A STUDY OF PHYSICAL MECHANISMS FOR FILAMENT ERUPTION AND
CORONAL MASS EJECTION VIA NUMERICAL SIMULATION

FINAL REPORT FOR NAGW-9

Period of Performance: October 1, 1979 - March 31, 1994

by

S.T. Wu
Center for Space Plasma and Aeronomic Research
and Department of Mechanical and Aerospace Engineering
The University of Alabama in Huntsville
Huntsville, AL 35899
(205) 895-6268
(205) 895-6382 [fax]

for
National Aeronautics and Space Administration

Headquarters
Washington, DC 20546

June 1994



L Flare Physics

In this area, we have published three papers in theory and numerical modeling and one
paper utilizing a non-linear-force-free (NLFF) model to interpret the magnetic structures and
energy of the 1989 March flares, These papers are:

* Magnetic Structures and Energy of 1989 March Flares, S. T. Wu, F. S, Weng, H M. Wang,
H. Zirin and G. X. Ai, 4av, Space Res. 13, 9, (9)127-(9)130, 1993

* Magnetic Diffusion and Flare Energy Buildup, S. T. Wu, C. L. Yin, W.-H. Yang, Solar
Physics, 142, 3 13-325,1992.

* Numerical Modeling of the Energy Storage and Release in Solar Flares, S. T. Wu and F. §.
Weng, J. of Atmospheric and Terrestrial Phys., 55, 7, 939-945, 1993

C.L. Yin, P Mclntosh, and E. Hildner Astronomical Society of the Pacific Conference

Series The Magnetic and Velocity Fields of Solar Active Regions (H. Zirin, G. Ai, and H. M.
Wang, eds.) 46, 98-107, 1993

II. Coronal Dynamics

Eleven papers have been published in this area. We have achieved partial construction of
a two-dimensional and three-dimensional quantitative coronal model, studied the physical
mechanisms of rising prominence loops, shear-induced instability and arch filament eruptions, and
the fundamentals of MHD wave generation and propagation in the corona to understand the
coronal heating processes. These published results are:

*  On Generation and Propagation of MHD Body and Surface Waves: Single Magnetic
Interface and Magnetic Slab, S. T. Wy, Y. C. Xiao, Z E. Musielak, and S. T. Suess, Physics
of Fluids B: Plasmaq Physics, 1994 ( submitted).

* Model Calculations of the Rising Motion of a Prominence Loop, T. Yeh and S. T. Wu, Solar
Physics, 132, 335-351, 1991.

* Shear-Induced Instability and Arch Filament Eruption: A Magnetohydrodynamic (MHD)

(1)187-(2)195, 1991.
* A Two-Dimensional MHD Global Coronal Model- Steady-State Streamers, A. H, Wang, S.
T.Wu, S. T. Suess, and G. Poletto, Solar Wind VII, Proceedings of the 3rd COSPAR
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Colloquium held in Goslar, Germany, 16-20 September 1991, E. Marsch and R. Schwenn
(eds.) Pergamon Press, Oxford, 31 1-314.
* Predicting Ly-o Intensities in Coronal Streamers, G. Noci, G. Poletto, S. T. Suess, A. H.

28 August 1992, (EAS SP-348), November 1992.

* A Two-Dimensional MHD Global Coronal Model: Steady State Streamers, A, H. Wang, S.
T. Wu, S. T. Suess, and G. Poletto, Solar Physics, 147, 51-71, 1993.

e La Intensity in Coronal Streamers, G. Noci, G. Poletto, S. T. Suess, A. H. Wang, and S. T.
Wu, Solar Physics, 147, 73-96, 1993.

* Numerical Simulation of CME Propagation in a Helmet Streamer: Emerging Magnetic Flux
Mechanism, J. H. Zhang, S. T. Wu, M. Dryer, F. . Wei, IAU Colloquium 144, Solar Coronal
Structures, V. Rusin, P. Heinzel and J. C. Vial (eds.), 7-1 1, 1993,

* Magnetohydrodynamic Simulation of a Streamer Beside a Realistic Coronal Hole, S. T. Suess,

ST Wu A H Wang, G. Poletto, Proceedings of SOHO Workshop, Elba, Ttaly, September
27 - October, 1993,

e Coronal Heating Due to the Emergence of Magnetic Flux, S. T. Wu, M. T. Song, C. C.
Cheng, and M. Dryer, Space Sci. Reviews, 1994 (in press).

III. Interp_lanetag Dynamics

In this area, we present a three—dimensional, time-dependent, MHD model for the
understanding of the solar-interplanetary—magnetosphere (SIM) coupling. Three papers were
published:

* Three-Dimensional Numerical Simulation of Interplanetary Magnetic Field Changes at 1 AU
as a consequence of Simulated Solar Flares, Study of the Solar-Terrestrial System
Proceedings of the 26th ESLAB Symposium, Killarney, Ireland, 16 - 19 June 1992, ESA-
SP346, September, 1992.

* Heliospheric Current Sheet Effects on the Propagation of Solar-Generated Shock Waves, M.
Dryer, S. T. Wy, C. C. Wuand S. M. Han, Study of th Solar-Terrestrial Syst m,
Proceedings of the 25th ESLAB Symposium, June 16-19, 1992, Killarney, Ireland, R,
Reinhard, (ed.), 77-79, 1993

* Modified ICED-ALE Method for Astrogeophysical Plasma Flows, S, T. Wu, M. T, Song, M.
Dryer, AIAA 9] -1470, presented at the ATAA 22nd Fluid Dynamics, Plasma Dynamics and



Lasers Conference, June 24-26, 1991, Honolulu, Hawaii.

» Extension of Rezoned Eulerian-Lagrangian Method to Astrophysical Plasma Applications, M.
T. Song, S. T. Wuand M. Dryer, AIAA 93-3 177, presented at the AIAA 24nd Plasma
Dynamics and Lasers Conference, July 6-9, 1993, Orlando, Florida.

*  On the Time-Dependent Numerical Boundary Conditions of Magnetohydrodynamic Flows,
M. T. Sun, S. T. Wy, and M. Dryer, J. Computational Physics, 1993 (submitted).

In summary, accomplishments resulting from this grant are reported in the publication of
twenty-one papers in four areas. All the reprints/preprints are enclosed with this final report.
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MAGNETIC STRUCTURES AND ENERGY
OF 1989 MARCH FLARES
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ABSTRACT

We use a recently developed non-linear force-free model to analyze the magnetic structures and
energy for 1989 March flares. In this analysis, we extrapolated the magnetic structure using
the vector magnetograms obtained at Huairoy Solar Observatory. In order to validate our
extrapolated magnetic field topology, we compared our computed magnetic field results with
H, pictures obtained at Big Bear Solar Observatory. The results are presented for the evolution
of the magnetic field structure (i.e. potential and non-linear force-free field), magnetic energy, and
current distribution. It shows that the location of the occurrences of the flares are approximately
related to the location of the high intensity of the currents. Further, we demonstrate that the
amount of energy in force-free fields is more than adequate to power the flares.

1. INTRODUCTION

energy and zero electric current state. This approximation is far from a realistic representation
of the solar magnetic field in an active region. Recently, Wy et ol /2/ proposed a NLFF field
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1989 March Flares 9)129

force-free field (NLFF) model, we have used it to compute the potential field configuration in
comparison with Schmidt method /3/. These results clearly indicate that the magnetic field
configuration in the potential field approximation derived from NLFF and Schmidt models give
identical results which we have not shown here.

magnetic field configuration and deduced physical parameters such as total available energy and
currents for NOAA AR 5395 during the period 9 - 15 March 1989. However, we only selected
the most important results to present in this short paper. More detailed results will be presented
elsewhere. Figure 1 shows the evolution of the three-dimensional magnetic field configuration
from 10 - 11 March 1989. In this figure, the left panel is the potential field representation of the
extrapolated field, the middle panel is the Ha filtergram and right panel is the nonlinear force-free
representation of the extrapolated field. From these results, we note the following:

The potential field representation does not resemble any of the fibril and loop structures observed
in the Ha filtergrams. In addition, we notice that there is no significant change in field
configuration during this period. This is because in the potential field representation only the
observed line-of-sight of field component is used, any the change in the transvers field is not
included. In fact, it is known that the variation of transverse field is significant. This is shown in
the nonlinear force-free field representation.

The nonlinear force-free field representation resembles some of the fibril and loop structures
observed in Ha filtergrams. For example, if we compare the results shown by Ha filtergrams and
nonlinear force- free field for 10 March 1989 0600 UT, we immediately notice that the features on
the right upper and lower corner resemble each other. Similar loop structures are also shown in
the upper right and left corner and lower right corner of Ha filtergrams and nonlinear force-free

representation on 11 March 1989 0226 UT in Figure 1.

Solar Flares im March, 1989
1035:...,...1..,:

Magnetic Energy(erg)

1033w, . ow. ¥,
10 12 14 16
Date(day)

Fig. 2. Computed total available energy for the NOAA AR 5395 during the period 10 - 15 March
1989, where the solid line respresents the total energy computed from NLFF model and the dotted
line represents the total energy computed from the potential field model. The difference of these
two is the total available energy. The * indicates the occurrance of the flare.
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Fig. 3. (a) The location of the 10 March 1989 flare (indicated by (0)) and (b) the computed total
current intensity.

iii. Using the nonlinear force-free representation, we reveal the change of the loop structures from

10 to 11 March 1989. For example, on the upper right corner, the large loop system seen on
10 March has been replaced by a rather small loop system on 11 March. On the upper left

which is 310,000 x 310,000 x 31,000 km.

Figure 2 shows the total magnetic energy for potential field and nonlinear force -free field for
NOAA AR 5395 from 10 - 16 March 1989. The available energy is simply the difference between the
nonlinear force-free energy and potential field energy. To calculate this total energy is integrated
f;’ over the volume of this active region as quoted above. Finally we show the flare location (a) and
current distribution (b) in Figure 3. It appears that the flare occurred where the current system
was at or near maximum vaiue. However, we can only show the maximum current intensity is
merely a necessary condition for flare occurrance.

4. CONCLUDING REMARKS

We have computed the magnetic structures, current system and total magnetic energy of the
NOAA AR 5395 by using the nonlinear force-free (NLFF) model given by Wu et al. (1990). The
study demonstrates that this newly developed NLFF model does provide new physical features
which cannot be shown by the most currently used potential field model. We have only shown a
portion of our results. A full report of this active region from 9 - 16 March 1989 will be presented
elsewhere.
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MAGNETIC DIFFUSION AND FLARE ENERGY BUILDUP

S.T. WU, C. L. YIN* and W.-H. YANG

Center for Space Plasma and Aeronomic Research, Universiyy of Alabama in Huntsvifle, Hunisvifle, 41,
35899. U.5.4.

(Received 23 March, 1992: in revised form 19 June, 1992)

field models anq derives relations of magnetic energy buildup with photospheric velocity field. When realistic
data of solar magnetic field (B, x 10? G) and photospheric velocity field (tmax * T km's - ') are used, it s
found that 3-4 hours are needed to create an amount of free magnetic energy which is of the order of the
current-free field energy. Furthermore, the Paper studies situations jn which finite magnetic diffusivities in
photospheric plasma are introduced. The shearing motion increases coronal Mmagnetic energy, while the
photospheric diffusion reduces the energy. The variation of Mmagnetic energy in the Coronal region, then,
depends on which process dominates.

1. Introduction

It is recognized that the magnetic field plays a key role in solar activity. The motion of
photospheric plasma may shear or twist the footpoints of the coronal magnetic field,
therefore, generating free magnetic energy which has been considered to be the energy
source for various kinds of solar active phenomena, particularly solar flares (§vestka,
1976, Sturrock, 1980). In such 3 dynamic process, the vertical component of the
magnetic field at the photosphere remains unchanged. Photospheric motion increases
the horizonta] component of the magnetic field. The coronal magnetic field, therefore,

electric conductivity. However, the observed decay of photospheric magnetic fields
indicates, at least ip Some situations, that at the photospheric leve] jt may have non-zero

Solar Physics 142; 313-325, 1992,
© 1992 Kluwer Academic Publishers. Printed in Belgium.
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314 5. T. WU, C. L. YIN, AND W.-H. YANG

the relation of magnetic energy in force-free coronal magnetic fields with a photospheric
velocity field. Two-dimensional linear and nonlinear force-free field models are analyzed.
Section 3 investigates how magnetic diffusion in photospheric plasma could affect the
energy buildup in the coronal field. Some physical implication of this study will be
discussed in the final section.

2. Magnetic Energy Buildup

In active regions, the coronal plasmais usually dominated by the magnetic force (8 < 1).
The magnetostatic state can then be described by the force-free equation, which is

VxB=uaB, (1)

where «is a scalar function of position. Equation (1) denotes the magnetic configuration
where the electrical current is parallel to the magnetic field. It is easy to see that

B-Va=0, (2)

which indicates that x is constant along individual magnetic field lines. Although
Equation (1) has a simple form, to derive its general solution is difficult because of its
nonlinearity. The simplest case occurs when x takes the same value on each field line.
Equation (1) then defines a so-called linear or constant-x force-free field. The analytical
solution for a two-dimensional magnetic arcade is well known:

/
B, = ———d- B, cos 771 xe 4, (3)
n ‘
2 1/2
B,=-(1- ! Bocosfxe"/", (4)
’ n2d? I
B T
B. = B, sin 7 xe . (5)

This force-free field is periodic in the x-direction (Priest, 1982), and ldeﬁhes the width
of each bipolar field (see Figure 1). It is required that / < rq. The situation that / = 74
defines a current-free field (B, = 0). The inclination of the field lines to the x-direction

IS
n2d2 1/2
¢)=[an—]< 12 - 1) . (6)

from which we have

/

d= .
mCos ¢

(7)
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We may rewrite Equations (3)-(5) in the form

B, = —cos¢ B, cos 7{ x e Freosel (8)
— ; T —zmcos @/l

B, = —sing¢ B, cos 7 xe , (9)
— : T —cncos ¢/l

B. = B, sin 7 xe . (10)

This constant-x force-free field solution has
x= ’f sing . (11)

The magnetic energy density is

B _B;,
87 8=

—2:rrcos¢/1, (12)

which is a function of z only when the width / and the inclination angle ¢ are given. We
can calculate the total magnetic energy per unit length in the y-direction for a single
bipolar field by integrating Equation (12) in the domain x = -1/2, //2; 2 = 0, oc. We
obtain ‘

B

E = -
cos¢ lon~

(13)

Since the case ¢ = 0 represents the current-free state, Equation (13) can be rewritten
as

E= £o (14)

cos¢ ,

where E is the magnetic energy of the current-free state. Equation (14) shows how the
shearing motion increases the coronal magnetic energy in the situation where the
B_-component at z =0 remains unchanged. We find £ = 1.06, 1.31, 2, 5.8E, for
¢ =20°,40°, 60°, 80°, respectively. When ¢ — 90°, E — .

We consider that the magnetic field is initially in a current-free state and then evolves
quasi-statically to force-free states due to slow photospheric motion. We assume that
the maximum velocity at the boundary x = //2is r,,,,, and the photospheric velocity field
is inearly symmetric to the origin of the coordinates as shown in Figure 1. We have

tan ¢, (15)
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L/

[
~

Umax = —=— ' 99 (16)

B2 (18)

In the case thay /= 1.6 x 10* km and By = 1000 G, we get Wy, =43 x 193! erg. If
Ymax = Lkm s~ 10 build Up an amount of free magnetic energy ~ Wo (¢ = 60°) needs
about 4 hours.

and Antiochos, 1986; Wy ¢ al.,, 1990). One Important purpose of those efforts s to
investigate'magnetic energy buildup in the solar atmosphere through shearing or twisting



MAGNETIC DIFFUSION AND FLARE ENERGY BUILDUP 317

a potential field to a sequence of force-free fields. In the following, we adopt the
two-dimensional magnetic field model previously used in deriving an empirical formula
of estimating magnetic energy in a sheared field (Klimchuk, Sturrock, and Yang, 1988).
The magnetic field model is two-dimensional, B(x, z). The B.-distribution at = = 0 is
assumed to have the form

2x 2,2
B.(x,0) = By = o~ i, (19)

X5

so B. changes sign at x = 0. The shearing displacement of footpoints in the y-direction

is represented by
Yo+ Y sin (E) sin (E)}, x| <1;
/ / (20)

»(x,0) =
0, Ix|>1.

The force-free field solution for the half-space domain (- > 0) can be obtained numeri-
cally by the so-called magneto-frictional method. However, the empirical formula
derived would be convenient for the purpose of this study. The total magnetic energy
on the base of both sheared and non-sheared fields can be estimated approximately by

E(S)=Ey[1 +aln(1 + 53], 21

where E|, is the energy of the current-free state (Y =0), S = Y/x,, a, b are parameters
which depend on the field configuration. The energy buildup rate is

dE  2abSE, dS

dr 1 +5bS dr

To build up n-times magnetic energy in the field (i.e., E = nE,;), the maximum dis-
placement of the footpoints is

[e(n - 1)ea _ 1]1;’2 '
Y = XE Xg s (23)

and the time needed is
dr=Y/u, .. (24)

where v, = dY/dr is assumed to be constant. Using the results given by Klimchuk,
Sturrock, and Yang (1988), we have « = 0.8156 and b = 0.8318. From Equations
(21)-(24), we found that it takes ~ 3 hr to build up magnetic energy by a factor of two,
E=2E, with ¢, =1Tkms "and x, = /=4 x (1.6 x 10%) km.
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It has been understood aceording to classje theory (Spitzer, 1962) that the solar
atmosphere js highly conducting. The magnetic field, therefore, can be considered to be

n=0.2027, (25)

Where 1 and ¢ are the velocity and lifetime of the fluid eddy, respectively. Observation
indicates 1 » | kms=1 11103, for granulation ; therefore, ya 2 x 10°m25-1. Fo,
subergranulation ¢ () 5 kms-1 z0 105 S; hence, na § 10°m2g-1

n=10"m2g-1 Mosher (1 977) constructed adiffusion mode] of the solar magnetic field

(1985) got n=3x108m24-1 from the actya) motion of network elements. However,
Marsh (1978) Suggested that the T€connection of ephemera] T€gIions with the network
would produce 3 diffusivity N=8x1085m25- ', but Wang and Sheeley (1991) disputed
Marsh’s suggestion. DeVore el al. (1985) Proposed modejg of the evolutjon of magnetjc
regions by starting with an observed magnetogram and reproducing the fieq distribution
Observed a mopth later. They assumed 3 diffusivity » = 3 10°m2s-1 Wang (1988)
analyzed the videomagnetogram data at Big Bear Solar Observatory, and suggested 5
value of 1.5 x 108 m?s=1 More recently, Wang, Nash, and Sheeley (1989) suggested
that a new vajye for diffusivity be ¢ x 10°m2s-1 pq 5 then interesting to estimate how
those diffusivitjes would affect the photospheric magnetic field distribution and the
energy buildup Process in the sojar corona.
The induction €quation s

C:\B=VX(VXB)+7]VZB. (26)
ct



MAGNETIC DIFFUSION AND FLARE ENERGY BUILDUP 319

where # is the magnetic diffusivity. We assume that the magnetic fields beneath the
photospheric surface have z-component only, which has the same distributions of the
force-free magnetic field models (at - = 0 plane) as adopted in Section 2. Since the
photospheric shearing velocity v is set in the y-direction, in the present study
Equation (26) could be reduced to a simple form of a one-dimensional diffusion equation

¢B. & B.
— = = .

27
Cl éx? 7

In fact, the diffusion occurs in two unccuons on the Sun. The adoption of one dimen-
sion for the present study is merely for mathematical convenience and to understand
the insight of the first-order physics during the process. For the periodic linear
field model, the inital field is assumed to be

B_ = B, sin 7 X (28)
We obtain the solution of Equation (27), which is
n n?
B_ = B,sin 7 .\'exp[—n e 1] (29)

The magnetic field maintains the sinuous distribution, while its magnitude declines
exponentially with time. We then assume that the coronal magnetic field evolves through
consecutive force-free states corresponding to time-varying B_(x, 0, ¢). Its magnetic
energy then varies in the manner

o P
E- Lo mp<—:1-m> (30)
cos¢ !
and
E 2n? 2n?
€ _ L (z‘max sin 2¢) — T n) exp ( - 7: m) : (31)
dr Icos¢ _ [ = '

Equation (31)includes the influence of two factors: shearing by the photospheric plasma
increases the energy in the coronal magnetic field; and photospheric diffusion reduces
the field energy. To keep the magnetic energy, E, increasing with time requires

2n%n
Isin2¢

(32)

max

In the following, we compare four situations, in which »n takes the values of
10°m?s~ ' 3 x 10* m?s~ ', 1.5 x 10°m?s~ "', and 0, respectively. Figure 2 illustrates
the decrease of the magnitude of the B__,, . /B,,-distribution at - = 0. Then assuming
equal to Tkms~= ' 0.5kms~' 0.1 kms~' we calculate the variation of magnetic

max
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Fig. 2. Curves A.B. C show the decay of the photospheric magnetic field of mode] | when taking y = 107,
3% 10% and 1.5 x 10% 2 s, respectively.

energy tor the same magnetic diffusivitjes. These results are plotted in Figures 3(a), 3(b),
and 3(c). In comparing these results, we notice that the tota energy in the coronal field
decreases for large magnetic diffusivity. For example, the case of H=3x108m2g-1
indicates that 3 fast photospheric velocity field (1kms~"') is able to increase the
magnetic energy in the corona; however, the energy decreases when the shearing motion
becomes too slow (e.g.,0.1kms- ".

The second case of Section 2 s 3 problem of magnetic diffusion with an infinite
boundary. The distribution of the B_-field in the Photosphere evolves g5

pa

B
B_.=h = féexp(—e§2+bf—e)d‘, (33)
12
where
=.\'(;’+4m, a2 e=i2,
dnix? 2nt dnt
and

h = -\'3('7”)' :.
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Fig. 3. Magnetic energy variation in the corona for different velocity fields in the photosphere:
(@) tyay = Tkms = (b) Tmax = 05 kms ' (c) 'max = 0.1 km's * . The Jabeled A, B, C denote the cases of
the different magnetic diffusivities as shown in Figure 2. 1 =0 case is labeled by D.

B_in Equation (33) can be calculated directly by numerica] Integration. Figure 4 shows
how the B_-distribution varies with time at = = ( for n=10°m?s~"' The time interval
of each curve is 3 hours, and the curve 4 represents the initial distribution of B_atr =0,
In comparison with Figure I, the decay speed of this model s obviously slower.
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Fig. 4. B _-distribution varies with time at - = ( for n = 10°. The time interval of each curve fromAto G
is 3 hours, and the curve A4 represents the injtjal distribution at ¢ = (.

Applying Equation (21), where the normalized shearing extent s modified as _

I.2

r x
f [(x, 0)/x]? [B.]? dx

(see Figure 5). Taking the same diffusivities (5= 109m?2s- L 3 x 108 m2s- g
1.5 x 10°m?s -1 and 0) and shearing velocities (tmax = 1,0.5, and 0.1 km s - ') as in
case 1, we find that the efficiency of energy buildup is higher than in the linear model.
The increasing rate of magnetic energy decreases as diffusivity and time both increase
so that the free magnetic energy cannot. in fact, become arbitrarily large.
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Fig. 5. The increase of free Mmagnetic energy of the nonlinear mode| of Section 3 for different shearing
velocities: (a) = | km STH(B) tpyy = 0.5 km STHC) by = 0.1 km s~ '. The labeled 4. B, C, D denote
the cases of the different magnetic diffusivities.

4. Summary and Discussion

In this study we have presented a mode| 1o investigate the property of a nonlinear
force-free magnetic field and the effects of magnetic diffusivity for flare energy buildup.
The importance of our findings can be Summarized as follows:
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() Photospheric motion distorts magnetic field lines and enhances electric currents
in the coronal region. The magnetic energy buildup depends on the photospheric

the situation of a bipolar magnetic field confined by a finite boundary, which involves
interaction with the boundary during the shearing process. The magnetic field lines of
the nonlinear field model of Section 2 are free to expand in a half-space domain with
their footpoints rooted in the photosphere. When shearing becomes arbitrarily large,
these two-dimensiona] models show an infinite magnetic energy (unit length in the
y-direction), as indicated by Equation (14) and implied by Equation (21). The increasing
energy rate, however, behaves differently because of the different boundary condition
imposed. From Equations (17) and (22), the magnetic energy increase rate can be
written in the form

—=1TI,. E,, (35)
ds ¢

where I is the function of the shearing extent. dE/dr is increasing with the shearing
motion for the linear field model, but decreasing for the half-space field model. When
We use some typical values of the solar magnetic field (1000 G) and velocity field
(Ikms=1) to create an amount of free magnetic energy ~ £, takes about 3-4 hours
for both cases.

occurrence in the solar actjve region,

Finally, we may conclude on the basis of these results that

(1) to estimate the tota] €nergy storage in the magnetic field more accurately, the effect
of diffusion of photospheric fields needs to be considered;

(ii) because of the inclusion of diffusion, the magnitude of the shear speed becomes
a very important factor in the flare energy buildup process.
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1. INTRODUCTION

It is understood that the Sun js the primary source of
electromagnetic cnergy powering atmospheric and
oceanic circulation and photosynthesis in the bio-
sphere. Its continuous corpuscular emission, the solar
wind, determines the shape and dynamics of the outer
envelope, the magnetosphere, of Earth's environment.
Itis also recognized that the Sun is a variable star; its
size oscillates in a variety of modes. Also, it is known
that various solar processes affect the composition,
structure and dynamics of Earth's atmosphere. Earth's
atmosphere is directly influenced by the very complex
behavior displayed by solar spectral irradiance from
X-rays through the visible domain to the infra-red.
We limit ourselves, in this paper, to a discussion of
a specific topic, the energy source propelling the solar
flare. It is now generally understood that flare energy
results from stressed solar magnetic fields. The physi-
cal processes that cause the solar magnetic field to be
stressed could be due to photospheric shear motion
and emerging flux from the convective zone. It has
been shown both theoretically and observationally
(ZIRIN and TANAKA, 1973 TANAKA and NAKAGAWA,
1973 Low, 1977: Wu et ul., 1984 . HAGYARD, 1990)
that one of the physical processes involved in the
storage of flare energy in the solar magnetic field is
the shearing of magnetic fields due to photospheric
motion. ZIRIN and TANAKA (1973) reported that they
had observed proper motion of sunspots in relation to
changes in a representative active region (McMath
11976) where flares occurred. Recently. Moore (1990)
has summarized the observed properties for sunspots
and solar active regions. This summary again shows
that there is an intimate relationship between sun-
Spots’ motion and occurrence of flares. All these
results are centered on photospheric motion whereby
the solar magnetic field could be twisted due to the

(8 S

interaction between plasma motion and the magnetic
field. Stresses build up in the magnetic field in such a
way that the energy needed to propel the flare is there-
by stored. On the other hand, some observations
(RusTt, 1972, 1974) showed that the emerging mag-
netic flux also will cause the field to be stressed, with
a subsequent storage of additional energy which can
be made available to propel the solar flare. Following
this observational and theoretical evidence, we suggest
the following scenario for flare energy storage and
release : that is, the solar magnetic field will be stressed
(twisted) due to both photospheric motion (i.e. shear
motion) and emerging flux. When the magnetic field
is twisted. electric currents are generated. As soon as
the currents reach a critical value (Wu and Xu, 1992),
the energy stored in these currents is released and will
cause the occurrence of one or more flares.

In this paper, we employ a simulation model to
illustrate these two physical processes. Section 2 of
the paper presents the simulation model and initial
boundary conditions appropriate for this study. Sec-
tion 3 discusses the numerical results and Section 4
contains a discussion. Finally. Section S presents the
concluding remarks.

2. SIMULATION MODEL

The simulation model used in this study is based
on ideal (infinite electrical conductivity) magneto-
hydrodynamics (MHD) given by Wu e al. (1983).
The basic set of MHD equations adequate to describe
these physical processes consist of the conservation
laws of mass. momentum and energy together with the
induction equation of the magnetic field to account for
the interaction between the plasma motion and the
magnetic field. These two-dimensional, nonplanar.
time-dependent MHD cquations are identical to those
given by WU er /. (1983) and will not be reproduced

PRBGRDING PAGE BLANK NOT FILMED
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here. In seeking the numerical solution for this set of
nonlinear partial differential equations, we are con-
cerned with an initial boundary value problem. The
initial condition is the steady-state solution of the set
of MHD equations. Physically, this solution repre-
sents an isothermal hydrostatic equilibrium atmo-
sphere with temperature (7,) being 10° K and the
number of density (n,) at the lower boundary (i.e.
y=0)of 10" cm~ . The magnetic field configuration
which satisfies this set of MHD equations can be either
a potential or a force-free magnetic field configura-

S. T. Wu and F. S. WENG

where B, is the magnetic field strength at the solar
surface, the commonly-observed neutral line (i.e.
x=0,y=0,z=0).

The boundary conditions used for this calculation
are identical to those used by Wu ez al. (1984). They
are as follows: the top boundary condition is the
non-reflecting boundary condition (i.e. where all the
gradients of the physical parameters are set equal to
zero) ; the side boundaries are symmetric; finally, the
lower boundary condition is prescribed on the solar
surface. The initial atmosphere is needed for closure

of the mathematical problem. To satisfy the magnetic
topology which is chosen for this problem, the initial
atmosphere is isothermal at hydrostatic equilibrium.

In order to simulate the physical conditions at the
lower boundary, we describe the cases of photospheric

tion. For convenience, we have chosen a bipolar mag-
- netic field topology as the initial magnetic field (see
= Fig. 1). Physically, this magnetic field configuration
resembles a magnetic arcade that is usually observed
on the solar surface beneath a helmet streamer. We

e chose the mathematical expressions representing this  shear and emerging magnetic flux as follows.
magnetic topology to be a potential dipole field given ‘ .
- by the following equations : (i) Photospheric shear case

w This case is similar to the one described by Wu
B" = B cos (E)e—nwuo et al. (1984). Here, the photospheric motion of the
2xg footpoints of flux loops at the base (i.e. at y = 0, the

- x-z plane represents the photosphere) is simulated by

B! = — B sin (?)e-"-VfZXo the following expressions :
z = XO )
= ) s [ mx
= B’ =0 (1 W = W) sin Ix
- where
= OW., 0<i<t

= 2

=~ where W, is the velocity along the z-axis as shown in
o Fig. l1a. This velocity is a constant corresponding to
o the photospheric shear velocity. The magnitude of this
- velocity. chosen on the basis of observation, is a few
o hundred meters per second to an order of km s~ ' at
= the peak of the shearing profile shown in Fig. la.
= (a)

(ii) Emerging flux case

Observationally, it has been shown that emerging
magnetic flux (RusT. 1972, 1974) could constitute
another physical mechanism that can cause the mag-
netic field to be stressed with subsequent relaxation,
thus propelling solar activity as discussed above. In
order to simulate this case, the lower perturbed
boundary conditions are mathematically expressed by
the following equations::

Emerging flux

Emerging flux

z
= nx
£3 (b) B, = B(1+w)cos T
= Fig. 1. Schematic description of an axisvmmetric bipolar ’
B magnetic field subjected to (a) footpoint shearing motion at _—
= the photosphere: and (b) emerging magnetic flux from the B, = —B(l+w)sin (;—\) (3
2xy,

sub-photosphere in the direction indicated by the arrows.



i21 4)

with

where ¢ is an arbitrary constant, chosen as 7 x 10-°
for 8, = 1.0 and 7x10-%for Bo=0.1, respectively, in
the present study. These values are determined by the
strength of the emerging flux. A schematic repre-

Shear Motian »Be = 0.10

*——__Tota] Energy
....... Magnetic Energy

)

& - ~ Kinetic Energy

G--~— Internal Energy

—- - Potential Energy

15

tXcess Energy (102 Erg Km™!
o

———————

(¢} 50 100 150
Time (Sec)

3. NUMERICAL RESULTS

storage due 1o emerging magnetic flux from the sub-
photosphere. Ip these two cases, the simulation
domain has the sjze of 1.6 x 10* km in the x direction
and 2 x 10* km in the y direction : the - direction js g
dummy variabje. The results from these simulatjons
are summarized as follows :

(i) Energy Storage due 1o photospheric sheqr motion

Shear Motion B = 1.00

#——_Total Energy
....... Magnetic Energy

& — — Kinetic Energy
3-.— Interna} Energy
%—.— Potentia] Energy

10

Excess Energy (102 Erg Km™')

0 200 400
Time (Sec)

Fig. 2. The computed total excess energy (AF = E—~FE,) and is individya] mode of excess energy of

Mmagnetic (AE,). kinetic (AE). thermal (AE,) and pote

ntial (AE,) energies vs time for (@} ff, = 0.1 and (b)

fo=1.0. respectively. due 1o photospheric shearing motjon with 4 maximum shearing speed ol 1.0kms~.
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o Shear Motion , g, = 010 Shear Motion , 8, = .00
; #—— Maximum Current Density
_ = =
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- £ £
<< <
,.‘-;
E

Maximum Current Density (10
Maximum Current Density (10

i
o 0 0
- 0 50 100 150 0 200 ) - 400
Time (Sec) Time (Sec)
Fig. 3. The computed maximum current density vs time for (@) B, = 0.1 and (b) fo =10, respectively, due
- 1o photospheric shearing motion with a maximum shearing speed of 1.0 km s
) s 'and 140 s, respectively. Figure 2 shows the excess B, = 1.0case. The growth rate for current density also

energy (E—E,) as a function of time due to a photo-  has a linear behavior with time.

spheric shear motion of | kmy s~ ' for these two differ- N ,
cnt values of initial plasma beta (Bo). Ttis immediately (1) Energy storage due 10 emerging magnetic flux from
noticed that most of the energy build-up is stored in ~ S#b-photosphere

the magnetic mode. Also, it could be shown that the In these simulations, all boundary and initia] con-
total energy build-up per unit depth in kilometers is ditions are kept identical to those used in case (i)
~20 times bigger for g, = 0.1 (le. 24 x10% €rgs  except for the perturbed lower boundary conditions
km=') in comparison with the case of Bo=10 (i.e. which are given in equation (3). Figure 4 presents the
1.20 < 10 ergs km - ') after a temporal duration of o] €xcess energy as a function of time for B, being
150s. The energy growth rate almost becomes alinear  0.1and 1.0, respectively. Figure 5 shows the maximum
function of time after 150 s. Recently. K AHLER etal.  current density growth rate for Boas 0.1 and 1.0. It is
(1988) employed observations to show the cor- again noted that the tota] €xcess energy 1s much bigger
respondence of flare and filament (current) eruption  for Bo=0.1 in comparison to the f, = 1.0 case. a
occurrences. On the basis of the results given by  situation similar to case (i). However, the maximum
KAHLER ¢1 ol (1988), Wu and Xu (1992) have shown current density and its growth rate arc different in
that there is an intimate relationship between the flare  comparison to case (i). That is. g stronger field
and filament current eruption. a relationship which (Bo=0.1) case will resist the emerging flux: then i

depends upon the current density. produces small maximum current density and its
In order to further the understanding of the present  growth rate. On the other hand, when the field
results, Fig. 3 shows the maximum current density strength becomes weaker (L.e. larger beta. fBa=1.0).

caused by photospheric shear motion as a function of Is easier for the magnetic flux to emerge into the
time for (a) fi, = 0.] and (b) B, = 1.0. respectively.  system. Thus. the increased flux produces stronger
Again the figure shows that the current density is a maximum current density and growth rate, In com-
factor of 4 larger for A, = 0.1 in comparison to the parison to the photospheric shear motion case. the
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Emerging Flux Bs = 1.00
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Fig. 4. The computed total excess energy (AE = E—E,) and its individual mode of excess energy of
magnetic (AE,). kinetic (AE}). thermal (AE7) and potential (AE,) energies vs time for (a) By = 0.1 and (b)

By = 1.0. respectively, due to cmerging magnetic flux from the sub-photosphere

stronger field (i.e. f,=0.1) provides a much larger
maximum current density and growth rate in the shear
motion case because an additional magnetic field com-
ponent perpendicular to the arcade is developed,
thereby generating more current density. On the other
hand. no additional field component is induced during
the emerging flux case. In summary, it is again demon-
strated that there is enough total energy to propel a
typical flare of ~ 10 ergs.

4. DISCUSSION

On the basis of these MHD numerical simulations,
it 1s possible to construct a physical scenario for solar
flare energy storage and. thereby, to its release due to
these two suggested physical processes (i.e. photo-
spheric shear motion and emerging magnetic flux).
The important physical characteristics related to the
solar flare energy storage and release are (i) availablc
energy and (ii) magnetohyvdrodynamic instability in
relation to the triggering mechanism of a solar flare.
We shall discuss these characteristics. based on the
MHD numerical results. in some detail as follows :

(1) Acailability of magnetic energy

The results given in Figs 2 and 4 demonstrate that
the energy available 1o propel a solar flare is stored in
the magnetic mode for both cases. The computed
average energy growth rate is given as follows -

Average total cnergy growth rate (ergs s')

(i) Shear motion (ii) Emerging flux

Bo=0.1
2.16 x 10°7

Bo= 1.0
6.6 x 10°°

fio=0.1
2.13x 1077

Bo=10

dE,,dr 7.2x 10%

In all of these simulations, we terminated our com-
putation when the computed growth rate became
almost a linear function of time about 34 Alfven
times (z,). Thus, by simply multiplying time with the
magnetic energy growth rate, we are able to estimatc
the total energyv available (o propel the solar flare
resulting from either a prescribed photospheric shear-
ing motion or emerging magnctic flux from the sub-
photosphere. For example. a typical energy buildup
time for an active region is on the order of a few days.
Hence. we obtain the following :
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Fig. 5. The computed maximum current density vs time for (a) Bo=0.land (b) #, = 1.0. respectively. due

to emerging magnetic flux from the sub-photosphere.

Excess total energy (AE—E,) (ergs)

| day 3 days 5 days 7 days
(86,400 5) (259.200's) (432.000 §) (604,800 s)

Shear motion
Bo=0.1 187x10% 561 x10% 935x 0™ [.31 x 10"
Bo=10 57x10" L71x10*" 2.85x 102 4.00x 1032

Emerging flux
Ba=0.1 1.84x10™ 5520 9.2x10* 1.29x10™
Bo=10 6.22x10"" 187 0" 311 %10 4.35x 10

In the estimations shown in the above table we have
taken a typical length of filament of ~ 10 km and the
total energy stored in an active region is on the order
of 10"'-10%* ergs for one day and 107%-10** ergs for
seven days. This indicates that there is enough cnergy
to supply flaring. In order to examine the question as
to how this stored energy could be released, we take
the current practical view that it is due to an MHD
instability that causes the explosive energy release.
This is addressed in the next section.

(1) Triggering mechanism - MHD instabiliry

In this section. we shall examine the simulated
physical system subjected 1o magnetohydrodvnamic

(MHD) instability. In order to perform a simple
MHD instability analysis estimation. we shall use the
principle of tearing mode MHD instability suggested
by TACHI et ul. (1983) and VAN Hoven (1980) 10 test
our simulated results. TacHI ¢/ al. (1983) concluded
that if the magnetic Reynolds number, Re,, = 10
aBT? *n= 17 exceeds 3 x 10°, both tearing mode and
Joule heating mode are possible for x = ka = 0.1, with
k being the wave number of the perturbation and *¢'
being the characteristic length. In the present simu-
lation, we have B = 500-1500 Gauss, n = 10" ¢m ¢
and 7 = 10" K and the shear motion is prescribed in
the form sin (mx/2x,). where the X, is the horizontal
length of the computation domain. We have chosen
X to be 8 x 10* cm; therefore. the wave number of
the perturbation £ is equal 10 Typ=4x10 "cm .
With this information. we can compute the magnetic
Reynolds number for the present simulation

Re, =10 :(Z)B(T)" )"~ dx 10",

This value is much larger than the value (3 x 107)
given by TACHI er af. (1983) for triggering both the
learing mode and joule heating mode of the MHD
nstability. However, it is impossible to discriminaie
between these two modes in the present simulation.
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But it may be concluded that the simulation results
for the present physical system will lead to MHD
instabilities. Thus, energy release is possible to propel
a solar flare. Using the observations analyzed by
KAHLER et al. (1988), Wu and Xu (1992) have shown
that the current Intensity at the X-ray onset of the
impulsive phase of a particular solar flare (26 April
1979 event) is ~2 x [0* statamperes cm ™ 2. From the
present simulation, as shown in Figs 3 and 5, the
current density growth rate due to photospheric shear
motion is converted to 0.75 statamperes ¢cm~? for

0=0.1 and 0.3 statamperes cm~-2? for Bo=1.0,
respectively. However, the current density growth rate
due to emerging flux js much smaller, namely
0.15x107° statamperes ecm-2 for Bo=0.1 and
0.4x 1077 statamperes cm~? for Bo= 1.0, respec-
tively. Hence, due to photospheric shear motion, the
time needed to reach the flaring threshold is 2.67 x 104
(7.4 h) for f,=0.1 and 6.67x 10* s (18.5 h) for

o = 1.0. In the case of emerging flux, the growth rates
are too slow to generate the threshold current density
required to trigger the instability for flaring. We do
not mean to imply that the mechanism of emerging
flux is not a viable mechanism. The present calculation
is limited to a planar case for emerging flux ; we did
not examine the non-planar case, which would have
potential for flaring.

5. CONCLUDING REMARKS

In this study, we utilized the MHD model given by
WU er al. (1983) to investigate energy build-up and
storage for a solar flare due either to photospheric
shearing motion or to energy flux emergence from
sub-photospheric levels. Furthermore, the simulation
results were applied to a test of MHD instabilities
(i.e. tearing-like mode and Joule-heating mode) for a
possible explanation of the physical mechanism of
energy release. The interesting findings of this simu-
lation study can be summarized as follows

(1) The simulation results show that there is enough
energy stored due to both shearing motion and emerg-
ing flux to supply the flare energy. All of this energy
Is stored in the magnetic mode.

(i) Under the condition of MHD instabilities, these
simulation results show that photospheric shear
motion is more favorable for triggering a flare because
it produces a large growth rate for current density in
comparison with low growth rates for the emerging
flux.
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chanical Engineering The University of Alabama jn Huntsville Huntsville,
Alabama 35899 U.S.A.

P. MCINTOSH AND E. HILDNER
Space Environment Laboratory, Nationa] Oceanic and Atmospheric Ad-
ministration, Boulder, Colorado 80303 U.S.A.

gions (BMRs). When the MHD effects are ignored, our model produced
the classical results (Leighton, Astrophys. J. 146, 1547, 1964). The
full model’s numerjca] results demonstrate that the interaction between
magnetic fields and plasma flow (i.e., MHD effects), observed together
with differential rotation and meridional fiow, gives rise to the observed
complexity of the evolution of BMRs.

and Wilson, 1985; Sheeley, et ol 1985; Sheeley, and Devore, 1986; Wilson, 1986;
Wilson and McIntosh, 1991; Wang and Sheeley, 1991) have extensively stud-
ied the magnetic flux transport in relation to the solar cycle by means of a
modified Leighton mode] with additional physics. Recent rapid development of
numerical simulation gives us the capability to study highly complex, nonlinear
mathematical systems. Wang and Sheeley ( 1991) have presented a numerical
simulation including differential rotation, supergranular diffusion, and a pole-
ward surface flow (i-e., meridional flow) of the redistribution of magnetic flux
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erupting in the form of BMRs. They reproduced many of the observed properties
of the Sun’s large-scale field not encompassed by Babcock's ( 1961) or Leighton’s

equations including differential rotation, meridional flow and turbulent diffusjon.
These governing equations are: -

V.ad=0 (1)

p[%%-%-(ﬂ‘-V)(ﬁ—E’)] = —Vp+;l;('\7 X B) x B + F, ~ 203y x (7 — )

P X [‘;o x (F— Fz)] +m V@~ @r) (2)

to,

0

Tt =S VX(ExB)+ AV x B) + V25 4+ § (3)
op . _ J o Ou;  Oup\?
5;*-(“-‘7)?—AQ+(7A—1)[;+7(E+6—%7)} (4)

where p is the plasma mass density, & the plasma flow velocity vector, p the
plasma thermal Pressure, and 5, the magnetic induction vector, respectively.
The other quantities are defined as fllows; W, is the angular velocity of solar
differential rotation referring to the center of the solar coordinate system, that
is given by empirical value as

3, = 1,(0:2837 — 0.04835 cos?4,)
°Te 86400
With 6, being the latitude of the center of a sunspot (or active region) . The @/

is the prescribed background plasma velocity field including differential rotation
and meridional flow which js given by

arc secs™! (5)
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U = ut,i, + ulgig + ‘u.;¢;'¢ (6)

With u,./ being the radial component velocity on the solar surface, uj is the
velocity of the meridional flow which is chosen t.» be ug/ = 0.015/sin @ for the
present study and uy is the velocity due to the (ifferential rotation relative to

the rotating coordinate system, that js

W — 0.04835(cos? 8, — cos? 0)rsin 6
- 86400

77 is the dummy Position vector referring to the loc ation of the sunspot (or active
region), F, is the gravitational force of the sun, « s the effective diffusivity and

A represents the coefficjent of the cyclonic turbuler ce, § is the additional source
terms such as emerging flux etc., the H: is the turlyulent viscosity.

Finally the term AQ represents the heat source due to the initial dynamics
of the quiet photospheric motion such that

arcsecs™! (7)

i 2
Ju | f’“'k) J

N
= (. - - 0, £t ok
AQ = (@ V)p, - (4 1)[Q+ ( o+

: (®)

This term is prescribed to assure the self-consistency of the MHD solution,
namely, the initial dynamical equilibrium of the solar atmosphere is obtained.

This set of MHD equations differs from those ¢ f usual first principle MHD

theory. These differences arise from additional phys cs we have included in this
formulation. For example, the additional terms in Equation (2) represent the

turbulence (ie. \(y x 5)).

Ideally, we should solve this set of equations in {ull three dimensions. How-
ever, this is costly and unnecessary, as we are interested only in exploring the
fundamental physical processes rather than in simulating the realistic situation
on the sun, Consequently, we prescribe the behavior of the radial derivatives of
velocity and magnetic field on the basis of the mathematical convenience. These
functions are:

B= B,(r)B,(6, ¢)i, + Bo(r)Bo(8, $)iy + 34(r)By(8, ¢)ig (9)
4= u.(r)u.(4, $)i, + us(r)us(8, d)is + ui(r)ugy(, B)ig (10)
with
8B, 2 a
o -G E)E
8B, 1 a
7"— = —(; + H_,)Bo (11)
% _ (1,8
o = G E)B
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our _ 2,

o T

Oug 1

6—:;;“’ (12)
Oug _ 1,

o ~r ®

Substituting equation (12) and (13) iinto equation (2) by setting u, = u’, we

have

Sl

g[uo(ue = ug!) + ug(uy — u‘sl)] + 2pwosinb(uy — uyt) — pg +

1 [Bg /8B, a(TBg) By 0 1 8B,
47[7(7 e )] - T(a—r('%))‘sino‘az (13)

where Hp is the depth of the sunspot (i.e. ~ 2 x 104 km) and a is an arbitrary
constant which is the measure of the decreasing rate of field strength against
height.

Using these relationships, the coniputation reduces to a calculation on the
solar surface. That is why we called our model a quasi-three-dimensional, time-
dependent MHD model.

To assure self-consistency of the rumerical simulation of the evolutionary
MHD processes, proper initial and bcundary conditions are needed. We ob-
tain our initial conditions by assumirg the solar atmosphere is in dynamical
equilibrium. Thus, these initjal conditions are:

1 9 . 8 a
m%(Bgoszne) + T—‘HE%(B@) = H—OB,O
Bgo _
B¢0_ tana (14)
with
[ 0 et <o <ot
Bo={ DBro #7-% <6 <otd 04 < <oty (15)
7] B, 67-% <4 <$T+g 6% <0 <o 44
0, ¢"+§ <¢ <¢*-4

\

where (¢*,8%) and (¢7,67) reprejsent the coordinates of sunspots with
positive and negative polarity respectively and d represents the diameter of the
sunspots. -
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(ii) Initial velocity field is given by

Uu=u'l=0 or 0.1 kms!

0.015 -
Up = ug/ = — , ms -
sind
Uy = ug! = wo(f)rsind kms™* (16)

(iii) Initial pressure field is

14 1B 1):] é
29P _ _.[i (_’0 - %(Bd,sinO))]

r 80  4r|lsind\ 8¢ )
B,o ar 033,.0
(B + %) (")
1 Jpo _ 1 Bgo Is} . . 3390)
rsing ¢ _ ix [rsin? (ae(B"’me) 3¢
B,o ar 1 aB,.o)]
; (H.,B‘”sina ER (18)

In addition, the B,4 , Bgo and Bgo are given to :atisfy the solenojdal con-
dition (i.e. V-5 = 0).

The boundary conditions employed here are computational boundary con-
ditions which simply are the forward differencing liner extrapolation.

II. NUMERICAL SIMULATION RESULTS

The computational domain for the simulation is set as a rectangular region with
51 grids in the carrington longitude (¢) and 35 grids in the latitudinal direction
() in which we have chosen 0.5 degree for each grid in this study. It is assumed
that the differential rotation and meridional flow velocity depend upon latitude
only. Therefore, the prescribed flow pattern within tle computational domain
will depend on the domain’s latitude but not on its loagitude.

Before we carry out this simulation study, we neei to know two important
coefficients: effective diffusivity (x) and cyclonic turby lence (A). We know that
the range of values of effective diffusivity is quite wide, for example, x = 160 —
300 km? s~! given by Parker (1979); Leighton’s value oi'x is 800 — 1600 km? s-1
(Leighton, 1964); DeVore et al (1985) selected x = 30( km? s~! for their study.
Wang (1988) derived a value of « being 100 ~ 150 i:m? s~! on the basis of
observations. The purpose of this study is to learn the fundamental physical
processes due to the simulated MHD effects (i.e. photospheric dynamo) and is
not to simulate a particular event. Therefore, we simply choose values within
these ranges for this study. The value of cyclonic turbujence is chosen according
to the scale law (A < x/L), where L is the characteristic length of sunspot, it is
chosen to be 6000 km for the present study. :

The first issue which we shall examine is how the simulated MHD process
(i.e. photospheric dynamo) will effect the Leighton’s results (1964). To achieve
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this purpose, we simply reduce the present set of governing equations into a
single diffusion type equation of Leighton’s theory which is expressed by Eq. (3)
with A = 0. To perform such a simulation, we set up a bipolar magnetic region
with strength + 1800 G and two tegrees apart, then, allow the mathematical
system to evolve. The B, contour: for x = 120 km? s~1 at time 240 hrs after
introduction of the bipolar magnetic region (BMR.) are shown in Figure 1a which

s~1 at 240
hrs after introduction of the BMR. Tt shows the interaction between the plasma
flow and magnetic fields. In such a case, the photospheric dynamo process sets
in. Significant differences between Fig.1a and 1b are evident; (i) with MHD
effects the simplicity of magnetic field strength contours disappeared, (ii) the
magnetic field has migrated significantly in longitudinal direction, because we
have ignored meridional flow in this calculation and (iii) the MHD effects lead
to highly sheared neutral line. , : '

of governing equations with differential rotation and x equal 120 km

19*

1L

{a)

11°

19°

Lhad

(b)

Fig. 1 The radial magnetic field strengtix (B,) contours at 240 hrs after introduc-
tion of the BMR without (a) an1 with (b) simulated MHD effects.
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The radial magnetic field strength (B, ) contours and transverse magnetic
field at 120 hrs after introduction of the BMR without meridional flow (a)
and with meridional fiow (b) using the full set of simulated MHD equations.
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Figure 2 shows the effects of the meridional flow on the magnetic field
transport, Figure 2a exhibits the B, strength contours and transverse field for
k = 200 km? s=! and A = 0.0125 km s~! without a meridional flow and Figure
2b shows the same case with meridional flow. It may note that the meridional
flow produced a slightly poleward movement of the BMR.

Up to now, we have shown the computed evolution of the morphology of the
BMR with and without MHD effects. It is interesting to understand the energy
evolution during these processes. In Figure 3, we show the magnetic energy
evolution for the cases with and without background velocity effects. Figure 3a
shows the normalized magnetic energy (i.e., En(t)/Em(0)) in the absence of pre-
scribed differential rotation and meridional flow for the case when only diffusion
and cyclonic turbulence are included. We notice that the normalized magnetic
energy E,,(t)/En(0) of the BMR through effective diffusion (x = 200 km? s~
is decreasing almost linearly with time as represented by curve B. If both effective
diffusion and cyclonic turbulence A = 0.25 km s-1 are considered, E,,(t)/ En(0)
decreased a little more slowly than curve A. Curve C represents the case for cy-
clonic turbulence only and Em(t)/En(0) shows a slight increase with time. This
clearly informs us that the photosphere dynamo can be an energy production
source. In Figure 3b we test the influence of effective diffusion (loss) and cyclonic
turbulence (source) in the presence of differential rotation and meridional fiow
on the evolution of the normalized magnetic energy. Curve A represents the case
for k = A = 0; it gives Epm(t)/ Em(0) being constant, this informs us that this
simulation model has maintained dynamical equilibrium throughout the process
and it validates the accuracy of the simulation model. Curves B and C are for
A =0and & = 100 km? s-! and 200 km? s71, respectively. It is apparent that,
when the effective diffusivity increases, the decay rate of normalized magnetic
energy increases. Curves D and E in Figure 3b show the evolution of normalized
magnetic energy for x = 0 with A = 0.75 km s-! and 0.1 km s~1, respectively.
It is immediately noticed that the growth rate of normalized magnetic energy in-
creased with increasing \. From these studies, we realize that effective diffusion
and cyclonic turbulence are competing physical mechanisms for the magnetic
energy evolution in the magnetic flux transport process of a BMR. In Figure 4,
We present the normalized magnetic energy vs time for a fixed value of cyclonic
turbulence (A = 0.025 km s~!) and effective diffusivity 0, 100 and 200 km? 5!
respectively. These results clearly show how these two competing mechanisms
work; when & = 0, the magnetic energy will increase with time but when ef-
fective diffusivity dominates cyclonic turbulence, then the magnetic energy of
BMR decays.

IV. CONCLUDING REMARKS

The purpose of this study has been to show how a simulated magnetohydro-
dynamic (MHD) process which incorporates to the photospheric dynamo might
affect the evolution of a bipolar magnetic region (BMR) and lead to the com-
plex active region on the solar surface. To accomplish this purpose, a quasi-
three-dimensional, time-dependent MHD model was developed. For the present
exploratory simulation study, we realize that there are two major physical mech-
anisms which interplay during the evolutionary process of a BMR, and could
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Fig. 3

A (k= 200 km? s-1 )\ = 025 km s=1), B (x = 200 km? 7L =
0 km s~1), and C (x = 0,A = 0.025 km s-1). (b) The evolution of
the normalized magnetic energy with MHD effect: A («k=0,) = 0), B
(% =100 km? 4-1 ) = 0), C (x = 200 km? s"L2=0),D (x = 0,1 =
0.075 km s~1), E (£k=0,A=0.1km s~1),

VEm(o)

Normalized Magnetic Energy (Eq(t

1.00
95
4
The evolution of normalized ergy with MHD effect and var-
jous m "1, B (v =

100 km? s-1) and ¢ (x = 0), at fixed value of cyclonic turbulence
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explain the magnetic flux transport on the solar surface, These two physical
mechanisms are the effective diffusivity and cyclonic turbulence with simulated
MHD process which triggers the photosphere dynamo. The most interesting
results from the Present simulation can be summarized as follows: (i) If the
i i ill create more
complex structures because the nonlinear interactions exist between the plasma
flows and background magnetic fields and (ii) the magnetic energy of the BMR
could be increased if the cyclonic turbulence process dominates. In summary,
We may conclude that MHD interactions are important and needed in the study
of magnetic field transport.

{

4l

KNOW. MENT

%‘; " The work by STW and CLY Wwas supported by a NASA Headquarters grant
NAGW-9 and NOAA (50RANR000104).
"Permanent Address: Purple Mountain Observatory, Nanjing, PRC

REFERENCES

1. DeVore, C. Richard, Sheeley, N. R, Jr., Boris, J. P., Young, R. T., Jr.,
and Harvey, K. L. 1984, Solar Phys. 92, 1, -

2. DeVore, C. R., Sheeley, N. R., Jr., Boris, J. P., Young, R. T. Jr., and
Harvey, K. L. 1985 Solar Phys. 102, 41.

3. DeVore, C. R., and Sheeley, N. R., Jr.: 1987 Solar Phys. 108, 47.

~ 4. Leighton, Robert B.: 1964, Ap.J. 140, 1547,
5

6

- McIntosh, P. §. and Wilson, P. R 1985, Solar Phys. 97, 59.

. Parker, E. N., Cosmic Magnetic Fields, Oxford Un.iversity Press, England,
P- 509, 1979.

7. Sheeley, N. R., Jr., DeVore, C. R., and Boris, J. P.: 1985 Solar Phys. 98,
219.

8. Sheeley, N. R. Jr., and DeVore, C. R.: 1986, Solar Phys. 103, 203.
9. Wang, H.. 1988, Solar Phys. 116, 1.
10. Wang, Y.-M. and Sheeley, N. R., Jr.: 1991,4p. J. 375, 761.
11. Wilson, P. R... 1986, Solar Phys. 1086, 1.
12. Wilson, P. R. and Mclntosh, P. §.. 1991 Solar Phys. 136, 221.



Physics of Fluids B: Plasma Physics, 1994 (submitted)
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&5 Abstract

Generation and propagation of magnetohydrodynamic (MHD) body and surface waves
= in a medium with a single and double (slab) magnetic interface are studied by using of a
nonlinear, two-dimensional, time-dependent, ideal MHD numerical model constructed on
the basis of a Lagrangian grid and semi-implicit scheme. The processes of wave confinement
and wave energy leakage are discussed in detajl. It is shown that the obtained results

depend strongly on the type of perturbations imposed on the interface or slab and on the

plasma parameter g.
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I INTRODUCTION

It is commonly accepted that magnetohydrodynamic (MHD) waves may play a dominant
role in the energy transfer and in the local heating in many laboratory devices contain-
ing structured and magnetized plasmas'~? as well as in some astrophysical settings®-8.
Under typical laboratory or astrophysical conditions, plasma is usually highly inhomoge-
neous and, therefore, simple analytical methods’ developed to study the propagation of
linear MHD waves in homogeneous media cannot be applied. Conversely, a number of
known analytical solutions are obtained for cases of only marginal practical interest®-1!.
In general, problems of propagation of MHD waves in a medium with smooth and/or sharp
gradients in physical parameters are so complex that they must be investigated by means
of numerical simulations.

In this paper, we present results of numerical studies of MHD wave generation and
propagation in a magnetically structured medium. The adopted model is relatively simple
because it takes into account only magnetic interfaces and the corresponding “jumps” in
physical parameters across these interfaces. Despite simplicity of the present model, we
are still able to study two important and previously unsolved physical problems, namely,
the interaction of a single magnetic interface with the external medium and the interac-
tion of a magnetic slab (two magnetic interfaces) with its surroundings. Some aspects of
these problems have already been investigated!2-13_ ip particular, there is a class of known
analytical solutions represented in the form of dispersion relation and obtained by mak-
ing a Fourier transform in time and space’*~15, However, to the best of our knowledge,

time-dependent numerical calculations of the propagation of MHD body waves and MHD

it is presently not clear how effectively MHD surface waves can transfer energy along the
single magnetic interface and along the magnetic slab, and how efficient are these waves
in generating acoustic waves in the external medium. Our main aim is to gain a new

physical insight into these two problems by calculating the efficiency of wave confinment

2
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and that there are 0o other gradients iy these domains except at the interface. In the
second model, we consider thick, non-stratified, magnetic slab embedded in an otherwise

flon-magnetic and uniform medium (Figure 1b). In both models, we assume that there

Op 0 8
297 = “%(Pvz) - E(Pvz) (1)
o pv, _ 0Op 9§ 2 0 0B, 4B,
o0 BT e o) 4 5, (PP 28 2
B(pv,) _ Op 15j . 0B, 03,)
O T T8 T p(even) — o(ov?) - B, (5= - 9z (3)
0B, 0
BT = a(v,,B, - v,B,) (4)
0B, Ie)
—6T = %(U‘B' - v,B,) (5)
9 p 9 p
gl ) = —vzg(;;) T Vs (%) (6)
0B oB
e T 7
Oz + 0z 0 (7)
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and the equation of state,

p=pRT (8)

where v, and v, are the horizonta] (x-axis) and vertical (z-axis) components of the velocity,
respectively. Similarly, B, and B, are the horizontal and vertical components of magnetic
field. The other symbols have their usual meaning: p is the density; T is the temperature;
P is the thermal pressure; 7 is the specific ratio being taken as 5/3 and R is the universal
gas constant. It must be noted that we have suppressed the factor 4 in the term of
Lorentz’s force through an adequate choice of the unit of magnetic field. This set of
differential equations is solved numerically for the case of a single and double (magnetic
slab) magnetic interface. Note that the presented equations are formally nonlinear and
that these nonlinear equations have been solved numerically; however, in this paper we
restrict our discussion the results due to a small finite amplitude perturbation to avoid
shock formation in our computational domain. To relate the initial physical parameters in

the magnetized and non-magnetized regions, we use the horizontal pressure balance given

by

B? :
which can be also written as
g
pi = 1+‘8P¢, (10)

where 8 = 87pi/B} and T; = T, = const, All physical parameters in the magnetized
(internal) and non-magnetized (external) regions are indicated by subscript “” and “e”,
respectively (see Figure 1).

To carry out the studies of propagation of MHD body and surface waves in the con-

sidered models, we have developed a nonlinear, two-dimensional, time-dependent, ideal



MHD code constructed on the basis of a Lagrangian grid and semi-implicit scheme. The
Lagrangian grid has been used because of its small numerical diffusion and because it easily
allows tracing the interface. The semi-implicit scheme code means that we find solutions
for fluid properties (‘7, P, p,T) by using an explicit scheme and then solve for the magnetic
field using a non-iterative implicit scheme!®. As shown in Figure 1, our computational do-
main always contains one magnetized region and either one or two non-magnetized regions.
The perturbations are imposed on the system at z = 0 (which is also the lower boundary of
the computational domain) and are restricted only to the magnetized region. The physical
condition at the lower boundary is the so-called rigid free-slip wall condition, which means
that transverse motion of the boundary is transmitted to the fluid only through the mag-
netic field. In our calculations concerning a single magnetic interface, the location of the
interface is at the z-axis (see Figure 1) and nonreflecting boundary conditions are applied
at all the computational domain boundaries parallel and perpendicular to the interface.
For our computations concerning a single magnetic interface for longitudinal perturbations,
the z-axis is the axis of symmetry, so the symmetry boundary conditions are used. At the
remaining computational boundaries the nonreflecting boundary conditions are applied. In
the case of magnetic slab, all the computational boundaries are non-reflecting boundaries.

Having prescribed the boundary conditions for our numerical calculations, we now
briefly describe tests performed to confirm the validity and accuracy of our code. We
have tested the code by performing simple acoustic and Alfven wave calculations and then
comparing the obtained numerical results to known analytical solutions. We have com-
pared numerical and analytical MHD surface wave speeds and found that the difference
never exceeded 2%. To describe the results from one of the tests, we consider a small
amplitude acoustic wave propagating in a homogeneous medium with a uniform magnetic
field (for the purpose of this test, we have excluded the interface and consider the magnetic
field to be present in the whole computational domain). It is assumed that the acoustic

wave is excited at the height z = 0 (see Figure 1) by the motion v,(t) = v, sin (27t/7)
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with v, = 103 ¢, (C, is the speed of sound) and 7 = 40 sec. For this special case,
we have found fully time dependent numerical solutions and then compared them to the
well-known analytical solutions to the acoustic wave equation; note that the analytical
solution is simply obtained by making a Fourier transform. The difference between the
obtained numerical and analytical solution is less than one percent and the relative djf-
ference of wave energy in each wavelength is less than 2 X 107°. We have also performed
similar tests for purely transverse MHD (Alfven) waves propagating in homogeneous and
inhomogeneous (stratified and isothermal) media, and find that our numerical solutions
are consistent with the known analytical solutions. All these details can be found in Ref.
16. After performing these tests, we feel confident in using the code to investigate the
behavior of MHD body and surface waves on a single and double magnetic interface. In

the following, we present the results of these studies.
IIT SINGLE MAGNETIC INTERFACE

The existence of a single magnetic interface in an otherwise homogeneous background
medium (see Figure la) allows separating MHD waves into two classes, namely, body
and surface waves. In our model, the body waves are confined only to the magnetized
part of the computational domain and the surface waves exist on the magnetic interface.
The waves are excited by imposing either transverse or longitudinal perturbations in the
magnetized part of the computational domain. In the following, we shall consider both
cases of perturbations and present the obtained numerical results. We begin with the
transverse perturbations.

To introduce the transverse perturbations at the lower boundary of our computa-
tional domain, we impose the following velocity perturbations in the magnetized region:
v2(t) = v, sin (27t/7), with v, being 10~ V (V, is the Alfven velocity) and 7 equals
to 0.5L/V, where L is the height of the computation domain. The reason we kept the

amplitude of perturbation small is to avoid shocks in our computational domain. The
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imposed perturbations generate purely transverse magnetic waves which propagate with
the Alfven velocity inside the magnetized region; we shall call these waves the body waves
(see Figure 2). The perturbations also excite the surface wave which propagates only along
the magnetic interface with a velocity lower than the external sound speed. As seen in
Figure 2, the wave velocity and magnetic field are predominantly in the direction of its
propagation, therefore, we shall call this wave the slow MHD surface wave. In addition,
the figure clearly shows that there are no disturbances (corresponding to acoustic waves)
propagating into the external medium. This simply indicates that under the considered
physical conditions the excitation of external acoustic waves by the internal (body) wave
and/or by the slow MHD surface wave does not take place; note that the discussed results
have been obtained for the plasma § = 100. It is interesting to explore whether there
are any circumstances when the external acoustic waves can be generated by the purely
transverse body waves. This may sound surprizing because the body waves considered
here are purely transverse and, therefore, they do not have a longitudinal component (at
least, in the first approximation). The results presented in Figure 3 correspond to 8 =1.2
and 0.5, and clearly show that the external acoustic waves can indeed be excited by trans-
verse MHD waves when the plasma 3 is of the order of unity or lower. Note that in the
calculations discussed here, higher values of Jé) afe obtained by decreasing the strength of
the magnetic field while keeping the other physical parameters unchanged.

The following physical picture emerges from the results presented above. The process
of generation of the transverse body waves is simple to understand because it is a direct
consequence of the imposed velocity perturbations at the lower (magnetized) part of the
computational domain. Still, the overall picture of the interaction of the single magnetic
interface with its non-magnetic surroundings is relatively simple only for a high 3 plasma;
in this case, the wave preserves its transverse character during the propagation and the non-
magnetic external medium is not disturb by the wave montion (see Figure 2). The problem

is more complicated for lower B (see Figure 3) because the body wave changes its character
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_ tions, namely, purely transverse and purely longitudinal perturbations. We begin our

presentation with the former.

b

- A Purely Transverse Velocity Perturbations

;;' The imposed velocity perturbations on the considered magnetic slab are similar to those
i discussed in the case of a single magnetic interface (see the previous section). Note that
= only the magnetized region of the computational domain js perturbed. The results of our
:; simulations corresponding to three cases of § = 100, 1.2 and 0.1 are presented in Figures
_ 4 and 5. The plotted wave energy density shows a significant increase at the interface due
% to the MHD surface waves; it is also seen that thé energy leakage to the external medium
- increases when plasma B decreases. There are four general conlusions which can be drawn
= from the results presented in these figures. First, it is clear that the external medium
5::5 becomes more perturbed when the plasma 3 decreases; this is consistent with the results
: described in the previous section. Second, the kink mode (body wave) being confined to
Eé: the slab changes its character (from purely transverse to predominantly longitudinal) as
o a result of the interaction between the slab and the surroundiﬁgs. Third, MHD surface

Wwaves propagate along both magnetic interfaces and they are predominantly longitudinal.

Finally, the physical processes playing a dominant role in the behavior of the slab are

essentially the same as those described above for the single magnetic interface.

é At this point, it is interesting to compare the results obtained for the magnetic slab to
. those known for thin and vertical magnetic flux tubes.!” Here, we are mainly interested in
< linear and transverse (kink) tube waves and want to compare the behavior of these waves to
f that shown by the slab kink waves. In a typical tube wave treatment'?, the waves propagate
= along magnetic flux tubes without exchanging energy with the external medium; this is
_ one of the most fundamental assumptions of the approach. Our results clearly indicate

that the oscillating magnetic slab strongly interacts with the external medium and that
— this interaction is particularly strong for low-# plasma. Therefore, calculations based on

the approximation that the generated external acoustic energy can be neglected in the

9
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Process of transverse tube (slab) wave Propagation must taken with caution.

B  Purely Longitudinal Velocity Perturbations

slab and investigate the interaction of the generated acoustic waves with the external
medium. Note that similar to the cages Previously considered the perturbations of the
form v.(t) = v, sin (27t/1), with Y =103 O, and r = 100 sec, are imposed only to
the magnetized (slab) region. The considered problem shows Symmetry with respect to
the z-axis (see Figure 1b) which means that the calculations can be limited to only one
half of the computational domajn by assuming the symmetric boundary conditions at the
z-axis and all the other three computationa] boundary conditions are nonreflecting. The
results of our numerjca] calculations carried out for § = 0.1, 1.2 and 100 are presented in

Figures 6 and 7, respectively. The comparison of these results to those presented in the

confinement is stronger for stronger fields (see Figure 7). In the case, however, of weak

magnetic fields (high-g plasma) the waves generated at one corner of the computational

V CONCLUDING REMARKS

In this investigation, we have presented a nonlinear two—dimensional, time-dependent, pla-
nar MHD body and surface model to study the behavior of MHD waves on a single and

double (slab) magnetic interface separating magnetized and non-magnetized plasma regions
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a low-g3 plasma, the interfaces become more “rigid” boundaries in the medium than for a
high-3 plasma. This leads to the distinct behavior of the waves generated by the transverse
and longitudinal perturbations. N amely, the “rigid” interfaces (a magnetic slab with rigid

walls) will Predominantly confine internal acoustjc waves but will strongly influence the

cannot much influence the external medium. In Summary, the presented results show that
the confinment of MHD surface waves to single magnetic interfaces and magnetic slabs

significantly increases with increasing plasma B.
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FIGURE CAPTIONS

* Fig. 3 The calculated (a) wave energy density and wave-induced velocity field for
B =12, C, = 10km sTLV, = 10km s~ and » — 100s and (b) the same Parameters for
B =0.5, Cy = 10km 7L V4 = 16km sl and r = Qs due to a transverse perturbation

in the case of single magnetic interface model],

® Fig. 4 The calculated (a) wave energy density, (b) disturbed Mmagnetic field, and (c)
the Wave-induced velocity field due to a transverse Perturbation for B = 100, C, =

10km s-1 v, - Llkm s=1 and 7 = 900s in the case of magnetic slab mode],

* Fig. 5 The calculated (a) wave energy density and wave-induced velocity field for
g =12 Cy = 10km 7LV, = 10km s-1 apnd » — 100s and (b) same Parameters for
B=01,C, = 10km s-1 Va =35km 41 and 7 = 755 dye to a transverse Perturbation

in the case of magnetic slab mode].

* Fig. 6 The calculated (a) wave energy density, (b) disturbed magnetic field and

(c) wave-induced velocity field dye o a longitudina] Perturbation for 4 = 0.1,C, =

* Fig. 7 The calculated (a) wave energy density and wave-induced velocity field for
B8 =100,C, = 10km -1y, — Ll1km s=! apd » — 100s and (b) same Parameters 3 =
1.2,C, = 10km 7L Va = 1.1km 37! and 7 = 100, due to a longitudina] Perturbation

in the case of the single magnetic interface model,
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MODEL CALCULATIONS OF THE RISING MOTION OF A
PROMINENCE LOOP

TYAN YEH
Space Environment Laboratory, NOAA Environmental Research Laboratories, Boulder, CO 80303, U.S. 4.

and

S.T. WU

Center for Space Plasma and Aeronomic Research, The University of Alabama in Hurnusville, Hunisville,
AL 35899, U.S.A.

(Received 26 June, 1990; in revised form 23 October, 1990)

Abstract. Model calculations are presented for the rising motion of the top section of a prominence loop,
which is represented by a straight flux rope immersed in a coronal medium permeated with a bipolar
magnetic field. Initially the prominence is at rest, in equilibrium with the surrounding coronal medium. When
the magnetic monopoles that account for the source current for the bipolar field strengthen, the upward

1. Introduction

A new dynamical mode] of prominence loops was recently constructed on the basis of
the theory of hydromagnetic buoyancy force for flux ropes (Yeh, 1989). A prominence
loop immersed in the solar atmosphere is regarded as an extraneous body in the sense
that it is magnetically separated from its surrounding medium. Thus its magnetic field,
mass density, temperature, and motion are quite different from those of the surrounding
medium. The important feature is the polarization current induced on the periphery of
the prominence that makes the ambient magnetic field tangential. The exertion of the
ambient hydromagnetic pressure gives rise to the hydromagnetic buoyancy force. Its
predominant constituent is the diamagnetic force which amounts to the force exerted
on the currents in the prominence by the external currents that sustain the coronal
magnetic field. For a prominence to be in stationary equilibrium with its surrounding
medium, the hydromagnetic buoyancy force counterbalances the gravitational force
exerted by the massive Sun. When the coronal magnetic field evolves, the changed
diamagnetic force no longer matches the gravitational force. Once the forces become
unbalanced, the prominence is initiated into motion. The evolving motion may be either
upward or downward, depending on whether the hydromagnetic buoyancy force is
greater or less than the gravitational force. That the evolving motion of prominence
filaments is driven by the evolution of the global magnetic field has been inferred from
observations (Kahler er al., 1988).

Solar Physics 132: 335-351, 1991.
© 1991 Kluwer Academic Publishers. Printed in Belgium.
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parameters as an aid to MHD numerical simulations of the eruptive motion of promi-
nences. Very often the difficulties with numerical simulations lie in the large number and

extensive range of the pertinent parameters that characterize the phenomenon under
study (Wu er al., 1990).

2. Assumptions

The geometry of the prominence loop may be described by its axis and its cross-section.
We assume that the varying cross-section is well accounted for by a circular cross-
section whose radius changes in time. In this treatment of the top section of a promi-
nence loop, a prominence is represented by a flux rope with a straight axis, whose
heliocentric distance may change. The corona is represented by a magnetized medium
that has a transverse magnetic field, perpendicular to the axis of the prominence, which
is bipolar and a longitudinal magnetic field, parallel to the axis, which varies with the
heliocentric distance only. The current that produces the bipolar field is below the solar
surface; it is to be accounted for by a couple of magnetic monopoles on the photosphere.
These monopoles are chosen to be line monopoles to make the problem two-
dimensional. The current that produces the longitudinal magnetic field is in the corona.
The coronal current is in magnetohydrostatic equilibrium with a stratified gas pressure
of the coronal gas which is acted upon by solar gravity.

The prominence loop carries helical field lines. The helical magnetic field in the
straight prominence is represented by

2

1/2
B = l:Bo(l - ‘g*z) + l¢%,u./0q (1)

in cylindrical coordinates (z, q, @), with the azimuthal angle ¢ measured from the radial
line pointing downward (u being the magnetic permeability in mks units). The axial
component decreases from the axial value B, at the axis ¢ = 0 to zero at the boundary
q = Q. The azimuthal component increases from zero at the axis to the boundary value
Bg =1u,0 at the boundary. The total axial flux is Y. =2nQ2B, and the total
azimuthal flux is $Q2u/, per unit axial length. This helical magnetic field is produced
by the current density

Je=1Jy+ 1,150 __ 4/Q (2)

Q (1-4%Q%"?
which has an axial component that is uniform and an azimuthal component that
increases from zero at the axis to infinity at the boundary. The total axial current is
Iz = nQ?J, and the total azimuthal current is 1~ ' B, per unit axial length. The Lorentz-
force density

BS 1
Je xBg =1, (ﬂ_lao - E.UJOQ)% (3)
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acting at various mass elements of the prominence is in the radial direction, perpendicu-
lar to the axis of the prominence loop. It increases from zero at the axis to
pB3/Q ~ JuJ3Q at the boundary, in proportion to the radial distance. The axial
current produces a pinching force toward the axis whereas the azimuthal current
produces an anti-pinching force away from the axis.

The immersion of the prominence loop in the coronal medium causes a polarization
current that keeps the internal field lines of the prominence separated from the external
field lines of the corona. The induced current, which is concentrated in a thin peripheral
layer by virtue of the high electrical conductivity of the solar plasma, produces a
magnetic field that makes the ambient field tangential by cancelling the radial com-
ponent of the coronal field on the interface and essentially doubling the azimuthal
component there (Yeh, 1983). With the coronal mass density p_, the coronal gas
pressure p_ , and the coronal magnetic field B.,=1B_,+B_, pre-existing at the site
of the prominence, the ambient magnetic field on the outer surface of the current layer
is

Me

’BA(¢)=lzB;c”lFQ+1¢2(1¢'Bxl)fq=g+1¢2nQ (4)
The boundary magnetic field on the inner surface is
I
By(¢) = 1,5 (5)

2nQ

The polarization current, given byir=1_4u"'(B, - B,) per unit circumferential length,
shields off the coronal field from permeating into the prominence. Across the massless
layer of peripheral current the sum of gas pressure and magnetic pressure is invariant.
The ambient gas pressure

PA@)=Pcl,zp - (6)

on the outer surface is essentially equal to the pre-existing coronal gas pressure at the
periphery since the gas pressure in the exterior region is hardly perturbed by the intrusion
of the prominence. The boundary gas pressure

Po(@) =pelgap+3pu "B |, o+ 2u7'B% |, _pc08% ¢ +

Ig
—B - 7
+7rQ wollqg=gCOS @ N

on the inner surface has a circumferential inhomogeneity which is spatially transformed
from that of the ambient hydromagnetic pressure. The gas pressure inside the promi-
nence is well represented by

2
Pe(q, @) = [po - (Po + %#_ 1B§ol|)fq=0] (1 _'g—z) +0,.(q, @) +

taTBL (0. 0) v u B2 (g, 6) +



2
+u"B§qu=o<2écosz¢— 1) +

2
. q !
+ U I(Bgoqu=Q—B;L|Q=0)ECOSZ¢+nngx-L’q=QCOS¢‘

It varies from the axial value Po at the axis to the boundary value Pg. The gradient of
this gas pressure yields the force density

I.B
“Vpe=-Vip, +u7'BL +iu-1B2 )1 B

o L ,r=r0

nQ?

+

2p, - (ZPao +u IBgoH)|r=r0 9
) 0 0
ignoring insignificant terms. The term proportional to ¢/Q represents a radial force
density that results from the difference between the internal gas pressure and the
circumferential average of the external hydromagnetic pressure. The other terms, result-
ing from the circumferential inhomogeneity of the ambient hydromagnetic pressure,
represent the spatial spreading of the hydromagnetic buoyancy force. The latter
amounts to 1,p. GMy/r; + I x B_/nQ? + LIu~='B2 | /R.by virtue of the magneto-
hydrostatic state of the coronal medium (see Equations (24) and (25) for the definitions
of R. and I'). The coefficient I' has the value of 2 in the above elucidation.

The prominence moves with the velocity

+1

,  9)

ugp =1, + qu%, (10)

which consists of a translational velocity common to all mass elements of the promi-
nence loop and an expansional velocity proportional to the distance from the axis. The
translational motion is driven by the part of the force density that is uniform and the
expansional motion is driven by the part of the force density that is in various radial
directions. The former part includes the gravitational force exerted by the Sun and the
hydromagnetic buoyancy force exerted by the surrounding medium. The latter part
includes the Lorentz force that results from the interaction among the internal currents
inside the prominence and the gradient force that results from the pressure difference
between the internal and external gases.

The dynamical evolution of the prominence depends on its inertia. We assume that
the mass density is uniform over the cross section, ignoring the higher-order effect of
the spatial variation of the mass distribution. The value of mass density p. changes in
time.

3. Governing Equations

A prominence which is located initially equidistant from the two magnetic line
monopoles will remain so when its heliocentric distance changes temporally (Figure 1).



The prominence loop is characterized by eight parameters: r,, Q, Uy, V, pg, By, Jy, and

e :I'he characterizing parameters evolve in accordance with the differential equations
% Yo = Ug , (11)
% 0-v, (12)
pE%uO=—pEGZO+prZO+JOBxL+ru—_l£}—J‘, (13)
pE%V=2p0 +5—185_2px+u‘_lBszﬂ +%#J<%Q2’ (14)

supplemented by the temporal invariances of total mass, axial magnetic flux, azimuthal
magnetic flux, and total thermal energy:

nQ%0y = Mg, (15)

$nQ’B, = ¥g, (16)

L2 1 1

ZQ J() = “—IEw (17)
dr

InQ2 43 Apy + 3(p,. + 34 'BT )] = Eg. (18)

For a prominence to be initially in stationary equilibrium with the surrounding coronal
medium the requisite current density is

- GM -!'B
Josz puc 20__ I"l‘l' x L (19)
B, ry R

[

in terms of the mass density (or the requisite p. in terms of the current density) and
other quantities. The requisite magnetic field, in either direction, is

By=+Qup, + B>, + %#ZJ?)QZ ~ 2upy)'? (20)

in terms of the gas pressure (or the requisite p, in terms of the magnetic field) and other
quantities. The first constraint makes the upward hydromagnetic buoyancy force exactly
balance the downward gravitational force. The second constraint makes the outward
forces due to the gas pressure and the azimuthal current of the prominence exactly
balance the inward forces due to the hydromagnetic pressure of the ambient medium
and the axial current of the prominence. These two constraints are depicted in Figures
2 and 3, which show the required values of 3uQJ, and B, for various values of r,, Q,
Pes Pos P Tor Boys and B |, in the neighborhood of the equilibrium values used
in the examples (see Section 6).
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Fig. 2. Required values of %pQJﬂ and B, for an equilibrium prominence with various values of ry, Q, pe.
or p,.

4. Coronal Medium

We choose the line monopoles for the bipolar magnetic field to have strengths of + ¥,
and angular separation of 26,,. The two monopoles produce the bipolar magnetic field

B.,.=1B_, (21)

in the midplane between them. Its direction, from the positive monopole to the negative
monopole, is perpendicular to the midplane. Its magnitude is
b 49 Rg sin 6,,

B, =-u (22)
T o 2rRg cos 6,, + R

at a heliocentric distance of r. There the associated magnetic pressure has the gradient

~IBZ
BT e (23)

C
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Fig. 3. Required values of 1uQJ, and B, for an equilibrium prominence in a coronal medium with various
values of p.., T, B, .,orB,_, .

in the vertical direction, with the radius-of-curvature

R - r? = 2rR cos 6y, + R

<

(24)

N |~

r - Ry cos 6,

for the circular field line. (By virtue of the current-freeness of the bipolar field, the
gradient force of its magnetic pressure is exactly opposite to its tensile force density.)
This magnetic pressure gradient is enhanced by a factor

2
(- QYg2)[(1 - Q%% + 4(0%ql,) sin? Par]

by the polarization current

r

(25)

2944(Q* + q3,) cos ¢ - 4Qgj, cos ¢,

(% - 20qy,cos(¢ - ¢ur) + 43,1 {02 - 20q,,cos(d + poy) + 431
(26)

iP= l:u—‘Bac.L
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- Here g5, = (r§ - 2r,R, cos 6,, + R%)'2 is the distance from the prominence to either
monopole and ¢,, = arc sin (Ro sin 6,,/q,,) is the azimuthal angle for the monopole,
The field strength B L« Increases with ¥,, and becomes maximized when cos 6, is
equal to 2rR, /(r? + R3%). In terms of the field strength on the solar surface midway
between the two monopoles, the monopole strength has the value

Il -cos @
¥, =27 -0 Y RoBoy 1, ny - 27)
sin 8,,
- The monopole strength ¥\, and the separation angle 26,, may undergo temporal
. changes.
s We choose the longitudinal magnetic field

B, =1B_, (28)

produced by the coronal current to be horizontal. The associated current density is
o Lu='dB_ /dr. It provides a magnetic force in the force balance
d 2

GM,
_— . +% -IB . = 1%
dr(pf, HT B ) =p. 2

(29)

between the gravitational force and the gradient of hydromagnetic pressure. In addition
to the equation of force balance, two more constraints are needed in order to determine
the vertical variation of the coronal mass density, gas pressure, and longitudinal -
magnetic field. We shall assume that the gas pressure varies in proportion to the mass
density and the magnetic pressure varies in proportion to the gas pressure, viz.,

e Ir:
I =upx, | (30)

|

B2 .| _
Bzﬂ =L“"‘%Rop_£_ (31)

I,'r=Ro

These assumptions ensure that the pressure and mass density decrease with the helio-
~ centric distance. They allow us to calculate the mass density by numerical integration
of the differential equation

d . l GMO pac
dr l+%/’t—leler=Ro/p;c-lr=RO kT, r

(32)

from the solar surface. The ratio P~ /Py divided by the gas constant of the solar plasma
is the constant temperature T of the coronal medium.

5. Conditions for Upward and Outward Accelerations

In order for the translational motion to have an upward acceleration away from the Sun,
the hydromagnetic buoyancy force must overcome the gravitational force. The former

ONGINAL PAGE 18
OF POOR QUALIPY
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will exceed the latter if the bipolar field is sufficiently large so that

1 GMO PE — Px

Bw-L>1 1 -1 272 1/2 2
2t e+ T 'GMy(pg - p)/rgJaR, ] o Jo

(33)

On the other hand, in order for the expansional motion to have an outward acceleration
away from the axis, the outward force must overcome the inward force. The former will
exceed the latter if the surrounding medium has a hydromagnetic pressure sufficiently
small so that
- - 1
Po 307 B <po+3n”'BE - 1307 (34)

Upon the use of the equilibrium values at 1 = 0 and the conservation invariants, the
condition for upward acceleration can be written as

B_., >B_ | (r0|,=0>21‘(Pw/p5|[___0)(Q/Q‘z=0)2 (35)
oL xLtli=0 1= policol/Pel =0

o

if we ignore the higher-order part of the diamagnetic force associated with the pre-
existing gradient of the coronal magnetic pressure. The condition for outward accelera-
tion can be written as

_ _ _ Ql,-0\"”
Pe + 3l ‘Bin<{pxl,=o+%u 'BZ |, -0+ 3 ‘B%|,=o[( éo -1+

4 2+4/3
+éuJau,_=oQ21,=o[1—(Qf )ﬂ}(%) 66

It follows from the inequality (35) that in the region where p__ is small, the translational
motion will have an upward acceleration when the bipolar magnetic field encountered,
B | (), is not less than its initial value by a factor of (ry],_o/7,)>. On the other hand,
it follows from the inequality (36) that the expansional motion will have an outward
acceleration in the region where p_ + 3u~ 'BZ | is less than its initial value when Q(r)
is less than Q[,_, and in the region where p + 3u~'B2 | is sufficiently less than its
initial value when Q(z) is greater than Q|,_,.

6. Examples

In mks units, the magnetic permeability has the value y = 4n x 107"T>*m?J ~ !, the
gravitational constant times solar mass has the value

GM = (6.67 x 10~ "' N m? kg ~2) x (1.99 x 10*° kg),
and the gas constant for the proton-electron plasma has the value

K =(1.38 x 1022 J deg ™ ')/4(1.67 x 10~ 27 kg + 9.11 x 10~ ! kg).

ONGINAL PACE B
OF POOR QUALITY
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TEIEL CALCLLATTONS OF THE RISING MOTION OF A PROMINENCE Loop 34>

To facilitate the numerics, we choose to measure time, length, and magnetic field in the
units of | hour, one helioradius, and ]G, respectively, viz., Ler = 3.6 x 103 s,
Tref = 6.96 X 108 m, and Bor=10"*T. We further choose to measure speed, masg
density, pressure, current density, and temperature in the units of Veet/traps
(u='BZ,) (Feet/trer)?, noBL I [Bref/rref’ and (Free/trer)?/K. Namely,
Urep=193.3km s~ 1, Prer = 2.129 x 1013 kgm-3 (corresponding to 1.274 x 108 ¢lec.-
trons — em=3), 5~ 7958 X107 Jm-3, Jrer= 1143 x 10-7 A m~2  and
Toer=2.263 x 105 deg. In these hormalized units, henceforth, both the magnetic perme-

(4n x 10-7T2 3 - I)/(Bmf/Jrefr,,.,f),
and the gas constant, given by

(1.65 x 10*J kg1 deg - V(w2yT,,),

refl

have the value of unity whereas the gravitational constant times solar mass has the value
of 5.102 helioradjus? h "2, given by (1.333 x 10203 B /((ATEINY

For the Mmagnetohydrostatic coronal atmosphere, we choose a mass density of
3 x 10° electrons cm~3 g temperature of 2 x 106 K (hence, T, = 0.8838) and a longi-
tudinal magnetic field of 2 G at the solar surface. For the Mmagnetic monopoles, to have
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monopoles, we choose
Yy =5497G helioradius, 4,, = 10°.

The calculated profiles are shown in Figure 4.
For a stationary prominence loop, we choose a height of 5 x ]0* km, a radius of

2 x10°km, a mass density of 5 x 10!! electrons cm =3, and g temperature of
5 x 10*K so that:

ro = 1.0718, Q = 0.02874, Pe = 39242, Do = 86.704.
At the site where the prominence resides we have

Po =16.535, p = 14.614, B, =1.676, B, =8.054.
The conditions of force balance require

Jo = 2080.9, By = 40.574.

In other words, for the prominence loop to be in stationary equilibrium with the
surrounding medium, it must carry a total axial current Tg0f 3.0 x 10" A and carry an
azimuthal current that sustains a total axial magnetic flux ¥, of 3.4 x 10'2 webers.
These values are within the range of typical values for quiescent prominences

i
-18¢° -9 0° 90° 180°

-1000~

-1500

—=2000

Fig. 5. Peripheral distribution of the polarization current in the equilibrium configuration.
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= (Tandberg—Hanssen, 1974). It is seen from
o I
- Pr Mo _ 17428.7,  p. Mo _ 73.61, £y _ 16759.7,
ra ré nQ?
-1p2
- r <L = 5954
~ that the gravitationa force is largely balanced by the diamagnetic force (the part due

i IH!
ik

= 0.42°%,. On the other hand, it is seep from
L Po=86.704, L -1p2_ 823.14, Lpp2. 893.82,
Po=14615, 1,- ‘B2, = 1.405

_ helioradii helioradii

10 0.05
8 0.04
' 6 0.03 Q
L

.. 4 0.02

2 0.01

o v
- 0 0 | ; , ]
6 8 10
t

t hours hours

helioradii /hours helioradii/hours

3x1d i 105
8x10*
_lB 2
Lo ts BS
0

6x10*
~ln 2
| ! ! [
6 8

0 2 4

ax1¢*

10

t hours t hours

Fig. 6. Evolution of the prominence as the monopole strength increases,
withd ¥, /dr = 20 G helioradius h~ 1.
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-~ that the pinching force of the axia] current is largely balanced by the anti-pinching force
of the azimuthal current and to a lesser extent by the interna] gas pressure. The ambient
hydromagnetic pressure provides only a very small pinching. To facilitate comparison,
these values may be translated to 2up..)'"* = 5.4063 G, 31T, 0 = 29.903 G, and
1 (2upy)'? = 13.168 G. The plasma beta at the axis is 0.1053. The transverse projection
[ of the field lines in the equilibrium configuration is as shown in Figure 1. With the ratio

ue/ ¥, = 0.9684, the bipolar field has two neutral points located at g = 0, 187,

¢ = + 118.7°. Figure 5 shows the peripheral distribution of the polarization current with

prominence current in the lower periphery [¢| < 82.6° and flows in the opposite
- direction in the upper periphery. It is zero at the two points where the two neutral points
would be located in the case I happens to be zero. Of course, the total polarization
current sums up to zero. ‘

€

helioradii

10[‘

|
diaai |y

ol

"
oo

£

0 6 8 10
-02tL W Y

t hours

Fig. 7. Evolution of the prominence with various values of d ¥, /de.
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¥, =200G helioradius h-1 fo O<t<10n,

zation current induced on the photosphere wi]l €xert an additiona] upward force on the
Prominence current in the amount of u/2R2 /2 2ro(r§ = R2) (cf. Van Tend and Kuperys,
1978). Inclusion of this force will modify Equation (13) to

d GM,, GM,, p'BL |
— Uy = - + Po +JB, +T +
pEdt 0 Pe 2 P 2 0P | R
2p2
+ g& (37)
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Fig. 8. Evolution of the prominence when the mirror-current effect is incluced in the hydromagnetic
diamagnetic force, with d ¥,,/dt = 20 G helioradius h = ' Dashed lines indicate LZe corresponding evolution
without the mirror currents.

Accordingly, for the prominence in the illustrative examples, the requisite current density
reduces to J, = 1426.5 and the requisite magnetic field reduces to B, = 26.44. With the
monopoles strengthening at the rate of d¥,,/dr = 20, the prominence rises slightly
slower. See Figures 8. This is due to a smaller prominence current. The reduced B
is not sufficiently compensated by the added HIZRE 2 ry(r2 - R?%). This calculation

SEIVES as an a posteriori justification for the simplified model by Viin Tend and Kuperus
(1978).

parameter values.
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Abstract. We investigate, via a two-dimensional (nonplanar) MHD simulation, a situation wherein a bipolar
magnetic field embedded in a stratified solar atmosphere (i.e., arch-filament-like structure) undergoes

Shearing Instability’, with a growth rate of about \/-8_ V.a, where V, is the average Alfvén speed and g !
is the characteristic length scale. The growth rate grows almost linearly until it reaches the same order of

to arch filament eruptions (AFE) and coronal mass ejections (CMEs).

To illustrate the nonlinear dynamical shearing instability, a numerical example is given for three different
values of the plasma beta that Span several orders of magnitude. The numerical results were analyzed using
a linearized asymptotic approach in which an analytical approximate solution for velocity growth is
presented. Finally, this theoretical model is applied to describe the arch filament eruption as well as CMEs.

1. Introduction

More than a quarter century ago, Gold and Hoyle (1960) suggested that horizontal
photospheric motion can move the footpoints of magnetic field lines and twist the flux
tubes because of the highly electric conducting plasma at the photospheric levels. A
number of investigators (Tanaka and Nakagawa, 1973; Low and Nakagawa, 1975;
Low, 1977; Klimchuk, Sturrock, and Yang, 1988; Klimchuk and Sturrock, 1989)
studied the evolution of force-free fields and jts role in energy storage (build-up) for solar
flares.

* Permanent address: Purple Mountain Observatory, Nanjing, China.

Solar Physics 134; 353-377, 1991,
© 1991 Kluwer Academic Publishers. Printed in Belgium.
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All of these studies were limited to the case of magnetostatics; self-consistent dynami-
cal effects were ignored. Recently, Wu, Hu, and Nakagawa ( 1983), Wu, Hu, and Krall
(1984), and Wu et al. (1986) presented a self-consistent MHD model for the purpose
of examining flare energy build-up and wave-mass interactions due to shear and
converging-diverging motions at the photospheric level. More recently, Mikic, Barnes,
and Schnack (1988) and Biskamp and Welter (1989) have presented numerica] results
on the dynamical evolution of a magnetic arcade type due to shear motion. However,
their models are restricted to symmetric boundary conditions, while in this study
self-consistent boundary conditions were used (see, for example, Wu and Wang, 1987;
Nakagawa, Hu, and Wu, 1987).

In this paper, we use the time-dependent MHD simulation model devised by Wu, Hy,
and Nakagawa (1983) to reveal a nonlinear solution for the evolution of the magnetic
field configuration driven by shear motion. In this solution, we find that the plasma
velocity in the vertical plane perpendicular to the shear, grows exponentially in a process
which can be analytically described by a linear MHD instability. This upward velocity
steadily increases until it reaches the average Alfvén speed. At later times, a nonlinear
instability sets in. A field line pinch occurs in the lower shear region in the numerical
results. At the same time, mass and field line expulsion appears in higher parts of the
region and the closed field tends to open locally. We suggest that these new effects (i.e.,
mushroom cloud-like flow, pinch, and expulsion) can explain the formation of current
sheets, the opening of a closed bipolar field, and the ability of particle streams to escape
from the solar surface. Specifically, we suggest that this model applies to the eruption
of arch filament systems (AFEs) and their relation to non-flare-associated coronal mass
ejections (CMEs). The mathematical description of the model and numerical results are
given in Section 2. A general physical interpretation of these results is presented in
Section 3. An application of this model to specific coronal phenomena is given in
Section 4, and the concluding remarks are presented in Section 3.

2. Numerical Simulation

In order to illustate how shear-induced non-equilibrium occurs, we use a theoretical
model in which a two-dimensional bipolar field undergoes a steady shear velocity at the
footpoints of its magnetic loops. The shearing motion is sketched in Figure I1(a), and
the initial bipolar field is shown explicitly in Figure 1(b).

First, we perform a simulation of the dynamic response of the bipolar field to the
shear. Then we use an analytical method to interpret the simulation results. The
simulation model is based on a two-dimensional, time-dependent, MHD model (Wu,
Hu, and Nakagawa, 1983: Hu and Wu, 1984) with an improved FICE (Full-Implicit-
Continuous-Eulerian) numerica] scheme (Wu and Wang, 1987). Symmetrical side
boundary conditions have been replaced with non-reflecting boundary conditions.
This implies that the physical phenomena are determined by the solution at a specific
time and are not determined by the specified boundary conditions as in the case
studied by Mikic, Barnes, and Schnack (1988). The physical conditions on these
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Fig. 1. (a) Sketch of a two-dimensional bipolar magnetic field that is subjected to a footpoint shearing

motion as indicated by the arrows. (b) Explicit bipolar magnetic topology prior to the shearing motion (see

Equation (1)). The photospheric boundary extends to [x] = 8.4 x 10% km in both directions from the origin.

The vertical extent into the corona is to ¥ =8x 10°km. The positions y = y,, Y2,..., Yo indicate the

vertical levels at which horizontal surveys will be shown of various physical quantities during the shearing
motion at the footpoints.

two side boundaries are determined mathematically through compatibility relations
that are given in detaj] by Wu and Wang (1987). Thus, the computation domain
(le., x| <84 x 103 km, 0<y<8x 103 km) consists of three free non-reflecting
boundaries (j.e., top and sides), while the bottom boundary ( = 0) is treated with the
method of projected characteristics (Nakagawa, Hu, and Wy, 1987; Hu and Wu, 1984).
The basic equations for this model are the time-dependent MHD equations with infinite
conductivity, no viscosity and Symmetry in one direction (Wu, Hu, and Nakagawa,
1983). Solar gravity, plasma pressure gradients, and compressibility are explicitly con-
sidered. None of these characteristics were considered in the work of Mikic, Barnes,
and Schnack (1988), and Biskamp and Welter (1989) have only considered'compressi-
bility in a special way.
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The initial conditions are (see Figure 1(b)):

gy
Po=p.Xp|l —— ], T, = TC s b, =0,
° ( RT) ’ :

[o

B.\‘O =BO [Cos(ax)]e—ay, B’O = _BO [Sin(ax)]e_ay, BZO = O, (1)

3

a="m2xo, xo=84x10km, g=271x 10*cm s 2,

The plasma parameters are taken to be po=1.67x10""?gem~2and T, = 10° K. The
scaleheight (b~ ' = RT,/g ~ 6.1 x 103 km)anda~' ~ 6.3 x 103 km are the same order
of magnitude. These parameters are representative for solar conditions at the higher
chromosphere and lower corona. The computation grid points are:

X= =84 x10°+ (i- Ddx, i=1,2,....22.
ve=(i-Ddv, j=1,2,.. 11,
dx = Ay = 8 x 102 km ~ 1 arc sec .

The non-reflecting boundary conditions, as noted above, are used for the top (» = y,,),
left-hand side (x = x,), and right-hand side (x = X52)- The conditions at the bottom
boundary (y = y,) are taken as follows:

p=p., T=T, B, = By, v.=0, but ty, 0, #0,
w. sin(ax) if x| <52 x 10°km,

(6.8 x 10° - |x|) ' ,
b, = 16 x 10° w. (sgn x) sin(5.2 x 1034) )

if 5.2 x 10° < |x] <6.8 x 10 km ,

0 if 6.8 x10°<|x] <8 x 103km .

The other physical quantities (p, T. v, B, B_) are computed by means of the
compatibility equations for the non-reflecting boundary condition which assures the
consistency of the numerical computation.

In order to understand the general physical behaviour of the nonlinear solution from
the mathematical model, we have performed three numerical experiments. These three
cases use combinations of magnetic field intensity and magnitudes of the shear velocity.
The results for these three cases are described as follows.

2.1. LARGE PLASMA BETA (Bo ~ 154)

In this numerical experiment, we choose the initial plasma beta (8,) to be 154 where

o 1s defined as 3, = p,/(B2/87) with Po and B, being the plasma pressure and magnetic
field strength at the lower boundary (i.e., y = y,). This is not a physically realistic
case for a solar active region; but it does provide a basis for comparison with the other
cases. This case corresponds to a local, exceedingly low, magnetic field strength of
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2.12 G at the origin, x = y =0, as shown in Figure 1(b). The shear velocity, w_, was

taken to be Skms~'. Figure 2 shows the evolution of the magnetic field i
to the shear motion at 200s <7< 3200 s. It is useful to examine the evo]
times (defined as T4 = [4dy (or 4x)]

behaviour at various Alfvén

200s 2000s
(@) [ ] (e)
600s 2400s
(b) o) m
1000s 2800s
(c) (9)
7N\
1600s 3200s
(d) (h)
N

Fig. 2. Magnetic field line evolution as a fu

B.~ 154, T4~ 1700s

nes due
utionary
/Va = 1700 s where

nction of time during induced footpoint shearing motion for

case (i): B, = 154 and the Alfvén time, 7, = 1700 s. The horizontal axis represents the distance from
X1 .. Xp; as shown in Figure I(b).



V= Bo/\/Fp0 = 4.6 km s ~'). During the early stages of evolution (that is, within the
first Alfvén time), the magnetic field lines rise together in an orderly fashion in response
to the shearing motion. This behaviour is also presented in the analytical solution of Low
(1981) and the force-free numerica] solutions of Klimchuk and Sturrock (1989) although
they do not consider dynamics and gravitational effects. After the first Alfvén time
period, the evolutionary behaviour of the field lines becomes more complicated.
Nonlinear interactions take place between the shear-induced mass motion, magnetic
field and gravity with the result that in some regions the field lines are bunched together
to form a current sheet (see Figures 2(g) and 2(h)). Further understanding of these
phenomena is provided by the representation of the shear induced mass motion as
shown by the vectorial velocity field in Figure 3. Notice that the inclusion of magnetohy-
drodynamic effects, in contrast to the kinematic study of Low (1981), causes upward
mass motion in addition to the up-lifting of the magnetic field lines because the plasma
has to move with the field lines under the conditions of infinite conductivity as
manifested by the upward component of Lorentz force. Note, however, that some of
the uplifted plasma (in the region displaced from the origin) slows down under the action
of gravity, reverses direction, and falls back to the surface. Most of the motion, however,
is upward. These upward mass motions are also found by Mikic, Barnes, and Schnack
(1988) and Biskamp and Welter (1989). However, these workers did not include
compressibility, pressure gradient, and gravitation as noted above. The present study,
which does so explicitly, demonstrates a different evolution in the later stages. i

This induced upward motion can be explained via our governing equations. When
we introduce the shear motion (v.), an axial field component, B_, will be induced through
the induction equation. The additional magnetic field will cause an additional magnetic
pressure gradient in the momentum equation. This additional pressure gradient induces
both the horizontal () and upward (v,) motions as shown in Figure 3. Subsequently,
the mass motion interacts with both the magnetic field and gravity. Closer to the surface,
the combined effect is dominated by gravity, and the result is the cluster of magnetic
field lines in which a current sheet is formed as shown in Figures 2(g) and 2(h) at nearly
twice the Alfvén time.

Figure 4 shows the plasma properties (i.e., density temperature, and pressure en-
hancement in terms of percentage change from the initial values at each level) at the end
of this simulation (¢ = 3600 s; more than 27, ). These properties are shown at various
heights (y,, y,, y,, Ye» and y,,, as shown in Figure 1(b)) as a function of horizontal
distance. These results also help to explain the magnetic field line distribution. That is,
the high density magnetic field region shown in Figures 2(g) and 2(h) within the
mid-horizontal range (at the altitudes: y,, y,) corresponds to the increase of plasma
density by 20 (i.e., dp/p ~ 0.2), temperature decrease of 20%; (i.e., 4T/T ~ - 0.2), and
magnetic field strength (4B/B,,) increase by a factor of 3. These properties are similar
to those for a current sheet. With these properties in mind, let us now turn our attention
to the plasma flow patterns as shown in Figure 3. The plasma flow rises initially above
the zone of maximum shear velocity. At later times (say, from 1000 to 2000 s), the
plasma flow moves toward the central region in a pattern reminiscent of a mushroom
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and pressure (dp=p- Po(¥)) normalized by a proper valye as shown at the end of the simulation (case (i):

By = 154), ¢ = 3600 § which is more than two Alfvén time periods. The distributions are plotted along the

entire horizontal scale of the domain and at various levels; Yis V2, ¥4, Y, and Y10 as shown in Figure I(b).
All the values are normalized by a reference quantity as indicated.

2.2 INTERMEDIATE PLASMA BETA (ie., Bo = 1.54)

In this case, our simulation s performed with an initially modest magnetic field strength
(Bo = 21.3 G) and with a shear velocity (w.)of 15 km s~ ! ang Va~46.5kms~" The
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Fig. 5. Evolution of magnetic field lines and vectorial velocity fields at various times for case (ii): B, = 1.54,
The characteristic Alfvén time for this case is 7, = [74s.

(i.e., ~4 Alfvén times) after introduction of the shear motion. The corresponding
plasma parameters can be summarized as follows: the density decreases by about 509,
at the legs of the intermediate loops marked by the footpoints x,, x, and X as labeled
in Figure 1(b). Again, the pinch effects discussed for case (i) occur and a current sheet

is formed where the density increases by 257, ; the temperature decreases by 30%, ; and
the field strength increases by a factor of 2.
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2.3. Low PLASMA BETA (i.e., f, = 0.06)
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The characteristic Alfvén time for this case is Ty = 35s.
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higher than for case (i). We note that the time required to reach the maximum velocity
is much shorter than in the other two cases, '

In order to examine this phenomenon further, we plotted in Figure 7 the planar
maximum absolute velocity (i.e., (2 + v?)yZ,) in the neighbourhood of the apex of the
arcade as a function of time for the three different cases. We choose to plot this
parameter instead of the upward velocity, r,, because the representative parameter
[v2 + v2]"2 is related to our analytical analysis that is discussed later (and in the
Appendix). Actually, the numerical results show that the horizontal velocity, t..1s only
25%, of the vertical velocity, r,.. First, we point out the change of scales that was required
for the three cases (i), (i), and (iii). Second, we direct attention to the common features:
an approximately linear initial phase followed by a smooth transition to an explosive
upward mass motion. The latter phenomenon is representative of the upward regions
as discussed earlier. :

(@) Bo~ 154
10 |-
8 =
6 =
4 |
2 T
8 £ . | . i s 1 .
D X 0 1000 2000 3000 Time (s)
>u
7
O N
E)
S F (b) Po~ 1.54 () Bo~0.06
83
= AOF eoL :
30} 60 I
20} 401
10 20}
i | H 1 i I
0 200 400 600 Time (s) 50 100 150 200 Time ()

Fig. 7. Maximum vectorial velocity that is representative of the upward vertical mass motion for cases (i),
(ii), and (iii). Note the change of scales. The representative Alfvén times for the three cases (B, = 154, 1.54,
and 0.06, respectively) are T, =1700s, 174 s, and 35s.

It is interesting to relate these results to the magnetic field evolution. For example,
we direct attention to Figures 2, 5, and 6 where, in the early stages of the evolution, the
change of field lines is regular with a slowly ascending movement. This upward motion
is also present in the force-free analyses of Low (1981) and Klimchuk and Sturrock
(1989), and the numerical incompressible simulations of Mikic, Barnes, and Schnack
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speed for these three cases is 4.67 kms~1 46.7kms- ',and 232 km s - !, respectively.
The maximum footpoint shear motion, v_, is slow compared to the Alfvén velocity in
the latter two cases but fast compared with resistive diffusion in all three cases. Thus

shear-induced instability that could not be found in the earlier numerical simulations
that omitted compressibility, pressure gradient, gravity, and the different treatment of
boundary conditions. We sha]] return to this point later for further discussion utilizing
analytical results.

3. Further Interpretation of the Simulation Results

From the numerical simulation of all three cases, we observe that the shear-induced
mushroom cloud-like ascending movement can be ascribed to the out-of-plane com-

corresponding plasma flows. On the other hand, we notice that no B_ component is
generated near the origin (x =0, y = 0) due to shear. This leads to a downward force,
such that we observe the field lines being squeezed together to form a current sheet as
shown in Figures 2. 5, and 6. This point can be illustrated further by using a linear
approximation. The justification for the use of linear theory is seen from the numerical
results that show that the Initial stage of the shear-induced motion behaves regularly as
shown in Figures 2, 3, 5, and 6.

A closed form linearized solution for the induced field component B. is the following
(for the derivation, see the Appendix):

,fz‘ = ¢ e cos(ax) cos[Lax (e~ cos(ax))~ '] sin[(r + fo)Lay].  (3)
vV ATpy

This result expresses that the induced magnetic field B, rises from the lower boundary
(ie., y = 0)and spreads upward with a characteristic time scale Law,, where L is defined
by Equation (A.8). It could be noticed from Equation (3)that B_ decreases exponentially
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with respect to the increase of y (height), because the term, cos[Lax (e~ cos(ax))~ ']
in the central region, varies slowly with height.

Finally, the coefficient ¢, corresponds to the shear velocity (w..). The part of the total
upward Lorentz force (-J.B, = - 0/dy(B2/2)), that causes upward acceleration is
independent of the sign of the coefficient ¢, (orw,).

3.2. SHEAR-INDUCED INSTABILITY

From the simulation results shown in Figure 7, we found earlier that instability sets in
when the absolute maximum planar velocity exceeds the Alfvén speed. In order to
substantiate this claim, we performed a linearized analysis in which an approximate
linearized solution for the planar velocities (u, v) was constructed as shown in the
Appendix (Equation (A.13)). These velocities are as follows:

up =9 e sin(2ax),

87 -2 (4)
vy =0 e [l + cos2(ax)] .
The electric current along the z-axis can be estimated, to the first order, as
4
4 B, ¢B .
R S 16a°B, e~ 3% cosax f & de, )
c Ox oy

0

which means that the Lorentz force ¢ - '(J.B, - J.B,)leads to ascending flow, because
it has been shown in the Appendix that &' is always positive and has an exponential
growth rate as shown in Equation (A.16). We have identified this phenomenon as the
shear-induced instability since the numerical simulation results shown in Figure 7 are
consistent with the analytical analysis. It is further noted from numerical results that
the term -c~'J B, is always upward.

The results for the evolution of the magnetic field configuration shown in Figures 2,
5, and 6 show clearly the two-stage evolution that we discussed earlier. The first stage
of the evolution can be described by the linearized solution given in Equation (4). The
second stage of the evolution involves the pinching together of field lines in the region
where the shear motion was applied. If the three factors noted earlier (compressibility,
pressure gradients, and gravity) had been absent, we believe that our results would have
been similar to those of Mikic, Barnes, and Schnack (1988). Our current sheet, however,
developed horizontally, whereas their current sheet was vertical. We explain this
phenomenon by examining the distribution of upward component of the Lorentz force
(e, c7'(J.B, - J B.)). To illustrate this viewpoint, we use the results for B, = 0.06
because this case best resembles the real physical conditions in active regions. The
results are plotted in Figure 8. The left-most panels show the horizontal distribution of
the vertical component of the Lorentz force at different heights from y, to y,, (as shown
in Figure 1(b)) at 25 s after the introduction of the shear motion at the lower boundary.
A noted earlier, the Alfvén time for this case is ~ 35 s. This result clearly indicates the
first stage of the evolution due to the introduction of shear. All the forces are in the
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Fig. 8. Thetotal Jy-component of the Lorentz force perunitareaats = 25s,100s, and 213 s and at various
levels in the solar atmosphere (y =y, v,, ..., etc.). The representative Alfvén time for case (iii) is 35 < \nd
Bo =006, At 1= 1005 (about 37,) during the nonlinear stage of evolution, the Lorentz forces at the
intermediate heights have a combination of upward and downward directions that causes magnetic field
line pinching (see text). This pinch effect is more pronounced ats = 213 s (about 71,) at lower altitudes. The
horizontal axis represents the distance x, ... x,, as shown in Figure I(b) also shown for Figures 2-6.

upward direction which means that all field lines are lifted up in an orderly fashion. The
magnitude of these forces is of the order of 3 x 10~° dyne cm =2 The middle panels
show the resultant upward component of the Lorentz force at ¢ = 100 s which is about
three Alfvén periods. These results are reflected in the nonlinear nature of the evolution
in which the Lorentz forces have both upward and downward direction at the inter-
mediate altitudes.

This bi-directional nature of the Lorentz forces causes the field lines to be pinched
together in the lower regions as shown, for example, in Figure 6 for Bo = 0.06. This
particular feature is most pronounced in the results shown in the right-most panels
which show the vertical component of Lorentz force at t = 213 s; this is about seven
Alfvén periods after the introduction of the shear. We note that the vertical component
of this Lorentz force decreases at high levels, but, in lower levels (i.e., y, and y,), two
Vvery strong oppositely-directed vertical components of Lorentz force (~3 x
10~ 7 dyne cm ~2) appear. The force at y, is upward and the force at y, is downward.
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These two forces cause the field lines to be pinched together as shown in Figure 6(c).
Further discussion of this point will be included in the next section as part of a general
scenario for shearing motions of magnetic arches or bipolar regions.

4. Scenario

From these simulation results, supported by the linearized analytical solution, a physical
scenario is proposed for the formation of an ‘Arch Filament System (AFS) and its
eruption as part of a more general scenario for ‘Coronal Mass Ejections (CMEs). A
schematic representation of this scenario is presented in Figure 9. After introduction of
shear motion at a bi-polar region, all of the field lines will first be lifted up in an orderly
fashion due to the shear-induced upward Lorentz force before the absolute maximum
upward velocity reaches the local Alfvén speed; this is the linear stage of the evolution.
When this upward velocity is in the neighbourhood of the local Alfvén speed, the lower
parts of the magnetic field lines are pinched together, and an arch filament system is
formed. At the same time, the upper part of the magnetic field lines is pushed upward,
and a certain amount of mass is carried upward. This upward mass motion is shown
in Figure 10 in terms of contours of 4p and 4p that move upward at all but the lowest
gravitationally-bound heights.

Upv'vard
Movement

Negative Loreniz

oy
ya a0

Pinch
Positive
Force
Fig. 9. Scenario for the formation of an arch-filament system (AFS) and upper level movement outward
in the initial stage of a coronal mass ejection (CME) as a result of shear-induced instability.
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Finally, when this absolute upward velocity exceeds the Alfvén speed, the shear-
induced instability sets in as shown by the numerical results of Figure 7 and the
analytical solution in the Appendix (Equation (A.16)). In the following we compare this
scenario with the available observations.

Arch filament systems and coronal mass ejections have been investigated by many
authors (Bruzek, 1967, 1968, 1969; Bumba and Howard, 1965; Martres etal., 1966;

in Figures 2, 3, 5, and 6 where the apex of the magnetic loops is rising but their legs have
little lateral movement. It was further noted that the AFS has both descending and
ascending motions in loops. Bruzek (1968) attributed this phenomenon to the mass
injection at one leg and its return to the chromosphere via another leg that has opposite
polarity. On the other hand, shearing motion, if it has a line-of-sight component, would
always lead to a blue shift in one leg and red shift in the other. Therefore, observations

Doppler shift measurements which can easily, at least partially, be recognized as
complementary evidence of horizontal shear motion that occurs on both sides of the
neutral line. This statement considers the fact that the Spot group area is often not strictly
perpendicular to the line of sight of the observer; thus the Doppler shift velocity must
have an appreciable horizonta] component (Harvey and Harvey, 1976).

On the basis of our numerical simulations, the analytial solution and observed
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Fig. 11. Behaviour of n" and 7,. See Appendix (Equation (A.12)).

average life time of AFS. Thus, this simulation model may be appropriate to describe
the formation of AFS and the eruption which leads to some CMEs.

S. Concluding Remarks

We have used a time-dependent, nonplanar MHD model for a bipolar magnetic region
that was subjected to shearing motion at its foot points. The characteristic plasma beta
was varied over a wide range - from 154 to a more realistic value of 0.06. Common
features were identified for al] cases with the differences primarily occurring in the timing
of the events vis-a-vis the characteristic Alfvén times. An essentially linear, early phase
of upward mass motion was followed until the Alfvén speed was reached, and a
shear-induced instability is initiated. This nonlinear instability may be the basic
mechanism for arch filament formation and subsequent coronal mass ejections.

In our opinion, the early evolution in our simulation is in accord with quasi-static
evolution of magnetic arcades demonstrated by Klimchuk and Sturrock (1989). In their
work, a very low beta plasma was assumed, and therefore the magnetic field is unaffected

C-Z
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by pressure and gravitational forces. Our simulations are also in accord with the
dynamic evolution of magnetic arcades demonstrated by the numerical simulations of
Mikic, Barnes, and Schnack (1988) and Biskamp and Welter (1989) in both the early
and intermediate stages of this evolution despite their neglect of compressibility, pressure
gradient, and gravity. We did not find the reconnection and formation of an ejected
plasmoid, as Mikic, Barnes, and Schnack (1988) did, since we assumed electrical
resistivity and viscosity to be zero. During the late stages of the evolutionary develop-
ment, when the plasma velocities surpassed the Alfvén speed, our numerical simulations
demonstrate nonlinear instability and Catastrophic upward motion at high altitudes.

As a final remark, it can be shown that these numerical results are valid over a
wide range of parameters according to the scaling rule for dynamic similitude. For
example, the present numerical results, computed on the basis of Tp, = 10°K and
Po=1.67x 1072 gcm =2 can be scaled to initial conditions of T, = 105K and
pr=167x10""gem~3 by introducing a set of scaling parameters; r, = NZTN
Ly =ALy, v, = \/—}:uo, T, = AT, py = A" 'p,, P1 =Py, and B, = B, which leave the
governing equations invariant for a given plasma beta. In a recent study of similitude
theory, Wu er al. (1988) have shown that the present results also apply to the physical
condition represented by these different initial conditions.

As another example of the use of dynamic similitude, we may pose the following
question: if the footpoints are moved slowly enough that the evolution is quasi-static,
would the magnetic field closely approximate the static equilibrium states? Although,
we suggested above (as did Mikic, Barnes, and Schnack, 1988, and Biskamp and
Welter, 1989) that the answer is 'yes’, the reader is reminded of the values of the shearing
velocity v, used in the present studies (e.g., 15kms~!, maximum, for f, = 0.06) and
in the above-mentioned work (30 km s~ !, assumed by Mikic, Barnes, and Schnack,
1988, for f ~ 0.03). Although these maximum footpoint shearing velocities are much less
than the Alfvén speed, they are a factor of about 10 larger than observed photospheric
velocities.

In summary, we consider the results given here to be representative of a realistic
dynamical evolution of the posed physical problem of sheared magnetic arches and their
evolution into arch filament eruption and coronal mass ejections.

Finally, we remark on the relevance of our results to the observations of some CME:s
as reported by Harrison (1986). The major point of his work is that a small X-ray burst
is often found at the very onset of a CME, often followed by a large X-ray flare later
on during the CME. In the present work, the formation of the current sheet coincides
with the rapid increase in the velocity of the upper portion of the field lines. One could
interpret the latter, as already discussed, as the onset of CME, while the current sheet
formation could lead to a burst of energy dissipation (not shown here) which would be
visible as a small X-ray burst. The simultaneity of these two events is consistent with
the observations of Harrison (1986). This could be another indication that these numeri-
cal results indeed represent a basic mechanism for the initiation of CMEs.
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To obtain an asymptotic solution for the relationship between the footpoint shearing
_ _velocity, w, anq B. in the first stage (linear stage) of evolution during which pp T, B,
~-B, vary slightly, we write

(.

P=PpPot P, p=py+p,, T=T,+T,, B.=B,+B,,
BJ. = B)-O + B_vl s B: = B:l , v.=7p

X

(A.1)

v, =0

o=
xl1 v bz l'-l ’

g1 ] z

=

Twhere subscript 0 and 1 indicate the zero-order and first-order quantities. And, [0l
aly lva ] € By//4rp, = Alfvén speed, |B.,| < B,. Inserting (A.1) into Equations
—(2.4) and (2.7) formerly given by Wu, Hu, and Nakagawa (1983) and leaving out the

higher-order quantities, we obtain the linearized equations

- vy _ B, 0(B,,//4np,) + B, 5(821/\/ 4mp,) _é B,o B,
ot \/47po Ox \/47rp0 Oy 2 Jdnp, J4np,

B(le/\/47tp0)_ B v, B, Ov,

= + , A2
ot Vanpy x  \J4mp, dy (4.2)

where py = p.e~*, b = g/RT.. To solve Equation (A.2), we construct the auxiliary
_equations

-—

% * *
5(;)_, = B (4np,) 12 0(B] /a\/47rpo) + B,o(4mp,)~ 2 O(B? /a,/47rp0) ,
. : N »

(A.3)
* 4 * *
LS g ampy- 2 B s g gy O

Ot Ox dy
‘Substituting

i) )
v¥ + = v} -
oo ( 4mp, Fe o= 4mp,

2 2
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Equations (A.3) reduce to

oF+
ot

‘ oF* oF+
= By(dnp, )" 12 - ta=tr2)y (cosax ~ sinax ) ,

| , oF . OF~
= - By(4np,)~ '-/26‘(""’/2”’(—cosax —— + sinax “) :
(1

differential equations (Courant and Hilbert
as follows:

F+ = ¢(€“‘”’COSQX, [a)o +f(a_x) (e—achSax)_l+b(2a)_|),

F™ = y(e=* cosay, twy — flax) (e‘aycosax)—l+b(2a)°l)

b4

where

Wo = aBy(4np, )~ 172 Sx)= f (cosx')=b/2a g,
0

Considering the boundary value of v, (the nature of shearing) and using Equation (A.5)
we can find the following solutions:

b = cre”* cosax cos(L {)sin(Ly),

B* .
< Z ) =¢re"cosaxsin(L{) cos(Lp),
Vv 4mp,

where 7
{=(+ fo) o ﬂEf(ax)(é’—“yCOSax)“*”(2“)",_

ly, L, and ¢, are integration constants. Back to solving Equations (A.2) suppose L.y,

(B./\/ dnp,) satisfy the equalities (A.6) except that L, ¢, are now not constants but
functions of , y. Thus

Uap = ¢p(x, p)e—« cos(ax) cos(L(x, »){) sin(L(x, ), (A.7)

(, /irl ) = ¢1(x, ¥) e™* cos(ax) sin(L (x, Y)C) cos(L(x, y)n).
TPy

Inserting (A.7) into (A.2), ¢, and L can be determined uniquely by solving two ordinary
differential equations. First, L satisfies the equation

cosax 6-[' - sinax = = Q(x, y, L),
x Ay

Qx, v, L) = - (bj4) sin(ax) sin(2L7) sin(2L ) x (A.8)
x [Tsin(2Ly) - nsin(2LY)] -1,
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with boundary condition L ly=0 = L(x). After L has been found, (In¢,) can be obtained
in the same manner using the following equation:

cosar) W _ () 90D 15 o M1 Ox, 3, L).
Ox dy

(A.9)

In fact, we only apply (A.7) to explain the physical nature in the lower shearing region
where p, ~ 0.8p_, therefore [ and ¢, can roughly be regarded as constants.

It 1s difficult to find an asymptotic solution for v_ and v,. Let us consider case (iii)
of strong magnetic field, in which the inertial force and - Vp and pg can safely be
ignored. Inserting (A.1) into (2.2) and (2.3) of Wu, Hu, and Nakagawa (1983), the
linearized equations are given as follows:

é l )
pO UXI = B_y (aB.tl - aByl) - i le aBZI )
ot 4n dy 0x 4 0x
(A.10)
- 0Ov, 1 ¢B., 0B, 1 0B,
Po —=-— B, T L )T by —,
ot 4 oy 0x 4rn dy

where the terms

- i B., _CBZ“I ’ - _l_ B, 5__le ’
4n Ox 4r dy

which are second-order quantities, must be kept in view of actual mathematical manipu-
lation. From (A.7) the partial Lorentz force can be written as

~(4np,)~'B., % =(cfa/2) (0 + n)e 2 sin(2ax) sin*(L{),
X (A.11)

- )" By T2 = (cFad) e (1 + cos(2an)] sin*(L0),
y

where ' and #, are slow-varying functions of x, ». The representations for p’, n, are
very complicated in the case with gravity, but we only deal with the lower central part
of the domain where p ~ const. Thus, the gravitational effects could be ignored in
Equation (A.2), then leading to the solution, 1 ~ ax e® (cosax)~, B., ~ B*. There-
fore, n” and 7, asymptotically approach the case with no gravity. In such case »" and
1, take simple forms as

n" ={(cosI)* + HcosMsinll,
n = Le%cosMsinll (sinax)~!, (A.12)

IT=Le%ax(cosax)~ ",
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Figure 11 shows the behaviour of " and #,. Note that if L. e® is less than 0.3, then
0 <n <4 ~ 1. Therefore we will pay no attention to the difference between n and
7" + n, within the range |ax| < n/4. (A.11) reminds us of analogy between shearing
velocity and force, so we Suppose velocity having a mushroom-like form as

ey = 0 e7 ¥ singx, V=29 e 2] 4 cos(2ax)], (A.13)

where &’ is a function of 5, x, y (but weakly depends on x, ) being determined later.
Inserting (A.13) into the linearized equations of (2.5) and (2.6), of Wu et al. (1983) the
time variation of current J.1/c can be found as

e (%i - %) = 16a*B,& ¢~ 3o cos(ax) . (A.14)
cr\ Ox dy

In deriving Equation (A. 14) the weak dependence of § on x, y has been used. Differen-
tiating (A.10) with respect to 7 and inserting (A.14) and (A.11) into it and then letting
it go to limitation when ¥ g0es to zero, we obtain one equation

2

- 0|, .0=802a2 ly~o+(ciaj2)y ly-oLlw, sin[2Lwy(r+1,)] (A, 15)
Ct

to determine ' uniquely (here v2 = Bi/4np,). Noticing &', »’ only weakly depend on
¥, ¥, Equation (A.15)can be regarded as an ordinary differentia] equation and, therefore,
can be easily integrated with respect to . Giving the initial condition: O 1,._y=0,
do’/dt], _, =0 when ¢ = 0, we obtain an asymptotic solution as

0'lyw0 = [(a+ B)2] exp(\/B vaat) + [(« B)2] exp(- /8 v.ar) -

y Sin[2L wy (¢ + 1,)]

_ (A.16)
sin[2L wyt, ]
with
2. ' 2
- Lagacty'|, _, Sin(2L oyt ) ~ Ln'ctlv, >0,
8(L2w¢ + 202q?) 8./2(L? + 2)

2,..2.2. L2 r a2
- Lewgcin ’y=0 cos(2Lw0t0)~ neifva
8./2 L’A(Lza)g + 2v2a?) 16(L? + 2)

Generally, we can find an approximate solution for the average ', the representation
of which is the same as (A.16) except for the substitutions ' a0 1’ ly=0) LABYS . T,
v2, where

Va2 Y2 Y2
S = f o dyfy,, 7 = f n" dyly,, Ui =V2 f e dyfy, .

0 0 0
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From (A.16) it can be seen that &' will grow exponentially, and that the shearing velocity
¢, acts like a ‘seed’. If there is no ‘seed’, the mushroom flow velocities (v, t,) will never
arise. The growth rate is independent of ¢, but depends on the Alfvén speed
ta = By/\/4mp,. Therefore, shear motion can induce linear MHD-instability. However,
this instability soon attains saturation, and the flow becomes quasi-steady and increases
gradually until the velocities (¢, t,) exceed v,.
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ABSTRACT
A three-dimensional, time-dependent magnetohydrodynamic (MHD) model is presented for the study of
coronal dynamics. The model, written in spherical coordinates, extends from the solar surface (1R,; where
1R, = 6.95 x 10° km) to 15 R,. This model was developed with two major issues in mind, namely

different, but related, problems; steady state structures and evolutionary structures. These two numerical
techniques are: (i) relaxation technique for steady state structures; and (ii) FICE (Full-Implicit- Continuous-
Eulerian) technique for evolutionary structures.

structure of the corona. These results show the additiona] Physical features which cannot be shown by a
two-dimensional model. Finally, on the basis of the exploratory calculation, we outline some interesting
physical features which can be considered for the observing programs of future space missions such as
SOHO, OSL, CORONAS, etc.

[. INTRODUCTION

Since the Skylab-ATM experiments in the seventies, we have recognized that the corona is in a transient
state in contrast to the previous understanding whereby the corona is always in a quiet orderly state
(Billings, 1966). It is also further realized that the relationship between the flare and the coronal mass
ejection is not as consistently intimate as originally thought ( Hildner et al. 1976). In order to understand
the physics of this fascinating phenomena of so-calle "coronal transients”, a number of theoretical models
has been presented in the literature (Hundhausen et al, 1984). All of these theoretical models are based on
magnetohydrodynamic theory. The methodology used to treat these theoretical models could be classified
into two categories: (i) analytical methods and (i) numerical methods. Those models treated by analytical
methods have to conform to certain strict conditions in which a full description of nonlinear dynamical
behavior is difficult to achieve; nevertheless, the solutions are exact. On the other hand, the models treated
by numerical methods could obtain global descriptions of nonlinear dynamics, but these descriptions are
not unambiguous and may mislead the physical interpretations. A further limitation to these two categories
is the fact that all of these models are confined to a two-dimensional geometry. Thus, it is inevitable that
some arguments in the interpretation of observations have taken place.

In this paper. we present a newly developed three-dimensional, time-dependent, magnetohydrodynamic
model for an extended corona. We will suggest that this model could be used to understand the physical
processes from the comparison of this model’s results with observational data. The theoretical description
of the model presents the basis for the addition of dissipative mathematical terms that could be used
to understand additional physical processes from specific observational data. The theoretical description
of the model are included in Section II. The numerical results are presented in Section III. Finally, the
concluding remarks are included in Section Iv.

II. ANALYSES

Mathematical Model
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where the dependent variables are the density p, temperature T, velocity (v,., ve, vg), and magnetic field
(Br, Bg, By). The independent variables are the radius r, the meridional angle 4 andazimuthalangle ¢ as
well at time "t”. The constants are the Polytropic index v, solar total mass M and gravitational constant
G. In addition, the standard equation of state (p = PRT) was used to obtain the above set of governing
equations.

The region, within which we will present the numerical solution to the above set of governing equations, is
shown in Figure 1. This region is bounded by the solar surface and 15 solar radii (R,) in radial distance,
by the equator and the pole in meridional distance (#-coordinate), and by azimuthal extent (#-coordinate)
of 45°,

Method of Solution

The equations are solved numerically using a modified FICE (Fuﬂ-lmplicit-Continuous-Eulerian) scheme
which is based on the original FICE scheme developed by Hu and Wu (1984); and Wu and Wang (1987).

. The grid spacings used are 6r; = R,(1 + §6)'~', and 80 = 64 = 4.5°. It should be noted that the radial

spacing is not uniform and is chosen so as to; (1) assure the initial state as being in isothermal and
hydrostatic equilibrium (Wang et al. 1982); (2) initialisation of the computation procedure; and (3) to
ensure numerical accuracy. The time step can be arbitrarily chosen because of the flexibility of the FICE
scheme.
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is calculated. Note that the computational domain extends from the pole to the equator within a

45° extent of heliolongitude. In the present paper, symmetry is assumed below the solar equatorial
plane.

itial Stat iti

In order to seek a solution of this problem, we need to specify the initial conditions. These initial conditions

include the magnetic field configuration, velocity field and corresponding thermodynamic properties of the
plasma.

The boundary conditions are rather complicated, hence a detailed account of the derivation of the boundary

conditions will be presented later (Wang and W, 1990). We shall only briefly describe these boundary

conditions here. There are a total of six sides in which the boundary conditions need to be specified; they

are:

(1) » = R,, eight compatibility conditions are obtained from the set of governing equations (Wu and
Wang, 1987);

(2) r = 15R,, non-reflecting boundary conditions are used (Hu and Wu, 1984);

(3) @ = 0 (pole) and # = 90° (equator), symmetric conditions are chosen because of the chosen field
configuration;

(4) $=0and ¢ = 45°, the boundary conditions are obtained by extrapolation techniques.

III. NUMERICAL RESULTS

In order to carry out this simulation, we first introduced an injtial state at isothermal and hydrostatic
equilibrium with v = 1.67 together with a Potential field in one case and, in a separate case, a linear force-
free magnetic field topology. These two separate cases were introduced into the set of governing equations
in order to ensure that the isothermal and hydrostatic equilibrium does exist. We then introduced a
steady-state, Parker-type, velocity field. The numerical solution of this mathematical system led to a
magnetohydrodynamic equilibrium state via the relaxation technique. This MHD equilibrium state is
then taken as the simulated undisturbed coronal (i-e., quiet corona) with an outflowing solar wind around
multiple helmet magnetic topologies.

The initial plasma and fields (magnetic and velocity) parameters incorporated in this simulation are the
following representative conditions of a non-rotating sun with an initial plasma Bo(= 16mn.k,T,/B?) being
unity, at r = R,, 6 = 90° and ¢ = 22.5°.



¢ Isothermal and hydrostatic equilibrium atmosphere.
T, =10 K
Po = pg exp((gh- ~ 1) Zea)

5)

where pg is the density (the value of 1.67 % 107" gm em~3 is used in this study and gq is the gravity on
the solar surface,

* Magnetic field configuration .
(i) A hexapole potential field (Jackson, 1962); and, in a separate calculation,
(ii) A hexapole linear force-free field (Nakagawa et al ., 1978)

e Velocity Field T ” o
v(1,6,4) = 15 kms~!,
v,(15, 6, $) = 200 km s-1,
79("1 9, ¢) = ‘D¢(1', é, ¢) =0.

Figure 2 shows the simulated morphology of the quiet corona which consists of a three-dimensional repre-
sentation of the brightness ( integrated density along the path of the line-of-sight), steady state solar wind
velocity vectors and magnetic field for two cases: (a) initially potential field topology; and (b) initially linear
force-free field topology, respectively. It is easy to recognize that the shape of the quiet corona depends on
the initial magnetic field topology. The bright corona is related to the closed magnetic field configuration,
and the dark region corresponds to the open field configuration which corresponds to the out- flowing solar
wind from the coronal hole. Also it shows that the solar wind velocity is almost radijal.

In order to examine the physical structure of the quiet, steady-state, corona, we plot the radial distribution
of the density and temperature at the pole and equator for the initially potential and linear force- free
magnetic field topologies, respectively, as shown in F' igure 3. The radial distribution of the three velocity
components (i.e., v, v, vy) at the pole and equator is shown in Figure 4 for both types of magnetic field

topology. Finaily, we plot the radial distribution of Alfven and sonic speed at the pole and equator in
Figure 5.

Comparison of each of these parameters demonstrates the well-known inference and important fact that
the magnetic field is the dominant factor that determines both the morphology and physical structure of
the corona. The spatial diversity of these important, fundamental steady-state parameters is obvious.

For the completeness of this presentation, we shall show some results for a disturbed corona in Figure 6.
This numerical result is obtained by introducing a pressure pulse (p/p, = 10) distributed over three grid
points centered at § = 35°, ¢ =22.5°and r = R, for the case of the initially linear force-free magnetic field
topology of the quiet corona as shown in Figure 2b. In Figure 6, at t = 600 s, we show simulated brightness
(i.e. line-of-sight integrated density enhancement , disturbed magnetic field and solar wind velocity vectors
in the ¢ = 22° plane. According to the results shown, we may interpret that the brightness was caused by
the flow interaction with the magnetic field. This density enhancement consists of both the mass carried
by plasma flow motion and local wave compression.

IV. CONCLUDING REMARKS

In this study, we have presented a newly-developed, three-dimensional, time-dependent magnetohydrody-
namic model for the study of corona structures in both quiet and disturbed states. This model extends
from the solar surface to 15 R, and, thereby, includes the region of outflowing solar wind from the subsonic,
sub-Alfvenic to super-sonic and super-Alfvenic regions. Therefore, we assert that it is, indeed, a model
which could be used to study coronal/interplanetary coupling problems.

In these preliminary results, we clearly recognize that the magunetic field topology and strength controls
both the structures and physical parameters’ morphology of the corona. Also, this model has the capability
to convert the fundamental physical parameters (i.e. p, T, v) to observables such as brightness (see Fig. 2)
and doppler shifts (not shown). Therefore, we may claim that this model has the potential whereby it could
be used as a diagnostic tool that can be applied to the interpretation and guidance of the observations. For
example, we may use the physical properties obtained from this mode] to compute line profiles. As a final
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Fig. 2. The three-dimensional simulated brightness, steady state solar wind velocity vectors and magnetic
field of the confined plasma corona for; (a) initially potential field configuration (upper left panel)
and (b) initially linear force-free field configuration (upper right panel).

Fig. 6. The three-dimensional simulated brightness, magnetic field and solar wind velocity of a disturbed
corona at 600 s after introduction of a pressure pulse (simulated flare) at solar surface of the
quiet corona given in Figure 2b, (a) Viewed from ¢ = 50°,¢ = —20°, and (b). viewed from
8 =50°.¢ = 10°.
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Fig. 3. Radial .d.istribution of the density (p/p,)and temperature (T'/T,) at the pole and the equator,
respectively for; (a) initially potential field configuration and (b) initially linear force-free field
configuration with p, and T, given in page 6 of the text.
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- initially potential field configuration and (b) initially linear force-free field configuration.
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remark, we recognize that the development of this model is far from complete.. The improvements can be
tackled in two major catagories as follows:

_ * Mathematical Improvement

We should establish the accuracy of the numerical results. In order to achieve this purpose, we
should conduct a grid size test for this model.

® Physical Improvement

Presently, the model includes dissipative mechanisms that were not invoked for the present demon-
stration of its three-dimensional, temporal capability. N amely, the present model results are based
on "ideal” MHD theory. We realize that dissipative MHD is important to many solar physics
problems in which finite electrical conductivity, thermal conductivity, radiation and turbulence
are undoubtedly present. We plan to incorporate these effects in our model via a conservative and
rational step-by-step approach. However, the current ideal MHD model, because of its inherent
and natural three-dimensional resemblance to the real world, is essential for the construction of
solutions which resemble observed realistic topologies. We have obtained in the present demon-
stration, for example, induced meridional and aximuthal flows which existing two-dimensional
models cannot provide. .
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ABSTRACT
L A two-dimensional, time-dependent, numerical, MAD model for the simulation of coronal streamers from
= the solar surface (r = 1Rg) to 15R is presented. Three examples are given; for dipole, quadrupole and
hexapole (Legendre polynomials Py, Py, and P;) initial field topologies. The computed properties are density,

- temperature, velocity, and magnetic field. The calculation is set up as an initial-boundary value problem
4 wherein a relaxation in time produces the steady state solution. In addition to the properties of the solutions,

1. INTRODUCTION

= We present results from a recently-developed numerical model of coronal structure. The reasons for a new
&~ model are to extend the outer boundary farther from the Sun and to gain the experience necessary for

development of a three-dimensional model. In addition, an immediate application will be to the simulation
of streamers in support of the Ultraviolet Coronagraph and Spectroheliograph (UVCS) and the Large Angle
Spectrometric Coronagraph (LASCO) on the Solar Heliospheric Observatory (SoHO). These instruments
will be able to measure the temperature, density, and flow vector in the corona so, with model calculations,
it will be possible to estimate the magnetic field vector. '

2. THE PHYSICAL AND NUMERICAL MODEL

We assume axisymmetric, single fluid, polytropic, time-dependent ideal magnetohydrodynamic flow and

calculate the flow in a meridional plane defined by the axis of the magnetic field. The coordinates are
+ (r,6,4) with ¢ being the ignorable coordinate. For the magnetic field boundary condition, we take the

variation of the radial component at the lower boundary to be given by Legendre polynomials, so that the

flow has reflective symmetry across the equator and the calculation need be done in only one quadrant. For

Py, the radial field thus has a dipole variation. The equations describing such flow can be found in many
_ places (e.g. /3/).

grid size slowly increasing with radius. The algorithm adopted here is the Full-Implicit Continuous Eulerian
(FICE) scheme described by Hu and Wu /1/; for time stepping a second-order accurate forward differencing
scheme is used and the step size is of the same order as given by the Courant condition. Smoothing is

_ inserted when gradients become too large - i.e. at shocks (which do not occur here). At the inner boundary,
the flow is subsonic and sub-Alfvénic so that some variables are calculated using compatibility relations /1/.
We choose to specify the radial magnetic field, pressure (or temperature), and density. The meridional field,
radial and meridional flow speed, and pressure are computed from the compatibility relations. At the outer

- boundary, the flow is restricted to being both supersonic and super-Alfvénic. In this case, all variables at
the boundary can be calculated by simple linear extrapolation from the first (or first two) grid points inside
the boundary.

- We start with an essentially arbitrary initial state and allow the flow to relax in time while holding the
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boundary values constant. In the present case the initial flow field is a polytropic, hydrodynamic solution to
the steady state radial flow equation of motion (e.g. /2/) superimposed on a potential magnetic field. That
this is neither a self-consistent nor stable solution to the steady state MAD equations is irrelevant since the
flow is allowed to evolve in time under the control of the equations of motion. The main concerns are that
the numerical solution be stable and of sufficient accuracy to define the physically interesting aspects of the

solution, and that the relaxation proceed long enough that an acceptably close approximation to the steady
state has been reached. We address these issues briefly in section 4.

3. THE CALCULATIONS

As stated, we present results from three simulations; for a dipole (B.(Ry) Py(cos8)), a quadrupole
(Br(Rg) x stcos 03), and a hexapole (B, (Ry) Ps(cos6)). At the lower boundary, the conditions are that
n=225x10°m"% and T = 1.80 x 10°K. The polytropic index is chosen to be 7 = 1.05. The magnetic
field strength at the equator (B, (f = 90°)) is 1.67 gauss so that # = 0.5 in all three cases (where 8 is the
ratio of the internal pressure to the magnetic pressure at the lower boundary, at the equator). The final .
steady state magnetic field geometry for the three cases is shown in Fig. 1.

Fig. 1 The steady state magnetic field for the three cases. The left panel is for an initial
dipole (P, (cos 8)), the middle panel for an initial quadrupole (P2(cos8)), and the right panel
for an initial hexapole (Pa(cos8)). In all cases, B = 0.5 at the base, at the equator, in the
initial state. At the same location, the total magnetic field strength is 1.67 Gauss in all three
examples. The times allowed for the relaxation are: dipole - 22.22 hours, quadrupole - 16.67
hours, hexapole - 18.06 hours.

This figure shows the well-known property that the flow is essentially radial beyond 3 — 4Rg. Having begun
with large closed field volumes, only small magnetically closed volumes remain, underlying the coronal

fieldlines are seen to diverge most rapidly on the edges of the close field regions and apparently most slowly
near the center of open regions.

the equatorial streamer for the hexapole. As is generally the case in this type of model, the flow speed in °
the center of the open regions is similar to the undisturbed initial flow speed - because the flow direction is
approximately radial above a few solar radii. In the streamer, the flow speed is essentially zero on closed
magnetic field lines and is greatly reduced on the open lines - the field has undergone rapid overexpansion
on the flanks of the streamer. The density and temperature for the three examples are shown in Fig. 1, in
the directions specified in Fig. 2. Most obviously, the density is enhanced in the closed field regions. There
is, of course, also some depletion along rapidly diverging fieldlines.

Several physical aspects of such models as these need to be emphasized. First, the temperature that has
been calculated is an "effective temperature.” This is because a polytropic energy equation is assumed - with
a polytropic index of 1.05, which is equivalent to a large amount of energy being added to the flow. Nowhere
is the form of this energy specified, nor what the conversion and dissipation mechanisms are. However, it

has been shown that a polytropic index on the order 1.05 is required to reproduce observations of coronal
densities /5/.
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Fig. 2 The radial velocity for the three cases shown in Fig. 1. Left: Dipole field, showing
the radial flow speed along a polar radius and an equatorial radius. Middle: Quadrupole field,
showing the speed along a radius over the pole and over the mid-latitude streamer. Right:
Hexapole field, showing the speed along a radius over the pole, over the mid-latitude streamer,

and at the equator.
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Fig. 3 The density and temperature for the three examples shown in Fig. 1. Left: Djpole field,
showing the density and temperature, scaled to their starting values, along a polar radius and
an equatorial radius. Middle: Quadrupole field, showing the temperature and density along a
radius over the pole and over the mid-latitude streamer. Right: Hexapole field, showing the
temperature and density along a radius over the pole, the mid-latitude streamer, and at the

equator.

Second, the magnetically open regions, although equivalent to coronal hole flows, do not simulate coronal
holes because the flow speeds are far too small. To obtain reasonable flow speeds in this model it would
be necessary to have the temperature vary across the base of the open region - which is well within the
capability of the model. Such a variation has been shown to reproduce all the known properties of coronal
hole flow and lead to accurate simulations of the geometry, with the effective temperature being larger in
the center of the hole than at the edge /5/.

In contrast to the open regions, the densities in the closed regions are similar to observed streamer densities
and we feel this model is therefore a good approximation to streamer geometry. The temperature must
still be qualified as an effective temperature, but can be used for diagnostic purposes in combination with
planned observations on SoHO/UVCS.
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4. ACCURACY AND STABILITY OF CALCULATIONS

This model has been found to be weakly subject to the Courant condition on size of time step. Therefore, the
size of the time step decreases as the largest values of the temperature and magnetic field increase - along with
the maximum sound and Alfvén speeds anywhere in the grid. Counteracting this, the higher characteristic
speeds lead to a somewhat faster relaxation time. However, generally more time steps are required for smaller
B calculations. The flow speed also plays an important role in determining the relaxation time to a steady
state - the initial state is a disequilibrium configuration. This imbalance must have time to be advected from
the base through the outer boundary. The physical time this takes can be estimated by taking a typical (but
small) value for the flow speed and calculating how long it would take the plasma to flow at this speed from
the base to the outer boundary. For example, at 150 km/s, to 15Rg, this takes 18 hours (relaxation times
we have used are given in Fig. 1).

A second consideration is gridpoint resolution. The grid used in these examples is about 4.5° in latitude
and 0.24R in radius near the base - increasing slowly with radius. This is sufficient to adequately resolve
the geometry and flow on the scale shown in Fig. 1. However, if finer scale information is required in, for
example, the core of the streamers, a denser grid would be required.

Always a serious consideration in these time-dependent, non-cartesian MHD calculations is the conservation
of magnetic flux - that V.B = 0 is maintained at all times. The condition is maintained here through accurate
differencing rather than a self-correcting scheme, but we are able to conserve magnetic flux divergence to
within one part in 105. The numerical scheme is pressure-based so it is limited by stability to large and
moderate 3 values (e.g. 8 > 0.1) - which turns out to be the same restriction for maintaining V - B=0to

the required degree.
d . P\ _
(5+79) (5) =

reduces to 7 - V(p/p”) = 0 when a steady state is reached, which means that (p/p”) is then a streamline -
constant. This becomes an analytic test of the achievement of a steady state solution in our case. The
boundary values of p and p are the same at all latitudes. Therefore, (p/p”) has the same value everywhere
in the computation regime as it has on the boundary if a steady state has been reached. We have checked
this for the three cases shown in Fig. 1 and find that for the dipole and quadrupole it is constant to within
a maximum of 1% and for the hexapole it is constant to within a maximum of 4% (average values over the
whole grid are less than 1% in all cases).

Finally, the energy equation:

5. NEW RESULTS

The utility of this model is that the outer boundary has been extended to 15Ry. Although this is not a
big advance conceptually, this and the stability and ruggedness of the code make it useful for simulating
realistic coronal conditions. We present results for quadrupole and hexapole fields, with their accompanying
midlatitude streamers and open magnetic field regions. The Alfvén speed ranges between 800 km/s and a
few tens of km/s. This is lower than is believed appropriate for the corona /2/, but we expect our model
will now enable simulations with higher Alfvén speeds.
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=~ ABSTRACT
g In the near future, SOHO UVCS will make long-term With SOHO a thorough description of these features is
i observations of coronal streamers in UV lines, providing within reach.
= a new tool for the analysis of structures which have been
known for decades but are stil] far from being adequately In view of the large effort which will be dedicated to
described. The purpose of this work is to evaluate the these studies as soon as SOHO data will be acquired, we
Ly-a brightness of coronal sireamers, adopting the deemed it worthwhile to provide simulated UV observa-
et streamer models obtained, via a time-dependent numerical tions of streamers under a variety of situations. To this
relaxation technique, by Wang et al. (Ref. 1). This will end, we adopted the model developed by Wang et al. (Ref.
allow us both to understand the role of geometric vs. 1), to describe the physical state of streamers. Our
physical factors in determining the streamer Ly-a simulations might be used as guidelines in devising the
— intensity and to provide guidelines for UVCS observational strategies and operational sequences which
observational operations. Future prospects along this will allow the best usage of data. In this paper we
o line of research are also briefly summarized. describe briefly the initial stage of this project, where
o the Ly-a brightness is evaluated for streamers of different
= 1. INTRODUCTION geometries and different plasma 8. seen from different
aspect angles. Fuwre developments of our work are also
o It is well known that streamers have been observed, and shortly outlined. We refer the reader to Noci et al. (Ref.
S their structure reproduced in detailed drawings, since far 2) for a more thorough description of what is illustrated
back in time. This is not surprising, as these prominent here.
features can be easily seen during eclipses. Nevertheless,
- although observed for so long, their physical properties 2. THE MODEL
g — are largely speculative and comparatively little literature
: . has been dedicated to streamers, This situation is due to The physical streamer models that we use for calculating
the limited means by which these features can be Ly-a intensities are the result of a numerical simulation
analyzed: only recently coronagraphs, radio telescopes of global coronal structure. The simulation is a solution
L and space experiments offered an alternative to the of the magnetohydrodynamic equations for two-
- traditional white light technique, dimensional, axisymmetric, single fluid, polytropic,
- time-dependent flow. The steady state is found by starting
Still, so far, only sireamers’ densities have been extensi- with an essentially arbitrary initial state having the
vely analyzed. Neither lemperatures, nor magnetic field desired boundary conditions and allowing a relaxation in
values have been derived - other than in a few occasional ltime until the solution is no longer changing. The
studies. Quite obviously, these parameters are crucial to resuiting model is therefore assured both of being a self-
the understanding of the physical structure of the middle consistent solution for the specified physical boundary
corona and have a bearing on our understanding of the conditions and of being stable. The model, since
solar wind, whose slow streams supposedly originate axisymmetric, describes a single continuous streamer that
from streamer areas. However, flow velocities in the extends all the way around the Sun at a specific latitude.
streamers’ cusp regions have never been measured. The simulation is further described by Wang et al. (Ref,
. 1).
-- SOHO UVCS will expand dramatically our knowledge of
=] these structures. By observing streamers, in Ly-a and The boundary conditions at 1 R@ are that the temperature
possibly other UV  lines, from close to the solar and density are constant in latitude and that the vector
—~ limb (= 1.2 R@) up to several solar radii, we will be able magnetic field is potential. Three magnetic field
:: to determine the height profile of density, electron and geometries are used: a dipole, a quadrupole, and a
— proton temperature and flow velocity throughout their hexapole; the scalar potentials are proportional to P,
whole extent. Magnetic field values may be inferred, by (cose), P; (cose), and P, (coss), respectively (here P; is
analyzing the langenlial disconlinuities which are almost the Legendre po]ynomia] of degree { and 9 is the colati-
i systematically parts of large streamers (provided that the tude). There are two dimensionless numbers: (he

temperature keeps constant across the discontinuity).

- Proceedings of the First SOHO Workshop, Annapolis, Maryland, USA. 25- 28 August 1992 (ESA SP-348, November 1992)
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0.5 for all three field geometries, and, in addition, do a
dipole calculation for 8 =02, These values of B corre-
spond to a heliocentric distance of 1.0 Rg. at the equator,
where the field strength is 1.7 gauss for both g = 0.5
and 8 = 0.2. For the high g8 case, the base temperature
and density are 1.8 x 106 K and 225 x 108 em'3. For
the low B case, they are .44 x 105 K and 5.61 x 107
cm'3. The three magnetic field geomerries naturally lead

most realistic densities - irrespective of the streamer
configuration - are those evalyated for the B =05 case,
A plasma B = 0.2 resuls in 100 low densities, at least
with the boundary conditions we assumed. As 3
consequence, we will, a the moment, dismiss this case,
and evaluate (he Ly-a brightness only for high B
streamers,

Before describing the results we obtaineg for our
simulation, we nore that mode| densities in open field
regions are not realistic, being 100 high, both in the
high and low B case. In order o reproduce the high
velocities and low densities that characterize the coronal
hole regions, within the limirs of a polytropic mode],
one should use an gg hoc  temperature vs. latitude profile.
This is beyond the scope of the present work, as, due 1o
the higher streamer density, we don‘t expect surrounding
open field areas g affect appreciably the streamer Ly-a
brightness. We conclude that the behavior of (he model
In open field areas, at this stage, is inconsequentia] o
us. Hence, we proceed 1o evalyate the Ly-a from
Streamers, in a variety of test cases,

3. LY« BRIGHTNESS |N STREAMERS

The formation of the Ly-a line in the corona s due 1o
the presence, a; coronal heights, of 5 tiny percentage of
neutral hydrogen atoms that resonantly scatter (he
chromospheric Ly-a photons (see, for instance, Gabriel,
Ref. 3). The total (i.e. integrated over the line profile)
Ly-a intensitity, as observed along the direction n g
given by

hB, 2,

==, fnpw) dw fo Lovem M) W (AL 2 g

Where N, = _ N\ dx and Ny is the number density of
hydrogen atoms in the ground level; & is the Planck
constant; B, the Einstein coefficient for the line; %, is
the rest value for the central wavelength A of the Ly-«

lransition; the ypjt Vector n is along the line of sight
X and the unit vector n'is along the direction of the

incident radiation; ¢ is the angle between n ang n'; p(e)
dw' - where @' is the solid angle around n' . is the

-
at the point of sCattering; Lehrom IS the exciting

chromospheric radiation and V is the coronaj absorption
profile. In the following we assume that the intensity of
the chromospheric Ly-a radiation s constant across the

solar disk and that the velocity distribution of the
Scattering hydrogen atoms is Maxwellian,

In order 10 yse the previous equation to calcylate the
Ly-a intensity in coronal streamers, one needs 1o
evaluate N, . ie. the total number of hydrogen atoms
along the line of sight.

extend all the Way around the equator, in a continuous
belt. By comparing the resulting Ly.a intensities with
those obtained in 5 rocket fligh; by Kohl et g, (Ref. 4),
we conclude, however, thas this assumplion is not
realistic, as the model predicted values are about one
order of magnitude larger than the observed ones.
Recalling that model densities seem to be realistic, the
discrepancy should be ascribed 1o geometrical, rather than
physical, factors,

2 3 4 5 6 78 910
Radial Distance (solar radij)

#ssumed cither 10 have 4 constant angular width (curve (1)) equal 1o its
angular base width (= 76°) or 10 be consunt with height (curve (2)) and
cqual to its byge width (= ] R@) or 10 decreage lineatly with height

(curve (3y) up to the cusp height (Rcu.rp =245 R@).

configuration along the line of sight: curve (1) refers 1o
a streamer whose angular width is constang with height;
curve (2) refers 1o 4 streamer whose linear width js
constant with height; curve (3) refers to0 a streamer
whose width decreases linearly with height up 1o 4
vertex, identified with the streamer's cusp. Densities
along the line of sight have been assumed equal to those
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about the streamer 3-D shape and the effect of the outer
atmosphere is completely neglected by truncating the
integration at the edge of the streamer, in accordance
with our conclusion that the contribution from the open
field areas is inconsequential. The global magnetic
configuration for which these simulations have been
made is also illustrated in the Figure. Clearly SOHO data
will allow us to discriminate between the different
geometries, by analyzing the behavior of the intensity
profile at large heliocentric distances: in the case of a
cone-shaped structure (curve (3)) the steep intensity
decline ar large distances is due to the decrease with
height of the integration length, a factor which singles
out this case from the others.

UVCS field-of-view (FOV) - 141" x 40" - is large enough
lo allow the imaging of an entire streamer, from 1.2 Rg
to its cusp. In the hypothesis of the equatorial streamer
of Figure 1. for instance, the streamer's axis is in the
equatorial plane, the streamer’s base has a width of = 70°
and its cusp reaches a height of = 3.5 - 4.5 Rq . This

sort of configuration is observed at solar minimum, when
streamers are concentrated along the solar equator, and is
representative of the situation that SOHO will meet in its
early operational phase. UVCS with an appropriate slit
width, will take measurements on the streamer at
increasing heliocentric distances, along the axis of the
structure as well as in a direction normal to the latter.
These observations will enable us 10 check the capability
of the model in predicting realistic profiles of the
physical parameters of the streamer both along and
across its axis. Consistency between model predictions
and observations, proving the reliability of the model,
will provide indirectly the distribution of the magnetic
field vector throughout the streamer, a factor which can
be hardly underestimated.
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Figure 2. Predicted Ly-a intensity vs. distance (measured along
the axis of an equatorial streamer) for different off-equator offset in 2
cone-shaped equatorial sireamer:  solid-line, intensity along the axis of
the streamer, zero offset; A, intensity for an offset of 0.2 R@; X,
intensty for an offset of 0.4 Rg. As in Figure 1, the configuration is
dipolar, the base widih is = 38° and the cusp height is 45 Rg-

Figure 2 shows the results of our simulations of Ly-a off-
axis intensities for the cone shaped streamer, whose on-
axis behavior has been shown in curve (3) of Figure 1
and is given here (solid line) as a reference. Crosses

(triangles) refer to Ly-a observed at an offset of 0.4 (0.2)
Ry along a direction parailel to the sweamer's axis. The
progressive decrease in the integration length as we
move to larger offsets is responsible for the intensily
drop which occurs at increasingly lower heliocentric
distances. It is this geometric effect, rather than the
transverse density gradient, that determines the intensity
vs. distance profile for off-axis observations.
Obviously, this result has to be considered as
preliminary, as it depends heavily on our hypotheses
about the behavior of the physical parameters of the
streamer in the third dimension. On the theoretical side,
it points to the need of a 3-D model; on the
observational side, it shows that we badly need a
technique to derive densities, independently of the
streamer's geometry.

Before addressing this problem, we notice that all our
examples refer to a global dipolar magnetic
configuration. However, our results can be extended to
the quadrupolar and hexapolar model geometry by taking
into account the differences in the streamer’s thickness.
Densities predicted by our model are about the same for
low and high latitude streamers. Therefore, the Ly-a
brightness from these features tums out to scale, with
respect to that originating in a dipolar equatorial
configuration, in the same proportion as the streamers’
thickness. The Ly-a brightness from an equatorial
hexapolar streamer, for instance, will be a factor 2.3
smaller than that from an equatorial dipolar streamer and
about equal 1o the brightness from the high latitude
hexapolar streamer.

4. TOMOGRAPHY FOR DENSITY DIAGNOSTIC

Tomographic techniques are currently used to reconstruct
the 3-D configuration of a structure which can be
observed from different orientations. In order to adopt
this methodology to derive densities at different
positions within a streamer, we have to take advantage of
solar rotation and observe the feature at different aspect
angles. This constraint has a severe drawback: the
streamer has to be stable throughout the observational
period. if we want to attach any meaning to the inferred
values. Whether this is a reasonable assumption is
debatable and has possibly to be checked in individual
cases.

In the hypothesis that streamers meet this requirement, it
is easy to understand why the technique can be
successfully applied to a field so distant from its more
common usage. We remind the reader that the emergent
Ly-a radiation is obtained by summing over the
contribution from all regions along the line of sight.
Depending on the streamer aspect angle and on the
transverse vs. axial density gradient, it may happen,
when the line of sight cuts obliquely through the
structure, that the highest contribution to the emergent
intensity originates from an element at some distance
from the streamer's axis: hence the possibility of
deriving the density of this element and, as a
consequence, the density structure of the stréamer, across
its axis, independently of its geometry.

The capabilities of the tomographic technique in the
diagnostic of streamer’s density can be extensively tested
only when a 3-D model is available. At present, we used
this technique on the 2-D model, assuming, contrary 1o
what done so far, that the plane of the model is the
equatorial plane. In this case the streamer footpoints lie
on the equator and the model provides the gradient of

density in the direction normal to the streamer's axis (ie.
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along the line of sight), so far assumed a priori. The
Tesults we obtained are preliminary, since large densities
in the open field areas result in a too high contribution
from the ambien; regions.
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Figure 3. Predicteq contnbution of individual elements along the line
of sight to the toul Ly-a intensity from the usual dipolar, = 0§
streamer, supposed to lie in the equatonial plane, as a function of their
distance along the line of sight  Negative (positive) distances are away
from (towards) the observer, a3 measured with respect to the axis of the
streamer.  The line of sight intersects the plane of the sky at 2 distance
of 1.2§ Rg and cuis obliquely through 1he Streamer, unless ihe
streamer's axis is in the plane of the sky (streamer longitude: 90°).
The contnibution of individual clements to the tousl intensity is shown
(eft) for a streamer whose axis is in the plane of the sky (streamer
longitude:  90¢, and (right) for a streamer at a longitude of 120°
(aspect angie ¢ = 30°). The position of the streamer axis js shown as 3
dashed line in the figure.

Figure 3 shows how individual elements along the line of
sight contribute 1o the Ly-a intensity measured in the
€quatorial plane at a distance of 1.25 Rgin two cases:
when the sueamer's axis is in the plane of the sky
(streamer longitude 90°, aspect angle ¢ = 0°) and when
the streamer is behind the plane of the sky at a longitude
of 120° (aspect angle ¢ = 30°)., In (he latter case, the
highest contribution 1o the emergent intensity comes
from the element at a distance of =~ (.72 Rg along the
line of sight. Thus, by taking an extended set of data, at
different locations along the axis of the streamer and at
different aspect ratios, we may eventually get a complete
map of the density of the Structure. A more thorough
analysis of the capabilities of the tomographic technique
has to be deferred 1o the time a 3-D mode] is available,
both in open field regions and in streamer structures.

5. DISCUSSION AND CONCLUSIONS

As we stated in the Introduction, we meant, in this work,
0 provide a number of Ly-a brightness simulations to be
used as a first guess of SOHO uvcs forthcoming
measurements. To this end, we have presented a set of
Predicted profiles of Ly-a intensity vs. distance,
Tepresentative of a variety of situations. This ser

A critical examination of the model used in the present
simulations leads us o define the theoretjcal objectives

of the ambient medium: this can be done aiso in a 2-D
framework, before geling to our main purpose, i.c., the
development of a 3.D global coronal mode). Besides this
main objective, an extension of our modeling efforts to
different plasma B seems 1o be mandatory: srreamer
Cusps reach up to a variety of heights, possibly
representative of the range of plasma B over which these
structures develop,

Following these theoretical developments, much work
has to be done in Preparation of the SOHQO mission.
Here it suffices 1o mention, for instance, that more
realistic simulations imply the usage of different Ly-a
profiles for different solar regions: it is well known that
the chromospheric Ly-a profile is not constant across the
solar disk, thus implying a not constant chromospheric
exciting Ly-a radiation. Still, we have not yet addressed
the field which looks more promising: if we will be abje
10 prove, on the basis of our model and ensuing
simulations, that the Doppler dimming technique can be
used in the streamer Cusp regions, we wil| open a new
research area from which unsolved problems - Jike that of
the origin of the slow solar wind streams - may benefit
to the point that they are no longer a riddle. "We will
proceed on this work with these exciting perspectives.
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for the reasons mentioned abov
considerthat such complex numer;

tainties. When the models ure used

. However. we also
cal models are rarely without problemns or uncer-
for analvsis of datg and for predictions, the only
reliable validation is 1o develop an thdependent mode] and compare the results.
Even when both (or ally models are t‘undumcmull_v correct. this process generally
leads to new or deeper understanding of the problem. In the present cuse, this s
precisely what has happened. We have gained a better insight into the physical
basis of the criteria which should be adopted in specitying boundary conditions.
The results from this constitute an important part of the present study.,

7] Uy pee pry
T —[(p—=) = K _ Py I
ot + Br(pvr) + 7)) (ﬂ ) : r cotd, (1a)
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£ _ (1b)
rt T upr
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O‘t” + E(UrBo - 19B,) = —;(vrBy ~ B, . (le)
- Ip dv, Op  ~p vy vy Op “p
. 55t —=—+, £ 4 2% TS5 = = (20 + vycoty) I
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The dependent variables are the density, p, the pressure, p, the radial and
— meridional velocitjes, “rand vy, and the radiq| and meridional magnetic fields,
B B, and By. The constants M., G, ~, and ft are the solar mass, gravitational
- constant, the polytropic index and the magnetic permeability,
a3 These equations are solved in a computationg domain extending from the Sun

(IR:)to 15 R. . from the pole to the equator. It js assumed that meridional ow
1S zero at the pole and equator. The arid 15 divided so that there are 37 gridpoints
in the radial directjon and 22 gridpoints in the meridional direction, with the radial
grid size slowly increasing with radiys. The meridional grid is divided so that
points lie equidistant on either side of ¥ = ( and § — 90°, at ¢ = —2.15°,
2.25%,6.75°, .., 87.75°.92.25° The algorithm adopted here is the Full-Implicit
Continuous Eulerian (FICE) scheme described by Hu and Wu (1984). For time
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of the equations of motion. The muin concerns are that the numerical solution
be stable and of sufficient accuracy to define the physically interesting aspects of
the solution, and that the relaxation proceed long enough that an acceptably close

approximation to the steady state has been reached. We address these issues briefly
in Section 4.

3. Detailed Results from Four Specific Models

We report here on four specific models. The results are crouped frst according
to the ‘way in which the physical variables are plotted (i.c., either versus radius
or versus polar angle) and second according to which of the four examples the
plot is for. In these four examples, three magnetic ticld ceometries are used: a
dipole, a quadrupole, and a hexapole: the scalar potentials are therefore proportional
to P> (cos#), Py (cos#), and P, (costs, respectivelv, where P, (cos#) is the
Legendre polvnomial of degree n. There are two dimensionless tree parameters:
the polytropic index, -, and the plasma 4. We use ~ = .05 in all cases. 3 = 1.0
for all three field geometries, and. in addition. do a dipole calculation for .3 = 0.2.
In these case. 7 is evaluated at 1.0 . at the equator, where the field strength is
1.67 G both for .3 = 1.0 and 3 = 0.2. For the high J cases. the base temperature
and density are 1.8 x 10° K and 2.25 ~ 10® cm~>. For the low 1 case. they are
144 x 10° Kand 5.61 x 10" cm~". The three magnetic field geometries naturally
lead to a single equatorial streamer, a mid-latitude streamer, and both an equatorial
and a mid-latitude streamer for the dipole, quadrupole and hexapole, respectively.

Results from the four examples will be referred to as follows:

(a) Dipole. . = 1.0.

(b) Quadrupole, 3 = 1.0.

(c) Hexapole, 3 = 1.0.

(d) Dipole, 3 =0.2.

The initial state temperature, density, and velocity profiles are shown in Figure 1.
The temperature curves appear irregular due to the small change in temperature
over the relatively large radial range - a consequence of the polytropic index being
near unity. Only three significant igures were retained after the calculation so what
is seen here is roundoff error in the plotted results rather than in the computed
results.

The final, steady-state magnetic ticld geometries for the four cases are shown in
Figure 2. Here is seen the well-known property that the flow is nearly radial beyond
3—4 R.. The flow is field-aligned everywhere and field lines which cross the outer
boundary reach to oc. The streamers are those volumes which are magnetically
closed (i.e., the field lines return to the surface of the Sun) and it is evident that
relatively small volumes in the streamers remain magnetically closed in comparison
to the initial state where all field lines were closed. These closed volumes are
surrounded by a low density shell but, as will be shown below, the densities in the
large coronal hole-like open regions are otherwise only slightly lower than in the
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Fig. 1. Density. temperature. and velocily profiles in radius that were used for the initial {+ = 0)
state in the relaxation. On the left are the protiles for the . = [0 cases and on the right are the

profiles for the .3 = 0.2 case. Note that. except tor the velocity scales. the scales differ between the
two panels. Because the polytropic index is near unity. temperature changes slowly with radius and
the irregularities in the lemperature protiles should be interpreted as noise.

streamers. In each panel of Figure 2, four dashed lines are shown and labelled A,
B, C, or D. These lines indicate the radial directions used below to plot variables
versus radius.

The physical times allowed for the relaxation in these four examples were:
(2) 22.22 hours for the .3 = 1.0 dipole; (b) 16.67 hours for the B = 1.0 quadrupole;
(c) 18.06 hours for the 3 = 1.0 hexapole; (d) 19.44 hours for the 3 =0.2 dipole.
These times are determined by how long it takes for any fluctuation to be advected
out through the outer boundary of the solution domain. This in turn depends on how
large the flow speed is and whether the Auctuations represent inward propagating
waves. In general, the times listed above are the minimum required for a stationary
fluctuation (i.e., non-propagating in the solar wind frame) to be advected from
I' R to I5 R atatypical flow speed in the open regions. This sometimes leads to
small residuals in the relaxation near the outer boundary at 15 R, but the solutions
inside 7 R that are shown here are quite steady. This is another point that will be
reviewed in Section 4.

Figures 3 and 4 are plots of density and radial velocity versus radius. The plots
are made in the directions indicated in Figure 2 so that, for example, in each panel
of Figure 3 the density is plotted in the four directions A, B, C, and D indicated
in the corresponding panel of Figure 2. In both of Figures 3 and 4, the four panels
corresponding to the four panels in Figure 2 are clearly labeled. The density profiles
have been divided by their corresponding initial state (t = () profiles from Figure |
because the density changes by several orders of magnitude between the Sun and
I5 R. The plots here extend only to 7 R because there is no new information

Tenlpetature /10+6 (x)
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xample, the four curves

forthe 3 = | 0 hexapole labelled A, B.C.D,are along the r'ou;dircctions shown in the third panel

of Figure 2 and labelled in the same manner. Each curve has heen divided by the initiaj profile (see
Figure 1). A density enhancement is indicated by values greater than unity, and vice versa. The

density concentrations in the streamers are clearly visible, generally being on the order of 25% to
50% above the initia| slate,

contained outside this radius - the flow is already supersonic and essentially radial.

Turning briefly to each figure individually, we begin by noting that a density
enhancement is indicated by values greater than unity, and vice versa. The density
concentrations in the streamers here are clearly visible, generally being on the order
of 25% to 50% above the initial state. The base density forthe 3 = 1.0 casesis close
to that reported by Allen (1955) for the base of the quiet corona and the density
profile shown here has generally the right behavior for streamers — ag shown by

curves C for cases (a), (¢), and (d), and curve D in case (b). Curve D for case (a),
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properties of a polytropic model and the choice we have made for the boundary
conditions on temperature and density — that they be independent of polar angle.

elevated temperature in the open regions and probably also a Jower density at the
base (Suess et al., 1977; Suess, 1979).

The radial velocity is shown in Figure 4, at the positions indicated in Figure 2.
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R =714 R, at the €quator of the 3 = 1.0 dipole) refers to the open field region
above the streamer’s cusp. The 4 = 0.2 dipole is the most extreme example of
this — and the flow Speed is nearly identical to the initial speed everywhere except
on closed field lines, directly above the center of the streamer, and on the highly
inclined feld lines immediately adjacent to the streamer - where the difference is
still rather small.

polytropic index of 1.05 is equivalent to a large amount of energy being added to
the flow. Nowhere is the form of this energy specitied, nor what the conversion and
dissipation mechanisms are. However, it has been shown that a polytropic index
on the order 1.05 is required to reproduce observations of coronal densities (Suess
et al., 1977).

Finally, the magnetically open regions. although eugivalent to coronal hole
flows, do not simulate coronal holes because the flow speeds are far too small.

geometry, with the effective temperature being larger in the center of the hole than
at the edge (Suess et al., 1977). In contrast to the open regions, the densities in the

plotted versus polar angle at different heliocentric distances, than versus radius at
constant polar angles. Such plots are shown for the density, radial velocity, and
total field strength in Figures 5, 6, and 7, respectively.

‘Figure 5 shows the density drop adjacent to the streamer. In the panel for
the 3 = 1.0 dipole, this drop is quite large, well resolved, and leads into the
density enhancement inside the equatorial streamer. The only place this does not
occur is at the base — where the density is held constant. The width of the density
enhancement in the streamer decreases with height, just as the width of the streamer
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rsus polar angle, between the pole (0°) and the €quator (90°). Each of the curves
i ic di ers 10, Thus. the curves labelled 1.70 R indicate
the density at 1,70 R, heliocentric radius. The density at the base is constant and so the curves there
are flat. Above the base, there is a smaj| density enhancement in the streamer (ca. 5% to 50%) and
A trough in density at the cdge of the streamer. In the middle of the open region, the density is very
close 10 what it was in the initial state (see also Figure 3). The reason it is not small is thay we have
uscd constant temperature and density at the base. To produce 2 true coronal hole-like profile would

have required at Jegg; an increase in the temperature at the base of the open region (Suess et al.,
1977
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associated kinetic energy is too small to affect the dynamics of the solution. Such
‘slippage” will, nevertheless, occur in all numericyj solutions. At larger heights
(€.2.,4.90and 7.14 R-) there is small, but finite flow nearand in the neytrg] sheet
observed in the solar wind in the imerplanelary medium. The 3 = > dipole again
exhibits properties unlike the Sun in (he sense that the very low flow speeds inside
the streamer seem to still exist even ar 7 14 R. ~far outside the observeq extent

Figure 7 shows the variation of the totg] magnetic field strength, (B? + B3)i?
across the streamers, The most interesting thing to note in these plots is the enhance-

Presence of the plasma hag had little effect on the field geometry in this low- 3 case.

4. Accuracy and Stability of Calculations

scale shown in Figure 2. However, if finer scale information is required in, for
€xample, the core of the Streamers, a denser grid would be required.

Always a serioys consideration in thege time-dependent, non-Cartesian MHD
calculations is the conservation of magnetic flux - thy; v . B=0is maintained
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Fig. 6. Radial velocity versus polar angle. between 1he pole

and the equator. Each curve., plotied
tor different heliocentric distance, is labelled in the same ma

nner as in Figure 5. The velocity in
= the magnetically closed regions is essentially zero. The reason it is not identically zero is that there
= is a small amount of numerical diffusion - quite small a5 indi
Sl

cated by the velocity being less than
10km s~ inside the 4 = 1.0 dipole streamer at 2.30 R,-.

at all times. The condition is maintained here through accurate differencing rather
than a self-correcting scheme. No anomalous acceleration due to errors in flux
conservation is apparent in the results, The numerical scheme js pressure-based so
it is limited by stability to large and moderate .5 values (e.g., 3 > 0.1) - which

tums out to be the same restriction for maintaining ¥ - B = 0 1o the required
degree.

Finally, the energy equation
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Dipole.Beta= 1.0 Quadrupole.Beta= 1.0

15 ’ l:
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Fig. 7. The total magnetic ficld. (53} + B2)'/*, versus polar angle. between the pole and the equator.
Each curve. plotted for different heliocentric distance. is labelled in the same manner as in Figure 5.
The field in the vicinity of the current sheet above the cusp in the streamers has a greatly reduced
amplitude, as would be expected. The effect is amplified above the mid-latitude streamers.

(§+%) (2)

reducestov-V(p/p?) = Owhena steady state is reached, which means that (p/0")
is then a streamline constant. This becomes an analytic test of the achievement of a
steady-state solution in our case. The boundary values of p and p are the same at all
latitudes. Therefore, (p/p") = Ohas the same value everywhere in the computation
regime as it has on the boundary if a steady state has been reached. We have checked
this for the cases shown in Figure 2 and find that for the dipole and quadrupole it is
constant to within a maximum of 1% and for the hexapole it is constant to within a
maximum of 4% (average values over the whole grid are less than 1% in all cases).
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5. Discussion

The new feature of this model. with respect to analogous simulations, is the exten-
ston of the outer boundary to I5 R - . This is not 1 conceptual advance, but this and
the stability and ruggedness of the code make it very useful for simulating realistic
coronal conditions. We present new results for quadrupole and hexapole fields,
with their accompanying mid-latitude streamers and open magnetic field regions.
The Alfvén speed ranged between 800 km s~! and 4 few tens of km s='. This is
lower than is believed appropriate for the corona (Suess. 1988), but we expect our :
model will now enable simulations with higher Alfvén speeds.
When comparing our results to those of Steinolfson, Suess, and Wu (1982;
henceforth referred to as SSW), an interesting and important difference becomes
, . apparent. In the present calculation, we have held the density and temperature
=] constant at the base, allowing the velocity (and. hence. the mass flux) to ‘float’
with time in accordance with the compatbility relations determining the velocity
from the solution inside the computational domain. In contrast, SSW hold the
= temperature and velocity constant at the base and allow the density to change
according to the compatibility relationships. SSW determine the location of the
streamer by locating closed tield lines and allowing the velocity to decrease to zero
at the feet of these tield lines. A consequence is that inside the streamer, the final
density is considerably higher than the initia] density and this is the primary reason
for the quantitative differences between their results and ours,

There is an important consequence of this difference in boundary conditions
between SSW and the present calculation: the plasma 3 is computed using the
temperature, density, and magnetic field at the equator and at | Rs. This is invariant
in the present calculation, but in SSW this number is different in the final, steady
state than at the beginning: there 3 was computed using the initial values. Therefore,
in SSW in the steady-state solution is actually larger than stated for each example
they did. Thus, our calculation for a dipole with 3 = 0.2 (case (d)) corresponds to

present study has demonstrated a preferable treatment of the boundary conditions
. In comparison to earlier calculations.
= A consequence of the precise examples we have done in cases (a) through
~ (d), with constant temperature and density, is the fiow speed and high density in
the magnetically open regions — in comparison to what is believed to be the case

= in solar coronal holes. This is a natural consequence of using a polytropic gas
in which the flow speed is strongly dependent on base temperature. It also does

not reflect suggestions from analysis of Skylab data that densities at the base of
S coronal holes may be a factor of two smaller than at the base of streamers (G. Noci,
= private communication). In a continuation of this study, we will produce models

with varying temperature and density at the base. The variation in temperature
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will. because it is an ‘effective temperature’, reflect a difference in energy balance

and distribution between the base of coronal holes and streamers instead of a trye
temperature difference.
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Appendix. The Inner Boundary Conditions According to the Projected
Normal Characteristic Method: a 2D Case

The inner boundary conditions are obtained according to the method of projected
characteristics (Nakagawa, Hu, and Wu, 1987) with the FICE algorithm (Hu and

characteristics and to six compatibiliity equations (see Wang, 1992

2, for deriva-
tion). At the inner boundary, since ¢, 2 0and v, < 17, 1%, the characteristics

dr/dt = v, — 1, and dr/d¢t = tr = Vy are towards the lower boundary from interior
(i.e., outgoing) and need to be considered. There are four incoming characteristics
(¥rs ¢r + V5, v + V7, and one that is degenerate because of the-model Symmetries),
so four variables can be specified at the boundary. Two other variables need to be "
calculated from related compatibility equations. We choose the values of B,, By,
pvand T to be specified, leaving two quantities (ie., v, and vg) to be computed
according to following compatibility equations:

dv. _ V,B_+V,C.

-— = T, : Al
at  pV, V(v - Vi) (A1)
Oty _ Vs(vi -VHB_ - Vi(Vi - vic. (A2)
ot ViVy(V} - V2)B, B, ‘ '
with the corresponding variables simplified in two dimensions as follows:
2
Li = bf = & , (A.3)
P
a* = yRT (A.4)
2, p2
02 = M , (A.5)
p .
-3 1, 2 2 k] 2121172
Vi =30+ 0"+ (a4 572 - 4a7p2]!72 | (A.6)
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17 = %az + 07+ (a4 5?2 = da=pt? (A7)
B =V = V2t =2 gy, TS
V=V 0= 2 g, -1,
+/)(I ~ 1 ‘)‘/I, ]d;ﬁr -~ M%—
3 1 Jey
~p? (VP -V + B+ B By S
O [,
- L":"'f- 2oV = V) - B - B’””m By ctgh) -
- 2131 g - bl
”Vi‘;’(l'f— 'i)+g+/uﬂ -1y, (A.8)
C-= o= 1 =05 gy, 1% :
—(Vi-V2 (e - V;)% + Bgvf(p, s)‘)j”+
il Berion
=[pa*(VZ - vy - B2 3) + B, B,V 91;%—
- [Ue(V,f -V + w}%g—g + B”’" dol; +
+ 2l ""{-p(v- ~v)+B- N B”"’(B + By ctg )+
V2 - V) B ag + LB Bels
-2 v~ Y e s, (A9)

Since the ideal MHD equations have been used, flow is

s parallel to the magnetic
field lines. Thus we determine By from the relation B3, 1y = vrBy.

ORIGINAL PAGE 18
OF POOR QUALMY



r

0o
|

]

(R
IR

T’

E 7
W

RLL.L N
il i 1

i

el

nny
"

{

e
Siinr b

]

{edi g

P
=
E
-

A TWO-DIMENSIONAL MHD GLOBAL CORONAL MODEL: STEADY-STATE STREAMERS 71

References

Allen. C. W.: 1955, Astrophysical Quaniities. Cambridge University Press. London.

Guo. W. P. Wang, J. F. Liang. B. X., and Wu. S. T.: 1992, in Z. Svestka. B. V. Jackson. and
M. E. Machado (eds.). *Eruptive Solar Flares'. JAU Syvmp. 133. 381.

Hu. Y. Q. and Wu. S. T.: 1984, J. Compur. Phvs. 35(1), 33.

Munro. R. J. and Jackson. B. V.: 1977, Astrophys. J. 213. 874,

Nakagawa. Y. Hu. Y. Q.. and Wu. S. T.: 1987. Astron. Astropiivs. 179, 354,

Parker. E. N.: 1963. Interplanetarv Dvnamical Processes, Interscience. New York.

Preuman. G. and Kopp. R. A0 1971, Solar Phys. 18. 258.

Steinolrson. R. 5.: 1989, in J. H. Waite. Jr.. J. L. Burch. and R. L. Moore (eds.). Geophvs. Monograph
54. 269. American Geophysical Union. Washington. D.C.

Steinolfson. R. §.: 1991, Astrophvs. J. 382, 677.

Steinolfson. R. S.. Suess, S. T.. and Wu. S. T.: 1982, Astrophys. J. 255, 730.

Suess. S. T 1979, Space Sci. Rev. 23. 159.

Suess. S, T.. 1988, in R. C. Altrock (ed.). Solur and Stellur Coronal Structure and Dyvnamics,
Proceedings of the 9th Sucramenio Peak Sununer Svinp.. Sunspot, New Mexico. p. 130.

Suess. S. T, Richier. A. K.. Winge. C. R.. Jr.. and Nerney. S.: 1977, Astrophvs. /. 217, 296,

Sun. M. T: 1991, Ph.Dissertation. University of Alabama in Huntsville.

Wang, A.-H.: 1992, Ph.Dissertation. University of Alabama in Huntsviile.

i
¥




- " | S ALSo
g B I3 3/3LD

- Lo INTENSITY IN CORONAL STREAMERS

S. T. SUESS
NASA Marshali Space Fligh Center, SSL/ESS?. Huntsvifle, AL 35812, U5 A

- . and

A.-H WANG andS. T WU
Center for Space Plasma and Aeronomic Research,
The Universiry of Alabama in Hunisville, Hunisviile, AL 15899 U.S.A.

LI
il iy

{

(Received 21 August, 1992; in revised form S February, 1993)

.

{.

Abstract, White-light images are presently the primary source of information on physical conditions
in the solar corona at distances greater than 2 few tenths of a solar radius above the limp, As a
consequence, we sti[] only have an incomplete description of Structures extending beyond the solar
limb. In particular, streamers, although observed for decades, represent a poorly known phenomenon.
SOHO. t0 be taunched in 1995, will be able 1o make long-term observations of these features up to
heights of a few R, both in white lightand UV. In this Paper we present simulations of Lo intensity
.- ) in coronal streamers, based on the two-dimensional (2-D) model developed by Wang et a!. (1992,

L1}
Wi

.

1. Introduction

Before the advent of coronagraphs, eclipses offered the only means to observe
the solar corona. In spite of the short time over which coronal structures were
visible, their basic characteristics have been reproduced in beautiful drawings (see,
- €.g., Foukal, 1990), which prove that streamers ~ the most prominent white-light
V coronal features - had been known and observed for decades. Following earlier

Solar Physics 147; 73-96. 1993,
© 1993 Kluwer Academic Publishers. Prinioy in Belgium,
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to cover a wider range of latitudes, at other epochs. We know that streamers are
stable structures, which may last for several rotations (see, e.g., Poland, 1978).
However, we know little about the formation, or the disruption, of streamers: we
haveonly a few observations, for instance. of the contraction of a post/mass ejection
structure to form a streamer (see, €.g.. llling and Hundhausen, 1986). As to the
physical properties of streamers, our knowledge is limited, as we will discuss later
on, to an incomplete understanding of their density structure. This situation may in
part be ascribed to the fact that Spectroscopic instruments were unable to operate
at the large heights reached by streamers. which therefore have been observed
mainly in white light. On the other hand. the solar community seemed to have little
interest in streamers: no review article has been dedicated to these structures for
years, notwithstanding the steady proliferation of scientific papers.

However, streamers are relevant to d number of problems. They represent
the ideal structures to investigate the differences in temperature, density, How
velocities, and magnetic field structure between magnetically closed and openareas
and to gain some isight into the physical conditions of current sheet regions. which
purportedly occur in streamers, Koutchmy (1988) pointing out how tangential
discontinuities are almost systematically pants of large streamers, noticed how
their analysis would offer the best estimate of the magnetic field value in the
corona, provided that the temperature keeps constant across the discontinuity. The
capabilities of streamers in providing data crucial to the solution of these questions
have hardly been exploited.

Insolar wind physics streamers play an ambiguous role. It has been claimed (see,
e.g., Feldman et al., 1981) that they constitute the major source of the interstream
and low speed solar wind, but we know neither how large is the contribution
of streamers to the solar wind mass flux, nor the geometry of the open field
lines associated with streamers, along which the wind purportedly propagates. The
reason for the depletion of helium, which Seems to accompany the slow wind from
streamers (see, e.g., Gosling et «l., 1981), is not well understood.

In the future, SOHO instrumentation will offer us a means to learn more about
these structures. In particular, UVCS will be able to make EUV observations of
streamers, up to <10 R, over an extended period of time, thus allowing us to get a
new kind of data whose capabilities have not yet been explored. In order to provide
guidelines to be used in devising UVCS observational sequences, we present, in
this paper, a variety of simulated, typical La observations of streamers. As a basis
for our simulations, we adopt the two-dimensional streamer model, developed by
Wang et al. (1992, 1993), which is summarized in Section 2. After comparing, in
Section 3, the model predictions with observations of densities in streamers, we
calculate, in Section 4, the Lo emission from different streamer configurations and,
in Section 5, we simulate La observations of a streamer carried around by solar
rotation. Finally, in the Discussion, we illustrate some future development of our
work.
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2. The Streamer Model

The physical streamer models that we use for calculating La intensities are the result

of a numerical simulation of global coronal structure. The simulation is a solution

allowing a relaxation in time unif the solution is no longer changing. The resulting
model is therefore assured both of being a self-consistent solution for the specified
physical boundary conditons and of being stable. The model, since axisymmetric.
describes a single continuous streamer that extends all the way around the Sun at a
specific latitude. The simulation is further described by Wang et . (1992, 1993).

stant in latitude and that the vector magnetic field is a potential magnetic field.
Three magnetic field geometries are used: a dipole, a quadrupole, and a hexapole;

the scalar potentials are proportional to Ps(cos#), P3(cos#), and Py(cos ), re-
spectively. There are two dimensionless numbers: the polytropic index, v, and the

J = 1.0 for all three field geometries, and, in addition, do a dipole calculation for
3 = 0.2. In these cases, J is evaluated at 1.0 R... at the equator, where the field
strength is 1.67 G for both .3 = 1.0 and .3 = 0.2. For the high 3 case, the base
temperature and density are 1.8 x 10° K and 2.25 x 108 cm™3. For the low 3 case,
they are 1.44 x 10° K and 5.61 x 107 cm~3. The three magnetic field geometries
naturally lead to a single equatorial streamer, a mid-latitude streamer, and both an

The simulation extends from 1.0 Rz t015.0 R and from pole to equator. The
boundary conditions are Symmetric about the equator, so a solution in the opposite
hemisphere is not necessary. In this paper, we only quote results inside 7.0 Rs
because this covers the ran ge over which closed streamer structures most frequently
are observed. There are 20 grid points between the pole and equator, 27 gridpoints
between 1.0 R, and 7.0 Rg. The initial state consists of a potential field and the
solution for a spherically-symmetric wind for the given base temperature, density,
and polytropic index. The initial temperature, density, and velocity profiles are
shown in Figure |. The temperature curves appear irreguiar due to the small
change in temperature over the relatively large radial range - a consequence of the
polytropic index being near unity. Only three significant figures were retained after
the calculation so what is seen here is essentially roundoff error.

Results for the steady-state solutions, given the above initial conditions, are
ordered according to the four cases treated: (a) dipole, 3 = 1.0, (b) quadrupole,
3= 1.0,(c) hexapole, 3 = 1.0, and (d) dipole, 3 = 0.2. The steady-state magnetic
field geometries are shown in Figure 2. Here is seen the well-known property that
the flow is nearly radial beyond 3—4 R. The streamers are those volumes which are



76 G.NOCIET AL. ™~
= {a)
e 9 250 1.8
S
1.7
200 -
. e £
12 g Q 16 ©
< 150 £ e
> ~ )
7 —~
3 > 1'% 3
g 100 ¢ g
=) ] ®
= ap > 14 Q.
=z o E
[ ~ 6k E&’
50
. 1.3
i.g Density
™ S —— ], 1.2
1 2 3 4 5 6 7
o Radius (solar radii)
(b)
8 7 ; T T T 250 115
— ~ <114
200 —
—_ X
[ap] o
i ~ ©
_ £ <713
< 150 £ =t
— ) N
> ~ ()
- =1 12 ]
@ =) 3
- g 100 3 g
(=] < U
= > 11 a
Q g
. g
- 150
3 91
Temperature
3 |, Jog

1 2 3 4 5 6 7
Radius (solar radii)

Fig. la-b. Density, temperature. and velocity profiles in radius of the initial (¢t = 0) state in the
relaxation. {a) Profiles for the 3 = 1.0 cases. (b) Protiles for the .3 = 0.2 case. Note that. except
for the velocity scales. the scales differ between the two panels. The irregularities in the temperature
profiles are roundoft errors.



Lo INTENSITY INTORONAL STREAMERS 77

magnetically closed, and it js evident that relatively small volumes in the streamers

surrounded by a low-density shell but, as will be shown below, the densities in the
large coronal hole-like open regions are otherwise only slightly lower than in the
streamers. In each panel of Figure 2, four dotted lines are shown and labelled A.
B, C, or D. These lines indicate the positions used to plot variables versus radiys
in Figures 3 and 4 below.

[ndisplaying results for the physical variables, we wil] concentrate on the density
and the velocity, these being the two variables that determine the Lq intensity. Other

profile. Curves D in Figures 3(a), 3(c). and 3(d), and curve C in Figure 3(b) are
all profiles cutting through the cores of streamers. [t is seen that there is a density
enhancement in the core ranging from =75% for the Jow J dipole down to 20%
for the equatorial streamer in the hexapole. On the flanks of streamers, for example
as shown by curve C in Figure 1(a), there is a density deficit. Nevertheless, in the
centers of open regions, the density deficit is always less than 220%. This is an

boundary which are caiculated from the interior solution instead of fixed by the
boundary conditions (Wangetal., 1992, 1993; Steinoifson, Suess, and Wu, 1982).
The phenomenon has no significant effect on the solution above the fourth grid
point and, in particular, no effect above 1.2 R;; - the minimum radius UVCS can
observe.

Figure 4 shows the radial velocity along the directions labelled in Figure 2. In
addition, the initial state protile is plotted as a dashed line — the same profile as
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{b) Quadrupoie

Solar Radi,

{c) Hexapole

Solar Radiu

vs radius in succeeding figures. Thus. the quadrupole in plot (b) will have these variables plotted vs
radius at the pole (A). at the edge of the polar open region (B). through the mid-latitude streamer (C).
and along the middie of the equatorial open region (D),
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Fig. 3a-d. Density as a function of radius. Each panel is for the corresponding case in Figure 2.
, The curves are plotted along the directions shown in Figure 2. For example. the four curves in (c),
- labelled "A. B. C. D', are along the four dircctions shown in Figure 2(c) and labelled in the same
manner. Densities in each curve have been normalized to their values in the initial profile (Figure I(a)
for (a—). and Figure I(b) for case (d)). Hence. a density enhancement is indicated by values greater
than unity. and vice versa. The density concentrations in the streamers are clearly visible, generally
- : being on the order of 25% to 50% above the initial state.

occurs over a narrow range, the density does become small (as in Figure 3(a),

- : curve C) but the flow speed never gets large (as in Figure 4(a), curve C). The

other important thing to note is that the cusp (top of the streamer) in the 3 = 0.2

dipole lies at about 6 R. This seems large enough to cover the range of streamer

g heights expected in the solar corona and therefore we will not concern ourselves
' with computing models for smaller 3-values.

A more complete picture of the behavior of the density can be gained by also
considering plots of the density versus polar angle at different heights. These are
shown in Figure 5, where each curve is labelled with the heliocentric distance it
represents (e.g., 2.30 R is at 2.30 R ;). Figure 5(a), the 8 = 1.0 dipole, shows the
density enhancement in the streamer (polar angle of 90°), the deficit in the adjacent
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Fig. 4a-d. Radial velocity as a function of radius. Each panel is for the corresponding case in
Figure 2. The curves are plotted along the directions shown in Figure 2. For example, the four curves
in (c), labelled *A. B. C. D". are along the four directions shown in Figure 2(c) and labelled in the
same manner. The dotted line in these plots is the ¢ = 0 profile. the same as shown in Figures ((a)
" and 1(b).

. trough, and the large plateau of density that is only a small amount less than n
the streamer and extending throughout the open region beyond the trough. The
behavior of the density around the mid-latitude streamer in the quadrupole, and
around the mid-latitude and equatorial streamers in the hexapole is very similar.
The only difference for the 3 = 0.2 dipole is that the troughs are considerably
broader.

The broad, high density plateau in the open region is distinctly unlike a coronal
hole. The reason for this is that in this model no effort has been made to generate
the high coronal hole flow speeds that lead to low densities. Suess et al. (1977)
have shown in a similar model that a temperature increase of 50% or more at the
center of the open region is necessary in a polytropic model such as this to produce
densities like those that are observed in coronal holes.
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Fig. 5a~d. Density vs polar angle, between the pole (0°) and the equator (90°). Each of the curves is
labelled according to the heliocentric distance it refers to. Thus, the curve labelled 1.70 R indicates
the density at 1.70 Ry heliocentric radius. The density at the base is constant and so the curves there
are fAat. Above the base. there is a small density enhancement in the streamer (ca. 5% to 50%) and a
trough in density at the edge of the streamer. In the middle of the open region, the density is very close
to what it was in the initial state (see also Figures 3(a—d)). The reason it is not an order of magnitude
smaller, as in an observed caronal hole. is that we have used constant temperature and density at
the base. To produce a true coronal-hole-like profile in a polytropic model such as this would have
- required an increase in the temperature at the base of the open region (Suess et al., 1977). Unless
otherwise stated 3 = 1.0,

Figure 6 shows the radial velocity plotted in the same manner as the density in

Figure 5. The velocity is again seen to be essentially zero inside the streamer(s),

= whose height decreases rapidly with increasing magnetic field complexity. Thus,

while the 3 = 1.0 dipole streamer extends to 3 R:, neither of the 3 = 1.0 hexapole

. streamers reaches beyond 1.70 R;;,. As indicated above, the flow speed throughout

- the open region is very similar to the initial state flow speed, excepting for small
humps on the flanks of the streamers.

These four models constitute the basis for the calculation of La intensities.
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H . In using them, we progress from a straightforward calculation of the intensity
— measured when viewing the streamer as seen in Figure 2 (i.e., from a position in

the magnetic equatorial plane) to other viewing positions and to approximations
based on the models. A comparison with intensities from observed streamers
is used to guide suggestions for further development of the model by illustrating
specific weaknesses in the present four models. We will conclude that a satisfactory
physical model of streamers, for the purpose of computing expected UVCS La
intensities, can be constructed through the application of the present simulation with
an appropriate choice of boundary conditions to better represent the dynamics of
the solar wind in the open magnetic field regions. This is well within the capabilities
of the simulation and will constitute the next stage of this project.
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3. Predicted vs Observed Densities

(

As mentioned in the Introduction, density is the only physical quantity in stream-
crs to be even partially measured. Coronagraph images usually are polarization
brightness (pB) images. Because pB is proportional to the line-of-sight integral of
the density times a scattering function (Billings, 1966), it is possible from pB im-
ages to derive density maps. Usually, this procedure is performed with the Van de
Hulst method (1950): that is, the density distribution is supposed to be cylindrically
symmetric.
"This technique has been used to derive densities from eclipse observations
= of streamers. Dollfus, Laffineur, and Mouradian (1974) derived densities for a
number of streamers observed in the eclipse of February 15, 1961, and compared
o their values with those pertaining to 13 different streamers. which represent all
- results published between 1952 and 1972. From this. as well as from a comparison
between values derived by different authors for the same streamer, these authors
conclude that different determinations for the same structure agree only within
- a factor 2 and different structures may have densities which differ, at the same
altitude, by a factor [0, even in streamers observed at the same eclipse, that is,
independently of the epoch of the solar cycle. All densities refer to the streamer
axis; Dollfus et «l. assumed that streamers are axially symmetric and that the
distribution of density, in the direction normal to the streamer’s axis, is somehow
intermediate between being uniform and having a gaussian distribution. Different
assumptions on the streamer geometry, or on the distribution of density across a
streamer, may possibly explain some of the discrepancies in the values derived for
the same structure.
Densities predicted by a theoretical model have to comply with this rather loose

e e
I

(.

= observational constraint. Figure 7 gives, on the left panel, the behavior of the
ﬁ density predicted by our model along the axis of equatorial streamers, for dipolar
== and hexapolar configurations in the case of ;3 = 1.0, and for dipolar geometry only
= in the low 3 (3 = 0.2) case. Densities along the axis of off-equator streamers, both
.. in the quadrupolar and hexapolar geometries, are approximately equal to those
H along the axis of equatorial streamers and are not shown. In the right panel, we
= present a figure made up from Figures 16(a-b) of Dollfus et al., which shows,
. besides all density determinations in streamers between 1952 and 1972, the values

derived by Dollfus et al. for four different streamers observed in the eclipse of
- 1961.

The 3 = 1.0 curves, cutting through the bundles of curves shown in the right
panel, represent correctly the observed densities. As we said, it is not possible to
— establish, from the data published so far, any trend in the different behavior of

individual streamers. For instance, contrary to expectations, the streamer closest
to the equator in Dollfus et al.'s data (position angle 95°), has lower densities
— than a mid-latitude streamer (position angle 55°) and the highest densities among
those from published results 1952-1972 penain to a streamer observed close to
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Fig. 7. Left: density vs height protiles along the axis of equatorial streamers in dipolar (3 = 1.0 -

- solid line — and 3 = 0.2) and hexapolar geometries as derived from Wang et al.’s (1992, 1993)
models. Right: densities along streamers from all results published between 1952 and 1972 (labels
1-13, solid lines) and along 4 streamers observed at the February 15. 1961 eclipse (dashed lines.
labelled by their position angles). See Figures [6(a~b) of Dollfus, Laffineur. and Mouradian (1974)
for further information on this panel.

the activity minimum (curve 4, February 5, 1962 eclipse). Hence, we can only
conclude that the 3 = 1.0 curves are consistent with observed density profiles
in coronal streamers. This conclusion is confirmed by a comparison of the radial
density distribution predicted by our model with densities derived from Clark Lake
Radioheliograph streamer observations (Gopalswamy, Kundu, and Szabo, 1987).
This comparison is limited to the lower corona, at heights below and near 2 R, and
shows (Figure 8) how our predicted density profile lies between densities derived
from fundamental and harmonic plasma hypotheses. Finally, we notice that the
lack of a definite observational difference between low and high latitude streamers,
agrees with predictions from our model.

On the other hand, by comparing the two panels of Figure 7, we conclude that
our 3 = 0.2 case is not realistic because densities are too low and the cusp is far
too high. Nevertheless, the 8 = 0.2 curve shows a marked change in its slope that
is not so evident in the 3 = 1.0 hexapole streamer, and is altogether absent in
the 8 = 1.0 dipole streamer, which may reproduce the behavior shown by some
of the observed structures. To recover this break in the density profile at higher 8
probably requires changing conditions outside the streamer. A change in the density
gradient of the observed profiles has, in fact, been interpreted in terms of a different
behavior of this physical parameter in the region of the streamer’s helmets (Dollfus
et al., 1974). Obviously, the present simulations do not allow us to predict whether
the resulting curve will be capable of reproducing some of the observed density
profiles more closely than the high .J curve. However, it is likely that structures
with differing cusp heights correspond to different 3 values (Steinolfson, Suess,



—
il

—

La INTENSITY IN CORSNAL STREAMERS 85

Radius (solar radii)

Fig. 8. Predicted density vs height protile along the axis of the equatorial streamer in the case of high
J(3 = 1.0) dipolar configuration (solid line) and density determination from radio observations of
a streamer obtained on July 27, September 12 and 17. 1985: o represent values of density derived
from the hypothesis of fundamental plasma emission. A represent values of density derived from the
hypothesis of harmonic plasma emission.

and Wu, 1982). We conclude that the comparison between model-predicted and
observed density profiles points to the need for a thorough analysis of the effect
of different boundary conditions in and around streamers on the resulting density
profiles.

In the following section we proceed to evaluate the Lo emission in streamers
adopting the 3 = 1.0 models.

4. Lo Emission from Streamers

The formation of the Lo line in the solar corona has been discussed by a number of
authors (Gabriel, 1971; Beckers and Chipman, 1974; Withbroe et al., 1982; Noci,
Kohl, and Withbroe, 1987) who showed how coronal La observations can be
used as a diagnostic tool to determine coronal densities, temperatures, and outflow
velocities. Although, at coronal temperatures, only =1 proton in 107 is tied up in
neutral hydrogen, the strongest component of the coronal La is due to the scattering
of chromospheric La photons by neutral hydrogen atoms. An electron scattered
component, produced by Thomson scatterin g of La radiation, is about three orders
of magnitude weaker than the resonantly scattered component and will be ignored
in the following. , ‘

The total (i.e., integrated over the line profile) La intensity, as observed along
the direction n is given by

I= %;)‘0 / N, d.r/p(go) dw'/lchmm(/\. n) (A - Xp) da, (1
-0 Q 0
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where £ is the Planck constant, B, the Einstein coefficient for the line, Ao the rest
value for the central wavelength A of the Lo transition, and V| the number density of
hydrogen atoms in the ground level: the unit vector n is along the line of sight z and
the unit vector n' is along the direction of the incident radiation: p(¢) du’ - where
" is the solid angle around n’ - s the probability that a photon travelling along the
direction n was travelling, before scattering, along the direction n’: () is the solid
angle subtended by the chromosphere at the pointof scattering; Jenrom is the exciting
chromospheric radiation and & is the coronal absorption profile. In the following

been taken from Beckers and Chipman (1974) and we adopted the value given by
Gabriel (1971) for the ratio between the neutral hydrogen density and the proton
density at different temperatures (because of the low coronal density all hydrogen
atoms are assumed to be in the ground level, therefore Ny/Np =V, /Np). This is
not entirely correct, since temperatures in our model are ‘effective’ temperatures,
resulting from the polytropic index used in the energy equation. We will come back
to this point in Section 6.

In order to evaluate the La intensity in coronal streamers from Equation (1), we
need to know how streamers extend in the third dimension. Because our models
are axisymmetric, it is realistic to assume that they give the distribution of physical
parameters in a meridional plane, identified with the plane of the sky and normal to
the line of sight. If we focus on the dipolar model, we recognize that its geometrical
configuration is highly reminiscent of the conditions observed at solar minimum,
when streamers are concentrated along the equator. Therefore, as a first hypothesis,
we assume that streamers extend all the way around the equator, in a continuous
belt, and calculate, on the basis of Equation (1), the radial distribution of Lo
intensity in a dipolar geometry. To this end, in the following, densities along
the line of sight are considered equal to those given by the model at the same
latitude and radial distance. Figure 9 gives the radial profile (solid line) of the La
intensity, evaluated along the streamer axis (which, in a dipolar geometry, lies in
the equatorial plane) up to a height of 4.5 R.,. Values at larger distances are not
given, since, beyond that height, field lines are open and the La brightness would
no longer originate in the streamer. Moreover, open-field regions are not described
realistically in our simulations, their density being definitely overestimated (see
Wang et al., 1992, 1993, for further comments on this point). This is apparent also
from the slope of the intensity vs distance curve, which keeps constant over all
the computational domain as if densitjes decrease linearly with distance. This is
unexpected. as the line of sight, in regions close to the cusp height and beyond it,
crosses mostly through the low-density open-field regions. Altogether, the slope of
the Lo intensity gradient predicted in the case of a continuous belt of streamers -
circling the Sun, is open to criticism.

The inaccuracy of the brightness vs distance profile may be ascribed both to
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Fig. 9. Predicted La intensity vs radial distance along the axis of an equatorial streamer in a dipolar
geometry. for a plasma .J = | .0 (solid line). The streamer is assumed to extend all the way around
the equator, and the calculation is performed up o a height of 4 R5, as at higher aititudes most of
the contribution 1o La intensities will come from open regions. Results from rocket observations of
Lo intensities from a Quiet coronal region are also shown (dots).

longitudes (Dollfus, private communication).
From this analysis we conclude that we need both a better simulation of open
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field regions and a definition of the streamer geometry through a full 3-D model.
However, we may still get realistic predictions by adopting a priori the streamer
configuration and neglecting the contribution from the outer low-density regions,
The resulting profiles of intensity vs distance will illustrate the behavior of the
Lo brightness for different geometries and UVCS data will eventually allow us to
identify the more realistic configurations.

Figure 10 shows the La intensity vs distance profiles assuming three different
streamer configurations in a direction normal to the streamer axis and parallel to
the line of sight (we remind the reader that streamers are supposed to fie in a
meridional plane). Either the angular width of a streamer is constant with height
(fan-shaped streamer) and e€qual to its base angular width (as seen in the plane of
the sky) or its linear width is constant with height (constant-thickness streamer)
and equal to the distance between the tootpoints of the highest closed field lines
(as seen in the plane of the sky) or streamers are ‘cone-shaped’ structures and
therefore have a widih, initially equal to that of a constant-thickness streamer,
which decreases linearly with height up to the cone vertex, identified with the
streamer’s cusp. Figure 10 shows that, in a dipolar geometry, an equatorial fan-
shaped streamer differs negligibly from a continuous belt of streamers circling the
Sun. This is due to the large width of the streamer (half width 38°): outer regions
contribute to the emergent intensities only at great distances where densities are
too low to affect significantly the La brightness. As a consequence, unless future
observations will show streamers to be brighter than assumed so far, we are led to
discard the hypothesis of streamers as constant angular width structures. On the
contrary, constant thickness and cone-shaped streamer structures lie close enough
to the observed data points to be equally plausible.

However, our model locates the cusp only approximately, both because our
model does not take diffusive effects into account and because of the coarse
resolution of our mesh points. Hence. in order to illustrate, in a cone-shaped
geometry, how different cusp altitudes affect the Lo intensity gradient, we have
considered the cusp height as a free parameter and evaluated the resulting radial
profiles in the usual dipolar geometry and high 3 plasma. Figure 11 shows the La
intensity vs distance profiles for a cone-shaped streamer whose vertex - i.e., cusp
height - is located at altitudes ranging between 2.5 and 6 R . We point out that such
a large variation in the position of the streamer’s cusp far exceeds the uncertainty
of the model and is shown only for display purposes (although the procedure is not
entirely consistent, as different 3 values would be required to build models with
such different cusp heights). We conclude that the La intensity and the slope of
the Lo intensity gradient initially (i.e.. close to the Sun) depend only weakly on
the shape of the streamer, but, at large distances, are dictated by the streamer’s 3-D
structure and, in the case of a cone-shaped feature, by its cusp height.

So far, our examples referred to a global dipolar streamer. However, our results
can be extended to the quadrupolar and hexapolar model configurations by taking
into account the differences in the streamer geometry. As we have shown in Sec-
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Fig. 10. Predicted Lo intensity vs radial distance along the axis of an equatorial streamer in a dipolar
geometry. for a plasma 4 = {.0. The streamer thickness in a direction normal to the plane of the
sky is assumed either to have a constant angular width (fan-shaped streamer) equal to its angular
base width (x76°) or to be constant with height (constant thickness streamer) and equal to its base
width (=1 R.) or o decrease lincarly with height (cone-shaped streamer) up to the cusp height
(Rewp = 4.5 Re).

tion 3, densities are about equal in low and high latitude streamers. Therefore, the
Lo brightness from these features tumns out to scale, with respect to that originat-
ing in a dipolar equatorial configuration, in the same proportion as the streamer
thickness. The La brightness from an equatorial hexapolar streamer, for instance,
will be a factor 2-3 smaller than that from an equatorial dipolar streamer and about
equal to the brightness from the high-latitude hexapolar streamer.

We did not consider, yet, the case of off-axis observations, which should provide
a more comprehensive test of the model by allowing us to determine the physical
parameters of the streamer across its axis, over a meridional plane. For instance, if
SOHO UVCS were to observe an equatorial streamer ~ symmetrical with respect
to a meridional plane through its axis — when its symmetry plane lies in the plane of
the sky, it should be possible, via off-equator observations, to check the shape and
physical parameters of the streamer in the meridional plane purportedly described
by the model. '

Figure 12 gives the La intensity gradient. measured in the plane of the sky along
directions parallel to the axis of the streamer, for the usual dipolar configuration
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lengths. However, the intensity ratjo 1s smaller than the ratjo between integration
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Fig. 12, Predicted La intensity vs distance (measured along the axis of an €quatorial sireamer) for
different off-equator offsets in 3 cone-shaped equatoria| streamer: solid line, intensity along the axis
of the strcamer, zero offset: A, intensity for an offsetof 0.2 R.. . X, intensity for an offset ot 0.4 Rg.
As usual the contiguration is dipolar, the base width is 238° ang the cusp heightis 4.5 Ry,

neutral hydrogen atoms). At a distance of =2 R.. this effect makes the intensity
ratio about 109 smaller than the ratio between integration lengths. Thus, from
Figure 12, we conclude that the ratjo between Lo intensities, evaluated at the same
distance (along the streamer’s axis) and different offsets, is approximately equal
to the ratio of the integration lengths. In the hypothesis of an axially-symmetric
density distribution, we conclude that densitjes play a secondary role, with respect
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S. La Emission from a Rotating Streamer

The extended lifetime of SOHO makes it possible to observe streamers over a
prolonged period of time as they are carried around by solar rotation. Hence,
generally, the line of sight will cut through the structure obliquely and the angle
between the streamer’s axis and the integration path will vary from 0° to 90° as the
streamer moves from the central to the limb meridian. When the line of sight cuts
normally through the streamer, the region which is closest to the Sun and, therefore,
has the highest density, is located at the streamer axis: as a consequence, the highest
contribution to the emergent intensity comes from this region. On the contrary, when
the line of sight cuts obliquely through the structure it may happen, depending on
the angle between the line of sight and the streamer axis and on the axial vs
transverse density gradient, that the highest contribution to the emergent intensity
originates from a region at some distance from the streamer axis. If evolutionary
effects are negligible - i.c., if streamers are stable throughout a period of time
— we may use this effect to get information on the density profile in a direction
normal to their axis and, through prolonged observations, eventually reconstitute
their entire structure. In other words, for stable structures solar rotation allows us
to see streamers under different perspectives and use tomographic techniques to
obtain their 3-D configurations.

In the previous section, we assumed that the streamers footpoints were rooted
at the same longitude. However, if streamers are rooted in active regions, it is
likely that their footpoints are rooted at the same latitude - say, along the equator
- inasmuch as positive and negative polarities tend to align along the east-west
direction. Although our model seems inappropriate to deal with this case — since
it is not realistic to have magnetic ‘poles’ along the solar equator — as long as
we do not have a 3-D simulation it is plausible to focus on the streamer sector
and adopt the representation provided by the model to describe streamers lying on
the equatorial plane. This allows us to explore the capabilities of the tomographic
technique, because, in this hypothesis, the model provides a complete description
of the behavior of density along the line of sight (at least for on-axis observations).
Hence, in the following, contrary to what has been hypothesized so far, the streamer
is assumed to lie on the equatorial plane.

Figure 13 shows how individual elements along the line of sight contribute to
the total Lo intensity measured in the equatorial plane at a distance of 1.25 Rs.
When the streamer is at the limb (streamer longitude 90°), its axis lies in the plane
of the sky and is perpendicular to the line of sight. Therefore, the element lying
at 1.25 R, along the axis is the element closest to the observer and provides the
highest contribution to the emergent intensity (top left panel of Figure 13). As the
streamer is carried around by solar rotation, different elements, at some distance
form the axis, become the major contributors to the total intensity. Figure 13
demonstrates the progressive shift of the element which most contributes to the
emergent Lo intensity, as the streamer longitude changes by 30°. The bottom right
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panel, for instance, shows that. when the streamer has rotated by 30° behind the
plane of the sky, the highest contribution to the emergent intensity comes from the
element at a distance of =~ 0.72 R, along the line of sight (distances along the line
of sight are counted from the streamer axis). Thus, by taking an extended set of
data, at different locations along the axis of the streamer and at different rotation
angles, we eventually get a complete map of the density of the structure.

We do not give any further example of this technique as a more realistic choice
of boundary conditions in the open-field regions will modify the distributions of
Figure 13. We anticipate that a lower density in open-field areas will result in a
steeper decline of the contribution from elements located outside. or at the outer
edge of the streamer. This effect may help getting a density map with higher
spatial resolution than otherwise possible. Although stable structures may be a
minority within the streamer family, the example of Figure 13 shows that it is worth
developing this methodology further, as a means for an observational determination
of the 3-D streamer’s structure.

6. Discussion and Conclusions

Our purpose has been twofold: to provide guidelines for UVCS observational
sequences and to compare our simulations with the scanty data available in order
to guide further development of the numerical model toward more realistic global
configurations. _

The first objective has been reached, insofar as we have presented a set of
predicted profiles of La intensity vs distance, both for on-axis and for off-axis
observations and for different rotation angles of the streamer. These profiles can
be easily adapted to different magnetic configurations. On the basis of our model
for an axially-symmetric structure, we also show that off-axis observations allow
an identification of the streamer’s dimension along the line of sight. Finally, we
have shown that this capability, combined with prolonged observations of a stable
streamer at different longitudes, leads to a 3-D map of densities in streamers for
comparison with our global simulation. '

The model uses a polytropic relationship between density and pressure, rather
than a full energy equation. Hence, the temperatures we predict are effective tem-
peratures. Observationally, the La brightness depends on the electron tempera-
ture, via the neutral hydrogen abundance, and on the kinetic temperature, via the
coronal absorption profile. As long as we consider integrated Lo brightness, the
effect of an incorrect absorption profile is probably negligible. Model tempera-
tures are, however, lower than temperatures derived from streamer observations
(Liebenberg, Bessey, and Watson, 1975), so we apparently overestimate the neutral
hydrogen abundance. Nevertheless, measured temperatures in streamers have such
great uncertainty that we cannot resolve this issue until UVCS provides accurate
measurements of the electron temperature.

Ultimately, our second objective is the more relevant. The simulations point
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intensity from the usual dipolar, 3 = | .0 streamer. supposed to lie in the equatorial plane, as a function
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to the need for (a) a different choice of boundary conditions in open regions than
inside the streamer, (b) an extension of the model to different 5 values, and (c) the
development of a 3-D model. We are presently working on these issues and expect
to get a realistic simulation of open field regions shortly. Our goal is to attain
a reasonable global model that simulates both streamers and coronal holes by
achieving agreement between model predictions and existing observations. This is
a method to fully determine the 3-D structure of streamers to within the resolution
of the model and observations.

Traditionally, three-dimensional mapping of the electron density in coronal
structures has been performed via the image reconstruction technique originally
developed for X-ray tomography (Altschuler and Perry, 1972; Perry and Altschuler,
1973; Wilson, 1977). or via the already mentioned Van de Hulst’s (1950) method.
Both procedures have been subject to criticisms (Bagenal and Gibson, 1991) be-
cause of their heavy computational requirements. While the ideal method fora 3-D
mapping has yet to be found. an alternative approach to devise theoretical models
with free parameters that are calibrated against observational data, is being devel-
oped (Bagenal and Gibson, 1991). The present work uses this altemmative approach
and the results achieved so far indicate that it is worth pursuing. We conclude
by pointing out that an agreement between model predictions and observations
will allow us to determine the magnetic field vector throughout the streamer, thus
providing a complete picture of these so far elusive structures.

Acknowledgements

The work of G. Noci and G. Poletto has been partially supported by ASI (Italian
Space Agency). S. T. Suess acknowledges support from GNA (Gruppo Nazionale
di Astronomia) and MURST (Ministero dell’ Universita e della Ricerca Scientifica)
during his visit to Florence, where this work was initiated. Partial support by a grant
from the Cosmic and Heliospheric Physics Branch of NASA is also acknowledged.
A.-H. Wang and S. T. Wu are supported by NASA Grant NAGW-9.

References

Altschuler, M. D. and Perry, R. M.: 1972, Solar Phys. 23. 410.

Bagenal. F. and Gibson, S.: 1991, J. Geophys. Res. 96, 17663.

Beckers. J. M. and Chipman, E.: 1974, Solar Phvs. 34. 151.

Biilings. D. E.: 1966. A Guide 1o the Solar Corona. Academic. San Diego. Ca.

Dollfus, A.. Fort. B.. and Morel, C.: 1968, C. R. Acad. Sci. Paris 266. 1537.

Dollfus. A.. Laffineur. M.. and Mouradian. Z.: 1974, Solar Phvs. 37, 367.

Feldman, W. C.. Asbridge. J. R.. Bame, S. J.. Fenimore, E. E.. and Gosling, J. T.: 1981, J. Geophys.
Res. 86, 5408.

Foukal. P. V.: 1990, Solar Astrophvsics, J. Wiley and Sons. New York, p. 12.

Gabriel, A. H.: 1971. Solar Phys. 21, 392.

Gopalswamy. N., Kundu. M.. and Szabo, A.: 1987, Solar Phyvs. 108, 333.

Gosling. I. T.. Borrini. G.. Asbridge, J. R.. Bame. S. J., Feldman. W. C., and Hansen, R. T.: 1981, J.
Geophys. Res. 86. 5438.



—_—

96 G. NOCIET AL.

Hildner, E., Gosling, J. T.. McQueen. R. M., Munro, R. H.. Poland. A. J.,and Ross, C. L.: 1975, Solar
Phys. 42. 163.

Iling. R. M. E. and Hundhausen, A. J.: 1986. J. Geophys. Res. 91. 10951.

Kahler, S.; 1991, Astrophys. J. 378, 398.

Kohl, J. L., Weiser, H., Withbroe, G. L., Noyes. R. W.. Parkinson. W. H.. Reeves. E. M.. Munro.
R. H.. and MacQueen. R. M.: 1980, Astrophyvs. J. 241. L117.

Koht, J. L., Withbroe, G. L., Zapata. C. A.. and Noci, G.: 1983, in M. Ncugebauer (ed.). Proc. of
Solar Wind 5. NASA Conf. Publ.. CP 2280. p. 47.

Kopp. R. A. and Holzer. T. E.: 1976, Solar Piivs. 49, 43.

Koutchmy. S. L.: 1988, in R. C. Altrock (ed.). Solar and Stelluar Coronal Structure and Dvnamics,
NSO Publ.. p. 208.

Liebenberg, D. H.. Bessey. R. J.. and Watson. B.: 1975, Solur Phys. 40, 387.

Newkirk. G. and Bohlin, J. D.: 1965. Ann. Astrophys. 28, 234,

Noci. G.. Kohl, J. L.. and Withbroe. G. L.: 1987. Astrophys. J. 318, 7036.

Perry. R. M. and Altschuler. M. D.: 1973, Solar Phvs. 28, 435.

Poland. A. 1.: 1978, Solar Phivs. 57, 141,

Steinolfson. R. S.. Suess. S. T.. and Wu. S. T.: 1982, Astrophivs. J. 258, 730.

Suess. S. T.. Richter. A. K., Winge, C. R.. Jr.. and Nerney. S.: 1977, Astrophys. J. 217. 296.

Van de Hulst. H. C.: 1950, Bull. Astron. Inst. Neth. 11, 135.

Wang. A.-H., Wu. S. T.. Suess. S. T.. and Poletio. G.: 1992, in E. Marsch. K. Sauer. and R. Schwenn
(eds.), ‘Solar Wind Seven'. COSPAR Collog. 3. Pergamon Press. Oxford, p. 311.

Wang. A.-H., Wu. S. T.. Suess. S. T.. and Poletto. G.: 1993. Solar Phvs. 147. 55 (this issue).

Wiison. D. C.: 1977, “The Three-Dimensional Solar Corona: a Coronal Streamer’. Ph.D. Thesis,
University Colorado. Boulder.

Withbroe, G. L.. Kohl. J. L., Weiser, H.. Noci. G.. and Munro, R. H.: 1982, Astrophys. J. 254, 361.



N A HELMET STREAMER: EMERGING MAGNETIC
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Abstract. We examine a limjted parametric study of time-dependent, numerical
MHD simuiations of coronal mass ejectsion (CMEs). The physical initiating mechan. .

Mmet’s magnetic field can be a distinct, physicaily- viable mechanism. We also find;
(i) with an appropriate magnetic driver, it is not necesssary to add an arbitrary
heating function to a pre-event helmet- streamer, ag suggested by Steinolfson and
Hundhausen (1988) to produce observed CME features: nor (ii) is it necessary to in-
troduce an ad hoc accelerating mechanism to a plasmoid as sugested by Linker et qf
(1980). However, we &gree with the latter workers that the CME driving mechanism
has the same importance as the configuration of the initial ambient corona in the
determination of the mass ejection’s evolution as detected by coronagraphs.

Key words: Coronai Mass Ejections (CME-): MHD Modeling of CME,

1. Introduction

IAU Colloquium 144 ‘Solar Coronal Structures', 1993, 7- 11.
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ambient coronal topology. Hu (1989) combined an arbitrary mass eflux from the
photosphere with an emerging magnetic flux that had a polarity opposite to the
overlying coronal topology. An additional physical mechanism - photospheric shearing
of magnetic field lines - has also been proposed (c.f., see review by Dryer, 1994) but
will not be considered in this paper.

The purpose of the present paper is restricted to a limited parametric study of
the emerging magnetic flux driver. Basic physics are given by Wu et ai ( 1978); initial
coronal solution, by Zhang and Wei (1991); and the basic numerical techniques and
nonreflecting compatibility relations, by Wang et ql, (1982) and Hu and Wu (1984).

2. Simuiation of Coronal Mass Ejection

We will choose a Gaussian spatial distribution (centered at § = 90°) of the driver(s)
within a latitudinal extent: 64.5° < 6 < 90°. We aiso choose a linear, temporal ramp
of each driver(s) during the time: 0 < ¢ < 500 sec and then kept constant during the
remainder of the computation to t = 15,000 sec (4.2 hr). When B (only) is considered
to be the driver, [(B, + Ba)Y/3), the other four dependent variables within the ejection
region are determined by the nonreflecting conditions. The boundary is treated the
same as in the pre-event calculation within the latitudinal range 0 < 8 < 64.5°.

Our study, then, consists of a limited parameteric survey that starts with a mag-
netic driver alone and considers four other possibilities (including a thermal pressure
driver alone). The five cases, with an attempt at Peak magnitude adjustment o as to
approximate a constant value of peak total pressure (including dynamic pressure), are:
(1) Polarity of Emerging Magnetic Flux is Opposite to the Closed Region’s Polarity
in the Pre-Event Helmet; (2) Same Polarity as Case 1 But with Additional Momen-
tum from Photospheric Mass Flux Outflow:; (3) Same Polarity as Case 1, But with
Photospheric Mass Addition Having Negligible Momentum; (4) Polarity Opposite to
Case 3 - Again with Photospheric Mass Addition having Negligible Momentum; (5)
Pressure Pulse to Simulate F lare-like Thermal Energy Input at Photosphere.

3. Results

We will remark on a very limited set of general features. Figure I shows contours of
fractional density chagnes, AN = (N = N,)/N, at several times for Cases | and 2.
The subscript "o” tepresents the value at each pre-event condition. Formation and
evolution of a looplike ejection with denser legs (implying brighter observations in
white light observations) can clearly be seen. The density enhancement in the legs for
Case 1 is about 150% that of the loop’s top. Also, the legs for this case are stationary.
Also we confirm (with smaller contour intervais) that there is a density depletion
near the lower boundary between the footpoints of the legs. Thus, all three of the
requirements required for some Skylab observations have been satisfied. For Case



Numerical reconnection (not shown) occurs at the equator as the emeiging flux is
forced against the closed helmet configuration.

Figure 2 shows the same Parameter at several tines for Cases 3, 4 ang 5. Note

with the much stronger (and higher) shock wave for the same-polarity Case 4. The
thermaj Pressure pulse (Case 5) produces a strong leading edge shock. All three cases
show the fixeq legs and depletions behind the leading edge compressed zones, but
only the feverse-polarity Case 3 shows higher density (hence: expected higher white
light brightness} in the legs when compared to the loop top. )

4. Concluding Remarks

Our limited Parametric study indicates the following conclusions:

- Emerging magnetic flux of OPposite polarity can be a distinct physical driving
mechanism for generating looplike CMEs. However this Mmagnetic flux, when ac-

- With respect to the Mmagnetically driven Mechanism, it iy not necessary to intro-
duce cold inflowing plasma as used in the simulations by Hu ( 1989) and Linker
et al (1990); nor is an accelerating mechanism of the initial driver required as
Presented by the Jatter workers.
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Flgure 1. Temporai, fractional density changes, (N - No)/N, in the corona for emerging
magnetic driver alone, Case | (upper paneis) and for o magnetic driver pjus emerging mo-
mentum flox, Case 2 (lower panels). The emerging magnetic flux has poiarity opposite to
that in the pre-event helmet magnetic topology.
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Figure 3. Temporal, fractional density changes, (N ~ No)/N, in the corona for emerging
magnetic driver (again with opposite polarity) and moderate momentum eflux Case 3 (upper
panels); same, but with same polarity as in the pre-event helmet, Case 4 (middle panels);
and a flare-like thermal pressure pulse for comparison.
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1. Introduction

An MHD numerical simulation of corona] streamers was described at the last
SOHO workshop (Suess, 1992). That mode] systematically used constant
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in streamers. This article Presents the results from the hole-streamer mode]
and compares them with the previous constant boundary value results. The
emphasis is on the differences resulting from this different choice of bound-

ary conditions and the more realistjc densities which result in the coronal
hole.

2. The Physical and Numerical Mode]

corona in all examples presented here. In these examples, results are shown
between 1.0 and 7.0 Rg, although the solution itself generally is extended
to 15.0R;. There are 20 grid points between the pole and equator and 37
grid points, on a varying grid, between the base and 15 Rg. A solution is

index, v, is 1.05 in all cases. This mode] js described in detaj] by Suess
(1992), Wang, et al, (1992,1993), and Wang (1992).

3. Results

3.1 INITIAL STATE

The initial profiles (t =0) of temperature, density, and flow speed versus
polar angle are shown in Figure 1, at 1.0, 2.0, 3.9, and 7.1 Rg. At this time,
the plasma beta, 3, is 3.5 at the equator and 0.06 at the pole, corresponding
to field strengths of 0.833G and 1.67G, respectively. The base density at
the equator is 2 x 108 cm™3, and at the pole it is 107 cm~3, while the
corresponding temperatures are 1.74 x 10% and 2.42 x 106 K, respectively,
The boundary values between these points vary linearly with polar angle.
The polar density has to be this low to obtain proper densitjes higher in the

in the streamer to obtajn high flow speeds in the hole. No other choice is
Possible in a polytropic model. However, this ‘effective temperature’ is not a
true temperature; it reflects extended acceleration and heating of the solar
wind that is known to exist in coronal holes.

3.2 THE MAGNETIC FIELD ToPoLoGgy

The magnetic field topology is shown in Figure 2. The three panels show
the final state, after 20 hours of relaxation in physical time, in comparison
both to the intitial vacuym diopole field (left panel) and the corresponding
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Fig. 1. The density, temperature, and flow speed at ¢t = (.

(Wang, et al., 1993). The magnetic field strength at the equator was 1.67
G, resulting in 3 = 0.5 at that point. In all three panels of Figure 2, field
line footpoints lie at 10 degree intervals. Thus, from the left Panel it can be

3.3 FLow SPEED AND DENSITY

The dramatic difference introduced by varying the temperature and the
density at the base is shown in Figure 3. The density, temperature, and
flow speed are shown as a function of polar angle at four different radij
(I.OR@,Z.OR@,B.QR@, and 7.14Rg). The results for constant boundary val-
ues are shown as dashed lines in each panel. The left Panel shows that at

coronal hole is 10° - 108 ¢m~3, a5 Oopposed to an order of magnitude more
with constant boundary values. The flow speed, in the right panel, is corre-
spondingly much larger, reaching almost 250 km/s at the center of the hole
at 3.9 Ry. The temperature varies little with height because of the poly-
tropic index being 1.05, so little can be inferred from the temperature plot.
Again, it must be emphasized that this js an ‘effective temperature.’
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Fig. 2. Fieldline geometry for variable and constant bounary values.

would be most desireable for simulating coronal holes, but is about the most
that can be expected from a polytrope. The limitation is that the polytrope
has a large flow speed at 1.0Rg at the base of the coronal hole - 40 km/s.
This is perhaps an order of magnitude larger than what really exists at
this level. Physically, the solar wind undergoes strong acceleration between
the transition zone and a few tens of thousands of kilometers altitude. Such
acceleration is not represented in the polytrope model. Therefore, it is impos-
sible to achieve both a low flow speed at the base (and correspondingly high
density) and a high flow speed at 1.1 — 1.2Rg. Consequently, the polytrope
has a density scale height in this region that js much larger than for the Sun.
The only way to achieve more realistic velocity and density profiles at these

nal holes above ca. 1.1Rg, does not do the same below that height. It is
a limitation inherent in both polytropic models and models that explicitly
treat thermal conduction if they do not also have energy and momentum
source terms low in the corona.

3.4 PoLaAR PLoTs

The effect of causing the density and flow speed in the magnetically open
region to be more like that expected in coronal holes is large, and modifies
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. the structure not only in the open region, but also in the adjacent closed
region. It is of order one importance in developing a model appropriate for
simulating the scattering of photospheric radiation in the corona because
of the line of sight contribution to the scattering (Noci, et al., 1993). An
impression of the effect can be seen using a polar gray-scale plot of the
density. Here, in the right panel of Figure 4, the logarithm of the number
density is plotted in this way, along with overlays of temperature contours,
flow speed contours, and magnetic field lines. For comparison, the left panel
shows a corresponding plot for constant temperature and density at the base
- the case shown by the dashed lines in Figure 3. In these plots, the gray scale
shows the logarithm of the density. Overlayed onto the gray scale plots are
contours and fieldlines. The solid contours on the left half of the panels are
flow speed (Min=0, Max=350 km/s, 50 km/s contour levels). The dashed
contours on the right half of the Panels are temperature (Min=1 x 108,
Max=2 x 105 K. 2 x 10° contour levels). The solid lines on the right sides
of the panels are magnetic field Lines.

- The main difference to be noted between these two panels is that the
density distribution on the left is far more spherically symmetric than on the
right. However, there are other interesting differences. First, the temperature

- notch above the streamer (dashed contours, right sides) is much narrower
in the hole/streamer simulation. This reflects what is observed in the solar
wind. Next, it can be seen that the density follows the contours of velocity
(solid contours, left sides) better than the magnetic field lines. This reflects
the control flow speed exerts on density in the corona - it is not a hydrostatic
medium. Conversely, the magnetic field lines do not seem to closely refelect
the background density distribution.

There are many detail differences between normally observed coronal
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Fig. 4. Left: Constant T,n on boundary. Right: Coronal hole/

streamer simulation.

structure and the structure in this model. The streamer is not so pointed at
the cusp as seems to be the case in white light eclipse photos and the edges
are not so sharp. Whether this reflects structure in the flow speed or in the
magnetic field is not clear. However, these differences will be used to help
guide further development of this model.

4. Summary

The objective of this exercise has been to develop a useful global model for
simulating coronal observations that wil] be made using LASCO and UVCS
on SOHO. This objective has been met in the sense that an order of magni-
tude improvement has been made in simulating the density contrast between
holes and streamers. Details in the results raise further modeling problems
and will be used to guide future studies. In parallel, the experience gained
in this axisymmetric coronal model will be used to guide the development
of a fully three dimensional global coronal model.
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CORONAL HEATING DUE TO THE EMERGENCE OF
MAGNETIC FLUX

S.T. WU and M. T. SONG*
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The University of Alabama in Huntsville
Huntsville, AL 35899 USA

C. C. CHENG
. Naval Research Laboratory, Washington, DC 20375 Usa

and

M. DRYER
Space Environment Laboratory/ERL
National Oceanic and Atmospheric Administration, Boulder, CO 80503 USA

Abstract. A self-consistent time-dependent, two-dimensional MHD model with a realistic
€nergy equation is developed to understand the origin of bright coronal emission accom-
panying the occurrence of a new bipolar magnetic region. The motivation for this study
is the interpretation of anticipated observations to be made by the SOHO mission.

Key words: Coronal Heating

1. Introduction

It has been shown observationally that the appearance of the emergence
of a new bipolar magnetic region (BMR) is always accompanied by bright
coronal emissions ( Sheeley, 1976; Meyer et al. 1979; Chou and Fisher, 1989).
Recently, Shibata et al. (1989) used a nonlinear, time-dependent, two-dimen-
sional MHD, two-temperature simulation model to represent the transition
region (i.e., photosphere, chromosphere and corona) to study the dynamical
responses of this part of the solar atmosphere due to emergence of mag-
netic flux. The purpose of this simulation study is attempt to explain the

bright coronal emission associated with the appearance of a BMR. Because

the earlier model did not model the realistic features of transition, in this
study we use a newly developed numerical technique (Song, Wu, and Dryer,
1993) which enables us to construct a transition region that includes the
Harvard-Smithsonian standard atmosphere in the MHD model. We use this
model to simulate the atmospheric responses due to the emergence of the
magnetic flux across the transition region up to the edge of the corona with
the objective to exhibit observed features. The fundamentals of the model
are given in Section II. Numerical results are presented in Section III; finally,
concluding remarks are given in Section IV.

* Purple Mt. Obser., PRC
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2. Fundamentals of the Model
The fundamentals which describe this physical system contain two parts:

2.1 MATHEMATICAL DESCRIPTION

The mathematical model used for this study can be described by the first
principle of the MHD theory, but the realistic energy equation was used as
follows:

Op J?
5‘[ +(u-V)p+7p(V-u)+(7— l)[vQ—(;-)‘{"Gmech‘f‘ Lrud] = 0(1)

where p is the plasma pressure, u is the velocity vector, v is specific heat
ratio, Q is the thermal flux, J is the current, ¢ is electric conductivity, Guech
is the wave heating term and, finally, L,.q is the radiation loss term. The
terms of Q, Gmech and L.qq are determined by specific models.

2.2 BoOUNDARY AND PERTURBED CONDITIONS

The boundary conditions set for this calculation are divided into two parts;
(i) computational boundary conditions and (ii) physical boundary condi-
tions. It is realized that the left, right and top boundary conditions are
computational boundary conditions which are set as non-reflecting bound-
ary conditions at all times. The bottom boundary condition is the physical
boundary condition. At the initial time (i.e. t = 0), the quiet photospheric
conditions (i.e. po = 3.5 x 10~ "gm/cm?®, Ty = 6.5 x 10*° K and By = 500
gauss) are given. The perturbed boundary conditions are prescribed at the
bottom boundary when t > 0, which are:

a. [p+ Elousigce = 1.5[p + B linside

b. In order to make sure that V - B = 0 is satisfied,

we set [Bn]outside = [Bn]imide-

It should be noticed that this is a Lagrangian calculation. Hence, the bound-
ary conditions and perturbed conditions are functions of time.

3. Numerical Results

In this study, three cases of perturbed conditions are employed. These three
cases are: '

Case I: The strong magnetic flux emergence strength is seven times the
background of the field strength. In this case, the magnetic field outside the
computational domain is pushed into the region by the pressure difference
between the outside and inside of the computation domain.

Case II: The strength of the emergence of the magnetic field is the same
as the background field strength but with a vertical velocity of 0.2 km 5!

WUSONGCHENGDRYER993LA.tex - Date: September 15, 1993 Time: 15:09
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b at the lower boundary. This velocity is required to carry the field into the
- computational domain.

Case III: The strong magnetic field emergence with isothermal atmo-
= sphere case is the same as Case I, but the transition region structure is
g ignored.

We briefly summarize the results in the following: The velocity vectors
and the fractional density, temperature, and pressure contours at various
times for Case I are shown in Figures 1 and 2 respectively. Figures 2(b) and
2(c), respectively, show temperature depletions and enhancements relative to
the initial temperature profile from the chromosphere, through the transition
region and into the corona. The schematic description of the physical results
is shown in Figure 3. From these results we notice that the induced plasma
flow oscillates at the Brunt-Vaisala frequency with a period of ~ 200 s (see
Fig. 1). In general, we observed from density and temperature contours (see
Fig. 2) that the cool region surrounded by two hotter regions appeared in
the chromosphere and is identified as the arch filament system surrounded
hy bright coronal emissions ( see Fig. 3). Upward movement of the transition
region (T.R.) is indicated by a vertical arrow in Figure 3.

Case II, not only induced the “Brunt Vaisala” oscillation, but also induces
horizontal plasma flow which may be identified as the source of a Morton
wave.

=
s
=

('3

t

4. Concluding Remarks

(S

We have presented a two-dimensional, time-dependent MHD model with
realistic energy equation which not only can be used for interpretation of
UVCS/SOHO data analysis, but also could be utilized for planning SOHO
observations.

nm
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ABSTRACT

In order to study the relationship between different
forms of activity and transient variations of the north-south
component, B,, of the interplanetary magnetic field, IMF,
at 1 AU, we employ a three-dimensional numerical simu-
lation code to study several aspects of this problem. We
simulate one form of solar activity, the flare, by using a
pressure pulse at different locations near the solar surface
and observe the simulated IMF evolution of By(= -B,) at
1 AU. We found, for a given pressure pulse, that the orjen-
tation of the corresponding transient variation of B, has a
strong relationship with the location of the pressure pulse
and the initial condition of IMF.

Keywords:
1. Introduction

The configuration of the magnetic field in the disturbed
solar wind has become important in magneto-
spheric physics, since it has been found that the direction
of the interplanetary magnetic field (IMF) is an important
factor in causing geomagnetic disturbances. The north-
south component of the IMF B, (accurately speaking, in
the solar-magnetospheric coordinate system) plays a cru-
cial role in determining the amount of solar wind energy to
be transferred to the magnetosphere (Arnold®; Tsurutani®;
Russell®; Akasofu’: Akasofu?). Specifically, when the IMF
has a large magnitude (> 10v) and a large southward com-
ponent, the amount of the transferred energy becomes very
large. On the other hand, the transferred energy becomes
very small when the IMF is directed primarily northward.
Also, Tang” show that a simple relationship between the
orientation of the IMF B, component and the magnetic
orientation of the associated flare region does not appear.

In this study we employ a three-dimensional numeri-
cal magnetohydrodynamic (MHD) simulation code to study
the relationship between the solar activity location and the
changes of IMF B, at 1 AU. We examine one form of so-
lar activity, the flare, by assuming that it can be simulated
by a pressure pulse for a period of several hours. Then
for a simple three- dimensional IMF configuration {undis-
turbed), we examine the IMF consequences at 1 AU, Using
this procedure, we explain why a simple relationship be-
tween the orientation of IMF B, component at 1 AU and
the magnetic orientation of the associated flare region does
not appear.

2. Mathematical Methods

In order to understand the correlation of the locations
of various forms of solar activity and the changes of IMF B,
at 1 AU, we choose a MHD three- dimensional numerical
simulation code {Han®) to study this problem. The gov-
erning equations represent the conservation of mass, mo-
mentum, and energy well as the induction equation for a
single-fluid, fully-ionized plasma in the spherical coordinate
system.

The basic numerical methodology used for the present
modeling is an exténsion of the Lax-Wendroff finite differ-
ence methods. The details of the computation procedures
are given by Han®. We are not going to repeat these details
here.

3. Simulation Results

We consider a unipolar IMF as the initial magnetic
field configuration in this study. In this case, there is no
current sheet, and the magnetic fields are all of positive
polarity, i.e., the IMF is directed outward from the sun.
The other case has a current shest near the equatorial plane
which will be discussed by Dryer*.

To obtain a representative steady state solar wind, we
choose a set of plasma conditions at 18 solar radii that,
by trial and error in the ecliptic plane, can produce rep-
resentative solar wind conditions at the earth’s orbit. The
conditions used at the inner boundary are:

)

p =235 x10"%%g/km3, V. = 250 km/sec, T = 1.1 x

10°K°, B, =3 x 10~2 gauss;

Bs = - sin28 x 107° gauss; By = -16 sinf x 10-°
gauss; Vp = V (By/B,);

Vs = -V.(B,/Br)

where the last two expressions are found from the speci-
fication of the electric field E = V x B = 0. The com-
putational domain for this steady-state simulation covers
45° < 6 < 135°% 0° < ¢ < 90°; 18R, < r < 215R,. An
open boundary condition at both § = 45° and 8 = 135° is
used so that there are no reflective disturbances. A con-
stant grid size of §¢ = 3°,6r = 3R, and 60 = 3° are used.

Proceedings of the 26th ESLAB Symposium - Study of the Solar-Terrestrial System, held in Killarney, Ireland, 16-19 June 1992

(ESA SP-346, September 1992).
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The integration along the radial direction continued until
the distance reaches 1.1 AU. We put a high pressure pulse
at different locations at 18 solar radii. There is no special
significance to this choice of lower boundary other than
the fact that it is representative of both a supersonic and
super-alfvenic zone where all input pulses will propagate
in the anti-sunward direction. We will show three major
cases in this paper. The high pressure pulse has §p/p, = 4
and 6T/T, = 7.5, Temporally. the strength of the perturba-
tion increases from the initial condition to maximum in one
hour, then the perturbation lasts for four hours, and then
ramps downward to zero during the following hour. We
suggest that this initialization procedure may approximate
some representative long duration soft x-ray solar flares.
Spatially,” this input pulse is inserted at the three locations
noted below: (i) a northern hemisphere location at N24°,
(i) an ecliptic plane location: and (iii) a southern hemi-
sphere location at $18°. The first and third locations for
this first, simple unipolar case are, of course, nearly mirror
image cases.

Figure 1 shows the calculated variations of the By-
component of IMF (nearly equal to —B,) due to those three
simulated flares for the initial magnetic field configuration
being a unipolar IMF. These variations are monitored in
various locations such that the effects of the By variations
on the locations of the flare are clearly indicated. For ex-
ample, the variations of By observed at six degrees north
of the solar equator behaved differently in comparison to

the case observed at six degrees south of the solar equa-
tor and in the solar equator. This feature has particular
meaning in the practical sense. Because, it gives the char-
acteristic for the prediction of geromagnetic activity. Since,
it has been suggested that when the Bg-component of IMF
turned south and its magnitude reaches about 10 nT. it will
enhance the ionospheric current system.

Figure 2 shows the same results but with the initial
IMF configuration that incorporates a flat equatorial helio-
spheric current sheet. It is immediately noticed that the
arriving time is much ahead ~ 10 Ar. when the flare lo-
cation is at the equator (i.e., the location of the current
sheet). This point is discussed by Dryert.

Figure 3 shows a three-dimensional view of the radial
component of solar-wind velocity in the ¢ = 45° meridional
plane at t = 50 hours, 75 hours, and 100 hours after the
introduction of the pressure pulse for initial unipolar IMF
configuration at various flare locations; N24° flare {upper
row), S00° (mid row) and $18° (lower row). The steep
"cliff” at the figures right side represents the outer bound-
ary’s dropoff to the background as set by the computer
graphics, therefore, should be ignored.

We notice that the N24° flare's fast forward MHD
shock can be seen (t = 50 hrs.) at the north-most bound-
ary of the computational domain and $18° flare’s forward
MHD shock was seen on the opposite direction {i.e. the
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Figure 1. The variations of Bg(-B,) component of IMF at 1 A.U. for the initially unipolar magnetic field

configuration and at various locations of the flare.
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Figure 2. The variations of Bg(-Bz) component of IMF at 1 A.U. for the inieially magnetic field configur-
ation with current sheet at solar équator and at various locations of the flare.

of a geomagnetic storm from the location of a solar flare if
the IMF were everywhere outward from the sun. For ex-
ample, if there is a flare in the southern hemisphere of the
sun, then we might expect a geomagnetic storm at earth
three days later. On the other hand, if the location of so-
lar activity is in the northern hemisphere of the sun, we
might expect a small amount of solar wind energy transfer
to the magnetosphere resulting in only a weak disturbance
according to various studies (Arnold®; Tsurutani®; Russell®;
Akasofu’, Akasofu?)

south- most boundary of the computational domain) from
these results. Further, we also see the development of fast
reverse MHD shocks. A detailed discussion on the MHD
shock interaction will be presented elsewhere.

4. Conclusion and Remarks

We chose two cases of an undisturbed IMF configura-
tion. In one case, it was unipolar (positive outward); in
the other, a flat heliospheric current sheet {positive in the
northern hemisphere; negative in the southern hemisphere)
was used. Then we used the same pressure pulse (to simu-
late a long duration solar flare) at various positions in these
two cases. From the above simulation results, we can point
to a simple relationship between the locations of the solar
flare, the IMF initial conditions and the north-south com-
ponents, B, at 1 AU. We catalog these simulation results
into two groups; the first group is the case for the uniform
IMF (i.e. without current sheet); the second group is the
case for a nonuniform polarity IMF (i.e. with the flat he-
liospheric current sheet).

From the above discussion, it seems easy to predict
the occurrence of a geomagnetic storm from the location
of the solar flare. Unfortunately, the IMF configuration
is quite complicated and substantially different from the
simple unipolar example assumned here. A current sheet
near the equatorial plane of the solar coordinate system is

known to be present at solar minimum. Therefore, it is
necessary to study some cases in the second group which

has a current sheet in jt in order to understand more details
about the behaviour of the north-south component, B, of
IMF at 1 AU. We note in passing, that the B, component of
the IMF is always measured in the solar-ecliptic coordinate
system that is fixed to the spacecraft. We used, in the

For the initial condition of the IMF such that the po-
larity is everywhere outward from the sun, we found that

the orientation of the IMF turns northward {(-B:)at1 AU
when the simulated flare is in the northern hemisphere at
a time of 75 hours after the perturbation was started. The
orientation of IMF turns southward at 1 AU at the same
time after the perturbation was launched when the flare
is in the southern hemisphere. Therefore, in principle, it
would appear that it may be easy to predict the occurrence

model, the spherical coordinate system, fixed at the sun’s
center, with ¢ = 0° at the north pole. Thus, our By is
equal to — B, which, in turn, must eventually be converted
to the solar magnetospheric coordinate system for one-to-
one comparison.
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Figure 3. Temporal evolution of solar wind velocity Vi ln the ¢ = 450 meridional plane at various flare

locations ag indicated,

. The objective of this study was to examine the IMF
polarity changes at Earth’s position, given initjal (steady-
state) IMF configurations, following simulated solar flares
at several representative latitudes, The MHD simulation
results provide a basic picture of the IMF changes as a con-

north-to-south (or vice-versa) direction depends on the ini-
tial IMF configuration and the location of the solar flare.
In principle, if these two factors are known, the likelihood
of geomagnetic storm occurrence should be a more-easily-
predictable task, In any case. our study supports the study
of Tang” who noted that there is no simple relationship be-
tween the dominant magnetic polarity in the solar flaring
active region and the orientation of the IMF B, component
at Earth after the flare.
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ABSTRACT

A fully three-dimensional (3D), time-dependent. MHD interplanetary giob-
al model (3D IGM) is used to investigate the effect of a flay heliosphenic cur-
rent sheet (HCS) on the propagation of solar flare-generated shock waves
and the structures behind them. The time series of the interplanetary mag-
netic field’s meridional component, By (™ -8, in solar-ecliptic coordinates)
is examined by Wu et al. (1992, this volume) for a matrix of 27 cases of flare
location and observer positions (e.2., Earth). A strong dependence of By
phasing and rotation (by the nonlinear, large-amplitude MHD waves that fol-
low the leading shock), as a function of observer positon relative to the flare
location, was clearly shown. The presence of the HCS compounds this de-
pendence, as is obvious in a comparative examination of the case when the
HCS is absent. Interaction of the incident. leading, fast forward MHD shock
upon the HCS may produce a plethora of products; we speculate that one of
these is a fast rarefaction wave that propagates in the anti-sunward direction,
within the HCS, fasier than the shock itself.

Keywords: 3D modeling, heliospheric current sheet, shock interaction.

1. INTRODUCTION

The development of a fully three-dimensional (3D), time-dependent MHD
mode! of heliospheric interplanewary magnetic field (IMF) and solar-wind
flow (Refs. 4, 6) has made it possible 10 investigate a number of scientific
questions conceming the evolution of solar-generated disturbances and their
heliosphenic consequences. Kinematic studies, method-of. -characteristics
schemes, and even numerical 1D and 2D steady-state and time-dependent
studies are valuable for early exploration of various questions; however,
only a fully 3D numerical model, with sufficient computer and graphics ca-
pability, can expand our understanding of the compiex phenomena that chal-
lenge physicists who study the Sun and the interplanetary medium.

In this spirit, Ref. 12 addressed the question: what is the temporal behavior
ata given point (Earth’s locauon would be an obvious choice) when a solar-
flare-generated shock propagates past that point? Those authors considered
a simple. unipolar, outward-pointing IMF (i.¢.. with no heliospheric current
sheet) and examined the comparative temporal By ( ® -B,) response follow-
ing individual flares in both northern and southern solar hemispheres as well
as at central meridian and in the eastern and western hemispheres. They also
compared the response of By with the more realistic case in which a flat,
equatorial, heliospheric current sheet (hereafter HCS) is present in the undis-
turbed ambient medium—representative of solar minimum conditons. In
two arbitrarily chosen examples they found the following interesting situa-
tion: An observer located 6° above, within, or 6° below the solar equatorial
plane received information of a distrbance from an equatoriaily located so-
lar flare about 10 hours earlier than reception of the same kind of information
when the same representative flares were located either 24° above or }8°
below this plane. )

This paper is limited (0 a brief discussion of velocity profiles in the
meridional plane: these profiles suggest the presance of a complex sequence
of products following the fast, forward interplanetary shock’s interaction
with the HCS. A fast rarefaction wave may be one of the products of this
interaction process (c.f. Ref. 7). This wave may move. anti-sunward, faster
than the shock itseif. thereby explaining the signal’s earlier arrival at the ob-

server’s position when compared with the signals arriving from higher-
laitude Nares. The analysis procedure is summanzed in Section 2, results
are given in Séction 3, and conctuding remarks are presented in Section 4.

2. ANALYSIS

The analysis procedure, including the finite differencing solution of the eight
fundamental MHD equations, with infinite electrical conductivity-and ne-
glect uf dissipauon except at shocks, is given in detail by Ref. 6. Some re-
sults are given by Refs. 2, 3, and 4 for a series of applications that include
shock propagation and evolution of solar-generated plasmoids as well as a
croissant-shaped plasmoid that may be representative of magnetic clouds.
As in these works, we will use a fepresentative, sicady-stale solar wind and
IMF. Other profiles will, of course, change the magnitudes discussed later,
but they will not change the basic wrends. As in our earlier work, the com-
pulational domain is chosen  be a heliolongitudinal sector. 0 < ¢ < 90°,
where the outward axis in the solar equatonal plane may be considered o
be in Uie @ = 45° meridional plane. The heliolatitudinal sector is taken to
bed5° 5 8 < 135°, or, in terms of solar latitude, 45° 2 8 < —45°. The outer
boundary 1s taken to be R = 238 Ro: the inner boundary is at 18 Rp. The
gridsize isAR = 3Ry, 40 = 30, d¢ = 3°.

The fai HCS is taken to be representative of solar-minimum conditions. The
velocity and density within and near (latitudinally) the HCS are anu-corre-
lated: the vetocity at | AU rises from about 325 knvs in the equatonal planc
to about 400 km/s at 6 = £45°. The density was increased (o achieve pres-
sure balance within and near the HCS (where the IMF decreases o zero).

The tower boundary is in the supersonic and superalfvénic zone; thus arbi-
trary valucs of all eight dependent variables can be chosen for initialization
purposes. In this study, a moderate-sized solar flare was simulated by acom-
bined product of density and temperature increases {supported by many X-
ray and specrographic observations from Skylab, SMM, eic.) that peak at
4P/P = 30 (see Ref. 12) at the domain's lower boundary. This peak, to-
gether with a sinusoidal drop-off to the background pressure, is taken at the
center ol a circular base of 30° angular radius at the lower boundary. Itis
assumed that a similar profile would have existed at the flare site near R =
I Rg. The temporal duration of this pressure pulse 15 assumed 1o be repre-
senwbive of a long-duration X-ray event (LDE); its thermal pressure profile
In ume is Laken (o be a 4-hour duration with 1-hour ramps at the stant and end.
Three scparate computations were made at the @ = 45° meridional plane at
6 =66°. 90°, and 108*. The temporal profiles for all dependent variables
could. of course, be plotied at any of the 31 X 31 x 70 grid points—an enor-
mous task! [n this effort it was decided to examine By at R = 165 Rg (0.77
AU~ be considered in another paper) and at | AU, aa matrix of nine sets
of angular positions, as follows:

6=(84°.90°.96°): thereby simulating the observer's point (¢.g. Earth)
6° above, within, and 6° below the solar equatorial
plane. For Earth, this procedure approximates the
seasonal effect.

#=(31°.45°.69°). thereby simulating cenwral meridian (CM) positions
of the observer (viz Earth) relative 1o flares in the
tastem and western hemispheres as well as at CM
(¢ = 45°).



Thus, as in Ref. 12, the simulated By time-series will be examined at nine
observer locatsons, for a matrix of three solar points considered o be the cen-
ter of solar flares at the positions shown in Table 1.

3.2 Solar-Wind Vi
Figure 1 is a 3D view of the radial component of the solar-wind velocity in

_ . fh the ¢ = 45° mendional plane at 1 = 50 hours, 75 hours, and 100 hours after
The computations were actually P"f(_’med w;(‘h;ltbeh;oe:te?: 66'e gs?s;r; the start of the pressure pulse. Shown here are the velocity profiles for the
Télssf‘“mm:y“:;“;g‘:{;g r;‘md' plane: vd at each N24* ftare (upper row) and for the S18° flare (lower row). The steep “cliff”

, as discussed .12, , for these three flares. observ. . . ;

, of the nine observer locations given above, we bave a total of 27 simulated o cach carpet plot's nght ide represents the outer boundary's droy offto the

= i ion 3 ins a few general remarks about these background; no information is given bere, outside the computational do-
flare disturbances. Section 3 contai main, and therefore this area should be ignored.
flares. From the reader's vantage point, the N24° flare’s fast forward MHD shock

can be seen (1 = SO hours) at the northern-most boundary of the computation-

S Table 1. Flare locations. almI dg:amee ve}l\oc:;); profiie closest to ?l: t;:de; belween(me m ‘:/c}m-

— - - ted lines. At the same boundary, velopment of a ast

Western Hemisphere M Easiern Hemisphere reverse MHD shock wave can be seen.
N24*W12° N24°E00* NOZS:EE;’:: 3.3 Iteraction of Shock with HCS
. ° (] . S
; SOO.WIZ. :?g-%» S18°E24° A better vantage point, vis-d-vis the HCS, is provided by the view of the
- S18°W12 $18" flarc’s fast forward MHD shock. At f = 50 hours, we can see what
appears 10 be a precursor “hump” in the velocity profile, where the shock in-
3. RESULTS tersects the deepest part of the HCS' velocity minimum in the upstream,

The discussion of results will be limited W the following wpics: (1) a remark
about the By time series, (2) a 3D view of the solar-wind velocity in the
¢-45'maidiomlplaneusevenmnmaﬁcraﬂanoccmeduN24'md
$18°, and (3) a schematic discussion of the possible products of the interac-
tion of the flare-generated shock with the HCS.

3.1 Ba Time-Sexiesat 1 AU

Ref. 12 has discussed the Hy response as observed at 6°above and below the
solar equatorial plane. Several points should be made bere. First, the direc-
tion of the polarity response {except for the flares in the equatorial plane) is
anticorrelated for flares in the northern and southern hemispheres. Second,
the polarity time-series is sinusoidal, reflecting the post-shock, large-
amplitude, MHD waves that produce large IMF rotations. Third, the shock
(or other distrbance) from flares in the equatorial plane arrives about 10
bours earlier than the other shocks. (An explanation for this phenomenon

steady-state solar wind. This bump persists at ¢ = 75 hours. but can no longer
beseen at ¢ = l()()hoursbecanselhe!Dviewshowsonlythereuoflhe
shocked structure. The fast forward shock has already moved out of the com-
putational domain at the right side. The ¢ = 100 hour perspective does, how-
ever, allow a view of the retum (o the original, undisturbed, sicady-state solar
wind—thereby indicating another check on the accuracy of the numerical
procedure (Ref. 12).

We believe that the hump noted above is producd by interaction of the inci-
dent fast forward shock with the HCS. Classical non-linear studies (Ref. )
of the "splitting of an initial discontinuity” problem (viz shock-on-shock,
shock-on-tangential discontinuity, etc.) have been used by Refs. 5, 8-10, and
others. Wave-guide studies have been made by Ref, 11, and a linear approxi-
malion has been made by Ref. 1. The “shock-on-rotationai discontinuity™
problem probably comes closest 1o the case studied here. In this case, the .

incident shock encounters a current sheet through which the IMF reverses

= is offered in Section 3.3, where the velocity in the meridional plane is dis- direction by 180°, and the plasma density rises and then drops off. Figure
cussed within the context of shock-HCS interaction.) At R = 165 Rp. all 2 shows a simplified sketch of this suggested interaction of the incident

= profiles returned to background values at 1 = 125 hours, thereby providing sbock, Sy, with the HCS.

- a check on the accuracy of the numerical simulation.

Flare Location: N24° EQ0°
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=~ Fagure 1. 3D view of the radial solar wind velocity in the $ = 45° meridional plane at three times following flares at N24* (20p row) and at S18* (lower row).
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Figure 2. Schematic sketch of the interaction of a fast shock. S;, with
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‘We are not aware of a rigorous study of the oblique shock’s interaction with
the HCS as described above. Based on relaied studies of Refs. 5 and 9,
however, we know that the impinging shock first decreases its speed as it en-
counters the denser plasma in the HCS; it then increases its speed as it moves
toward the other side of the HCS, and exits at the same speed with which it
entered the HCS. Other products of the interaction (in addition to the fast
shock just discussed) may include a siow shock, contact discontinuity, rota-
tional discontinuily, a fast rarefaction wave, and a slow rarefaction wave.
We believe that a fast rarefaction wave propagaies within the HCS “wave
Buide™ in the anti-sunward direction. If correct, this assumplion could be an
appropriate physical explanation for the carly arrival of the disturbances
from the equatorial-plane flares, as discussed in Section 3.1.

4. CONCLUDING REMARKS

In this study, the propagauon of solar-generated shock waves has been inves-
tigated within the context of 3D numerical simulations that included the
heliospheric current sheet in an assumed flat configuration, representative
of solar-minimum conditions. Ina closely related paper (Ref. 12) a simple,
unipolar IMF was considered. In the present study we found. for a matrix
of 27 simulated flare and observer positions, that the By (= -8, in solar-
ecliptic coordinates used by in situ interplanetary experimenters) time series
is stongly dependent on the observer's position relative to the flare—as
found by Ref. 12. The presence of the HCS compounded this strong depen-
dence. Further studies, particularly with animated, 3D color graphics, will
provide further understanding of the complex, nonlinear, large-ampliusde
MHD waves that follow in the wake of the leading, fast forward MHD shock.

Finally, our 3D simulations yieided some hints concerning the interaction of
the HCS with the leading, fast forward inierplanetary shock. We speculated

as to the products of this interaction and suggested that a fast rarefaction

wave, R,, would propagate upstream (faster than the shock itself) thrcugh
the effective wave guide provided by the HCS. The speed of R, is probably
dependent on the angle, a. between the incident fast forward shock (as

shown in Figure 2) and the HCS as well as on the profiles of IMF magnitude
and plasma density.

ACKNOWLEDGMENTS
SV CCW, and SMH  wers supporied by NOAA/SEI. Contract
SORANROOD104. We thank Dr. T. Yeh and Dr R. Zwicki for making useful

sugaestions and Ms. J. Trolinger for preparing the manuscript.

REFERENCES

! Barton, ME., G.L. Siscoe, and E.J. Smith, Shapes of strong shock fronts

Propacuung Uhrough the coronal streamer belt, /. Geophys. Res., in press,
1y42

> beunan, TR, M. Dryer, T. Yeh, SM. Han, $.T. Wu, and D. McComas,
Aume-aependent, three-dimensional MHD study of interplanetary magnel-
1w draping around plasmoids in the solar wind, J. Geophys. Res., 96, 953].

ton

3 Dryer. M., S.T. Wu, and TR. Detman. Numerical simulations of solar
disturbances and their interplanetwary consequences, Basic Plasma Processes
on the in (ER. Priest and V. Krishan, Eds ), Proceedings of IAU Sympo-
sium 142, Bangalore, Kluwer Publ., Utrecht, 331-340, 1990.

4. Drver. M., S.T. Wu, and SM. Han, Three-dimensional, time-dependent
MUD model of a solar-generated imerplanetary shock wave, The Sun and
the Helwosphere in Three Dimensions (R. G. Marsden, Ed.), 19th ESLAB
Svimposium. D. Reidel Publ. Co., Dordrecht, 135-140. 1986,

5. Girib, S.A., B.E. Brunelli, M. Dryer. and W.-W. Shen, Interaction of in-

terplanctary shock waves with the bow shock~magnetopause system, J.
Geophvs. Res., 84, 5907, 1979.

6. Hun. S M. ST Wy, and M. Dryer, A three-dimensional, time-dependent

modeling of super-sonic, super-Alfvénic MHD flow, Compurers and Fluids.
16, X1, 1088,

7. Jefirev, A, and T. Taniuti, Non-Linear Wave Propagation, Academic
Press, New York, Chapter 7, 1964,

8. Neubauer, FM., Noalinear interaction of discontinuities in the solar
wind and the origin of slow shocks, J. Geophys. Res., 81, 2248, 1976.

9. Shen, W.-W., Interaction of interplanetary MHD shock waves with the
magncionause, Astrophys. Space Sci., 24, 51, 1973.

10. Shen, W-W., and M., Dryer, Magnetobydrodynamic theory for the inter-
action of an interplanctary double-shock ensemble wilh the earth’s bow
shock, J. Geophys. Res., 17, 4627, 1972

physics, European Space Agency Publ. ESA SP-11, Proc. of joint Varenna—
Abastumani-ESA-Nagoya—Potsdam Workshop. Telavi. Georgia, USSR,
4-12 June 1990, 99-101, 1990,

12. Wy, ST, M. Dryer, and C.C. Wu, Three-dimensional numerical simula-

lion of mterplanetary magnetic field changes at | AU as a consequence of
simulated solar flares, this volume, 1997



i

Ske AlsD
72829757

1992 SPIE Conference Paper

Forecasting the arrival of fast coronal mass ejecta at Earth by the detection of
2 - 20 keV neutral atoms

K. C. Hsieh and K. L. Shih
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S.T. Wuand C. C. Wu
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157-F Engineering Building, Huntsville, AL 35899

ABSTRACT

Studies have shown that Earth passages of fast coronal mass ejections (CMEs) rigger geomagnetic
storms. Early identification of fast Earth-directed CME can heip provide storm warnings, but detection of
such by coronagraphs is extremely difficuit. We suggest that energetic hydrogen atoms (EHA) between 2
and 10 keV produced during the transit phase of an Earth-directed CME by recombination between protons
and electrons in the CME can travel ahead of the CME and act as harbingers of a magnetic storm. This

speeds (> 1 * 10° km s°'). Model simulations support this proposed mechanism. A coarse measurement of
the CME-produced ENA at | AU could provide storm warning hours in advance, and finer measurements
could yieid detailed information on the likely geomagnetic effectiveness of a CME, as well as the evolution
and propagation of CME between the Sun and Earth. ,

L INTRODUCTION

Geomagnetic storms, manifested in a decrease in the horizontal component of Earth's magnetic field
worldwide, have even more direct consequences on the public in the form of telecommunication and
electrical power disruptions. For this reason, storm prediction is of considerable interess !

Thus far. geomagnetic storms have been linked to the arrival at Earth of a compressed southward-
pointing interplanetary magnetic field (IMF) and a coronal mass ejection (CME). A scheme to predict the
arrival of a CME up to three days in advance by monitoring the space between Sun and Earth with a
photometer has been proposed.? However, not all CMEs would trigger a major storm that could cause radio
and electrical power blackouts, Of all the parameters associated with CMEs and IMF, that are relevant to the
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trigger'u;g of large storms. the initial speed of a earthward directed CME close to the Sun appears to be most
crucial.

To avoid the difficulty of resolving a developing CME from the blinding background of the solar disk.
Gosling et al.} proposed to place coronalgraphs well ahead and behind Earth in its orbit to monitor
earthward directed CMESs in their initial stages near the limb. Asan alternative option, we would like to
examine the possibility of detecting any other signals that could be emitted by earthward directed CMEs of
high initial radial speeds on a more affordable Earth-satellite. The brightness of the solar disk rejects serious
considerations of photons as candidates. The spiral shape of the IMF that connects the Sun and Earth rules
out charged particles as a medium. What remains are neutral particles. Neutral particles produced in CME
in the initial high-speed stage can fly ahead of the CME as the CME slows down in its earthward
propagation. If the deceleration of the CME is significant. then the neutrals bom in the initial high-speed
stage would arrive at Earth sufficiently early to provide warning. Fig. 1 illustrates this basic idea.

1400
1200
1000

800

CME 1 [knvs)
600 F ---<e== Neut1 (ks
| —g— CME 2 (krvs)
cm== Neut2 (krrvs]

lon & Neutral Speed [km/s)

p— - o — ™

o.o' ' 'o.s' Y 1.5 2.0 25
Time Since CME Release [Days]

Fig. 1. Comparison of speeds of arriving neutrals (dashed lines) for two CME:s (solid lines) as functions of
time after release from the sun. The top (bottom) wace is for a CME which is released at 1,200 (1.000) km/s
and slows uniformly to 800 (600) knvs by | AU. This illustrates the basic idea of using EHA of CME

oﬁginaspredictorofgeomgnedcmms.



2. PRODUCTION OF H [N CME

The predominance of protons in space plasma allows us to concentrate only on the production of
hydrogen atoms in CME. Protons can become neutral hydrogen atoms in a plasma by one of two
interactons. provided the necessary ingredients are available.

Charge exchange: p+H ~ H+p
Recombination: p+te —- H*

The p's on the LHS are protons associated with the CME, which after the interactions become the H's
on the RHS. The disparity in the proton and electron masses (1836 : 1) entails that the resulting H atom
carries essentially the initial energy of the proton. Due to the lack of evidence of significant amount of ions
of energies >2 keV in CMEs, let us rely only on the initial high bulk speed and the expansion of the CME to
provide the high speed H atoms we need for storm prediction.

Although some CMEs contain large amounts of neutrai H in their early stages, as observed in Ha out to
~5 R, (solar radii),* the number density of H, ny, is only 10°% of that of protons, ny, for a typical
temperature of 10° K.* Therefore, charge exchange cannot be of significance to the production of neutral H

in CMEs. On the other hand, theoverauneutraﬁtyofplasmademndsthatwidﬁnaCMEn,,-ne.the
number density of electrons. Hence, we shall examine only the production of neutral H by recombination.

Along the direction of propagation of a CME, the flux of H in (em® s)"! resulting from recombination
in a volume element moving with a bulk speed of v is

dfaanpn,vdtexp(-D) (1)

where a is the recombination coefficient, which is a function of the temperature of the gas. The exponential
term represents extinction of H by impact- and photo-ionization while in flight between the point of
recombination and the point of observation, i. e,

D= [ {f [o1(e) +ax(€)] ny(e,r’) de + [ a3(e) n(e,r) de + Br)m2E) 2y 4y, ()

The oi's are the cross-sections for the various interactions to remove the EHA before reaching the observer:
g, for charge exchange with solar-wind protons, o, for proton impact ionization of hydrogen ( o~ does not
include @) and o3 for electron impact ionization of hydrogen are given by Freeman and Jones:® B is the
solar photoionization rate for H (= 8.8 x 104 s°! at1 AU, and falls off as r'2 )* 7 and m is the rest mass of
H. All o/'s and the differential number densities 0;'s (subscript p for proton, e for electron) are expressed in
the appropriate relative energy € between H the respective projectile. For each type of projectile. the
kinematic transformation is different; therefore, the integration over relative energy must be done separately.
After an H is bomn inside the CME. it has to go through portions of CME and overtake the CME in order to
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reach Earth's orbit earlier than the CME. In such cases. charge exchange with a CME proton may occur. the
resulting H will have a speed slightly slower than, but still close to. the original H. Therefore. we drop the
effect of charge exchange with any proton of the CME. One may also ignore ionization by electron impact.
since 03 << both ¢y and 03.6 Second and third encounters with the solar wind particles and solar photons
need not be considered since the local IMF would remove the newly ionized H from its flight towards the
observation point.

Since the CME is moving towards Earth with a deceleration as depicted in Fig. | and since the CME has
a radial spread of several Rs at ~20 Rs and continues to expand as it propagates. H flux produced in one
portion of the CME at an earlier time may arrive at the monitor at Earth's orbit simultaneously with those
coming from another portion of the CME at a later time. To find the H flux arriving at the observer as a
function of time, we integrate Eq. (1) over all elements of the CME. as it evolves and propagates, that would
have the same arrival time. For the purpose of prediction of the arrival of a fast CME. we need only
consider the activities along the Sun-Earth line.

w. C 7 o 7
To obtain the time profile of the fast H atoms of CME origin, at the observation point at Earth's orbit.

Ro wemnwmu(facomputaumal convenience) the evolving and propagating CME produced by a three-
dimensional MHD simulation.® ® The radial profile of n, (= ny) is awmnmated by a gaussian distribution

ne(r) = no (Rs/ 1)! S exp [-(r - rp) ! 67} 3)

where r is heliocentric distance; and the measure of the spread of the density distribution evolves with time
as

o(t)=(A + Bt)Rs.
The centroid of the distribution propagates with a constant deceleration a
rp=1SRg + vot - at?/2,

where v, is the initial radial velocity. For the lack of knowledge at r < 15 Rg, we take r = 15 Rg as our
initial r, Consequently, radial velocity of any eiement away from the centroid has a time dependence

P(t)=vo- at + B(Ry-r-vot+at?2) /(A + By

which decreases in a nonuniform fashion as compared to that of the centroid, but more like that from the
MHD simulation.

Obv\ously. the fastest H that traveled the least distance wtll arrive at Earth's orbit first. For a model just
described, however, it is not so straight forward. To find the H flux arriving at the observer at Earth’s orbit
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as a function of time. we integrate Eq. (1) over all elements of the CME that would produce H atoms having

the same arrival time. The value of ain Eq. (D) is 1 x 10-'4 cm? s°! for a gas at 2 x 10° K., temperature of
the simulated CME.'? For each time of arrival at Earth's orbit. tg, the limits of integration are

t; =tg - g(tgs m=-2.0) and t~ = tg - g(tg: m = 2.0) . where
g(tg;m)=[t53-2(vo+mB)tg/a +2(Ro-r-mA)/a]":, (4)

where m runs from -2.0 to +2.0. Any contribution from within S Rg is dropped due to the limitation of this
particylar model. Neutrals generated by any portion of the CME that has already arrived or passed Earth’s
orbit are also ignored for obvious reason.

The two CMEs depicted in Fig.! are tried with the above model with the following pairs of v, and a: v.,
=1200km s and a = 2.7 x 10” km s* for CME 1 and v, = 1,000 km s'anda=2.3x 107 km s~ for
CME 2. They share the other parameters, based on the MHD simulation mentioned earlier: n, = 5.8 x 103
cm Rg'® , corresponding t0 5.7 x 10° cm” at 18 Rg; A = 10; and B = 0.2 hr''. The resuits are shown in
the two panels of Fig. 2.

[n each case. the dotted line represents the CME protons (same for electrons). and the solid line
reprewmmedmepmﬁleofmeneunlﬂatoms( 33-7.5 keV in the upper panel and 1.9 - 5.2 keV in the
lower) gothmdintbeCMEbyermbimﬁon. msthcm-offsmumwlinﬁtsofimegmion (m=-
2.0 to 2.0 in Eq. (4)). The limits are reasonable. because the proton fluxes are comparable to the quiet-time
solar-wind flux of 2 x 10® cm™? 5! The neutrals do arrive about 2 - 3 hours earlier than the CME. The peak
value of the CME proton flux, in both cases, is <102 that of the quiet-time solar wind. The H atoms do
arrive earlier as expected.

5. DISCUSSION AND CONCLUSION

The results shown in Fig. 2 are not surprising. The neutral H atoms produced in the CMEs arrive
earlier than the decelerated CMEs. The two cases differ only in their respective initial v, at 15 Rg and

constant deceleration 2. We note that the peak ratio, p : H = 10°, is consistent with that of a plasma at 10°
K5 The loss of H due to ionization by collisions with protons and photons is heaviest for those neutrals
produoedcloserwtheSun,whichhuamﬂllouof-IOS.

Smmmmind@ﬁishsdmmeraumofmﬂ) simulations of a CME starting at 18 Rs. we
consider our mode! realistic. If our model is sufficiently realistic, the question of how we can benefit from
the earlier arrival of nsutrals of CME origin becomes a question of detection techniques. As Fig. 2 shows,
the lead time in prediction depends oa the sensitivity of the neutral-particle detector. Obviously. the lead
time can be even lmgu.ﬁhﬁuaingofagmmguﬁcmwmﬂdmuireamm flux more than a
few times that of the quiet-time solar wind. If a detector has a sensitivity of 10? particles (cm> sr s)"'. then a
prediction of 3 hours or more is possible. One crucial criterion on the sensitivity of these instruments 1s
their ability to reject photons, since they have to detect particies coming directly from the Sun. Techniques
for detecting neutrals in the energy range of 2 - 20 keV with the required sensitivity have been developed. "'
and some of them may be presented in this same issue.
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Although there is no need for energy resolution in such detectors. if their task is limited to storm
warning. Detectors with even modest energy resolution. however, can actually provide us information on
the evolution and propagation of CME between the Sun and Earth for the first time. Since the fastest
neutrals are produced nearest to the Sun. we can even measure the initial high speed of the CME. thus
determine the geomagnetic effectiveness of that CME.?

We hope the results presented here will lead to immediate actions resulting in early-warning capabilities
for geomagnetic storms and first-hand studies of the evolution and propagation of CME.
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ABSTRACT + . larger than possible with an explicit

i Sy g —i—~——-—-.——_ Bethod. _The most important advantage is —
" The ICED=ALE (Implicit-Continuous- to avoid the so-called Alfven problem
Eulerian-Difference Mesh - Arbitrary- which means that stability conditions

Lagrangian-Eulerian) algorithm which was severely limit the maximum time step when
originally suggested by Brackbill angd the Alfven speed is very large compared
Pracht (1973) is modified for the study of  yith the maximum fluid velocity. Thus,
astrophysical plasma flows in which " this method alsc allows us to deal with
dynamical effects are important. TIn their strong magnetic field problems with lower
work, the energy conservation includes ratios of the gas pressure to magnetic
.only the sum of specifi; internal and pressure, B = (p/(B%/8n)). 1In astrophysics
magnetic energy. The kinetic energy of there is often a necessity of disposing of
the plasma flow was not considered by a severely nonhomogeneous boundary inter-
these workers. In the present study, we face on both sides of which gas densitites
have derived the general energy conserva- or magnetic fields are quite different.
tion law based on the Boltzmann equation Several examples are the solar prominence
which is suitable for astrophysical plasma in the chromosphere and corona as well as
flows. Thus, the total energy densgity the solar magnetic flux tube in the .
includes three parts; kinetic, specific subphotosphere. The ICED-ALE method (BP)
internal and magnetic energies. Because potentially has the ability to solve- such
of this addition, the iteration procedure problems. In view of this possibility we
is modified in the present study in which will apply ICED-ALE to astrophysics

we have included both total energy density problems with some improvement and

and magnetic field components as the major extension.

iterative variables. Thus, the total o
energy is computed implicitly and the
energy equation and magnetic induction
equations are satisfied at the end of the
iteration procedures to account for
convergence.

First, in BP’s extension of ICED-ALE
to magnetohydrodynamic flow problems, the
iterative variables and equations include
only the magnetic induction equations
together with the momentum and mass
conservation laws. The total energy is
computed explicitly. BP substituted the
magnetoacoustic speed for the adiabatic
sound speed and then introduced the
proporticnality between variations of
augmented pressure and gas density as

A numerical example is given for a
highly structured astrophysical plasma
flow which shows that the convergence
speed of the present scheme is better than
the original one suggested by Brackbill

and Pracht (1973). 1In addition, we also follows:
demonstrated that the rezoning algorithm o ( 2 z)
can be used as a noise suppressor which ip = ic, + V. dp. (1)
greatly improves the numerical stability.
But the validity of equality (1) was not
1. INTRODUCTION

strictly proved. Later we will demon-

. strate that, in the case of ordinary fluid
In solving magnetohydrodynamic (MHD) flow the

flow problems the ICED-ALE method
(Brackbill and Pracht, 1973 hereafter
referred to as BP) has more advantages
such as its ability to resolve arbitrary Process corresponds to the enerqgy
continuing boundaries; to have variable - conservation law and, thus, the ICED-ALE
zoning for purposes of obtaining optimum - algorithm (Hirt, et al, 1974) seems to be

resolution; to be almost Lagrangian for adequate. In the case of MHD flow, the
improved accuracy in problems where fully equality (1) is only an approximation to
Lagrangian calculations are not possibla; t

he energy conservation law.
and to operate with a time step many times

2 .
equality sp = Cedp used in the jiteration

Therefore, instead of the equality
. . (1), we directly apply the general energy

*Director, CsPAR: Distinguished Professor, conservation law to the iteration process;

Unlv. of Ala. system thus, the total energy is obtained

Fellow, aIaa : . implicitly at the end of the iteration
*tPermanent Address: Purpie Mountain Obsy. process. For the purpose of comparison we

Nanjing, Peaple's Republic of China compute an example in which the
*kxSenior Sclentist, Interplanetary rhys, convergence speed of the latter method is




substantially faster than that of the where , is gas density, U flow velocity, a

former. 1In fact, the total energy density gravity acceleration, P gas pressure, ¢
- is Considerably inflgenced by the Speed of light, electricﬁconductivity, 3
-~ adjustments of velocities, positions, ang electric current density, E electric

magnetic fields in the iteration process. field, B magnetic field., a1} quantities

It is, therefore, reasonable to include used here are in €-9.5. and gauss unjts,

both magnetic fields on the one hand and p€ is the tota] energy density which is
o total eénergy density on the other hand for defined ag

problems of magnetohydrodynamijcs The

magnetic field and fluid must be : ) : P 1 E! + gt

considered equally in such problenms, : se = Py sut . e (8)
ha A full Lagrangian algorithm is very

sensitive to variations in velocities ang ; : .

velStly ATt e tore, Tl e ) s specie a iy otentredtoitten
o in velocity ang positions will produce in Astrophyics) Q is the thermal energy
= numerical instability ang prevent obtajin- flux having the.formulation -

iNg a numerical solution. In order to - ‘ AT R ST L

, remedy this difficulty, we use rezoning to Q= igraar, - 9)

- elimindte or alleviate the numerical . ~ . HEE - Sl
- stability which is caused by velocity i where ) is thermal conductivity, T gag ™~ -

nolse (and position noise) by adding temperature. Joule heating R 1Y
— another negative velocity noise and move - S - c ! "
— the vertices to their original places. ~.1 . is included in the term - 5 .'[___ X E},
— Such action ig very similar to that in i R - lane )

Some electronic apparatus in which the The tensor r is defineq as (in cartesian

feedback inhibition is used to suppress coordinates) - R 1

the electric noises. ] ) 2 e 0, - :hg!.“ _ E:Eyenn, 110y
ot - I in 4% e L

R
to i In this paper we extend the BP method In magnetohydrodynamics the electric fielq-
o 1nglude,three components of B and V in can be neglected compared with the -

- two-dimensional cylindrical (or Cartesian) hagnetic field, because E has an order of. =
— coordinates. 1Ipn Section 2, we describe magnitude ~ IUI CB<<B¢§ 7y I”
ad the initializinq calculation or explicit , g / rom eq. (7). n

; : -~ - the sape way the electromagnetic momentum
ghasg tn which ghe 9lectr1c current R 1/47c E x B also can be ignored compared
- ensity, magnetic diffusion of field, T f -
— energy augmentation due to Joule heating With the gas momentum ,{. _When neglecting
- work done by gravity; ang the zero-order the y;sc251§yf§e§m the flgld Stress tensor _
A R N TR i e netdy i
o given. n section 3 we discuss e . . T
iteration Process or implicit phase, from Conservation lawsg take the_jpllowing form:
- which we obtain the exact Lagrangian - 2 3 L 5.8 ER
solution for energy density, velocity, _ Praiadl vy (PO = — A R EY
) magnetic field, etc. In section 4 an " . )
-example is given from the fielq of solar f_(‘” LR OT T - P R Beal
physics to illustrate the advantage of the at . 47 i
present method. . e
7 ST —ixB .30, (sa)
L= 2. INITIALIZING CALCULATION cne
= The basic MHD equations used ipn where E is augmented Pressure defined as
astrophysics are as follows (see Boyd et i
al. 1969): P=pa (Bi/ax), (11
2 . In addition, the v . B=o is used in this
PR B N () derivation, - ,
zz @ i . ST - e Our computaticnal mesh is shown in
i3 e TR R e 5, o Figure 1 in the plane of which the axes z
and r (or x and Y) lie, but it must be
P . Bl-ety . ({.B) . kept in ming that the computation volunme
e 97 Gd) - "[(P*'j:‘f"‘jj'°’°] - has a thickness r - A¢ = r (taken with a

unit azimutha]l angle) or a thickness .z
}, 3.3 (y =~ for cartesian coordinates. Later all
e - formulae are written out in cylindrical
coordinates, but they are valid for the
3B Cartesian Coordinates when replacing z, r,
—*27x (@ xB - 7x(—J, . (35) ¢ by x, Y,_2 respectively and the
It ‘ ' thickness ¢ ig changed to az,

Lo Tx b =L , ) Similar to the procedure used by
- . Hirt, et aj. (1974) gas pressures P,
Bl a-é.-o, (n = 3Udmented pressures p, temperatures T, gas
e [ 4

B . . densities p, cell volumes V, total enerqgy

- LS )
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densities e, magnetic field components
(B,, B., B,) are assigned to cel] centers,
marked by i, B, C, D, etec. as shown in
Fig. 2, while coordinates (z, ry, velocity
components (u, v, w) [u = U,, v = Ue, w=
Ug], current density components (34, .
j4) are assigned to cell vertices, marked
by 1, 2, 3, a +-+. @tC. as shown in Fig. 2.
Notice that in thisg pPaper all quantitjes
are independent of the azimuthal angle ¢,
It should be noted, however, that it is
not difficult to extend this Procedure to
the three-dimensional case. Each of the
following formulae is an integration

either over the cell volume V, with jtg
surface indicated by the enclosed curve
1234 or over the vertex volume V, [Vy =
172 (Vy + Vg + v, + Vp)] with its surface
indicated by enclosed curve 1368.

To advance a solution one step in
time, it, we first need to complete the
initializing calculation. This part in-
cluded computing the current density
(Tq) ¢ (T4)rs (J,)¢ [subscript 4 indicates
the current around the Yertex 47, magnetic
diffusion term - X (C3/e), Joule
heating, and energy gain from thermal
conduction. Because of the smallness of
these quantities, it ig énough to compute
them explicitly using the last time-step
values (not the update data) only.
Furthermore, we have to calculate the
first-order approximation of _advanced
velocity components Ye, V4, W, (here the
tilde sign signifies the first-order
approximation) in this phase in favor of
entering the iteration phase,

Integrating €q (6) (Ampere’s law)
over the vertex volume V, gives
VitVyev ey, c f

(j‘)'—z_-—

| TeB.dr + § ©-8.dz] (12
i Ties

fr—
1348 13¢8

Similarly, the other physical quantities
are expressed by Joule heating contriby-

it c v A
tion = - — fff Vo ] x B]dr (13)
Va 4ne

A

it
thermal conduction = - — fff 7+ 3 dr
Vx
Va
t - = - - -
__‘_[Jrf‘a.dg’fl‘a_.s‘ Q-as+ 3. 43 (14)
L4

11 surrace I surface LR sulface 1§ surey

[

For example where the integration
d . as represents the thermal flux
43 surface

across the interface between vertices 4 ang
3 which can be calculated ag follows:

it ] . . H‘._]""‘""_’ T ar
-—Jfo-ds-—rj [Vo—dr -y g, (18)
A

i
Va Yertex 3 ( 3z x|}

The initializing calculation for the
magnetic field ang energy
density are represented by

. no <3
r(gz)‘-B“v:--;x;{_}] T
3 Le .‘l,l
f red)
By =B, v x y—-'J it (16)
i L le )

4
.- a M, 1 —
(Ol)l" (P}')] AL 1 TR ’
N Va —

i=)

(Geuy + Ie¥y + gaw) - s

+ thermal contribution + Joule heating contribdution, ( 17)

where the superscript n indicates the Sidx'
time-step. i

Eq. (3) is integrateqd over the vertex
volume V,. The integration of the lefrt
hand side of Eq. (3) gives the momentun .
variation with time in Lagrangian

coordinates. So Eq. (3) turns out to be
in the form:

- n it [- Ty +rp  _ -
U, = U, + Jt . g‘ - — Pl (r’ - rx) ——e 4 p‘ (l" - r:)
e, | 2

Fo *+ 1y

- r; +r, - r, 0 r.]
T B (ry s r) — 2, Py (£, =~ 1y) —_—
L 7. .}
it lr - T, ¢+, ’ T~
o S TSI (BB, - (ry - Fi) ——— ~ (8,8,), (r, - ry)
M, i 2 - ¢ a
Tq ¢+ Ty . Ty + T, -
T * BBy (ry ~ te) —2_ T (BB}, (T, - Tyl
T, ;r‘,'[ it lr ’ T, o+, :
T, T T =y, - (23 = 2,) ————= v (8,8,),
2 ) oM, 2
Iy + ¢ ’ Ty + Ty
(2¢ - 2 2. (BeBrde * (24 = 2,) - " (BB},
2

- n LA -
Vi m Vet it s gl e — Py, ' r, (Zy = 2,) + Py r, (24 = z4)

M,
. .- 1 st 1
¢P¢-r.(z,-:.)+P,-r.(z,-z,)’*m-:
e T+, Ty + 1,
[(!,l,). ' ey = ry) ——2 * (BeBy)y (ry - ry) _2
ry + 1, £, + 1y
* (BeBy) (ry =~ ry) ——?——*(BJN-(h"ﬁ"-?_‘
i 1 £, +r,
T T BBy - (2 - 2y) el (BeBely (24 = 25)
2M, in 2
Fg +r Ty + T
. e, iy -2y 'T * (BBely (2, = 2y
a

T, + r,]
——m— |
i
1]

2
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- it 1y T, o+, only satisfied dradually during the .
o YeT e g, e ':;i‘%aﬂl(”"”"‘j“ iteration, we introduce Some new functions
-— ‘ called "unsati;factory" quantities, s,, -
T BBy ey - ry ST 880 (r, -, 2108 3rr . Sgr S, which are defined as the .
2 2 differences between the integrations of
- S Lr left and right hand sides of Egs. (19) -
== TBB(r, - ryy —— L2, Y (BsBr)y (24 = 2,3 (20). -Thus, we get (after integratinq
T M ey Egs. (19) - (20) over the cell volume Vi),
Ty + Ty Ty » ry -
- 2‘ T (BB (zy - Z¢) 'T * (ByBp), (z; = 2y ALB. - Bf-!- .
S: ¥ —— ‘3, bU,pz - “3,.DU,DR + ‘s.p, Tty
= Ty ey T 113 it
2 . ‘LB, -B:I, Wit Y, e,
- - Se ¥ — . ts.0U.DZ - 'B.DU,OR + ‘B, 2 . 's.o,
where M, = (1/4) My + My o+ M, My) . M, T e T FitFaTEy e e — -
ha =V, * p,. The average radius in the P R ' - - o ,?%“
term in 0,-represent§tion is taken to be n a0 S
r, in order to keep U constant in the ‘B B . Ly itvirvgev, e
Steady state, if we Suppose g. = 0, g, = _ 5"'“_7:“‘ 800502 - '8,.00,0R + Ba;j:j:j:"'%°~‘
- 0, g, =g. of course, other choices gor r - ” R e
are allowed. Using Eq. (18) we start fropm R
the values at the last time-step ang o - qagn y -
. obtain the first-order appoximation of R TS s onor s onyom - L L
- time-advanced velocity components before i
commencing the iteration Procedure. o T B 'DU.DR - it pypy U el
- - 3. ITERATION PROCESS TR B o0z - ouomy, TR
= . . , where superscript L denotes time-advancgd'
The objective of thig section is teo values and N denotes first order R
.. obtain new velocities that have been approximations coming from initializing =
accelerated With time-advanced augmented calculations and, :fa’_”
— pressure gradients and new magnetic stressg - 3 e
= tensors. since the new ma netic fields L Miadiashed] R
depend on the new velocitigs, and the °= v, dag @1V Udr = 0us02 + ou o £ +ryeryec, _,_:g.,zc),_
time-advanced p is based on the densitijes - ‘ : L
- as well asg energies obtaineqd when vertices xrr av, (E0°F2) (Wymuy) = (ue-uy) (ry-p,) <00 .
- are moved with their new velocitieg, which °W°";‘JJI;:‘°" = 2 ARE — o an
in turn, are functions of the new B ang , -t I a -
these fields and augmenteq Pressures are ooor - — (I 2oy | et (40 = (wimuy) (24t . s ?
- defined implicitly and must be found by : vy 4 ar 2 - ARE )
= iteration. The major iterated variables LI, e v - e ey ©
weé choose are B,, Br, By, pe in order to DUDZ = — 1| —L gy - e
satisfy the induction equation (5) and Va did ez 2+ ARE
énergy conservation law (4) exactly. 1oppp av, (2e=23) (v4=v.) = (v,=v,) (24-2,) 32)
- - Because we have included the magnetic i ek PR— '
diffusion term and Joule heating as well
#s_thermal conduction term, in the ARE = © (232000000 = (23ery) (20mty) ],
initialization phase as described in 2

section 2, it is reasonable to leave the Virv evy ey,
dynamjc terms (i.e. the terms associated Vi® ———  (arp), LY
with U) in Egs. (5) ang (4) only during ‘

this process. Therefore, the equationg 1 mav,1 (Tamt) (Wy=wy) = (wy=w,){r,-r,) 2)
which must be cbeyed in the iteration are: i H Bkl 2 - e '
;; CRIETT I TPUPY I O S (19) o000 = r[[ My B v - (v (2,2, o
Em == .. Vy ddd oz 2 - ARE
- Y T LR T 3, 200 Notice that the terms
= 3t hRl (v1+v2+v3+v4)/(rx+rz+r3+r‘), .
7, (w,+wz+w3+w‘)/(r;+rz+r,+r,) will qlsappear
o = 7 () =0 (2) when these equations are written in
= 3t : - Cartesian coordinates.
== Integrating Eq. (2) over the cell volume \ D . - : -
gives The iteration convergence process is
, ) achigved by computing the adjustments of
== . LA L (x5 P& B as well as p, U which make the
== = conse. T " magnitudes of S:+ Srs S4, S,, diminsh.

. When they all go to zero, the exact
which means that the mass remains constant Lagrangian solutiong for MHD equations

= T in Lagrangian coordinates. The integra- have been obtained. 1n order to find out

] tions of the left hand sides of Egs. (19) such adjustment for various quantities let
= and (20) are none other than the time- us have a look at what the independent

derivatives in Lagrangian Coordinates. iterative variables are. From Eq. (18) it

©-=  Considering that Egs. (19) and (20) are seems that they are B,, B, By, and p.
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-But the definition of augmented pressure
and energy density gives the exact
relationship between them:

8? pU?

7o (sa - (227) — = (y=1) — 114)
ax 2

Recalling Eq. (18) it can be seen that the
independent iterative variables are either
(B;, B., By, pe) or (B,, B,, Bf.P). But
the former is better than the latter,
because we have the energy conservation
law Eq. (20) which determines the
variation of p¢. On the other hand, if
the set of variables (B;, B, By, P) is
chosen, we do not know how to get the
adjustment for P appropriately. It was
for this reason that Bp introduced another

- 2 2
relation ip = (Cy + Vv,) 3, which expresses

an extension of the adiabatic sound speed
to the magnetoacoustic Speed. However,
this relation is not fully self-consistent
with the energy conservation law.

Now let us find the adjustments to
B,, B, and B,. From Egs. (22) =~ (24) it
can be seen that Sz, S;, Sy arae
essentially based on B,, B;, B4 and only
weakly depend on (pe) through ghe
derivatives of velocity DU,DZ etc.
Because we only need the approximate
values of such adjustments, it ig enocugh
to compute the variations of 5;, S, s,
associated with B,, B., By. Therefore,
the total variation of S; can be written
as (expanded to include first-order terms.
in Taylor series):

as, as, as,
3 = —— 3B, + — B, + — 4a,,
3B, 3B, 3B,

If we put 1S, equal to the negative
unsatisfactory quantity S, computed at
each iteration cycle, then at the next
iteration S, would turn out to be Zero or
very small. 1In this way, we are able to
diminish unsatisfactory quantities very
quickly.

4. NUMERICAL RESULTS

In order to illustate the present
improved ICED-ALE algorithm, we will apply

flux tube is assumed to be surrounded by a
gravity-stratified ionized gas without
magnetic field (Parker, 1977; Sweet,
1972). First, let ug present a mathemati-
cal model to describe the physical
situation of thig problem. Dua to the
small depth (~10° cm, i.e. one seventh of
solar radius {(R,)) of the layer wa will
study, it is reasonably assumed that the
temperature varies linearly, and that the
gas obeys the ideal state equation p = R,T
with a gas-constant R having a slow,
linear (beta-dependence) variation.

Thus,
from the basic equations:

T=T. . TI=2.0, R =3, - Stz-z,)

2p C (13)
2= ReT, — =+ ,gug
dz

we obtain the pressure and density
distribution in the sub-photosphere:
2 = p,F,
3 -1 N 1 Tt
L= F TE3/R,Ty) L e (z-2,} , L= = tz-2),
3 - - 3 -
= - ;- n -l-y/lf’r:‘S/l R |
Frl-— (z-z ol e — (-2, e ’

Using the- following parameters as the —
boundary conditions

-Pe ™ 2.15 x 10° dynesen?, g = 2.7 x 10* cm/at

P2 T4 x 10°% gn/em3, a=52x 107 sv/cn

T, = 4.9 x 10* vy, o B 24 x 10" erg/K qu-ca

I, =3 % 10% en, : -

the computation of (35) and (36) gives the
respresentative mathematical model for the
flux tube which is assumed to be
pPerpendicular to the subphotosphere. This
model is in good agreement with solar
physical data (Allen, 1973; Stromgren
1965) . '

Next, a magnetic flux tube whose
length is 10 cp ang radius 1 x 10® cp jg
invest1g§ted. In particular, we study the
Propagation of physical disturbances along
its lower half-part. Inside the tube we
assume that there is a constant magnetic
field parallel to the tube’s vertical T
axis. For the reason of simplicity, -
Suppose that the gravitational force is -
We divide the
lower half-part of the tube into 15 zones
These 10 radial

.Zones are homogenecus but the axial 15

Py ® P, Py = pe, an

and that the pressure only depends on 2z:

P1 = Py (1+9: (ARE} | (2a0'RyTy) "] - [1=g{ARE] ;, *(2.rR,T,) ~!}~}

(33)

constants arg computed by
Mmeans of the following formula:

Ty = 6.4 x10% = 5,2 ¢ 1p-¥ (2,+z,,,1/2,
Ry = 1.09B14 x 10°0 - 4 x 1p=¢ (z,%2;,,)/2, (3%)
* 1.9317 x 10% + 7 6923 T,

(Notice that T and R depend on z (on index
i) only). when the magnetic field is
present inside the tube, we have to make
the alternative choices: i) the tempera-~
ture inside the tube is the same as that

outside, and there is a difference of gas
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densities between the inside ang outside

“or : ii) the densities are all the same

but the temperature ig different between
the inside ang outside of the tube. For
the purpose of simplification, we choose
the latter assumption, that is, we Suppose

which represent the steady state of the
present model, where the gas-constant
inside the tube is chosen to be 1.0944 x

calculated as p; = Pi1 - Bf/8nr, T, =
(Pi/pi)/1.0944 x 10 - After obtaining the
Steady state. We turn to study the

the tube’s lower section; p = Zplnlt,.l.
Thus, this disturbed Part will be put
forward, and the rest remaing still;

then, as a result, the intersection region
between the two parts will develop a
strong shear motion. In Fig. 4 the
configuration of mesh and the distriby-

drops to less than 10-3 only after
iterating for three times. "op the other
hand, when taking st = 1 Sec. the method
of BP failed to converge. When lowering
5t to 0.1 sec their method began to
converge, but the speed of convergence is
Very slow and may attain saturation after
3 or 4 iterations. Therefore, the present
method has a more rapid convergence Speed
Furthermore, thig convergence hardly
reaches itg Saturation. Sometimes itera-
tion can stil] achieve convergence for
more than 40 iterationsg,

As another example, we will calculate
the case in which a flux tube with a3
Mmagnetic field of 6000 Gauss has a lateral
force applied to part of the tube’s length
as indicated in Fig. 2 (without incteasing
the temperature) by an enhanced lateral

pressure. The boundary conditions are ag
follows:

1) At r = Q (cylindriea]l axis):
e P, p, T, Bz, Uz are Symmetical
-+ U, are anti-symmetrica]

ii) ae latera] boundary (cylinder surface):

B =g

P, py p€, T remain the same ag these in tha
Subphotosphere with the exception at
z-direc:ion-xndex 1 =11, 12, 13

Pi,iy = pluipuntnayhoru . (1+1°"C°3(‘N21/L)l)
Pist1 ® Py, (TR Subphotaspher,,

iii) At the top and bottom:
frec-propaqation boundary,

that is, the enhanced pressure (: 11

Psubphotosprere) is added to the middle
part” (i ="P1713713) St tne tube. This

Parts. when t ig between ¢ and 96 sec, jt
is taken to be 0.2 sec. When 96 < t < 108
sec., it = 0.4 Sec., when t > 108 sec., st
= 0.5 sec. The numerical results are

In this case the
mesh configuration is almost Eulerian,
i.e., the mesh nearly does not move. From

continues. When t - 500 sec. the
intensities of magnetic field near the
axis reach about 8 x 104 Gauss where the
magnetic pressure has the same order of
magnitude as the gas pressure. op the
other hand, with continuation of the force
application on the tube’s boundary, the
high pressure and high density gradually
invade the tube and, "about t+ - 500 sec.
Occupy the middle of the tube’s lower
part. Futhermore, ags shown in Fig. 7 the
distribution of temperature inside as well
as outside the tube, more or less, remaing
unchanged at first (t = ¢ sec.) So the

basically isothermal compression at first,
However,” after 500 sec. evolution of the_

temperature in the middle of the tube
reaches 1.85 x 10% 'K which is about 4
times larger than the original one. Note,
also, that, the density at thig location
(1 = 11) decreases dramatically, thereby
indicating that the "squeeze" is effective
in cutting the tube into two parts, a

eventually be expelled as a pPlasmoidal
"melon seed",
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Relaxation Methods:

= 1 5) =
~Vpo +pod +H(VxB° )xBo =0 M

where ¢ is the gravitationaj acceleration, p is the pressure,
P is the density and B is the magnetic field induction with
subscript *0* Tepresenting the initial state.

For very small plasma beta (j.e. B= Pplasma/PR, the
ratio of plasma to magnetic pressure), Equation (1) could be

~-Vp, +Ppog=0
and

@

( ngo )xEO =0 4
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This approximation implies that the initial magnetic field is
a force-free magnetic field in which the plasma is confined
within the magnetic field and all the currents flow parallel to
the magnetic fields. Under the present circumstances, the
initial magnetic field would be determined solely by the
force-free condition (i.e. Eq.3). The discretization of Eq. (3)
in two dimensions (z, x) gives:

-[ (Bf+Bi)d(xg—xl)+(Bf+B§)a(xs-xs)
+(B? +Bf)c (x —x6)+(B3+Bf)D(xl—xl3 )]+
+2[ (Bf)A (x, -x,)+(33)8 (xg-x;)
82 (-x0)o(22)_ (5o

‘2[(Bsz)_4 (23 _zl)"'(Bsz )B (25 -1;)

+(Bsz)C(zs —26)+(Bsz)D(zl -23)]=0

(4a)
[ (B,z+B‘2)A(z3—2,)+(33+B:)B(26—23)

#(B2+82) (54 -2+ (82 +82) (s,-5,)]

+2[ (BxBx) (x;—x,)-&-(B,B,)B(xs—x,)
+(BxBx)c(xt—x6)+(BxBx)D(xl-x8) ]
-2[(83)4 (23‘21)"'(33)8(35"23)

+(82) (54 -2)+(82) (2, =2, )1= 0

(4b)
where B, and B, represent, respectively, the vertical and
horizontal components of the two-dimensional magnetic
field. The z and x are, respectively, vertical and horizontal
coordinates. The A, B, C, and D identify the cell as shown
in Figure 1. It is well-known that the initial distribution of
the astrophysical plasma parameters (Po and py) is
exponential along the vertial coordinate (z-axis) because of
the gravitational effect, thus, it is convenient to choose the x-
coordinate to be homogeneous and the z-axis to be
nonhomogeneous as shown in Figure 1, such as :

(x, ‘x1)=-("s —x3)=-(x, "‘6):("1 ‘—"t) = Ax

= Constant ,

and '(23 °21)=(11 ‘zl)z - ;26 ;
(z‘, —25)=—(zs "23)= %

with (zl -26) not a

constant. Using these relations, Eqs.(4a,b) become,

(57 +82), ~(52-82), (82 32)_{s2232) |

'%‘[-(B:Bx),( -(8,8,),+(8.8,) . +(8,8, ) ]

e ke 2

> 0 (5a)

2 2 52
((82-52) +(82-57) ~(82-5; ), -(82-52), ]
R Bt
4
Ax=0 (5b)
In reference to Fig. 1, it could be noted that point A
respresents the cell-A located in the position (z;,, w1
while the cell-B is located in (z;, xj.,.l), cell-C located on
(zi,xj) and cell-D located in (Zi+1, xj). This leads to Eq. (5)
becoming an algebraic matrix system which can only be
solved by an interation and relaxation technique.
To perform such a computation, the first requirement
is to set up the trial functions which are denoted by SSZ and
SSX. Thsenvotrialﬁmcﬁonsareobtainedbytakingthc

differences between the left and right-hand sides of the Egs
(5a,b) and they become,

+((8.8,),-(8,8,), -(2.8,) . +(8,8,), ]

sz =-(8?), +(8?) -(8,8,),-a+cCrz

s =(-82) +(8?) -(8,8,),b+cCIR
where
a=(z-25)/Ax , b=4Ax/(z, -z5), )
CTZ =A2+A3—A4+a(-32 +B3+B4),
CTR=A2-A3—A4-b("Bz_B3+B4):
with

2 2 2 2 ' (7)
Ay =(B; -BZ),, A,=(Bl-Bl),
A3=(Bz2‘33)c" A4=(Bz2_Bx2)D
Bl=(Bsz)A ’ B2=(Bsz)B
BB=(BxB:)C' ] BZ=(B::B:)D

(6)

P,

If the magnetic field components B, B, in cells B, C, and D
are known, the relaxation coefficients could be determined
from Eq.(6) via the variation principle, thus,
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o(S5Z) ]
=-2(B,) -(By) ,-a
55, 204 ~{58x) 4
o(Ssz
¥=2(Bx),4 ‘(Bz)A .a
el (s
o(SSY)
=2(B ~(By), b
ETRY z) 4~ (By) 4
A(8SX)
==2(By) 4 —(B,) ;b
3(By) , ¥4 1024
whcreaandbarearbit!atyoonstanmasthemwsurcsof
vertical and horizontai scale.

From Eq. (8), we noted that SSZ and SSY are
dependent on Bz, and By A which forms the basis to initiate
the relaxation procedure for obtaining the true solution
according to the governing equations (j.e. Eq.(5)) in. This
assures ASSZ and ASSY as being approximately zero. To
implement this relaxation procedure, we adjust the values of
BZAandBXAtOBZA+ABZAandBXA+ABXA
respectively, where AB7, and ABy 4 are estimated
according to the values of the first order of the Taylor's
expansion. Then, we begin the iteration process to achieve

oscillations for the numeriaj solution of B, and By;
sometimes this process even caused the solution to be
divergent. In order to remedy this deficiéncy, we introduced
a relaxation factor "w", during the iteration process, thus

B = (1~ w)BE +w(BY +A48,,),
B’ =(1-w)BER +w(BY +4B,) ©

where k indicates the number of iteration steps, and ABy .
and ABy, are calculated at €ach iteration step as follows:

-S57 %(ssz)
ABZ{ =—l ;‘
PP ssv 5 (S5)
o (10)
%(SSZ) -§57
AB,, =L aZ‘
PPl 2 ssx) Ve
08, J

It should be noted that the above treatment is centered
for a particular cell -A. To obtain a true solution in the
whole domain, it is necessary to derive a set of similar

1. Take an initia} guess for B, and By, in the whole
computational domain, Thig initial guess usually
could be the approximate solution from the analytica
expression.

2. Applying Eq. (10) to all cells in the computation to
compute (SSZ)iJ and(SSX)iJ- until they reach a
desired value such that

|ssz |
(B2 +32)"

Y ) amcp

(e
(11)

——

|Ssx |

i

(BZ+B2)

(e

“ ) aBecop J

Ideally, ¢ should be zero, but, we have chosen € to be 10-5
for the present Calculation. When the iteration reached such
a limit, we assume jt to mean that the solution had
converged to a true solution. The procedure was
accomplished.

Quadratic Equations Method

If there should be 3 null point (or discontinuity) in the
domain, the above relaxation method becomes invalid.
Therefore, we have derived a quadratic equation for

B, and B}, from Eq.(6) to assure that the relaxation
could go on to reach a converging solution. We call this the
"Quadratic Equation” method,

From Eq. (6),wesctSSZ=SSX=O. After some

mathematical manipulation, we obtained a quadratic
equation for magnetic field atacell.

2
2 2_~2
BY) -2B4-Cc?~9
(83) 252 0
where Bj represents B; and Bfu , respectively, and
C=(CIZ+C772)/(a+b),
.£=(b-C72—a-C2R)/(a+b).

The solution of Eq. (12) gives

B2, =l[£+ NIVE +£2}

2

1 (13)
B, = -2-[-.£+ Vvac? +£2J
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It can be shown that solutions of Eq. (12) are unique and that
10 singular points exist within the domain. With these
solutions, we will return to the usual relaxation procedures,

namely, we make adjustments for Bz, and By, according
to

AB 4 = (Bz )new - (B4 ) oo }(14)
AByy = (B Yvew - (B y Jow

where the (B o)Ngw and (Bya)Ngw are obtained from Eq.
(13). Then, using Eq. (9), we get new approximate solutions
for the next iteration step. Of course, these procedures will
be carried out for cells B, C, and D during a sweep of the
whole domain.

[II. Numerical Examples

To illustrate the newly developed methods, we have
selected an example for the dynamical simulation of the
compression of two bipolar magnetic field with a x-type
neutral point. The first step in the initialization of this type
of simulation is to obtain the initial state which is the
configuration of a bipolar magnetic field with X-type neutral
points.

To construct such a solution, we need to use the
Quadratic Equations method as described in the previous
section. To implement this solution procedure, we need to
prescribe an initial state and its analytical representation as;

B, =By +B,

with

5 o oa@+ 2 X X+ alz+ 2,7 - (x-x, )]
“ [(@+2 +(X - X,)] |

15)

with i being 1 and 2 respectively. Where B,, and B, are
the usual two-dimensional potential field components. By
chosing the computation domain as 0 < Z < 2000/ and
—1400/om < X < 1400km, we set Z, = 280 km, X, = -
700 km, and X, = 700 km. With these prescribed
conditions, we will begin our iteration according to the
method defined in Section II. In the present calculation, the
grid size is chosen in such a way that there are forty uniform
grid points in the x-direction (horizontal direction) and 30
exponentially variable grid points in the z-direction (vertical
direction). The steady state solution obtained from Egs. (9),
(12) and (14) is given in Figure 2. This result has an
accuracy to the order of 10-3 after 1000 iterations and then
saturates at 4743 iterations which provided an accuracy of ~
104, The accuracy is defined by

552
,/B% +B1

S

VB2 +B:2

For further testing the numerical code, we performed
a time-dependent test, that is by giving a horizontal velocity
(@)=xlhkn/sat j<20 and i = 0 where indices j and
represent the horizontal and vertical grid points. These
results are shown in Figure 3 for the magnetic field
configuration at 500s and 1000s, respectively. The initial
plasma parameters (p,, T,,, p,,) for this calculation are taken
from the Harvard Smithsonian standard atmosphere model.2

V. gonclgding Remarks

In this paper we have demonstrated that the
improvement based on the Brackbill and Pracht method
could be utilized to construct a highly complex magnetic
field configuration for magnetostatic equilibrium state with a
discontinuity in the computational domain as shown in
Figure 2. It also shows that the method could be used to
study the dynamical evolutionary state as shown in Figure 3.
Finally, a solution was presented for the structure of the solar
atmosphere which includes the thin transition region layer.
'I'heplasmapammeterswithinthisthinlayerposs&sed
several order of magnitude variations. The physics of this
studyw'illbcdiscussedinaseparatepaperbyWuetal.3 .
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On the Time-dependent Numerical Boundary Conditions of Magnetohydrodynamic
Flows
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L

The time-dependent numerical boundary conditions for time-dependent

magnetodydrodynamic fluid flow simulations have been studied. In this

paper, the formulation of the time-dependent numerical boundary condi-
= tions are described in a systematic way such that they can be adapted to
;: different applications. In particular, the algorithm presented here could be

used to solve both parabolic and hyperbolic systems of partial differential

equations. A numerical example for an astrophysical application in the
; g context of photospheric shear induced dynamics was chosen to validate

this new formulation.
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1. INTRODUCTION

Applications of numerical models in the field -of astrophysics seek solutions of
hyperbolic equations inside a finite domain with boundaries on which no physical
boundary conditions can be specified. This approach is called the free boundary
value problem. The method of characteristics is often used to specify numerically
such boundary conditions in order to keep false physical properties from propagating
into the domain as investigated by Wu and Wang [1]. |

Nakagawa et al. [2] developed the method of projected characteristics both to
specify the numerical boundary conditions and to solve for the solutions in the
computational domain. Hu and Wu (3] used the method for the numerical boundary
conditions and developed the FICE (Full-Implicit-Continuous-Eulerian) algorithx;l
for the solutions inside the domain. The purpose of the present algorithm is to solve
both parabolic and hyperbolic systems of equations. The algorithm used in the test
run of this paper is a refined version of the FICE algorithm which has been renamed
as the NICE (Nimble Implicit Continuous-Eulerian) algorithm [4]. However, the
method of projected characteristics requires complex formulation which may not be
easily modified to suit different applications.

Thompson [5] extended the concept of non-reflecting boundary conditions to the
multi-dimensional case in non-rectangular coordinate systems. He later developed
a general boundary condition formalism [6] for all type of boundary conditions for
first-order hyperbolic systems. However, these boundary conditions are limited to
fluid dynamics. Vanajakshi et al [7] then a..pplied Thompson’s method to solv-

ing boundary value problems in magnetohydrodynamics (MHD) particularly for -



isothermal plasma. Consequently, for non-isothermal plasma, the semi-analytic ap-
proach in solving numerically the eigenvectors of a modified version of the coefficient
matrices is no longer valid.

In this paper, a new analytic approach is presented for non-isothermal plasma. In
addition, when there are two eigenvectors that are paralle] at a boundary, a special
treatment is devised. The theoretical approach for this study is the same as that
of Thompson’s [6], namely, to systematize the formalism. In order to demonstrate
the utility and accuracy of the present algorithm, numerical simulation for the
dynamical evolution of a force-free magnetic field is presented. These simulation

results are compared with a set of quasi-static analytical solutions given by Martens

et al [ 8] for the accuracy test.

2. GOVERNING EQUATIONS

The normalized MHD equations for a perfectly conducting fluid can be expressed

in the following vector form:

dp
a +V. (pv) = 0, (1)
Ov 1 2
pa'{‘p(v-V)V = —WVP—ﬂO—‘YM—gB x (V x B)- V9, (2)
0
3tV =~V vt (y-1)ag, (3)
% = V x(vxB), (4)

where the equation of state P = pT is used in the energy equation to replace pT
with pressure p. & is the stress tensor or the gravitational potential or both. AQ

is the net rate of irreversible energy (heat) gain or loss per unit volume and a is
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the speed of sound. The two non-dimensional parameters, Mach number M, and

plasma beta 3,, are expressed, respectively, as follbwing:

U 3, = _Pe
VART,” "° 7 B1/8x’

where the constants subscripted with (), are scaling factors for normalization pur-

M=Y_
Ay

pose. Other scaling factors are Po = Po/RT,, 24, v,, and ¢, = To/v,.

3. METHOD OF CHARACTERISTICS

For the convenience of using the method of characteristics on the boundary, the

MHD equations need to be expressed as

OW W 0w oW

—_— (2 (3) "7, = E, 5
ot +A 821 +A 3::, A 633 E ( ).
The vector of primitive solution variables is
WT = (p, Uy, Uz, ua, D, Bl, Bz, Ba). (6)
The 8 x 8 matrices are
( Uy p 0 0 0 o0 0 0
0 ww 0 0 £ o Lp fp
00 w 0o o0 o -E=p 7
A = Lo 0o o 4 o o DB
kil 0 a? o 0 u, 0 0 0
0 o 0 0 0 u 0 0
0 B, -B, o0 0 0 Uy 0
\0 B; 0 -B, 0 o 0 uy
( u; 0 p 0 0 0 0 0
0 u 0 o0 o -£2p 0
P
00 w 0 £ Lp o mp
@ - L]lo o o u o0 0 0 -fap,
A - 4 ’ (8)
hal 0 0 a2 o uy 0 0 0
0 —B2 Bl 0 0 U2 0 0
0 o 0 0 0 0 Uy 0
0 0 Bs ~Bg 0 0 0 Uz )
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0 2w 0 0 o0 -f£p, o
0 0 w 0 o0 0 -E;B 0
A(3) = i 0 0 0 Uus Epﬂ EpB'BI E‘,B'Bz 0 (9)
ha|l 0 0 0 a% wu, 0 0 0
0 —-B3 0 B1 0 lU3 0 0
0 0 —B3 Bz 0 0 Us 0
0 0 0 0 o0 0 0 u.:;)

where o’ = 4T, Fp = 1/(vM?

) and Fg = 2Fp/B.. The factor h; is the scale length

of the coordinate in the ith direction for the orthogonally curvilinear coordinate

system. The vector of inhomogeneous terms is

~P(Ciz13 Tjor s uifji — i=13 i fii)

2 _
i

Ei=1,3(u COB?
Zi:l,.’!(u? - CoB,-2
Ei:l.s(uiz - cﬂBiz

where co = 2/(vpM?23,) and

(v -1AQ - a2P(Zi=1.3 2
ui(B1fa1 + By fsg + B fas)
u2(B) fa1 + By fy; + B3 f13)
u3(By fa1 + By fig + B; fi3)

) fir \
) fiz
)fis —

— Zi=a(tiu; — coByB;) fi; - (V3),

= Lj=13(%2u; — coB2B;) fa; - (V®),

Lj=13(uat; — coBsB;) fa; — (V),
j=1,3 Uifji — 2i=13 u; fii)

+ Bi(uy far + uafiz + u3 f13)

+ Ba(u1fa1 + uafsq + u3fa3)

+ Ba(ui fa1 + uafay + usfis) /

(10)

1, Oh;

fij = h—ghja_z:,T'

In the j direction, where J=1,2 and 3, the eigenvalues of A (%) are;

J _ J
Al = Ujs /\2. = uj,

Aé:u,u{-U’,

where

Uﬁj)

(3
Uy

U@

O 0] =

The definition of b is

b;

Ne=u;—Uj, M=u;+Ui, Ao=u; - Ui,

Qe

‘F'EBJ', ] = 1, 2, and 3,
V p

Ag:ujv'*'Ui? ’\i =ui—Uii (11)

L]

il

a? + b7 4 \/(a’ + b2)27 — 4azb}) : (12)

(
(

a’ + 6 — \/(a? + b2)2 - 4a?b?) .

(13)
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and
3 .
b = Z b;b;.
J=1
For simplicity, the following analysis is restrained only in 2, direction. Details of

the formulations in the other two directions are shown in the Appendix.

The inverse matrix S;!, whose rows are the left eigenvectors { T; of A 1, which

gives
(Fpa.2 0 0 0 -Fp 0 0 0
0 0 0 0 0 Ch 0 0
0 0 —613 blz 0 0 CsUi '—CzU}i
0 0 blg "b12 0 0 C3Ui —CzU‘:
ul
S;' = 0 Ujuy, —b1,U} —bI;U} Fp—;L 0 cpu} cauy |, (14)
0 —Ufuff ble} b]_sU} FPE;L 0 Cgu} Csu}
0 U,‘u“ buU} me.l FPE;" 0 —CzU} —C3‘ui
\ 0 UM bl ~hyU! Fpth 0 _cpul gl )

where v} = (U})?, u! = (U1)2, upy =ul — b2yl = b —ul, e = \/Fg/p, c; = eiby,

and b;; = b;b;. L' can be calculated according to the definition

oW
cl = Als;la—xl, (15)
and results in
oW,
Li=X Y b=, 16
=Zl'8 f k azl ( )

where ¢, is the element of S, at row i and column k, and W, is the kth element of
W. Then, appropriate boundary conditions are applied to specify the value of L}
for the outwardly pointing eigenvector A} with respect to the solution volume.

Now d' = S, L can be solved with known S7! and £! through the set of equations

S7ld! = ¢!, (17)
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Note that the eigenvectors (left or right) of A7 will always be linearly independent,
but they are not orthogonal, and it is possible that any two of them may be nearly
paralle]. Consequently the matrix S-! may be ill-conditioned, because it is close to
the vicinity of the singularity for which the numerical solution of Eq.(17) is poorly
determined. In our case, this means 5, — 0, Therefore, Eq.(l?) has to be solved

analytically and the elements of the solution vector d', in analytic form, are

Ma/U} + M, /U

1 _ ! 3

d, = Wb —u) (18)
g = ZUibsMi—by(M, — 2¢L,a1) (19)
? 2U4b1 (3 + 82) ’

UbyMce<e<e<el — b3( M, — 263,d1)

d = 20
‘ 2075,(83 7 ) ! (20)
Nz /ul + N3 /u!l
dy = 2(¢1 fl 1 /2,1}? (21)
(fss/uf + &75/ul)
1
4 = & (22)
26
.A/',b3u1 + bgUl(Nz - 251 dl)
1 — f A 55%5 9
T e (23)
—szul + b3U1(N2 - 261 dl)
1 — f A 56%“s 2
d ve 2U},u}(b§ + b2) ! (24)
Ll — el gt
& = 4 flfls 5 (25)
11
where
M; = VEFs(L3,, - E;H-?)’ (26)
Ni = Lo + Liits- (27)

Note that d! are displayed in the solving order in which some of the solved elements

may be used for solving the remaining unsolved elements.

7
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In the case of b; = 0;, then, this leads to any two eigenvectors being parallel
and the analytical solution is not defined. Subconsequently U} = 0 and U! = 0.
Physically, this means that the component of the magnetic induction normal to the
boundary vanishes or the magnetic lines-of-force are parallel to the boundary. In
this situation, a set of new eigenvectors needs to be sought. The determination of
these new eigenvectors is described as follows:

Observing closely the original eigenvectors in the rows of S;! in Eq. (14), one
can see that (T, T, IT and IT still remain linearly independent to each other, i.e.,
they are still valid eigenvectors, while {7, IT, IT| and IT vanish. To find other valid
eigenvectors, the original forms of the vanished eigenvectors are used in cooperation
with the linearly combined eigenvectors, and then the limit b — 0 is taken. If 7
and ] are summed up and the resulting vector is scaled by 2U}, from which a valid

eigenvector

17 =(0,0,0,0,0,0, csbs, —csbs) (28)

can be derived. Scaling the summation of ! and T with 2u! and taking the limit

b, — 0, one gets another eigenvector
If =(0,0,0,0, Fpb?/a’p,0, —cyby, —csbs). (29)

Since the third and fourth components of all the eigenvectors available so far are
zero, the most natural selections of the remaining two eigenvectors linearly inde-

pendent to the other eigenvectors are

Iy =(0,0,1,0,0,0,0,0), and I =(0,0,0,1,0,0,0,0). (30)
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The new S7!is now

STt =

0

0 0o -Fp 0 0
0 0 0 0 Cp 0
0 0 0 0 0 Cbb3
0 10 0 0 0
U} 0 0 Fp/p Cbbz Cbba
—U} 0 0 Fp/p Cbb; Cbba
0 00 prz/azp —cpby —cpb,y
0 0 1 0 0 0

The solution of Eq.(17) becomes

]

L3 - £}

25,
£

1 b

43
£

&

L+ L)+ 201

2Fp(1 + b%/a2)’

4
10
26
baly +by(LL + £} ~ 2655d:)
VP 252 !
St + bs(ﬁzéb‘: Lo - 2¢},d}) ’

‘C% zlfllsdé'
11

%:—dl-dz—d°’+E.

The time derivative js integrated through time with

Wi(t+ A = W(t) + At‘i?W

COoococo%oo

(32)
(33)
(34)
(35;)
(36)
(37)
(38)

(39)

(40)

(41)
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to give the boundary values for a new time step.

4. BouNDARY ConDITIONS OF MHD EQUATIONS

There are basically two different types of time-dependent boundary conditions
that generally need to be treated with the characteristics method in the simulation
of space plasma phenomena.

The first type of boundary condition is the non-reflecting boundary condition
which is commonly used when there is no physical boundary involved. Encountering
this type of boundary in the problems of astrophysics is inevitable if the simulation
domain is in a finite volume.

The second type of boundary condition is the coupled boundary condition ﬁhich
deals with boundaries at which only a portion of the physical properties is known. It
is worth noticing that at any time ¢ the boundary conditions contribute only to the
determination of 3W /0t at the boundary, and never define W itself. For example,
a boundary treatment which explicitly sets the normal velocity of a fluid to zero at
a wall boundary is not appropriate in the hyperbolic system. Instead one would set
the normal velocity to zero in the initial data and then specify boundary conditions
which would force the time derivative of the normal velocity to be zero at all times.
One advantage of this approach is that it decouples the boundary treatment from
the time integration of the differential equations, so that the integration may be

performed without reference to any special time behavior at the boundaries.

10



4.1 Non-reflecting Boundary Conditions

At the boundary z; = z,___, wave modes for wlﬁch X > 0 are propagating out of
the computational and physical domain, and £f may be computed from its definition
in Eq. (15) using one-sided finite difference approximation to W /8z;, using only
interior data. (Similarly, at Tj = Tj,, we may compute £ from its definition in
Eq. (15) when /\f < 0, using one-sided differences, as this case also corresponds to
an outgoing wave.)

Howerver, if A/ < 0, then those waves are propagating into the computational and
physical domain and generally may not be computed from interior data. In this
case we make use of the non-reflecting boundary condition of Reference (4] and set
Li=0 (and set £ = 0 at the inner boundary if /\{ 2 0), which may be dor;e
conveniently by replacing A} by 0 or letting OW/dz; be 0 in the definition of Ci.

In the practical applications, two spatial derivatives denoted by W} and W?
in each of the three directions (7 =1, 2, and 3) are calculated at each boundary
point. Both spatial derivatives are calculated using one-sided differencing: w1,
backward differencing; W3, forward differencing. W1 is set equal to zero at the
boundary points z; = Tjmi, evaluated with two point differencing at the points
T; = Zjuie + Azj, and evaluated with three point differencing elsewhere. Likewise,
W2 is set equal to zero at the boundary points T; = Tjma, evaluated with two
point differencing at the points z; = Zjme — Azj, and evaluated with three point
differencing elsewhere. The differencing scheme for these two spatial derivatives at

different positions is summarized in Table 1. .
Then in Eq. (15), W} is used in place of OW /Oz; when X} > 0, and W2 is

11
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Table 1: The differencing scheme for W} and W3,

Position Value or Differencing Scheme
z; W (backward) | W? (forward)
z; = g™ 0 three point
T; = T + Ag; two point three point
P + Az < zj < 2P — Ag; three point three point
T; =z - Ag; three point two point
z; = g7 three point 0

used when A < 0. This approach has one advantage over replacing A! with 0:

because the stability and accuracy of the upwind scheme in hyperbolic systems can

be obtained.

4.2 Coupled Boundary Conditions

It is very difficult to give a general description of the boundary treatment for
the coupled boundary conditions. Therefore, we have selected an example to illus-
trate the procedures of the treatment of the coupling boundary condition. In this
numerical experiment, the normal direction of the boundary is in the z; direction
which is z in the Cartesian coordinates. The experiment is done with symmetric
conditions in the z, direction such that 8/8z; = 0. The boundary conditions at
z =0areu; =u3 =0, u, = uy(z,,t), p = po, and By = Bs(z;). Since the normal
velocity us = 0, the number of outgoing wave modes is three, which is the number

of variables on the boundary needed to be determined. These variables are p, B,

and B, for this particular example.
Eq. (40) with d* = 0 becomes

%§=_w—w+E. (42)

12
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The known 8W;/3t denoted by (IV;), = 0 are (p), = 0, (u1)e = 0, (wa)s, (u3) =0,

and (B,); = 0, whose indices are : = 1, 2, 3, 4, and 8 respectively. In the equation,

d' can be evaluated using Eq. (15) and the vector of inhomogeneoﬁs terms E can

also be evaluated assuming that the dissipation terms are either known or equal

to zero at the boundary. Now L}, corresponding to the in-coming wave mode for

which A} > 0, must be evaluated such that the time derivatives can be treated as

the known values.

We began with the solutions d® of Eq. (42), such as

and the eigenvalues are:

’\:1’=0a

=13,

Mz/U? + Mg/U,s
2(ud —ul)
=U3ba My = by( M, — 263,d3)
2Uby(b2 + b3) '
Ubi My — by( M — 265,d3)
2U by (b2 + b3) '
Nz/u:} + Na/uf
2(88s/ud + &0/ud)’
£3
%3
28
\/;Nxbzu'} + b UR (N, — 263d3)
2U3uj (8] + 63) ’
\/_—Nl biuj + b UZ(Na — 263543)
P 2U3u3 (b3 + b3) ’
£ - e

&h

AM=0, M=U3, AN=-U3

A::—U}’, M=U2 M=-U%

(43)
(44)
(45)
(46)
(47)
(48)
(49)

(50)

(51)

The components of £} that need to be specified are £3, £3, £3, £3, and £3. From

13
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observation. one immediately noticed that, by setting (p): and (B;), = 0, this
procedure automatically determined £ and £2 respectively. To determine the other
three £3's, M,, M,, and M; have to be solved from the simultaneous Eqs. (44),

(45), and (43). The results are

My = 2by(bydd — bydd), (52)
My = —2U3by(byd} + bd3) + 2U3d3(U7 — b3), ‘ (53)
My = U} |2di(ul —l) - AUA—?’ : (54)
where d3, d3, and d3 can be obtained from
& = er—di—(u)s, (55)
& = es—db = (uzes (56)
4 = eq—dl— (us)e (57)

where ¢; is the ith component of the vector of source terms E. Finally, we have

1

8 = B4 (58)
1

c: = Eg-*——\/ﬁMz, (59)
1

£y = L3+ Ma. (60)

\/FB
Now d?, &3, and d3 can be determined from Eqs. (46), (48), and (49) respectively.

Consequently, (p)e, (B1):, and (B;), are obtained from Eq. (42).

5. NUMERICAL EXPERIMENTS

The experiments are done to verify the validity of the coupled and non-reflecting

boundary conditions separately. The physical problem of interest is the dynamic

14
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evolution of a magnetic force-free field driven by the shear motion of the foot points
of the magnetic field lines.

In this scenario, we consider a force-free magnetic arcade straddling a photo-
spheric neutral line. The arcade has translational symmetry along the neutral line,
and rotational symmetry about an axis below the surface. In this Cartesian coordi-
nate system, z denotes the height above the photosphere, x the projected distance
from the neutral line, and y the coordinate normal to the x-z plane along the neutra.l-
line. A parameter t denotes the depth of the symmetry axis below the photosphere
(z <0).

One of the closed form analytical solutions for the physical scenario described

above for the nonlinear force-free equation
VxB=aB (61)

obtained by Martens et al. (1992) is

t2_r2

B. = - B exp(—1) (62)
By =— B.\/(1-r?)exp(tt —r?) + C? (63)
B, = Beexp(tol) (64)
- = (2 - r?)exp(£32) | (65)

V(1 = r?)exp(t? — r2) + C?
where z' = z +t and r? = z? + 2>, The foot point of a magnetic line-of-force has a

shear displacement along a direction parallel to the neutral line given by

Ay(z,y,z =0,t) = tan‘1(§)\/1 —t2 — 22 + C? exp(z?). (66)
Velocity of the shear motion on the lower boundary of the computational domain

15



{

{0 .

o

0

I

I

-

(i

can easily be obtained by taking time derivative of the displacement in the above

expression, Eq (66) such that

i’

t
v = m\/l — 2 —22 4+ C? exp (22) — tan™! (%)

V91—t — 274 C? exp 2
(67)

The time scale used in this numerical experiment is merely a parameter to describe
the displacement of the foot points. The magnetic arcades and the displacement

profiles on the photosphere are shown in Figure 1 with the the parameters C' = 0.4

and in (a) t = 0 and in (b) t =t = V2 F 2log C.
5.1 Test One: Verification of the Coupled Boundary Condition

To test the validity of the coupled boundary condition, two runs are carried Ol;t
by using mathematical model Eq. (5) with the same initial and upper and side
boundary conditions except that the boundary conditions at the lower boundary
in each run are different. In run one, the lower boundary is specified with the
known physical quantities. In run two, the coupled boundary condition in the
previous section is used to calculate the physical quantities at the lower boundary.
The results of the two runs are then compared to validate the coupled boundary
condition.

In both runs, density, gas pressure, and temperature are kept constant at the lower
boundary. The non-reflecting boundary conditions are used at the upper boundary
and the two side boundaries since these are the arbitrarily chosen boundaries and
no physical boundary conditions can be specified on them. In run one, the lower

boundary is specified with all of the magnetic induction components evaluated from

16
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the analytical solutions with z = 0 using Eqs. (62) - (65).
Initially, the atmosphere is isothermal and hydrostatic. The velocity field is de-

scribed by

—ZT

Ry Py o .

_a:’ z:’ t
v = T—T\/l—tz—:z:’z-FC" ezp z'2 — arctan™! (—) X
24z t \/l—tz—:z:’2+C”ea:pz’z

larctan %! -z

(69)

X t
[arctan —,] -z
x 2

—z{(z + ¢
YT +((z+t))2 7

where z' = \/(t +2)? + 22 - ¢2,
In this test, the simulation time period is equal to one tenth of the maximum time
and starts from zero, i.e., 0 < ¢t < 0.041 with C = 0.4. The physical parameters are

listed in Table 2. The domain size is 36 grid points by 25 grid points with the grid

Table 2: Physical parameters

Parameters Numerical Value Unit
to 5000 sec
L 5.0 x 108 cm
U 1.0 x 10°% cm/sec
¥ 1.67 Dimensionless
R 1.653 x 10% erg/g-K
Po 1.67 x 1014 g/cm?
T, 3.0 x 108 K
B, 45 gauss

size Az = 4/25 and Az = 1/6. This makes the computational domain physical size

28,000 km in the z direction and 12,500 km in the z direction (height).

17
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There are four monitored stations located at the grid points (19,10), (19,20),
(30,10), and (30,20) as shown in Fig. 2. The first two stations are close to the
neutral line and away from the lower boundary at which the analytical solutions
are specified as the boundary conditions. The second station is twice as far as the
first station away from the lower boundary. The third and fourth stations are in
the region away from the neutral line.

At these four monitored stations, the magnitude of the vector magnetic induction
obtained from the numerical simulat'ion is compared with that of the analytical
solution. The relative errors of the comparison versus the time normalized with the
simulation period are shown in Fig. 3 for run one and Fig. 4 for run two wherf.-
the four frames show the comparisons at four different grid points as (a): point
(19,10), (b): point (19,20), (c): point (30,10), and (d): point (30,20). Also in each
frame, the results of three runs with different time step are shown for the purpose
of asymptotic analysis. The results from run one with 1000, 2000, and 5000 time
steps in the simulation period are expressed in dash-dotted line, dashed line, and
solid line respectively. The reason for recording results with different time steps is
to investiage the asymptotic behaviour of the solution, i.e., the time accuracy of the
algorithm that solve the physical quantities in the computational domain. Since
the results with 1000 time steps are close enough to the asymptotic solution with
5000 time steps, thus, the 1000 time steps are used as the number of time step in
run two. The dotted line is the two-degree polynomial least square fitting of the
curves of the error in each frame. These dotted lines indicate the center lines of the

oscillating numerical results which deviate from the analytical solution by less than
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2% for run one and 6% for run two.

From these results, it is easy to notice that the waves propagating outward from
the lower boundary in run two are eliminated. This indicates that the forced bound-
ary condition at the lower boundary in run one creates spurious waves while the cou-
pled boundary condition eliminates the spurious wave generation as demonstrated
"by run two. We may conclude that the coupled boundary condition is superior than
the fixed boundary condtions.

At the region of monitored station (a), the deviation of the numerical results from
the analytical solution becomes larger as time progresses. The excessive decrease of
the magnetic induction is caused by the convective effect of the dynamic system that
brings in lower magnetic flux from a higher elevation through the convection process
of a slightly over-predicted down-flowing velocity field in comparison with analytical
solutions. As for the other three monitored points, the gradients of the magnetic
induction in the vicinity of these points are not as large as at station (a). Therefore
an over-predicted velocity field affects the magnetic flux very little through the
convection process. However, this reflects the deviation of the dynamic simulation
from the quasi-static solution, and the maximum deviation of the magnitude of the
magnetic induction at monitored station (a) is only around 6% at the end of the

simulation.

5.2 Test Two: Verification of the Non-reflecting Boundary Condition

The non-reflecting boundary conditions are used in run one and run two of test

one without verification because the test one emphasizes the accuracy of the lower
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béundary. In test two the non-reflecting houndary conditions will be investigated.
To carry out this test, all the parameters are the same as in run one of test one
except that the domain size is larger so that the boundary grid points imposed with
the non-reflecting boundary condition in run one of test one become interior grid
points in this test. Then the physical variables at these grid points resulting from
run one of test one are compared with those resulting from this test (i.e. test two)
in order to verify the performance of the non-reflecting boundary conditions applied
especially in the two-dimensional case. The reason for using this setup for run one
of test one instead of that of run two of test one is that run one of test one creates
waves which are considered to be undesired in a real simulation but are useful for
this test.

Since the positions of interest in this case are the intersections of non-reflecting
boundaries, three monitored grid points are selected. The grid point (36,25) shown
in Fig. 2, will be referred to as station (a) which is an intersecting point of two
non-reflecting boundaries. The other two grid points (35,24) and (34,23) will be
referred to as station (b) and station (c) respectively. These two stations are used
to monitor the influence of the non-reflecting boundary condition on the interior
grid points. The comparison of the results from run one of test one shown by dotted
lines and the results from this test in dashed lines are shown in Fig. 5 and Fig. 6
with three monitored stations in each figure. The two physical quantities compared
are the normalized velocity component u in Fig. 5 and the normalized magnetic
induction component B, in Fig. 6. From these figures, the non-reflecting boundary

condition is proven to work well in the multi-dimensional problem.
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6. CONCLUSION

A new analytic approach of solving the time-dependent boundary conditions of
MHD flow is developed for multi-dimensional non-isothermal plasma. In addition,
for the situation when two of the eigenvectors are parallel, the solutions of the
boundary conditions are shown to be achievable. Numerical experiments to test
this formalism of the coupled boundary condition and the non-reflecting boundary
condition are presented.

The test results of the coupled boundary condition show that the determination of
dW /8t at the boundary which is indeed outrange the artificially defined W(cf.[4]).
This is especially true when the defined W is the solution of a set of steady state
equations.

For the non-reflecting boundary condition, the test results demonstrate that the
solutions on the upper and side boundaries in run one of test one act just like the
solutions at the interior points in test two. The most troublesome point is the
intersection of two non-reflecting boundaries which is one of the monitored points
in the numerical experiment. This test proves the validity of the non-reflecting
boundary condition in the multi-dimensional problem.

An application of this newly developed time-dependent boundary conditions, can

be found in the work of Martens et ql. (1992).

APPENDIX: SOLUTIONS OF THE BOUNDARY EQUATIONS
In the z, direction, the inverse matrix S;', whose rows are the left eigenvectors
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IT;of A% is
Fpa?® 0 0 0 ~Fp 0 0 0
0 0 0 0 0 0 Ch 0
0 —bgs 0 blz 0 CgUi 0 —C1U_:
0 b23 0 —bu 0 Can 0 —-C;Ui
uz
S;l = 0 —blefz U}U.;f —an} Fp—é!' cluf, 0 cw} ’ (71)
0 b12U} ~Utul, basU? Fpgé“‘ auf 0 cau}
0 ble.z Ufuf, bzsU‘z Fpg;" —cluf 0 —C3‘u3
0 —bpU? ~Ulul, —bpU? Fptis —ciu? 0 —cqul
where u} = (U})7, ul = (U2)%, uly = w2 — B, ul, = 8 = ul, o = \/Fa/p, & = cob
and b;; = b;b;. The elements of the solution vector d? are
My /U + M,/ U?
d? = ! L 72
3 2(u? — u?) (72)
£ = —U}bng — by (M, — 2€2,4}) (73)
? 2U2by(b2 + b2) ’
2 U}blMl — by(M, — 283,d}) (74)
4 2U}bz(bf + 632) ’
& = Najuf + N3/u? (75)
2(&5/“} + €35 /u?)’
£€§1
d = é_’ (76)
Nibsub + b UL (N, — 262 di)
d2 = f A 56“S 77
o Ve 2U3u3(b2 + b2) ’ (77)
d, _ \/‘_)—Nlblu; + bSU.i(NZ - 2£gsd§) (78)
* 2U%u3(b? + b3) ’
Cz g2 d?
@ = Hitisds 62515 £ (79)
i1
where
M = % FB(E%:’H - E’fu’n)v (80)
Ni = Lo + Loy (81)

In the z; direction, the inverse matrix Sy ! whose rows are the left eigenvectors -
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Fpa? 0 0
0 0 0
0 —bas bys
0 bas —b13
S:;l = 0 —me}’ —bzsU}3
0 b13U? bgsU},
0 biaU?  bysU?
0 —b13U?  —bysU?

where v§ = (U})?, u? = (U2)?, uty

d® is given in Section 4.2.

0
0
0
0

3
3,3 2
Ufuff FP

73,2 Yt
Usuyy Fp=;

U3l

s 8

3,3
—Us U,,

~Fp
0
0
0

]
Y
Fpp

3
u
Fpiu
P,

0

0
CzUi
CzUi

c u}

C]_u;

—cluf

—cluf

—caul

—Czu::

0
Cb
0
0
0
0
0
0

/

u% — b2, and u?, = b2 — u?. The solution vector
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Figure 2

Figure 3

Figure 4.

Figure 5.

Figure 6.

FiGURE CAPTIONS

Magnetic field configurations and displacement profilés for the photosphere with the parameters
C=04andt=0in (a) and t = trq; in (b).

. The coordinate system and the locations of the monitored grid points for the experiments of
the plasma shear flow.

. The relative error of the magnitude of magnetic induction between numerical simulations and
analytical solutions in run one (i.e. specified lower boundary conditions with known physical
quantities) of test I at four monitored stations; (a) at (19, 10), (b) at (19,20), (c) at (30,10)
and (d) at (30, 20) respectively as shown in Figure 2.

The relative error of the magnitude of magnetic induction between numerical simulations and
analytical solutions in run two (i.e., the quantities at lower boundary are calculated according
to the conditions discussed in (4.2)) of test I at four monitored stations; (a) at (19, 10), (b) at
(19,20), (c) at (30,10) and (d) at (30,20) respectivelyf as shown in Figure 2.

Comparison between the coupled boundary conditions with specified lower boundary condition
(Run one of Test I) and non-reflecting boundary condition (Test II) for the resuits of the
normalized u from Esg and Esy at three monitored grid points ; (a) at (36,25), (b) at (35,
24) and (c) at (34, 23) respectively.

Comparison between the coupled boundary conditions with specified lower boundary condi-
tions (Run one of Test I) and non-reflection boundary conditions (Test II) for the results of
the normalized B, from Esg and Esy at three monitored grid points; (a) at (36, 25), (b) at
(35,24) and (c) at (34, 23) respectively.
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