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Abstract

A new approach to find homogeneous models for beam-like repecated
flexible structures is proposed which conceptually involves two steps.

Step one: Approximalion of 3-D non-homogeneous model by a
1-D periodic beam model. The structure is modeled as a 3-D non-
homogeneous continuum. The displacement field is approximated by
Taylor scries expansion. Then, the cross sectional mass and stiffness
matrices are obtained by energy equivalence using their additive prop-
erties. Due 1o the repeated nature of the flexible bodies, the mass and
stiffness matrices are also periodic. This procedure is systematic and
requires less dynamics detail.

Step two: Iomogenization from 1-D periodic beam model to 1-D
homogeneous beam model. The periodic beam model is homogenized
into an equivalent homogeneous beam model using the additive prop-
erty of compliance along the generic axis. The major departure from
previous approaches in literature is using compliance instead of stifl-
ness in homogenization. An obvious justification is that the stiffness
is additiveal each cross section but not along the generic axis. The ho-
mogenized model preserves many propertics of the original periodic
model.

*Grateful acknowledgement to Professor A. V. Balakrishuan for discussion. Rescarch
supported in part under grant from NASA Langley FRC.
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1 Introduction

As the number of repeated cells in a truss structure increases, the 3-D model can
be approximated better and better by an equivalent 1-D model. The repeated
structure then can be modeled as a homogeneous anisotropic continuum beam.
The parameters of the continuum beam are functions of the element properties of
the truss structure.

Finding the 1-D homogeneous anisotropic beam model from the reference inodel,
the 3-D non-homogeneous anisotropic model, of the truss structure may be referred
to as a homogenization process, of which there are many examples.

The approach presented here follows that of Noor’s (1, 2] and Lions’s 3. See [3]
for mathematical details of the homogenization process, where some results aretaken
by our paper lor granted. The Noor’s method is a direct averaging method. which
justifies equivalence in the sense of equal kinetic energy and potential energy under
the condition of equal nodal displacements and velocities. It imposes a kinematic
assumption on the displacement field, then averages the stiffness and mass matrices
(by FEM) over a repeated cell. Although the stiffness matrix is additive at each
cross-section. it is not along the generic axis. Thus, this method always gives higher
stiffness than it should be. This shortcoming will be overcome by our approach.

Qur approach consists of two steps, as illustrated in Figure (2). The first
step deals with the approximation of 3-D non-homogeneous model of a repeated
structure by the 1-D periodic beam model. The second step then homogenized
it to a 1-D homogeneous heam model. The 3-D non-homogeneous model 15 a
collection of the Eulerian Equation of Motion of cach element of the structure,
and is referred to as a reference model for the successive approximation. By applying
the Taylor series expansionand energy equivalence. a 1-D periodicbeammodelis found
systematically. Solid beam is used to clarify the basic idea, then an extension from
solid beam to non-solid structure(eg. lattice structure) is presented in section (5).

Figure 1: Anisotropic Beam



Consider a structure constructed by linear elastic anison ropic materials as shown
in figure (1). The material coordinates attached have x-axis as the generic axis
along the centroids, and y-z as the principal axes of the area inertia of cross
sections. This choice of reference will be adopted throughout the paper.

Let the hounded open set Q@ = R* denote the space occupied by the structure
and I" the boundary of 2. Let U, V, and W be the displacements in x, y and z
direction, respectively, measured w.r.t. the natural state (undeformed position).
observed from inertial coordinates, and represented in the material coordinates.
The equation of motion [4, 5] is

pU = Orz,z + Oyzy + 020, + [z
pv = Trye + Oyyy + 0oy + fy in Q (1
/)W = Orsx+Oyry+0:.+ [,

with well-posed initial and boundary conditions to render existence of unique solu-

tion, where
p=pz,y,2) € L®(Q)

and {(x,y,z) is the external hbody force. The constitutive law is

o =% (2)
and
Tox €xz Uz
Ty Cyy Vy
— T2z _ €2z _ l/V,z 3
7= Tys | °= Yoo || Vet W, )
Tr; Yz U,z + "V,z:
Try Yy U,y + V;

where o denoles stresses ,e strains and C° a real syinmetric positive-definite matrix
with
& = (e.y,2) € L7(Q)

15

[lere equation (1) is taken as the reference model of the beam. Our task is to ap-
proximate the 3-spatial-dimensional (3-D) equation (1) by a 1-spatial-dimensional
(1-D) beam eq. to arbitrary accuracy of the displacement field. Instead of going
through the term by term scrutinizing as in solid continuum mechanics, we provide
a unified and systematic approach. This will insight the general pattern and prop-
erties of the 1-D beam eq.

The final goal is the capability of modeling repeated truss structure as a 1-D
beam. The properties of repeated truss structure, though non-homogeneous (i.e.
P = p(x.y,2)), are periodic along the generic axis x. A homogenization process then
1s needed as will be described in section 8.
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2 Justification of Taylor’s Expansion

Before applying the Taylor approximation in the next section, let’s justify its ap-
plicability to our problem first. Let H = L%($) be real valued Hilbert space and

uq U
['I(tvxyyxz) = ¥ = 4
us %%

Let the equation of motion be written as, by equation (1),

pi+L0=f inQ (4)

with well-posed homogeneous boundary conditions specified by forces or displace-
ments in I', and

u;(0,z,y,2)€V, w(0,z,y.2)€H whereV = H ()

If all coefficients are in L>°(2) and the strain energy associated with £ is positive
definite, then there exists a unique solution

w; € L2((0,T); V) with u; and wi in L2((0,T);H)

Proposition 1

—

3 H,X,—U strongly 1in [L"((O,T);V)]3

with X,, the solution of M,l.i{'n + A, X, = fn , where

Hn — Hn(y‘ Z) Xn = Xﬂ(tvr) E [1’2((0’T)’ V)]fl
(HoXn) — U’ in [L2((0.7); )] =W

H,X,—0 in W

X}, and X, € [L*((0.T); MNP =W, , with
H=1L1%0,4) V=H' and

Mu(x) = //AH,"l(y‘z)p(;zt,y,z)Hn(y,z)dydz
Calz) = / /A T (5. 202, . 2) Ty, 2)dy dz
fultir) = /Aff,i(y,Z)f(t,r.y,:)dydz

[Cn(}yfr&:]wz = [ATY-‘YH}\IIYI]WQ



Proof:
For each w;(t, z,y, 2)

3 wim — u; strongly in L2((0,T);V)
— uj strongly in L*((0,T);H)
— w; strongly in  L*((0,7T);H)

where u;,;, defined in (0,T) is analytic function in y and z. The strong convergence
is guaranteed since analytic functions are dense in L2((0,7T); V)

Let
ua,b) = > Diu(a)h;
t=y,z
u®(a,b) = Y Y Diju(a)bib; (5)
i=y,z j=Y,2

u3(a,b) = Z Z Z D; j ru(a)bib; by

i=y,2j=y .z k=y,2

By Taylor’s theorem

n
l k - 14
Uim = ZE uie (¢, 2,0,0),(t, 2,3, 2)) + HO.T. {6)
k=0
= Ha(y, 2)Ximn(t,z)+ HO.T.
By strong convergence of the Taylor series

HoXimn —  Uim strongly in  L%((0,7); V)
(HoXimn) — b, strongly in  L%((0,7);H)
HoXipm —  ttim strongly in  L*((0,7T);H)

Therefore, in general, we have
H. X, — U strongly in [LQ((O.T);V)]:’ (7)

where i
Hy = Ho(y,z) Xn = Xn(t,z) and X, € [L2((0,T); V)]"

(HoXn) — 0" in W

Hn X’n - (-j n Wl
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Also,
Toen — ¢ by (HuX,) —U'

Therefore,
o0 + LT @, = [f. 0w, ¥ @€ [L3(0.1)W)]

= —[pl7 . dlw, +[Ocv. colw, = [f. Plw,
or,
lim {—[pHnXn. HaWow, + [CoTnek Trcilw, } = [f HaWnlw,

lim {—[H:pH X, Walw, + (15 C Ty Glwa) = [ Walw,
Using M, (x), Cpn(x)andf, (¢, &) defined before, we have

lim {—=[My X W, + [Cack - Glwa) = U Vaw,

lim (M, X, + An X0, Walw, = ) Yalw, (R)
Equations (5) and (6) imply
H,X, — [0 with X, the solution of M,X, 4+ AN, = [y

This completes the proof and justifies the applicability of Taylor’s expansion.

3 Taylor Series Approximation

Let cross sections with concentrated forces be taken as boundary sections {boundary
points in beam equations) and local effects of applied forces be neglected. Assume
the physical displacements U, V and W are analytic in y and z so that the
Taylor series expansion is applicable. We apply the Taylor series expansion, using
equations (5) and (6), at each cross section x and any time t to have

AT ! ')2 7o 02 ;.'_’ 2rr

Utoe g 2) =1+ %’:U,y + i; + f@g % + %i . %;y +HOT. (9)
where all terms on the RHS are evaluated at (t,x,0,0). Similar equations can be
written down for V(t.x,y,z) and W(t,x,y.z).

The displacement field can well be approximated by a few dominant terms for
most physical beams. The generalized displacements of the beam eq. can be chosen
by order of magnitude analysis. For example, for an 8-generalized-displacement
(8-d) beam eq., we choose



Mo ] [' (,{
v v
w W
é l(;?_‘}’ — av
. 215 b2
X = = Yoy 7 (10)
d’? Az
(/) _au
3 3y
i 2°U
’”c;‘)y()z 1
€23 Leaw , av
- - L '(Oy T % ) J(t,r,0,0)

We will call X the generalized displacements .
The approximation of the displacement. field up to the specified accuracy then is.
by equations (9) and (10),

(](tv;"‘!yl Z) = u_¢d.‘l+¢’23+ﬂyl
V(t,z,y,2) = v+ (ean—¢y)2 (tn
”’(I» z,y, Z) = w + ((23 + ¢)1)y
or
U
% =X (12)
W/

with cross sectional shape function H=H(y,z) found from equation (11). The equa-
tion (11) is known as kinematic assumption in Structural Dynamics, viewed as a
polynomial approximation to the displacement field.

Sincedynamic eq.of thebeamis completely characterized by mass and constitutive
properties, thecapproximationof 3-D eq. by the1-D beamisequivalent to transforining
the point propertics to sectional properties, ie, from mass density p and constitutive
matrix C? to mass matrix M and stiffiness matrix C , respectively. The mass inertia
(M) and stiffness (C) have additive property at any given cross-section; therefore we
can find M and C by approximating the cross-sectional kinetic and potential energy.
respectively. This additive property justifies the validity of domain extension from
material-domain to structure-domain.

4 Energy Equivalence Method
We can find the sectional inass matrix by approximating the kinetic energy using

equations (10) and (12). The kinetic energy of a piece of the beam (between any
two cross sections) is

KFE = %///p([l’+V'z+W2)dAdz
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(1

é///pXTHTHXdAdx
1

§/\>Tdew

It can be shown that, for anti-symmetric mass distribution,

M

myy
my

I

//pHTHdA = {mi;(z)}

my

mgs + Mes

™m

M55 Mse ms7
Mees  Mg7
mry

Mee — M55

mss + Mee |

(13)

The M in eq. (13) is the most general pattern of mass matrix for anti-symmetric
anisotropic 8-d beams. The first (6 x 6) part of M is the general pattern of mass
matrix for Timoshenko beams.

We can also find the sectional stiffness matrix C by approximating the potential

energy of the beam. From equations (2) and (11), we have

i €rz W [ v — 5y + ¢hz + u'yz ]
€yy 0
e | Gt | = 0
Vyz 2693
REE ¢+ w' + (u+ ez + 81y
L Yzy _¢3+U’+(a+fl23_¢ll)z_

where T=T(y,z) is a (6

% 9) matrix ;

,u/

v — ¢3 = 712
w' + ¢2 = 13
¢
i
%

o5
7y
L+ €hy
2€33 = 723

KX'+GX

0

—¢3

b2

X’ 0

— - + 0
0 0

0

u

L 2623 J

=Te

(15)



O3xa L 0352
03x3 03x3 03x2

G= 0 0

O3x3 O3xz 1 0
0 2
6 0 0
Li=|0 0 =1/ and 1\":[
01 0

The potential energy of a piece of the beam is

9x8

Igxg
01 x8

PE = %///eTcoedAdz
= %///ETTTCOTedAd:U
1

= §/CTC€d$

The stiffness matrix for anti-symmetric of cfy is

Cc = //TTCOTdA:{C,']‘(l‘)}
[¢11 c12 ¢z - :
C22 €23
€33
C44 C45 C4¢
= Cs5 (56
Ce6

C17
C27
c37
C47
Cs7
Ce7
77

}st

C48
Cs8
Ce8
78
C88

€19 ]
Ca9

C39

C79

g9

The stiffness matrix C in eq. (16) is the most general pattern for anti-symmetric
anisotropic 8-d beams. The first (6 x 6) part is that of Timoshenko beams. Knowing
the general patterns of M and C is very useful, especially in assuming the model
structure in system identification. Since most of the truss structures ever built are

at least cross-sectional anti-symmetric, we consider this case only hereafter.

5 Extension to Lattice Structures

For non-solid beams, we need to apply the concept of domain extension, from
material-domain to structure-domain, so that the results in the above sections can
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be applied. Let’s take a rectangular lattice structure as an example. The space
physically occupied by the structure material is called the material-domain. The
smallest simple-connected rectangular space enclosing the structure is called the
structure-domain(Q2), which includes the space not occupied by the structure
material(€.).

A displacement field is assumed for the space not occupied by the structure
[material so that the displacement field on structure-domain is in ‘H'(€). Therefore,
the Taylor series expansion and energy equivalence method for calculating sectional
properties can be applied directly. The sectional properties shall not be affected
by the introducing of the displacement fieldin €2, since both the kinetic energy and
potential energy arezeroin €2.. Wecan then pretend wearedealing with asolid flexible
structure in regular shape.

6 Generalized Beam Equations

The governing eq. can be found from integrating by parts of potential energy.

2PFE = /6TC(;v)cd1' = /GTFd.”L'

Il

/(KX’ +GX)TF dx

/{[—KX]TF’ +(GX)TF}dz+(KX)TF|;

= /XT[—KTF’ + GTF)de+ XT(KTF)[,

The dynamic eq. in force-acceleration form is
M@)X - KTF +GTF =0 (17)

or

N’ |
!
12
!
13
M;
ML — Qi
M4+ Q2
M£3 - A{:}
| M} —2Qas |
The above two equations are valid for beams which are nonhomogeneous along the

generic axis.
From equation (15},

M@z)X =KTF' -GT'F =

F=Ce=C(KX'+GX)



we have, for a special case of homogeneous beams.

—RTF +GTp = _KTCR X" —

The dynamic eq. in mass-stiffness form is

MX - KTCKX" -

where

Fmyr

Mmoo
M=

s Y
-(.’11

KT'CcRrR =
s

KTCG-GTCK =
s k
Ls y

GTCG =

(KTCG - GTCK)X' + GTCGX.

(KTCG-GTCR)X' +GTCGX =0

mazs

m

Ciz

C22

m

miy
Ma4 mM4g
M5y Msg Mgy
Mge Mgt
mrer .
mssj
€13 C17 T
Ca23 C27
€33 €37
C44 €45 Ca5 C47 €48
C55 Cs5  Cs7 €53
Ces  Ce7 €8
m C77 (78
cgg J
13 —Cip 2eqg
€a3  —Caz2 Zeag
€33 —Ca3 2egg
C48
C58 — Ca7
Ce8 + Ca7
w 2079 — cgg
€3z —Cug 2e39
€22 ~2eyy
88
Cay

(19)

(20)

(22)

(23)
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with m;; from equation (13) and ¢;; from equation (16) .

The end boundary conditions are either X; = 0 or F; = 0. There are 28
possible combinations, theoretically. For example: Xy = 0 for clamped end, KTF, =
(KTCK)X} + KTCGXy = 0 for free end.

If there are lumped masses, then the conditions become :

(a) for interior points
My X, — (KTCK) AX, =0

where
AXy = X(bY) - X(b7)

(b) for exterior points

My Xy + sig[(KTCK)X}) + (KTCG)X3) = 0

where
sig = 1, for positive ends (ends with positive outward normal);
1, for negative ends.
and
i ci3 —c12 - 2c19
ca3 —Cap - 2Cp9
caz —C3 - 239
. . . . . . C . "
KTCG = 8 (24)
o . css -
Ce8
€37 —Car C18 2079
L- - - - . . 88 - d

7 Timoshenko Beams

The Timoshenko beam eq. is obtained by deleting the last two generalized dis-
placements (ie., & and €23 in X) in equation (19), to have

M X, — C XV — A1 X+ Ao Xy =0 (25)
where
mi1
maz
M, = ma3
Myq

S Yy m mss Mse

Mmsgg Mes



C11 Ciz (13

Caz (23 . .
C, = €33 : : : — [ C1 03x3]
C44 C45 C46 O3xz 2
S y m Cs5  Cs6
Ce6
€13 —C12
€23 —C32
L=~ ¢ —ca| _ [03x3 01L1]
o ) 03x3 033
Al =L~ LT
03)(3 . . .
Ay = - : _ [Oaxs gsxa ]
€33 —Ca3 O3x3 LiCiL,
sym C22

The force boundary conditions are
MyX, —Cy AX, — L AX, = F, (26)

and the geometric boundary conditions are X, = specified value.

8 Multi-scale Averaging Method

For Periodic Beam-like structure, M and C are periodic in x with period ¢.

M =M(z), C=C(z), K and G are constant matrices

The equation of motion of Timoshenko beam from equation (17) in section 6 can
be rewritten as

MX - (KTCKX' + KTCGX) + GTCK X'+ GTCGX = f (27)

Let
B = KT"CK By =K"CG B;=GTCaq

We have }
MX — (BiX'Y = (B2 X) + BIX' + BsX = f (28)

53



54

Let
AX = —(B1 X') = (BoX) + B X' + Ba X

We will consider the following structure

MX+AX =f

X(0)=0 , KTCKX'+ RTCCX = ByX' + B X =0 ,at z=1
A=A A>0
Lets_—ER CHz) = C(5) = C(s), Bi(z) = Bi(s),
Bi(z) = (8), Bi(z) = Bs(s)
For Xf(t,z)= Xi(t,z,7)=Xi (t,z,s)
X L 0X;
X = 0 et
! Oz + Js
We have
AX; = —(BiX!) —(B2X:) +B] X!+ B3X;
2A0X; + 0 ALX + ALK
where 5 ax
AoX = — L (By ot
0 65( 1 5s )
dB, 0X; 9% X; 0X; a’B;
A X = ——— — 2By~ = X;
! ds Oz Yords 2) ds
(921\',- d/\
A X; =B ' (By—BI)"t 4+ BalXi
2 1A (B2 5) 5 + Bs.
Let [3, 6]
Xe(t,x) = 1YU+€X1+1.’21Y2+€34Y3+'”
X, = Xitzs) =012 periodic in s
f = AX+MX
= ~2(A04Y0+€401Y1+[240X +€3A0‘{3+ )
+ HA X+ LALX 4+ A X+ BA X+ )
+ (A2Xo +£A2X 4 A X + B4 X5+ )
+ M()&o-l—f)n + 02X, 4+ 63 1\3)
= £ 2(AoXo) + (A1 Xo + AoX1)
+ (A2Xo + A1 X L+ AoXa + M Xg)
+ [,,(_42/\1 +A }&2+AQ‘Y3+M‘\])
+ ()

(31)

(34)

(35)



The above is valid for all £. Thus, we need

ApXo =

A1 Xo + Ao X,

MXo + AsXo + A1 X; + AgXo
MX| + AX | 4+ A1 Xq 4+ AgXs =

il
O - o o

Proposition 2
Xo = Xo(t,z) (not depend on s)

Proposition 3

a(" it
/\H(i,l‘,s) = _Yl 6xq - YQXU + Xl(t,.l‘)
with B
AQY] = ——z;l'
dB
AoYy = —Aﬁ

—_—— —~
Lo W W
oo =1 o
—

(40)

(41)

(42)

Y: and Y are periodic in s since X is. Morcover, Y; and Yy can be independent
of t and x and unique up to a constant additive. Note that solulion of Y1 and Y,

are guaranteed since

/ @ds =0
ISI dS

/ ii&ds =0
|S| dS

Proposition 4

1 dY; 82X0
= —— [ (Bi-B " 1ys L0
FO = st g B
1 r dYy odYi . 89X,
TS| BT B T B B0 S
1 rdYs 1 s
il _pBr=2 = ds X
+ IS[ [S‘(B3 BZ ds )dSXO+ |S| 5 M(S) s Xp

= ApXg+ MhXD

(43)

The above is the homogenized eq. found by the multi-scale perturbation method.
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Proof:
From eq.(38), to render the sol. of X3, we need

/ (A2 Xo+ A1 X1 4+ MXo)ds = [ f(x)ds = |S|f(z) (44)
Is| 1|
X 0X
ApXo = =B~ (Ba— B) 5 + BaXo
__dBdx, 92X, r.0X1  dBs
Ak = ds 8z — 2B 0zds (B2 - Bz) ds Ti.Xl

— _@i(_}’l 6“X0 Y. aXO (9)&1

9z 2—(9:::—+ oz

ds
dY) 02X, dY, 0Xq

“ 2B~ % TG on)

dY, 60X dY-

_ _ pTy_¢n1v4c G712
(B2 = B )( ds Oz dsY)
dB, 9Xo

- E’(_Yl‘é;‘ ~ Y2 Xo + X1(2))

(Note that terms associated with 6—3)%‘ and X;(z) are 0 after integration.)

dY; dBlY % Xo
1

= (2Bi+ A
+ (%Yz +231%—2 +(By - BH L 4 d:;m) s
+ ((Bz - BZT)%z + %)@) Xo

= (B le)G;Xzﬂ (B1 dd - BT ddYI)a(;(O +(-BT —= de )Xo

Collecting terms together, we have eq.(43) immediately.

9 Properties of Homogenized Operator

1
M= g | M(s)ds (45)
M(s) >0, M*(s)=M(s) Vs
1

My X, X] = &)

[M(s)X, Xlds >0 VX #0

= M,>0



1

Mpr= -
ST

M*=(s)ds = i M(s)ds = M},
S| <

18
= M, self — adjoint

Consider the special case where X(¢,z) = X, (1)

KE, = /ISl[M,,X,,,Xh]ds = |S|[My X1, Xn)
= KE;=[MiX4, X4
Let . .
Xg=TmX,
Then )
My = E(TZJ MiTy) (46)

Therefore, equivalent mass matrix found by Noor’s method agrees with that by
homogemzatxon theory, though not the case in the stiffness matrix.

_ 1 dY1

Bl = IS'[ (Bl ds )dS
1 d .. d
By eq.(41)
dB
AgY = _‘d—s‘l
o d dY; dB
-~ (B 7‘1 1 ds = 1 : iodi
/ISI[ 45 \B ds) I ,Wlds =0 Y¥ € {H! : periodic}
dY; d¥
= lSl[B] ds — Dy, E]ds =0
d ow
— (Y1 — Is), —]ds =
= ' [Bl dS( 1 S), 9s ]ds 0 (48)
Take ¥ = V)
from eq.(47) and (48)
- 1 d d .
which is positive-definite and self—a.djomt.
— 1 dY, dY;
By = o By — Bi—=) — BY (I - —))ds
o= g B - BT -
1 -1 dYs dYy dY; dY,
151 )i ([131 (B2 = Bi—=), Bu(l - v—d?)]—B1 [B((I - 25 ) (B2~ B, )
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ds d

. dYy
Ba— T4 ds
-/ISI( 33 — B; s )ds

S

1Y,
/ [Blf,,: — Ba). d,w]ds =0 YV € {h’1 . periodic}
|si

Take W = Yy, we have

dYs dY.
B, == — By), -, 7] =
/l‘*l[( b ds 2), ds ] )

or

/ BBy
[51

dYs dYs
ds

pdYo

dyv’) d}’y'y .
/ By'Y(B1—— — By), (B1 - Ba)] :/ (-By —— + BT B! Balds
5] § IS

d
Therefore,
_ 1 _ -
Ba= — ((313—3331132)‘*311[(31
[S1 Jys

Let. L2 = LQ(O,L)

ds

&, 4,
Advsi — BQJ;(BI”&'; - BQ)]) dS (51)

. 1 - ,
[Ah)ﬁo‘,\g][‘g = = [Bl ‘V, "]L ds
151 Jys1 2
+ f‘lv [(83 — Bg‘Bl-lBQ)X()‘ A’()]ds (52)
1ST Jysi
where d axX dy.
V =By (Is =) é; + (B 71;? — B3)Xo

An= AL Ap>0

Proposition 5

flr) =
+

g X 5 0%
b2 2 or
Ba Xo+ AI;,XO
AnXo + My Xo (53)

where B, Ba Bs Mjyare constant matrices given in eq.(49) (50) (51) (45), respec-
tively. Also, Ay and My are self-adjoint and positive-definite.

All the above procedures are formal. In general, B’s are not differentiable and the
differential eq. should be interpreted in the weak sense. Note that it can be shown

that the homogenized operators do

not depend on B.C.



10 Calculation of Operator’s Parameter

By eq.(41)
dB
AgYy = -2
oY1 ds
d dyy. dB, . .
= —;1;(31 s ) = g (Y1 function of s only)
dY)
Bige =
dY; -
= ds [ - B, 'y
dY
(Y1 periodic) = —lds = 0
jsp ds

Therefore,

Y1 periodic =

By eq.(43), therefore,

B

From eq.(42)

15|
Ci = (i By lds)™!
IST Jis1
1 dY;
= | (B, - B " yas
S| Jis) ds
1
= = C' dS
1SI Jis) !
= (:,']
1 —17.3-1
= (~ B[ ds)
Sl s
. _ 1
B, > 0, By < §/ Bids
[S] Jys)
dY,
. = BB - BUGy

(B[ By — B71Cly)ds = 0
s l

C’g =

(/I B,"lds)_l/llBl‘lBgds
2 s

Ch o BT Bads
s s

By —-Cy (B, >0 (aconstant matrix)

(I - By'Cy)ds =0
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Using the above results and eq.(43)

_ 1 dy2 dY;
B, = — B, - BT - B + BT —)ds
SR A Vg TR
1

= 5 |51[32 — BT — Bi(By*B; — B{'C)
+BT (I - B{'Cy))ds

1
= 5] (Cy — BIB{'Cy)ds

1

= Cy- — | BIB{'dsCy
1St Jis)

1 1
= C—/ BT 'Byds — — BT B~ldsC
I G Tl e

B;Z—Bz
By (43)
By = ?/ (Bs—BTéX%)ds

1

= _S_/ (Bs — BY(By !By — B{'Cy))ds
1 1

= ? 5| B3—32 Bl Bg)ds
1

+ BT BrIC 4/ B! Byds|ds
|S] |5|[ 2P NS s 2ds)
1

= 5 ‘(Bg—BzTBl‘lBg)ds

1 / T -1 1 / -1
+ (& B BT ds)Ci (5 BT Bads
(lS‘ 15| 2 1 ) 1( ls‘ Is| 1 2 )

Proposition 6 ) ) )
By =B; and B3>0

Proof:

cC>0 = [C(KZ1+GZ2),(K21+GZ2]ZO Y Zi,7%2

KTCK KTCG Z 7
= K GTCK GTCG ) ( 7 >( 7 )| 20 Y A

B, B, .
:?(Bg‘ BS>ZO, Vs, Y 7.2

(67)



Take Z; = — By !By Z,

B, B A 7z , B
[( B;} 3123 > ( Z; )( Z'ﬁ )] = ((Bs — B By ' Ba)Z2, Zs]

= B;-BYB'B,>0 ¥V s QED.

Proposition 7 The homogenized eq. is

_ 02X, _ 09X,
fe) = =B B — B 5,
+ Bz Xo+ MpX,
= ApXo+ MpX, (58)

where By By, Bz can be calculated directly from the original B’s parameters as in
eq.(55), (56) and (57} , respectively. Also, Ap 1s self-adjoint and semi-positive
definile.

Proof:

This is a similar result to the Proposition (5). Here we use the numerically calculable
equations to prove it. The equations for B’s have been shown already and the self-
adjoint and positiveness are as follows:

. *Xo
[Ah)(o,)&o] = [—01*5;:?',)&0]
’— 1 1 : .
+ [—CI—B—‘ B;132d5+l~§| B%Bl‘ldsCl]fb—;,)so
I ISt IS
I T -1 1 T -1 ~ 1 -1 -, B
+ |l= | (Bs—BTB:'Byds+ — [ BB 'dsCy— [ BI'Buyds)Xo, Xo
IS sy IS1 Jys1 Stys)
[ (ox, 1 _1 N\ [oxe 1 _1
= 920 4 2| BrlB,dsX SR | BrBadsX
Cu 6z+|5| R 31‘+|5|51 Heo
i 11 1|
+ [I_;-I (Bs — BI BT BadsXo, Xo] >0, ¥V X, (59)
15|
and
. _0?X _ 80X -
[AnXo, Yo] = [_Bl’@g —32*$9+33X0,}'0}
. %Y, __JY, _
= [Xo, B{——ax2—0+35},ﬁ+3§}0]
8%y, Y, _
= [Xo,—BlaTQO BQ(T” + B3Yy)
= [Xp, A;Y,]  self — adjoint {60)
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11 Conclusion

The differences between our approach and the direct averaging method [1, 2] are
two fold.

e We know that the stiffness is additive at cach cross section and the compliance
is additive along the generic axis. The energy equivalence method averages
the stiffness over one repeated cell and thus violates the additivity principle.
Our approach iutrinsically follows the additivity principle.

e Our approach finds the periodic governing equation first then homogenizes it.
Namely, we replace the real structure by a 1-D periodic one, then average
the four matrices to replace it again by a homogeneous beam. The direct
averaging method averages the properties then finds the governing equation.
Namely, the method averages two matrices for replacing the real structure
by a homogeneous beam, then finds its governing equation.

These arc the major reasons why our approach is more accurate than any previous.
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Figure 2: Schematics of Approximation
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