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SUMMARY

In this paper the approximation problem for a class of optimal compensators for

flexible structures is considered. The particular case of a simply supported truss

with an offset antenna is dealt with. The nonrational positive real optimal

compensator transfer function is determined, and it is proposed that an

approximation scheme based on a continued fraction expansion method be

used. Comparison with the more popular modal expansion technique is

performed in terms of stability margin and parameters sensitivity of the relative

approximated closed loop transfer functions.

INTRODUCTION

)

1

Tile problem of active stabilization of flexible structures with collocated sen-

sots/actuators is addressed. In particular, the case of an offset antenna linked by

a truss to the Shuttle body is considered. A general theory has been already es-

tablished in [1] as optimal LQG problem for abstract wave equation_. The results

obtained were applied in [2] to design an optimal compensator for the antenna vi-

brations suppression after a slewing action, by modelling tile truss as a uIfiform

Bernouilli beam, simply supported at the Shuttle end, with rate-sensor/actuator

collocated at the antenna end. The compensator transfer function was determined

as nonrational, positive real function. This class of'functions was shown to pro-

vide robust stabilizers for vibrating systems, even in the case of lumped parameter

systems [3]. Nevertheless, rational approximation schemes are needed in order to

instrument the compensator. A technique usually adopted is the modal expansion,

and a typical controller realization can be found in [3] as a bank of filters, centered at

the frequencies of the system undumped modes. Other methods can be borrowed

from networks synthesis framework, where the rational approximation of positive

real functions is a standard problem in telecommunications filters design. Standard

references on these problems are [5], [6]. Despite a good approximation of some
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characteristics of tile frequency response (amplitude, real part, etc.) can be ob-

tained, the positive real character of the approximating function is not guaranteed,

as opposite the modal expansion does for the class of systems considered. This

is crucial in our control problems since, as mentioned above, positive realness en-

sures the structure stabilization. Anyway, the main drawback is just the modal

frequencies computation, obtained by solving a transcendental equation.

In this paper the compensator transfer function is explicitly computed in the

vector case of yaw torsion plus roll bending deformation. It is shown to converge

to a diagonal constant matrix as the control energy increases without bound. Ra-

tional positive real approximations are deviced via a continued fraction expansion

technique [7]. Approximations of any order can be easily derived, with coefficients

straightforwardly related to the system parameters. Moreover, the positive real

character is guaranteed. The performances of the approximated closed loop trans-

fer function are evaluated. Comparison with the modal approximation method is

performed in terms of stability margins and sensitivity to parameters variations.

THE OPTIMAL COMPENSATOR DESIGN

We resume in this section the known results about the model and the LQG

problem for the case of a simply supported uniform Bernouilli beam with an offset

antenna, with rate-sensor/actuator collocated at the antenna end [2]. Actually, the

particular case of roll bending deformation (z axis) plus yaw torsion (z axis) is

considered. In the sequel u¢(t, s) denotes the x axis displacement and uq.(t, s) the

angular displacement about the z axis; f and s E (0, l) indicate the time variable

and the space displacement along the beam axis, respectively. The starting point

is the following state space model

M_i(t) + Ax(t)+Bu(t) + BNs(t) = 0 (1.1)

= B'i(O + 2vo(t)

where

x(t) E Hilbert Space 7-_

M: linear bounded, self-adjoint positive definite operator on 7-{ onto 7-_,

bounded inverse

A : closed linear operator with domain dense in _ and range in 7-_

(1.2)

with
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u(.) : the control input E E", Euclidean n-space

B : linear mapping E n _ "H

N_(.) : white Gaussian noise with spectral density dsI, where I is the identity operator

of suitable dimension

No(') : white Gaussian noise with spectral density doI, independent of N,(.)

v(.) sensor data.

The definiton of operators A, M and B, as well as the definition of the space

7-t, embody the beam plus antenna dynamical model and the boundary conditions

stated in [2]. For convenience we report these definitions:

<,+(.)
,-,,/,(.)
_¢(t)

%(0
.u+(O

• Ax = rl/Asf/
' [ kbf ]

EZ,u'2'(.)
-aS+u;(.)

= -EI¢ug'(1)

EI, ug(l)

a s,#+(t)

MSI= [ Pa"+ ] • Mb=t pI+ u V, '

[0]; Bu= u(.) Mx= Mbb

m 0 rnrx

0
IM

7n F x

where p is the beam mass density, a the cross sectional area, l the beam length,

EI¢, GIo are the beam flexural and torsional rigidity respectively, m is the antenna

mass and r_ is the antenna c.o.g displacement, IM is the 2 x 2 relevant moment of

inertia matrix of the whole structure.

We consider the problem of stabilizing the antenna after a slewing action has

occurred, by determining the control u(.) that minimizes the time average

,ira1(/0 /0 )T--<_ _ IIB':+(t)ll _dt + A II_(t)ll2dt , A>O.

If (A, B) is controllable in [2] it is shown that the optimal compensator transfer

function is given by

• (#) = o_#B*(#2M + A + 7vBB*)-'B (1.3)
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where

= VT;I,_o:,,
1

_,(#) is shown to be a positive real function, thus defining a robust controller [3].

THE APPROXIMATION SCHEME

The compensator tran.,fer function explicit determination. In order to compute

explicitly the compensator transfer function from eqn. (1.3) consider the following

expression

(#2M + A + #TBB*)x = By (2.1)

which, by taking into account the definitions given in the previous section, can be

split in tile following two relationships

#2Mlf + Alf = 0

#21_4bb + Ab f + #Tb = v.

(2.2)

(2.3)

By recalling that f = [u4(.)u¢,(.)]*, (2.2) is solved with the clamped end conditions

u4(O ) = u;(O) = u,1,(0 ) = O, obtaining

uv_(s) =c3sinh(kq,s) s E [0,/),

where

¢, (s) = sinh(kos) - sin(k_s) ¢2(s) = cosh(kcs) - cos(k_s)

he, = (pal(EI+) (,14) X/_ k,S, = _/7-1G Ix.

For the constants q, c2 the following formulas hold

c2 = ¢I(/) $_(I) ¢2(/) ' ca--sinh(kv,1),
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nloreover

_")i)=[¢_")() _ ()] ¢i(0 4(0 t¢_(O ' .=0,1,2 ....

Now it can be shown that Abf can be actually expressed as T(tt)b [4] so that

(2.1) becomes

(pMb + T(#) + 1_TI)b = v

and tile compensator transfer function is defined as

02(#) = oqt(#2Mb + T(_) + ].t"[I) -1 , (2.4)

where I is the identity operator. Recalling the definition of oe and 7, we see that

lira _(.)= 47;/doX
A---*0

so that we have the "direct connection" if tile control energy increases without

bound.

We list below the non zero entries of the 3 x 3 matrix TOO

3 sinh(k¢/)cos(k¢l) + sin(k ¢/)cosh(k¢l)Tll (, ) E I¢kl ¢ A

sinh( k ¢ l )sin( k ¢ l )
T:2(.) =T2,(.)= EIck_ A

Tz2(FO =EIck¢ sinh(k¢l)cos(kol) - sin(k¢/)cosh(k¢l)
A

T33(# ) =G I¢,kv, coth(k,_t)

a = - :+ cos:,(k,l)cos(kg).
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T(/z) is a meromorphic function; i.e. it is analytic in all the plane but ill a countable

set of points, where it has polar singularities [8].

The continued fraction expansion approzimation. In order to approximate (2.4)

note that if a matrix is positive real so is its inverse; consequently it is of great

simplification to work on

i--(,_Mb+ T(,) + "r_I). (3.1)

Next, since for # = iw the function T(/z) is real, we see that the real part of (2.5)

does not depend on T(#), so that whatever approximation we device, a positive real

approximate function is obtained. Thus let us concentrate oil T(_t).

The approximation scheme proposed consists of a continued fraction expansion

of a meromorphic function f(z), i.e.

1
(3.2)

f(z)=ro(z)+ 1

,'2(z)+
r3(z) + _,(z)+...

where the ri(z), i = 0, 1,2,... are rational functions of finite degree suitably defined,

and are called "convergents" of the continued fraction. The meaning of (3.1) is the

following [7]: denoting fn(z) the function obtained by considering n convergents on

the r.h.s we have

lim f.(z)= f(z)
n ---'*"O0

for every value of z in the complex plane.

The functions ri(z) can be determined according to the following algorithm.

step 1. Consider the Laurent expansion about the origin of f(z) (see e.g. any standard

book on complex analysis or passive networks synthesis)

tl 0 co

: ÷5;o. 
k=0 k=l
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The finite sum is called "singular part" of f(z) at the origin, no is the multi-

plicity of the pole at the origin and set ro(z) no z_k= Y]_k=0 a-k ; it can eventually

be a constant (no = 0); i.e. the function is regular at z = O.

step 2. Compute

fl(z) = f(z) -- to(Z),

then f_(z) has the same poles as f(z) but the pole at z = 0. Moreover it holds

f(z) =r0(z) + f,(-) (i)

lira f,(z)=0. (ii)
z "---*0

Note that (i) is not a local expansion but an exact representation of f(z) with

its singular behaviour at z = 0 explicited.

step 3. Consider

f2(z) = 1/f,(z);

it has a pole in the origin according to (ii), then use the argument of steps 1

and 2 to determine f2(z) rl(z) + f3(z) with rl(z) "'= = _k=0 b-kz-k and nl is

the multiplicity of the pole at z = 0 of f2(z). Since fx(z) = 1/f2(z) we have

1
f(z)=ro(z)+

r_(z) + f3(z)"

It is clear at this point how to obtain expansion (3.1) by repeating step 3 and

determining recursively all the convergents rk(z), k = 0, 1, 2 .... For completeness

let us see how to easily obtain the coefficients of the singular part of the Laurent

expansion at the origin of a meromorphic function f(z)

a_. = lira z"f(z)
z "---_0

The algorithm described can be applied to each entry of T(tt) obtaining an

expansion of the following type

= k;" +
11. /ei,j

_t 4 31-°_10 -t'- • •k;'l 1
7 + + k2 1

p4 +kso+-...

(3.3)
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and consequently tile n-th order approximation T.(lt) of T(#) is obtained as

T,,(.) =

.-_1,1(.) EI_ nl,2: .--fi--l_. t/_)

R,2,'2(_)-V

0 0

0

Here Ri;i(tt) is obtained by (3.3)including n convergents in tile continued fraction.

This number needs not be the same for all the entries, and in this case tile order

for T,,(#) is determined by the highest value of n used.

In tile following table are reported tile coefficients of tile continued fraction

expansion up to tile 4-th order of the entries of T(#), for a particular choice of tile

system parameters (see [9]).

Table 1. Coefficients of the Continued Fraction Expan-

sion of T(I 0 entries.

/¢0

kll

kl0

k21

k2o

kat

/_'ao

k41

k4o

R 1,' R1,2 R=,_ R3,a

12 -6 4 1

-2.7 19.1 -105 3

.0026

411815.38

-.028

-74697.1

.18

-10.2

.2

-175

-7.7-451.03 50.57 21610.7

94.35 714.4 -3434.97 35.64

.0185 -.104 .4 .61

5501900 -921286.76 244973.48

321.53 44.58 -10.15

We stress that the coefficients of the approximations are easily obtained just

by computing limits in the origin of suitably defined functions, and are simple com-

binations of the system parameters which appear in the coefficients of the function

to be approximated. As a result we have a procedure which is numerically robust
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since11osolution of transcendentalequationsare required,noderivativesdetermina-

tion, no inner productscomputations,novariable transformationsasusuallyoccurs
in the most popular approximationmethods. This straightforward relation to the

systemparametersdeterminesalsoa low sensitivity to parametersvariation of the
approximatedclosedloop transfer functions, aswe will shownext.

For convenience,we report briefly the modal expansiontechnique (see [3]).
Let _ok,k = 1,2,..., tile system undamped modes, and _/'k, k = 1, 2,..., tile M-

orthogonal eigenvectors, normalized as [M4,_,, _,] = 1. The following compensator

transfer function modal approximation can be deviced

= it 2 +c0_ + #Tbkk'
Re# >_ 0,

where

bk = B*_hk, bkk = [bk, bk].

Thus we have a bank of band pass filters centered at the undamped modes.

CLOSED LOOP TRANSFER FUNCTION PEI1FOI1MANCES EVALUATION

In this section we compare the performances of the approximation method pro-

posed with respect to the modal expansion technique, widely used in this field.

In particular tlle stability margins of the approximate closed loop transfer func-

tion are considered and the sensitivity of this performance index toward system

parameter variation is evaluated.

As it is well known the stability properties mentioned can be derived by exam-

ining the frequency behaviour of the following function

S(_o) = det(l + P(w)_(w)),

where P(w) is the system transfer function, in our case defined as

P(w) = (T(w)- o.TMb)-'.

Actually, we are more interested in the sensitivity of stability margins with respect

to parameters variations, hi Fig. 1 amplitude and phase plots of the diagonal
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entries of F(w) = P(w)_(w) are reported for a second order continued fraction

approximation of _(w). In Fig. 2 are reported the corresponding plots for a modal

approximation based on two band pass filters centered on the first two modes.

Particularly interesting are the phase plots showing that in the first case we obtain

a higher phase margin, practically equal to rr/2 for all frequencies. A similar result

holds for the other entries of F(w), thus giving a description of the stability featmes

achieved in both approximation schemes, avoiding to get through the complexity of

the function S(w).

Moreover, in Fig. 3 are reported the plots of the sensitivity of the phase functions

considered, with respect to the variation of the parameter 0 = _ Here we noteEI_ "

that the continued fraction approximation shows a better performance in terms of

robustness than the modal expansion.

CONCLUSIONS

The continued fraction method proposed allows to approximate any meromor-

phic function by operating simple computations on the coefficients, i.e. the deter-

minations of the limit in the origin of suitable functions derived by the assigned

one. This results in a good performance of the approximation in terms of stability

margins and robustness of the approximate closed loop transfer function. This fea-

ture is highlighted by comparing the mentioned characteristics with the analogous

one obtained by using the more popular modal approximation scheme.
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Fig. 1 Continued Fraction Approximation.
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Fig. 2 lVlodal Expansion Approximation.
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