the feedback control

= Kls=o and x d is the desired output
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3. SYSTEM PARAMETERS

(1) Rigid Body

element

rate gyro
accelerometers

thrusters
reaction wheels

reflector
solenoid
m_nifnld

y Z (n)!
0 0 -129.3

10 20.8 -129.3
12 18.8 -129.3
12 20.8 -124.3
0 -6 -125.8
6 0 -125.8

-4.5 -4.5 -125.8
12 20.8 -125.8
4 7 -123.8
0 0 -124.5

W(Ib'
1.69
0.17
0.17

1
4.2_

4.28
4.28
4.76
5.5
1.68

J xx

0
0

0
0
0
0
0

24.8
0

0

J yy

0
0

0
0
0
0
0

24.6
0
0

J zz ( slug - in z
0
0

0
0
0
0
0

49.67
0
0

(2) Beam

E=30 Mpsi, Ixx=Iyy=6.66x10 -3 in4,

G=15 Mpsi, L=125.5 in, m=4.48 lb,

Izz =2Ixx

A=0.108 in 2

• Identified Modal Frequencies

1st out-of-plane bending

1st in-plane bending

1st torsion

2nd in-plane bending

2nd out-of plane bending

measured(Hz) identified(Hz)

.4545 .4609

.4764 .4707

1.98 1.924O

3.13 3.1455

4.63 4.6839
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4. CONTROL DESIGN USING CONTINUUM MODELS

(1) Pole-Assignment Technique

• Continuum Model Ms2x + K(s)x = u

• Approximations K(s) = K o or K(s) = K o + K2 $2

1 - ppl

where K o = Kts=0 and K 2 = _K Is=O

• Pole - Assignment

LTI system M,:_ + Kox = u where M t = M or M t = M + K 2

Desired damping matrix

Rate feedback control l u = -2M,V_f2V-lx I

where V satisfies Mt-LAv = Vf22, _..,_2 is diagonal

(1) Pole-Assignment Technique

• Advantages

-- Easy to implement (use constant controller gains)

• Disadvantages

-- Stability is not guaranteed (due to approximation
of K(s) at the beginning of the de_;ign process)
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(2) Linear Dynamic Controller

• Continuum Model (Ms 2 + Ds + K)x = Bu

y=(Ha s2 +Hs+H_)x

• Controller Dynamics (Mcs 2 + Des + K_)x c = Bcu_

y_ = (Ha_S2 + Hv_s + Hdc)xc

u - yc, u¢ = -y

• Controller Transfer Function _(s)

u = Yc = -(Hat s_ + Hvcs + Hdc)(M_s2 + Des + K_)-_ BcY

• (s) = -(Hats _ + Hv_S+ Hd¢)(Mc s2 + D s + K_)-_ Be

(2) Linear Dynamic Controller

• Overall System Dynamics

I Ms2+Ds+K B(Ha_S2 + Hvcs + Hd_)j{ x }
-B (Ha $2 + H s + H d) Mcs 2 + Des + K x

=0

• Overall Characteristic Equation det[ ] = 0

• Design Parameters M¢,Dc,K_,Bc,Ha¢,Hvc, and Hdc

by using knowledge of system parameters to

achieve better performances

360



(2) Linear Dynamic Controller

• Advantages

-- Explicit transfer function for continuum models
-- Possible for guaranteed stability
-- More design fiexibilities

• Disadvantages

-- Need approximations for K(s) to realize controllers
-- Hard to implement (need Runge-Kutta algorithm to

solve for controller dynamics)

(3) LQG CONTROLLER

• Continuum Model (Ms 2+ K)x = B(u + n a)

y = BTx + n r

where n --> N(O,d I)and n r --> N(O, drI )

• Performance Index lim:_'f_(llBTx2+ _Ltlufl2)dt_
T--.)_ 1 [ " J

• Optimal Controller Transfer Function

_F(s) = -hBTs(Ms 2 + 7BBTs + K)-IB

"k/da_-_r 1

where h= _/_, ,Y = d_r +_-_
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5. NUMERICAL EXAMPLE

(1) Pole-Assignment Technique

Open loop _d (%) K(s)=Ko

f(Hz) f(Hz) t_(%)

10
10
10
10
10

.4609

.4707
1.9240
3.1455
4.6839

10.9675
12.0448
28.6392
29.0288
55.6990
55.8956
91.8160

K(s)=Ko+K2 s2

f(Hz) r_(%)

.4586 9.790 .4586 10.000

.4684 9.790 .4683 10.000
1.9145 9.960 1.9144 10.000
3.1328 9.200 3.1310 9.840
4.6741 7.800 4.6706 9.110

10.9652 .370 10.9648 .390
12.0325 1.340 12.0279 1.570
28.6391 .023 28.6378 .025
29.0278 .090 29.0275 .110
55.6990 .006 55.6990 .007
55.8957 .016 55.8957 .018
91.8419 .036 91.8439 .037

(2) Linear Dynamic Controller

f(Hz) _%)
Design Parameters

.3757 4.88
Mc=M+K2 .5677 4.91

K c=K o 1.7300 4.95

Dc 10% damping for 1.9144 10.002.1721 4.93
the first five modes 2.9420 4.92

4.6928 2.79
Hac=Hdc =Ha=Hal=0 10.9420 .19

B_ = B = I 12.0455 .38
28.6431 .013

Hvc = Hv = I 29.0289 .020
55.6989 .006
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6. CONCLUSION

(1) A continuum model for the SCOLE configuration
has been derived using transfer matrices.

(2) Controller designs for distributed parameter
systems have been analyzed.

(3) Pole-assignment controller design is easy to
implement but stability is not guaranteed.

(4) Explicit transfer function of dynamic controllers has
been obtained and no model reduction is required
before the controller is realized.

(5) One specific LQG controller for continuum models
had been derived, but other optimal controllers for
more general performances need to be studied.
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SUMMARY

We consider the modeling and active damping of an elastic beam using distribut_'d

actuators and sensors. The piezoelectric ceramic material (PZT) is used to build the

actuator. The sensor is made of the piezoelectric polymer polyvinylidene fluoride

(PVDF). These materials are glued on both sides of the beam. For the simple clamped

beam, the closed loop controller has been shown to be able to extract energy fi'om

the beam. The shape of the actuator and its influence on the closed loop systenl

performance are discussed. It is shown that it is possible to suppress the selected

mode by choosing the appropriate actuator layout. It is also shown that by properly

installing the sensor and determining the sensor shape we can further extract alld

manipulate the sensor signal for our control need.

1 INTRODUCTION

There has been an increasing interest in the control of large space structures

and flexible structures in recent years. These structural systems are usually large in

size,light in mass and hence weakly damped. In order to achieve vibration suppression

and precision pointing, it is necessary to introduce artificial damping to such systems.

One approach is passive damping by adding the minimum weight of damping material

to the effective locations on the structure. Another way is to use external mechanisms

with feedback of the systems' state or output to counteract tile undesired motioll

"Research partially supported by NSF Grant NSFD CDR 8803012, through the Engim'_wil_g
Research Center's Program and AFOSR URI Grant 90-01054

PAGEBLANKNOTFILMED
365



modes. In modern structural engineering, active feedback controls to stabilize tho

structure are preferred.

Proper modeling is essential to control system design and to avoid spillover due to

the infinite dimensional nature of these systems, ttere we consider the beam model

as part of the structure and study its modeling and active damping.
The actuator considered here is a distributed one made of piezoelectric ceramic

material which is glued to the beam. Its constitutive property, i.e. its strain and stress

relation, is influenced by the external voltage applied to it. Bonding or embedding

segmented elements of this material in a structure would allow the application of
the localized strain to be transferred to the structure whose deformation can be

controlled. Under proper bonding conditions, the coupling between the actuator

strain and the beam strain can be determined to implement the control mechanism.

In [6] [2] [7] active vibration control is described using spatially distributed actuators.

The PVDF sensor is bonded to the beam in a similar way. The output voltage

is a functional of beam curvature. Unlike the conventional point sensor, this is a

distributed one. Cudney [5] provides some detailed explanation of th(_ nat uro of

piezoelectric actuators.
We first discuss the modeling of the beam and the distributed actuator. A static

model of the actuator coupled into the structure is developed. We have developed

the beam model from the Euler-Bernoulli model with rotational inertia added. Next

the sensor model is addressed. We then discuss the controller design using Lyapunov

methods. We finally investigate the actuator and sensor shapes and their impact on

the system elastic modes.

2 SYSTEM MODEL

One approach to build the desired actuator is to take advantage of the special con-

stitutive properties of certain materials. The actuation is due to the property chang( _
under certain stimulation other than the external actuation force. Such materials

are the so called smart materials. Once properly embedded into the structure the

induced actuation will produce bending or stretching or both to control the structure

deformation. One of the advantages of using smart materials as actuators and sensors

is that the structure will not change much.

Piezoelectric actuators were used as elements of intelligent structures by Crawley

and de Luis [4]. Bailey and Hubbard [1] have used PVDF actuators to control tho

vibration of a cantilever beam. The control voltage applied across the PVI)F is tho

sign of the tip rotation velocity multiplied by a constant.

Figure 1 shows the structure of the beam with both the sensor and the actua-

tor layers glued together. In this figure, h stands for the thickness of the different

layers of the beam. The subscripts s, b and a denote sensor, beam and actuator

respectively. The constitutive law for piezoelectric materials has several equivalent

forms. The stress -strain relationship for the piezoelectric material is similar to thal



PZT Actuator

Substructure

PVF'IF

h a

h b

--hs

Figure 1: The composite beam

of thermoelastic materials, with the thermal strain term replaced by the piezoelectric

strain A. The constitutive equation of the actuator is given by

= G(¢ - a) (1)

where A is the actuation strain due to the external electric field, and e is the strain

without external electric field. E= is the Young's modulus of the actuator, c_ is the

stress of the actuator. The actuation strain is given by

a(x,t) = _V(z,t) (2)

where d31 is the piezoelectric field and strain field constant. V(z, t) is the distributed

voltage. The strain has two effects on the beam. One effect is that it induces a

longitudinal strain el to insure a force equilibrium along the axial direction. This

steady state value of st can be derived by solving a force equilibrium equation. The

other effect is that the net force in each layer acts through the moment arm with the

length from the midplane of the layer to the neutral plane of the beam. The resultant

of the actions produces the bending moment. Taking a similar approach as in [1] the

actuation moment can be expressed as

= S(oA(x,t) (:3)

where I('_ is a constant depending on the geometry and the materials of the beam.
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We model the beam with linear bending, no shear but with the rotational inertia

included. This is more accurate than the Euler-Bernoulli beam model. The Eul_'r-

Bernoulli beam model

O4w(x, t) O_w(x, t) _ 0 ('1)
E1 Ox 4 + pA Ot _

is often used to describe the beam dynamics because of its simple form and ease for

analysis. E stands for Young's modulus and I stands for moment of inertia.. This

equation can be rewritten as

0 t) O w(x, t)
O.---_.2[EI Ox 2 ] + pA -_ - 0 (5)

where

E1 = Ea Ia + Eb lb -t- Es Is. (6)

The bending moment of the composite beam without actuation is

Mb = EI 02w(x't) (7)
Ox _

The Euler-Bernoulli model is a linear model without accounting the rotational

inertia and the shear effect. It is easy to see that during vibration the beam elements

perform not only a translational motion but also rotate. The variable angle of rotation

which is equal to the slope of the deflection curve will be expressed by Ow/Ox and

the corresponding angular velocity and angular acceleration will be given by

02w 03w

OxO-----_tand -OxOt _. (S )

Therefore the moment of the inertia forces of the element about the longitudinal axis

will be 03 w

- pI OxOt 2 . (9

The equation with rotational inertia is [8]

E I O_(x' t) + O_w(x, t) 04w(x, t )
Ox 4 pA -_ PI- o_20i _ -0. (X0

where

pA = paA_ + pbA_ + psA_.. (1 [

We take this equation as our beam model under consideration. It falls in between t lie•

Euler-Bernoulli beam and the Timoshenko beam.

The total bending moment with actuation is

M= Mb + Ma. (12)
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Substituting Equation (12) into (10), we have

Ox 4 K_ Ox 2 + pA Ot 2 pI Ox20t2 - O.

Considering the actuation strain and the applied voltage, we get

E:O4w(32,t) 02V(.,t) 02w(32,t) 04w(32,t)
0324 c Ox 2 + pA Ot 2 pI Ox20t2 - 0

with boundary conditions

where

w(0,t) = 0
o (o,t)

= 0
032

EIO2W(L, t) - c.V(L, t)0322

EIO3w(L,t) OV(L,t)
C.

0323 032

c= _IQ.

The distributed voltage V(x,t) is the control applied to the system.

and the boundary conditions (15) form the control system model.
Equation

(13)

14)

J,l)

3 SENSOR MODEL

A distributed sensor is the one whose output is a function of structural responses

at different locations. It can be a group of point sensors or a spatially continuous one.

These responses are observed either discretely or continuously in space. Using the

latter has the advantage that complicated computations based on point measurements

can be reduced because the sensor geometry itself provides the processing. The spatial

aliasing from an array of point sensors can be avoided. Typical noncausal sensor

dynamics such as gain rolloff without phase shift is /)ossible by using distributed
sensors [3].

Figure 2 shows the sensor structure. PVDF is strain sensitive as it relies on the

piezoelectric effect to produce the electric charge. The charge is proportional to the

strain induced by the structure. This type of sensing is actually an inverse process of

piezoelectric actuation. Based on the constitutive equation, the induced charge per
unit length from the sensor strain is

q(x, t) = -Esdale_. (]6)
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PVDF layer

Electrode

0

V s

1
0

Figure 2: The sensor model

The sensor strain is related to the beam curvature by

hb + hs 02w

e_ - 2 Oz 2"
(17)

The electrical charge along the beam is

fQ(z,t) = q(z,t)F(x)dx

- - E_d3xhb + hs fo = 02w- 2 F(x)-_z2dx (18)

where F(x) is the weight function or shape function of the sensor. It is the local

width of the electrodes covering both sides of the sensor layer. The function F(z) can
, • i2:,):_ ,aes:gned according to the need for interpreting the sensor signal, il_e ca _aclta_:ce

between the electrodes of the sensor layer is

¢oe_A_ (19)C=
he

where e0 and e, are the vacuum permittivity and relative permittivity constants

respectively. The output voltage from the sensor is

Q(x,t)
Vs(x,t) - C

Ks fo 02w= _ =F(z)___z2d z (20)
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where
Esd3,(hb+ hs) (')_1)

Ks = 2C

is a constant. Suppose the sensor covers the whole beam, then

_Ks foL 02w (22)E(t) = Y(x)aTx_dX.

Equation (22) is the sensor output equation. The output voltage is the weighted

integration of the beam curvature. Integrating the output voltage by parts twice ill

spatial variable, we have another form of the sensor output,

Vs(t) = _KsOW_L,t) F(L) + w(L,t) O___L) Ks foLw(x,t)_d.r. (23)

We shall see later from Equation (23) that different measurement outputs can be for-

mulated to meet our control needs by choosing the appropriate sensor shape function

F(x).

4 DISTRIBUTED CONTROL ALGORITHM

We design the control algorithm by Lyapunov's direct method. The energy func-

tion is used to measure the amount of vibration of the system. We need to find a

control algorithm such that the closed loop system is asymptotically stable. One

advantage of this method is that there is no need for model truncation.

Given the system (14) with boundary conditions (15) and an energy functional

E(t), we need to find a control V(x, t) such that

lira E(t) = O. (24)
t ----*o(.)

It suffices to find a control V(x, t), such that

dE(t) (2.5)--<0, t>O.
dt

We define the energy function as follows:

E(t) = _ J0 [a(b_S) + ( Ot + b(O_Ot

The first term is the stored energy due to bending. The second term is the kinetic

energy due to the translation motion. The last term of the integrand is the kinetic

energy from rotation of the beam element corresponding to Equation (14). a and b

are positive constants.
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Taking derivative of E(t) with respect to time and incorporating the system equa-
tion (14) into it, we have

dE(t) [L 02W 03W . 02W 03W 10w 04tl)

dt - Jo [a--_x_ ' O--_t + b o---f-Ot"O---_2 + A Ot "Ox20t 2

c Ow 02V EIOwO4w

+ pA Ot'Ox _ pA Ot _x 4]dx"

Integrating by parts and setting

(27)

We obtain

E1 I

a=-- b ApA' = -- (28)

dE(t)

dt

El O2w 02w [ x=L

pA Ox-----V" OxOt [x=o

I Ow 03w Ix=L

+ A" Ot "OxOt2[_=o

El O3w Ow x=L

pA Ox 3" Ot _=0

c rLOw 02V

+ -_ Jo Ot " Ox 2 dx"
('2.q)

Introducing the boundary condition (15), we have

dE(t)

dt C x=Lpm Y(L't) 02w _ c OV(L,t) Ow
pA Ox "Or x=L

low 03w I c _L c%_t2 02V• " + _ Ot " Ox 2 dx.+ A Ot OxOt 2 x=L
(30)

The first term in Equation (30) contains the rotational velocity of the beam at the

end. Tile second term has the force applied by the actuator. The third term is

the product of the velocity of the displacement and the angular acceleration at the

end of the beam. There is a second partial derivative of V(x, t) with respect to the

spatial variable. We can design the appropriate modal controller by choosing the

right V(x, t). Our purpose here is to find the control such that the time derivative of

the energy function is negative.

Let V(x, t) be decomposed as the product of a spatial and a time function

V(x,t) = v(x)q(t) (::/1)

where v(x) is the actuator shape function, q(t) is the coordinate function. We assume

that the function v(x) has continuous second derivative on the interval (0, L) and has

compact support over the interval; then the first two terms in Equation (:30) vanish.

Since the third term is negative from its physical meaning it will not cause energy
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increase.

Substituting the voltage function into the last term in Equation (30)

pA Ot'-_z _dx= Or. Ox 2 gx (32)

where q(t) is the time coordinate of the controller.

We further introduce the feedback control by using the sensor output signal t_,

dYe(t)q(t) -
dt

= -I(s_o L Ow(x't) O2F(X)d_.Ot Ox 2 ,. (33)

We need to analyze the influence of the integration term in the equation.

Then (32) becomes

dE(t)

dt c foLOw O%(x)< q(t) .
- pA Ot -57_,2 dx

= _Ks_AfoLOW 02F(x) foLOW 02v(x)Or" Ox 2 dx Ot. OX 2 dx

< 0

(34)

Hence the system is asymptotically stable. The feedback control is given by

V(x,t) = -I(sv(x) fo L Ow(x't)O2F(X) dxOt Ox 2 • (35)

The introduced control is velocity feedback control. It takes into account the

bending rate along the beam and introduces damping to the system. Here there is
no need for the model modal truncation.

When the control V(x, t) is uniformly distributed in space, o__E_ 0, if we further
Ox --

assume that there is no elastic bonding layer to be present between the piezoelectric

and the substructure, that is, there is no shear lag between the two layers, the strain

is transferred between the piezoelectric and the beam over an infinitesimal distance

near the end of the actuator [4]. We then have the simplified equation,

EI 04w(z't) A 02w(x't) I 04w(x't)
Ox4 + P -5_ P -&rgi_ - o (36)

with boundary conditions

w(0,t) = 0
ow(o,t)

- 0
Ox

E I O2W( L, t) - c.V(t)
Ox 2

EI Oaw(L't) - O.
Ox a

(37)
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V depends only on time in this case. This is a boundary control problem. We again

use Equation (26) as the energy function. Repeating the procedure, we observe thai

only the first term in Equation (30) survives. This gives us

dE(t) < -C-;v(L,t) 02w 38)
-dt p_

Notice that it is sufficient to choose

02w
v(t) =-k   otl =L

(3.9)

to make dE(t)
<0 40)

dt

so as to asymptotically stable the system. The tip rotation speed is available from

the sensor output Equation (23).

5 SENSOR AND ACTUATOR SHAPE

CONSIDERATION

It is interesting to see that by introducing velocity feedback controller (35), the

energy decay rate is given by (34) whose right hand side is a function of F(x) and

v(x). Here F(x) and v(x) are the shape or weight functions of the actuator and the

sensor. They add weight for the control and measurement at each cross section along

the beam. If we consider the displacement of the beam as the sum of a series of

products of modal function and its coordinate, we can further analyze the effect of

sensor and actuator shapes to different vibration modes.

When the electric field is applied to the piezoelectric lamina, the actual piezoelec-

tric actuation happens only in the region where both sides are covered by the elec-

trodes. The same is true for collecting charge from the sensor layer. Hence, changing

the width of the layout of the conductor is equivalent to varying the weighting func-

tions. In this sense, it is possible to design the controller to suppress a particular

mode or to design a distributed sensor to measure an interested mode.

Consider the sensor output (23). We can get different information from the system

by tailoring the right weighting function F(x). For example, we may select F(x) in

such a way that

02F(x)
- O, 0<x<L

03;2 -- _

0F(L)
Ox

F(L)

-O,x=L

1

K_
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the integral term vanishes, so does the second term, and then the sensor output

g(t)- o (L,t)
Ox (.12)

represents the angular deflection at the tip of the beam. Similarly, we can measure

the displacement of the tip. From (20), the sensor can be used to build strain gauge

by setting F(x) to be a spatial Dirac delta function 5(x).

We think that it is theoretically possible to use segmented sensors for the control

of flexible structures. Digital control provides the ability to implement a sensing

network with simple computation to rearrange the sensor layout and get different

measurements with one sensor layer. Some measurements which are difficult to obtain

in conventional way may be available by using distributed sensors. It may be feasible

to implement full state feedback in relevant semigroup control formulations.

The effectiveness of the PZT controller in introducing structural damping and its

influence to the system dynamics of realistic size is based on the control authority of

the controller. Using velocity feedback shall increase the damping, but the control

gain is limited to the electric field limit to avoid depolarization of the actuator. Tile

actuator weighting function v(x) also plays a role here. We know that the bending

moment is concentrated mostly at the end of the actuator of the beam. Hence more

weighting should be placed on the region with high average strain.

The feedback control (35) actually provides Voigt type damping since the rate of

change of the bending curvature is used for feedback (22) and this rate is proportional

to the rate of change of the structural strain. The augmented composite beam has an

altered constitutive equation. The stress is no longer just proportional to the strain,

but a linear combination of strain and the rate of strain change with respect to time.

We now analyze the effect of both sensor and actuator shape functions to the

damping control of different vibration modes. We use a Ritz-Galerkin procedure to

implement modal expansion. We write the beam displacement w(x, t) as

w(x,t) = _ _Pk(x)dk(t) (43)
k=l

where Ok(x) is the modal function and dk is the time coordinate. We can choose the

orthogonal modal functions. We rewrite here the control form of the previous section

V(x,O=v(x)q(t). (44)

Substituting the modal forms into Equation (14), multiplying each term with (I)_(x)

and then taking spatial integration along the beam, we get

k=l
= cq(t)J .

(45)
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where d and d stand for the first and second time derivatives of the function d(t):

v(i)(x) stands for the ith spatial derivative of v(x). We then have

m_kd_ + _ kikdk = Qt (46)
k=l k=l

n

where

Q, = - _S c,jt_(t)
k=l

talk

]elk

Clk =

The compact modal form is

= £ f'_t(x)[pA(_k(x)- pl(Pk(2)(x)] dx
k=l

= £ f El(_'(x)_ 4,(x)dx
k=l

cq(t) f ¢_(x)v(_)(xldx.

(47)

(48)

M[i(t) + Kd(t) = Q(t) (,%1)

where d(t) and Q(t) are nth order column vector functions. M is the inertial matrix,

K is the stiffness matrix, Q(t) is the modal control input. The dalnping of different

elastic modes is influenced by

Q(t) = -Cd(t)

and

Md(t) + Cd(t) + Kd(t) = 0

(.55)

(53)

where C is a n by n damping coefficient matrix. Its elements are derived from the

control law (35)

g d2v(x) " fLckd2f(Z)dx. (54)
ctk = cIGfo ¢'---j_ aXJo d._,_

Observing Equation (54), we notice that in addition to the control authority de-

termined by the actuation and sensing constants c and Ka the added dampir_g to

a specific mode depends on the shape functions F(x)and v(x). The function v(x)

in the first integral decides the amount of control effort applied to the /th mode.

Similarly, F(x) provides the observation of the kth elastic mode. The coefficient czk

can be viewed as a measure of the damping to the/th mode by control based on the

information from the kth elastic mode. If we choose the sensor shape to be su('h a

function that

d2F(x) - ¢_k(x), (55)
dx 2

we can measure the kth mode completely. When the second spatial derivative contains

several modes, we shall get the combined information from the sensor. The similarity

holds for the actuator, too. Properly selecting F(x) and v(x), we can observe and

suppress the vibration modes.
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6 CONCLUSIONS

We have embedded a static PZT actuator model into the improved Euler-Bernou]li

beam model to form a composite beam model with the rotational inertia effect con-

sidered. We further used a distributed PVDF sensor to measure the elastic bending

modes. A closed loop controller has been designed by using Lyapunov's direct method.

The closed loop system extracts energy from the system. The closed loop system is

asymptotically stable. Finally, we have discussed the effects of different sensor and

actuator shapes to the elastic modes. We point out. that it is feasible to select suitable

sensing and control weight to implement vibration control to some specified elastic
modes.

Further research is needed regarding aspects of estimation of the energy decay

rate and real time implementation of the control law. We also would like to consider

modeling the substructure with the Timoshenko model or the geometric exact rod

model. Also, the real impact of the modal controller needs to be verified and further

explored by experiments.
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ABSTRACT

The initial assembly of Space Station Freedom involves the Space Shuttle, its

Remote Manipulation System (RMS) and the evolving Space Station Freedom. The

dynamics of this coupled system involves both the structural and the control system

dynamics of each of these components. The modeling and analysis of such an assembly is

made even more formidable by kinematic and joint nonlinearities.

The current practice of modeling such flexible structures is to use finite element

modeling in which the mass and interior dynamics is ignored between thousands of nodes,

for each major component. The model characteristics of only tens of modes are kept out of

thousands which are calculated. The components are then connected by approximating the

boundary conditions and inserting the control system dynamics.

In this paper continuum models are used instead of finite element models because of

the improved accuracy, reduced number of model parameters, the avoidance of model order

reduction, and the ability to represent the structural and control system dynamics in the

same system of equations. Dynamic analysis of linear versions of the model is performed

and compared with finite element model results. Additionally, the transfer matrix to

continuum modeling is presented.
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Thecontinuummodelingapproachis seento offeraviablealternativeto finite

elementmodeling. Thecontinuumapproachenablesincreasedinsightfor synthesisand

integratedcontrol/structuresdesign.

NOMENCLATURE

A,B,C,D

C

EA

EIx, EIy

Fo

GA

GIy

F

Fo

I

L

Qu
Qs
S

Q

S

W

f_

state vector elements, coefficients of the sinusoidal and hyperbolic

functions

model parameter vector

longitudinal stiffness

bending stiffness

constant axial force

lateral shear

torsional stiffness

force distribution function

axial, steady force

inertia matrix

length of beam

deflection coefficient matrix

angular deflection matrix

real part of the roots

state vector, coefficients of sinusoidal and hyperbolic mode shape

basis functions

real part of root

modal frequency, imaginary part of the roots

angular velocity vector

Superscripts

T

-1

/

transpose

inverse

differention with respect to t

differention with respect to z
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Subscripts

i

c.g.
n

x

Y

Z

Y

mode index

center of gravity

general index

x axis

y axis

z axis

torsional axis, z
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INTRODUCTION

Theinitial assemblyof SpaceStationFreedominvolvestheSpaceShuttle,its

RemoteManipulationSystem(RMS)andtheevolvingSpaceStationFreedom.The

assemblyof theSpaceStationFreedomis performedbypositioningandconnecting22

modulesusingaremotemanipulationsystem(RMS). Thedynamicsof thiscoupled

systeminvolvesboththestructuralandthecontrolsystemdynamicsof eachof these

components.Thenumerousconfigurationsthatresultfrom thisassemblyprocess
necessitateanefficientprocedurefor accuratelymodelingthestructuralandcontrol

dynamics.Themodelingandanalysisof suchanassemblyis madeevenmoreformidable

by kinematicandjoint nonlinearities.

Modelingof complexflexiblespacecraftisanissuewhichhasfar reaching

consequencesin controllerdesignandthesubsequentspacecraftperformance.Numerous
difficultiesin controllingflexiblespacecrafthavebeenattributedto inaccuraciesin modeling

[1]. With highercontrollerbandwidth,modelingissuesassumegreatersignificance.
Increasedsizeandmoredemandingcontrolspecificationspromiseto makehigh

performancecontrolmoredifficult [2]. Currentmodelingschemesfor thedesignand

analysisof structuralandcontrolsystemshaveseverallimitations[3]. Theconventional

approachis to useelementswhicharevoid of dynamicson theinteriorof theirboundaries.

Thecomputationalcostandnumericalinaccuraciesinvolvedin generatingsolutionsto these

equationsimposeapracticallimit to thesize(andconsequentlytheaccuracy)of these

structuraldynamicsmodels.Forproblemswith minimalcontrol-structureinteraction,the

finite elementmodelsareadequate.Highperformancecontrolsystemswill however

requireincreasedfidelity andaccuracyin themodels.

Distributedparametermodelingis proposedin thiswork to synthesizehighfidelity

spacecraftmodels.Thedistributedparametermodelsprovidea singlesetof equationsfor
controlandstructuraldynamics.Theconventionalfinitedimensionalrepresentationof

complexspacecraftby thef'miteelementmethodsuffersfrom thefollowing drawback.
Finiteelementmodelsaregenerallytoo largefor controlwork. Oneperformsmodel
reductionto reducethemodelorderto controllersynthesisamendabledimensions.Spill-

overof controlenergyinto theunmodeledmodescanresultin instability. Theproposed

approachrepresentsflexiblestructuralmembersby partialdifferentialequationsoffering

significantadvantagesin modeling,parameterestimationandtheintegrateddesignof

control/structuralsystems[4], [5], [6]. Thepresentmethoddiffersfrom thefinite element
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methodin thatanindividualelementcanrepresentall themodesof that"super"elementand

producetheforceandmomentvectorsatits boundaries.Theseelementsarethenconnected
at theirboundariesto form themodelof thecompletestructure.Bishop[7] andSnowdon

[8] havestudiedapplicationsin whichalimitednumberof suchelementshavebeen

connectedto form simpleframes.Thehomogenizationtechnique[9] and[10]for repetitive

latticetrussesisparticularlyuseful. Forspacecraftcontrolapplications,it is necessaryto

connectmanydistributedparameterelementsto representthestructuraldynamicsof

complexflexible spacecraft.Thesoftwareprogramsavailablefor continuummodeling
include:Poeleart's[11] DISTEL,Taylor's [12],PDEMODandAnderson's[13] BUNVIS

program. In thiswork,PDEMODis usedto generatesomeof theresults.

Thispaperwill discussthegenerationof thesystemof partialdifferentialequations

for modelingcomplex,flexible spacecraft.A continuummodelof theassembly

configurationsof theSpaceShuttleRMS- Payloadwill beusedto studythecontrol

problemsinvolved. Continuummodelsareshowntohavedistinctadvantagesfor control

applications.

Thispaperis organizedin thefollowingmanner.Theformulationof thestructural

dynamicsmodels,thetransfermatrixapproachto modelingandthecontrolsystem

embeddingmethodsarepresentedin thenextsection.Thenumericalresultsfor asimple
modelof theShuttle/RMSPayloadassemblyarepresented.Theresultscomparethemodal

characteristicsobtainedusingNASTRANwith thecontinuumresults.Theconcluding

remarksidentify thesalientfeaturesof theproposedapproachandrelatedmodelingand

analysisaccomplishmentsto date.

Discussion

The formulation of the dynamics using a set of distributed parameter elements

connected at their boundaries is key to obtaining the objectives of optimal parameter

estimation. The types of elements to be considered are (1) rigid body with a full inertia

matrix, and (2) dynamic, flexible beam element. The equations of motion for each of these

elements will be considered in turn.
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Equations of Motion

A Newtonian or inertial frame of reference is used for the motion of all beam

elements and rigid bodies. For example, the point of attachment in the Newtonian axis of a

reference, undeflected beam is:

Deflected beam _

x _ _ FixedBeam Axis

/ T,_. / _ "_'-_'_al, Undeflected

) V Position

Figure 1: Diagram of a Rigid Body Attached to its
Reference Flexible Beam

Rattach,o = Rc.g., o + Tbeamr
(1)

For the deflected beam:

Rattach,t = Rattaoh.0 + TbeamU

= Ro.g.,0+ Their + Tb,_u (2)

The position of the body center-of-gravity due to beam defection is:

R¢.gj = Rattach,t - Tbodyr

= R¢.g., 0 + Tbeamr + rboamU- Tbodyr (3)

For small angular deflections

rbody = The_ + Tilda(rbeamU' )
(4)
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Substituting,weget

Re.g.,t = Re.g., 0 + TboamU-Tilda (TbeamU')r

Ro. ,o rbe u+ e(rbo ,u)

Differentiating, we get the acceleration of the body center-of-gravity:

#° oo o.p

_.g_t = ZbeamU + R(ZbeamU )

(5)

(6)

Equations of motion are written for each rigid body and the forces and moments

imparted by the beams are taken into account. In each case it is necessary to accotmt for the

different frames of reference and joints of attachment. Equations of motion for the linear

and angular degrees of freedom for all of the bodies are assembled into a single matrix, A.

In the time domain the equations of motion are:

= {Forces}/ m

=Ibody-lZ{Moments}
(7)

In the frequency domain, the linear and angular equations of motion are the basis

for each block of elements:

+ TT I_I{" 1 "_., .
Aangular,J=Quj j J [,-_)2,tTbeam-iPMi + Rbeam-iTbeam.iPFi}

(8)

For each case in which a rigid body has more than one beam attached, a constraint

equation is added to the system of equations. Assembly of the equations of motion and the

constraint equations yields the system matrix from which we get the characteristic equation:

IA(G+ jw)l= 0
(9)
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Flexible Beam Equations

The flexible beam elements exhibit lateral bending in two axes, axial deformation,

and torsion. The governing partial differential equations have a variety of terms so that

parameter values can select, for example, a wave or string equation, Euler beam equation,

or Tirnoshenko beam equation. A flexible beam element will be described by at least four

partial differential equations.

Lateral Bending

The beam equations represent (1) Euler bending stiffness, (2) axial force stiffness,

and (3) Torsion. For bending in the x-z plane:

MUx, l,tt + Elx, lUx,l,zzzz +OAUx, l,zzn + FoUx,l, zz + Kx(Ux,1 + Ux,2) = Fx,l(z, t)

Fx,l(z,t) (10)

Axial Deformation

Axial dynamics is represented by a wave equation with an additional term which

represents a spring connected to a second distributed mass.

miiz, 1 - eAuzz,1 + Kz(Uz,2 + Uz,1) = Fz.l(Z, t) (11)

Torsion

Torsional dynamics is represented by a wave equation

/1//,1/ilg,a-Gllll,luu/zz,1 + gltl(ulll,2 + ul//,1) = Mz,l(z,/) (12)

Solution of the Partial Differential Equations

The solutions of these partial differential equations for zero damping produce the

sinusoidal and hyperbolic spatial equations which comprise the mode shape functions. For

the case that Fo = O, the bending mode shape in the x-z plane is:
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Ux (z) = A x sin_lxZ + B x cosfllxZ + Cx sinhfllx z + Dx coshfllxZ (13)

Similarly, for bending in the y-z plane:

Uy(Z) = Ay sin#lyZ + By cosfllyZ + Cy sinh]_lyZ + By coshfllyZ

are:

(14)

The undamped mode shape functions for torsion and elongation about the z axis

uz(z) = Az sin#zZ+ Bz cos/ zz
(15)

u_/(z) = Av/ sin i_/z + B_ cosfl_,z
(16)

These undamped mode shapes are expected to be good approximations to the exact

solutions for low level of damping. The mode shape of the entire configuration consists of

these functions, repeated for each beam element. Because bending in two directions,

torsion and elongation are considered, a total of 12 coefficients are needed. The vector of

coefficients is the state vector of the structural dynamics. A vector of the coefficients of

these sinusoidal and hyperbolic functions will serve as the state vector.

_)T = [Ax Bx Cx Dx Ay By Cy Dy A z B z A_/ B_¢]
(17)

Under conditions of applied forces it is necessary to include rigid body modes.

Their coefficients will expand the state vector accordingly. All deflections, forces,

moments, and accelerations will be expressed in terms of such state vectors.

The motion of each rigid body is put in terms of the deflection at the point of

attachment of a particular reference beam element. The linear and angular deflection vectors

can be expressed as:

u = O,,(z)e

u = as(z)e
(18)

(19)
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Next,it is necessaryto expresstheforcesandmomentsateitherendof thebeam

elements.Theforceandmomentvectorsare:

Faetach= PF(z)O (20)

F,,t ch = PM(Z)O (21)

It is also necessary to account for changes in axes from each beam to the body to

which it is attached, and for points of attachment at some distance away from the center of

gravity. The force and moment that a beam-i applies to a body-j are:

Fbody_j = Zbody_ jT Zbeam.ieF,i ( Z)O

Mbody_j = Tbody_j T {Tbeara.iPM, i(z) + Rbeara.i (z )Tbeam.iPF (z) }O

(22)

(23)

The partial differential equations provide the relationships between the modal

frequency and the eigenvalues for the mode shape equations. The lateral beam, axial

deformation and torsion equations can be solved for the zero damping cases to produce the

following relationships between the modal frequency and the wave numbers in the mode

shape function.

For bending in the x-z plane:

/_l,x 2 =.5b + a](.5b) 2 + too) 2 ] Elx

fl2,x: = -.5b + a](.5b) 2 + mto 2 / Elx

(24)

(25)

where b = m¢.o2 ] GA + Fo / Fix.

The case for bending in the y-z plane is similar. For torsion and elongation:

(26)

(27)
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Transfer Matrix Approach

The transfer matrix approach [14] is suitable for large systems made up of several

subsystems. The typical subsystem may be simple elements like a scalar spring or a

complex Bernoulli-Euler or Timoshenko beam element. The subsystems are cast in the

form of a field and a point matrix. The formulation is in terms of the state vector which is a

column matrix of displacements and internal forces. The treatment of the transfer matrix

derivation for rigid bodies and flexible beams follows the work in [15].

Rigid Body

The translational and rotational equations of thej th body can be described by the

following equations (figure 2).

_M

Mj R

Figure 2: Free-Body

r,,:c,,=Q:-O:
' yY" = M: - Q:r: - QLt_ L

Diagram of the rigid body

(28)

(29)

For harmonic motion, the equations are rewritten as

Q: = QL _ rnjoj2YcM

M: = M_ +Q:: +Q_r_-IjoJ2Yf L

(30)

(31)

The displacement of the center of mass YCM is related to Yp and yjZ by
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Y_ = YCM - r]_YJR (32)

Y]" = YCM + r_Y;C (33)

Using the expression for YCM from equation (33) and by the property of slope

continuity, equation (32) can be rewritten as

y_ = y_ - rjYf L (34)

w o ,j-4 +4.

Substituting for YCM in equation (30), we get

Qf = Qlf _ mjw2 (y? _riyaL) (35)

Substituting the expression for Q_ in equation (31), we get

LR 2 ,L
MI_ = Mtf + rjQlf -mjw24y? -(I 1 -mjr_i rj )co Yj (36)

Equations (34), (35), (36) and the slope continuity condition yield the point matrix

[PM] 1 for the rind body element

1 -rj 0 07

0 1 0 0

_mjfO 2 mjfO2r L 1 0

mjfO2r? -(Ij-mjrLr R) rj l

=[PM]j Q

LMJj LMJj

(37)

(38)
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Flexible Beam

The field matrix for Bemoulli-Euler beam is derived from the solution of the

bending mode slope (Equation 13) as follows.

At the left end of the beam (z = 0), the displacement Y(0) slope Y'(0), shear force

Q(0) and bending moment M(0) will be

10oi oXl Axlr _ 0 _ 0/:_ /
- -k__ o +k__ 0 l/q/

j__ -kp= o -_p=JLo_J (39)

on
where Q = kY" and M = kY",k = El. For notational simplicity, the subscript x

is dropped. At the fight end of the beam (z = L)

[ sinflL cosflL sinhflL coshill_, II Ax ]

I fl cosflL -fl sin ill., fl cosh flL fl sinh flL JlBx J-]k_ 3cos_z -k_3sin_L k_3cosh/_z -k_3sinh_z cx
Lk#2sin_L k/32cos/3L _k/_2sinh_L k/_2cosh/_L Dx (40)

Solving for the coefficients Ax,Bx,Cx,Dx from equation (39) and substituting in

equation (40) we get the field matrix for the beam element as:

[FM]/=
Y_fl2(sinflL +sinhflL) l (cosflL +coshflL)

:_I/_:_+_:_/1_:(_o_:,÷co,_:L/

2-_ (s_:L-s_:L)

X(cospL-cosh_L)

2-_-_(cos/_L-cosh/_L)

(si../_L-_i_/_L)

½(_os,_-co_/_z,)

=[FM]j Q

LMJ] LMJ]-_

(41)
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The transfer matrix for a flexible beam with a mass at the right end is

[TF] i =[PMlj[FM] 1
(42)

X

Figure 3: Beam Offset

Offset Attachment

The planar offset attachment transfer mau'ix can derived from figure 3. The offset

of point 2 from the origin (point 1) is given by rx and rz.

Ux

Uz

o,

"1 0 -r z 0 0 O

0 1 rx 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 rz -r x 1

"ux "

Uz

o,

.My.
(43)
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Joint with Compliance

The joint compliance transfer matrix is derived for planar motion assuming a spring

of stiffness k o . The joint equations for planar motion are

also

IMp2 I

[M,, 2=k0(01-02)

(44)

(45)

The transfer matrix can be expressed as

"ux"

Uz

&

.My.

"1

0

0

0

0

0

0000

1000

0100

0010

0001

0000

0

0

-1/k o

0

0

1

Uz

&
Pz

,%
(46)

Rigid Body Control

The rigid body point matrix for a body with mass and inertia but with 1) equal to

zero is obtained fi'om equation (37). Using the Laplace variable s 2 in the place of -o92 ,

we get

ux',

Uz

My 2

" 1 0 0 0

0 1 0 0

0 0 1 0

Ms 2 0 0 1

0 Ms 2 0 0

0 0 Is 2 0

O" Ux

0 Uz
I

o o,
o ex

o Fz

1 My)l (47)

Rigid body controllers basically stabilize the system asymptotically and are of the

proportional derivative type. The transfer matrix is modified in the following manner for

control:
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ms 2 .-> ms 2 + CxS + k x

Is 2 --->Is 2 + CoS + k o

Joint Control

Analogous to the rigid body controller, it is also possible to embed local feedback

control effects into the transfer matrix for a joint. Only one matrix element is affected. For

proportional derivative control including sensorf(s) and actuator g(s) dynamics, the matrix

in equation (46) is modified thus:

1/k o --->1/[f(s)g(s)(kl + k2s)] (48)

Alignment Matrix

The alignment of each element with respect to global coordinates is accomplished

by a simple matrix multiplication. The planar alignment transfer matrix is

" UX "

Uz

Oy

-Mz. 2

"cosa -sina 0 0 0

sin a cosa 0 0 0

0 0 1 0 0

0 0 0 cosa -sina

0 0 0 sin a cosa

0 0 0 0 0

O" "1$ x q

0 uzl

00y

1 (49)

End-to-End Transfer Matrix

The transfer matrix which relates the deflections and loads at the space shuttle to

those through the RMS to the Space Station consists of the product of all of the elements as

shown in Figure 4.
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Space
Station

Wnst
H Boom _ Elbow H Boom H Shoulder

' I
I Shuttle

Figure 4: Shuttle/RMS/Station Configuration

IMitl --[Ustation Uwr_ Uboom 2 Uetbow Uboom ] Ushou]der Ushuttle] (it 1

Jstation [M.Jshuttl e

= Utota 1 Iilshu_l e

(50)

It is now possible to derive the characteristic equation for the total system. The

effect of all the control systems will be reflected in the characteristic equation since they

form a part of the rigid body and joint transfer matrices.

The transfer matrix forms an intermediate step in the computation of the

characteristic equation. For beams and masses connected to one another, the transfer

matrix between station 1 and station n is derived by multiplying the appropriate field and

point matrices. The expression for a typical problem may be expressed as

-. ¢21 ¢22 ¢23 ¢24

_031 ¢32 ¢33 ¢34

kMJn .041 ¢42 ¢43 ¢44JLMJ1
(51)
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If theboundaryis cantilevered,then

Ill=_Q

LoJ. 1 (52)

Rearranging the state vector we have

[A1[Ya1=[01M,Q' (53)

where

[A]
-1 @23 @_

-- 0 _33 _34

0 ¢43 ¢44J (54)

The charactedstic equation is given by

or

det[A] = 0 (55)

det[_22] = 0

or

_33 _44- _34 ¢43= 0 (56)

For continuum models, equation (56) has infinite solutions and is solved by search

techniques to determine the frequencies. Similar characteristic equations can be derived for

other boundary conditions.
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For free-free boundary conditions, the characteristic equation is given by

det[_21] = 0

The transfer function relating the linear and angular deflection of the shuttle (for

example) to applied forces and moments are:

The Shuttle/RMS/Payload configuration is now studied from the continuum

viewpoint.

Study of Shuttle/RMS/Payload Assembly

The Space Shuttle/RMS/Payload assembly is modeled and analyzed using the

continuum and the finite element approach. For the continuum analysis, the planar transfer

matrix approach is used to generate the frequencies of the configuration and the transient

response of the structure.

The data for the two link RMS configuration is extracted from the payload

deployment and retrieval document [16]. Links 3 and 4 of the RMS arm are used in the

simulation. In this work, each link was assumed to be made-up of one material with

uniform section properties unlike reference [16] where the links were made-up of 3

segments each with different properties. The link properties are listed in Table 1.

The space shuttle and payload are modeled as rigid bodies with a mass of 6176

slugs and 124.22 slugs respectively. The inertia Iyy of the space shuttle is 6.99 E6 ibs-in 2.
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J
center

of mass

Payload

I

t
orbiter (bo)

Figure 5: Shuttle/RMS/Payload Configuration

Figure 5 shows the Shutfle/RMS/Payload Configuration. The following three cases are

considered in this work:

Case 1: Shuttle with zero inertia and offset

Case 2: Shuttle with inertia and zero offset

Case 3: Shuttle with inertia and offset

For the transfer matrix approach, the relationship between the shuttle and the

payload is

[TM] = [Upay]oad UUnk2 U]jz_ 1 UshuU;le]

The characteristic equation for the free-free configuration is derived and the

frequencies are evaluated. In order to obtain the y-z bending frequencies, the characteristic

equation is again solved numerically using the appropriate flexural rigidity value. The

results are compared with the frequencies from PDEMOD.

The NASTRAN model of the Shuttle/RMS/Payload assembly consisted of the RMS

being modeled using 50 bar elements each. The shuttle and the payload were modeled
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using two concentrated masses at either end of the RMS. For the shuttle with inertia and

offset case, the concentrated mass card in NASTRAN was suitably modified.

Table 1: RMS Link Properties

Propert),

mass

length

EIyy

Elzz

G

J

rn/l

A

Link 1 Link 2

9.5485 slugs

21.0 ft

5.6458 E6 lbft 2

5.2083 E6 lbft 2

3.846 E5 psf

6.7711 ft a

0.4547 slug/ft

0.9218 ft 2

5.9901 slugs

23.0 ft

3.4166 E6 lbft 2

2.4375 E6 lbft 2

3.846 E5 psf

5.0558 ft 4

0.2604 slug/ft

0.9218 ft 2

The frequency spectrum in Hertz of the three configurations is shown in Tables 2-4.

Table 2: Frequencies for Case 1

Mode

1
2
3
4
5
6
7
8

NASTRAN

2.054

2.527
2.8621

10.629!
11.747
18.479
23.171
25.963

PDEMOD

?
2.528
2.863
10.63
11.74

?

23.17
25.96

Transfer

?
2.528

2.862
10.629
11.747

?

23.171
25.964
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Table 3: Frequencies for Case 2

Mode NASTRAN PDEMOD Transfer

1
2
3
4
5
6
7
8

0.1825
2.0548
2.8627
4.20361

?

11.7471
13.3324

0.1961
2.0133

?
4.2065
4.6983
7.6745

?
13.3356

0.1892
?
?

4.2033
4.6973

?
?

13.3337

Table 4: Frequencies for Case 3

Mode

1
2
3
4
5
6
7
8

NASTRAN

?
?

4.2037
4.7001

9

?
13.3339
14.7421

Transfer

0.3428
0.3685
4.4246
4.9433
9.8986
9.9017

13.5996
15.0281

Figure 6 shows a transient response obtained from PDEMOD for a similar configuration

with and without joint control. The results show the promise of the continuum approach.

_ Jolnt Damping

/ _ _ _ _ _ I _ _ _

_ _ _ _ _ __i _II I I _ _ _ _ _ _-- _ _

I1|

Time

Figure 6: Transient response of MB-1 Configuration
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CONCLUDING REMARKS

Partial differential equation models of flexible structures offer significant

advantages over finite element models for parameter estimation and control studies because

of the smaller number of model parameters. Until recently work was needed to generate

distributed parameter models of complex configurations which were also flexible. The

computer program, PDEMOD, enables the generation of distributed parameter models of

flexible spacecraft. Any configuration which can be modeled by a network of flexible

beam elements and rigid bodies can be modeled using PDEMOD. The modeling process is

well suited for the evolving Space Station Freedom, for the cases in which (1) the Space

Station assembly is attached to the Shuttle, (2) the assembly is linked to the Shuttle through

the RMS arm, and (3) the Space Station assembly is free of the Shuttle.

Comparisons of the model accuracy of finite element and continuum models of

flexible structures point out the limitations of finite element modeling. First, the level of

complexity that is practical for finite element models is limited because of the computational

burden. The result is a limit to the accuracy that can be obtained. Second, as high levels of

accuracy are sought using finite element models, the difficulties in solving the eigenvalue

problem become more significant. It is quite possible, then, that for certain applications

continuum models can be more accurate.

A distributed parameter model of the Space Shuttle-RMS was generated using the

transfer matrix method and the software PDEMOD. The results show a very good

agreement with a detailed finite element model. Future directions include the frequency

characterization of structures with embedded control.
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SUMMARY

New results concerning optimal design with accelerometers are presented. These results

show that the designer must be concerned with the stability properties of two Linear Quadratic

Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop

system dynamics. The new concepts of virtual and implemented compensators are introduced to

cope with these subtleties: The virtual compensator appears in the closed-loop system dynamics

and the implemented compensator appears in control electronics. The stability of one compensator

does not guarantee the stability of the other. For strongly stable (robust) systems, both

compensators should be stable. The presence of controlled and uncontrolled modes in the system

results in two additional forms of the compensator with corresponding terms that are of like form,

but opposite sign, making simultaneous stabilization of both the virtual and implemented

compensator difficult. A new design algorithm termed sensor augmentation is developed that

aids stabilization of these compensator forms by incorporating a static augmentation term

associated with the uncontrolled modes in the design process.

* Portions of this work were accomplished under NASA contract NAS 1-19241, Task 2,

Dr. Suresh M. Joshi, Technical Monitor.
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1.0 INTRODUCTION

Dynamic systems that are not strictly proper complicate linear quadratic gaussian (LQG)

control design. These dynamic systems are characterized by transfer functions where the order of

the numerator equals the denominator. Sensors, such as accelerometers, whose transfer functions

are not strictly proper can also generate such systems. Linear time invariant systems that employ

these sensors may be represented in the time domain by state space equations characterized by the

matrix quadruplet (A, B, C, D) where A is the plant matrix, B is the input (influence) matrix, C is

the output (sensor) matrix, and D is a thru-put matrix representing the direct transmission

properties associated with systems that are not strictly proper. The presence of the D matrix

complicates LQG control design particularly in the area of compensator stability, and consequently

closed-loop system robustness. The designer must consider two forms of the optimal

compensator, one of which does not explicitly appear in the closed-loop system dynamics.

There is very little consideration of systems that are not strictly proper in the optimal control

literature. Standard texts on optimal control (refs. 1-7) do not consider these systems in the context

of LQG closed-loop control. A preliminary version of the material presented in this paper is

contained in ref. (8).

This paper is organized as follows: Section 2 derives the two LQG compensator forms

required for design and introduces the concepts of implemented and virtual compensators. Section

3 considers additional compensator forms caused by the presence of neglected known vibration

modes (suppressed modes) which are not explicitly modeled in the control design process. Section

4 presents a design algorithm termed sensor augmentation that copes with the complexities

introduced by the suppressed (neglected) vibration modes, and Section 5 presents our conclusions.

2.0 IMPLEMENTED AND VIRTUAL COMPENSATORS

The LQG compensator plays a significant role in the determination of closed-loop

robustness properties. As shown in Figure 1, the compensator is that dynamic system that has the

sensor vector as its input and the control vector as its output. Its dynamics are determined by the

transfer function matrix between points "a" and "b" of Figure 1.
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u
ACTUATOR PLANT ySENSORS

b

COMPENSATOR

CONTROL LAW
___' STATEESTIMATOR

a

Figure 1. LQG compensator stability affects robustness.

In general, the stability properties of the compensator tend to influence the robustness

properties of the closed-loop system. For strictly proper systems (no D matrix) the designer must

consider only one compensator form; however, for systems incorporating a D matrix in their

description, two compensator forms must be considered: an implemented and a virtual

compensator. The implemented compensator has the sensor vector as its input, which drives the

estimator-based dynamics. These dynamics, which are functions of the D matrix, do not explicitly

appear in the matrix description of the closed-loop system. Conversely, the virtual compensator

dynamics are not functions of the D matrix, but do appear in the closed-loop system matrix. For

strictly proper systems (no D matrix) the implemented compensator dynamics and the virtual

compensator dynamics are identical. The development of the two compensator forms is

accomplished by direct substitution of the LQG control and estimation laws in the plant dynamics.

The implemented compensator emerges by careful distinction between the sensed and computed
variables of the closed-loop system.

Consider the following open-loop, dynamic system

x = Ax + Bu (1)

y = Cx + Du (2)

where x(n x 1) is the state vector, u(r x 1) is the control vector, y(s x 1) is the output vector and

(A, B, C, D) are matrices of appropriate dimension. For flexible structure control, the A matrix is

composed of modal frequencies and damping factors, the B and C matrices are based on
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eigenvector solutions of the finite element model characterizing the structure. For such systems

employing accelerometers, the D matrix has the following form

D= CB
(3)

The control law is

/k

u=-Kx
(4)

A

where K(r x n) is the optimal feedback control matrix and x(n x 1) is the estimated state vector.

The state estimator has the following form

x=Ax+Bu+G(Y" _)
(5)

A

where G(n x s) is the estimator gain matrix and y(s x 1) is the estimated output vector.

Implemented Compensator Derivation_

The implemented compensator dynamics are now derived. Substituting u = -K _ in the

A A

estimator dynamics for the control law, and y = C x + Du for the estimated sensor vector yields

_X A A= (A - BK) x - G(C x + Du) + Gy
(6)

/k
Substituting u = -K x for the control vector in equation (6) and collecting terms yields

AX A= (A- BK- GC + GDK) x + Gy
(7)

Equation (7) characterizes the implemented compensator dynamics for the closed-loop system.

The sensor vector is an input that drives the estimation-based dynamic system for the compensator.
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In sequel, we shall show that although the implemented compensator is necessary to generate the

required closed-loop dynamics, it does not explicitly appear in the closed-loop system matrix.

Virtual Compensator Derivation

The virtual compensator dynamics are derived by continued expansion of the dynamic

expression for the implemented compensator. Substituting y = Cx + Du for the sensor vector in

equation (7) yields

x = (A- BK- GC + GDK)_ + G(Cx + Du) (8)

A

Substituting u = -K x in equation (8) yields

x=(A-BK-GC+GDK)_+GCx GDKA- X (9)

A

Collecting terms in x yields the virtual compensator dynamics

x = (A- BK- GC) x + GCx (10)

where we note that the D matrix has been eliminated from equation (10).

Inspection of the closed-loop dynamics matrix shows that the D matrix, which may

influence robustness properties, has been eliminated from the closed-loop system description.

Only the virtual compensator appears. Comparison of the implemented compensator dynamics

(equation 7) and the virtual compensator dynamics (equation 10) shows that the two expressions

are not identical and, in general, will not have the same eigenvalues. In fact, the stability of one of

these compensator forms does not guarantee the stability of the other. Substituting u = -K _ in

equation (1) and assembling equations (1) and (10) in matrix form yields the closed-loop system
matrix
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I IIABK
GC A - BK - GC

X 1 (11)

As the expression containing the D matrix does not appear in equation (11), the implemented

compensator could be unstable and this fact would not be detected by a closed-loop eigenvalue

analysis. Thus, both compensator forms must be checked in order to ensure the design of a

strongly stable system in the sense of reference 9.

(sI -

A
X

b (sI -

Y

Implemented Compensator

a

Figure 2. Implemented compensator detail shows the effect of the thru-put matrix

Figure 2 provides a detailed matrix block diagram of the implemented compensator for

systems that are not strictly proper. Examination of this diagram provides insight to the

compensator problem. The compensator dynamics are characterized by the transfer function matrix

between points "a" and "b" of Figure 2. The control vector, u, is multiplied by the D matrix and
A

summed with C _ to form the estimated sensor vector, y. However, the sensor vector, y, contains
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an identicalterm,Du, involvingthecontrolvector. As thetwo sensorvectors,y and ŷ, are

subtractedat thecompensatorsummingjunction,anytermsinvolvingthematrixD areeliminated

from theclosed-loopsystemmatrix,i.e.,thecompensatoris uncontrollable,in u, atthesensor

summingjunction. Thisconditionis analogousto thatwhichoccursduringestimatordesignusing

theseparationprinciplewith strictlypropersystems,i.e., theseparationprincipleholds(ref. 10)

andtheestimatorisuncontrollablevia thecontrolvector. Theseparationprinciplealsoholdsfor

systemsthatarenot strictlyproper;however,onemustconsiderboththeerrorspaceand

implementationspaceduringthedesignprocess:thecomponentof thecontrolvectortransmitted

by theD matrixis eliminatedfrom theclosed-loopdynamicsin theimplementationspace.In this

context,apartialseparationprinciplecanbesaidto hold,andthecompensatordynamicsappear to

be determined solely by the (A, B, C) matrices.

The presence of unmodeled dynamic (suppressed) modes further complicates the design

process. In this case the D matrix cancellation is incomplete in the implementation space, and the

implemented and virtual compensators have differing dynamics that are functions of different

modal thru-put matrices. This phenomenon is discussed in the following section.

3.0 LQG COMPENSATOR DYNAMICS AND SUPPRESSED MODES

The presence of uncontrolled vibration dynamics significantly complicates the compensator

design process. The implemented and virtual compensator dynamic matrices contain corre-

sponding terms of similar form, but opposite sign, that can severely constrain the compensator

stabilization process. Consider the following open-loop dynamic system representing a flexible

structure

i clEAc°llXcl+EBcl
Xs] 0 A s x s B s

u (12)
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ExclIDc+Ds]y:I c xs u (13)

where Xc(n c x 1) is the controlled state vector, _(n s x 1) is the suppressed state vector

characterizing the uncontrolled but modeled modes (refs. 11, 12), u(r x 1) is the control vector, and

y(s x 1) is the output vector. The plant submatrices, _(n c x nc) and As(n s x ns), are composed

of modal frequencies and damping factors. The input matrices, Bc(n c x r) and Bs(n s x r), the

output matrices, Ce(s x _) and Cs (s x rls), and the thru-put matrices, Dc(S x r) and Ds (s x r), are

based on eigenvector solutions of the finite element model characterizing the structure. For such

systems employing accelerometers the submatrices comprising the D matrix are given by

(14)
D t =Dc+D s

D c =CcB c

D s = CsB s

(15)

(16)

The control law is

^ (17)
u=-Kx c

^

where K(r x nc) is the optimal feedback matrix and Xc(n c x 1) is the estimated state vector.

The state estimator has the following form

/_ ^ ^

x c = Ac x c + BcU +G(y- yc ) (18)
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A

where G(n c x s) is the estimator gain matrix and Yc(S x 1) is the estimated output vector for the

controlled states.

Implemented Compensator With Suppressed Modes

The implemented compensator dynamics are now derived. Substituting u = -K _c in the

estimator dynamics for the control law, and A ^YC = CC Xc + DcU for the estimated sensor vector

yields

/_ ^ ^

x c =(A c - BcK)xc - G(Cx c + DcU) + Gy (19)

Substituting u = -K _c for the control law in equation (19) and collecting terms yields

Xc=(Ac-BcK-GC c +GDcK)X c+Gy (20)

Equation (20) characterizes the implemented compensator dynamics for the closed-loop system.

We note that the implemented compensator is a function of Dc, the thru-put matrix for the

controlled modes.
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Virtual Compensator With Suppressed Modes

The virtual compensator dynamics are now derived. Substituting equation (13) for the

sensor vector in equation (20) yields

/_ A

x c = (Ac - BcK- GCc + GDcK)X c + G(Ccx c + Csx s + Dcu + Dsu)
(21)

Substituting u = -K _c in equation (21) yields

/_ A XCx c = (Ac - BcK- GC c + GDcK)X c + G(Ccx c + Csxs) - G(DcK + DsK)^ (22)

A

Collecting terms in x c yields the virtual compensator dynamics

a GCcx c + GCsx s (23)x c = (Ac - BcK- GC c - GDsK)X c +

where the virtual compensator dynamics are a function of Ds, the thru-put matrix for the

suppressed modes. A term by term examination of the submatrices comprising the dynamic matrix

for the implemented compensator, equation (20), and the virtual compensator, equation (23),

yields the interesting result: The dynamic matrices of the two compensators are composed of

identical submatrices except for those terms arising from the modal thru-put matrices. These

submatrices, GDcK and -GDsK, are similar in form, but opposite in sign. Thus, in general, it

will be difficult to simultaneously stabilize the implemented and virtual compensators. Conflicting

constraints will tend to be placed on the gain matrices G and K.

The closed-loop dynamics in matrix form may be written as
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icl
XS/=

x c

D

A c 0 _ BcK

0 A s B s K

GCc s Ac-ScK - GDsK

'Xc

X S

A

_Xc

(24)

Examination of equation (24) shows that the implemented compensator dynamics do not appear in

the closed-loop system matrix. Thus, an eigenvalue analysis of this closed-loop matrix would not

reveal the stability properties of the implemented compensator. Both compensator forms must be

checked for stability to design a strongly stable system.

Table 1 shows the dynamic matrices that occur during LQG control design of flexible

structures that employ accelerometers. Included are matrices for the estimator, controller and

various compensator forms. The number of matrix forms requiring stabilization or conditioning is

five, and the number of gain matrices is two. This situation leads to difficulty in design, especially

when one desires stable compensation matrices. A design algorithm is presented in Section 4 to

cope with difficulties introduced by the suppressed modes.

Table 1. LQG Dynamic Matrices For Accelerometer Systems

Controller

Estimator

Virtual Compensator

Implemented Compensator

Virtual Compensator (Suppressed Modes)

Thru-put Term (Controlled Modes)

Thru-put Term (Suppressed Modes)

Ac -BcK

ac-S%

Ac - BcK- GCc

A c - BcK- GC c + GDcK

A c - BcK- GC c -GDsK

Dc=qB c

Ds =CsB s
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4.0 SENSOR AUGMENTATION

We now develop an algorithm that addresses the problem caused by the suppressed mode

contamination of the virtual compensator dynamics. As shown in the previous section, the

dynamic matrices of the implemented compensator and the virtual compensator differ only in terms

arising from the modal dynamics (compare equations 20 and 23). These modal terms, GDcK and

-GDsK , which are similar in form but opposite in sign, create difficulties for stable compensator

design. The difficulty arises because we are requiring two similar matrix forms of opposite sign to

stabilize identical matrices, i.e., if we define Acomp as the standard LQG dynamic compensator

matrix

Acomp = A - BK - GC
(25)

the dynamic matrix for the implemented compensator is

Acomp + GDcK
(26)

and that for the virtual compensator is

Acomp - GDsK
(27)

As Dc and Ds are of similar structure, the gain matrices G and K will tend to have opposing effects

on the stability properties of the two compensator forms.

We can cope with this problem by developing an algorithm that eliminates the offending

terms caused by the suppressed modes from one of the compensator forms. This is accomplished

by augmenting the estimated sensor output vector with suppressed mode data, i.e., with reference

to equation (14), Dc is replaced by D t in the design process, where
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Dt = Dc + Ds (28)

It should be noted that the number of controlled modes remains constant, and that this procedure is

analogous to incorporating a "d.c. gain," or static portion of the suppressed mode transfer

function, into the design process. The design algorithm may also be interpreted as using a hybrid

dynamic model, augmented with the static gains of the uncontrolled, but modeled modes. The

effect of this procedure on the implemented and virtual compensators is easily derived. Consider

the following open-loop dynamic system representing a flexible structure

r clEAc0llxcl+EBclLXsj 0 As Xs Bs
u (29).

[xcll ]Dc+ D s
y=[C c Cs] Xs + u

(30)

where Xc(n c x 1) is the controlled state vector, _(n s x 1) is the suppressed state vector

characterizing the uncontrolled but modeled modes (refs. 11, 12), u(r x 1) is the control vector, and

y(s x 1) is the output vector. The plant submatrices, Ac(n c x Oc) and As(n s x rls), are composed

of modal frequencies and damping factors. The input matrices, Bc(n c x r) and Bs(n s x r), the

output matrices, Cc(s x Vc) and Cs(s x ns), and the thru-put matrices, Dc(S x r) and Ds(S x r), are

based on eigenvector solutions of the finite element model characterizing the structure. For such

systems employing accelerometers the submatrices comprising the D matrix are given by

D t = Dc + Ds (31)

D e = CoB c (32)
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D s = CsB s (33)

The control law is

A

u=-Kx c

A

where K(r x Oc) is the optimal feedback matrix and Xc(n c x 1) is the estimated state vector.

(34)

The state estimator has the following form

/_ A A

x c =A cx c +Bcu+G(y- yc ) (35)

A

where G(n c x s) is the estimator gain matrix and Yc(S x 1) is the estimated output vector for the

controlled states. The estimated sensor vector is now given by

A A

Yc = C-cXc + (Dc + Ds)u (36)

where Ds has now been included in the design process, i.e., the sensor has been augmented.

Implemented Compensator Using Sensor Augmentation

The implemented compensator dynamics are now derived. Substituting u = -K _c in the

estimator dynamics (equation 35) for the control law, and ^ ^Yc = Ccx c + (Dc + Ds)U for the

estimated sensor vector yields

420



/_ A A

Xc = (Ac- BcK)xc - G(C c x c + Dcu + Dsu) + Gy (37)

A

Substituting u = -K x c in equation (37) yields

Xc = (Ac- BcK- GCc + GDcK + GDsK)_ c +Gy (38)

Substituting the relationship D t = Dc + Ds in equation (38) yields

Xc = (Ac - BcK- GC c + GDtK)_ c +Gy (39)

which is the desired expression for the implemented compensator dynamics. Examination of the

dynamics for this compensator, which uses augmented sensor data, and those of the unaugmented

compensator of equation (20) shows that they differ by the term GDs K which appears in equation

(38).

.Virtual Compensator With Sensor Augmentation

The expression for the augmented virtual compensator dynamics may now be derived.

Substituting equation (13) for the sensor vector in equation (39), and noting that D t = Dc + Ds,

yields

xc = (Ac - BcK- GQ + GDtK)_ c + G(Qx c + _x s + Dtu) (40)
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A

Substituting u = -K x c in equation (40) yields

/_ A A

xc = (ac - BcI,:- GCc + GDtK)xc + C(Ccxc + Csxs)- aDtK Xc
(41)

A

Collecting terms in x c yields the virtual compensator dynamics

xc --(Ac - _cK- CCc)Xc+G(C_xc + qxs)
(42)

The closed-loop dynamics may be written in matrix form as

m

X c

X s

A

X c

L.. L.

A c 0 BcK

0 A s - BsK

GC c GC s A c - BcK - GC c

m m

X c

X S

__c.[

(43)

Examination of the virtual compensator dynamics, equation (42), or the closed-loop dynamics,

equation (43), shows that optimal design using augmented sensor data allows the virtual LQG

compensator dynamics to revert to the simpler form of the standard optimal compensator.

However, the implemented compensator, equation (39), does contain the augmented thru-put

matrix, D r and must be checked for stability independently of the closed-loop system matrix.

Thus, the use of sensor augmentation has eliminated the conflicting sign conditions present in the

implemented and virtual compensator dynamics, equations (20) and (23) respectively, that can

cause stabilization difficulties.

The system matrices requiring stabilization, or stability verification, using augmented

sensor design for accelerometers on flexible structures are shown in Table 2.
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Table 2. LQG Dynamic Matrices For Sensor Augmentation

• Controller

• Estimator

• Virtual Compensator

• Implemented Compensator

• Total Thru-Put Term

Ac - BcK

Ac -G%

Ac-BcK-C%

A c - BcK- GC e + GDtK

Dt=Dc+Ds

In summary, system matrices must be checked for stability, namely, those of the controller,

the estimator, the virtual compensator, and the implemented compensator. The poles of the

controller, estimator, and virtual compensator appear in the closed-loop system dynamics and may

be checked for stability in the usual closed-loop stability analyses. The implemented compensator

does not explicitly appear in the closed-loop dynamics and must be checked for stability

independently of the closed-loop analysis.

5.0 CONCLUSION

Our analysis of LQG optimal control design involving systems that are not strictly proper has

shown that such systems generate control complexities: Two different LQG compensator forms

must be considered, namely, an implemented compensator and a virtual compensator. The

implemented compensator resides in the control electronics and generates the estimator-based

control signals. The virtual compensator appears in the closed-loop dynamics. The dynamic

properties of both forms strongly affect the robustness of the closed-loop system.

With regard to flexible structure control, the direct feedback of accelerometer signals results

in systems that are not strictly proper. The additional problems generated by uncontrolled modes
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cause conflicting stability constraints in the implemented and virtual compensators that makes

simultaneous stabilization of both forms difficult to achieve. A new algorithm, Sensor

Augmentation, has been developed that copes with this situation by incorporating a static

augmentation term in the design process that eliminates conflicting the stability constraints.
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MOTIVATION

• Control of flexible spacecraft is a difficult problem

- Large number of elastic modes
- Low value, closely-spaced frequencies
- Very small damping
- Uncertainties in math models

• Traditional design approach:

- Design structure f'Lrst
- Design control system next

• Best achievable performance with traditional approach is limited

• New Approach: Design structure and control system simultaneously

OBJECTIVE

Conceive and develop methodology for spacecraft design which

• addresses control/structure interaction issues

• produces technology for simultaneous control/structure
design

• translates into algorithms and computational tools for
practical integrated computer-aided design
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PROBLEM CLASSIFICATION
Class 1: Pointing, vib. sup., no articulation

°.o'_

°

°°
o

Class 3: Nonlinear version of class 1

"%

,o

Class 2: Pointing, vib. sup., with articulation

Class 4: General nonlinear with robotics

', /

APPROACH

• Formulate integrated design problem as an optimization problem

- Define objective function

- Define design variables

• Structural parameters
• Control system parameters

- Define constraints

- Perform numerical optimization

• Validate the methodology through an integrated design of the
CSI Evolutionary Model
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INTEGRATED DESIGN METHODOLOGY VALIDATION

* Design and test optimal controllers for Phase Zero CEM

• Synthesize an optimal integrated design (Phase One CEM)

• Fabricate the closest structure to Phase One design

• Validate integrated design methodology by comparing Phase Zero and
Phase One test performances

CONTROLLER ALTERNATIVES

m_5,>_t,ve
/t*- sTnt_es,_
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APPROACHES TO LSS CONTROL

MODEL-BASED CONTROLLERS (MBC):

State estimator/observer "tuned" to a low-order design model

Control gains via LQ regulator or eigensystem assignment, etc.

o DISSIPATIVE CONTROLLERS:

Utilize collocated/compatible actuators and sensors (e.g., attitude
and rate sensors and torque actuators)

-CONSTANT-GAIN dissipative controllers

-DYNAMIC dissipative controllers

MODEL-BASED DESIGN

A Loop-Shaping Procedure loosely based on LQG/LTR:

Iterate on KBF and LQR to satisfy performance specs and robustness cond.

10'_ 1

,u, :- 6"oa)- _,_

RP_R_O__B_L..__M__ robust to unmodeled dynamics, but NOT to oarametric
uncertainty _ -- - -- -

;°z F I

;°"L _X_.[ C( I .pc ) -, l/./_

Small error in the design model frequency i*J:_ _Jl,

can destabilize the system, " _'2'_ :!::i ,_:_/S_L_

.0-:01

Robustness of MBC's to real parametric uncertainties is an unsolved problem
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CONTROLLER REQUIREMENTS FOR

INTEGRATED DESIGN

• Must be robust to:

- Unmodeled dynamics

- Parameter uncertainties

- Nonlinearities and failures

• Must be implementable

• Must be amenable to inclusion
in an optimization loop

, Dissipative controllers (developed in-house) satisfy these requirements

• More research is needed to obtain even higher performance

STATIC (CONST.-GAIN) DISSIPATIVE CONTROLLERS

O

a) Unmodeled elastic modes

c) Monotonically increasing
actuator nonlinearities

d) First-order actuator dynamics

Use collocated/compatible actuators and sensors

Control attitude and vibration (i.e., rigid and flexible modes)

Constant-gain dissipative controllers:

u = -Gpyp - GrY f.

where G , G are symmetric and pos. def.
p r

Robust stability is guaranteed in the presence of

b) Parameter uncertainties

c) (0,oo) sector sensor nonlinearities
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DYNAMIC DISSIPATIVE COMPENSATORS

Constant-gain dissipative controllers give limited performance

Next logical step is to use dynamic dissipative compensators

Stability robustness is preserved in presence of

- unmodeled elastic modes

- parameter uncertainties

The transfer function from torque input to

nq

= j-i _ ':t',_ir s2 ..... ")

G(s) s + s +2 P,co s+co_

attitude-rate out-put is:

DYNAMIC DISSIPATIVE CONTROLLERS WITH

OUTPUT FEEDBACK INNER-LOOP

o u =- Gz- Gpyp - G y r

0 Z = Acz + Bey r

o Robustly stable if

G , G are symmetric and posdef, and
p r

C(s) = G(sI-Ac)IB c is strictly positive real

Easy to enforce via Kalman-Yakubovich iemma:

C(s) is SPR if 3 P, Q > 0 such that

ATP + PA =-Q G = BrP
¢ c

When zero-freq, modes are absent (e.g., test article),

G, G cart be zero--degenerates to "positivity" controller
p r

DIRECT
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DYNAMIC

W/O

DISSIPATIVE

DIRECT OUTPUT

G(s)

r_0 r- Y_ I YP

CONTROLLER

FEEDBACK

Theorem- Suppose K(s) is asymptotically stable (a.s.) and min. phase,

and [K(jo)/(jo)] > 0 'q real co. Then the closed-loop system is. a.s.

(Joshi, Maghami, Kelkar, GNC Conf, 1991)

K(s) not strictly proper, but can be implemented as strictly proper

using feedback of ypand Yr"

CONDITIONS FOR DIAGONAL [K(s)/s] TO BE

STRONGLY PR

Suppose K(s) = diag[Kl(S), K2(s) ..... K(s)]

where
s:+ 131is + Poi

Ki(s ) = k
i s_-+ c_i s + a0 i

Then K(s)/s is strongly PR if

(7"Ii" Pli > 0

(ZliP0 i- _0iPli > 0

For higher order Ki(s), Sturm's theorem can be applied to get such

conditions

434



DESIGN PROBLEM

* Pose the integrated controls-structures design as a simultaneous
optimization problem

• Minimize the average control power

subject to:

and

J = E{uTu}

T

" E{Ylo s Ylos ] -< E

M £ Mbudget

* Side constraints on structural design variables to accommodate
safety, reliability, and fabrication issues

STRUCTURAL DESIGN VARIABLES

• Structure is divided into seven sections

• The effective cross-sectional areas of longerons, battens and

diagonals are chosen as desi_ variables

• Total of 21 structural design variables
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CONTROL DESIGN VARIABLES

• Static dissipative controller: elements of the Cholesky factor ma-

trix of the rate gain matrix

G_ = L,L T

• Dynamic dissipative controller: elements of the compensator

state and gain matrices (in a controllable canonical form)

AC

0 1 0 ... 0
0 0 1 ... 0
0 0 0 ... 0
0 0 0 ... 1
: : : :

--OLn --0:n--1 --0:n--2 • • " --0:1

; Bc = [il
ATp+PA¢=-Q ; G=BTp

STRUT DESIGN

I Ball

IT Screw

\staoG

"N

\

\- Sffut

• Ideal Design: the effective density remains roughly constant

• Actual Design: the effective density varies considerably with the

effective area

• The design is rather joint-dominated with respect to mass
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STRUT DESIGN CURVES

0.001t

,_ 0.001

• 0 000g

_., 0.0000

_' 0.0007

i
Q 0.0000

0,0005

0.0004

0.0003

Longeron/Battan
, J i

Diagonal
0,00045

i .00042

w 0.00039

0,00030

0,00033

0.0003

0.1

r r I

0.0S 0.1 OAS 0.2 0.25 0.3 0.35 0.4 0.4S 0.2 0.3 0.4 o.s
Effective Aru (In =) Effectlvo ArM (In _)

CONVENTIONAL VS. INTEGRATED

I RMS I Control

IDisplacement I Power
Open Loop / 22.54 l 0.00

(Phase-O) [ IOpen Loop 18.34 0.00

(Phase-i)
Control-Optimized (S) I

Design /Control-Optimized (D)

Design /Integrated Design (S)

2.4 7.11

2.4 I 6.41

2.4 4.21

Integrated Design (D)I 2.4 [3.64

r /
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STRUCTURAL DESIGN VARIABLES

(Static Dissipative Controller)

[ Design Phase-0 I Phase- 1

I0.134 0.330

i 4 I 0.134 I 0.085
I 7 [ 0.134 I 0.173

Lo.gero,,sI 10 I 0.1_4 I 0.260
I 1:_ 1 0.134 I 0.257

I 16 I o.134 I 0.095

-2 o.134 0.082
I _ I o.134 I o.o8._
I 8 I o.134 I 0.082

Battens I 11 I 0.134 I 0.082

I 14 I 0.134 I 0.081
1171 0.134 I 0.081

0.124 0.082

I 6

I 9
Diagonals I 12

I 15
I 18

I 21

0.124 I 0.085

0.124 I 0.082

0.124 I 0.081

0.124 I 0.079

0.124 I 0.079

0.124 I 0.082
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STRUCTURAL DESIGN VARIABLES

(Dynamic Dissipative Controller)

] ,ollgcrolL_

Battens

Diagonals

I Design I

L
I 4 I
171

111 ]

L 131
I 10t

m_t_x:
I s
I 8
I 11

t 14

[ 17

12o
6

9

12

15

18

21

Ph_e-0 Ph_e-1

Are_ Areas

0.134 0.330

0.134 0.080

0.134 0.142

0.134 0,295

0.134 0,258

0,134 0.100

0.134 0,117

0.13,'1 0.077

0.134 0.087

0.t34 0.086

0.134 0.080

0.134 0.078

0,134 0.077

0.134 0.083

0.124 0.098

0.124 0,087

0.124 0.082

0,124 0.066

0.124 0,066

0.124 0.066

0.124 0.083

PERTURBATION ANALYSIS

• The integrated phase-1 design can not be fabricated to exact

specifications due to manufacturing and cost limitations

• Any viable integrated design should allow for possible perturba-

tions in the structural design variables

• Carry out a post-design sensitivity analysis:

LOS(d + 6) = WS(d) + [OLOSlOp]_6+...

POW(d + 5) = POW(d) + [OPOW/Op]T6 +...

• Upper bound values for the rms pointing error and control power

LOSu = LOS(d) + I[OLOS/Op]T]cSmaz

POW[z = POW(d) + I[OPOW/OPiTl6m:_
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PERTURBATION ANALYSIS (CONT'D)

Nominal Design

Perturbed Design

Control Power RMS Pointing Error

4.21 2.40

4.42 (5%) 2.56 (7%)

Fabricated Design 4.34 (3%) 2.38 (1%)

STRUCTURAL DESIGN VARIABLES

(Fabricated Structure)

I Design I

I Var.,I
I 4
I 7 I

Longcrons I 10 I

I 13 I
I 16 I

I':t
I s I
I a I

Battens I 11 I

1141
I 17 I

I 6
I 9

l)iagonals I 12

I 15
I 18
I 21

l'hase-0 Phase-1

Areas Areas

0.134 0.347

[ 0.134 0.106

0.134 0.182

0.134 0.274

0.134 0.274

0.134 0.106

0.134 0.106

0.134 0.094

0.134 0.094

0.134 0.094

O. 134 0.094

0.134 0.094

0.134 0.094

0.134 0.094

0.124 0.087

O, 124 0.087

0.124 0.087

0.124 0.087

0.124 0.087

0.124 0.087

0.124 0.087
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SIMULATION AND EXPERIMENTAL RESULTS

Static Dissipative Controller
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SIMULATION AND EXPERIMENTAL RESULTS

Dynamic Dissipative Controller
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CONCLUDING REMARKS

• Basic integrated design methodology and software tool developed for
Class I CSI problems

" Integrated redesign of evolutionary structure completed:

Provides same LOS performance with 40% less control power

,, Integrated controls-structures design is a feasible and practical
design tool for modern spacecraft

• Additional studies (theory and experiment) are in progress to
improve and extend the methodology
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ROBUSTNESS PROPERTIES OF LQG OPTIMIZED COMPENSATORS

FOR COLLOCATED RATE SENSORS

A. V. Balakrishnan t

Flight Systems Research Center

University of California at Los Angeles

Abstract

In this paper we study the robustness with respect to stability of the
closed-loop system with collocated rate sensors using LQG (mean square rate)

optimized compensators. Our main result is that the transmission zeros of the
compensator are precisely the structure modes when the actuator/sensor
locations are "pinned" and/or "clamped": i.e., motion in the direction sensed is
not allowed. We have stability even under parameter mismatch, except in the

unlikely situation where such a mode frequency of the assumed system
coincides with an undamped mode frequency of the real system and the
corresponding mode shape is an eigenvector of the compensator transfer
function matrix at that frequency. For a truncated modal model -- such as that
of the NASA LaRC Phase Zero Evolutionary model -- the transmission zeros
of the corresponding compensator transfer function can be interpreted as the
structure modes when motion in the directions sensed is prohibited.

P-AGE BLANK NOT FILMED .....
=
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1. Introduction

The robustness of control laws to parameter uncertainty is of particular importance
to Space applications because testing large structures under the micro-g conditions in Space
is not possible on the ground. This paper explores the robustness issue for LQG optimized
compensators using the explicit form discovered by the author for their time and/or
frequency domain representation, whatever the structure model used -- whether it is FEM,
Truncated Modal, or Continuum.

The basic properties affecting robustness of the LQG optimized compensator are
developed in Section 2 and how they relate to robustness is examined in Section 3.
Section 4 deals with continuum models where in particular we show that the transmission
zeros are the modes of the structure when the actuator/sensor locations are "pinned" and/or
"clamped," i.e., motion in the directions sensed is restricted, generalizing the usual
notions for simple beams.

When a truncated modal model is available, the compensator can be expressed
explicitly also in terms of the given modes and mode shape vectors. The transmission
zeros of these approximate compensators are studied in Section 5 and in particular some
numerical results are presented for the NASA LaRC Phase Zero Evolutionary Model.
Conclusions are in Section 6.

2. The LQG Optimized Compensator

To state the LQG problem, we begin with the canonical time-domain dynamics of a
flexible structure with collocated rate sensors which, whether it is a Finite Element Model
or Truncated Modal model (and hence finite dimensional) or a Continuum Model (and

hence infinite-dimensional), can be expressed in the form:

MYc(t) + Ax(t) + Bu(t) + BNa(t ) = 0

v(O = n*_(t) + N,(O

where in the case of FEM,

M

A

B

u(')

x(.)

No(.)

v(.)

B*

Nr(')

is the mass matrix (nonsingular, nonnegative definite)

is the stiffness matrix (nonsingular, nonnegative definite)

is the control matrix (rectangular matrix)

is the control vector (n×l, assuming n actuators)

is the "displacement" vector

is the actuator noise assumed white Gaussian with spectral

density dal, I being the n×n Identity matrix

is the sensor output

represents the transpose of B

is the sensor noise assumed white Gaussian with spectral density dr/.
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For the Continuum Model such a representation continues to hold, however compli-
cated the structure, with x(.) now allowed to range in a Hilbert space _t, with A, M, B
being linear operators:

M bounded linear, self-adjoint, nonnegative definite with M-1 bounded;

A closed linear, self-adjoint, nonnegative definite with compact resolvent,
the resolvent set including zero

B maps E_ Euclidean n-space into _t, and

B* represents the adjoint of B.

See [1, 2].

The LQG problem we shall consider is that of finding the control u(') (or equiva-
lently the optimal compensator) that minimizes the mean square time average of the rate:

l im IlB*k(t)ll 2 dt + Ilu(/)lla dt
T_ 0

where _. > 0.

It is shown in [1, 3] that under the "controllability" assumption that

(2.2)

B*¢ k _: 0

for any k, where ¢Pk are the modes orthonormalized with respect to the mass matrix:

A_k = C02M_k ; [MCk, Ck] = 1 , (2.3)

the optimal compensator transfer function (nxn matrix function) can be expressed in the
explicit analytical form:

_(p) = gpB*(p2M + A + ypBB*)-I B , Re. p > 0 (2.4)

where

g = _; Y = Ngla]d r +

Moreover, the corresponding mean square control power is given by

(2.5)

1 T da
1 im _f Ilu(t)ll 2 dt = --Tr.(B*MB) -1 (2.6)
r-,= 0 24- 

and the corresponding mean square displacement is:

1 im f IIB*x(t)ll 2 dt Tr. B'A- B
I

T-*_ 0
(2.7)

See [4] for the corresponding time-domain version of (2.4). From (2.3) we can
deduce readily that
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(i) As _,.40, g.4_ and _'.4_, we note that §-4_ and hence

v(p) - tq2amr

where the right side is recognized as is the optimal "static" or "direct connection" or
"PID" controller. Note that as _. -4 0, the control power given by (2.6) becomes infinite,

as we expect.
(ii) W(p) is "positive real" -- that is to say:

_(p) holomorphic in Re.p > 0

_(p) + _(p)* nonsingular, and positive definite, for Re. p > 0

where * denotes conjugate transpose. We shall prove this directly, here, even though it

may be deduced from the results in [1]. In fact

(p2M + A + "ypBB*)x = 0

implies that
p2[Mx, x] + [Ax, x] + "yPlln*xll2 = 0

and normalizing so that
[Mx, x] = 1

we obtain
p2 + ,tPllB.xll 2 + lAx, x] = O.

Because of our assumption that B*_ k is not zero for any k, we see that

IlB*xl[ > 0

and hence
Re.p < 0.

This is enough to imply that in the finite-dimensional case:

(p2M + A + "ypBB*) -1

is holomorphic in Re.p > 0. In the infinite dimensional case the fact that A has a

compact resolvent implies that so does

p2M + A + ypBB*

and hence it follows that
B*(p2M + A + TpBB*)-|B

is holomorphic in Re.p > 0,
Next let us calculate

and in fact is an _t** function.

V(p) + Re.p > 0.



Wehave

_¢(p) + _(p)*
2 B*(p2M + A + "tpBB*)-1

• [[p[2(p + fi)M + (p + fi)a + 2y[p]2BB*](fi2M + A + yfiBB*)-I B

which is > 0, since

Ip[2(p +-fi)M + (p + fi)A + 2ylpl2BB *

is, for Re.p > 0.
In particular for

p = ico, --_<co<o¢

we have

w(ico) + _(ico)*
2 = )'co2_(ico) w(ico)* "

This leads to an important result which we state as:

(2.8)

Lemma 2.1

Suppose for some co, --_ < co < _,,

Re. [_I/(ico)v, v] = 0 for some v. (2.9)

Then

_(ico)v = 0 (2.10)

and if c0_: 0,
B*(-co2M + A)-1Bv = 0 . (2.11)

Proof.

which by (2.8) is

Re. [_(ico)v, vl = [[X[/(ico) + _t(ico)* )
)'co211_(ico)*vll 2

and hence (2.9) is equivalent to:

collw(ico)*vll = 0.

If co -- 0, _t/(ico) = 0 and hence
If co is not zero,

or

B*(-CO2M + A - iycoBB*)-IBv = O.

Let

(-CO2M + A - iycoBB*)-IBv = x

or

Bv = -co2Mx + Ax - iycoBB*x.

v, v]
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Since
B*x = 0,

we have
Bv = (-o}2M + A)x

and co is not an eigenvalue of A, since B*x -- 0. Hence

B*(-o32M + A)-lBv = 0.

Corollary.
Except for co = 0, the zeros of

Det ]w(i6o) + w(i¢o)*l

in --oo < co < o¢ are the same as those of

Det ]B*(--o_2M + A) -l BI = 0

and in particular independent of g and y, for g + Y < o0.

Proof.
Det Iw(io}) + w(ieo)*l = 0

implies that
[Qg(io}) + _l/(io3)*)v, v] = 0 , v#0

and hence by the lemma,
w(i_)*v = 0

and since to _ 0,
B*(-o_2M + A)-I Bv = 0

or,

Det IB*(-o_2M + A)-IBI = O.

Conversely if
Det IB*(-02M + A)-IBI = O,

so that
(B*(-o}2M + A)-IB)v = 0

let
(-032M + A)-lBv = x.

The n
Bv = -032Mx + Ax = --o}2Mx + Ay:i: y(io3)BB*x

for arbitrary value of y, since B*x -- 0. Hence

B*(-032M + A + T(io3)BB*)-I Bv = 0
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or

or

(_(ioa) + _¢(im)*)v = 0

Det [_(im) + _(im)*l = 0.

3. Robustness

The robustness of concern is that with respect to parameter uncertainty, in particular
in the mode frequencies mk. Thus we want to be able to assert that the closed-loop

system is stable even if the parameters chosen for the compensator transfer function _(.)
are incorrect. Now the closed-loop transfer function corresponding to the compensator
transfer function W(.) is given by

(p2M + A + gpB_(p)B*) -1

Let p be a pole of (3.1), so that for some x, 0,

p2 Mx

Then

where [Mx, x] > O.

(3.1)

If p=0, then

+ Ax + 7pB_(p)B*x = 0. (3.2)

p2[Mx, x] + [Ax, x] + 7p[BIg(p)B*x, x] = 0

Ax = 0

which is not possible since zero is not an eigenvalue of A -- this property of the system
is assumed to be known with certainty. If p _ 0, we may divide through by p to get

p[Mx, x] + [Ax_ x] + 7[B_(p)B*x, x] = O.
P

Let

Then

p = _ + ico, __>0.

o_[Ax, x ]
C_[Mx, x] + _2 + O.2 + 7[B(v(p) + _(p)*)B*x, x] = 0. (3.3)

Suppose ot > 0. Then by the positive real property, the third term in (3.3) is positive and
the first two terms are of course positive, and hence the sum cannot be zero and hence e_
cannot be positive. Consider next the case ot = 0. This yields

(io3)[Mx, x] - i[Ax, x] + 7[B_(ioa)B*x, x] = O.OJ

For this to hold, it is necessary that

Re. [B_t(ioa)B*x, x] = 0

where B*x cannot be zero. Hence, by the lemma

_(im)B*x = O, B*x ¢ 0 .
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But this in turn by (3.2) would imply that

_o32Mx + Ax -- 0; B*x _ 0 t (3.4)
w(ico)B*x = 0

In other words an undamped mode-frequency of the system must coincide with a zero of

_(ico) corresponding to the same value of B*x ("mode shape at the sensor location").
Thus we have robustness with respect to stability so long as this is insured against. Be-
cause of the coincidence requirement on the mode shape in addition to the frequency, this

is highly unlikely if the controller dimension (number of actuators) is higher than one.

4. Continuum Models

For the case of the continuum model, whether explicit or conceptual, we can relate
the zeros of the compensator transfer function to the model in a simple way -- viz., we

can show that they are the "pinned" and/or "clamped" mode frequencies of the structure

or a slight generalization thereof.
We begin with the general case of a multi-beam model as the NASA LaRC Phase

Zero Evolutionary Model [5]. Here the state variable x(.) has the form (see [2]):

where f(') represents the displacement (6x l) vector and b the corresponding "boundary"
values at the nodes, and thus a finite dimensional vector. Also

IA°f I
Ax = IAbfl

x _ _(A)

I °= BuU I
¢¢(where BuB u is nonsingular)

where the dimension of U (the control vector) can be smaller than that of b, and B u

maps U into the finite-dimensional space spanned by b. In this case

Det [B*(-02M + A)-IBI -- 0 (4.1)

and equivalently, for some v:

(_02M + A)x = Bv;
B*x = 0 ;

which under the notation:

X
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becomes:

-co2Mof + Aof = 0 (4.2)

B*b = 0 (4.3)

-co2Mbb + Abf = Buv (4.4)

The condition (4.4) is superfluous since v is not specified and all we require is that v
and hence Buv be nonzero. Thus the transmission zeros are the eigenvalues of the
differential operator A0 with the "boundary condition" specified by

-co2Mof + Aof = O; B*b = O . (4.5)

These are recognized as structure modes when the control/sensor locations are "pinned"
and/or "clamped" -- motion in the directions sensed is not allowed. The structure modes
when all nodes are clamped are of course given by:

-co2Mof + Aof = O, f _ 0 )b = 0. (4.6)

If all nodes are control nodes so that B u is the identity, these are also transmission zeros
but not in general because of the additional condition (4.4).

As shown in [3], (4.1) can be further reduced to:

[B*u(-co2Mb + T(ico))- 1Bu I = 0 (4.7)

where the "clamped" mode frequencies given by (4.6) are the "poles" of the matrix T(ico).
A textbook example of (4.7) is provided by the torsion of a one-dimensional beam

with one end clamped and the other end the control node. Here T(ico) is given by (see
[3] for details):

T(ico) = _ lwcO cot (2£ O'S)co

and hence the compensator transmission zeros are given by

sin (2g 9"_)c0 = 0

or

nK
co -

whereas the structure undamped modes are given by

mco = (p_)lv cot(2g 9__)C0.

Note that asymptotically these frequencies merge -- a phenomenon which can be proved
to hold generally. In this (one-dimensional) case the zeros and poles of

(-cO2m + T(ico))

alternate (an instance of Foster's Theorem familiar in classical circuit analysis [6]) and
hence also the compensator transmission zeros and undamped mode frequencies -- but
this is no longer true in general in the multidimensional case.
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5. Truncated Modal Model

Truncated Modal models provide both the (undamped) mode frequencies tok and the

corresponding mode shapes (column vectors of dimension equal to the control dimension)

B*% at the sensor locations up to a maximum frequency allegedly adequate for faithful
representation of the structure. Assume thus that tok, B*% are given for k = 1, ..., N.
Then we may consider this the "truth model" and the corresponding optimal compensator
transfer function takes the form (see [4]):

gpBi_(p2l + DN + ypBNBi_)-lBlv (5.1)

where
DN = Diag. (cot2, ...,

Ba = IB**, B**2 "'"

(B*_ 1)* ]B N = !

I (B*t_/v)* N×.

where n is the control dimension (equivalently, the number of actuators). It is assumed

that N is large enough so that the nxn matrix:

BgBN

is nonsingular. Then omitting co = 0, the transmission zeros of the transfer function (5.1)

are given by
DetlB/_(__o21 + DN)-1BNI = 0. (5.2)

For large enough N we should expect these frequencies to closely approximate the
structure mode frequencies when motion is restricted along the directions sensed at the

actuator/sensor locations. In particular if the theoretical values of the latter are known, we
have a means of checking the faithfulness of the truncated model.

For the NASA LaRC Phase Zero Evolutionary Model [5], the truncated modal model
has 86 modes. For the corresponding mode shapes as determined by the LaRC team, the

frequencies for which (5.2) hold are shown in Figures 1 through 6, where the minimum
absolute value of the eigenvalues of

B_(-to2l + DIV)-I BN

is plotted as a function of omega for N = 86. Note that all the eigenvalues are positive
for to < tol and negative for to > (oN. Figure 1 shows the entire range from 0-300

radians/second. Figures 2-6 show more detail of the behavior over narrower ranges.
The dependence of zeros on the depth of the modal approximation is illustrated in

Figures 7, 8, 9, la, 2a, 3a, 4a, 6a and 10a for N = 8, 16, 30, corresponding to
o38 = 10.921, to16 -- 25.225, 0)3o = 53.132, respectively. Note that for the 8-mode model
there are no zeros at all, while the 16-mode model shows three zeros (in the range 0-25

rad/sec). The 30-mode model shows excellent agreement with the 86-mode model for to

up to 003o -- 53.132, comparing Figures 1 and la, 2 and 2a, 3 and 3a, 4 and 4a, 6 and 6a,
and finally Figures 10 and 10a show the expected divergence for to > 0)3o. For illustrative

purposes we list the first few zeros for the full 86-mode model in rad/sec:
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(5.4913)

6.575

8.75

(9.2580)

(14.46)

14.7

(15.26)

where the numbers in parentheses are the nearest undamped mode frequencies.

6. Conclusions

It is shown that the optimal compensator transfer function for LQG rate minimization

for flexible structures with collocated rate sensors has transmission zeros at frequencies to
the modes of the corresponding continuum structure when the control-sensor locations are

"pinned" and/or "clamped" (motion in the directions sensed is curbed). In particular the
compensator is robust with respect to stability so long as any such mode of the assumed

system does not coincide with an undamped mode frequency of the real system and the
corresponding mode shape at the sensor locations is an eigenvector of the compensator
transfer function matrix at that frequency. For Continuum Models the transmission zeros
are shown to be the poles of a matrix function related to the undamped modes. Calcu-
lations of the zeros are given for the truncated modal models of the NASA LaRC Phase
Zero Evolutionary Model illustrating the dependence on the number of modes used.
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Abstract

Following the general form for LQG optimal compensators for flexible

structures with collocated rate sensors we develop an explicit compensator

transfer function for the NASA LaRC CSI Evolutionary model in the form:

_t(ico) = gicoB*(_MbfO2 + T(ico) + igtoBuB*)-l Bu

where T(ico) is a 48x48 positive definite matrix whose derivation is the

main result of this report. The undamped mode frequencies can be expressed

in terms of T(i¢o) as the zeros of

Det I--m2Mt, + T(ic0)l

while " "
clamped-clamped modes of the structure (with all nodes clamped)

are the poles.

1. Introduction

In this paper we present an explicit compensator transfer function for the NASA

LaRC Evolutionary Model [1], using the Continuum Model developed in [2]. In particular

the notation follows closely that in [2]. The compensator is obtained upon specialization

of the general development in [3].
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2. Compensator Transfer Function

The optimal compensator transfer function is given by (see [3]):

-P-- "J-daldr B*(p2M + A + pTBB*) -I B .

The main step is to calculate

_(p) = B*(p2M + A + pTBB*)-IB .

We shall consider only the Continuum Model in [2] (case 3) in which the main bus, the

tower and the appendages are flexible but the antenna is lumped.

Let

 (p)v = u

B*(p2M + A + p'/BB*)-I Bv = u .

Let

The n

(p2M + A + pTBB*)-1Bv = [fbl "

p2Mof + Aof = 0

where f is also subject to the "linkage conditions" (see [21),

p2Mbb + Abf + pTBuB*b = Buy

and

We shall now specialize to p -- ion,

To solve (2.1), we let

21

Z = i '

_8

(2.1)

(2.2)
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where

Let

if p = i03,

z_ = f(O, O, O)

z2 = fAO, O, O)

z3 = fy(s2, 0-, O)

z4 = fy(s2, 0+, O)

zs = L(Sr, O, 0+)

z6 = fx(s4+, O, O)

z7 = fy(_5, 0-, o)

z8 = fy(ss, 0+, O) .

._(_p2) =
0

A-2 1 (Ao + p2Mo)

a_(-p 2) = d(0))

in the notation of [2]. From now on, let p = ito. Let

P1 i(s) PiE(S)

P21(s) P22(s)

and

e_S2(O_)s= l Ps2.11(s) Ps_.tz(s) I
PS2,21 (S) PS2,22(s)

and dSr , As5 as before in [2]. Then

f(s, O, O)

fx(s, O, O)

O<s<s 2

467



and

Ii s200 I it= e'd(t°)s2

fx(s2-, O, O) z2

[f(s2's'O) ] = e,lS2(Co)slf(s2'O'O)] ,
fy(s2, s, O) ! z3

-£n, < s < 0

fCs2,0,O) I
= e'JS. (c°)s [ , 0 < s < £n •

Z4 I

Let us now display the values at the nodes only. Then going along the main bus: by

Linkage Condition (2) (in [2]):

fx(s2+, O, O) = fx(s2-, O, O) + A21A2.s2(Z3 - z4) .

Hence

I f(ST' O' O) I = ed(CO)(Sr-S2) [ f(s2'O'O) [
fx(sr-, O, O) Ix(s2+, O, O)

and

f(s4, 0, 0) I = eaCO)(s,__r ) f(sr.0,0)

f.Cs4-, O, O)l f.Csr+, O, O)

By Linkage Condition (1) (in [2]):

f_(sr+, 0, 0) = f_(sr-, O, O) - A-2i (L n,rf(sr,O,O) - A2,rzs)

L(ss-, O, O) z6

and finally

f(L, 0, 0) I = e_(O_)(t._s, )
fx(L, O, O)

f(ss, O, O) [

If_(ss+, O, O)
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where by Linkage Condition (3) (in [2]):

fx(Ss+, 0, 0) = fx(ss-, 0, 0) + A2,s,(Z 7 - zs) .

Next:

f,(s r, O, Lr) z5

i,,s5 20,f ,s jfy(ss,-£2, O) e z7

i o,I j ss.o.o,je o

f,(ss, +g2, 0) zs

Hence we can calculate f(-, -, .) as

f = g(_)z.

In particular we can calculate b in terms of z. Let

b = Lb(o)z

where Lb(co ) is a (matrix) function of O. Let b ---col. (bl ..... bs) and

Lb = {Lq}, each Lij being 6x6.

Then

bl = Zl; Lll = 1, Lli = O, i _ I

b2 = f(s2,-£1, O)

= Ps,,ll(-gl)f(s2,0, O) + Ps2,12(-gl)z3

= Ps,,ll(--e'l)[PIl(S2)Zl +e12(s2)z21 + es,,12(-_l)Z3.
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Hence

b3 = f(s2, +tl, O) =

L31

L32

L33

L34

= f(s r, O, LT)b4

L21 = Ps2.11(-£1)Ptt(s2)

L22 = Ps,.I I(-£t)P12(s2)

1-.23 = Ps2,1X(-l_t)

es2,1 1 (+_'!)( el I(S2)Zi + P12(s2)z2)

= PS2,1 1(£1)PIl(s2)

= PS,.llP12(s2)

= 0

= PS2,12(_1)

Ps r ,t i (L"r)[Pt t(sr - s2)(Pt l(s2)zl + PI2(S2)z2)

+

+ Ps2,t2(gt)z4

+ Pt2(s T -s2)(P2t(s2)zl + P22(s2)z2 + A-21A2,s2(Z3 - z4))]

PS r' 12 (L'r)Zs

L4t = Ps_.i l(br)[Ptt(sr - s2)Ptt(s2) + P12(Sr - s2)P12(s2)]

L42 = Ps r,! I(LT)[PiI(ST - s2)PI2(S2) + PI2(ST - s2)P22(s2)]

I-,43 = Ps_,i 1(Lr)(Pt2(sr - s2)A-2 t A2,s2)

L4,, = -Ps r,l 1(LT)Pt2(ST - s2)A-21 A2.s2

L,I5 = PST,12(LT)
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b5 = f(s4, O, O)

LSI = Pll(sa - sr)Pll(s r - s2)Ptl(s2) + PIl(s4 - sr)P12(Sr - s2)P21(s2)

+ PI2(S4 - ST)P21($T - s2)Pll(S2) + P12($4 - sr)P22(s r - s2)P21(s2)

-- P12(s4 - ST)P22(ST - s2)A-2 iL l ,z{Pll(S r-s2)Pl l(S2) + P12(s T-s2)P2 l(s2)}

/-'52 = Pll(S4 - ST)PII(S T - s2)Pl2(S2) + Pi2(s T _ s2)P22(s2)

+ Pl2(s4 - ST)PzI(s r - s2)PI2(S2) + P12(s4 - sr)P22(s T - s2)P22(s2)

- e12(s4 - sr)e22(sr - s2)A-2 1L 1 .r{e11(s r-s2)e12(s2) + P12(s r-s2)P22(s2)}

L53 = Ptl(s4 - sT)PI2(s r - s2)A_IA2,s, + Pi2(s4 - sr)P22(s r - s2)A_IA2.s2

- PI2(s4 - ST)P22(s r - s2)A_lLl .r{P12(s r - s2)A_IA2.s, }

Ls4 = -PlI(s4 - sr)P12(s r - s2)A_I A 2's_

+ P12(s4 - sr)P22(sr - s2)A2 I L 1 .r {e12(sr - s2)A-21A2.s, }

L55 = PI2(S4 - ST)P22(s T - s2)A21A2,T

b6 = f(s5, -g2, O) = Pss.11 (-g2)(ell(S5 - $4)b5 + Pt2(s5 - s4)z6)

L6i = Ps,.I I (-_2)Pll(S4 - s5)bsi ,

L66 = Pss,1 1 (-g2)P12(s4 - $5)

L67 = ess,l 2(-1_2)

b7 = f(s5, +_2, O)

LTi = Pss,I I(£2)PII(S5 - s4)L5i ,

L76 = PSn. I I(_2)PI2(S5 - s4)

L77 = 0

+ Pss.1 1( -g2)Z7

i<5

i<5

L7s = PS_,I2(_2)
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bs = f(L, O, O)

Lsi --- [PII(L - ss)Ptl(s5 - s4) + Pt2(L - ss)P21(s5 - s4)]Lsi ,

/-'86 = P1I( L - s5)Pt2(s5 - s4) + P12( L - ss)P22(s5 - s4)

47 = P12(L- ss)A-21A2,ss

48 = -P12( L - ss)A-21A2,ss

Hence

Lb(_ ) =

! 0 0 0 0 0 0 0

_ _2 _3 0 0 0 0 0

_t _2 _3 _4 0 0 0 0

_t _2 _s _4 _5 0 0 0

41 42 4s 44 4s 0 0 0

4t 42 43 44 4s _6 _7 0

_i _2 _3 _4 L75 _6 0 _g

41 42 43 44 Lg5 46 L87 48

Suppose co is a transmission zero of w(ico):

then in the notation

we have

Suppose for some z:

w(ico)v = O,

Aof = co2Mof

Abf = Buv+ co2Mbb ;

LA(co)z - co2MbLb(co)z -- BuY.

(La(co) _ co2MbLb(co))z - O.

v* O,

B*b = 0

i<5
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The n

and hence

which would imply that

which is a contradiction. Hence

where

-O)2Mb b + Abf = 0

-O)2Mof + Aof = 0

co is an undamped structure mode

B*b _ 0

.f = Z(o_)z

B_Lb(_)z = O, z _ 0

and conversely. Hence the transmission zeros of _t(io)) are precisely the zeros of

Det IB,,B*Lb(to)] = O .

These values of co are then the "clamped-clamped" modes of the articulated structure:

-O_2Mof + Aof = O, f _ 0 }
B*b = O.

and a subset of these corresponding to b = 0 or Lb(tO)z = 0 are the clamped-clamped

modes of the unloaded structure (every node is clamped). Let us consider first to such that

DetlLb(o))l _ 0

so that we can invert Lb(o) ). We have:

b I = z I

b2 - L21b I = L22z 2 + L23z 3

b 3 - L31b I = L32z 2 + L34z 4

b4 - L41b I = L42z 2 + L43(z 3 -z4) + L45z5
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where

z5 = L-5_(b5 - Lslzt - Ls2z2 - Ls3z3 - L54z4)

These four equations can be solved for zl, z2, z3, z4, in terms of bl ..... b5, and then

z5 can be expressed in terms of b5, b4, b3, b2, hi. Next

b6 -Pss,ll(-g2)Pll(s5-s4)b5 -- b6 -- L_6z6 + L67z7

b7 -PS_,II(£2)PIl(s5-s4) b5 = b7 = L76z6 + LTszs

b8 - (PIt(L - ss)Pil(ss - s4) + PI2(L - ss)e21(ss - s4))b5

= b8 = L86z6 + L87z7 - LgTZ8 •

These three equations can be solved for z6, z7, z8 :

LsTL617(b6 - L66z6) - LgTL_Cb7 - La6z6) = /_s - L86z6

L87L61b6 - Ll_TLTlgb7 -- b8 = (L87 L_/L_6 - L87L7_L76 -L86)z6 "

He nce

Z6 = (L87L_L66- LsTLT/L76-/_6)-' (LgvL617b6 - /-_7L7_b7- bs)

z7 = L61(b6- L66z6)

z_ = L_(g_ - L_:,).

Hence

z = Lb(o3) -lb , DetlLb((°)l _ 0.

Next let

Abf = LA Z .

Let us determine La • Now from the form of Abf,
it is convenient to break up L A as

+ LALtt -- LA i 2
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where

and {bi}

so that

-Li bl

-Lt ,$2b2

LI ,s 2b3

L! ,Tb4

0

-LI ,$5b6

LI ,s sb7

Ltbs

have been determined in terms of z i. Next let

LA z = h

h ! = -A21z 2

h4

h5

h 2 = -A2,s2Ps2,21(-£i)[PI2(S2)Zl + P12(s2)z2] - A2,s2Ps2,22(-_I)Z3

h 3 = A2,s2Ps2,21 (IL1)[Pll(S2)Zl + P12(s2)z2] + A2,s2Ps2,22(-ILI)Z3

= A2,Sr {Ps r,22(LT)z5

+ Ps r,21 (LT)[PI I(ST -- s2)(PI I(S2)Zi + P12(s2)7.2)

+ P_2(sr - s2)(I'21(s2)zl + P22(s2)z2 + A21A2 ,s2 (Z3--Z4))]}

= A2 [P21(s4 - sr)[Pz i(sr - s2)(ell(S2)Zt + Pt2(s2)z2)

+ I'_2(sr - s2)(e2_(s2)zi + e22(s2)z2 + A-21A2,s2(Z3 - z4))]

+ /'22(s4 - sr){P21(sr - s2)(el I(s2)zl + e12(s2)z2)

+ e22(sr - s2)(e21(s2)zl + e22(s2)z2 + A-2 l A2,s2(Z 3 - z4) )

- A21 L! ,r [Pit (sr-s2)(el t (s2)zl + Pj 2(s2)z2)

+ P,2(Sr-S2)(e21(s2)zl + P22(s2)z2 + A21A2,s2 (z3-zn))]

+ A21A2,rz5}]
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/16 = -A2,s s {PSs,21 (-_'2)( pl l(s$ - s4)b5 + PI2(s5 - s4)z6) + Pss,22 (-£'2)z7}

h7 = A2,S, {Pss,21 (g2)( Pi I(s5 - s4)b5 + PI2(S5 - s4)z6 + Ps_'22(g2)zg}

hg = A2{P21(L - ss)[P11(ss - s4)bs + PI2(ss - s4)z6]

+ P22( L _ ss)[P12(s5 _ s4)b 5 + P22(s5 _ s4)z 6 + A2 ! A2,ss(z7 - zg)]} •

Hence finally, in terms of L a and L b, (2.2) becomes

(--O2MbLb + LA + 7icoB.B*Lb)Z = Buy.

Lb(CO) is nonsingular we can write:

u = B*b = B*Lb(--CO2MbLb + LA + "YicoBuB*Lb)-iBuV

= B*(-CO2Mb + LAL-bI + _ficoBuB*)-iBuv.

For co such that

Here

and

Bu is 48 x 8

B* is 8 x 48

(-co2M b + L/tL-b I + yicoBuB*) -I

and is conveniently broken up into 6x6 blocks, denoted

D = {Dij},

We can now calculate

B*DB u .

Now

nuu

ButU

Bu,u

is 48 x 48

i,j = 1,...,8 .

where each Bui is 6X8, and letting
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we have

Hence letting

and Writing

Ul

U2
U ---

U8

Bu,u = col [0, u 1, u2, O, O, 0 ]

Bu_ = Bul.= 0

Bu, u = col [u3, u4, 0, 0, 0, 0]

B,,su = col[0, us, u6, 0, 0_ 0]

Bu_ = Bu_ = 0

Bus u = col [UT, Us, 0, ---40u8, 40u7, 0].

8

8

B*b = Y.B*ib i = B*,b I + B'b4 + B*sb s + B*sb 8
1

u

v

w

h = _1

'2

'3

B*h -- col[v, w, 0, 0, 0, 0, 0, 0 ]

B*h = coil0, 0, u, v, 0, 0, 0, 0]u,

B*sh = col[0, 0, 0, 0, v, w, 0, 0]

B*sh = col[0, 0, 0, 0, 0, 0, u+40_2, v-40d_l 1.
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He nce
8 8 8

8

+ B*t _1 DsjBuj v

B*t(DIIBu, + DI4Bu,

+ B*u,(D41Bu , + D44Bu,

+ B*s(DsIBu I + Ds4Bu,

+ B*t(DsiBu , + Ds4Bu,

+ D1SBu 5 + DIsBu,)V

+ D45B_s + D48B..,)v

+ DSSBu s + DssBus)v

+ DssB_s + DssB..,)v •

This shows in particular that we do not need to calculate all the Dij. Also the controls

at location S i, i-- 1,4,5,8 are given by

B*(DilBu,. + Di4Bu, + Di5Bus + DisBut )v = B*i DiiBuiv + j_iy" B*u'DijBujV '

where the first term involves only the sensors at locations S i,

represents the coupling to sensors at other locations. Also

and the summation

B* DllBulV

Di 1,22 vl + DI 1,23 V2

DI ! ,32VI + D11,33 v2

0 /iiV2

8

where

DI1 = {Dn.q}, i,j= 1..... 6.

Similarly

Bu*, D44 Bu,t

0

0

D44,11v3 + D44,12v4

D44,21v3 + D44,22v4

0

0

0

0
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B*usD55Bu 5

0

0

0

0

O55,22v5 + O55,23v6

O55,32v5 + D55,33v6

0

0

B*usD88Bus =

0

0

0

0

0

0

(D88,11+40D88,15)v7 + (D88,12-40Dss,14)v8

+ 40{(D88,5 ! +40D88,55)v7 + (Dsa,52-40Dss,54)vs}

(Dss,21+40D88,2s)v7 + (Das,x2-40Das,24)v 8

+ 40{(D88,41 + 40D88,45 ) v7 + (D 88,42 -40D88,44 )v8 }

It must be noted that in terms of feedback

= _(o)

= #(o)

= a(sr) +

= +(sT)-

Vl

v2

v3

v4

v5

v6

v7

the dot denoting derviative.

V8

100+2(S T)

lOO¢_(sT)

= +(S4)

= rv(S4)

= k(L) + 40+2(L )

= 9(L) - 40$1(L),
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Let

T(io3) = L A (03)Lb(CO)- t

so that the poles of T(io_) are the zeros of Lb(0)). We shall show that T(ito) is self-adjoint

but not nonnegative definite! Let bl, b2 be arbitrary real, and let

Then

[Axl, x2]

Similarly

Since

we have

Lb (co) -I b_

L b(cO)-lb2 = z2

A = Z(co)zt

A -- £(o_)z2

x, I::1 I I
= ' x2 = b2 I "

= z I

= [Aofl,f2l + IAbfl,b2l -- o2[Mofl'f2l + lAbfl' b2l.

IAx2, xl] = IAbf2, bll + c02[Mof2, fll •

[Axt, x2] = [Ax2, xll

or,

Hence

IAbf 2, bl] = [Abfl, bz]

[Abf 1, b21 = [LA(LO)Lb((O) -i bl, b2] = [Abf2' bt] = [LA(tO)Lb(O))-I b2' bl].

T(io)) is self-adjoint. Next

[T(io))bl, bl] = [Abfl, bl] = [AXl, Xl] - 0)2[Mofl, fl] •

Hence T(io3) is not nonnegative definite. Note finally that the structure modes frequencies

can be expressed:

Det [-o)2Mb + T(ico)l = 0.

480



References

[1] "Langley's CSI Evolutionary Model: Phase Zero." NASA TN 104165. November 1991.

[2] A.V. Balakrishnan. "Modes of Interconnected Lattice Trusses Using Continuum

Models, I." NASA CR 189568. December 1991.

[3] A.V. Balakrishnan. "An Explicit Solution to the Optimal LQG Problem for Flexible

Structures with Collocated Rate Sensors." In: Proceedings of the 5th NASA-DOD CSI

Technology Conference, Lake Tahoe, Nevada, March 1992.

481





N94- 35892

RATIONAL POSITIVE REAL APPROXIMATIONS

FOR LQG OPTIMAL COMPENSATORS

ARISING IN ACTIVE STABILIZATION OF FLEXIBLE STRUCTURES

A. De Santis

IASI-CNR, v.le Manzoni 30, 00185 Rome, Italy.

SUMMARY
J

I "

In this paper the approximation problem for a class of optimal compensators for

flexible structures is considered. The particular case of a simply supported truss

with an offset antenna is dealt with. The nonrational positive real optimal

compensator transfer function is determined, and it is proposed that an

approximation scheme based on a continued fraction expansion method be

used. Comparison with the more popular modal expansion technique is

performed in terms of stability margin and parameters sensitivity of the relative

approximated closed loop transfer functions.

INTRODUCTION

The problem of active stabilization of flexible structures with collocated sen-

sors/actuators is addressed. In particular, the case of an offset antenna linked by

a truss to the Shuttle body is considered. A general theory has been already es-

tablished in [1] as optimal LQG problem for abstract wave equation_. The results

obtained were applied in [2] to design an optimal compensator for the antenna vi-

brations suppression after a slewing action, by modelling the truss as a mliform

Bernouilli beam, simply supported at tile Shuttle end, with rate-sensor/actuator

collocated at the antemm end. The compensator transfer function was determined

as nonrational, positive real function. This class of'functions was shown to pro-

vide robust stabilizers for vibrating systems, even in the case of lumped parameter

systems [3J. Nevertheless, rational approximation schemes are needed in order to

instrument the compensator. A technique usually adopted is the modal expansion,

and a typical controller realization can be found in [3] as a bank of filters, centered at

the frequencies of the system undumped modes. Other methods can be borrowed

from networks synthesis framework, where the rational approximation of positive

real functions is a standard problem in telecommunications filters design. Standard

references on these problems are [5], [6]. Despite a good approximation of some



characteristicsof tile frequency response (amplitude, real part, etc.) can be ob-

tained, the positive real character of the approximating function is not guaranteed,

as opposite the modal expansion does for the class of systems considered. This

is crucial in our control problems since, as mentioned above, positive realness en-

sures the structure stabilization. Anyway, the main drawback is just the modal

frequencies computation, obtained by solving a transcendental equation.

Ill this paper tile compensator transfer function is explicitly computed in tile

vector case of yaw torsion plus roll bending deformation. It is shown to converge

to a diagonal constant matrix as the control energy increases without bound. Ra-

tional positive real approximations are deviced via a continued fraction expansion

technique [7]. Approximations of any order can be easily derived, with coefficients

straightforwardly related to the system parameters. Moreover, the positive real

character is guaranteed. The performances of the approximated closed loop trans-

fer function are evaluated. Comparison with the modal approximation method is

performed in terms of stability margins and sensitivity to parameters variations.

THE OPTIMAL COMPENSATOR DESIGN

We resume in this section tile known results about the model and the LQG

problem for the case of a simply supported uniform Bernouilli beam with an offset

autemm, with rate-sensor/actuator collocated at the antenna end [2]. Actually, the

particular case of roll bending deformation (z axis) plus yaw torsion (z axis) is

considered. In the sequel uO(t, s) denotes the x axis displacement and u_/.(t, s) the

angular displacement about the z axis; t and s E (0,1) indicate the time variable

and the space displacement along the beam axis, respectively. The starting point

is the following state space model

M2(t) + Az(t)+Bu(t) + BN,(t) = 0
(1.1)

= zr (t)+ lvo(t) 0.2)

where

x(t) E Hilbert Space

M: linear bounded, self-adjoint positive definite operator on _ onto _,

bounded inverse

A : closed linear operator with domain dense in _/and range in

with
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u(.) : the control input E E", Euclidean n-space

B : linear mapping E'" _ 7-I

Ns(.) : white Gaussian noise with spectral density dsI, where I is the identity operator
of suitable dimension

No(.) : white Gaussian noise with spectral density doI, independent of Ns(.)
v(.) sensor data.

The definiton of operators A, M and B, as well as the definition of the space

_, embody the beam plus antenna dynamical model and the boundary conditions

stated in [2]. For convenience we report these definitions:

X

-_,,(.)-
ue,(.) i
'_¢(0
'4(0

.ue,(t)

; Ax =
Alf]Abf

-GI -": '
e,ue,t.')

= -EZ, u;;'(0

e,

[o] I,,,:I; Bu= u(.) Mx=l. Mbb

1 I lt vie, ue, ' Mb = 0
IV

7_1 r x

where p is the beam mass density, a the cross sectional area, l the beam length,

EI¢, GI¢ are the beam flexural and torsional rigidity respectively, m is the antemla

mass and r x is the antenna c.o.g displacement, IM is the 2 x 2 relevant moment of

inertia matrix of the whole structure.

We consider the problem of stabilizing the antenna after a slewing action has

occurred, by determining the control u(.) that minimizes the time average

/0 )T--.oo _ IIB*_(t)ll2dt + A II,_(t)ll=dt , A > O.

If (A, B) is controllable in [2] it is shown that the optimal compensator transfer

function is given by

,I,(_,) = o_#B*(tt_-M + A + 7pBB*)-'B (_.3)
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where

= V-L-/ao_,,
1

q2(tt) is shown to be a positive real function, thus defining a robust controller [3].

THE APPROXIMATION SCHEME

The compensator transfer function ezplicit determination. In order to compute

explicitly tim compensator transfer function from eqn. (1.3) consider the following

expression

(#2M + A + #TBB*)z = By (2.1)

which, by taking into account the definitions given in the previous section, can be

split in the following two relationships

#2My f + AIf =0

#2 Ii'Ibb + Abf + #'yb = v.

By recalling that f = [u6(.) u¢,(.)]*, (2.2) is solved with the clamped end conditions

u,(0) = u_(0) = uq,(0) = 0, obtaining

_(,) =c__,(,) + c2_(,)

_,(,) =c_sinh(%_) _ e [0,0,

where

$1(s) = sinh(kcs) - sin(k¢s) $2(s) = cosh(kcs) - cos(kcs)

k_= (p_/(EI_)(_/'_v_ k_ = 477-0_.

For the constants q, c2 the following formulas hold

[c,] 'c_ = [<(0 _(_)I [_(t)]'

486



moreover

_(0] ' n = 0,1,2 ....

Now it can be shown that Abf can be actually expressed as T(#)b [4] so that
(2.1) becomes

(#Mb + T(#) + #TI)b = v

and the compensator transfer function is defined as

_(_) = at,(l_2Mb + T(p) + _,7I) -1, (2.4)

where I is the identity operator. Recalling tl:e definition of a and 7, we see that

lira ¢(tt)= x/'_ldoI
A---.o

so that we have the "direct connection" if the control energy increases without
bound.

We list below the non zero entries of the 3 x 3 matrix T(tt)

TI_ (#) : - EIelc_ sinh(kd)c°s(k*t) + sin(kfl)cosh(kfl)
A

sinh(/cfl)sin(kol)
T,,(_,) :T_I(.): E_,k_ f

T22(#) = E I, k¢_ sinh( keA)cos( kol) - sin( k fl)cosh( kcfl)
A

T_ (#) :a_,k,coth(k,_l)

A = - 1 + cosh(k,_/)cos(kel).
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TOO is a meromorphic function; i.e. it is analytic in all tile plane but in a countable

set of points, where it has polar singularities [8].

The continued fraction expansion approximation. In order to approximate (2.4)

note that if a matrix is positive real so is its inverse; consequently it is of great

simplification to work on

l(#2M b + T(_u) + 7#I). (3.1)

Next, since for # = iw the function T(/_) is real, we see that the real part of (2.5)

does not depend on T(/_), so that whatever approximation we device, a positive real

approximate function is obtained. Thus let us concentrate on T(_L).

The approximation scheme proposed consists of a continued fraction expansion

of a meromorphic function f(z), i.e.

f(z)=ro(z)+ 1

1

ra(z)+..q(z)+...

(3.2)

where the ri(z), i = 0, 1, 2,... are rational functions of finite degree suitably defined,

and are called "convergents" of the continued fraction. The meaning of (3.1) is the

following [7]: denoting fn(z) the function obtained by considering n convergents on

the r.h.s we have

lim f.(z)= f(z)
n -.._ oo

for every value of z in the complex plane.

The functions ri(z) can be determined according to the following algorithm.

step 1. Consider the Laurent expansion about the origin of f(z) (see e.g. any standard

book on complex analysis or passive networks synthesis)

n o

= + •
k=O k=l
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The finite sum is called "singular part" of f(z) at the origin, no is tile multi-

plicity of the pole at the origin and set ro(z) = _°=o a_kz-k; it can eventually

be a constant (no = 0); i.e. the flmction is regular at z = 0.
step 2. Compute

f,(z) = f(z) - to(z),

then f/(z) has the same poles as f(z) but the pole at z = O. Moreover it holds

f(z) =r0(z) + f,(-) (i)

lira f:(z)=0. (ii)Z ----*0

Note that (i) is not a local expansion but an exact representation of f(z) with
its singular behaviour at z = 0 explicited.

step 3. Consider

f2(z) = 1/f,(z);

it has a pole in the origin according to (ii), then use the argument of steps 1

and 2 to deternfine f2(z) = rx(z) + f3(z) with rl(z) "'= )-']_t,=0 b-_ z-k and nl is

the multiplicity of the pole at z = 0 of f2(z). Since f:(z) = 1/f2(z ) we have

1
f(z)=ro(z)+

r_(z) + f3(z)"

It is clear at this point how to obtain expansion (3.1) by repeating step 3 and

determining recursively all the convergents rk(z), k = 0, 1, 2 .... For completeness

let us see how to easily obtain the coefficients of the singular part of the Laurent

expansion at the origin of a meromorphic function f(z)

a-n = lira z"f(z)
z---_ 0

( )a-I, = lira z k f(z) - a_,,_i+ i z---l+;
z..._ 0

i=1

The algorithm described can be applied to each entry of T(it ) obtaining an
expansion of the following type

n,,J(,) = + .. 1
___L1 b i ,j 1

#4 + "x0 + ..

#-T + '_2o + •k'' 1
3---L+ k30 +

jtt 4 . . .

(3.3)
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and consequentlythe n-th order approximation Tn(#) of T(p) is obtained as

E Ie,, 1,1 E I¢, 1,2" "

--F-R,, 0') --F-R, (_) 0

0 0 l

Here R_J(#) is obtained by (3.3) including n convergents in the continued fraction.

This number needs not be the same for all the entries, and in this case the order

for T,(tt) is determined by tile highest value of n used.

In the following table are reported the coemcients of the continued fraction

expansion up to the 4-th order of the entries of T(#t), for a particular choice of the

system parameters (see [91).

Table 1. Coefficients of the Continued Fraction Expan-

sion of T(IL) entries.

R 1,1 R x,2 R 2,= /23'3

k0! 12 -6 4 1

kxt -2.7 19.1 -105 3

kl0 .0026 -.028 .18 .2

k21 411815.38 -74697.1 -10.2 -175

k20 -451.03 50.57 21610.7 -7.7

k31 94.35 714.4 -3434.97 35.64

ka0 .0185 -.104 .4 .61

k41 5501900 -921286.76 244973.48 -782.41

k40 321.53 44.58 -10.15 -7.08

We stress that the coefficients of the approximations are easily obtained just

by computing limits in the origin of suitably defined functions, and are simple com-

binations of the system parameters which appear in the coefficients of the function

to be approximated. As a result we have a procedure which is nmnerically robust
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since no solution of transcendental equations are required, no derivatives determina-

tion, no inner products computations, no variable transformations as usually occurs

in the most popular approximation methods. This straightforward relation to the

system parameters determines also a low sensitivity to parameters variation of the

approximated closed loop transfer fmlctions, as we will show next.

For convenience, we report briefly the modal expansion technique (see [3]).

Let *Ok, k = 1,2,..., tile system undamped modes, and tk, k = 1,2,..., tile M-

orthogonal eigenvectors, normalized as [M@,, tk] = 1. The following compensator

transfer function modal approximation can be deviced

where

s _ b *

= It 2 + w_ + ttTbkt,'
Re# > 0,

bk = B*g,1,, bkk = [bk, bk].

Thus we have a bank of band pass filters centered at the undainped modes.

CLOSED LOOP TRANSFER FUNCTION PERFORMANCES EVALUATION

In this section we compare the performances of the approximation method pro-

posed with respect to the modal expansion technique, widely used in this field.

In particular the stability margins of the approximate closed loop transfer func-

tion are considered and the sensitivity of this performance index toward system
parameter variation is evaluated.

As it is well known the stability properties mentioned can be derived by exam-

ining the frequency behaviour of tile following function

S(w) = det(I + P(w)_(w)),

where P(w) is the system transfer function, in our case defined as

p( o) =

Actually, we are more interested in the sensitivity of stability margins with respect

to parameters variations. In Fig. 1 amplitude and phase plots of the diagonal
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entries of = are reported for a second order continued fraction
approximation of _(w). In Fig. 2 are reported the corresponding plots for a modal

approximation based on two band pass filters centered on the first two modes.

Particularly interesting are the phase plots showing that in the first case we obtain

a higher phase margin, practically equal to 7r/2 for all frequencies. A similar result

holds for the other entries of F(w), thus giving a description of the stability features

achieved in both approximation schemes, avoiding to get through the complexity of

the function S(w).

Moreover, in Fig. 3 are reported the plots of the sensitivity of the phase fmlctions

considered, with respect to the variation of the parameter 8 = E-_" Here we note

that the continued fraction approximation shows a better performance in terms of

robustness than the modal expansion.

CONCLUSIONS

The continued fraction method proposed allows to approximate any meromor-

phic function by operating simple computations on the coefficients, i.e. the deter-

minations of the limit in the origin of suitable functions derived by the assigned

one. This results in a good performance of the approximation in terms of stability

margins and robustness of the approximate closed loop transfer function. This fett-

ture is highlighted by comparing the mentioned characteristics with the analogous

one obtained by using the more popular modal approximation scheme.
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Motivation

1. The purpose of this work is a computa-

tional investigation of the closed-loop output

feedback control of an Euler-Bernoulli beam

based on finite element approximation.

2. The observer is part of the classical ob-

server + state feedback control, but it is finite-

dimensional.

3. In the theoretical work on the subject

it is assumed (and sometimes proved) that

increasing the number of finite elements will

improve accuracy of the control. In applica-

tions,this may be difficult to achieve because

of numerical problems.

4. The main difficulty in computing the ob-

server and simulatilag its work is the presence

of high frequency eigenvalues in the finite-

element model and poor numerical condition-

ing of some of the system matrices (e.g. poor

observability properties) when the dimension

of the approximating system increases. This

work dealt with some of these difficulties.
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Euler-Bernoulli Beain

pwt t -F ElW:r:r.r:r = (J ( 1)

o,, [0 l]
where

,,,(-, 0) = "'o

wt(-, O)= _'1

,,,j::r(t, 0)= .(t) (Torque)

,,,:r:,:(t,t) = o
:(t) = w..(t, I) (Measurement)

Cubic FE Model

+1 = 1 - 3( :r-:rc)2 .... _:e 3_,,: + 2("_hll )

:r - :rr )2_>2= -(:,-- :,:_)(, - h,: ,

¢:) = 3(:': v :,:,_)2_ _(.,:- .,:,)s
h,e he

*4= -0- :':_)[(:'-h,,.,,)2- :'_h,,-":']
Where

¢,_(:,:,.)= l _i(.T,.)= o ,:¢: l

_'3(*:_,+ h_,)= 1
_0>J

dx X=xc+hc : 1

(2)

(:})

(4)

(s)
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Numerical Aspects
.__r

• System (8) is poorly conditioned

numerically for large N.

• To improve numerical accuracy it

is important to

a). solve directly (6) rather than

(8).
b). use a Cholesky decomposition

of M to avoid direct inversion of M in

(6).

c). use a numerical integration

method that is energy preserving on

principal modes.

F-E Approximati°n__tQ E-B be -a-m

_,_+ L, = Q,,(t) (_)

First-order system

(7)

I ,lxN+i01 ,-M-1L 0 Q
(s)

z = cxN ('J)

(} I

-M-I L 0
Dimension of

N×position

+ N×slope

+ Nxvelocity

+ N×derivative of the slope

-- 4N + 1 or 2, depending on Bound-

ary Conditions



DIRK z Diagonally Implicit

Runge-Kutta Method for Oscillatory
Problems

)u+T

"lul _ •

ya -L

c2h

c_h

l

clh

h

_J

:;:: f(_,:J) (H))

• /
)'_,j -- y,_ + cjhyn + h 2 )£ _.iif()_,.i ' t,, + ,:il,)

i=1

Yn+l -- Yn -{--l, yn + h.2 1 bif()_ H in-}- cih )
i=1

:)"+1 = :)" +/' _ fO;,:, t,,. +,'/,)
i=1

B_t]tc!ml; Array for l : 2

(_11 at2[Cl

a21 ¢122i(:2

b; l
bl b2 I

Explicit RK:

Diagonally Implicit RK:

all 0

¢_21 "22

Example of Butcher Array for DIRK:

1/2 0 1/2
-_/12 1/211/2
o- I
0 a ]
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Using.D IRK on E:B beam (1)

E-B Beam via FE Method

_1ii + L:j = Q.(t)

_,(t) = 0 in the observer problem

= -M-1Ly = IVg

(Actually M-1L is replaced by a

Cholesky decomposition).

(11)

(12)

Ynl -" Yn + ('lhY,, + h2[allFY_,l + a12F}7_2]

]_t2 -- yn + c2h_hl, "_ h2[a21Fi;tl + a22F}_'2]

Yn+l = Yn + h,_h, + h2[blF]_l + b2F}_,2]
! t

Yn+l = _}n + h[blFYnl + b2F}'_t2]

Where 0,12 -- 0

Using DIRK on E-B beam (2)

Solve to get Ynl and Yn2

Ynl = (I -h2allF)-l(Yn + clhyn)

Yn2 -- (I - h2a22F)-l(yn + c2h_ln + h2a21FYnl)

Discrete-Time Model;

Yn+ l [ Yn l

Where matrix AV is

II + h2F(hA, + _2A3) _I + h2F(_lA2 + _eA4)l " /_ I I

hF(blA 1 + D2A3) I + hF(D1A2 + D2A4)

And

A 1 = (I- h2allF) -1 A2 -- clhA1

A 3 = (I-h2a22F)-l( I + h2a21FA1)

A 4 = (I-h2a22F)-l(c2 hI + h2Fa21A2)
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Digital Observer Design

Define

Xn = Yn

Time-discretized FE System:

Observer:

x,,.+ 1 = .41J)v_x,, (13)
z,,, = cN_x,, (1_l)

^

XN+I -- AVN2_'n-[-G(Zn- Zn) (15)

Where N 1 and N 2 can be different, for

example N 1 : 64 and N 2 = 4, 8 or 16.

T w0 Ways [0 r Observer Design

Observer Design

in contlnuotm

time

COnversion to

discrete time

Conversion to

discrete tlme

B).
Observer design

In discrete time

The above operations are not equiva-

lent ("do not commute"). The discrete-

time observer designed by variant B

provides a more accurate tracking of
beam's motion.
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Eigenvalues of E-B Beam Using Finite Element Model

(Imaginary Part)

N Max Min Ratio

4 135.9341 2.1817 6.2306e+01

8 541.9612 2.1805 2.4854e+02

16 2.1678e+03 2.1805 9.9419e+02

32 8.6712e+03 2.1805 3.9768e+03

64 3.4685e+(_ 2.1805 1.5907e+04

128 1.387,1e405 2.181)5 6.3628e *(t4

e-,

tfi
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Accuracy of FE Model Simulation

ideal beam: NN=64, Ws1---4.3371, Wmax=l.8885

L=I, El=0.02, K--O, m=l, A=I

Initial condilion: sin(pi*x)

FE model: T= 10 s I1= 0.01 hx=O.05

NNI El E2(Max) I

I (FE Model) (FE Model) I

2 3.015 e-03 8.662 e-02

4 1.298 e-04 2.231 e-02

8 6.107 e-06 5.787 e-03 I

I 16 2.414 e-07 1.337 e-03 I

I 32 I 4.51)1 e-f)9 2.138e-(_1

i

0.8 f

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1
-1

Ae --eigenvalues of AV, NN=64

i i

-0.8 -0.6 -0.4 -0.2 0 0.2 i0.4 0.6 0 8

!

!

I

I

., r
I

.i

r
-q

!

!

J
r
1
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3.5

E=X-Xv, (64,8), 2nd DIRK, h=.01, T=l:10s, Ns=l (S L), S L

3

2.5

2

1.5

0.5

0

-0.5

-1
0 100 200

i I I I _ a

3_ 4_ 5_ 6_ 7_ 8_ 9_
LO00

_X-Xv,(_,16),2nd D_K,h=,01,T=1:10s,Ns=l(S L),S L, m=2

6

4

2

0

-2

il
-

I I I i I i i I

0 1_ 2_ 3_ 4_ 5_ 6_ 7_ 8_

I

9O0 1(_30
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F-'=X'Xv,(64,16),h=.OI,T=I:IOs,Ns=I(S L),S L,m=315

-5

10

-10
I I j i L L L I I

0 100 200 300 400 500 600 700 800 900 I000

2O

15

10

-5

-I0

E,=X-Xv,(64,16),h=.01 .T= 1:10s,Ns= I(S L),S L,m--4

-15
L I r I i i i i i

0 100 200 300 400 500 600 700 800 900 100
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log(E), (64,163,h=.01,T=l :lOs,Ns=l(S L),S L,m=24
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log(E),(6,4,16),h=.01 ,Ns=l(S LhS L,m---4
T
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Spatial displacement of beam, NN=64. mode 1

Spatial displacement of observer, NN--4. mode 1
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Spatial distribution of observer error, NN=4, e=-2, mode 1

Spatial distribution of obser_'er error,NN=8,e=-2,mode 2,T=5s

. !.. _i- _

\t'_,/ID\
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Spatial distribution of obser_,er error, NN=8,e=-2,T=5s.mode 3

Spatial distribution of observer error, NN= 16,e=-2,T=5s,mode 4
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Spatial distrabution of observer error, NN=lO,e=-2,T=5s,mode 5

Eigenvalues of observer (Riccati equa.), NN= 16

2000

LifO0

50_

."
5C

- tO01) 1

+.08 +O+06 +0.02 0

"2_02 _)18 016 014 Ill2 +01

Eigenvalues of observer (Riccati equa.), NN=32
gOGO

6000 • •

" " • ...

_ °.°
-o

o°

..-.,

"8(_. 14 _EI.I: +0.1 +Q0S -O.t]_ -O+04 -0.02
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Jo' Eigenvalues of observer (Riccati equa.), NN-64
J

illto

lit

"ll'-,°..o

..o
...

.°.....,'"°""

b, •

• _..."''°°" ° ° "

-0. I -0.09 -o.og -0.07 -0.06 -o.o_ -o.oJ 4) 0._ -0.02 -0.01 0

Stabilization of the beam via state feedback. NN=8, m=5, T=5s

Time 0 to 5 sec
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Conclusions

1. The computations showed that the dy-

namically changing shape of the beam can be

reconstructed by a finite-element based ob-

server using just one point measurement of the

slope at the end. This conclusion is limited

to shapes involving only a few first modes.

Additional measurements do not improve the

process much.

2 In the process of designing the observer_

one can either design gain G for a continuous-

time model and then discretize in time )_T =

(A- GC)X or first discretize in time Ar = AX

and then design an observer. The second ap-

proach is more accurate.

3. For each mode of the E-B beam there

is a steady state periodic error_ whose ampli-

tude depends on the mismatch of eigenvalues

between the E-B beam and FE model.

The error can be decreased by further shift-

ing eigenvalues of the observer_ or by increas-

ing the number of finite elements.

4. The Riccati equation approach yields a

conical pattern of eigenvalues. The transients

are different, but the steady state periodic

error is nearly the same.
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ABSTRACT

Theoretical results that enable rigorous statements of convergence and exponential stability of

Galerkin approximations of LQR controls for infinite dimensional, or distributed parameter, sys-

tems have proliferated over the past ten years. In addition, extensive progress has been made over

the same time period in the derivation of robust control design strategies forfinite dimensional

systems. However, the study of the convergence of robust finite dimensional controllers to robust

controllers for infinite dimensional systems remains an active area of research. In this paper we

consider a class of soft-constrained differential games evolving in a Hilbert space. Under certain

conditions, a saddle point control can be given in feedback form in terms of a solution to a Riccati

equation. By considering a related LQR problem, we can show a convergence result for finite

dimensional approximations of this differential game. This yields a computational algorithm for

the feedback gain that can be derived from similar strategies employed in infinite dimensional

LQR control design problems. The approach described in this paper also inherits the additional

properties of stability robustness common to game theoretic methods in finite dimensional analy-

sis. These theoretical convergence and stability results are verified in several numerical experi-ments.
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(1) INTRODUCTION

During thepasttenyears,significantprogresshasbeenmadein thederivationof convergencecri-
teria for Galerkin approximations of linear quadratic regulator control problems in Hilbert spaces

[Banks, Gibson79,Gibson91,lto90...]. Usually, these methods synthesize classical results on the

convergence of Galerkin approximations for elliptic, hyperbolic and parabolic partial differential

equations with minimization strategies for convex cost functionals. During the past few years,
however, researchers studying control theory have been increasingly interested in the derivation of

control schemes that are robust with respect to uncertainty, either structured or unstructured, in the

underlying model [McFarlane,Maciejowski ].

One approach that has been employed with success in the development of finite dimensional con-

trollers is the min-max, or soft-constrained differential game, formulation [Basar]. In this class of

techniques the "best" controller is sought subject to a "worst case" disturbance. Extension of this

approach to infinite dimensions has also been made recently in principle [ Curtain]. However, the

arguments regarding the convergence of the associated finite dimensional Riccati approximations
can be more delicate than in the similar LQR minimization case [Attouch,Cavazzuti].

In this paper we show that, in certain cases, the solution to the min-max problem is equivalent to

the solution of a related LQR minimization problem. In these cases the approximation theory for

the LQR minimization problem [ Gibson79,Gibson91,Ito90..-] can be brought to bear, and the so-

lution of the rain-max problem can be approximated by a sequence of solutions to finite dimen-

sional Riccati equations. Thus, this gives a computational method for obtaining a feedback control

for a class of infinite dimensional problems which is both optimal and robust with respect to un-

certainty.

(2) PROBLEM STATEMENT

Let H, U and W be real, separable Hilbert spaces and suppose that B _ L(U, H) and _ _ L (W, H)

are bounded operators.

Consider the evolution equation on H

Yc(t) =Ax(t) +Bu(t) +@w(t)

(2.1)

x(O) = x o _ H is given

where A is the infinitesimal generator of a strongly continuous exponentially stable semigroup S(t)

on H. In the following discussion, it is assumed that the initial point x(0) is fixed. Furthermore, it

is assumed that one can define the observation from the state via the relationship

y(t) = Cx(t)

C e L (H, H) (2.2)
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The optimal control problem to be considered is the infinite dimensional version of the so-called

"soft-constrained differential game" as described, for example, in [Basar]. This problem can be
stated by first defining the "disturbance-augmented" cost functional

1

J(u,w) = 2f O {[[y(t)[[2H+ (Nu(t),u(t))w__(Mw(t),w(t))w}d t (2.3)

where T e _ is a fixed positive constant, and N e L (U, U), M e L ( W, W) .

Define the spaces U = L 2 (O, _o; U) and W = L 2 (O, 0% W) The differential game to be solved
is to find

Jo = inf sup__ j ( u, w)
ue U we W (2.4)

subject to dynamics governed by (2.1) - (2.2).

A solution (u 0, w 0) is called a saddle point of J(u,w) if and only if

J(u O, w) <J(u O, wO) <J(u, w O)

V(u,w) e UxW
(2.5)

Roughly speaking, the problem to be solved consists of two parts:

(P1) Find conditions that are applicable to a reasonably large class of problems
for which there exists a unique saddle point solution

(u °, w°) e Ux W,

and such that the solution is given in feedback form.

(P2) Find a method for constructing a sequence of finite dimensional approximations
whose feedback solutions converge to the solution of (2.4).

Next, we discuss conditions under which P1 and P2 can be solved.
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(3.) CHARACTERIZATION OF A SOLUTION

We make the following assumptions (which we will show guarantee that there exists a unique sad-

dle point value to the differential game outlined above):

(HI) Thereexists dl>0 such that(Nu,u)o>dllluU2o f °r all ue U

(H2)

(H3)

There exists d 2 > 0 such that (Mw,w)w>d211wll2w for all we W

Conditions H1 and H2 are necessary to ensure invertibility of N and M. Condition H3 is necessary

for the characterization of the saddle point in feedback form, and for the arguments for conver-

gence of finite dimensional approximations. While condition H3 is somewhat strong, the assump-
tions above are applicable to a wide variety of distributed parameter control problems and are

extremely convenient for consideration of the convergence of finite dimensional Galerkin approx-

imations. (In a future manuscript we will report on structures application for which H3 is not sat-

isfied, and on our efforts to relax this assumption).

Before stating the main existence and uniqueness result, we consider a reformulation of the state

equation. Define the space H = L2 (0, oo;H) and observe that a homogeneous (zero initial data)

version of (2.1) is given by

Ax = Bu + Ow

Here the operator A is defined on the domain

dom A = {xe H
dx

-d-i-Axe H,x(0)= 0}

by

Ax(t) = dX-Ax(t),
dt

and B e L ( U, H), and O e L (W, H) are multiplication operators given by

( Bu) ( t) = Bu ( t)

(Ow) (t) = dpw(t)

We also define the multiplication operators C"e L (H, H), N e L (U, U) and M e L (W, W) in

the obvious way. In this paper we frequently will not distinguish between an operator (such as C)

and the corresponding multiplication operator (C) when it is clear from the context which operator

is used. With these definitions, the variation of constants form of the solution to (2.1) can be
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given by

x = A-IBu+A-I_w+f

where f= S(t)Xo . Here, A-le L(H,H) is defined by
Hence, the differential game is to find

(3.1)

A-Ix(t) = ftoS(t-s) x (s) ds

inf sup J ( u, w)
Jo = ue U we

subject to (3.1).

Theorem (3.1) • Suppose that conditions (H1), (H2) and (H3) hold. Then

(u°, w°) e Ux W

such that

Jo =

Moreover, (u O,w O) is given by

inf sup J (u, w) J (u O, w O)
ue U we W

w 0 (t) = y2M-l_* I-Ix 0 (t)

u 0 (t) = -N'-IB * Ilx 0 (t)

where

there exists a unique

(3.2)

(3.3)

x ° = A-1Bu o+A-lOw o+f

Here I-I is a positive definite solution of the algebraic Riccati equation

(FIx_A y) H + (Ax, IIy) n + (C* Cx,y) H - (Hf2f21-Ix,Y)H = 0

for any x, y e D (A ) c H where

(3.4)

if2 --- [BN-IB * _ T2OM-I_ * ] 1/2 > 0

Observe that (H3) guarantees that

is well defined.

f2 = [BN-IB * __(DM-Io *] l,'2

Since Equations (3.2), (3.3), and (3.4) relate the saddle point to the algebraic Ric-
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cati equation, we can apply known methods and techniques for approximation of Riccati equations

to this problem.

The proof of Theorem (3.1) is developed through a sequence of lemmas. (We are using notation

and definitions from [Zeidler]).

First, recall that for each fixed (u,w), the G-derivative of J(u,w) with respect to u, denoted by

Ju (u,w), is defined by

J (u + tx, w) - J (u, w) (3.5)
= lim

(J,, (u, w), x) 0 t--, 0 t

Similarly, the G-derivative Jw(U, w) of J(u,w) with respect to w is given by

J(u,w+ ty) -J(u,w)
= lim

(Jw(U'w)'Y)_t t_o t

(3.6)

for any Y e W. Also,

(Ju (U, W), _Jw (U, W) ) e U× IAI

and for any (x, y) _ U × W, we have

( (Ju (u, w), -Jw (u, w) ), (x, y) ) U× Itl
- -- = (Ju (u, w), x) _!+ (-Jw (u, w), y) g,

Recall also that if X is a Hilbert space, then an operator F (which may not be linear) from X to X

is called strongly monotone if there is a fixed positive number d such that

>dllx -x2112x(Fxl - Fx2, xl - x2) x -

for any xl, x2 e X.

J(u,w).

The following lemma gives some nice properties about G-derivatives of

Lemma 3.1" If (HI) and (H 2) hold, then the following are true:

i) for fixed w e W, Ju (u' w) is strongly monotone on J.

ii) for fixed u _ U, and sufficiently small _2, -Jw is strongly monotone on W.

iii) for sufficiently small _, (J,, -Jw) is strongly monotone on U x W.
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Proof:

where

By direct computation using (2.3) we have

1

J (u, w) = ._ (Du, u) o + (u, Gw + Ff) o + Q(w,f )

Q(w,f) = (CA-I(I)w,f) H

According to (3.5), we obtain

Therefore, for any u l, u2 _

Hence, i) is true.

where

(3.7)

D = N+B* (A-I)*C*CA-IB

G = B* (A-I)*C*CA-IO

F = B* (A-I)*C*C

1 1 1

2T2 (Mw, w) _/+ -_(CA-lOw, CA-lOw) _+ __(Cf, Cf) Yt

Ju(u,w) = Du+Gw+Ff

U, and fixed w e W, it follows from (HI) that

(Ju (Ul, w) -Ju (u2, w), u I - u2) 0 = (D (u ! - u2) , u 1 -- U2) 0

-- -- --U 2
> (U(ul-u2),Ul-U2)o>dlllu _ 2110

Similarly, we can write

1 (D'w, w) _+ (w, G* u + F'f) _t+ Q' (u,.l')J(u, w) =

(3.8)

(3.9)

O' -- 1

_M- (I)* (A-l) * C* CA-lt_

G*= the adjoint of G = ¢*(A-I)*C*CA-IB

F' = O* (A-I)*c*c

1 1

Q' (u,f) = -_ ( ( N + B* ( A-I)*C* CA-1B) u, u) o + _ ( Cf, Cf) yt+ ( ca-l Bu, Cf) h

Hence, from (3.6), we have
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Jw (u, w) = -D'w+ G_u + F'f

For any wl, w2 e _ and fixed u e U , it follows from (H2) that

(-Jw(U, Wl) +Jw(U, W2),Wl-W2)_= (D'(wl-w2),Wl-W2)_I

(3.10)

1 (M(w -w2), w I -w2) ( CA-t_ (Wl - w2)' CA-I_ (wl- w2) )
=_ 1 _t-

1 2 2

Therefore, for sufficiently small '_, there is a positive constant d so that
W 2(_Jw(U,WO+Jw(u, w2),w_-w2)_,>-dllw_- 211_,

Thus, ii) is verified. Finally, for any (up wl), (u 2, w2) _ Ux _' and sufficiently small _, it

follows that,

( (Ju (Ul, W1) - Jw (Ul, Wl) ) - (Ju (U2, W2) - Jw (U2, W2) ),(ul, wl) - (u2, w2))0x_,

= (Ju (u t, wl) -Ju (uv w2)' u l- u2) 0+ (- Jw (u l, wl) + Jw (u2, w2)' wl- w2) _,

=(D(ui_u2) +G(Wl_W2),Ul_U2)__l + (D'(wl-w2) -G* (U 1 --U2),W1--W2 ) _,t

= (D(Ul-U2),Ul-U2)o + (D'(Ul-U2),Wl-W2)_

+ (G(w l_W2),ul-u2) 0- (G* (Ul-U2),wi-w2)_t

= (D(Ul-U2),Ul-U2)o + (D'(wl-w2),Wl-W2)_,

d_Uu_ uzll_+d[lwl w 2>_ - - 211_

Hence, this lemma is completed.

The existence and uniqueness of a saddle point of J(u,w) are illustrated in the following lemma.
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Lemma 3.2: Assume that (H1) and (H2) hold. There exists 0 o > 0 such that if 0 < _ < 0 o , then
J(u,w) has a unique saddle point.

Proof: Clearly J(u,w) is continuous with respect to u and w. Further, it follows directly from (3.7)
and (3.9) that for sufficiently small _,

i) u --, J (u, w) is convex for each fixed w _ W,

ii) w --_ -J(u, w) is convex for each fixed u _ U,

iii) J(u,w) ---_ as Ilull-_ foreach fixed we W,

iv) -J(u, w) --_ _ as [Iwll --_ _ for each fixed u _ U.

The result follows from Theorem I. 1 in [Bensoussan].

The following result characterizes the saddle point.

Corollary 3.1: (uO, w O) is the saddle point of J(u,w) if and only if Ju(uO, wO)=Jw(uO, wO)=o.

Proof: See [Zeidler], p. 467.

The next result gives a further characterization of the saddle point.

Lemma 3.3: Let

where x 0 ( t)

J(u,w).

u 0 (t)

w 0 (t)

= A-IBu 0(t) +A-lOw °(t) +f.

(3.1l)

(3.12)

Then (uO, w O) is the unique saddle point of

Proof: From corollary 3.1, we only need to check that

Ju (u°, w°) = Jw (u°, w°) = 0

where uO,w 0 are given by (3.11) and (3.12). In fact, applying (3.8), we have

Ju ( u°, w°) = (N+ B* (A-l) * C* CAB) (-N-lB * (A -l) * C* Cx °)

+ (B* (A-I)*C*CA-10) (,,/2M-lO* (A-l)*C*Cx o) +B* (A-I)*C* Cf

= B* (A-I)*C*C(-x°+A-IBuO+A-IOwO+f) = 0
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Similarly, from (3.10) we have

Jw ( u0' w0) = - (_2 M + (-_* (A-l)* C* CA-IO) ) (T 2M-Io* (A-l) * C* Cx °)

+ (O* (A-I)*C* CA -IB) ( -N'IB* ( A-I)* C* Cx°) +O* (A-I)* C* Cf

= O* (A-1)*C*C(-x°+A-lOw°+A-IBu°+J) = 0

Hence, (uO, w O) is the unique saddle point of J(u,w).

The following lemma characterizes the saddle point in terms of the solution to an algebraic Riccati

equation. We note that H3 has not been used until now.

Le mma 3.4:

pressed as

Assume that (H1)-(H3) hold.

u° it)

Then the unique saddle point ( u°, o) of J can be ex-

= -N-i/i *fix ° (t)

where x ° ( t) =

the Riccati equation

w° (t) = v2M-I_ *nx ° it)

(A-IBu °) (t) + (A-lOw °) (t) +f(t) , and H is the unique solution of

(I-lx, Ay)ff+ (Ax, Hy)_+ (C*Cx, y)fl- (l-I_21-lx, y)ff = 0

1/2

forany x, ye D(A)_H and _ = (BN-IB*-_ oM-lo*)

Proof: This result follows from [Bensoussan].

Therefore, the proof of Theorem 3.1 is completed.

(4.) CONVERGENCE OF GALERKIN APPROXIMATIONS

Perhaps one of the most attractive features of the method described in this paper is that the conver-

gence of the Galerkin approximations of the saddle point solution to the differential game is guar-

anteed by the rich collection of Galerkin approximation results available from infinite dimensional

LQR minimization formulations. This is because the solution of the infinite dimensional LQR

minimization problem
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ins f.'d{ICz(012vE H e+lv(t)12e}dt

subject to the evolution equation in H

(4.1)

:. (t) = Az (t) + _v (t)

z (0) = z 0 _ H (4.2)

is characterized by the same algebraic Riccati equation that solves the differential game of the pre-

ceding section, namely

(rlx,A y) H + (Ax, rly) n + (C* Cx,y) H - (rlf_rlx,y) H = 0 (4.3)

With this observation, the idea is to construct finite dimensional versions of (4.1) - (4.3) and then

to apply known convergence results such as those found in [Ito] and [Kappel, Salamon]. To pro-

ceed, let { H. } n= 1 be a family of finite dimensional subspaces of H satisfying

H= L.JH n
n=l

We assume that there are operators A. _ L (H., H.), f_ _ L (H., H.), C. _ L (H., H.) and that

Pn is the orthogonal projection from H to H n.

With these finite dimensional operators and spaces, one can consider the following LQR minimi-
zation problem:

inf 2 2 } dt (4.1)
v_ H,, [.o {IC.z.(t)l.. +lv(t)lH. ,,

subject to the evolution equation in H n

;_n (t) = A,Z,t + _z,v (t) (4.2) ,,

z. (o) = o

The optimal feedback gain for this problem is characterized by a solution to the following algebraic

Riccati equation:

* * (4.3),A. FI+HA.+C n C n-Flf2nfl H = 0
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If 1-1n and H are the minimal nonnegative solutions of (4.3) n and (4.3) respectively, then we may

appeal to results in the distributed parameter control literature ( [Banks & Kunisch], [Gibson91],

[Ito87,Ito89], [Kappel, Salamon] ) for conditions under which l-lnP n --> FI. The following condi-

tions can be found in [Ito87].

(H4) For each x _ H, S n (t) P nX "-) S (t) x and Sn* ( t) P nX _ S* (t) x, and the convergence

is uniform in t on bounded subintervals of [0,t].

Here, S n (t) = exp (tA n) is the semigroup generated by An. Note that at t=O, this

condition implies that Pn x "--) x for all x _ H.

(H5) For each x _ H, f_nPnX "-) fLt, CnPnx "-_ Cx and Cn* PnX -'_ C* x.

(H6) The family of pairs (A n, f_n) and (A n, Cn) are uniformly stabilizable and uniformly

detectable, respectively. In other words,

(i) there exists a sequence of operators K n _ L (H n, H) such that

supllgnll<-oo
(A. - _nK.) < -o_tt_Mle >

for some positive constants M! and ml, and

(ii)there exists a sequence of operators G n e L (H n, H) such that

suplI0 11<_oo

e(A'-G'C')tpnl I <M2 e-%, t>O

for some positive constants M2>I and ta_2.

The following result is found in [ Ito].

Theorem 2 : Under the assumptions (H4)-(H6), the unique nonnegative solution FIn of(4.3) n con-

verges strongly to the nonnegat_,e solution H of(4.3); that is,

lim IIrig- noe.xl[ 0
n ---) oo

The point of all this, of course, is that (4.3) n is finite dimensional, and so we can solve for H n

merically. This is done in the next section for specific examples.

ha-
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5. NUMERICAL EXAMPLES

In this section we report on some numerical results for a simple example involving the heat equa-
tion in a rod. Consider the equation

Yt (t, x)

y(O,x)

= aYxx (t, x) + b (x) u (t) + dp(x) w (t)

= Yo (x)

0_x_l

(5.1)

with Neumann boundary conditions

Yx(t, O) : 0 = Yx(t, 1) (5.2)

In addition, consider the LQR cost functional

Jo(u) = l fo {flqy(t,x)2dx+Nlu(t)12}dt

and the disturbance augmented cost functional

Jl (U) = l fo { foqy(t,x)2dx+ Nlu(t)12_ _Miw(t)12} dt

(5.3)

(5.4)

We set U = 9_, W = 9_, and consider the following two problems:

inf Jo (u)
u_U

subject to dynamics governed by (5.1) with ¢ - 0, and

inf sup

u6 U we W Jl(U'W)

(5.5)

(5.6)

subject to the dynamics governed by (5.1).

In our basic numerical experiment, we implement the LQR feed back controller (from (5.5)) in the

presence of a disturbance, and then do the same for the game theoretic controller (from (5.6)). We

then compare the performance of the two controllers in the presence of disturbance. Before giving

some numerical results, we briefly discuss how this problem is reformulated within the framework
developed earlier.

First, set H = L 2 (0, 1) and define the operators B _ L ( U, H), _b _ L (W, H) by Bu = b (x) u,
and _w = _ (x) w. In addition, define the operator A on the domain

dom A = {y _ H 2 (0, 1) ; y' (0) = y' (1) = 0} (5.7)

by Ay = ay".
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Next we introduce Galerkin approximations based on finite dimensional spaces/_/n with linear

spline ("hat" functions) shape functions. This leads to the following finite dimensional version of

(5.1):
ot (t) = Anot (t) + Bnu (t) + Onw (t) (5.8)

a (0) = a o

where ct (t) _ _R", and A n, B", • n are n x n, n x 1 and n x 1 dimensional matrices, respectively.

We use H 0 to represent the solution of the finite-dimensional algebraic Riccati equation associated

with the LQR cost functional

J_(u) = Io {q°t(t)rat(t) +Nlu(t)12}dt

and I11 to represent the solution of the Riccati equation associated with the game theory cost func-

tional

1 Mlw(t)2l} at
JT(u,w) = _o {q°_(t)v°_(t)+Nlu(t)12-_ -

In the figures below we plot the approximation to y (t,x) for several different problems.

As data for these examples, we used a=l, N=I, M-l, q=10, _/ = 0.5, b (x) - 0.25, ¢ (x) --- -0.35

and yo(X) = 10x.

In Figure 1 we plot the open loop solution for the problem

&(t) = Anot(t)

In Figure 2 we plot the LQR closed loop solution (no disturbance) for the problem

& (t) = (A n- BnN-IBnTHo ) ct(t)

In Figure 3 we plot the LQR closed loop solution (with disturbance term) for the problem

& (t) = (An - BnN--1B"Tflo ) ct (t) + di)nw (t)

In Figure 4 we plot the game theory closed loop solution (with disturbance term) for the problem

& (t) = (A n - B"N-IBnrH1) ct (t) + dOnw (t)

While figures (1) - (4) describe the qualitative nature of the transient response in each of the four

cases, figures (5)-(8) illustrate an important difference in the examples by taking a cross-section

in space at x=2/3. The basic observation to be made is that the game theory controller improves

performance (in the sense of driving the state to the zero equilibrium position) in the presence of
disturbances. We have performed several such experiments with various parameters (including

Dirichlet boundary data) and observed qualitatively the same behavior. We are currently applying

this method to systems involving elastic structures. Preliminary results indicate that an LQR con-

trolled system may, even worse than performing poorly, become destabilized in the presence of

disturbance. These results will be reported in a future manuscript.
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Figure (1) Open Loop Response
Figure (2) LQR Closed Loop Response

No Disturbance

Figure (3) LQR Closed Loop Response
With Disturbance Figure (4) Game Theoretic Closed Loop

Response with Disturbance

I

-i÷

I

"T

.L_
Figure (5) Open Loop Response, x=.75

N5 Disturbance

Figure (7) LQR Closed Loop Response, x=.75
With Disturbance

Figure (6) LQR Closed Loop Response, x=.75

Figure (8) Game / LQR Closed Loop Response, x=.75
With Disturbance
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One of the key motivations for the work in this paper is the applicability of the approach

to uncertain distributed parameter systems. A second numerical example outlined in this section

has been based on examples in [Rosen], but with the introduction of a region of the structure in

which the control influence is uncertain. Again, the problem is to find

inf sup__ _ {(Qy(t),y(t))H+N(u(t),u(t)) u- (w(t),w(t))w}dt
u_ U we W 0

where

H = L 2 (0, 1)

U= L2(0, 1)

W=91

= L 2 (0, oo;H)

= L 2 (0, 00;/4)

= L 2 (0, oo;9_)

The min-max problem stated above is subject to the evolution equation

2 2

__tY(t,x) = a-_x2Y(t,x) +bu(t,x) +d:(x)w(t)

y(t,O) = y(t, 1) = 0 for t>O

y(0, rl) = y°(rl) for 0<1"1<1

where the operator _ is defined by

(x) w (t) w(t)=
0 otherwise

and where a=.25, b=l.0, N=.01, [_1=.49, and [32=.51. Motivated by [Rosen], the operator Q is de-

fined to be simply the projection onto the first three open loop modes
3

(Q,D (x) = E (f'ei)ei(x)
i=1

where e i (x) = J-2sin (Dtx).

The operator _ represents the "spatially structured" disturbance. In actual applications, the dis-

turbance could be due to sensor dynamics or structured parametric uncertainty. In either case, the
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task is to design a finite dimensional controller that is robust with respect to the class of distur-

bances that can be input by _. Figures (9) through (12) depict the transient response of the heat
equation in the rod where

1
0-

is defined to be 0 = 0.5 in this example. The system is clearly exponentially stable, as predict-

ed by the theory, despite the introduction of disturbance. From [Curtain] and the discussion earlier

in this paper, one can conclude that the disturbance attenuation of the closed loop transfer function
from disturbance to input and output is bounded by

Ilrc,ll.<v

where

1
0-

Even stronger conclusions can be obtained for this particular problem by noting that the entire heat

equation, including disturbance, can be cast in terms of Hilbert-Schmidt operators as described in

[Rosen]. The Hilbert-Schmidt norm of the difference between the approximating Riccati equation

solutions and the actual Riccati equation solution converges to zero. This is demonstrated graph-

ically in figures (13) through (15) which show the kernels used to represent the Riccati operators.

The kernels clearly converge as the level of discretization increases. Furthermore, for the small

value of 0=.0001 selected, the Riccati operators should be quite close to the LQR approximations.

This is, in fact, the case, as can be concluded by comparing figures (13) - (15) with figures (4.1b),

(4.1c) and (4.1d) of [Rosen]. The Riccati kernels for 0=.5 are depicted in figures (16)-(19).
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0.5

0 0.1 0.2 0.3 0.4 0..f 0.6 0.7 0.8 0.9

t_rlm

initialconditionmt_-_ n---60no=8

Figure (9) Heat Equation Transient Response, No---8

l-sr
i

I

u 11

°_ I

E o_

•_,--1--_,=Io43oI,,o.,_99),,

0.1 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9

_ition

initialconditionmponse n--60n_13

Figure (10) Heat Equation Transient Response, Nc= 13
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0.5

0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

positi_

iaJd_!conditionresponse n---60n_23

Figure (1 1) Heat Equation Transient Response, Nc=23

I.St"

0 0.I 0.2 0.3 0.4 0.5 0.6 0.7 0.g 0.9

posi_on

initialcondi_.onresponse n--.60n_33

Figure (12) Heat Equation Transient Response, Nc=33
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Figure (13) Heat Equation Riccati Kernel, N=8, 0=.0001

Figure (14) Heat Equation Riccati Kernel, N=8, 0=.0001
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Figure (15) Heat Equation Riccati Kernel, N=8, 0=.0001
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Function gain Iheta=0.5 n=4

0.4

0.31-

0.2

0.1

0
0

Function loss beta=0.4301,0.4499

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-positlon

Figure (16) Heat Equation Riccati Kernel, N=8, 0=.5

Function gain theta--0.5 n=8

0.4

02

0.2

0.I

Function loss beta=0.4301,0.4499

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x-position

Figure (17) Heat Equation Riccati Kernel, N=16, 0=.5
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0.4 Funcdonlossbeta--0.4301,0.4499

03

0.2

0.1

0

I I I | i l I I I

"0'10 O.I 0.2 0.3 0.4 0.5 0.6 03 O.S 0.9

x-po_it]on

Figure (18) Heat Equation Riccati Kernel, N=I6, 0=.5

Function gain(q-HS) theta=0.5 n=23

0.4 Function loss beta--0.4301,0.4499
l 1 i

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 03 0.S 0.9

x-posidon

Figure (19) Heat Equation Riccati Kernel, N=32, 0=.5
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INTRODUCTION

This work formulates a method for the modeling of material damping characteristics in
distributed parameter models which may be easily applied to models such as rod, plate and
beam equations. The general linear boundary value vibration equation is modified to
incorporate hysteresis effects represented by complex stiffness using the transfer function

approach proposed by Golla and Hughes. The governing characteristic equations are
decoupled through separation of variables yielding solutions similar to those of undamped
classical theory, allowing solution of the steady state as well as transient response.
Example problems and solutions are provided demonstrating the similarity of the solutions
to those of the classical theories and transient responses of non-viscous systems.

BACKGROUND

Classical damping models assume a simple damping term proportional to velocity
and/or strain rate such that the equations of motion decouple readily.(See for instance
Reismann 1 and Soedel2). This modeling technique is more often an equivalent viscous
damping representation of non-viscous damping than a representation of the real structural
damping 3. Banks et.al. 4 have shown experimentally that hysteretic effects dominate the

damping mechanisms in a cantilevered composite beam. However, analysis of hysteretic
models is quite difficult. Inman 5 proposed using the Golla and Hughes viscoelastic model
for modeling damping in composite beams, and Slater 6 extended this theory to plates. A
simple method of representing damping mechanisms over a wide frequency range which
can be included in the general linear boundary value vibration equation to arrive at a closed
form solution for the damped response is presented in the following.

The time hysteretic stress-strain relation is given by

I

cr(x,t) = e(x, t )E- f g(t - s)e( x,s)ds
0

(1)

where o(x, t) is the stress, x is the vector of spacial coordinates, e(x,t) is the strain, and

the kernel g(t- s) describes the hysteresis as developed by Christensen 7 or Banks 8, for

example. The general linear boundary value vibration equation incorporating viscous and
hysteretic damping may then be written as

w(x, t) + dw(x, t) + L2[L _(x)w(x, t) +/_w(x, t)] = f(x, t) (2)
*Graduate Research Assistant, Mechanical Systems Lab, Department of Mechanical and Aerospace

Engineering

"['Professor and Department Chair, Mechanical Systems Lab, Department of Mechanical and Aerospace
Engineering
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where w(x,t) is the displacement, d is theviscous damping coefficient, andf(x,t) is the

forcing function. The operators L2 and L3 are stiffness operators; L1 represents the
integral part of (1) and () denotes partial differentiation with respect to time.

In modeling damping using finite element models, Golla and Hughes 9 have shown that
the variation of material damping and stiffness properties as a function of frequency (i.e.

time hysteresis) can be repre_nted by

where E* (s) is the complex modulus of elasticity, E is the static modulus of elasticity, and

s is the Laplace domain operator. The symbols an, lJn, Yn, and tin represent constants for
curve fitting to match complex modulus data. Ideally, k would be infinite in order to
perfectly match the material properties over all frequencies. However, it is up to the analyst
to determine the value of k in order to obtain sufficient accuracy. Although this transfer

function has been developed for finite element models, it is easily extendable to distributed

parameter theory.

Using (3) to model the time hysteretic stress-strain effects of (1) gives

a(x,s) - E'(s)e(x,s) -- E 1+ a, -_ ..... e(s)
,._ fls +ys+_l,

(4)

Incorporating the GHM model into the Laplace domain representation of (2) results in

s:W(x, s) - sw(x,O) - w, (x, 0) + sdW(x,s)

-dw(x, O)+ I_[E'(s)N(x)W(x,s)] --F(x,s)

(5)

where the operator L1 has been replaced by

' fl, s' + r,s (6)
i.1 fl_s_ + y_s + ll_

and the operator 15 has been factored into

I__m EN(x) (7)

to yield a linear partial differential equation. The purpose of the factorization of (7) is for
the case of the beam or rod of varying cross section. For example, for a beam with varying

cross section,

N(x)-- l(x) a: (8)
I)A a'x

where x is the distance along the beam, l(x) is the moment of area, p is the material

density, and A it the cross sectional area. Note that when the force or displacement is

represented by capital letters it denotes the Laplace transformed variable.
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ANALYSIS

Consider the solution of (5) by separation of variables/modal expansion with associated
permissible boundary conditions. The solutions are then in the form

Substituting (9) into (5) yields

£ [(s: + sd + E'(s)I_ N( x))A (s)](I)(x)- (s + d)w(x, O) - (v( x, O) ffi F(x, s)
n-I

(10)

If (I) (x) are chosen to be the eigenfunctions of the operator L2N(x ) such that the

boundary conditions are satisfied and

L_ N(x)(1) _A(I) (11)

then (10) becomes

£[(s 2 + sd + E'(s)A )A (s)]O (x)- (s + d)w(x,0)- *(x, 0)ffi F(x,s)
n-I

(12)

where A are the eigenvalues of the associated with the eigenfunctions cI) (x). Note that

(11) is the usual modal assumption for the undamped equations of motion.

The functions are assumed to be orthonormal such that

fa, (x)a,(x)aQ=a (13)
Q

where Q is the spacial domain of the equation, i.e. length for a beam and area for a plate.

Multiplying (12) by _,_ (x), integrating over the region Q and applying (13) yields the

n temporal equations

[(s:+sd+ E'(s)A )A (s)-(s +d)a (O)-it (O)]ffi L(s) (14)

where

and

f . (s) =f F(x.s),_°(x)dQ (15)
Q

a (0)= fw(,,,
Q

. a(o)ffifa,(x.o)_(x)aQ (16)
Q
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The solution of the temporal equation is then

k

[/. +(,+d)a.(m+a.(O)]lld,.
A.(s) - J" (17)

<(,_+se+e_ )+e_. a,(,_,-,7,

where (3) has been substituted into the solution and d, = fl,s 2 + g,s + rl,.

EXAMPLE

Consider a problem involving decay from initial conditions of a simply supported 1 cm
thick 1.5m x 2m plate given an assumed complex modulus. A complex modulus
represented by a single expansion term has been arbitrarily chosen in order to obtain a

simple solution. The parameters are as labeled.

X

1.5

2
v

Y

Figure 1

p - 2700 k-_g3 , E - 6.89 x 101° Pa, v -_.34, h =. 01m
m

The viscoelastic properties are ct -.6, fl -, 1,y - 1.5x 10',/u -- 1.5x 10'.

x_ Y_t
The initial conditions are given as w(x, y, 0) =.01sin(-7--_)sin(_-'-), which is the first

mode shape, with an amplitude of .01. The following time derivatives are also set:

fv(x,y,O)- fi,(x,y,O) _ ii;(x,y,0) E 0. The need for this will become apparent. The

equation of motion for a plate is
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F(x,y,s)s W(x,y,s) + D'(s-----))V4W(x, y,s) ,.
ph ph

From eqns. (3) and (5),

(El)

D(s"-"2-_ 1 E'(s)h3 ( s_ )ph phl2(1- v _) =240.5 l+.6s_ +l.5×104s+ 1.5× 104s+ 1.5× 106 (E2)

where m and n are integers from 1 to _. The natural frequencies of an undamped simply
supported plate are given by (See Reismann 1 for instance)

i).

o- Re  s,, h,I/1-71"" + (E3)

Using eqns. (E2) and (E3), Q11 = 124.14 rad/sec, and K(124.14 i) = 328.3 (1+ .217
From eqn. (17)

A(s)= ,
s 2 + 1.5 x 104s + 1.5 x 106

+ 1.5 × 104S 3 + 1. 5247 X 106S 2 + 3.6986 × 108S + 2.3 116 × 10 '°

which can be represented in state space form as

and

zill0 1 0 01Izil0 0 1 0 z2
-- 0 0 0 1

-1.69×10 '0 -2.71×108 -1.52×106 -1.5×104

(E4)

(ES)

,I! la(t)=[ 5.6x104 56x104 3.7x10-2 0 (E6)

tz, J

where the states z are related to the displacement by equation (E6) and the initial conditions
are a(0)=.01 and ti(0) ../i(0) -- d(0) -- 0.

From eqn. (E6), its time derivatives, and the initial conditions,

I/_!ll I 5"6 × 104 5"6×102 3-7x10 -2 0

• 0 5.6x104 5.6x 10: 3.7x10 -:
a -- --6.3×108 -1.0x107 -6.7×10 _ 0

-0 0 -6.3×108 _1.0×107 _6.7×105 lIllI 11Z2 -,,

Z 3

4 -0

(E7)

the solution of which is
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ill 48x1071/_t6 xl0_ 6= [-4.3 x 10 -l

Z, .o [ 6.4x103

(ES)

The results of a digital simulation of the plate response are shown in figure 2. The decay

envelope for an equivalent viscous damped plate (_ = _1/2 where Xl is the loss factor of the

material at 124.14 rad/sec) is shown for comparison.

0.01

0.005

0

-0.005

Displacement versus Time
r

0.05 0.1 0.15 0.2 0.25 0.3

Time (sec)

Figure 2

DISCUSSION

A method has been presented solving viscoelastic plate problems which accounts for

frequency dependent modulus of elasticity. The solution yields the same orthogonal
eigenfunctions/modes as classical plate theory while producing decaying temporal functions
representing viscoelastic effects. This method provides a simple approximation for
modelling viscoelastic plates. The solution reduces to the classical Sophie Germain
solution when the hysteresis terms are dropped, as can be seen in equation (17) when _tn is

set equal to zero.
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Abstract

Computationally efficient approaches to the solution of the dynam-

ics of multibody systems are presented in this work. The computa-

tional efficiency is derived from both the algorithmic and implementa-
tion standpoint. Order(n) approaches provide a new formulation of the

equations of motion eliminating the assembly and numerical inversion

of a system mass matrix as required by conventional algorithms. Com-

putational efficiency is also gained in the implementation phase by the

symbolic processing and parallel implementation of these equations.
Comparison of this algorithm with existing multibody simulation pro-

grams illustrates the increased computational efficiency.

1 Introduction

Current multi-link mechanism control systems are based on inverse kine-

matic approaches. These approaches are used primarily because of the corn-

plenty and computational cost associated with the solution of the dynamics

of such systems. Typical systems include robotic manipulators and mobile

station servicing modules. In real-time control applications, a need exists for

highly efficient dynamics solution algorithms (as opposed to kinematic) that

will make the dynamic control of these mechanisms possible. The evolution

of the formulation algorithm and the numerical solution methodology over

the past decade to accomplish real-time control objectives is now presented.

PAGE BLANK NOT FILMED
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TREETOPS developed in the mid-eighties was based on the minimum

dimension formulation of the multibody equations of motion. Originally

developed for bodies in a tree topology, kinematic relations were written

for the sequence of joints in terms of relative coordinates. The dynamics of

the multibody configuration were derived by projecting the translation and

rotation equations along the generalized speeds. The generalized speeds were

defined as the partial derivative of the expressions for body j translation

and rotational velocities with respect to the degrees of freedom [1]. The

algorithm resulted in a mass matrix of order(n) where (n) is the number of

degrees of freedom. As the complexity of the multibody systems increased,

the computational cost associated with this approach became prohibitively

large (order of n3).

The numerical order(n) approach was proposed in 1988 as a solution to

the prohibitively high computational cost associated with the n 3 algorithms.

Developed initially for chains of rigid bodies, the method was later extended

to fle:dble bodies. The equations of motion are again formulated in minimum

dimension (by the elimination of the non-working constraint forces) but now
a frontal and back substitution approach is used. The inertia and active

forces are shifted inboard to the core body for the solution of the equations

and then the procedure is reversed to obtain outboard body variables. This

frontal part and backsubstitution part result in the computational savings

through inversions of mass matrices of much smaller dimension than n, the

order of the system.

Symbolic processing of equations was the next step towards higher effi-

ciency. A generic equation file was used to provide the inputs to a symbolic

processor which eliminated unnecessary computations and generated a con-

figuration specific simulation code. By parsing, layering and simplifying

equations, an order of magnitude improvement over numerical implementa-
tion was achieved.

In 1990 , parallel implementation of the multibody dynamics algorithm

was attempted on four Intel 860 chips connected to a host IRIS workstation.

In the verification runs, for the class of problems tested (Large Space Struc-

tures, Space Station), a speed-up of more than two orders of magnitude was

obtained.

The current efforts in this area are focusing on bringing this technol-

ogy to fruition by refining and automating the implementation procedure.
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Additionally, graphical user interfaces based on X-windows are being de-

veloped for pre and post processing. A symbolic programming language

that supports a whole family of entities (partioned matrix operations, vec-

tor operations, etc.) is being developed to support the quick and painless
generation of symbolic code for a variety of engineering applications. The

concept behind these technology thrust areas is presented in this paper.

The paper is organized as follows. A flavor of the Order(n) approach is

first presented. This is followed by a section on symbolic code generation.

Issues and our past experience with the implementation of equations on a

parallel hardware platform are then presented. Some of the practical prob-

lems solved using these simulations and performance comparisons are then
presented followed by conclusions.

2 Algorithm Formulation

A multibody dynamic system is characterized by several bodies intercon-

nected by joints that permit relative motion across them. Robots and space-

craft with articulated appendages such as solar arrays are typical examples
for such systems. The first step in the study of such systems is the derivation
of the equations of motion.

Early approaches to the dynamics formulation for multibody systems

required the inversion of the system mass matrix for every integration step.

Since the inversion of an n x n matrix involves operations of the Order(n3),

these are called Order(n 3) approaches. As the number of degrees of freedom

(DOF) increases, this matrix inversion, for every integration step, becomes
computationally expensive.

An Order (n) algorithm - so called because the computational burden

increases only linearly with the number of bodies - presented earlier in [2]
for systems containing rigid bodies demonstrated the achievable computa-

tional efficiency. Such an algorithm is attractive especially in on-line control

schemes that consider system dynamics. The algorithm was extended in [3]
systems containing flexible bodies.

2.1 System Description

A multibody system in a topological tree is shown in Figure 1. Body 1 is an

arbitrarily selected reference body assumed to be connected to an imaginary
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Figure 1: General Tree Configuration and Body Pair Definition

inertially fixed body, numbered 0. For any other Body j, Body L(j) is the

adjacent body leading inward to Body 0 (or to the core body, Body 1). Body

L(j) is then defined as the body directly inboard of Body j. A kinematic

joint between the body pair j and L(j) allows relative motion between these

bodies. Let NTj and NR3 denote the number of translational and rotational

DOF at jth hinge, respectively.

2.2 Mathematical Formulation

The equations of motion are derived via Kane's method. The formulation

and the corresponding solution algorithm are based on the kinematic rela-

tionships between body pairs j and L(j). A joint between these bodies is
defined between the q node on body j and the p node on body L(j). Re-

ferring to Figure 2, we proceed as follows. The vector locating an elemental

mass dm on Body j, in the inertial frame, is given by

where, R_ locates the body frame _j, rj is a vector that defines the un-
deformed configuration of the elemental mass dm in Sj, and uJ represents
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Figure 2: A Generic Hinge Between a Pair of Deformable Bodies

the elastic deformation (vector) experienced by din. Using the method of

assumed modes, the elastic deformation of body j can be expressed as the

sum of the product of a set of assumed mode shape vectors ___(_rJ) and their
time-varying amplitudes _(t) as:

NM'j

(2)
l= 1

where, NMj denotes the number of retained modes for Body j.

The acceleration of the elemental mass dm is obtained by differentiating
Eq.(1) twice with respect to time, as:

j_j "'J .
_ _u - U_q

ooL(j} ootL(j) (L(j)yj "+ -_ + up X -_ -<), (4)
_.;j A _;L(j) j_ oo,L(j)
--L(:) "- -- --_p (5)
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and j_em in Eq.(3) represents the remainder term that contains only cen-
trifugal and coriolis accelerations. Solid and open dots represent differenti-
ation in the inertial and local frames, respectively. Eqs.(4) and (5) provide

the recursive expressions needed for the Order(n) algorithm.

Now consider a leaf body, Body j in the tree topology. The total relative

degrees of freedom associated with this body are: NTj + NRj + NMj. For
the modal degrees of freedom associated with this body one can obtain the

equations of motion as:

/_j . --L(j}

(6)

The variables {yJ} and (0J) denote the translational and rotational accel-

erations across joint j, and are of dimension NTj and NRj, respectively.

The modal accelerations are denoted by {/_J} which is of dimension NMj.

Similarly. the equations of motion associated with joint jth DOF can be

obtained, as:

l>j.  L,j) + {$j}

= - (fD)"

The right hand side terms (f,,), {fJ} and {Z} represent the active

force contributions and terms with * contain the remainder terms in Eqs.

(6) and (7). The Order (n) solution algorithm, consisting of a Frontal part

and a Backsubstitution part, is as follows:

2.3 Order (N) Algorithm

2.3.1 Frontal Part

Starting with the leaf bodies in the tree topology, first the modal acceler-

ations {/_J} are solved for, in terms of the body j joint accelerations, and

inboard body accelerations _JL(j) and _(j), using Eq.(6). The result is then

substituted in Eq.(7), and then the joint accelerations are solved for, solely
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in terms of_R_(j) and _(j). The recursive relations in Eq.(4) are then uti-

lized to shift the inertia and active forces of Body j in terms of its inboard

body DOF and the procedure is carried out for all the bodies in the tree

topology, until the core body is reached. The core body accelerations are

then obtained in terms of external forces. This completes the Frontal part.

2.3.2 Backsubstitution

The steps involved in this part are the reverse of the steps outlined above.

Once the corebody accelerations are obtained, Eq.(4) is utilized to obtain

the outboard body accelerations and, using a modified form of Eq.(4), in

which the modal accelerations {i_J} are eliminated, we obtain the joint ac-

celerations {_)J} and {g/J}. The body modal accelerations {/_J} are then

obtained using Eq.(6). This procedure is continued for all the bodies in the

topology, starting with the bodies directly outboard of the core body.

The Frontal and Backsubstitution steps outlined above are also shown

in Figure 1. Note that the matrix inversions required in setting up the func-

tional evaluations needed for integration in the simulation correspond to in-

dividual joint DOF and the modal DOF, and thus much smaller than the sys-

tem mass matrix. This is because, the matrix [m j] is of order Niklj x N.iklj

and the mass matrix [A4_] associated with the joint DOF is at the most

a 6xfi matrix. Thus, it can be seen that substantial computational savings
can be achieved using this algorithm, because the system mass matrix is
never explicitly inverted.

3 Symbolic Processing

Symbolic processing of the equations of motion of a multi-body structure

can result in a substantially more efficient simulation [4]. The increase in

efficiency is achieved through simplifications that are possible because of

special configuration characteristics as well as arithmetic and algebraic sim-
plifications. The symbolic processing module described here receives its
input from three sources:

(a) A configuration data file which describes the multi-body system being
simulated, its topology and properties.

(b) A flexible body data file which contains data relating to the flexibility
properties of each flexible body in the system.
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(c) An equation file containing the equations of motion of a generic multi-

fiex.ible body system.

The output from the processor is a set of FORTRAN files containing an

implementation of the specific set of equations of motion that are applicable
to this multibody configuration. A context diagram is shown in Figure 3.

The process involved in symbolically manipulating the equations of motion
consists of the following sequence: parsing, layering, simplification, scalar-

ization and code generation. These processes are described below.

3.1 Background

An equation consists of a left-hand-side and a right-hand-side. Equations

can be represented in several forms. A convenient method of representation

uses factors, terms and expressions. A factor is the smallest building block

of an equation. The second building block of an equation is a term. A

term may have a single factor as its element or a combination of factors

separated by some operation between them. One or more of the terms when
summed or multiplied together result in an expression. The left-hand-side

of the equation consists of a single factor. The right-side of the equation is

usually in the form of expression. If the factors are multiplied together to

562



make up a term, and the terms are summed together to form an expression,

the equation is said to be in Sum of Products (SOP) form. If the factors

are summed together to make up a term, and the terms are multiplied
together to form an expression, the equation is said to be in Product of Sums

(POS) form. The equations input to the symbolic manipulator are usually

in matrix-vector form. The equations produced as a result of processing are

in a scalar form. The different processing steps for each of the equations
are parsing, reducing, layering, simplification and scalarization.

3.2 Parsing

Parsing is the translation of an algebraic expression from a form readable by

humans to an internal form which can be easily manipulated by a computer.

Once a set of equations representing a specific multibody model has been

selected, they are "parsed" to generate the desired form of the equation so
that they can be further processed.

The primary stage of the parsing process involves scanning each of the

equation strings. The parser scans each of the equation strings and produces

a stream of token representations. A brief description of the process of
scanning and tokenization is contained below.

3.2.1 Scanning

The primary function of the scanning process is to read each input equation

string and group the input characters into tokens. A token is basically an
identifier. The approach used to scan the equation string could be either

Top-Down, i.e.,starting with the largest building block, or Bottom-Up, i.e.,

starting with the smallest building block. The method used here is the

Top-Down method. The scanner first finds the first token (the LHS of the

equation string). It inspects it to check for validity. An error message is

sent if the token is not valid. Next the scanner looks for the separators of
the LHS and the RHS.

Scanning of the RHS involving an expression is a slightly more compli-

cated process. The scanner first starts out with the first expression. It then

searches for the tokens that make up the expression, as well as the opera-

tors between the tokens. Once all the tokens have been parsed the scanner

searches for the next expression in the list and carries out the same process

until all of the expressions have been parsed. The next step is tokenizing.
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3.2.2 Tokenizing

As the equation string is scanned, the tokens are inserted into their respec-
tive data structures. The information that needs to be stored for each of

the tokens includes the names, their types (matrix, vector, scalar), dimen-

sions, the pointer to the next token in the expression, and the operation be-
tween the two tokens. Once all the tokens defining the LHS and the RHS

of an equation string have been created, they are linked together with the

help of pointers to form the internal representation of the equation string.

3.3 Layering

This is a method by which a complex equation is split into a set of simpler

equations. The method of splitting is selected in such a way that it results
in the least number of operations (multiplies and adds) to be performed. An

example given below demonstrates this process:

Z=A*B*C

where A is a matrix of size (1 x 2), B is a matrix of size (2 x 2) and C is

a matrix of size (2 × 3).

The process of layering results in two equations

X1 = A.B

Z = XI*C

For the matrix sizes shown, if Z is computed explicitly without the use of

intermediate variables, it would require 24 multiplies and 9 adds. Using the

layering technique shown above, it would require only 10 multiplies and 5

adds.

3.4 Simplification

Once an equation is parsed and layered, it undergoes simplification to pro-

duce a minimal form of the equation. Simplification occurs at two stages.

First the matrix-vector equation itself is simplified. Second the scalar equa-

tions describing the elements of the factor are simplified. The two stages

are discussed in more detail below.
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3.4.1 Matrix-Vector

The parser converts the matrix-vector algebraic equations to matrix-vector

data structures. Simplifications of the equations involve operations such as

the elimination of factors which are zero or have zero coefficients, identifying
factors which are diagonal, etc. Basic rules of matrix-vector arithmetic
follow.

3.4.2 Scalar

The scalar elements of each equation may allow simplification using the
basic rules of scalar arithmetic. For space considerations, these rules are
not presented here.

3.5 Scalarization

The process of generating the scalar elements of a matrix-vector equation is
called scalarization. Scalarization of the factor that forms the left-hand-side

of the equation results in multiple scalar equations, one for each element of
that factor.

3.6 Code Generation

Finally, tile parsed, layered, simplified and scalarized equation has to be

converted into FORTRAN source code. This involves the conversion of the

internal data structure into a string format, taking into account the various

synta¢c rules of the FORTRAN language. This process is referred to as code
generation.

4 Parallel Processing

The recursive nature of the Frontal solution algorithm makes it amenable

to parallelization for a wide class of space structures. The availability of

relatively inexpensive high-speed processors makes it possible to design and
build parallel architectures at relatively low cost. A dedicated system with

four [ntel 860 processors was built to demonstrate tile suitability of parallel
architectures to the dynamics of multibody systems.
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Figure 4: Hardware architecture

4.1 Architecture

The system consisted of a host machine on which all the graphical modeling,
animation and all user interaction were performed and a dedicated parallel

architecture on which the dynamics computations were performed. The host

machine which acted as the front-end was a standalone SGI Personal Iris

whereas the numeric intensive back-end consisted of a Sun SparcEngine host-

ing four Inter 860 processors on the VME bus (an individual 860 processor

running at a 40 MHz rate is capable of a peak floating point performance of

80 MFLOPS). Details of the architecture are shown in Figure 4.

Communication between the processors was implemented using message

passing. Message passing routines (send and receive) were implemented

using memory shared over the VME bus.

4.2 Parallelization

The symbolic code generator discussed in the previous section was used to

generate the parallelized software. The code generator read in the topology
information and identified the segments of the topology which could be

processed concurrently. The generated code reflected distribution of the
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code on the different processors and also included the messages to be passed
between processors.

An 11 body(140 DOF)model of the Space Station has been chosen

to demonstrate the parallelization process. Figure 5 shows the Assembly
complete model of the Space Station as per the November 1989 model. This

model of the Space Station has 8 photo-voltaic arrays, two power booms and

the main truss (core body) making up the 11 body configuration. The 8 PV

arrays are treated as leaf bodies and the frontal and kinematic computations

(up to Eq. 7) for these bodies are computed simultaneously. This process is

repeated recursively with the two power booms being processed simultane-

ously on two processors. Finally the core body accelerations are solved on a

single processor and the backsubstitution is performed concurrently in the

reverse sequence. The division of the frontal computations on to the four
processors is shown in Figure 6.

5 Results

There are two sets of comparison results that are presented in this section.

The first set is for rigid 7 body models of the Space Station and the second
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set is for flexible 11 body models of the Station.
The 7 body model of the Space Station was integrated with the inte-

grated Space Station Attitude Control System (SS-ACS) and several simu-
lations were performed with varying degrees of freedom. This comparison

primarily highlights the performance of the frontal solution algorithm dis-
cussed in this paper with Kane's approach as used in TREETOPS. The

comparison results are presented in Figure 7.

The 11 flexible body (140 DOF) model of the Assembly complete Space

Station has been used here to demonstrate the performance gain by the

use of computationallY efficient algorithms in combination with dedicated

high speed parallel hardware. The dynamic model of the Space Station was
combined with the baseline integrated SS-ACS. All the component modes in

the bandwidth of tile controller were retained. (The controller was running

at 5 Hz whereas the highest component mode used was at 10 Itz). For this

case, a total of approximately 40000 lines of FORTRAN code were generated.

The complete non-linear multibody simulation for the 140 DOF system was

performed for a complete orbit (90 minutes) of simulation time.
The performance comparison of the dedicated parallel processing sys-

tem for the flexible body case with other commercially available hardware
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is shown below in Figure 8. Also shown are the comparisons to conventional

approaches such as TREETOPS. These comparisons show that a simulation

run that took over 315 hours using TREETOPS was completed in approx-
imately 85 minutes, showing over two orders of magnitude improvement.

This comparison is for the same problem with TREETOPS running on a
single Intel 860 processor.

6 SUMMARY

The application of efficient algorithms to solve multibody dynamics prob-
lems has been presented in this work. While algorithms contribute to better

solution strategies, efficient software implementation enhances the speed-up

using these strategies further. In this work, the application of Order (n),
symbolic processing approach on a parallel platform has been demonstrated.

For the space station application considered in this work, a substantial per-
formance improvement was obtained.
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INTRODUCTION

This articlegives a brief summary of some results obtained by Nasser (ref.1)on modeling

and simulation of inequality problems in multibody dynamics. In particular, the augmented

Lagrangian method discussed here isapplied to a constrained motion problem with

impulsive inequality constraints. A fundamental characteristic of the multibody dynamics

problem isthe lack of global convexity of itsLagrangian. The problem istransformed into a

convex analysis problem by localization (piecewise linearization),where the augmented

Lagrangian has been successfully used [see Glowinski and Le Tallec (ref.2);Glowinski,

Lions, and Tremoli_res (ref.3);and Fortin and Glowinski (ref.4)].A model test problem is

considered, and a set of numerical experiments ispresented (Figures I through 9).

MATHEMATICAL MODEL

Functional Context

X = Hm(O,T;RN),
(1)

Hm(O,T;R N) = {v: vE Cm-I ([O,T];R N), -- EdmvL2(O,T;RN)} ,
dt m

(2)

£ is a Lagrangian function, J is a nonlinear functional, and K is a closed subset of x.
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Main Problem

Find O _ K, for which J is stationary I

K I - {rE X:gj(v(t)) =0

K2={v_X:gj(v(t))_O ,

K = K 1N K2,

j = l , 2 ..... k a.e. on (O, T) I ,

j = k + l ..... k + l a.e. on (0,7") t.

The functions g/v(t)) are real valued; finally, J is defined by

J(v) = £(v, _, t) dt.
o

The stationm-ity of J at 0 can be formulated as shown in the following section.

AUGMENTED LAGRANGIAN FORMULATION

Following a well-known technique [Glowinski and Le Tallec (ref. 2); Glowinski, Lions,

and Tremoli_res (ref. 3); and Fort.in and Glowinski (ref. 4)1, we associate to (1)-(6) the

following problem:

Find 0 and 1, with

stationary:

where

0 _ K and 1 _ A, for which the following augmented functional Jr is

TJr(v, p) = £r(V, _, p) dr,
0

£,.(v,t_) = £(v, v) ÷ <_ur Gl(v)> +
2

(3)

(4)

(5)

(6)

(7)

(8)

V(o) = [g l(u),g2(o) ..... g k+l(v) ]T, (9)
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(10)

+ + + ]TG; = gk+Fg_+2,...,gk+t '
(11)

+ 1gJ (12)

[ , ( ) }A= lZ:_Pi]i=t_L2 0, T;Rk+l , PiER if i=I,2 ..... k , Pi>O if i=k+I ..... k+l . (13)

There exists a large amount of literature dealing with the case K 2 = ¢D, which leads to

index 3 differential algebraic equations. The case when K2 is nonempty is considerably

more difficult from a mathematical point of view, and hence fewer technical papers have been

devoted to it. The methodology we shall present includes treatment of both cases.

SOLUTION ALGORITHMS

Given o_(t.), ok(t,,), and ;t_(tn), compute ok+1(t.), Ok÷t(t,,), and ]%+t(t.) via the

following:

VoJr(Ok+r_k+r ),k) =o, (14)

lk+l-'PA[_,k + pG(Ok+l(tn))] ;

PA is the projection operator associated with the set a. For the choice of r and p, see

Nasser (ref. 1) and Glowinski, Lions, and Tremoli_res (ref. 3).

(15)

LINEARIZATION AND TIME DISCRETIZATION

Following Nasser (ref.I),we introduce the perturbation 60, 60, 6b"of O, O, O"to obtain the

following system:

M(O) 60"+ C(O,O) d_9 + K(O,O) 60 + R(O) 60 + S(O) 60 = r.h.s. (0). (16)
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S _.

k+l

i--I

(17)

{,( ) ,.,/ )}
t----I i--k+l

(18)

h h+l h

r.h.s.(O)- -[__ .l.iVogi(O) 4- _" J.iVog:(O) 4- r[ _" g,(O).Vogi(O)
ill i=k+l i--I

iffih+l

(19)

Taylor Series Expansion of e and d

Using Taylor series expansion for 0 and O, we get

_o_ zlt 2 ,o, at 3 at 4 O(at 5)O(t + At) = O(t) + O(1)(t)At + O"(t) 7- 4- O'°'(t) _- ÷ O(4)(t) _-_ 4-
(20)

At2 (4) At3 O(At 4)O(t 4- at) = O(1)(t + at) = e(1)(t) 4- eC2)(t)at 4- oC3)(t) -_ 4- 0 (t) "_- 4-
(21)

where dots or superscripts denote the order of the derivatives.

Let

80(t) = O(t+ at) - O(t), (22)

6O(t) = _(t + at) - e(t) , (23)

O(3)(t)
O(2)(t ÷ At) -- O(£)(t)

At
(24)
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80"(t)= O(t + zl t) - e'(t) , (25)

_(2) = O(3)(t)At.
(26)

Time Discretization of the Differential Equation (16)

Linear Acceleration Method

This is a widely used scheme in structural dynamics. It consists of assuming that terms

involving e<4)(t) in equations (20) and (21) are negligible and that the acceleration between t

and t + At varies linearly [i.e., according to equation (26)]. Substituting equation (26) into

equation (20), we get

6 6d(v 3 <v 6o<t>- - (27)

Taking equations (26) and (27) into account in equation (21), we obtain

A t °°

= 360(t) - 30(t) - O(t) (28)
At "_ "

Substituting equations (27) and (28) into equation (16), we get the following linear system

(in 60):

A60 = b, (29)

where

6 3
A = ""_M÷ ";':C +K +R +S, (30)

zlt _ _t

6 At..

b = At--O(OM + 3MO"(t) + 3CO(t) + _'O(t)C. (31)
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Higher Order Time Discretization Schemes

We assume that terms involving derivatives of order 5 and higher are negligible and that

O(2)(t 4- At) -- e(2)(t --/it)
{_(3;(t) -- , (32)

2�it

O(2)(t ÷ At) - 20(2)(t) ÷ O(2)(t --/it)
O(4)(t) = , (33)

At 2

and

_b'(t)=b'(t÷a,)-if(t). (34)

Substituting equations (32),(33),and (34)into (20)-(21)and rearranging terms, we get

(analogous to the linear acceleration method):

A'60 = b*, (35)

where

, 8 I0
A =--M-/- --C+K÷R +S,

At 2 3�it
(36)

b* = -Md 1 - Cd2, (37)

8 [At2.. 13/it2 ]d I -" At 2_ -_O(t--/it) --O(t)At-- _24 O'(t) ,
(38)

13/it[ /it .. 5/it Id2- -_ _(t)- 7_oct-/it)÷ -_d,] (39)

A second algorithm isas follows: Given O(tJ, O(tJ, o(t,,),O(tn _ I), and x(tJ, update

60(tJ, O_÷l(t_),and l_+1(tJ via
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60_ = A -lb, (40)

]tk+l = PA*[]t k + PG(Ok+I) ], (41)

where

In fact,

A*={p:pER k+l , pieR, i=I,2 ..... k, p>-O , i=k+l ..... k+l}. (42)

A = L2(O, T;A*). (43)

Algorithm (40)-(41) can be used if A and b are replaced by A* and b*.

Other integration schemes, such as the ones in Dean, Glowinski, Kuo, and Nasser (ref. 5),

may be used, also.

The acceleration _t) may be updated from the solution of equation (14) after convergence

on (60(t), A(t)) has been achieved.

Choice of r and p

The parameters r, p, and at are the variables controlling the stability. For optimal

choice of these parameters, refer to Glowinski and Le Tallec (ref. 2) and Glowinski, Lions,

and Tremoli_res (ref. 3).

Using the projection method substantiated and systematically developed in Nasser

(ref. 1), the equations of motion of the unconstrained system can be obtained in the following

form:

MSO'+ C60 + K60 =O. (44)

The projection method without piecewise linearization has been used by Keat (ref. 6) and is

equivalent to the well-known Kane's method (ref. 7).
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TEST PROBLEM

Consider a planar two-body system with a rigid obstacle, as shown in Figure 1. The

Cartesian coordinates are related to the Lagrangian coordinates by

X 1 -- a I sin 01 , (44)

x 2 = lsinO l 4- a2sin 02, (45)

Yl : al COS 01 , (46)

Y2 : I cos 01 4- a2 cos 02 , (47)

(48)

PE = mtgat( I - cosO1) 4- m2g [l( I - cosOl) 4-a2(1- cos02) ]

The stationarity of the Lagrangian £ is given by

(It 4- mta I 4- m21)O" I 4- rn21a2cos (02 -- 01)02 - m2la2_sin (02 -- 01) 4- ml glsin 0 I

4- rn2glsin O I = O,

(49)

(5O)

Data:

ml "--

rn 2

l --

[1 --

t2 =
g --

mass of body 1

mass of body 2

length

moment inertia ofbody 1

moment inertia of body 2

acceleration of gravity

(51)
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Constraints:

g! = l IsinO 1 +d>O

g2 = g! +12sinO 2_0

For the case r = 0, the augmented Lagrangian method reduces to the multiplier

method used for the treatment of Coulomb or dry friction problems in Dean, Glowinski, Kuo,

and Nasser (ref. 8). For the case r _ 0, ), = 0, the scheme reduces to the well-known penalty

method. The parameter r is the spring stiffness coefficient used in classical contact

problems.

CONCLUSION

The augmented Lagrangian method successfully applies to contact/constrained motion

problems ofmultibody dynamics. For constraints involving 0, the technique still applies;

however, the details are rather lengthy and were omitted. The case of elastic bodies offers no

mathematical difficulty except in the details, and the convergence is influenced by the

spatial discretization largest mesh size. For further details, refer to Kikuchi and Oden

(ref. 9) and Nasser (ref. 1).

ACKNOWLEDGMENTS

The authors wish to thank Les Quicho and Tam Pham for their assistance throughout this

study, as well as Lee Ann Anderson for preparation and editing of the manuscript. The first

author acknowledges the support of the Texas Board of Higher Education (grant

003652 156ARP). The second author's work was done for NASA on contract NAS 9-17900 at

Lockheed Engineering & Sciences Company.

REFERENCES

.

.

Nasser, M. G.: Numerical Methods for Multibody Elastic Systems and Contact Problems.

Ph.D. diss., University of Houston, Aug. 1992.

Glowinski, R.; and Le Tallec, P: Augmented Lagrangian and Operator-Splitting Methods

in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, vol. 9. Society for

Industrial and Applied Mathematics, 1989.

579



3. Glowinski, R.; Lions, J. L.; and Tremoli_res, R: Numerical Analysis of Variational

Inequalities. North-Holland, 1981.

4. Fortin, M.; and Glowinski, R., eds.: Augmented Lagrangian Methods. North-Holland,

1983.

5. Dean, E.; Glowinski, R.; Kuo, Y.; and Nasser, M. G.: On the Discretization of Some

Second Order in Time Differential Equations: Applications to Nonlinear Wave Problems.

Proceedings of the NASA-UCLA Workshop on Computational Techniques in Identification

and Control of Flexible Flight Structures, Dec. 2-4, 1989.

6. Keat, J.: A Formulation for Simulating Deployment Dynamics of Large Space

Structures. Proceedings of the Workshop on Multibody Simulation, Jet Propulsion

Laboratory, JPLD-5190, vol. I, Apr. 15, 1988.

7. Kane, T. R.; and Levinson, D. A.: Dynamics: Theory and Applications. McGraw-Hill,

1985.

8. Dean, E.; Glowinski, R.; Kuo, Y.; and Nasser, M. G.: Multiplier Techniques for Some

Dynamical Systems with Dry Friction. C. R. Acad. Sci. Paris, t. 314, s_rie I, pp. 153-159,

1992.

9. Kikuchi, N.; and Oden, J.T.: Contact Problems in Elasticity: A Study of Variational

Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics, vol. 8.

Society for Industrial and Applied Mathematics, 1989.

580



RIGID

WALL

/

Y

a I

g a2

g

Figure i.Planar two-body system.

581



Energy
(ft-lb)

4560

4545

4530

4515

45O0

4485

4470

4455

444O

4425

4410

4395

4380

\

-x...,_,_

0 I0 20 30 40 50 60 70 80 90 160 II0

Tune(s)

01(0)=_/3,02(0) =n/2

Figure 2. Multiplier method/high-order scheme - energy.

CFI

0_

0.135

0.12

0.105

0.09

0.075

0.06

0.045

0.03

0.015

0

I

I

II

0 10 20 30 40 50 60 70 80 90 1O0 110 120

Tune(s)

01(0)=_/3,02(0) =_/2

Figure 3. Multiplier method/high-order scheme - constraint force.

582



4550

4500

4450

4400

4350

Energy 4300
(ft-lb)

4250

4200

4150

4100

4050

4000

\
\

\

0 10 20 30 40 50 60 70 80 90 100 ! 10 120

T'une (s)

0_(0) =_/3,02(0) =n/2

Figure 4. Augmented Lagrangian/high-order scheme - energy.

CFI

0b0

0.27

O.24

0.21

0.18

0.15

0.12

0.09

0.06

0.03

0 I
I
0 10 20 30 40 50 60 70 80 90 100 110

Tune(s)

0_(0) =_/3,02(0) =n/2

Figure 5. Augmented Lagrangian/high-order scheme - constraint force.

120

583



Energy
(ft-lb)

4550

4500

4450

440O

4350

4300

4250

4200

4150

4100

4050

4000

3950

39O0

3850

\

L
7

\

0 I0 20 30 40 50 60 70 80 90 100

T'_¢(s)

01(0) = r_/3, 0_(0) = n/2

Figure 6. Penalty method/high-order scheme - energy.

110

%
120

CFI

ObO

0.2'7

0.24

0.21

0.18

0.15

0.12

0.09

0.06

0.03

0

10 20 30 40 50 6O 7O 8O 9O

Tm_ O)

01(0) = rr/3, 02(0) = rt/2

1

100

Figure 7. Penalty method/high-order scheme - constraint force.

i
110 120

584



1584

1581

1578

t. _- i.

1575

1572

Energy
(_-Ib) 1569

1566

1563

1560

1557

0 5 10 15 20

\

25 30 35 40

Time (s)

45 50 55 60

Or(O) = _/3, 02(0) =0

Figure 8. Augmented Lagrangian energy comparison for high-order scheme versus

the linear acceleration method.

1611

1608

1605

1602

1599

Energy 1596
(ft-lb)

1593

1590

1587

1584

0

J--
__._r

__..r--

__.r---

Y

5 l0 15 20 25 30 35 40 45 50

Time (s)

01(0) = _/3, 02(0) =0

Figure 9. Penalty/explicit Euler scheme - energy.

55

_.2

6O

585





N94- 35898

Software for Continuum Modeling of

Controls-Structures Interactions

Larry Taylor

NASA Langley Research Center

Hampton, Virginia 23665

J

/ 1 "_ _ J

(t'lij

ABSTRACT

It is clear that computer software is needed to assist in the

generation of the equations of motion for complex, flexible

spacecraft. Daniel Poelaert of ESTEC has developed the software

DISTEL with which he has modeled the structural dynamics for

different satellites. He is interested in expanding the capabilities of

DISTEL to include structural damping and control systems.

Unfortunately, the software has not been released. The author has

developed similar software, PDEMOD, which has been used to model

the Spacecraft control Laboratory Experiment (SCOLE), the Solar

Array Flight Experiment (SAFE), the Mini-MAST truss, and the LACE

satellite. PDEMOD has been used also for optimal parameter

estimation and integrated control-structures design. PDEMOD is also

being extended to include structural damping and control systems

which are imbedded into the same equations for the structural

dynamics.

This paper will address the formulation of the equations for the

structural dynamics of spacecraft structures which are constructed of

a 3-dimensional arrangement of rigid bodies and flexible beam

elements. Control system dynamics are imbedded into the same

equations so that model order reduction approximations are not

necessary. The input data consists of the physical data of the

elements and the topological information describing how the

elements are connected. PDEMOD (1) automatically assembles the

equations of motion for the entire structural model, (2) calculates the

modal frequencies, (3) calculates the mode shapes, (4) generates

perspective views of the mode shapes, and (5) forms selected

transfer functions.

The software PDEMOD continues to be developed to provide

additional features to assist in analyzing and synthesizing control and

structural systems for flexible spacecraft.

FqlSC:ll)_NI lieGE BLANK NOT FILMED
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Issues in Modeling Composite Structure

Finite Element Modeling

• Excessive Complexity

• Parameter Estimation is Difficult

• Model Order Reduction Required for

Control Analysis

Distributed Parameter Modeling

Fewer Model Parameters

Parameter Estimation Straightforward

Closed-Loop Stability Analysis does not

Require Order Reduction

The current practice of modeling flexible structures is to use finite

element modeling. It is then necessary to dispose of most of the

modal characteristics because of their inaccuracy. Damping is also

defined in an ad hoc manner. When designing a control law for such

a model it is necessary to iterate because of the order reduction

process. Also the number of model parameters is too great to allow

optimal parameter estimation.

The recommended alternative is to use distributed parameter

modeling. It is not necessary to reduce the order of the model since

the control system dynamics can be imbedded into the same

equation which represent the structural dynamics. Damping can be

included more accurately into the structural equations. The reduced

number of model parameters enables optimum parameter
estimation.
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Hurdles for P.D.E. Modeling

Ability to Generate P.D.E. Models

of Complex Structures

Accuracy of P.D.E. Models for

Different Types of Structure

Ability to Imbed Control/Structural

Dynamics

Before continuum or distributed parameter modeling can become a

viable alternative to finite element modeling, it is necessary to develop

software which will enable the modeling of complex structures. The

software, PDEMOD, can provide that capability. The software

continues to be developed to provide additional features.

It is also necessary to examine the accuracy of continuum models. The

number of example configurations continues to grow. The accuracy

can be equal to or better than that of finite element models.

Eventually, it will be possible to use both approaches in the same
software, thereby taking advantage of the features of both approaches.

It is valuable to control applications to imbed the control system

dynamics into the same equations for the structural dynamics. The
inaccuracies due to order reduction can then be avoided.
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Current
Position

x b
Deflected Beam

z b

(o,t)
Fixed Beam Axes

x

Rcg(O)

Initial, Undeflected
Position

z

The equations of motion are formulated in terms of the motion of
bodies attached to the ends of flexible beam elements. The

coordinates of a body are chosen to be those of one of the beams to
which it is attached. The reference beam axes remain fixed. When

the beam element deflects the body moves accordingly. Account must
be taken of both linear and angular deflection, however.

The acceleration of the body is then related to the sum of the forces
and moments that result from the attached beam elements.
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BODY # I

SCHEMATIC /

BEAM o3

BODY °2

BEAM #2

BODY o3

Three-dimensional configurations can
be modeled which are comprised of

rigid bodies and beams which deflect
laterally (two directions), longitudinally,
and twist.
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I Beam Model J

y(L)

X(L_ Z(L)

o_ T(L)

T(O)

The Moments and Forces at (0) in Beam Axes are-

M x = Elyu_(O)

My = - Elxu_(O )

M z = Elyu_(O)

Fx = EIyuy(O)

Fz = EAzu_'(O)

The force and moment vectors are first expressed in terms of spatial

derivatives of the deflection of the beam element. After noting that
the beam deflections are functions of sinusoidal and hyperbolic

functions and their coefficients, the linear deflection, angular
deflection, and force and moment vectors are expressed in terms of a
vector of the beam deflection coefficients.
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Beam Deflection Function

Ux(Z)--ax + bxZ + Axsin(bxz)+Bxcos(bx z)

+ Cxsinh(bxz) +Dxcosh(bxz)

Uy(Z)= ay + byZ + Aysin(byz)_Bycos(byz)

Cy s inh( byZ )+ DyCOS h( byz )

U$(z)=a¥+ Atpsin(byz)_B¥c°s(byz)

Uz(z)=a z + Azsin(bzz)+Bzcos(bzz)

The shape of the beam super element can be expressed in terms of
sinusoidal and hyperbolic functions for lateral bending. The axial

elongation and torsion deformations require only sinusoidal terms.
This is true for general configurations which are comprised of such

super elements and rigid bodies as well. The introduction of slight

damping and dissipative control effects causes only slight errors, so

that sinusoidal and hyperbolic functions remain useful approximations
to the actual deformations.
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It is useful to express the linear and angular deflections, force and

moment as matrices multiplying a vector of the coeffecients of the
sinusoidal and hyperbolic finctions. The equations of motion, transfer

matrix, or the dynamic stiffness matrix can then be expressed in
terms of these matrices.

595



--Partial I)illerential Equations /

A similar reslJlt is olllained lor the ol.her hendinl+

eqltal.ion.

m iiy, E ly,JT-- o

m

i')2 '= El___y
,hi,4

I:or t.he elongation equal.ion"

,4'

miiz, l._Azuz --o

III

Sinlilarly lor the torsion equal ion"

AV

pl_ii_, E I_J¥ = o

m

O¥t. -- __¥2

All ol the "h" parafnelers have heen related to the

laequency, m.

The beam equation relates the frequency to the 13 coefficients that

appear in the sinusoidal and hyperbolic beam deflection functions.
There are different relationships for bending in the x-z plane, bending

in the y-z plane, elongation along the z axis, and twisting about the z

axis.

The relationships are more complicated for the Timoshenko beam

equation, for a constant axial force, and for attached, smeared

appendages.
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I Structural Damping /

Small levels of structural damping would not affect

the mode shapes for zero damping. It should be

possible to handle small levels of damping. The

mode shapes would become complex and the eigen

values would have both real and complex parts.

Tile beam equation might be:

mii - Cu + El 0

Tile string equation might be:

mii + Cfi"- EAu" = 0

Tile undamped mode shapes will be used as Galerkin

approximate damped mode shapes.
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 DB eD
INPUT 1

• MASS + INERTIA
• STIFFNESS + DAMPING + CONTROL
• DIMENSIONS + TOPOLOGY

( OUTPUT )

• MODAL FREQUENCIES
• MODE SHAPES
• GRAPHICS
• TRANSFER FUNCTIONS
• SENSITIVITY FUNCTIONS
• MODAL PARTICIPATION
• OPTIMIZATION

The continuum modeling software PDEMOD forms the total system

equations from the input data of the mass, stiffness, damping, control

and geometrical information. The dynamics of the total system is

analyzed and particular responses and functional relationships can

then be generated.
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Distributed Parameter
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Laboratory Experiment
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6

Finite Element Model-_ 6.4_,

Frame "1' Frame m2 SCOLE Solar Mini-MAST

Array Tr u._._
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Distributed Parameter Models

LACE Satellite

Multi-Hex

Prototype Experiment

Although a number of flexible spacecraft configurations have been
successfully modeled, additional models of the LACE Satellite, the

Multiple Hex Prototype Experiment and the Shuttle Remote

Manipulating System are being generated. By modeling more complex

configurations, the experience of continuum modeling and the

capabilities of the PDEMOD software will continue to grow.

6OO



Distributed Parameter Modell

R. M. S. Control System

____ Flexible Joints

-=-Flexible B 4

......... --'... _b'

Flexible Station __Station Control Sys.

] Rigid Shuttle

Ill _uttleControiSystem
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Station

Control

_1_

Continuum Model of /Space Station-RMS-Space Shuttle

'R.M. S.IControl

I

Gi.ml_

L 'H
 Trans r  Matrix. U l

" i+l

Shuttle

I

Control

10

U9 Ua U7 U6 U5 U4 U3 U2 U1 / _'/

(MJl

The task of developing a continuum model of the Space Shuttle-RMS-

Space Station Freedom assembly configurations brings together all of
the modeling experience to date. Previous models of the Mini-MAST
truss, the Spacecraft Control Laboratory Experiment, and the Solar

Array Flight Experiment models will contribute to the complete model
of Station assembly. Similarly, the tasks of estimating the model

parameters are steps toward estimating the total model parameters of
the Station assembly model. The success of this task should serve as

an example of the power and usefulness of the distributed parameter

modeling approach.
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Concluding Remarks

* The use of Finite Element Modeling presents
Obstacles to Parameter Estimation and Optimization

. Partial Differential Equation Modeling Facilitates

Control/Structure Optimization

P.D.E. Models have been Successfully Generated for

I. Spacecraft Control Laboratory Experiment
2. Solar Array Flight Experiment
3. Mini-MAST Truss

. P.D.E. Model Accuracy is Competitive with Finite

Element Models

* The Software PDEMOD Enables Modeling Complex,

Flexible Spacecraft. PDEMOD Continues to be

Developed, is being Applied to:

I. Evolutionary Model Experiment

2. Space Station Scaled Model
3. LACE Satellite
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