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Sliding-Mode Control of Differential-
Difference Systems

Sliding modes in ordinary differential equa-
tions.

z(t) = Az(t) + Bu(t). (1)

ut(t,z), if s(z)>0

ut,z) = { u=(t,z), If s(z) <0 (2)

“Sliding modes” in continuous-time differ-
ence systems.

z(t + 7) = Az(t) + Bu(t). (3)

S(z(t+ 7)) =0 = u(t). (4)



We consider two configurations:

Configuration A

z(t) Aq12(t) + A122(t)
z(t+71) = A2z(t) + Ax22(t) + Bou(t).

Configuration B

zZ(t+71) = Ap12(t) + Apoz(t)
(t) = Ao1x(t) + Ax2(t) + Bou(t).

It is assumed that z € R™, 2z € R"™ and
u € R™. Ayy, Ao, As1, App, Bg are con-
stant matrices of appropriate dimensions.

335



336

Sliding-Mode Control Design
A2 = B1C; (5)
Quasicontrol:
v=Co2 (6)

Configuration A
1. Sliding mode in differential subsystem.

v=1v*(z) = So(z) =0 (7)
2. Sliding mode in difference subsystem.

u= S(z,z) =v*'(x) ——» Crz=0 (8)



Configuration B
1. “Sliding mode” in difference subsystem.

v=Dz(t) = Sp(z) =0 (9)
2. Sliding mode in differential subsystem.

u=>S =Dz(t) — Cox(t) =0 (10)
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Sliding Mode Control of Nondispersive

Flexible Structures

Flexible rod in compression.

8%Q(t,z) _ 9%Q(t, )

ot2 82
8Q(t,0) _
——at—( —)‘“(”

8Q(t,1)

o

Laplace transform approach.
p?’Q(p,z) = Q"(p, z)
Q'(p,0) = —i(p)

Q'(p,1) =0,

where Q(p,z) = LQ(t,x), u(p) = Lu(t).

(11)

(12)
(13)

(14)



The solution of the boundary value problem

ep(m—’l) + e—P(I"-l)

Qp,z) = -u(p).(15)

A
ep—e_p p

If an output variable is

y(t) = Q(¢, 1) (16)
then
ip) = Qe 1) = 2 2ap). (D)

In the time domain:
gt + 1) —y(t = 1) = 2u(t) (18)
or

y(t) —y(t —2) = 2u(t - 1). (19)
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The equation can be written in the form of
the difference-differential system as

Configuration A:
y(t) = z1(t)
z21(t+1) = 22(t) + 2u(t)
22(t+1) = 21(t)

or

Configuration B:
yi(t+1) = ya(t) + 2v(t)
y2(t + 1) y1(t)
o(t) = u(t),

where y1(t) = y(t).
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Control Design
Configuration A

z1(t) = —Asgn(y(t)).

The equality is valid if
s(t) = z1(t) + Asgn(y(t)) = 0.

To achieve this the control should be

u(t) = ~222(t) — SAsgn(y(t + 1)).

t+1
y(t+ 1) = y(t) +/t 2 (7)dr.

(20)

(21)

(22)

(23)
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As a result control is
1. 1
u(t) = _Ey(t -1) - Ez\sgn(y(t) +

t
y(t — 1) —y(t —2) + 2/: _u(r)dr).
With this control the system is stabilized in

finite time.

Control Design
Configuration B

s(t) = (1 = Mya(t) + 2v(t), (24)

where |A| < 1. If the control is

u(t) = —psgn(2v(t) +(1 - My(t-1)) -
(1-MNy(t-1)
then
8§ = —2usgn(s). (25)



Rod with attached masses

02Q(t,z) _ 9°Q(t, )

ot2 dz? (26)
20 — ey (27)
Q(t,1) _ 8%2Q(t, 1)

TR (28)

Configuration A:

1(t) = zo(t)

xa(t) = —xo(t) + 21(¢)

z21(t) = 22(t—1)+2u(t-1)

z2p(t) = —z1(t—1)+2xy(t - 1),
where y(t) = Q(t,1) = z1(t).

u(t) = ~—é—z2(t)——;—usgn()\x1(t+ 1) +

To(t + 1)).
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State Estimation and Prediction
Extrapolator

[ z1(t+1) J = (1) [ z1(t) ] +

zo(t+ 1) z2(t)
t+1
/t ®(t + 1 — 7)h(r)dr,
where

0
A7) = | (= 2) + 2u(r = 1) — 222(7 — 2) ] '

Observer
£1(t) = Za(t) + L1(Z1(t) —y(t))

To(t) = —Z2(t) + 21(t) + L2(21(t) — y(t))
z1(t) = Z(t-1)+2u(t-1)+

L3(Z1(t) — y(t))
Z(t) = 71 (t-1)+25(t-1)+

La(21(t) — (D).



The same approach can be used for systems
of connected rods with many attached masses,
multiple controls and also for the case of dis-
tributed actuators

82Q(t,2) _ 8%Q(t, )
ot2 o2

+o(z)u(t)  (29)

where ¢(z) is quasipolynomial. In all cases
the solution of the boundary value problem
for Laplace transformed variables leads to
Configuration A or Configuration B.

Dispersive Structures

Euler-Bernoulli beam.

02Q(t,z) _ _8%Q(t x)

at? azt (30)
Q(t,0) =0 (31)
Qx(t,0) =0 (32)

az(t,1) =0 (33)
Qzzz(t, 1) = u(t). (34)
Second order dispersive structure.
FAD) _ o) Z 9D 1y(5)202) (55

ot2 Oz?



General fourth order equation.

2 4
8 %ﬁg’x) VA ICE) W
2 .
b(z) -2 Q(t " f o220,
The boundary condltlons
Q(t,0) =0 (36)
0Q(t,0)
—. =0 (37)
9%Q(t,1)
T2 uy(t) (38)
Rl _ (39)
Ozx3 T
Integral Transform
1
P(t,§) = [ D 2)Q(t2)de (40)

If D satisfies an adjoint homogeneous bound-
ary value problem then P(£,z) satisfies
equation

82P(t, &) _ 62P(t £)

~ +e(Out)  (a1)

¢(§) = —a(0)D(¢,0). (42)



Euler-Bernoulli beam

If D is a solution of the boundary value prob-

lem:

9%D(¢,x) _ _9*D(€, )

o€ ozt
D(€,0) =0
D'(¢,0) =0
D'(¢,1)=0
D"'(€,1) = 0.

then P(t,€) satisfies an equation:

82 P(t, 32 P(t,
L8 PG | ey,
ot A€

where

(43)
(44)
(45)
(46)

(47)

(48)

(49)
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Initial values: D(0,z) and D’E(O,:c).
If Dé(o,m) = 0 then

P¢(t,0) = 0. (50)
The possibility to choose D(0,z) is an addi-
tional degree of freedom that can be used to
assign the desired value of ¢(§).
Nonsingularity condition

P=0=Q=0. (51)

Output

y(t) = P(t,0) = /01 D(0,2)Q(¢, z)dz. (52)



boundary
controls Distributed parameter system

ult)

Contruller  structure

state Q(t,x)

Integral transform output
yiv)

P=IDQ

Controller for
—4 differential-difference

system

Al

ylt)

3| observer/extrapolator

~
) 4 X A

“% switching function

Conclusions

Sliding mode control became very popular recently be-
cause it makes the closed loop system highly insensi-
tive to external disturbances and parameter variations.
Sliding algorithms for flexible structures have been

used previously, but these were based on finite-dimensional

models. An extension of this approach for differential-
difference systems is obtained. That makes it possible
to apply sliding-mode control algorithms to the vari-
ety of nondispersive fiexible structures which can be
described as differential-difference systems.

The main idea of using this technique for dispersive
structures is to reduce the order of the controlied part
of the system by applying an integral transformation.
We can say that transformation “absorbs” the dis-
persive properties of the flexible structure as the con-
trolled part becomes dispersive.
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