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Nonlinear Control Design Approach for SSF/MRMS

e Modeling: Attitude Pointing Dynamics of Multi-Flex-Body Systems:

Hamilton's Frinciple

e Attitude Controi Decoupling/Linearizing Control by Nonlinear Feedback:
Partial Feedback Linearization

e Adaptive Control: Modified Modet Reference Adaptive Control (MRAC):

Enhance Decoupling and PFL Robustness

e CSI: Keel flexure and MRMS motion results in nonlinear inertial couplings which effect

att tude control on short time scale

This study addresses attitude control of the SSF with MRMS motion and considers nonlinear
dynamic instabilities not previously considered in the work of Mah et al, Automatica 19892 and
Wie et al, AlIAA GNC 1990. Stability issues considered in these previous works concentrated
on the slow time scale disturbance rejection of gravity gradient and cyclic aerodynamic
torgues on the time scale of the orbital period. This study addresses control of short time
scale dynamic instability due to nonlinear inertia coupling which arises due to keel flexure
and MRMS motion. The study addressed the following points:

1. Nonlinear inertia coupling due to keel flexure seriously constrains the stabilization of
SSF attitude via linear control methods.

2. Feedback Linearization for Attitude Control and MRMS decoupling can achieve preci-
sion stabilization subject to limitations of: control authority, actuator bandwidth, and
model uncertainty.

3. MRAC based on nonlinear design modet with explicit parameter dependence can be
effective for stabilization of SSF attitude with uncertain keel stiffness.

WwWork reported here in modeling and control design builds on previous work reported in:
1. Baillieut & Levi (1987) Physica D

2. Bennett, Kwatny, & Dwyer (1988) AFOSR Technical Report TSI-TR-88-07



Lagrangian Dynamics for Mixed LPS/DPS

1. identify configuration space (generalized coordinates)

gEM e T

C choose DPS coordinates to eliminate G gecmetric B.C.’s

2. Hamilton's principle: motion is natural if-

o
/ (6L + QL sg)ar =0
1

System Lagrangian: L{q.¢) ;.M « Ty M — R obtains .\ = {natural B.C.'s}, or

3. solve Euler-Lagrange Egns.

subject to B.C's , B=¢J UV,

The approach followed in this study for model construction utilizes quasi-coordinates and
generalized Lagrange equations often referred to as Poincare equations. The method in-
cludes explicit construction of Finite Element Methods (FEM) for flexure and spatial re-
cursive construction of Multi-Body systems introduced by Rodriguez and Jain (1991) AIAA
GNC.

The formalism of Lagrangian dynamics oroceeds by identification of configuration space
in terms of generalized coordinates and their velocities. Hamilton's principle identifies the
natural motion as the sofution of a variational problem. If the ‘coordinates are independent
then the usual Euler-Lagrange equations resuit. If the coordinate variations are constrained
{e.g. nonholonomic systems) then the d'Alembert-Lagrange equations apply (Neimark &
Fufaev 1972).
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Lagrangian Dynamics for Mixed LPS/DPS

we say v € HP if [[v]|2 = [51DPui2 4+ + v dz <0
v € HI satisfies B.C.'s up to pt" order

1. Hamilton's Principle = "weak" (distributional) solutions in HZ,

2. Euler-Lagrange Egns. = “strong” (pointwise) solutions in Hép
Finite Dimensional Modeling and FEM Approximations:

e Approximate weak solutions by discretization of Lagrangian
and apply Hamilton's Principle

e We use collocation by splines for FEM approximation

The extension of the Lagrangian approach to mixed Lumped Parameter and Distributed
Parameter Systems arising in Multi-Flex-Body systems involves reduction based on Finite
Element Methods. Our approach utilizes splines for construction of the eiements with
continuity requirements at knots consistent with the variational probiem.



Lagrange's Equations using Quasi-Velocities

Given configuration space v < .M. Consider quasi-velocities p such that

7 = V(pp = [y, o emlp
poo= Uly)q = [uy. oL umly
T generally nct related to valid set of coordinates = = p unless

o = U(:])llq

is an exact differential -
© Hamilton's principle applied to Lagrangian in quasi-velocities Liq,p) = L(q.4)
Poincare equations (Arnold et al 1988)

-~ -~ m —~ —~
4021 4, 0L oL ... oL, .
Pl = vt 2oL Z Pl + Sy gty

0112 dqtop =1 dp dq
Y :[[r'j.vl][z'j.uz]...[uj,vm]] w/j=1.. ., m

m
commutators: [l‘l‘,l']] = Z Cij(q)"k
k=1

O vy form rigint invariant vector field on of Lie group G associated with .41

G If \Mis Lie group and v, are independent, then ,f] are independent of 4

Poincare equations are related to Boltzman-Hamel equations and Caplygin’s equations in
quasi-coordinates. The use of quasi-velocities extends Lagrangian framework to nonholo-
nomic systems. Poincare equations together with the quasi-velocity definition form a system
of first order ODE's describing the equations of motion for the N-body model.

1.

Quasi-velocities are not time derivatives of physically significant coordinates.

Formulation of Poincare equations considered here is also related to the constructive
methods of Kane.

The modeling approach has also been applied to much simpler prototype spacecraft
attitude slewing of the SCOLE model in Bennett, Kwatny, L.aVigna 1991 ASME.
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Structure of Poincare’s Equations in Quasi-Velocities
Kinetic Eneray: f('q,p) = ptM(pp
M(Qp+Clypp+Flg) =Cp

where

m
; olvpl 1 [olmel 1t .
C(q,p)j:—[ - L}p—*—-—-[ ‘] p+ ij.\jr[;t,\rl
dq 21 0 —
. ot 0\"(/]’)
Floy=V'W
oyt

potential Energy: V(q)

Generalized Forces in p-frame:
eneravsey rr -=2 oy
(often convenment when quasi-velocities are referenced to body frame)

Qpi=viaQ

Lagrangian formalism provides an expiicit construction of the system dynamic coefficients.
The transformation of the generalized forces to the p-frame defined by the quasi-velocities
is moreconvenient for the actuator command frame. The construction facilitates the definition
of nonlinear control laws which include explicit model parameter dependence. This is useful
for evaluating tradeoffs in gain scheduled vs. adaptive controt implementations.



Conventional Linearization by Taylor Expansion

¢ conventional linearization by Taylor expansionisvalidin the neighborhood of an equilibritm

( when ¢ =0 ang 7 =0)
¢ a3ssume p =0, then equilibrium configuration js: Flg)=¢ P
Linear Perturbation Dynamics:
— P d 1PN Yynamics: . )
7=V(0)p

S 3F
AM(0Yp +C(0,0)p + ’Oi(m =40,
9
Conventional Linear Control Design Methods:
* fixed gain control limited to neighborhood of equilibrium

* extension to gain scheduied designs is ad hoc

System equilibria can be identified for the case of constant generalized forces defined in
the p-frame. Then conventional methods for identification of linear models proceed by
Taylor expansion. Note that dynamical changes in configuration such as deployment of
appendages, articulation of robot arms, etc. do not necessarily involve motions relative to
a well defined equilibrium.

Partial Feedback Linearization attempts to impose an 1/O linear with reference to a nominal
system model. Explicit model construction for PFL provides explicit control dependence on
parametric model uncertainty.
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Recursive Formulaticn for Serial Chain of Bodies

Notation: velocity in body-frame at C

o= ;) angular velocity Ve = (f(rm)Vo
‘ = ve)  translation olreo) = L I 0 l
: —Tco I

_  locaticn of C in frame at O

K1

* /
joint K

Frame I*

‘

Serial Chain of Bodies

. Serial Chain of Bodies

Joint parameters: 7; of dimension ny 6y = Llop)B(k)
Juasi-velocities: (k) )
‘Ok b Vck—l = H(k)ﬁ(k)

Recursive Formulation for Serial Chain of Bodies

Notation

Tcq (k) -inertia tensor about CG I 0
m{k) -mass Mcg(k) = { Cﬂg mi ]
a(k) -location O in k-frame . ‘

Mcg(k)-spatial inertia about CG Mo(k) = ¢*(a)Mcgé(a)

Mo(k) -spatial inertia tensor about O
« Coordinate free recursion (Jain & Rodriguez 1990)

V(k) = é(reo(k — 1))V(k - 1) + H(k)B(k)

Chain model; (constructed from convenient choice of coordinates)
spatial velocity: V i=[Vi(1)... Vv K))
joint quasi-velocity: B 1= [8t(L) .. Bt

vV =0Hj3
I 0
H(1)
1 I 0
> = d>(2:, ) 0 H=
o(K,1) 6(K.2) I HK)
Chain Kinetic Energy: K. E.chain & —;—ﬁtMﬁ
in terms of
Chain inertia matrix: M = H*o*diag{Mo(1). L Mo(K)}®H
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Model Formulation with Sliding 1-DOF Joints with Elastic Bodies

Sliding Joint: 1 DOF relative motion along path P defined in k — 1-frame
e P defined by map v: R — R3 as image of € € [e, €]

K Lk
Framme | Frame :F

(4

delormed

-k
Frame I’

undeformed

Sliding Joint contiguration
for tlexible bodies

Model Formulation with Sliding 1-DOF Joints
e refative velocity of point P on path P wrt (k- 1)-frame Fk‘lz

. oy
k-1 _ 97

v
P Qe

inertial velocity of P
- . ~ 9y
p =T - D SRl o 27,
O¢
¢ ¢ singleDOF translational quasi-velocity J(k) suchthat spatial velocity has theform:

VEG) = 001wk =1k _ 1y s gk sk

with
O3x1

HR (k) = {
9+ /0e

J R (k) = ¢

The recursive construction for chains of bodies with revolute joints can be extended to
include sliding joints (such as the Mobile Remote Manipulator System) by defining the

fixed at the preceeding joint. Elastic deformations are assumed small in the local body
frame but can contribute to large motions in the system inertia frame. Such dynamics can
be highly nonlinear.
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Dynamic Decoupling & PEL for Multi-Flex-Body Systems

Coordinate partitioning: Quasi-velocities:
3 v

g = (f) — body attitude = <w) — body rates

r — control torques applied to main body

tAulti-Flex-Body Model: Poincare equations:

¢ = O«

v = (& u)v
Moo + No+Fo=Guwr
N+ Myl + Fy =Gur

~ PFL (decoupiing) Control Law:. F= Al cowe) + B(Ewiu )
such that in closed loop « is commanded attitude accelerations

=«

Fact: exact system attitude PFL using torques referenced to the principal body frame; i.e.,

Gw = I.Gv =0

4 = Fu-NMJIIF 4+ (VMIIB'- M*-]r“l%ri “
£

B o= [Mw -~y iayrt

For multi-DOF revolute joints the angular coordinates can be expressed using Euler angles,
quaternions, or Gibbs parameters. Choice is significant for computational complexity and
numerical stability of inverse transformation for PFL.

PFEL attitude control achieves decoupling of keet fiexure, rigid body translational modes, and
MRMS motions from attitude dynamics. Moreover this is achieved consistently with nonlinear
farge angle motions of mutti-body articulation.

For application to decoupling of the MRMS motions from the SSF the PFL control is
parametrized by the MRMS motions. Thus the attitude regulation includes direct feedfor-
ward of the MRMS motion. This is a form of gain scheduling using nonlinear models.

Construction of the inertia matrix using quasi-velocities based on the spatial chain recursion
together with the assumption of small deformations in the local body frame simplifies the
form inertia matrix to be inverted for PFL. The simplification for on-line PFL is related to
the efficiency of the order-n recursions currently in use for efficient simulation of multi-body
dynamics. Note the construction works for implementation of nonlinear PFL control laws.



Design Considerations for PFL Attitude Control for SSF/MRMS
Performance Objectives:
* Achieve Decoupling of Independent Axis Attitude for Slewing/Pointing Control
* Achieve Decoupling of Flexible Interactions From Primary System Attitude Pointing
e Decouple sensitivity to MRMS motions

e Decouple design of active structural control (smart structures) from principal body
attitude control

Practical Limitations
e Requires Additional Control Authority to Achieve Nonlinear Compensation

» Compensation Based on Nominal Design Modei
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SSF/MRMS System Configuration

SSF keel structure

i

Track of Base
Flexible Upper Arm

System Physical Data

Body length (m) | mass (kg) inertia cg location
! (m) keel beam parameters
Jy=2.13<108 x=55
space station 110 211,258 Jy=2.1 3.108 y=55 material density 7860103
J,=880,2416 2=55 {kg/m2!
Jx=178.25 x=0
mobile base 1.5 316.9 Jy=178.25 y=0 elastic modulus | 200108 M/m?2
11-356.5 z=0
l Jy=54,002 x=0
upper arm 14.3 3169 Jy=54.002 y=0 shear modulus | 79«10 N/m?
1 Jz=0 z=7.15
Jy=54,002 x=0
lower arm 143 ‘ 3169 Jy=54,002 y=0
l J,=0 z=7.15

The simplified SSF/MRMS model includes four articulated bodies: 1) SSF keel, 2) MRMS
base, 3) inner MRMS arm, 4) outer MRMS arm. Each joint is 1 DOF. Bodies 1 and 2 are
connected by a sliding joint. The SSF/MRMS is modeled based on physical data taken from
Mah, et al. Automatica. 1989. The SSF keel is modeled as a uniform beam with a 5m square
cross section. The FEM model for the beam is reduced from Timoshenko assumptions with
finite elements constructed from splines. Using 2 elements with 5 DOF. Simulations were
conducted on a reduced model with 4 DOF to eliminate fast time scale effects beyond the
control bandwidth., The joint velocities and SSF body rates are chosen as quasi-velocities.



Performance Evaluation of PEL Control for SSF/MRMS

Control Laws;

o PFL SSF Attitude Decoupling

e SSF Attitude Decoupling based on finearized equations of motion

s Parameter Adaptive PFL SSF Attitude Deccupling (SSF keel stiffness estimated)
Maneuvers:

* 3 axis simultaneocus attitude Mmaneuver of 0.5 rad (Euler angles)

e NMRMS 3 simultanecus 1 DOF joint motions
{translation equivalent to 18m in 60 sec)

Simulated performance evaluation of SSF attitude control with MRMS decoupling was
performed for three control law variations including: nonlinear PFL, a linear decoupling
control law. and MRAC modified nonlinear PFL control. The maneuvers considered were
aggressive enough to differentiate the resufts.

MRAC PFL Attitude Decoupling Control for SSF/MRMS

MRAC comparator

R ;Qf + ;
e ' model

reference model - Dar;meter

for attitude estimator |-

Secoupling servo P = WiE u) el .
[ foilower —» (U, U)
5=z

\ < gains @
a Ep T 4 )
e SIL\ = SSF K ~(%. )

Al " 27

¢ « —}—
M MRMS joint motion

feedtorward
o - body rates

£ - attitude coordinates
U- MRMS joint & elastic coordinates
0 - SSF keel stiffness

t ~ SSF attitude controf torque

273



274

9]

Tradeoff Studies for PFL Attitude Control for SSF/MRMS

Nonlinear coupling due to keel flexure in attitude control:

Nominal (precision modei-based) PFL for atutude maneuver compared with Linear,

fixed-gain, decoupling control

e MEMS feedforward accounted in both designs

e noniinear inertia variations due to keel flexure limit domain of attraction i

design

PEL robustness to SSF keel stiffness uncertainty

« marginaily stable slew response with 5% uncertainty (reduction) in keel stiffness

e rocbustness limited by {active/passive) damping of keel flexure

Robustness of PFL attitude control w/ MRAC correction for keel stiffness

e improved siew response with 10% uncertainty (reduction) in keel stiffness

e marginal slew response with 20% reduction in keel stiffness

e guarantee of stability margin in keel flexure response with MRAC is difficult without

active structure control

SSF/MRMS Scaling of Control Gains

» Control gains chosen for Decoupled Attitude Linear Dynamics

System Eigenvalues

Open Loop Closed Loop Closed Loop
Nominal (k) Detuned (k/8)
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
2 .0.1763 = 3.3205i .0.1763 + 3.3205i
e .0.1763 + 3.3205i -0.1763 + 3.3205i
o -8.1 gg: * 1.62021 -0.1364 + 1,6505i
, -0. + 1.6505i -0.1364 + 1.6505i
-10.4212 +10.5963i -0.2000 + 0.2040i -0.0250 + 0.0978%
-‘% %gg f1::)53528677?i .0.2000 + 0.2040i -0.0250 + 0.0979i
. 9. - + - +
00 o0l 0.2000 + 0.2040i 0.0250 + 0.0979i

« Linear controller effective for .01 rad slewing with Detuned Gains




SSF/MRMS Attitude Slew with Precision PFL & MRMS Decoupling
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PFL with MRMS motion - regulator gains: (-0.8,-0.1632
SSF/MRMS PEL attitude control nominal response for 3-body maneuver

SSF/MRMS Attitude Slew with Precision PFL & MRMS Decoupling
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SSF Keel Flexure Response with nominal maneuver
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SSF/MRMS PFL Attitude Slew with 5

Nominal PFL slewing with 5
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= o
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SSF/MRMS Attitude Slew with MRAC PFL & MRMS Decoupling

MRAC estimation of keel stiffn

ess recovers nominal siew performance
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SSF/MRMS Keel Flexure with MRAC PFL & MRMS Decoupling

PFL MRAC obtains stable response in keel flexure
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time {s) time (s)

keel flexure with MRAC

10% reduction in keel stiffness
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Conclusions from Simula® ons

Obssrvations from SSF/MPMS Modeling:

« Keel flexibility drastically alters nonlinear inertial coupiing in attitude maneuvers
e MRMS motion exacerbates nonlinear inertial couphng

Control Law Comparsions:

e linear, fixed-gain control can achieve stabilization of small amplitude SSF attitude
motions on a slow time scale
O stability robustness limitation is not evident from linear model
M domain of attraction is limited for fast time scale attitude regulation

e linear, fixed-gain, decoupling control demonstrates extreme sensitivity to MRMS mo-
tions & model uncertainty

e« PFL stability sensitive to keel stiffness parameters
5 94 reduction in kee! stiffness results in oscillations with magnitude on order of length
of keel

e Adaptive PFL attitude maneuver control with extreme NMRMS multi-COF moticns
demaonstrated tolerance to initial model uncertainty =f up to 10% reduction in keel
stiffness

The SSF/MRMS system model predicts a significant elastic deformation response of SSF
keel during attitude slewing transients. This leads to large motions in the inertial frame
although the beam model assumes small relative displacements in jocal body frames. Theresult
is significant nonlfinear Cross axis coupling during attitude maneuvers. For short time scale
attitudecontrol of the SSF/MRMS system thesignificance of the nonlinear inertia couplingdue
to keel flexure appears more significant than MRMS motion sensitivity—even for drastic,
worst-case maneuvers considered in this study.

The robustness and performance limits observed in the linear, decoupling attitude control
jaw appear to arise from a vanishingly small domain of attraction for fast time scale attitude
regulation. The tradeoff of attitude control gains vs. domain of attraction cannot be
predicted from linear modeils alone.

PEL decoupling attitude control offers a direct design approach including feedforward of
MRMS motions which compensates for predictable inertia changes due to keel deforma-
tion. PFL attitude control sensitivity to keel stiffness uncertainty is improved over linear
decoupling control. Performance and bandwidth limits in PFL design are traded off against
stability of the decoupied dynamics (keel flexure dissipation).

Parameter adaptive methods based on MRAC underlie practical application of nonlinear
decoupling control designs where model uncertainty is due to unmeasureable parameter
variation.
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