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ABSTRACT
In optimal placcment of actuators for stochastic systems, it is commonly assumed that
the actuator noise variances arc not related to the fcedback matrix and the actuator locations.
In this paper, we will discuss the limitation of that assumption and develop a more practical
noise variance modcl. Various propertics associated with optimal actuator placement under
the assumption of this noisc variance model are discovered through the analytical study ofa

sccond order system.

Introduction

Refs. [1-4] are typical works in the literature for actuator placcment of stochastic
systcms. In all of these works, it is assumed that the noise streagths of the actuators arc given
and not related to the feedback and actuator locations — an assumption made in the LOG
theory. Howevcr, as shown in Ref. [5]. this noisc variance model is not always truc in practice.
For example, the noise strength of an actuator may depend on its capacily (the largest signal it
can produce) and the magnitude of its producing signal. Clearly, if a person (actuator) is
required 1o push an ohject with 1 Ibf (small signal), the crror of the produced force will be
probably several ounces (small variance). However, if he is required to push thc objectwith 100
Ibf (large signal), the error of the produced force will beseveralorten pounds (large variance).
Also, the noise of a reaction wheel (actuator) may be caused by the bearing and eccentricity of

the wheel, ete. If a reaction wheel is required to produce a larger signal (larger capacity), it is
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usually required to increase the inertial of the wheel and/or the maximum spinning speed, then
the noise caused by the bearing and eccentricity will be greater. These facts show that the
actuator noise strength usually depends on the capacity and the signal magnitude of the
actuator. Since the signal magnitude and the required capacity of the actuator depend on the
fcedback matrix and the actuator location, the noisc strength of the actuator implicitly
depends on the fecdback matrix and the actuator location. Clearly, when an actuator is placed
at a carefully selected location, the control force and the required capacity of the actuator will
be smaller. Also, the signal and capacity will depend on the feedback matrix because a smaller
feedback (slower system) usually requircs a smaller control force. Since the ordinary LQG
theory neglects these facts, it cannot be used to reduce the noise variance of the actuator
through the selection ofa fecdback matrix and actuator locations, and thus resulls in

unnecessarily noisy systems.

A New Noise Variance Model

In most practical applications, the actuator noise variance increases with its capacity and
signal magnitude. Since the required capacity in steady state is rclated to the signal variance of
the actuator, we can reasonably usc the signal variance (0 represent the actuator capacity in
the new noise variance modcl. To take into account the effects of the signal magnitude on the
noise variance, we may use the signal square in the noise variance model. However, this
method will result in time-dcpendent noise variance and make analysis very complicated. In
order to simplily the analysis, we can use the time average method, then signal squarc again
becomes signal variance. According to the discussion above, we can develop a realistic noise

variance model of an actuator as
‘12 Ly 2
wW=a0)+aol+g A a0 +p (1)

where o}, is the variance of the actuator signal in steady state. « o and B are non-negative

conslants which depend on manufacturing processes. The term o o7 reflects the contribution



of the actuator signal magnitude, and the term o o2 reflects the contribution of the actuator's
capacily. An advantage of this noise variance modcl is that the noisc is still whitc, Gaussian
with constant variance, and thus analysis canbe simplificd. The only difference from the
ordinary modcl is that the noisc variance in the new modcl will depend on the capacity
and signal magnitude of the actuator, and will thus implicitly depend on the fecdback

and actuator locations.

\

u-+w

M=1 ~ w
e

@ @)
S S S S

Figure 1. A sccond order systcm.

A Physical System

The new noisc variance modecl, Eq. (1), will be applicd (o asccond order system shown in

ligure 1. In the system, w is the plant disturbance with given strength w, but wis actuator noisc
whosestrength is governed by Eq. (1). The actuator oricntation (location) is specified by angle,
6. Obviously, the actuator ismostclficiecnt when 8 = 0, and is most desirable for a deterministic
system. However, asshown in Rel. [ 1], theselection of 6 = 0 may not give optimal performance

for stochasticsystems, especially when the ratio of plant disturbance to actuator noise is small.
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The state cquation is given by
x = Ax + B(utw) + G w (2)

with

SR I A

where b= cos 6. Without losing generality, we assume 0<b< 1. Clearly, matrix G is fixed bul
matrix B changes with actuator location. The fcedback control law is given by

u=-Fx (4)
The objective of the problem is to find the optimal fecdback F, and the optimal actuator

orientation b, so that the following cost function is minimized:
- T 2 5
J=Elgqxx+ru’] (5)

where q and r are given weights, E, is the mean operator when the time period approaches
infinity.
Since the noise is still white and Gaussian with constant variance, we can use stochastic
control theory to find the variance of the state, Py
P, (A-BF)T + (A-BF) P, + BWB! + GWG! =0 (6)

The solution of Eq. (6) is given by

Px = diag [Px], szl (7)
with
P = b2B + W
X 2 2,2 3, (2 (8)
2671 f,= o bty — b’ (3
Py, = bf, Py, 9)
The cost function (5) can be rewrittcn as
J=(q+ rflz)P,(1 + (q + 1'[%)PX2 (10)



where fy and ; are clements of the feedback matrix. When the weights, noise parameters and
the actuator orientation are all given, the cost will be a function of f; and f,. The optimal
fecdback can be obtained by our equating the partial derivatives of the cost with respect to f;
and [, to zero. After substantial mathematical manipulation, the equations [or optimal

fcedback become

2 2 —
bfl—bf2+ 2[1—0 (11)
a_ A4
f] = T(l -ab [2) (12)

These cquations give optimal feedback when the actuator oricntation is fixed. We can see that
the fcedback matrix does not depend on the plant disturbance and B since they correspond to
the ordinary noise variance in LOG thcory. Eqgs. (11-12) are a parabolic equation and a
hyperbolic equation. Those equations can be plotted in the f;-f; planc (Fig. 2), and may give up
to 4 intersection points. By inspection, only one point out of the 4 corresponds (0 a stable
system. It should be noted that for the new noisc variance model the solution obtained from
ordinary LOG method is no longer optimal. The solution of the feedback corresponding to
ordinary noise variance model (LQG) can be obtained by our equating o to zero, and is also
plotied in the figurc. The trends of the new and ordinary solutions and their diffcrence can be
secn clearly from the {igure when g/r, b, or ocis changed. It shows that the optimal f{ is bciween
0 and 1/(ab), and the optimal f; is between 0 and sqri(g/r). When a becomes larger or ¢/r
becomes larger, the difference between the optimal solution and the ordinary LQG solution
becomes more significant. Both elements of the optimal feedback matrix are smaller than
those obtaincd by LQG mcthod. Clearly, smaller feccdback clements help to reduce the
actuator noisc.

To find optimal actuator oricntation, we dillcrentiate the cost with respect to b by
considering the [cedback elements as functions of b. By cquating the dcrivative to zcro, we
obtain a really complicated cquation for optimal actuator location. Aftcr much mathematical

manipulation the cquation becomes:
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Figurc 2. The plot of fcedback for ordinary and new solutions.
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h““”fl)'%—“ (1+bf) +4fz—4(tfllz]-(3+bfl)l2f2~3(.‘ifl~—baf12| %}_ =0
(13)

It can be scen that W/ does not affect the feedback but it does affect the optimal actuator

location. The optimal actuator location differs front that obtaincd by the ordinary noisc variance

modecl in Ref. [ 1], and the latter can also he oblaincd by our cquating « to zero in Eq. (13).

Egs. (11-13) can be solved simultancously (o obtain the optimal fecdback and the
optimal actuator location. Some propertics of Eqgs. (11-13) can simplify the computation of
the optimal feedback and optimal actuator location. For example, there is onc and only one
solution of {; between 0 and sqrt(q/r) il a is not zcro, and the left side of Eq. (13) is a
monotonous function of b.

It is particularly interesting to investigate Eq. (13) when b= 1. In this casc, for diffcrent
values of o, we can plot W/p as a function of ¢/r, as shown in Fig. 3. In the Ww/B-q/r planc, fora
specific a, the optimal b in the arca above the corresponding curve is larger than |, and the
optimal b in thc arca below the corresponding curve issmaller than 1. Since b (= cos 8) can not

be greater than 1, we must use b= 1 in the arca above the corresponding curve.

Fig. 4 shows (he optimal b as a function of a and g/r when W/ = 1. Clearly, optimal b

decreascs with o and ¢/r and could be significantly less than [.Computation also shows that

when W/B decrcases the optimal b will also decreasc; when W/B increases the optimal b will

also incrcasc.

Conclusion

In many applications, a more practical noisc variance modcl of an actuator than the one
in LOG theory is that its noisc variance increascs with its signal variance. In this papcer, we
investigated the optimal conirol and optimal actuator placcment when the actuator noise
variance increases lincarly with its signal variancc. In this case the feedback and actuator

location obtained by ordinary LQG theory arc no longer optimal.
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Figure 3. The arcas of b <0 and b= 1 for several values of .
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Figure 4. The optimal actuator location b as a function of g/v and o, when w/B=1.
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