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Abstract

A new approach to find homogeneous models for beam-like repeated

flexible structures is proposed which conceptually involves two steps.

Step one: Approximation of 3-D non-homogeneous model by a
1-D periodic beam model. The structure is modeled as a 3-D non-

homogeneous contimn, m. The displacement field is approximated by
Taylor series expausion. Then, the cross sectional mass and stiffness

matrices are obtained by energy equivalence using their additive prop-

erties. Due to the repeated nature of the flexible bodies, the mass and

stiffness matrices are also periodic. This procedure is systematic and
requires less dynamics detail.

Step two: llou,ogenization from 1-D periodic beam model to 1-1)

homogeneous beam model. The periodic [)earn model is homogenized

into an equivalent homogeneous beam model using the additive prop-

erty of co,npliance aloug the generic axis. The major departure from
previous approaches in literature is using compliance instead of still'-
hess in homogenization. An obvious justification is that the stiffuess

is additiveat each cross section but not tflong thegeneric axis. The ho-

mogenized model preserves many properties of the original periodic
model.

*Grateful acknowledgement to Professor A. V. Balakrishnan for discussion. Rescar(:h
supported lit part under grant from NASA Langley FRC.
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1 Introduction

As tile number of repeated cells ill a truss structure increases, the 3-l) model can

be approximated better and better by an equivalent I-D model. The repeated
structure then can be modeled as a homogeneous anisotropic continuum beam.

The parameters of the continuum beam are functions of the element properties of
the truss structure.

Finding the 1-D homogeneous anisotropic beam model from the reference model,
the 3-D non-homogeneous anisotropic model, of the truss structure may be referred

to as a tlomogenization process, of which there are many examples.

The approach ])resented here follows that of Noor's [1, 2] and Lions's [3]. See [:3]
for mathematical details of the homogenization process, where some results are taken

by our paper for granted. The Noor's method is a direct averaging method, which

justifies equivalence in the sense of equal kinetic energy and potential energy under

the condition of equal nodal displacements and velocities. It imposes a kinematic

assumption on the displacement field, then averages the stiffness and mass matrices

(by FEM) over a repeated cell. Although the stiffness matrix is additive at each
cross-section, it. is not along tile generic axis. Thus, this method always gives higher

stiffness than it should be. This shortcoming will be overcome by our approach.

Our approach consists of two steps, as illustrated in Figure (2). The first

step deals with the approximation of 3-D non-homogeneous model of a repeated

structure by the I-D periodic beam model. The second step then homogenized

it to a 1-D homogeneous beam model. "['lie 3-D non-homogeneous model is a
collection of the Eulerian Equation of Motion of each element of the structure,

and is referred to as a reference model for the successive approximation. By applying

the Taylor series expansion and ener _-vequivalence, a 1-D periodic beam model is fou rid

systematically. Solid beam is used to clarify the basic idea, then an extension from
solid beam to non-solid structure(eg, lattice structure) is presented in section (5).

)

Figure 1: Anisotropic Beam
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Consider a structme constTucted by linear elastic anisot)opic materials as shown

in figure (1). The material coordinates attached have x-axis as tile generic axis

along the centfoids, and y-z as the p_incipal axes of the area ine.ia of cross

sections. ]'his choice of _eference will be adopted througboul the paper.

Let tile bounded open set _ c R 3 denote the space occupied by the structure

and F the boundary of Q. Let U, V, and W be the displacements in x, y ml(t z

direction, respectively, measured w.r.t, the natural state (undeformed position).
observed from inertial coordinates, and represented in the material coordinates.
The equation of motion [4, 51 is

pD" = ¢r:_.,. + o'u.,_ + o'_,_,, + f_,

pi)" = _y,x+o-,j_,v+cT_,.+fy in f_ (11

/)1;_' = o'_,z,_,+ cr,s,,_ + o'_,., + f.

with well-posed initial and houndary conditions to render existence of unique solu-
t,ion, where

P = P(z,y,-') _ L_°(n)

and f(x,y,z) is tile external body force. The constitutive law is

and

G : (30@ (2)

Gy y

C/'z z

Gy z

(T _j z

O'_:y

_yy

fzz

Tyz

g, .r

v,y
= l_

w,.+ w,_

U_ + V,:
(3)

where o" denotes stresses ,e strains and C O a real symmetric positive-definite matrix
with

I lere equation (l) is taken as the reference model of the beam. Our task is to ap-

proximate the 3-spatial-dimensional (3-D) equation (I) by a l-spatial-dimensional

(1 -!)) beam eq. to arbitrary accuracy of the displacement field. Instead of going

thr(/ugh the term by term scrutinizing as in solid continuum mechanics, we provide

a unified and systematic approach. This will insight the general pattern and prop-
erties of the 1-D beam eq.

The final goal is the capability of modeling repealed truss structure as a I-D

beam. The properties of repeated truss structure, though non-homogeneous (i.e.

p = p(v,y,z)), are periodic along the generic axis x. A homogenization process then
is needed as will be described in section 8.
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2 Justification of Taylor's Expansion

Before applying the Taylor approximation in the next section, let's justify its ap-

plicability to our problem first. Let 7_ = L2(f_) be real valued Hilbert space and

l?(t,x,y,z)= u2 = _'
tt 3 W

Let, the equation of motion be written as, by equation (1),

2.

pU + £U = f in Q (4)

with well-posed homogeneous boundary conditions specified by forces or displace-

ments in F, and

ui(O,x,y,z) E V, i_i(O,x,y,z) E _ whereV = 7_l(f_)

If all coefficients are in L_(_) and the strain energy associated with /: is positive

definite, then there exists a unique solution

u, E L2((0, T);_ ;) with u'i and ili in L2((0,T);7/)

Proposition 1

3 HnXn -- (7 strongly in [L2((0,T);_;)] 3

with X. the solution of M,_.k',_ + A,,X,, = f,_ , where

H. = H.(u, z) X_ = X.(t, x) c [L2((0, T)_ %]"

(H,_Xn)' ---* U' in [L2((0, T); "H)]3 = "VV_

L

H,_,_,, -- U in )421

x- a,,,_ 2. e [L-((o,J),/t)] _ = w_ with
/_ = L2(O, L) V = H a and
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Proof:

For each ?ti(t, x, y, z)

3 uim --_ ui strongly in L2((0, T);_))

u_m --+ u_ strongly in L2((0, T);7-/)

itim ---* iLi strongly in L2((0, T);7-/)

where Uim defined in (0, T) is analytic function in y and z. The strong convergence

is guaranteed since analytic functions are dense in L2((0, T); V)
Let

u(l)(., b) = _ Diu(a)b_
i=y,z

_(2)(a,b) = _ _ D,,j_(.)b&
i=y,z j=y,z

u(a)(a'b) = E E E Di,j,A.u(albibjb_
i=y,z j=y,z k=y,z

(5)

By Taylor's theorem

?tim -_ 1 u!k)lt t= _ ,m,, ,x,O, Ol,(t,x,y, zl)+H.O.T.
k=0

= Hn(y,z)Xim.(t,x)-b H.O.T.

By strong convergence of the Taylor series

H,_Xi.._ --_ ?tim strongly in L2((0, T); V)

(H,_Xi,_,_)' ---, u_m strongly in L2((0, T);7-/)

H,_,21,.,, _ itim strongly in L2((0, T); 7/)

(6)

Therefore, in general, we have

H,_ X,_ _

where

H_ = H.(y, z)-

strongly in [L2((0, T); l})] a

Xn = X,_(t, x) and Xn E [L2((0, 7'); I))]"

(H.Xn)'-- if' in W1

2,

H_.'_'. --_ U in W1

(7)
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Also,
7;,_,, -- c by ( H,,X,, )' -- U'

Therefore,

[/7 + cU, *]_, = [f, *]_, V q5 ¢ [L_((0, T);_2)] 3

-{p_, *]_, + [c%_,, c,]_, = [f, *]w,
or,

,_ ,jw, x [/,H,,*,dw,
,1

liIn {-[H,*_pIt, ._',,, *,,]w_ + [T,;C:oT;,_k, (_]w.,} = [H,]f, k_,,]w.

¢ , •Using M,,(x), t.,_(x)aT_df,,(t, a.) defined before, we ]lave

• rc e'_ e_]w=} -- [f,,, _P,lw_lira {-[M,,X,, *,,]vv_ + t ,_ x,
,I

lira [M, J(,_ + A,,X,,, q_,_]w_ = [f,, qJ,,]w_.
r/

Equations (5) and (6)imply

H,_Xn -- U with X_ the solution of M,,._',, +/t,_.\,_ = f,,

This completes the proof and justifies the applicability of Taylor's expansion.

(s)

3 Taylor Series Approximation

Let cross sections with concentrated forces be t_a,kena,s boundary sections (boundary

points in beam equations) and local effects of apl)lied forces be neglected. Assume

the physical displacements U, V and W are analytic in y and z so that the

Taylor series expansion is applicable. We apply the Taylor series expansion, using

equations (5) and (6), at each cross section x and any time t to have

" O"t'Of: OU 02U y_ O'-'U z- "

t_(t,.r,Y,:) =l_+ i).v _./+ b_ :+ _)y'2 2 + Oz'-' 2 + OvO-z yz+ftO'T (9)

where all terms on the l-illS are evaluated at (t,x,0,0). Similar equations can be

written down for V(t,x,y,z) and W(t,x,y,z).

'fho displacement field can well be approximated by a fi'_w dominant terms for

most physical beams. The generalized displacements of the beam eq. can be chosen

by order of magnitude analysis. For example, for an 8-generalized-displacement

(8-d) beam eq., we choose
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(10)

We will call X the generalized displacements .

Tile approximation of the dislAacement field up to the specified accuracy then is,

by equations (9) and (10),

U(t,x,y,z) =' u-¢3y+q_2z+@z

v(t,_.,v,_) - _+(,_:,-4,,):

I._(t, z, ,v,z) --' w + (_:_ + 4_),_

(ll)

or

v -- ux (12)
Be

with crosssectio,ia{shape functionH=ll(y,z)fo,n,dfi'omequation (II).The equa-

tion (II) isknown as kinematic assumption in StructuralDynamics, viewed as a

polynomial approximatio,,to the displacementfield.

Sincedyna,niceq.ofthcbeam iscompletelycharacterizedbymass and constituLive

properties,theapproximation of3-D eq.by theI-D beam isequivalenttotransforming

the pointpropertiestosectionalproperties,ie,from mass densityp and constitutive

matrix C O to mass ,natrix M and stiffness matrix C , respectively. The mass inertia

(M) and stiffness (C) ],ave additive property at any given cross-section; therefore we

can find M and C. by approximating the cross-sectional kinetic and potential energy.

respectively. This additive property justifies the validity of domain extension from
material-domain to structure-domain.

4 Energy Equivalence Method

We can find the sectional mass matrix by approximating the kinetic energy using

equations (10) and (12). The kinetic energy of a piece of the beaIn (between any
two cross sections) is

KE = _ / p({)'_ + + l_'2)dAdx
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l
--2///pf(THTHJ(dAdx

f X' M2dx2

It can be shown that, for anti-symmetric mass distribution,

M = [[pHTHd A = {mij(x)}
JJ

roll

mll

7Tll 1

s y rn

m55 -]-rt_6,_

-m56

T1/55 _56 77157

1_166 /D_67

rn77

The M in eq. (13) is the most. general pattern of mass matrix for anti-symmetric

anisotropic 8-d beams. The first (6 × 6) part of M is the general pattern of mass

matrix for Timoshenko beams.
We can also find the sectional stiffness matrix C by approximating the potential

energy of the beam. From equations (2) and (11), we have

eyy

(zz

7yz

7xz

7xy

u' - ¢'3y+ ¢'_z + ,_'uz
0

0

2t-23

¢2+w'+(u+ 23+¢1)Y
-¢3 + v' + (_ + _3 - <)=

where T=T(y,z) is a (6 x 9) matrix ;

= Te (14)

v'-¢3 = 3'12
w' + ¢2 = 713

<
= ¢_

2c23 = 3'23

= KX' + GX

[x,]0

0

-03

0

0

0

0

u

2e23

(15)
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G

03x 3 L_ 03×2

03x3 03×3 03x2

0 0

03×3 03×3 1 0
0 2

9x8

[ooo] 1L1 = 0 0 -1 and K= Is×s

0 1 0 01×8

The potential energy of a piece of the beam is

PE - 2 cTC°edAdx

1_ ,jjj...,,..o.,.,.
1/._ - eT c_ dx

2

The stiffness matrix for anti-symmetric of cO is

9×8

C = //TTC°TdA = {cij(x)}

Cll C12 C13 C17 C19

C22 C23 C27 C29

C33 C37 C39

C44 C45 C46 C47 C48

C55 C56 C57 C58

C66 C67 C68

8 y T_ C77 C78 C79

C88

C99.

(16)

The stiffness matrix C in eq. (16) is the most general pattern for anti-symmetric

anisotropic 8-d beams. The first (6 × 6) part is that of Timoshenko beams. Knowing
the general patterns of M and C is very useful, especially in assuming the model
structure in system identification. Since most of the truss structures ever built are

at least cross-sectional anti-symmetric, we consider this case only hereafter.

5 Extension to Lattice Structures

For non-solid beams, we need to apply the concept of domain extension, from
material-domain to structure-domain, so that the results in the above sections can
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be applied. Let's take a rectangular lattice structure as an example. The space

physically occupied by the structure material is called the material-domain. The

smallest simple-connected rectangular space enclosing the structure is called the

structure-domain(_), which includes the space not occupied by the structure

material(_).
A displacement field is assumed for the space not occupied by the structure

material so that the displacement field on structure-domain is in "HI(f_). Therefore,

the Taylor series expansion and energy equivalence method for calculating sectional

properties can be applied directly. The sectional properties shall not be affected

by the introducing of tile displacement field in Qe, since both tile kinetic energy and

potential energy are zero in Qe. We can then pretend we are dealing with a solid flexib[e

structure in regular shape.

6 Generalized Beam Equations

The governing eq. can be found from integrating by parts of potential energy.

2PE = ]eTc(x)edx=/_TFdx

= /(KX' + GX)TF dx

= f{[-KX]TF '+ (GX)TF} dx + (KX)TFI'o

= f xT[--KTF ' + OYF]dx+ xT(KTF)['o

The dynamic eq. in force-acceleration form is

M(x)J£" - KT F ' + GT F = 0 (17)

or
g t

Q'_2
Q%
M[ (18)

M(x)X = h'rF ' - GTF = M' -- Q13

M; + Q12
M_a- M4
M_ - 2Q2a

The above two equations are valid for beams which are nonhomogeneous along the

generic axis.
From equation (15),

F = Ce = C(KX' + GX)
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we have, for a special case of homogeneous beams.

__I.[T F / + ,T , __ f,7'r.l", x"O k = -KTCKX ''-(KrCG GT"CA)X '+ .... ,_....

The dynamic eq. ill mass-stiffness form is

M._" KTCKX ''- (KTCG- G'rCK)X ' + G CGX = 0

where

M =

" 7FLll ?_17

71Z22

r/_33

?1_44 11748

77_55 Yr156 1_157

S y r n ;Tt66 m 67

7/t77

?L_88

A'TcK

" C1 l CI2 C13

C22 C23

C33

s y m

C,t4 C45 C,t6

055 C56

C66

C17

C27

(-'37

(247

C57

(?67

C77

C48

C58

C(38

C78

C88.

(19)

(2o)

(21)

KTC'G_ GTCK =

k

Y

C

HI

C13 --C12

C23 --C22

(233 --C'23

C48

C58--C37

C68-1-C27

_C19

2C29

2C3_

2C79--C88

(22)

CT CG =

y 171.

C33 --C23

(:22

2C_.q

--2c2.q

(288

(299

(%)
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with mij from equation (13) and cij from equation (16) .
The end boundary conditions are either Xi = 0 or F, = 0. There are 28

possible combinations, theoretically. For example:Xb = 0 for clamped end, KTFb =

(KTCK)X_ + KTCGXb = 0 for free end.
If there are lumped masses, then the conditions become :

(a) for interior points
Mj_b - (/(rc/':) ,",X_ = o

where
_xb = x(b+)- x(b-)

(b) for exterior points

Mbfiib + sig[(KY CK)X_ + ( ]_'TCG)Xb] = 0

where

1,sig = -1,
for positive ends (ends with positive outward normal);

for negative ends.

and

KT CG =

- C13 --C12 2C19

.... C23 --C22 2C29

.... C33 --C23 2C39

..... C48

..... C58

.... C68

.... C37 --C27 C78 2C79

.... C88

(24)

7 Timoshenko Beams

The Timoshenko beam eq. is obtained by deleting the last two generalized dis-

placements (ie., _ and c2a in X) in equation (19), to have

M,2, - GX_' - A,X; + A0X, = 0 (25)

where

mt z "1rn22

rn33

m44

y 771 rtt55 77156

_n56 Tn66 A
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icllc1 _c13'l[ ]
C22 C23

Ct = c33 = c1 03x3

C44 C45 C46 03×3 C2

8 y 71_1 C55 C56 [
/

C66 ..l

L

c13_c1 ][ ]
C23 --C22

C33 --e23 : 03x3 elL1

• 03x3 03x3

Al = L - L T

03x3 ' ]
Ao - : [03x3 T03X3 ]

C33 --C23 LO3×3 LI CILI ]

L sym C22 d

The force boundary conditions are

Mbffb - Ct AX_ - L AXb = Fb (26)

and the geometric boundary conditions are Xb = specified value.

8 Multi-scale Averaging Method

For Periodic Beam-like structure, M and C are periodic in x with period £

M = M(x), C = C(x), K and G are constant matrices

The equation of motion of Timoshenko beam from equation (17) in section 6 can
be rewritten as

M_" - (I(TCKx ' + KTCGX) ,J-GTCK)( '+ GTcGx = f (27)

Let

BI = KTCK [{2= KTcG [{3= GTcG

We have

M)( - ('[{IX')' - ([{2X)' + [{T x' + B3X = f (28)
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Let
T ,t

AX = -(B_X')' - (B2X)' + B_ X + B>\

We will consider the following structure

M,_" +AX =f

X(O) = 0 , I(-T(/h'X '+If TCGX = BjX' + B_X = 0

A=A*, A >0

Let s = _ C R, Cl(z) = C(_) = C(s), Bf(z) ll_(s),

u_(_) = B_(,), u_(x) = u_(_)
For x_(t,x) = x,(t,._, _) = x,(t,,:,s)

,, OXi g-10Xi
';' = 0--; + Os

, at x_L

We have

AXi = -(B1X[)' - (B2Xi)' + B2 Xi -.t-B3Xi

= (.-2AoX i + g-IAIXi + g°A2Xi

where

Let [3, 6]

0 (B_ OXi
AoX, = -_ _- )

dB10Xi 2 02"k'i T OXi dB,,
A,&- ds ox Ul_b-_-(B2-B2)-& - d,_ x,

" OXi
O'Xi _ (B2 - B T) + B3."(i

A 2X i = - B1 0 x_22- " -O-.r

Xt(t, x) = Xo + £X1 + ,_2X2 + gaXa + "'"

Xi : Xi(t, x, s) i = O, 1,2,' " periodic in s

= AX+MJ_

= g-2(AoXo + L40X1 + g2AoX2 + gaAoX3 + "")

+ g-l(AiXo + gA1X1 + geA1X2 + gaA1Xa + " ")

+ (A2Xo + gA2X1 + g2A2X2 + gaA2X3 + " "")

+ g(2o + t2, + e'_22 + ea2_)

= g-_(AoXo) + f-I(A1Xo + AoX1)

+ (A2Xo +A_X_ + AoX2 + MXo)

+ g(A2Xt + A1X2 + AoX:_ + M2,)

+ g_(...)

(29)

(3O )̧

(31)

(32)

(33)

(3_)

(35)
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The above is valid for all t. Thus we need

AoXo = 0

A1Xo + AoX1 = 0

M._'o + A2Xo +A1XI + AoX2 = f

M_I + A2X1 + A1X2 + AoX3 : 0

(36)

(37)

(38)

Proposition 2

X0 = X0(t,z) (not depend on s) (39)

Proposition 3

with

OXo
xl(t,., .) = -Y_ o7- - r2xo + Rl(t, .) (40)

dB1
AoYI - ds (41)

dB2
AoY2 - ds (42)

YI and }72are periodic in s since X1 is. Moreover, }"1 and Y_ can be independent

of t and x and unique up to a constant additive. Note thai solution of }"_ and Y2
are guaranteed since

fls dB1,r d_s as=O

)(s dB2 ds, dT =0

Proposition 4

1 a_lS (B1 - /91 dYl )ds 02X°f(x) - Ib'[ [ ds- Ox'-

3(IS dY2 dYl OXo1 (B_ - B_ - B1-j- + B_ d-; )ds O_fSl ,

d " _ _s M(s)ds Ji'o1 ,
= AhXo + MhJ(o (43)

The above is the homogenized eq. found by the multi-scale perturbation, method.
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Proof:

From eq.(38), to render tile sol. of X2, we need

fs (Z2Xo + A1X1 + MJ('0)ds = fls f(x)ds = ]Slf(x)I I

(44)

02 X° - ( B2 nT_ OX°
A2Xo = -131 _2X2 -- --2 J_ "}- H3Xo

dB_ O:,(, 2B_ O2Xx - ( B_ - BT2) OXx d-B2 X1
A1X1 - ds Ox _ Os ds

°x )dB1 , O" o y, OXo
-- (--71'1 _ 2_-X q- OXds

dY1 02Xo dY2 0Xo
-2B1( ds Ox _ ds Ox )

- (B2 - BT)( dY10Xo dY2 Xo)
ds Ox ds

dB2 ( yIOX°_s - _ - Y_Xo + 21(x))

(Note that terms associated with _ and )(_(x) are 0 after integration.)Ox

dY1 dBl Y1 ) 02 X°
= (2BXd_-s + _ss Ox2

(dB1y 2 B dY2 dY1 dB2rx _ OXo
q- \dss +2 l_d_s q-(B2-BT)_s-W_s ] Ox

- _ /Xo

dY1) OuXo /o dY2 _BTdY10Xo TdY2. X
= (B_ o-_S+_m_ _-£2)_-+(-B_-) 0

Collecting terms together, we have eq.(43) immediately.

9 Properties of Homogenized Operator

1 fls M(s)ds

M(s) > O, M*(s)=M(s) V s

1 fls[M(s)X'X]ds>O VX#O[MhX, X] = _ L

::¢, Mh >0

(45)
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" 1 ffls M'(s)ds= l[/Is M(s)ds=MhMh = _ I IS I

=_ Mh self - adjoint

Consider the special case where X(t, x) = Xh(t)

t'[E¢ = _s [Mhfih,)(hlds = ISl[Mh2h,Xh]I

-- KEa = [MaXd,Xa]

Let

Then

2e - T,_2,,

Mh = 1--1(TT MdTm) (46)
Isl

Therefore, equivalent mass matrix found by Noor's method agrees with that by
homogenization theory, though not the case in the stiffness matrix.

1 9(s _dY:B_ - ISI (B:-,J_)d,

_ I f [B d(is__]), d(is)]ds (47)
IS[ Jlsl ds ds

By eq.(41)
dB:

Ao Y1 --
ds

or

i[-_s B1 _-s- ) + = {H1 : periodic}

, _-B:,_]d,=O

:. fjs [B.d (Y. - ,.), °_'I 37,]d_ = o

Take _ = Y1

from eq.(47) and (48)

lf[B1d Js& = Ul,,sl d*(I*- Y:)' (i,- _:)]ds

which is positive-definite and self-adjoint.

-- 1 _l[(B2-B, dY2)_Br(l_@)]d s92 IXl ds

(48)

(49)

(50)

1 _1s ([Bll(B2_BldY2. dY1 d_l. dY. \ISl , U_ ),/_l(I-- Bll[BI(I - (B2-B1
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L, d_':,t (I_3- tg -¢_)d_B:,= isl. I

_• dY., d_]ds = 0 Vq* E {H 1 : periodic}• ,.I[H1 d._ - 1_.,), d_,

lak," ¢ = }:,. we have

or

fs dY_ Z -
d__ _ B_) (/3_ - t_/] = [-B_' d_;

i BI ' [([_1 d7 ' dV I d;

+ B_" f3_ JB._]ds

Therefore,

/'s ( dY2 - B2)'(Bld}i2 - B")]) dsB3= _il I (B3-BTB_IB2)+B[I[(BI-d_

= _:i ,

i [ [(B3- BrBT_B,)Xo
+ I:glJill

, Xo]&

Let, L2 = L2(0, L)

[AhXo, XO]L.

(51)

(52)

where

d (is - Y1) OX° dY2 _ B2)Xov = BI _ W + (th -d7

Ah = A*h Ah > 0

Proposition 5

OXo
f(x) = -Bl 02X° t32 ---

Ox2 Ox

+ [33 Xo + Mh,k'o

= AhXo + MhJ_;o (53)

where Bt 132 13a Mhare constant matrices given in eq.(49) (50) (51) (._5), respec-

tively• Also, Ah and Mh are self-adjoint and positive-definite.

All the above procedures are formal. In general, B's are not differentiable and the

differential eq. should be interpreted in the weak sense. Note that it can be shown

that the homogenized operators do not depend on B.C.
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10 Calculation of Operator's Parameter

By eq.(41)

(Y1

dB1
Ao}'] -

ds

d d}"_ ) _ dBl
-d.s (Blds ds

B1 dY_ ("
ds- = B1- _1

dY1
ds 1 - B_- 1C1

Jls d}'l dsperiodic) _ ds _ = 0
I

Therefore,

By eq.(43), therefore

Y_

(}_ function of s only)

(BI > 0 Cla constant matrix)

From eq.(42)

f
periodic:>[ (l - B_ l C1)ds = O

al.sl

c (,.is.,/s-'I = B_tds) -1
I

1 (B1 - B1
[_1 = iS ] I -d8 )d,5

1 Iv C1dsIsl r
= (;:'1

1 fls B-(lds)-I= (isi j

, 1 /s B1 dsB1=B,, f_l>0, B_-<I-Sl I

d}':2._ = B_IB 2- B__IC 2
ds

/ ([11-1B2 - l?_-lC'2)ds =- 0
t

_2

(_2[ Rll ds)- l /,;[ t_ll f32ds

1 /_ L¢11 f3,ds-- c'_Isi i -

(54)

(55)
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Using the above results and eq.(43)

By (43)

1

& - Isl J

1

- ISl J

+B r
1

- ISl J

B dY2 T dY1 )ds(B_- B_ - _N + B_

[B2 - B T - BI(B_I B2 - B_ 1C2)

I - B[1Ca)]ds

(C'., - BT B[tC1)ds
sl

1 _s BTB[ldsC1C2- _[ I

1 fl B_lB2ds- 1 js BTB['dsC,

H'2 = -B2

B3

i

+

+

fs dY_ )ds1 (S3 - Blds
ISl ,

Isb

1 [BrD;_C_ 1 fs _7_R_ds]d_

]
(B3 - BT2B71B2)ds

Isl J _1

T 1 1 _sl B 2 B[ ds)Cl(_ B-(1B2 ds)(ul J s,

Proposition 6
/); =Ba and /}a>-O

Proof:

C _> 0 =:_ [C(/_'Z 1 -_ GZ2) , (Ik'Zl ...[- GZ2] >>_ 0

[( ]I'TcK II'TCG ) ( Z1 ) ( Z1 )] _>0=_" G T C K G T CG Z2 ' Z2 -

( BI B2 ) >0, Vs, V ZI,Z2::_ B T B3 --

(56)

(57)
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Take Z1 = - B_- 1B2 Z=

B T B3 Z:_ ' Z._ = /_/2/_1 B2)Z2, Z2]

=_ B3- B_B_IB2 20 V s QED.

Proposition 7 The homogenized eq. is

f(x) = -B1 0L¥_ B20Xo
Ox 2 Ox

+ B3Xo+MhJ(o

= AhXo + Mh_k'o (58)

where 131 B2 Ba can be calculated directly from the original B's parameters as in

eq.(55), (56) and (57) , respectively. Also, Ah is self-adjoint and semi-posilive
definite.

Proof:

This is a similar result to the Proposition (5). Itere we use the numerically calculable
equations to prove it. The equations for/?'s have been shown already and the self-

adjoint and positiveness are as follows:

r _ 02Xo
[AhXo,Xo] = [-C'l-_z _ ,Xo]

"_- _S BI1B2ds_- _:,[ _s Bff2'B-[ld,3C1]O0_;°,_¥0]

• 1 1 , 1 1
+ [_ J(Sl (B 3 _ BTB-{1B2)ds+_J(sIBTB_ 1ds(1 _[ _[slB_lB2ds]Xo,Xo

J

[ 0X0 1 fs B_lB2dsXo)(;-_0 + 1 _1s B_B2dsXo)]

1 f (/33 "r -I .+ -- B 2 B l B2ds?(o, X0] > 0 V Xo (59)

and

[Ah Xo, Yo]
. 02Xo OXo

_--- t--B1 _2x2- B2 0x _- B3Xo, Yo]

[Xo, n, 02k) OYo= + ox +

o2ro _ B2
= [Xo,-/}I _ Ox + B3Yo]

= [Xo, A_)_)] self- adjoint (60)
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11 Conclusion

The ditFereuces betw('en our approach and the direcl averaging method [1, 2] are

two fohl.

• \%" know that lhe stiffness is additive at each cross section and the compliance

is additive along the generic axis. The energy equivalence method averages

the stiffness over one repeated cell and thus violates the additivi/y principle.

Our approach intrinsically follows the additivity principle.

• Our approach llnds the periodic governing equation tirst then homogenizes it.

Namely, we replace the real structure by a 1-D periodic one, then average
the four matrices to replace it. again by a homogeneous beam. The direct

averaging method averages the properties then finds the governing equation.

Namely, the inethod averages two matrices for replacing the real structure

by a homogeneous beam, then finds its governing equation.

'Fhese are the major reasons why our approach is more accurate than any previous.
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Figure 2: Schematics of Approximation
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