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Nonlinear Control Design Approach for SSF/MRMS

Mode!ing: Attitude Pointing Dynamics of Multi-Flex-Body Systems:

Hamilton's Principle

Attitude Control E)ecoupling/Linearizing Control by Nonlinear Feedback:

Partial Feedback Linearization

Adapbve Control: Modified Model Reference Adaptive Control _.MRAC):

Enhance Decoupling and PFL Robustness

CSI: Keel flexure and MRMS motion results in nonlinear inertial couplings which effect

attitude control on short time scale

This study addresses attitude control of the SSF with MRMS motion and considers nonlinear

dynamic instabilities not previously considered in the work of Mah et al, Automatica 1989 and

Wie et al. AIAA GNC 1990. Stability issues considered in these previous works concentrated

on the slow time scale disturbance rejection of gravity gradient and cyclic aerodynamic

torques on the time scale of the orbital period. This study addresses control of short time

scale dynamic instability due to nonlinear inertia coupling which arises due to keel flexure

and MRMS motion. The study addressed the following points:

1. Nonlinear inertia coupling due to keel flexure seriously constrains the stabilization of

SSF attitude via linear control methods.

2. Feedback Linearization for Attitude Control and MRMS decoupling can achieve preci-

sion stabilization subject to limitations of: control authority, actuator bandwidth, and

model uncertainty.

3. MRAC based on nonlinear design model with explicit parameter dependence can be

effective for stabilization of SSF attitude with uncertain keel stiffness.

Work reported here in modeling and control design builds on previous work reported in:

1. Baillieul _ Levi (1987) Physica D

2. Bennett, Kwatny, & E)wyer (1988) AFOSR Technical Report TSI-TR-88-07
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Lagrangian Dynamics for Mixed LPS/DPS

1. identify configuration space (generalized coordinates,)

qE.t.l ,) __ _I._I

choose DPS coordinates to eliminate 9" geometric B.C. 's

2. Hamilton's principle: motion is natural if:

jfti2(6L-rQT,sq)dt =0

System kagrangian: L(,I, @ .,t< ,< T,t,t { __. _ obtains ,\'= {natural B.C.'s}, or

3. solve Euler-Lagrange Eqns.

d 8L OL

J-70qi oq_ = Q_
subject to B C's , _'_--- (jU.V,

The approach followed in this study for model construction utilizes quasi-coordinates and

generalized Lagrange equations often referred to as Poincare equations. The method in-

cludes explicit construction of Finite Element Methods (t=EM) for flexure and spatial re-

cursive construction of Multi-Body systems introduced by Rodriguez and .lain (1991) AIAAGNC.

The formalism of Lagrangian dynamics proceeds by identification of configuration space

in terms of generalized coordinates and their velocities. Hamilton's principle identifies the

natural motion as the solution of a variational problem. If the "coordinates are independent

then the usual Euler-Lagrange equations result. If the coordinate variations are constrained

(e.g. nonholonomic systems) then the d'Alembert-Lagrange equations apply (Neimark
Fufaev 1972).
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Lagrangian Dynamics for Mixed LPS/DPS

we say v E IIP if II_tl_- Yo1DP_i2 +"" + Ivq2 4-- <

v E H_ satisfies B.C.'s up to ptt, order

1. Hamilton's Principle _- "weak" (distributional) solutions in H_,

2. Euter-Lagrange Kqns. _ "strong" (pointwise) solutions in /_/2p

Finite Dimensional Modeling and FEM Approximations:

• Approximate weak solutions by discretization of Lagrangian

and apply Hamilton's Principle

• We use collocation by splines for FEM approximation

The extension of the Lagrangian approach to mixed Lumped Parameter and Distributed
Parameter Systems arising in Multi-Flex-Body systems involves reduction based on Finite
Element Methods. Our approach utilizes splines for construction of the elements with
continuity requirements at knots consistent with the variational problem.
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Lagrange's Equations using Quasi-Velocities

Given configuration space 'l E.t't. Consider quasi-velocities p such that

,_ = v(,l)v = ["l, "2 ..... _',,,b
p = C(,_)q ---- ["1" "2 ..... ",hi,/

G generally nc: related to valid set of coordinates = =p unless

a,T ----U(,I),t, t

is an exact dif/erential

Q Hamilton's principle applied to Lagrangian in quasi-velocities Z(q,p) =- L(q,,_)
Poincare equations (Arnold et al 1988)

lit : -P*t'*('1)O_L +]_i09 O,It0;_ PJO_ C "YJ Oq + <2iV

.vj: [["j _l][g,"2]-.. [,_j, _',,,]] w/j : 1.... ,,,,.

ltl

co  motators: = Z
b----i

_'i form rigr, t invariant vector field on of Lie group G associated with ._4

If.t, lis Lie _qroup and z:z are independent, then ,-b. are independent of,t
U

Poincare equations are related to Boltzman-Hamel equations and Caplygin's equations in

quasi-coordinates. The use of quasi-velocities extends Lagrangian framework to nonholo-

nomicsystems. Poincare equations together with the quasi-velocity definition form a system

of first order ODE's describing the equations of motion for the N-body model.

1. Quasi-velocities are not time derivatives of physically significant coordinates.

2. Formulation of Poincare equations considered here is also related to the constructive
methods of Kane.

3. The modeling approach has also been applied to much simpler prototype spacecraft

attitude slewing of the SCOLE model in Bennett, Kwatny, l.aVigna 1991 ASME.
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Structure of Poincare's Equations in Quasi-Velocities

Kinetic Energy: T('I,P) = t)t-bi(q)P

._._(q)p + c(q,p)p + fCq) = Q p

w h e r e nL

d(q,?) = L O,t J
j=l

SOD := vt (q) a;'('7.)
Oq t

Potential Energy: _(q)

Generalized Forces in p-frame:

(often convenient when quasi-velocities are referenced to body frame)

Q p '= Vt(q)(_

Lagrangian formalism provides an explicit construction of the system dynamic coefficients.

The transformation of the generalized forces to the p-frame defined by the quasi-velocities

is more convenient for the actuator command frame. The construction facilitates the definition

of nonlinear control laws which include explicit model parameter dependence. "]-his is useful

for evaluating tradeoffs in gain scheduled vs. adaptive control implementations.
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Conventional Linearization by Taylor Expansion

• conventional linearization by Taylor expansion is valid in the neighborhood of an equilibrium( when ,; = 0 and 't = O)

• assume p=O, then equilibrium configuration is: ?(q) _-- c2 p

Linear Perturbation Dynamics:

= V(0)p

.v_Co)b +c(o,o)v + aJ-?(o) = _Q v
O,/

Conventional Linear Control Design Methods:

• fixed gain control limited to neighborhood of equilibrium

• extension to gain scheduled designs is ad hoc

System equilibria can be identified for the case of constant generalized forces defined in

the p-frame. Then conventional methods for identification of linear models proceed by
Taylor expansion. Note that dynamical changes in configuration such as deployment of
ap0endages, articulation of robot arms, etc. do not necessarily involve motions relative to
a well defined equilibrium.

Partial Feedback Linearization attempts to impose an I/O linear with reference to a nominal
system model. Explicit model construction for PFL provides explicit control dependence on
parametric model uncertainty.
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Recursive Formulation for Serial Chain of Bodies

Notation: velocity in body-frame at C

/:l 0o+u,0r+eoc+ t ' 0]_'" := ., translation ,_(rco) = _ rc_-'_ _.r

re,) - location of C in frame at 0

lo.lt 1

<
body 0

Frame_

Serial Chain of Bodies

Serial Chain of Bodies
i

Joint parameters: Gk' of dimension n k

quasi-velocities: Ytk) =H(k)_(k)

Recursive Formulation for Serial Chain of Bodies

Notation

/cg((/_) -inertia tensor about CG A,Icg(ic)-mass

a(k) -location 0 in k-frame ,_fo(k)
Mcg(k)-spatial inertia about CG
Mo(k)-spatial inertia tensor about O

• Coordinate free recursion (Jain & Rodriguez 1990)

y(k) = ¢(_o(_ - 1))v(_ - 1) + H(_)a(k)

Chain model: (constructed from convenient choice of coordinates)

spatial velocity: V := [Vt(1) ... Vt(K)] t

joint quasi-velocity: f3 :---- [fit(l) ... ;3t( K)]t

V = ¢Hg

I' ...el 1¢(2,_) x ... o H= ".
m := : "'. 0 H(K)

¢(K, l) ¢(K, 2) -'- [

Chain Kinetic Energy: K. E.chai n = _ tJV[/3

in terms of H*_*diag{Mo(l) .Mo(K)} cDH
Chain inertia matrix: f14 = ..

0

= _*(a)McgeP(a)

268



Model Formulation with Sliding I-DOF Joints with Elastic Bodies

Sliding Joint: 1 DOF relative motion atong path "P defined in k- 1-frame

• _ defined by map ? " _:--_ _3 as imaoe of _ E [_0,_1]

Flame [: I__kt, I body

undeformed

Sliding Joint configuration
for flexible bodies

Frame ':3 k

-- -- --CQ/ deformed

Model Formulation with Sliding 1-DOF Joints

• relative velocity of point P on path P wrt (k- 1)-frame F k-$.

_:-l 07 .
t'p _ -- 6

0¢

inertial velocity of P

07

• _ singleOOFtranslational quasi-velocity ,,3(L:) such that sDatial velocity has theform:

V_'I: _) = ®(,_-Z(_))V_-I(_" - 1) _- H_(_)j3k(_,)

with

O_r/O_

The recursive construction for chains of bodies with revolute joints can be extended to

include sliding joints (such as the Mobile Remote ManiDulator System) by defining the
velocities relative to the joint Dath constraint defined in a local body fixed frame. The

recursive construction for elastic bodies can be established by defining a local body frame
fixed at the preceeding joint. Elastic deformations are assumed small in the local body
frame but can contribute to large motions in the system inertia frame. Such dynamics canbe highly nonlinear.
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Dynamic Decoupling & PFL for Multi-Flex-Body Systems

Coordinate partitioning: Quasi-velocities:

II

r - control torques applied to main body

Multi-Flex-Body Model: Poincare equations:

AI_.L, + N_ 4- F_., = G,._T

Nti' 4- A'Ivt' 4- F_. = G_,r

PFL. (decouDnng) Control Law.
such that in closed loop _ is commanded attitude accelerations

Fact: exact sys:em attitude PFLusing torques referenced to the principal body frame; i.e.,

G,L. : I,GT., : 0

_ 10[--_'F.

O(

For multi-DOF revolute joints the angular coordinates can be expressed using Euler angles,
cluaternions, or Gibbs parameters. Choice is significant for computational complexity and

numerical stability of inverse transformation for PFL.

PFL attitude control achieves decoupling of keel flexure, rigid body translational modes, and

IvtRMS motions from attitude dynamics. Moreover this is achieved consistently with nonlinear

large angle motions of multi-body articulation.

For application to decoupling of the MRMS motions from the SSF tt_e PFL control is

parametrized by the MRMS motions. Thus the attitude regulation includes direct feedfor-
ward of the MRMS motion. This is a form of gain scheduling using nonlinear models.

Construction of the inertia matrix using quasi-velocities based on the spatial chain recursion

together with the assumption of small deformations in the local body frame simplifies the
form inertia matrix to be inverted for PFL. The simplification for on-line PFL is related to

the efficiency of the order-n recursions currently in use for efficient simulation of multi-body

dynamics. Note the construction works for implementation of nonlinear PFL control laws.
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Design Considerations for PFL Attitude Control for SSF/MRMS

Perfiormance Objectives:

• Achieve Decoutaling of Independent Axis Attitude for Slewing/Pointing Control

• Achieve Decoupling of Flexible Interactions From Prrmary System Attitude Pointing

• Decouple sensitivity to MRMS motions

• Decouple design of active structural control (smart structures) from principal body
attitude control

Practical Limitations

• Requires Additional Control Authority to Achieve Nonlinear Compensation

• Compensation Based on Nominal Design Model
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SSF/MRMS System Configuration

SSF keel structure

- /

Flexible Upper Arm
Payload

Body

space stallon

mobile base

upper arm

lower arm

15 t 316.9

t
14.3 1 3169

14 3 I 3169

System Physical Data

inertia cg locatlo

I (rn)

x=55
y=55Jy=2.13_108

jz=880,241.6

Jy=178.25
Jz=356 5

Jx=54,002

Jy=54,002
Jz=0

Jx=54,002

Jy=54,002
Jz=0

z=55

x=0

y=0
z=0

x=0

y=0
7=715

x=0

y=0
z=715

natenal density

elastic modulus

shear modulus

parameters

7860,103

200,108 N/m 2

79_108 N/m 2

The simplified SSF/MRMS model includes four articulated bodies: 1) SSF keel, 2) MRMS

base, 3) inner MRMS arm, 4) outer MRMS arm. Each joint is 1 DOI =. Bodies :[ and 2 are

connected by a sliding joint. The SSF/MRMSis modeled based on physical data taken from

Mah,et al. Automatica, 1989. The SSF keel is modeled as a uniform beam with a 5m square

cross section. The FEM model for the beam is reduced from Timoshenko assumptions with

finite elements constructed from splines. Using 2 elements with 5 DOF. Simulations were

conducted on a reduced model with 4 DOF to eliminate fast time scale effects beyond the

control bandwidth. The joint velocities and SSF body rates are chosen as quasi-velocities,
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Performance Evaluation of PFL Control for SSF/MRMS

Control Laws:

• PFL SSF Attitude Decoupling

• SSF Attitude Decoupling based on tinearized equations of motion

• Parameter Adaptive PFL SSF Attitude DecouDling (SSF keel stiffness estimated)

Maneuvers:

• 3 axis simultaneous attitude maneuver of 0.5 rad (Euter angles)

• I_IRMS 3 sirnultaneous ]. DOF joint motions

(translation equivalent to 18m in 60 sec)

Simulated performance evaluation of SSF attitude control with MRMS decoupling was

performed for three control law variations including: nonlinear PFL, a linear decoupling

control law. and MRAC modified nonlinear PFL control. The maneuvers considered were
aggressive enough to difterentiate the results.

MRAC PFL Attitude Decoupling Control for SSFIMRMS

MRAC comparator

,

reference model]

for attitude J

decoupling t

I
_c

-t
e model ]

J, , _arameterlI I [
___L es"mat°q FI
I serve _ - ',(_, u)e[-'q------
I foflowE " I " J

[

,. - body rates I

- attitude coordinates

u - MRMS joint & elastic coordinates

0-- SSF keel stiffness

- SSF attitude control torque

SFtMRMS. i

MRMS joint motion
feedforward

--,,-(u, _)

,--.,"-(_, ,o)
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Tracieoff Studies for PFL Attitude Control for SSF/MRMS

1. Nonlinear coupling due to Keel flexure in attitude control:
Nominal I iDrecision model-based) PFL for attttude maneuver compared with Linear.

fixed-gain, decoupling control

• N,1RN.1S feedforward accounted in both designs

• noniinear inertia variations due to keel flexure limit domain of attraction in linear

design

2 PFL robustness to $SF keel stiffness uncertainty

• marginally stable slew response with 5% uncertainty (reduction) in keel stiffness

• robustness limited by (active/passive) damping of keel flexure

3. Robustness of PFL attitude control w/ MRAC correction for keel stiffness

• improved slew response with 10% uncertainty (reduction) in keel stiffness

• marqinal slew response with 20% reduction in keel stiffness

• gLJarantee of stability margin in keel flexure response with MRAC is difficult without

active structure control

SSF/MRMS Scaling of Control Gains

• Control gains chosen for Decoupled Attitude Linear Dynamics

System Eicjenvalues

open Loop

0

0

0

0

0

0

02

02

02

-10.4212 _.10.5963i

-10.8762 _+10.5876i
-0.2053 -+3.3267i
-0.2053 + 3.3290i

Closed Loop

Nominal (k)

0

0
0
0
0
0

-0.1763 -+3+3205i
-0.1763 -* 3,3205i
-0.1364 -+ 1.6505i
-0.1364 -+ 1.6505i
-0.2000 -+0.2040i
-0,2000 -+0,2040i
-0.2000 +-0.2040i

,i

Closed Loop
Oetuned (k18)

0
0
0

0
0
0

-0.1763 +-3.3205i
-0.1763 + 3.3205i
-0.1364 -+1.6505i

-0,1364 + 1.6505i
-0.0250 +-0.09791
-0.0250 + 0,0979i
-0,0250 -+0.09791

• Linear controller effective for .01 rad slewing with Detuned Gains
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SSF/MRMS Attitude Slew with Precision PFL gz MRMS IDecoupling

. - . . .

- b.,

[0 ....

O0 -: :i ............ -I0
I0 15 ._0 0

(imC !5)

cL _ .....

.... 0 .....
2, b

......... 15 - - 20_Jt) } i,_ - -- - - -0.I
0 5

time is}

5 o 15 20

time(s)

I0 15 20

time Is)

PFL with MRMS motion - regulator gains: (-0.8,-0.16321

SSF/MRMS PFL attitude control nominal response for 3-body maneuver

SSF/MRMS Attitude Slew with Precision PFL g_ MRMS becoupling

4 -

'_ 2-- d

C:_ i ' " -

j "< i
-2 r

Z 0 5 I0 15 20
-5: r
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time (s) time (s)
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_: -5:

5

.5t _,/
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time (s) lime (s)

SSF Keel Flexure Resoonse with nominal maneuver
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SSF/MRMS PFL Attitude Slew with 5% Keel Stiffness Reduction

.e. ] _ ....

IT 5 10 15 20 0 5

time/sl time ,,s)

1,- .... 1

I

"_0 5 10 1'5 20

time (sl

>- o.5

.a

= -o.5 -

o 5 1o 15 20

tilne _51

Nominal PFL slewing with 5% reduction in keel stiffness

SSF/MRMS response degradation is evident for nominai PFL attitude
control

SSF/MRMS Attitude Slew with MRAC PFL & MRMS Decoupling

MRAC estimation of keel stiffness recovers nominal slew performance

:-=, [ _"

¢¢ j_" tO ]

-S. , -...... " J .5-

0 5 I0 15 20 0

time (s)

15 20

0"11 t0,5[ _

' ,\ _ , 'F_

i ' -l "
.0.51 J .0,2 L

0 5 tO 15 20 0 5 10 15 20

time (s) time (s)

PFL with MIRMS motion- regulator gains: (-0.8,-0.1632)

10% reduction in keel stiffness wrt nominal value for PFL t=O
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SSF/MRMS Keel Flexure with MRAC PFL &_ MRMS Oecoupling

PFL MRAC obtains stable response in keel flexure
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keel flexure with MRAC
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10_S reduction in keel stiffness
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Conclusions fl-,]nl Si_nula.:o_s

Obs,__rvations flora SSF/MPMS Modeling:

• Keet flexibility drastically alters nonlinear inertial cou_;;ing in attitude maneuvers

, MRMS motion exacerbates nonlinear inertiat couphng

Control Law Comparsions:

• linear, fixed-gain control can acl]ieve stabilization o ,F small amplitude SSF attiLude

motions on a slow time scale

c stability robustness limitation is not evident from linear model

domain of attraction is limited for fast time scale attitude regulation

• line_qr, fixed-gall], decouDting control demonstrates extreme sensitivity to MRMS mo-

tions _z model uncertainty

• PFL stability sensitive to keel stiffness parameters

5 °,S reduction in keel stiffness results in oscillations ,.wth magnitude on order of length

of keel

• Adaptive PFL attitude maneuver control with extreme MRMS mult>DOF motions

demonstrated tolerance to initial model uncertaintv c,f up to 10°,$ reduction in keel

stiffness

The SSF/MRMS system model predicts a significant elastic deformation response of SSF

keel during attitude slewing transients. This leads to large motions in the inertial frame

altr_ough the beam model assumes small relative displacements in local body frames. The result

is significant nonlinear cross axis coupling during attitude maneuvers. For short time scale

attitudecontrolofthe SSF/MRMSsystem the significance of the nonlinear inertia coupling due

to keel flexure appears more significant than MRMS motion sensitivity_even for drastic,

worst-case maneuvers considered in this study,

The robustness and performance limits observed in the linear, decoupling attitude control

law appear to arise from a vanishingly small domain of attraction for fast time scale attitude

regulation. Tlle tradeofr of attitude control gains vs. domain of attraction cannot be

predicted from linear models alone.

PFL decoupling attitude control offers a direct design approach including feedforward of

MRMS motions which compensates for predictable inertia changes due to keel deforma-

tion. PFL attitude control sensitivity to keel stiffness uncertainty is improved over linear

decoupling control. Performance and bandwidth limits in PFL design are traded off against

stability of the decoupled dynamics (keel flexure dissipation).

Parameter adaptive methods based on MRAC underlie practical application of nonlinear

decoupling control designs where model uncertainty is due to unmeasureable parameter

variation.

O_I_NAL PA_E I_
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