This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.

INTRODUCTION

The Difficulty of Conventional Crude Oil Pumping

Long distance land transportation of crude oil, especially heavy crude, is very expensive with present technology. Oil from the north slope of Alaska is a classic example. It needs to be transported many thousands of miles to the market. However, in the first 800 miles, from Prudhoe Bay to Valdez by a conventional pumping method, the Alaska pipeline consumes, including interest and capital recovery, roughly one-third of the oil's value (ref. 1). The major reasons for this excessive cost are:

a. The pipeline was designed with special concerns for the environment. For instance, remote control valves were installed at 5 mile intervals to limit spills to 64,000 barrels for each single line break.

b. The line also had to withstand temperature extremes of minus 70 degrees Fahrenheit when empty of oil in midwinter, and plus 145 degrees Fahrenheit when filled with oil at the maximum pumping rate of 2 million barrels a day, without adversely affecting the surroundings.

c. Pumping capacity of about 500 horsepower per mile at pressures of up to 1200 pounds per square-inch was needed to push the oil along at barely 7 miles per hour.

d. To pump a large volume of 2 million barrels per day at this slow speed of 7 miles per hour required a 48 inch diameter pipeline.

e. A 48 inch diameter pipeline under 1200 pounds per square-inch pressure needs 2 inch thick walls.

As a result of (a) to (e) above and more, environmental concerns, temperature extremes and large diameter pipelines with thick walls under high pressure, all added up to high cost major construction.
How a Maglev Pipeline Would Improve Crude Oil Transportation

In assembly line fashion, the crude oil is put into containers at atmospheric pressure and sealed. The containers are then magnetically suspended over a track and propelled to their destination with linear induction motors. Freed of the drag caused by adhesion to the inside of a pipe and no matter if the oil is hot or cold, the oil can now be moved at much higher speed, for example, thirty times as fast as when conventionally pumped. Since capacity equals speed times cross sectional area, a thirty fold speed increase allows a thirty fold decrease in cross sectional area, which in turn means much less weight. Hence, the containers can be small and light, and they can easily be magnetically suspended with permanent magnets in repulsion. A conduit provides guidance and containment. The containers fold up at the ends of the line and slow to a crawl, at which time they are filled or emptied.

BASIC COMPONENTS OF MAGLEV PIPELINE

Permanent Magnets in Repulsion as the Means of Suspension

The crude oil is put into containers which are suspended by permanent magnets in repulsion as shown in Figure 1. Not shown are lateral guidance controls, which can be either mechanical or magnetic. Figure 7 p.682 (refs. 2, 3 & 4) shows details of lateral guidance. A particular advantage of using permanent magnets in repulsion is that they require no power to levitate and the containers always remain levitated even when the system is turned off and has stopped. New magnetic compounds now virtually last forever in this type of application.

![Magnet Illustration](image)

Figure 1. Typical cross section of maglev pipeline.

Electric Linear Induction Motors (LIM) for Propulsion

The primary portion of a typical electric linear induction motors (LIM) is shown in Figure 2. The secondary to this LIM consists of a metal sandwich attached to the bottoms of the containers (ref. 5). The speed of the shown LIM can be varied by varying the frequency of the supplied power. For instance, the speed can be reduced from 200 to 100 miles per hour (mph) by reducing the frequency from 150 to 75 cycles per second (cps). The LIM can also be reversed for braking. A power supply with appropriate controls would be required to meet the full range of possible operating needs.
30 feet long, 26 poles three phase, 1000 V, 325 Amps
150 cps, 900 lbs thrust at 200 mph

Depending on size and terrain, motors may be spaced as much as
100 miles apart.

Figure 2. Typical high speed high performance linear induction motor (LIM).

Dynamic Mechanical Loading and Unloading

The containers are flexibly attached to each other end to end and move in unison. A short distance
before the end of the line is a cam that forces alternate container joints to diverge onto upper and lower
tracks. This causes the containers to fold up against each other and slow down, the last stages of which are
shown in Figure 3 (ref. 6). After they have completely folded, they pass through either a filling or a
dumping station followed by a U-turn.

Figure 3. Typical folding and filling of containers.

Comments on Figure 3. Figure 3 is a cutout from a drawing that shows a 200 mph system. While
this might be a look into the future in bulk materials transportation, initial speeds of between 50 and
100 mph would be advocated with provisions to step the speed up to a higher level later.
Elevated across open country

Figure 4. Typical design of maglev crude oil pipeline.

MAGLEV PIPELINE COST AND CAPACITY

Construction Cost. A detailed cost estimate shows that, if a medium size maglev crude oil pipeline were to be built in 1993 as an elevated system as shown in Figure 4, it would cost about $500,000 per mile. Not included in this estimate are the costs of (1) right-of-ways, (2) power generators if needed, (3) service roads and (4) end facilities. The elevated design is preferred because of the continued need for very straight alignment similar to overhead wires or catenaries of high speed railroads.

Table 1. Assorted Carrying Capacities, Barrels per Day

<table>
<thead>
<tr>
<th>Nominal container diameter (inches)</th>
<th>Speed 25 mph</th>
<th>Speed 50 mph</th>
<th>Speed 75 mph</th>
<th>Speed 100 mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>34,000</td>
<td>68,000</td>
<td>102,000</td>
<td>136,000</td>
</tr>
<tr>
<td>4</td>
<td>60,000</td>
<td>120,000</td>
<td>180,000</td>
<td>240,000</td>
</tr>
<tr>
<td>6</td>
<td>138,000</td>
<td>276,000</td>
<td>414,000</td>
<td>552,000</td>
</tr>
<tr>
<td>8</td>
<td>240,000</td>
<td>480,000</td>
<td>720,000</td>
<td>960,000</td>
</tr>
<tr>
<td>12</td>
<td>550,000</td>
<td>1,100,000</td>
<td>1,650,000</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

Size, Speed and Capacity. The carrying capacity of the pipeline is determined by multiplying the container cross-sectional area with the system velocity. The cross-sectional area is determined by the elected container diameter. However, the speed can be changed at any time later which in turn changes system capacity. Table 1 shows the pipeline capacities for various sizes and speeds when running continuously for 24 hours. Conversion factors are (a) one barrel = 42 gallons, (b) 7.48 gallons = 1 cubic foot, (c) oil weight is 55 pounds per cubic foot and (d) 550 foot-pounds/sec = one horsepower. These factors were used to
compute the data in Table 1 and also the energy use of the system, which is reflected in operating and maintenance expenses of later chapters.

COMPARING MAGLEV COST WITH THE ALASKA (PUMPED) PIPELINE

About 25 years ago, oil was discovered in Prudhoe Bay, Alaska. As shipping lanes were blocked most of the year by ice, a 48-inch diameter, 800 miles long, 2,000,000 barrels per day pipeline was constructed to Valdiz. Completed in 1976, it cost in excess of $9 billion, or over $11 million per mile. Taking inflation from 1976 to 1993 as roughly 100%, it follows that if the Alaska pipeline were to be built today it would cost about $22 million per mile. This would compare with the above 1993 estimated maglev pipeline cost of $500,000 plus costs of environmental stuff, right-of-ways, end facilities, service roadways, power lines and power generating plants. Without going into too much detail, let's be generous and say we could build the maglev pipeline with everything included for $4 million per mile in 1993 dollars, or we could have built it for $2 million per mile in 1976. Table 2 shows reported Alaska pipeline statistics (ref. 1), and Table 3 compares the Alaska pumped pipeline cost of $11 million per mile with our maglev pipeline cost of $2 million per mile (both 1976 dollars).

Table 2. Alaska Oil Pipeline Operating Results, 17 Years Recorded, 3 Years Estimated

<table>
<thead>
<tr>
<th>Year</th>
<th>Million Barrels per Day</th>
<th>Tariff Rate $/Barl.</th>
<th>Oper. Expense $/Barl.</th>
<th>Tax Loading Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>1</td>
<td>1976</td>
<td>0</td>
<td>6.00</td>
<td>0.4</td>
</tr>
<tr>
<td>2</td>
<td>1977</td>
<td>0.3</td>
<td>6.00</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>1978</td>
<td>1.1</td>
<td>6.00</td>
<td>0.8</td>
</tr>
<tr>
<td>4</td>
<td>1979</td>
<td>1.2</td>
<td>6.00</td>
<td>0.8</td>
</tr>
<tr>
<td>5</td>
<td>1980</td>
<td>1.5</td>
<td>6.00</td>
<td>1.2</td>
</tr>
<tr>
<td>6</td>
<td>1981</td>
<td>1.5</td>
<td>6.00</td>
<td>1.2</td>
</tr>
<tr>
<td>7</td>
<td>1982</td>
<td>1.6</td>
<td>6.00</td>
<td>1.2</td>
</tr>
<tr>
<td>8</td>
<td>1983</td>
<td>1.7</td>
<td>6.00</td>
<td>1.2</td>
</tr>
<tr>
<td>9</td>
<td>1984</td>
<td>1.7</td>
<td>6.00</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>1985</td>
<td>1.8</td>
<td>5.00</td>
<td>1.2</td>
</tr>
<tr>
<td>11</td>
<td>1986</td>
<td>1.8</td>
<td>5.00</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>1987</td>
<td>1.8</td>
<td>5.00</td>
<td>1.2</td>
</tr>
<tr>
<td>13</td>
<td>1988</td>
<td>2.1</td>
<td>3.90</td>
<td>0.58</td>
</tr>
<tr>
<td>14</td>
<td>1989</td>
<td>1.9</td>
<td>3.40</td>
<td>0.57</td>
</tr>
<tr>
<td>15</td>
<td>1990</td>
<td>1.8</td>
<td>3.50</td>
<td>0.83</td>
</tr>
<tr>
<td>16</td>
<td>1991</td>
<td>1.8</td>
<td>4.00</td>
<td>1.1</td>
</tr>
<tr>
<td>17</td>
<td>1992</td>
<td>1.8</td>
<td>3.50</td>
<td>1.2</td>
</tr>
<tr>
<td>18</td>
<td>1993</td>
<td>1.7</td>
<td>3.50</td>
<td>1.25</td>
</tr>
<tr>
<td>19</td>
<td>1994</td>
<td>1.7</td>
<td>3.60</td>
<td>1.32</td>
</tr>
<tr>
<td>20</td>
<td>1995</td>
<td>1.6</td>
<td>3.50</td>
<td>1.35</td>
</tr>
</tbody>
</table>

Comments on Table 2. This data was extracted from evidence presented in 1992 to the Federal Energy Regulatory Commission (ref. 1). Table 3 uses this data as follows: Annual revenues, columns (a) x (b) x 365, annual expenses, columns (a) x (c) x 365, annual income taxes, columns (a) x (b) x (d) x 365. An
'After Tax Margin' of 6.4% as return on investment or profit was arbitrarily elected by the owners of the pipeline, the annual total of which is calculated by multiplying 0.064 with the amounts of investment balance, columns (g) and (k) in Table 3.

Table 3. Investment Comparison of Pumped vs. Maglev Pipeline Using Recorded Alaska Pipeline Data ($1,000,000)

<table>
<thead>
<tr>
<th>Year</th>
<th>Common Data</th>
<th>Pumped Pipeline</th>
<th>Maglev Pipeline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revenue</td>
<td>O & M Expense</td>
<td>After Tax Margin</td>
</tr>
<tr>
<td></td>
<td>(a)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>577</td>
</tr>
<tr>
<td>2</td>
<td>657</td>
<td>217</td>
<td>66</td>
</tr>
<tr>
<td>3</td>
<td>2409</td>
<td>795</td>
<td>321</td>
</tr>
<tr>
<td>4</td>
<td>2628</td>
<td>867</td>
<td>438</td>
</tr>
<tr>
<td>5</td>
<td>3285</td>
<td>1084</td>
<td>657</td>
</tr>
<tr>
<td>6</td>
<td>3285</td>
<td>1084</td>
<td>657</td>
</tr>
<tr>
<td>7</td>
<td>3504</td>
<td>1156</td>
<td>584</td>
</tr>
<tr>
<td>8</td>
<td>3723</td>
<td>1229</td>
<td>558</td>
</tr>
<tr>
<td>9</td>
<td>3723</td>
<td>1229</td>
<td>496</td>
</tr>
<tr>
<td>10</td>
<td>3285</td>
<td>1084</td>
<td>460</td>
</tr>
<tr>
<td>11</td>
<td>3121</td>
<td>1030</td>
<td>427</td>
</tr>
<tr>
<td>12</td>
<td>2847</td>
<td>569</td>
<td>423</td>
</tr>
<tr>
<td>13</td>
<td>2606</td>
<td>521</td>
<td>437</td>
</tr>
<tr>
<td>14</td>
<td>2427</td>
<td>485</td>
<td>576</td>
</tr>
<tr>
<td>15</td>
<td>2628</td>
<td>526</td>
<td>723</td>
</tr>
<tr>
<td>16</td>
<td>2300</td>
<td>460</td>
<td>657</td>
</tr>
<tr>
<td>17</td>
<td>2431</td>
<td>486</td>
<td>788</td>
</tr>
<tr>
<td>18</td>
<td>2172</td>
<td>434</td>
<td>776</td>
</tr>
<tr>
<td>19</td>
<td>2234</td>
<td>447</td>
<td>819</td>
</tr>
<tr>
<td>20</td>
<td>2044</td>
<td>409</td>
<td>788</td>
</tr>
</tbody>
</table>

Comments on Table 3. 1976 was the start up year without saleable production. Earned surplus column (f) = (b) - (c) - (d) - (e) and column (j) = (a) - (c) - (h) - (i). Investment balance is reduced annually by earned surplus, except at the beginning when it was increased due to negative earned surplus. Note how the pumped pipeline reached payoff in eight years and maglev in two years after the start of production.
Table 4. Computation $10 Million per Day Financial Advantage of Maglev over Pumping, Based on Actual Alaska Crude Oil Pipeline Experience ($1,000,000)

<table>
<thead>
<tr>
<th>Year</th>
<th>Pumped</th>
<th>Maglev</th>
<th>Annual Maglev Savings</th>
<th>Annual Million Barrels</th>
<th>Daily Maglev Savings</th>
<th>Present Value of (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-577</td>
<td>577</td>
<td>-179</td>
<td>114</td>
<td>861</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>-240</td>
<td>614</td>
<td>247</td>
<td>126</td>
<td>975</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>663</td>
<td>630</td>
<td>1434</td>
<td>110</td>
<td>1290</td>
<td>402</td>
</tr>
<tr>
<td>4</td>
<td>735</td>
<td>587</td>
<td>1669</td>
<td>18</td>
<td>1503</td>
<td>438</td>
</tr>
<tr>
<td>5</td>
<td>1004</td>
<td>540</td>
<td>2214</td>
<td>-89</td>
<td>1839</td>
<td>548</td>
</tr>
<tr>
<td>6</td>
<td>1068</td>
<td>476</td>
<td>2352</td>
<td>-230</td>
<td>1991</td>
<td>548</td>
</tr>
<tr>
<td>7</td>
<td>1356</td>
<td>408</td>
<td>2646</td>
<td>-381</td>
<td>2079</td>
<td>584</td>
</tr>
<tr>
<td>8</td>
<td>1615</td>
<td>321</td>
<td>2959</td>
<td>-550</td>
<td>2215</td>
<td>621</td>
</tr>
<tr>
<td>9</td>
<td>1780</td>
<td>218</td>
<td>3145</td>
<td>-740</td>
<td>2322</td>
<td>621</td>
</tr>
<tr>
<td>10</td>
<td>1637</td>
<td>104</td>
<td>3049</td>
<td>-941</td>
<td>2456</td>
<td>657</td>
</tr>
<tr>
<td>11</td>
<td>1665</td>
<td>-1</td>
<td>3131</td>
<td>-1136</td>
<td>2601</td>
<td>657</td>
</tr>
<tr>
<td>12</td>
<td>1962</td>
<td>-108</td>
<td>3514</td>
<td>-1336</td>
<td>2781</td>
<td>730</td>
</tr>
<tr>
<td>13</td>
<td>1881</td>
<td>-233</td>
<td>3542</td>
<td>-1561</td>
<td>2989</td>
<td>767</td>
</tr>
<tr>
<td>14</td>
<td>1720</td>
<td>-354</td>
<td>3622</td>
<td>-1788</td>
<td>3336</td>
<td>694</td>
</tr>
<tr>
<td>15</td>
<td>1844</td>
<td>-464</td>
<td>4010</td>
<td>-2020</td>
<td>3722</td>
<td>657</td>
</tr>
<tr>
<td>16</td>
<td>1764</td>
<td>-582</td>
<td>3999</td>
<td>-2276</td>
<td>3929</td>
<td>657</td>
</tr>
<tr>
<td>17</td>
<td>1851</td>
<td>-695</td>
<td>4356</td>
<td>-2532</td>
<td>4342</td>
<td>657</td>
</tr>
<tr>
<td>18</td>
<td>1775</td>
<td>-813</td>
<td>4422</td>
<td>-2811</td>
<td>4645</td>
<td>621</td>
</tr>
<tr>
<td>19</td>
<td>1895</td>
<td>-927</td>
<td>4750</td>
<td>-3094</td>
<td>5022</td>
<td>621</td>
</tr>
<tr>
<td>20</td>
<td>1895</td>
<td>-1048</td>
<td>4897</td>
<td>-3398</td>
<td>5352</td>
<td>584</td>
</tr>
</tbody>
</table>

20-year average: 7.59 9.86

Comments on Table 4 and Figure 5. The Alaska pipeline construction was financed on extremely favorable terms (6.4% interest) by oil companies who expected to later benefit greatly from its use. (See also "Comments on Table 2"). In the first five columns of Table 4 a more realistic investment value of 12.8% is imputed (by subtracting the 'After Tax Margin' of 6.4% a second time) and thereon computing the maglev over pumped pipeline savings: (e) = ((a) - (b)) - ((c) - (d)). Table 4 columns (a), (b), (c) and (d) are copies of columns (f), (e), (j) and (i) of Table 3. The last column (e) of Table 4 then shows that a maglev crude oil pipeline in Alaska could have saved an average of about $10,000,000 per day over a 20 year period for a total of 20 x 365 x $10 million = $73 billion. Column (e) is annually compounded present value of column (g) at 5% interest.
General consensus in the oil industry is that the Alaska oil pipeline was a financial disappointment. It was built with a view of oil prices rising and remaining around $40 per barrel, which would have justified a $6 per barrel pipeline transportation charge. Instead the oil prices dropped back down to less than $20 per barrel. The above tables and Figure 5 bear this out. If the investors in the Alaska pipeline had demanded a more normal 'After Tax Margin' of around 13% instead of 6.4%, the pipeline company would have quickly gone bankrupt.

MAGLEV CRUDE OIL PIPELINE FUTURE - HOW ABOUT KASAKHSTAN?

There are several regions in the world where large oil fields are indicated which have limited economic access to markets. One of them lies in Tengiz, Kasakhstan, where a 1500 mile long maglev crude oil pipeline could economically carry the oil to a Black Sea shipping port. However, the maglev picture there is not quite as rosy as shown above for Alaska. In addition to this line being about twice as long as the Alaska pipeline, the required capacity is only 1,000,000 barrels per day instead of Alaska's 2,000,000 barrels per day. Furthermore, investors are not likely to be found who would advance capital at 6.4% as they did in Alaska.
Table 5 and Figure 6 show 15-year projected financial results of a 1500 mile long maglev crude oil pipeline in Kazakhstan, starting with 250,000 barrels per day in the first year and increasing in 5 years to 1,000,000 barrels per day, financed and taxed under conditions generally found in the U.S.A., i.e., 70% debt, 30% equity, interest on debt 13%, return on equity 20%, (combined cost of money 15.1%), cost escalation 5%, income taxes 40%, tax depreciation 10%, property taxes 1%. Table 5 shows the result assuming that original construction cost was $4 million per mile and revenues at $4.00 per barrel (plus annual escalation). Figure 6 shows three curves, $4, $3 and $2 million per mile original construction cost levels with respective $4.00, $3.00 and $2.00 per barrel revenue levels (also plus annual escalation).

Table 5. 15 Year Projected Financial Results of 1500 Mile, 1,000,000 Barrels per Day Maglev Crude Oil Pipeline in Kazakhstan at Original Cost Estimate of $4 Million per Mile and Revenues at $4.00 per Barrel ($1,000,000)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(f)</td>
<td>(g)</td>
<td>(h)</td>
<td>(i)</td>
</tr>
<tr>
<td>1</td>
<td>1996</td>
<td>423</td>
<td>131</td>
<td>90</td>
<td>845</td>
<td>769</td>
<td>0</td>
<td>507</td>
<td>-872</td>
<td>9327</td>
</tr>
<tr>
<td>2</td>
<td>1997</td>
<td>665</td>
<td>137</td>
<td>92</td>
<td>845</td>
<td>849</td>
<td>0</td>
<td>560</td>
<td>-748</td>
<td>10075</td>
</tr>
<tr>
<td>3</td>
<td>1998</td>
<td>932</td>
<td>144</td>
<td>94</td>
<td>845</td>
<td>917</td>
<td>0</td>
<td>604</td>
<td>-586</td>
<td>10661</td>
</tr>
<tr>
<td>4</td>
<td>1999</td>
<td>1223</td>
<td>151</td>
<td>96</td>
<td>845</td>
<td>970</td>
<td>0</td>
<td>640</td>
<td>-378</td>
<td>11039</td>
</tr>
<tr>
<td>5</td>
<td>2000</td>
<td>1798</td>
<td>159</td>
<td>98</td>
<td>845</td>
<td>1005</td>
<td>0</td>
<td>662</td>
<td>139</td>
<td>10900</td>
</tr>
<tr>
<td>6</td>
<td>2001</td>
<td>2157</td>
<td>167</td>
<td>100</td>
<td>845</td>
<td>992</td>
<td>21</td>
<td>654</td>
<td>485</td>
<td>10415</td>
</tr>
<tr>
<td>7</td>
<td>2002</td>
<td>2265</td>
<td>175</td>
<td>102</td>
<td>845</td>
<td>948</td>
<td>78</td>
<td>625</td>
<td>587</td>
<td>9828</td>
</tr>
<tr>
<td>8</td>
<td>2003</td>
<td>2378</td>
<td>184</td>
<td>104</td>
<td>845</td>
<td>894</td>
<td>140</td>
<td>590</td>
<td>702</td>
<td>9126</td>
</tr>
<tr>
<td>9</td>
<td>2004</td>
<td>2497</td>
<td>193</td>
<td>106</td>
<td>845</td>
<td>830</td>
<td>209</td>
<td>548</td>
<td>830</td>
<td>8295</td>
</tr>
<tr>
<td>10</td>
<td>2005</td>
<td>2622</td>
<td>203</td>
<td>108</td>
<td>845</td>
<td>755</td>
<td>284</td>
<td>498</td>
<td>973</td>
<td>7322</td>
</tr>
<tr>
<td>11</td>
<td>2006</td>
<td>2753</td>
<td>213</td>
<td>110</td>
<td>845</td>
<td>666</td>
<td>367</td>
<td>439</td>
<td>1133</td>
<td>6189</td>
</tr>
<tr>
<td>12</td>
<td>2007</td>
<td>2891</td>
<td>224</td>
<td>112</td>
<td>845</td>
<td>563</td>
<td>458</td>
<td>371</td>
<td>1310</td>
<td>4879</td>
</tr>
<tr>
<td>13</td>
<td>2008</td>
<td>3035</td>
<td>235</td>
<td>114</td>
<td>0</td>
<td>444</td>
<td>897</td>
<td>293</td>
<td>1170</td>
<td>3710</td>
</tr>
<tr>
<td>14</td>
<td>2009</td>
<td>3187</td>
<td>247</td>
<td>117</td>
<td>0</td>
<td>338</td>
<td>994</td>
<td>223</td>
<td>1358</td>
<td>2351</td>
</tr>
<tr>
<td>15</td>
<td>2010</td>
<td>3346</td>
<td>259</td>
<td>119</td>
<td>0</td>
<td>214</td>
<td>1102</td>
<td>141</td>
<td>1568</td>
<td>783</td>
</tr>
</tbody>
</table>

Table 6 shows how the initially estimated capital requirement of $4 million/mile times 1500 miles = $6 billion increases by inflation and capitalized interest during three years' of construction to $8.454 billion. This amount plus first year loss of $0.872 billion (Table 5, line (1), column (h)) equals the $9.327 billion in Table 5, line (1), column (i).
Figure 6. Amortization of capital investment for a 1500 mile maglev crude oil pipeline in Kazakhstan assuming initial capital investments of $4 million/mile, $3 million/mile and $2 million/mile with respective revenues of $4.00/barrel, $3.00/barrel and $2.00/barrel.

Table 6. Computation of Capital Requirement for $4 Million per Mile, 1500 Mile Kazakhstan Maglev Crude Oil Pipeline, 3 Years Construction, Inflation 7% and Capitalized Interest (Cost of Money) 15.1% ($1,000,000)

<table>
<thead>
<tr>
<th>Line</th>
<th>Year</th>
<th>7% p/a Inflated Plant</th>
<th>Construction Completed</th>
<th>Capitalized Interest</th>
<th>Total Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1993</td>
<td>6000</td>
<td>20</td>
<td>1200</td>
<td>181</td>
</tr>
<tr>
<td>2</td>
<td>1994</td>
<td>6420</td>
<td>50</td>
<td>3210</td>
<td>693</td>
</tr>
<tr>
<td>3</td>
<td>1995</td>
<td>6869</td>
<td>30</td>
<td>2061</td>
<td>1109</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>100</td>
<td>6471</td>
<td>1984</td>
<td>8454</td>
</tr>
</tbody>
</table>

Comments on Kasakhstan and Other Prospects. Above comparison tables and examples are just a small sample of variations, which have been run by computer to gain insight on how they affect the end result. For example, in Table 5, in the first few years, the cost of money (interest on debt, column (c), plus
return on equity, column (g)) is more than 10 times as large as operating expense, column (b). Hence, keeping capital costs down is much more important than keeping operating expenses down. Figure 6 shows the amortization curves rising in the first few years due to the losses as calculated in Table 5, column (h), lines (1) to (4). If oil field production could be started at full capacity in the first year of pipeline operations, billions of dollars could be saved. However, in Alaska, it took five years before they had enough oil for the pipeline to run at full capacity. As to the cost of money, if one could finance a project with just one percent less in interest, for example cut interest on debt from 13% to 12% for the $4 million/mile curve in Figure 6, it would mean construction cost savings of $100 million and 15 year operations savings of $1.5 billion.

GREAT OPPORTUNITY FOR HIGH TECH AND MONEY MAKING

The above described basic components of the maglev crude oil pipeline, the permanent magnets, the linear induction motors and the container string with its folding function, are all pretty well straightforward and relatively simple and reliable technologies. There are opportunities for improvements in magnets, materials and container design, but the most challenging tasks lie in the field of maintenance (especially leakage prevention), lateral guidance, controls and failure prevention.

Linear Induction Motors (LIMs) and Controls. As stated in Figure 2 above, LIMs may be spaced as much as 100 miles apart at unmanned stations. However, the LIM shown in Figure 2 is only suitable for driving the system at high speed. For start up, intermediate speeds and reverse braking, several other specially designed LIMs are to be located next to the high speed LIMs. Additionally, for every type of LIM needed in operations throughout the speed range and reverse braking there will need to be one or more LIMs of equal size on standby. Motors may need to either be cooled heavily during start up or switched on and off in rotation. As an example, there might be five heavy thrust start up LIMs at each station that get the containers up to a speed of 5 mph. Each would take a turn and run for 20% of the time, and be off 80% of the time for cooling. There would also be a danger of overheating the containers. They must not stay too long over an active LIM.

To get a comparison of the magnitude, the largest movements of weight on land are unit trains for coal, ore or grain. They often have 100 cars, each carrying 100 tons for a total of 10,000 tons per train. A 100 mile long section of a maglev pipeline, having a capacity of 1,000,000 barrels per day, would weigh also about 10,000 tons (not counting the empty return line). So, the starting LIMs for each 100 mile section of maglev pipeline would have to exert a propulsion effort comparable to that of the (usually) eight locomotives of a unit train. However, for a 1500 mile Kazakhstan line it would require an effort equivalent to 120 locomotives. While this looks like an enormous physical task, the cost savings with maglev as calculated above would also be enormous.

Power Supply to LIM Stations. The Alaska pipeline has a mix of energy sources for pumping. Near Prudhoe Bay several pump stations receive natural gas from the oil field. Further along, oil from the line is dropped off, refined and then used for jet engine powered pumping. Also some power is obtained from private utilities. A maglev pipeline would probably also look at the best available but reliable source. If no other sources are available, one or more small power generating stations would be built and power lines strung along the same posts that carry the pipeline, see Figure 4.

Surge Suppressors. Common at hydroelectric power stations are surge towers for the purpose of preventing structural damage from sudden shut downs of the turbines following a power failure. The tremendous kinetic energy of the approaching water is dissipated by rising up in these surge towers and overflowing. The long stream of maglev pipeline containers has a similar problem and a similar solution. Along the line at intervals are longitudinal surge suppressor stations. These are locations where the containers are, for a short distance, forced by an upper and lower track to partially fold, similar to what is shown in Figure 3, above. However, unlike the rigidly fixed lower track in Figure 3, the lower track in a surge suppressor station is vertically movable so that it can absorb longitudinal surges that may run through
the containers. These stations also serve to compensate for longitudinal temperature expansions and contractions of the containers.

Lateral Guidance of Containers. Some 150 years ago, a transportation scientist by the name of Earnshaw, after experimenting with permanent magnets in repulsion, declared that 'it is impossible to suspend vehicles with permanent magnets in repulsion without secondary help', which is today known as Earnshaw's Theorem (ref. 4). While Einstein was able to refute Newton, nobody has yet been able to refute Earnshaw. Hence, we are stuck with the need for lateral guidance to ensure that the containers stay above their magnetic track and not fall off to the sides. Several methods of lateral guidance controls have been satisfactorily tested. They are items (1) to (3) below. However, items (4) and (5) below are being looked at as possible future alternatives.

1. Self-adjusting, self-lubricating commercially available plastic sliders attached in pairs to each side of each container. The sliders follow polished stainless steel lined channels which are attached to the inside of the conduits, see left half of Figure 7. The sliders are periodically renewed. Unlike electro magnetic systems described below, this lateral guide method is fully operational throughout the speed range and needs no backup support system in case of power failure or at slow speed.

2. Shown in the right half of Figure 7 are electro magnets attached in pairs to each side of each container, which are controlled by a gap sensor. A gap separates the electro magnets from dual channels with steel inserts. Power for the electro magnets may be generated off the permanent track magnets that suspend the containers (Figure 1). This system requires backup support in case of power failure and possibly also at low speed.

3. Electro magnets with steel rails as in (2) above, except they are switched around. The electro magnets are stationary and the steel rails are attached to the moving containers. Power for the electro magnets can be either generated off the permanent magnet track or supplied by power lines that run along the pipeline. This system also requires backup support in case of power failure.

![Figure 7](image-url)
Figure 7. Typical choices of lateral guidance systems, mechanical or electro magnetic. For clarity, levitation magnets and LIMs are not shown.
(4) New magnetic suspension technology achievements as reported in NASA's 1991 first International Symposium on Magnetic Suspension Technology (ref. 7). These include practical applications of replacing friction bearings of rotary machinery with non-contact electro magnetic bearings. It seems feasible to have the container string of the maglev pipeline take the place of a rotating shaft of similar diameter and likewise have it controlled to remain contactless in the center while moving along at great speed. This system would also need backup support in case of power failure.

(5) A possible break-through in technology. Magnetic suspension by means of permanent magnets in repulsion is somewhat similar to riding a bicycle. At no speed and at low speed both have a strong tendency to fall over. However, at high speed it is nearly impossible to tip over with a bicycle. Remember, the kid shouting: 'Look Ma, no hands'? A bike becomes more and more self-steering as speed increases. By the same token, it should be possible to develop a kind of magnetic rudder that automatically steers the maglev containers through the center of the conduits when at high speed. Backup guidance support would be need at low speed, but power failures might not affect it.

Quality Controls and Failure Protection. If a light bulb goes out in a life buoy that marks a shipping channel, an automatic mechanism rotates another bulb in its place. If the second one goes, a third one comes up. New aircraft engines are tested numerous times. After each test, they are taken apart, checked and X-rayed until the probability of future failure has become extremely low. These are two examples of how to prevent disasters of major proportions. Both aircraft and shipping disasters, in addition to loss of life, can run into millions, even billions of dollars.

The above Kazakhstan pipeline proposal would carry 1,000,000 barrels of oil per day; that means about a million dollars' worth of oil every hour. Figure 6 shows how running at less than full capacity in the first five years has increased the indebtedness instead of decreasing it. It is obvious that any delay, breakdown or shut down would run into big financial losses. Hence, life buoy style, aircraft style and even better quality controls must be incorporated in design, operations and maintenance of a maglev crude oil pipeline, which might be the subject of a future paper.

CONCLUSION

It is obvious that, as easily accessible sources of fossil fuel become depleted, a more economic land transportation mode needs to be developed. The 800 mile long Alaska (pumped) pipeline is an example of unsatisfactory and uneconomical present day pumping technology. Other remotely located oil fields lie untapped as they wait for advancements in transportation technology. Magnetic levitation is that new advancement in technology. A maglev crude oil pipeline could go very long distances and still be highly profitable in the hands of private enterprise. In the Alaska case, $10 million per day ($73 billion over 20 years) might have been saved, had the maglev technology been available and had it been used. Twice as long as the Alaska pipeline, a maglev crude oil pipeline from Tengiz in Kazakhstan to the Black Sea was calculated above to be also financially feasible.

The major components of the maglev crude oil pipeline are either mechanical or basic electrical in nature, which may need little further refinement. However, there are several areas of design and operations which need to be addressed and refined. To name a few, operational safety, quality control, failure prevention, start up procedure, shutdown procedure, lightning strikes, leakage, spills, earthquakes, ground shifting, temperature extremes, vandalism, guerilla attacks, etc. It is not going to be a simple project. However, the future looks bright for maglev pipelines. There is an immediate need to also transport coal, grain and ore more economically. Further into the future, it may some day be economically feasible to transport water by maglev pipeline from the north to arid lands in Arizona, New Mexico and Texas and turn them into lush green agricultural lands to supplement the world food supply.
REFERENCES

Appendix

Attendees

Byong Ahn
Charles Stark Draper Laboratory
555 Technology Square
M.S. 03
Cambridge, MA 02139
617-258-2832

Paul Allaire
University of Virginia
Dept. Mech, Aerosp, Nuclear
Thornton Hall, McCormick Road
Charlottesville, VA 22901
804-924-3292

Willard W. Anderson
NASA Langley Research Center
Mail Stop 479
Hampton, VA 23681-0001
804-864-1718

Tyler M. Anderson
Boeing Defense & Space Group
P.O. Box 3999
MS 182-24
Seattle, WA 98124
206-773-2291

Bill G. Asbury
Lockheed Engineering and Sciences
144 Research Drive
Hampton, VA 23666
804-766-9600

Clayton C. Bear
Revolve Technologies, Inc.
1240 - 700 - 9 Avenue, S.W.
Calgary, Alberta T2P 3V4 CANADA
403-261-5338

Brij B. Bhargava
Ashman Consulting Services
P.O. Box 3189
Santa Barbara, CA 93130-3189
805-964-2104

Barry Blair
Waukesha Bearings
P.O. Box 1616
Waukesha, WI 53187
414-547-3381
Karl Boden
KFA-IGV
PF-1913
W-5170
Julich D-52425 GERMANY
49-2461-614604

Dr. Hans J. Bornemann
Kernforschungszenrum Karlsruhe
INFP, P. O. Box 3640
76021 Karlsruhe GERMANY
49-7247-82-6389

Lyle A. Branagan
Pacific Gas & Electric
3400 Crow Canyon Road
San Ramon, CA 94583
510-866-5735

Colin P. Britcher
Old Dominion University
Dept. of Aerospace Engineering
Norfolk, VA 23529-0247
804-683-4916

Thomas C. Britton
Lockheed Engr. and Science Co.
24 West Taylor Road
Mail Stop 161
Hampton, VA 23681-0001
804-864-6619

Stephen Chapman
Magnetic Bearings, Inc.
5241 Valleypark Drive
Roanoke, VA 24019
703-563-4936

David E. Cox
NASA Langley Research Center
Mail Stop 161
Hampton, VA 23681-0001
804-864-8149

Harold R. Davis
The University of British Columbia
Department of Physics
6224 Agricultural Road
Vancouver, B.C. V6T 1Z1 CANADA
604-822-2961
Henry Guckel
WI Cntr for Applied Microelectronics
Electrical & Computer Engineering
1415 Johnson Drive
Madison, WI 53706-1691
608-263-4723

Ram Gurumoorthy
GECRD
1 River Road
Bldg. K-1, Rm. 4C20
Schenectady, NY 12065
518-387-6657

Roy D. Hampton
University of Virginia
ROMAC Labs, Mech & Aero Engng
Thornton Hall, McCormick Road
Charlottesville, VA 22901
804-924-3767

Lee M. Hartwell
RKR Associates
1607 Southwood Blvd.
Arlington, TX 76013
817-795-7124

Robin Harvey
Hughes Research Labs
3011 Malibu Cyn Road
Malibu, CA 90265
310-317-5236

Toshiro Higuchi
University of Tokyo
KSP East 405, 3-2-1 Sakado
Takatsuku
Kawasaki-shi 213 JAPAN
81-44-819-2048

Kwok W. Hui
Dresser Rand Company
P. O. Box 560
Olean, NY 14760
716-375-3328

John Y. Hung
Auburn University
Dept of Electrical Engineering
200 Broun Hall
Auburn University, AL 36849-5201
205-844-1813
James D. Hurley
Mechanical Technology Inc.
968 Albany Shaker Rd.
Latham, NY 12110
518-785-2177

A. Dean Jacot
Boeing Aerospace Company
P. O. Box 3999
MS 82-24
Seattle, WA 98124
206-773-8629

Graham Jones
Technology Insights
10240 Sorrento Valley Road
Suite 320
San Diego, CA 92121
619-455-9080

Brian R. Jones
Lawrence Livermore Nat. Laboratory
P. O. Box 808
L630
Livermore, CA 94550
415-423-3058

Swarn Kalsi
Grumman Corporation
M/S B29-25
Bethpage, NY 11714
516-356-9624

Yoichi Kanemitsu
EBARA Research Company, LTD.
MSR Dept., Electro-physics Lab.
2-1, fujisawa 4-chome
Fujisawa-shi 251 JAPAN
81-466-83-7640

Claude R. Keckler
NASA Langley Research Center
Mail Stop 479
Hampton, VA 23681-0001
804-864-1718

Allan J. Kelley
The University of Tokyo
Kanagawa Academy of Sci. & Tech.
KSP E. 405, 3-2-1 Sakado
Takatsu-ku Kawasaki 213 JAPAN
81-44-819-2093
Yoshida Kinjiro
Kyushu University
Dept. of Electrical Engineering
6-chome 10-1, Hakozaki Higashi-ku
Fukuoka 812 JAPAN
092-641-1101, X5307

Ronald L. Klein
West Virginia University
Dept of Electrical/Computer Eng.
P.O. Box 6101
Morgantown, WV 26506-6101
304-293-3998

Josiah D. Knight
Duke University
Dept. of Mechanical Engineering
Box 90300
Durham, NC 27708-0300
919-660-5337

Josiah D. Knight
Duke University
Dept. of Mechanical Engineering
Box 90300
Durham, NC 27708-0300
919-660-5337

Ernst G. Knolle
Knolle Magnetrans
2691 Sean Court
S. San Francisco, CA 94080
415-871-9816

S. Kohler
Sandia National Laboratories
Albuquerque, NM 87185

John C. Kroeger
Honeywell Satellite Sys.
Box 52199
Phoenix, AZ 2199
602-561-3175

Dr. Alexander V. Kuzin
UNC-Charlotte
Precision Engineering Lab
Charlotte, NC 28223
704-547-4324

Jaynarayan H. Lala
Charles Stark Draper Lab., Inc.
555 Technology Square
MS 73
Cambridge, MA 02139
617-258-2235
Wally McLellan
Magnetic Bearings, Inc.
5241 Valleypark Drive
Roanoke, VA 24019
703-563-5936

Chase K. McMichael
Texas Center for Superconductivity
University of Houston
4800 Calhoun
Houston, TX 77204-5506
713-743-8254

James L. Milner
National Maglev Initiative, USDOT
400 7th Street, S.W.
Room 5106, RDV-1
Washington, DC 20590
202-366-0515

R. Mark Nelms
Auburn University
Dept. of Electrical Engineering
200 Broun Hall
Auburn, AL 36849
205-844-1830

Steven A. Nolan
Rockwell International
Rocketdyne Division, Mail Stop IA32
6633 Canoga Avenue, P.O. Box 7922
Canoga Park, CA 92309-7922
818-718-4430

Alan B. Palazzolo
Texas A&M University
Mechanical Engineering
College Station, TX 77843-3123
409-845-5280

Da-Chen Pang
University of Maryland
Department of Mech. Engg.
College Park, MD 20742
301-405-787

Richard F. Post
Lawrence Livermore National Lab
P. O. Box 808, L-644
Livermore, CA 94551
510-422-9853
A. K. Pradeep
General Electric CR&D
P. O. Box 8
Schenectady, NY 12301
518-387-6588

Mark A. Preston
General Electric Corporate R&D
P. O. Box 8, Building EP
Room 116
Schenectady, NY 12301
518-387-5588

Douglas B. Price
NASA Langley Research Center
Mail Stop 161
Hampton, VA 23681-0001
804-864-6605

Michael Proise
Grumman Corporation
Mail Stop B29-25
Bethpage, NY 11714
516-346-2100

James C. Riple
Allied Signal
28626 Vista Madera
Rancho Palos Verdes, CA 90732
310-512-4586

James D. Roberge
SatCon Technology Corporation
12 Emily Street
Cambridge, MA 02139
617-661-0540, X272

Robert Salter
Xerad
1526 14th Street
Santa Monica, CA 90404

Philippe Save De Beaurecueil
Southern California Edison Company
GO3 Third Floor
2131 Walnut Grove Avenue
Rosemead, CA 91770
818-302-8272
Michael Urednicek
REVOLVE Technologies Inc.
1240 Western Canadian Place
700 Ninth Avenue S.W.
Calgary, Alberta T2P 3V4 CANADA
403-261-5329

Jim Walker
Walker Technology
17561 Hada Drive
San Diego, CA 92127
619-487-4788

Michael H. Walmer
Electron Energy Corporation
924 Links Avenue
Landisville, PA 17538
717-898-2294

Mark E. Williams
University of NC at Charlotte
Precision Engineering Department
Charlotte, NC 28223
704-547-3145
SECOND INTERNATIONAL SYMPOSIUM ON MAGNETIC SUSPENSION TECHNOLOGY

In order to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices, the 2nd International Symposium on Magnetic Suspension Technology was held at the Westin Hotel in Seattle, Washington on August 11-13, 1993.

The symposium included 18 technical sessions in which 44 papers were presented. The technical sessions covered the areas of bearings, bearing modelling, controls, vibration isolation, micromachines, superconductivity, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), rotating machinery and energy storage, and applications. A list of attendees appears at the end of the document.