
Proceedings of the Eighteenth Annual
Software Engineering Workshop

December 1-2, 1993

GODDARD SPACE FLIGHT CENTER

Greenbelt, Maryland

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created to investigate the effectiveness of software engineering
technologies when applied to the development of applications software. The SEL was
created in 1976 and has three primary organizational members:

NASA/GSFC, Software Engineering Branch

The University of Maryland, Department of Computer Science

Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the
GSFC environment; (2) to measure the effects of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development

practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes this

document.

Single copies of this document may be obtained by writing to:

Software Engineering Branch

Code 552
Goddard Space Flight Center
Greenbelt, Maryland 20771

SEW Proceedings
iii

I_GE BLANK NOT FII..I_"O

SEL-93-003

The views and findings expressed
herein are tho_ of the authors and

presenters and do not necessarily

represent the views, estimates, or

policies of the SEE All material

herein is reprinted as submitted by

authors and presenters, who are

solely responsible for compliance

with any relevant copyright, patent,

or other proprietary restrictions.

SEW Proceedings iv SEL-93-003

CONTENTS

Page

_./f 1

39

c 60
dz

/ 81

p/r_ j _ 95

f_/97

_5" 116

_7 161

176

5_ 199

C,_F_ 251

Materials for each session include a summary of the live

presentation and selected questions and answers, as well
as any viewgraphs, abstracts, or papers submitted for
inclusion in these Proceedings.

Summary of the Eighteenth Annual Software Engineering Workshop

Session 1: The Software Engineering Laboratory

The Maturing of the Quality Improvement Paradigm in the SEL
V. R. Basili, University of Maryland

Process Improvement as an Investment: Measuring Its Worth
F. E. McGarry and K. F. Jeletic, NASA/Goddard

Recent SEL Experiments and Studies

R. Pajerski and D. Smith, NASA/Goddard

Session 2: Measurement
Discussant: G. Page, Computer Sciences Corporation

Specification Based Software Sizing: An Empirical Investigation of

Function Metrics
R. Jeffery and J. Stathis, University of New South Wales

Software Forecasting As It is Really Done: A Study of JPL Software Engineers
M. A. Griesel, J. M. Hihn, K. J. Bruno, T. J. Fouser, and R. C. Tausworthe,

Jet Propulsion Laboratory/California Institute of Technology

Assessing Efficiency of Software Production for NASA-SEL Data
A. yon Mayrhauser and A. Roeseler, Colorado State University

Session 3: Technology Assessment
Discussant: G. Heller, Computer Sciences Corporation

The (Mis)use of Subjective Process Measures in Software Engineering
J. D. Valett, NASA/Goddard and S. E. Condon, Computer Sciences Corporation

Analysis of a Successful Inspection Program
R. Madachy, L. Little, and S. Fan, Litton Data Systems

Lessons Learned Applying CASE Methods�Tools to Aria Software

Development Projects
M. H. Blumberg and R. L. Randall, IBM Federal Systems Company

Session 4: Advanced Concepts
Discussant: A. Porter, University of Maryland

So tware Engineering with Application-Specific Languages
DfJ. Campbell, L. Barker, D. Mitchell, and R. H. Pollack, Unisys Corporation

SEL-93-003
SEW Proceedings v

_// 274

_'_t 7 321

_/L/ 343

<'/" 366

c:-__// 399

_// 422

475

Applying Formal Methods and Object-Oriented Analysis to Existing
Flight Software

B. H. C. Cheng, Michigan State University and B. Auernheimer, California State
University, Fresno

Integrating End-to-End Threads of Control Into Object-Oriented A nalysis
and Design

J. E. McCandlish, TRW, J. R. MacDonald, ALPHATECH, Inc., and S. J. Graves,
University of Alabama in Huntsville

Session 5: Process

Discussant: S. Waligora, Computer Sciences Corporation

Fusing Modeling Techniques to Support Domain Analysis for Reuse
Opportunities Identification

S. M. Hall and E. McGuire, SofTech, Inc.

An Empirical Comparison of a Dynamic Software Testability Metric to Static
Cyclomatic Complexity

J. M. Voas, Reliable Software Technologies Corp., K. W. Miller, Sangamon State
University, and J. E. Payne, Reliable Software Technologies Corp.

Software Quality: Process or People

R. Palmer, Martin Marietta Astronautics and M. LaBaugh, RF&C Group

Session 6: Software Engineering Issues in NASA
Discussant: M. Stark, NASA/Goddard

Profile of NASA Software Engineering: Lessons Learned fi'om Buildingthe Baseline

D. Hail, Science Applications International Corporation and F. E. McGarry,NASA/Goddard

Impact of Ada in the Flight Dynamics Division: Excitement and Frustration

J. Bailey, Software Metrics, Inc., S. Waligora, Computer Sciences Corporation,
and M. Stark, NASA/Goddard

Software Engineering Technology Transfer: Understanding the Process
M. V. Zelkowitz, University of Maryland

Appendix A -- Workshop Attendees

Appendix B i Standard Bibliography of SEL Literature

SEW Proceedings vi SEL-93-003

SUMMARY OF THE EIGHTEENTH ANNUAL
SOFTWARE ENGINEERING WORKSHOP

The Eighteenth Annual Software Engineering Workshop, sponsored by the Software
Engineering Laboratory (SEL), was held on 1 and 2 Decembe¢ 1993 at the National
Aeronautics and Space Administration (NASA)/Goddard Space Flight Center in

Greenbelt, Maryland.

The Workshop provides a forum for software practitioners from around the world to
exchange information on the measurement, use, and evaluation of software methods,
models, and tools. This year, approximately 450 people attended the Workshop, which
consisted of six sessions on the following topics: The Software Engineering Laboratory,
Measurement, Technology Assessment, Advanced Concepts, Process, and Software

l_ues in NASA. Three presentations were given in each of the topic areas.
Engineering --- n
The content of those presentations and the researc papers detailing the work reported are
included in these Proceedings. The Workshop concluded with a tutorial session on how
to start an Experience Factory. (Copies of those slides were distributed at the

Workshop.)

In his introductory remarks, Frank McGarry of NASA/Goddard provided the audience
with a background of the SEL organization and set the stage for the Session 1 presenta-
tions on the SEL as well as for other presentations that were derived from SEL

experiences.

The SEL is a virtual organization that includes NASA/Goddard's Software Engineering
• niversitv of Maryland's Department of Computer Science, and the

Branch, the. U ,-,-_^--,:_,,_'o Software Engineering Operation. The primary goals of
Computer bclences t_.ulpulauv
the SEL, as stated by McGarry, are to better understand software and to deterrrune the

impact that changing technologies have on the way an organization goes about the
business of producing software. Every project that is developed in the SEL's parent

organization, the Flight Dynamics Division (FDD) of NASA/Goddard, is a potential
experiment where the SEL can study some technology and measure the impact that this
technology has on some specific goals within the organization. In this way, the SEL can

determine the appropriate use of technologies in its environment.

McGarry pointed out that the concept of learning from experience in a production envi-
ronment has been modeled as the "Experience Factory" and has been written about exten-

sively by Dr. Victor Basili, a cofounder of the SEL. The experience factory is, in
essence, a well-defined model or paradigm of how one learns from one's own experi-
ences, sets goals, measures results, and then uses these results to continue to change,

evolve, and mature better ways of doing business.

One of the key insights that the experience factory has brought to light, McGarry
asserted, is that not all software is the same. You have to understand your own domain

and your own organization before making changes and expecting to make improvements.
You have to understand what your own goals, strengths, weaknesses, processes, products,

people, and problems are before you can conclude what particular technologies are most
appropriate to embrace to make measurable improvements in your organization.

McGarry then showed the audience some of the characteristics of the projects that the
SEL has studied since 1976. All of the projects were in the flight dynamics domain. He

SEL-93-003

SEW Proceedings 1

explained that the point of showing the characteristics of the FDD environment was

twofold: first, to explain that the results that the audience would hear during the SEL
workshop presentations were based on experiments in this particular environment; and
second, to note that the SEL findings may not be directly applicable to other environ-

ments. McGarry emphasized that the process--the experience factory concept (of con-
tinual process improvement)--was indeed applicable, but that the results, the specific
technologies they found to be appropriate, were domain specific. "You have to find those
[effective technologies] in your own particular domain," McGarry said.

Next, McGarry briefly described the basic improvement model or paradigm that the SEL

uses, which consists of three iterative phases: understanding, assessing, and packaging.
Understanding is where the SEL strives to better understand the environment, including
the domain, tools, products, and existing processes. In the assessment phase, the SEL

examines the impact that technologies have on the environment as measured against pre-
determined goals, such as decreased cost or increased reliability. McGarry stressed that
you can only assess when you're measuring against something you understand. That's

why the understanding phase must come first. The third phase of the paradigm is pack-
aging. In this phase, the SEL captures the favorable experiences (technologies and pro-
cesses) and infuses them back into the organization on a broader level, through standards,
policies, training, tools, and environments.

McGarry noted that over the course of the workshop the audience would hear several
speakers talk about data and information extracted from the SEL environment. He then

introduced Vic Basili, who expanded on the discussion of the SEL process improvementmodel.

SEW Proceedings 2 SEL-93-003

Session 1: The Software Engineering Laboratory

THE MATURING OF THE QUALITY IMPROVEMENT
PARADIGM IN THE SEL

presented by Victor Basili, University of Maryland

Vic Basili presented an historical account of how the SEL quality improvement paradigm

(QIP) first came into being and how it has evolved through the years. He explained what
activities were performed and what lessons were learned during several 5-year intervals
from the SEL's inception in 1976 to the present, and then offered a glimpse of where SEL

research is headed in the near future.

• • " of the false starts the SEL has made (e.g., trying to assess
Basdl be an by shanng some ,:_t.: 1_. hnw the SEL has learned
before understanding, collecung aata oerore estaun_m-_ s ,, ---
from these false starts; and how, when the SEL verified by experimentation that a partic-
ular technology or process was effective, the experience was packaged and infused into

the organization. Basili shared some of the philosophy of the SEL (discover what works
and then apply it) and explained the interdependent relationship between the SEL's

NASA, University of Maryland, and Computer Sciences Corporation partners.

Next, Basili presented the current QIP. This paradigm is a more detailed model of
McGarry's understand-assess-package paradigm. The expanded model consists of six

steps: (1) characterize the current project and environment; (2) set quantifiable goals; (3)
choose the appropriate process model and supporting methods and tools; (4) execute the

processes and collect data; (5) analyze the data to evaluate current practices; and (6)
package the experience. Basili then spoke briefly about how those particular steps have
evolved before he launched into his historical overview.

1976--1980. The SEL started out by looking at other people's models (e.g., the Raleigh
curve, TRW's 40/20/40 rule for designing, coding, and testing software) to determine
whether these models applied to the SEL environment. Data collection forms were de-

veloped, existing processes were combined, and the process was studied. The "goal-
question-metric" paradigm was created to enable the researchers to organize their data
around particular studies. Data collection was loosely monitored, baselines built, corre-

lations sought, and information was recorded.

The SEL learned that it needed to better understand the environment, projects, processes,

and products; it needed to build its own models based on its own environment and prod-
ucts; it needed to understand the factors that create similarities and differences among

annropriate model to apply; and the SEL needed to un-
projects so that it would know the processes to create the desired product characteristics.
derstand how to choose the right
Basili emphasized that a big lesson learned was that data collection has to be goal driven;

you can't just collect data and then figure out what to do with them.

1981 19 • g ". rind, the SEL was building its own baselines and models of
-- 85. Durra tehsl;Pe It be an to set specific goals in multiple areas and began.!o

cost, defects, and proc • _.. . . g............. _ TheSELex enmentectwlm
incorporate subjective metrics into _ts measureme-_ v- ,,,-,-_s. P - •

• ,- o ies and began experiments with potenually mgn-_mpact tecnnom-well-defined technol g._ . __:__ _c_c_r_ The ._ collected fewer data
gies such as Ada and ooject-onented de_g- t,-,'-,'--J EL

SEL-93-003

SEW Proceedings 3

(because collection was more goal driven) and stored these data in a relational database.

It shifted its emphasis to the relationship between process and product characteristics;
recorded lessons learned; and began formalizing process, product, knowledge, and
quality models. In other words, the SEL began to package its own experience. At this
time the SEL developed its first recommended QIP: characterize, set goals, choose the
process, execute, analyze, and record.

From these activities, the SEL learned many lessons. It discovered that software devel-

opment follows an experimental paradigm; i.e., designing experiments is an important
part of improving, and evaluation and feedback are necessary for learning. It discovered

a need to experiment with new technologies and to learn about the relationships between

process, product, and quality models. It learned that it could multiply its effectiveness by
reusing experience in the form of processes and other forms of knowledge. And it

learned that you can drown in too much data; data must be seIectively collected to sup-port well-defined goals.

1986---1990. During the late 1980s, the SEL worked on capturing experience in models;
it built models that enabled it to differentiate between environments. Goals and models

became the driver for measurement. The SEL built the Software Management
Enviromnent (SME), an intelligent tool that can access the SEL database and produce
graphical models of various factors for dozens of projects. The SEL tailored and evolved

its use of Ada and OOD based on experience. Experience and feedback were recognized
as an integral part of the QIP. The SEL embedded data into the processes and began to
closely monitor study projects, and it demonstrated relationships between processes and

products, based on extensive analysis. The SEL made the transition from simply
recording information, to packaging information in the form of focused tailored pack-
ages. The SEL began to learn how to transfer technology better through organizational
structure, experimentation, and evolutionary culture change.

Lessons learned during this period include the following: experience needs to be evalu-

ated, tailored, and packaged for reuse; there is a tradeoff between reuse and improvement
(because introducing change causes a loss in experience and predictability); and software
processes must be put into place to support the reuse of experience. The SEL learned
that packaged experiences need to be integrated, i.e., that there is an appropriate way for
processes to work together (for example, code reading is more effective when not
followed by testing, as in Cleanroom methodology). As a result of these findings, the
QIP was reformulated as: characterize, set goals, choose process, execute, analyze, and
package. It was at this time that the SEL organization and activities became formalized
under the "Experience Factory" title.

1991--1995. In this period, the SEL is continuing to build relationship models between

processes and products. It is performing domain analysis studies to identify similar pro-
jects using techniques appropriate for software engineering data. The SEL plans to
automate the model-based goal-question-metric as much as possible. The SEL is devel-

oping technologies tailorable to specific project needs (such as tailored reading tech-
niques). It is building a more powerful, flexible experience base by increasing and
improving the interaction between developers and experimenters to enable the capture of
more effective feedback. Today, the SEL is clearly focused on local needs and goals.
The SEL is learning how to run more efficient experiments and combine controlled
experiments with case studies. And, through an empirical modeling technique known as
optimized set reduction, the SEL is building better models for cost modeling and defec-
tive module prediction.

SEW Proceedings 4 SEL-93-003

Basili concluded by say.ing that the SEL has come a long way! A great deal has been
learned about software improvement, and the learning process has been continuous and

has acka_ed what it has learned into its process, product, and
evolutionary. The SEL .P "_-: " e,,nnnrt d bv a stron relationship between

• " tructure Th_s evolution _s o_vvv--e , g - " s
orgamzat_onal s _,-. _^,°a ,he relationshio known as the SELcontmue
research and practice, rma_y t_asm nv_,_u,, -
to require patience and understanding on both sides of the research and pracuce
continuum, and when this relationship is nurtured and protected, it pays measurable

dividends.

PROCESS IMPROVEMENT AS AN INVESTMENT:
MEASURING ITS WORTH

presented by Frank McGarry, NASA/Goddard

In this presentation Frank McGarry compared the Software Engineering Institute (SEI)

Capability Maturity Model (CMM) to the SEL process improvement model. He looked
at steps required to compute return on investment (ROI), examined information needed to
determine ROI, and illustrated how investment in process improvement has affected pro-

cess and products in the SEL environment.

McGarry began his comparison of the CMM and the SEL process improvement model by

quickly explaining the concepts behind each and identifying what he sees as the funda-
mental difference between the two approaches. In the CMM, an organization evolves

through five levels of maturity that reflect its capability to produce complex software.
The levels are (1) ad hoc, (2) repeatable, (3) defined, (4) managed, and (5) optimizing. In
the SEL model, the process evolves from understanding the processes being used and the

, ed. to assessing the impact of process changes, to packaging those
products being develop _...^ : t n measurable product characteristics. Although
processes that nave a posmvc --r,,,,,_ o
both models have the same goal of improving the product, the fundamental difference
between the two paradigms, McGarry asserted, was that the CMM primarily focuses on

the process level of an organization (such as the standards and techniques used), whereas
SEL focuses on attributes of the product, such as error rates, productivity, and

complexity.

To facilitate a consistent comparison of the two approaches, McGarry then outlined the

steps that he would examine for both models in determining the ROI from process
improvement: (1) defining goals, (2) producing baselines, (3) investing in change, (4)

assessing change, and (5) measuring ROI.

Defining Goals. Both the CMM and SEL emphasize setting goals. The CMM approach
is to set a goal to get to a new level of maturity. This general goal is the same for all

organizations: to evolve to higher levels of maturity until reaching an optimizing state.
The SEL goal, on the other hand, is to improve the product in some particular way that is

appropriate to that product. In some organizations, for example, it may be most appro-
priate to decrease error rates; in another organization it may be more important to try to

increase the level of reuse.

Producing Baselines. The second step in determining ROI is to produce a baseline. That
is, you must determine where you are with respect to where you aspire to be. In the
CMM paradigm, the approach is to assess your process using a "common yardstick" to

izauon erforms certain key activities such as training, measurement,
rate how .your organ • P.__._.ao c,_,i_ stablishes a t_rocess baseline. The SEL is
and oennmg and following stimulus. ,--...... e
also interested in standards, training, and measurement, but what sets the SEL paradigm

SEL-93-003
SEW Proceedings 5

apart from the CMM paradigm, McGarry asserted, is that the SEL emphasizes both pro-
cess and product understanding. Furthermore, the measures that the SEL focuses on are

specific to a particular project's goals with respect to their domain, people, and environ-
ment. For example, if your goal is to reduce error rates, then you baseline error rates; if
your goal is to increase reuse, then you baseline your current level of reuse.

To further illustrate measurements characterizing process baselines, McGarry showed pie
charts of effort distribution and classes of errors, and line plots of source code growth
rates. To exemplify product characteristic baselines, McGarry showed bar charts of error
rates, cost, and reuse. In all cases, the measurements were based on actual SEL data.
McGarry emphasized that these measurements would be used as qualifiers to determine
whether changing the process was having a positive change on the product.

Investing in Change. Using the CMM, the organization's assessed level drives the
change. If your organization is assessed as a level 1, then you work on activities that will
get you to level 2 before you work on activities to get you to level 3, 4, or 5. In the SEL

paradigm, your process improvement activities are driven by your organization's unique
experiences and goals. If your experience tells you that programming in Ada does not
lead to improved productivity, then you don't mandate Ada. If there is evidence that

Cleanroom lowers error rates, and this is important to your organization, then you
develop a training program to teach Cleanroom techniques and you experiment with
Cleanroom. You invest in changes that you discern will make a positive impact on
process efficiency as well as product characteristics.

To exemplify how the SEL has invested in change, McGarry showed how the results of

experiments in design techniques, testing approaches, Ada, OOD, Cleanroom, and other
experiments have been packaged into training, software measurement guidebooks, and

recommended approaches to developing software and managing software development.
Again, McGarry emphasized that experience drives process change.

Assessing the Impact of Change. The fourth step in determining ROl is to assess the
impact that change has had on the organization. In the CMM paradigm, success is mea-
sured by process change: Did you achieve the maturity level you set out to achieve'? In

the SEL paradigm, you reexamine not only the impact of the process, but also the impact
that process change has had on your product. Product and process change in the SEL are

very domain-dependent. As an example, McGarry offered evidence of the impact of
introducing the Cleanroom technique by showing graphs of the impact of Cleanroom on
effort distribution and source code growth rate with Cleanroom.

Measuring the Return on Investment. McGarry explained that the first piece of
information needed is the actual cost of investing in process improvement. He began by
showing a summary of the kinds of investments the SEL has made in process improve-
ment in four categories: project overhead, including filling out forms, collecting data,
and training; data processing, including quality assurance, maintaining a database, and
archiving data; analysis and application, including developing processes and standards,
defining experiments, and analyzing results; and developing and maintaining mission
support software. McGarry noted that the total cost of SEL process improvement activi-
ties (the investment) was approximately 11% of all expenditures.

Next, McGarry discussed the return on investment. McGarry noted that an investment in

product-driven goals enabled direct measurement of return. He illustrated his point by
providing measurement examples, based on changes from the mid 1980s to the early
1990s, that show an increase in product quality and a decrease in product cost: reliability
was improved 75%--measured as a reduction in errors per thousand source lines of code

SEW Proceedings 6 SEL-93-003

(KSLOC) from 4.5 to 1; the average level of reuse was up from 20% to 79%; and the
average system cost was down 55%, from 490 to 210 staff-months (related, in part, to

reuse).

McGarry concluded that process improvement activities not only enabled the SEL to
, functionality, for more complex systems, with higher reliability, at signifi-

produce more - . • • SEL's research activities,antly lower costs, it also had the s_de benefits of focusing the
integrating standards and measurements with training and technology insertion, and con-
tributing to a culture change that recognizes developers as being valuable partners in the

process improvement paradig.m, resulting in a synergistic approach to process improve-
ment and a positive return on mvestment.

Question: In your comparison of the CMM and the SEL approaches, it struck
me that they really didn't seem to be two independent approaches, in

that you could use the SEL approach to improve your CMM rating.
The SEL approach could be an implementation of a process to

improve your CMM, so that it wasn't a matter of comparing one

approach to another, because the SEL approach seemed to be more a
how to do it, and the CMM approach seems to be more what you are.

Do you see that difference as opposed to just saying these are two

alternatives'?

McGarry: I think there is a marriage between the two approaches. There is a
reason that both exist. But your observation that there should be a
continuous improvement and refinement of either model--in this case
the CMM---driven by the product goals--I absolutely agree with that.

RECENT SEL EXPERIMENTS AND STUDIES

presented by Rose Pajerski, NASA/Goddard

Rose Pajerski began her discussion of recent SEL experiments with an overview of pro-

jects and studies conducted by the SEL since 1976. She emphasized that SEL studies
have been based on the actual development of operational flight dynamics systems in the
local environment, that each project represents a potential source of data for SEL studies,

and that many studies are ongoing.

Pajerski indicated that, due to a recent organizational change, the SEL now has responsi-
bility not only for software development, but also testing and maintenance. As a result,
many of the new studies being conducted by the SEL are in the areas of testing and
maintenance, thus allowing the SEL to study and report on activities that span the entire

software life cycle.

Pajerski then quickly presented a summary of current SEL studies both in terms of the
SEL improvement model and the software life-cycle phases. She reiterated that SEL
studies follow a three-step improvement paradigm of understanding, assessing, and pack-

aging. For this presentation, Pajerski chose to focus on three studies: (1) the cost and
schedule estimation study, (2) a comparison of testing approaches, and (3) the

maintenance study.

Cost and Schedule Estimation Study. The goals of this study were to rebaseline the SEL
environment in terms of cost (effort), schedule, and reuse--given the organizational and

technological changes--and to update the SEL's established baseline cost and schedule

SEL-93-003
SEW Proceedings 7

estimation models if necessary. The study included 39 projects ranging from 20 to 300
KSLOC and looked at the impacts of reuse, language, application types, and subjective
factors such as levels of experience and kinds of technologies.

The study revealed some interesting discriminators: while the level of reuse and lan-

guage drove cost, the application type drove schedule in the SEL. Key findings include:
it costs 50% more to reuse a line of Ada code than a line of FORTRAN code; software

size growth is 15% lower for high-reuse systems; it takes about 35% longer to develop a
simulator than it does to develop an attitude ground support system (due to the level of

uncertainty in the requirements); and subjective factors did not have a significant impacton cost or schedule.

Experiments in Testing. The goals of this study were to assess the impact of organiza-
tional changes on the SEL processes; to compare testing approaches with respect to their
impact on process measures and product measures; and to assess effort and error distri-

butions to determine testing effectiveness. The study examined four testing approaches,
covering 34 projects of various characteristics during the past 15 years.

Before presenting the results of the experiments, Pajerski explained similarities and dif-
ferences among the four testing approaches. In the SEL standard testing process, devel-

opers are responsible for implementing software and for system testing the software to
verify end-to-end data flow. The software is then passed to a separate acceptance organi-
zation that tests the software using a functional, requirements-based approach. The
Independent Verification and Validation (IV&V) approach adds an independent team to
verify and validate the operational scenarios, and to ensure that the software requirements

actually meet the mission needs. The SEL Cleanroom approach mandates that develop-
ers implement the software and that a separate test team perform integration and statisti-

cal testing and functional, requirements-based testing. The independent testing approach
uses two teams: the development team, which implements the software and performs
unit and integration testing, and an independent test team, which performs the equivalent
of systern and acceptance testing.

A comparison of test effort distribution by activity (design/code vs. test) revealed an

observable change in process characteristics. The SEL standard testing approach was

roughly comparable to the SEL Cleanroom approach, with both approaches splitting the
activity time roughly 50:50 between design/code and testing. In the independent testing
approach, however, 70% of the activity time was spent in design/code, and only 30% of
the activity time was spent in testing. This observable process change will be studied
more in the coming year by the SEE

Pajerski then commented on what she called the bottom-line goal of the test experiments:
determining testing effectiveness by looking at product measures. In examining error
rates for the various approaches, Pajerski presented preliminary evidence showing that

projects using the independent test approach experience fewer errors per KSLOC during
development than those using the SEL standard test approach or the SEL Cleanroom
approach. Furthermore, high-reuse projects had much lower error rates than low-reuse
projects. Pajerski concluded that both the testing approach and the reuse level affecterror rates.

Maintenance Study. The short-term goal of this study is to build a baseline
understanding of the maintenance process in terms of software characteristics, effort
distribution, and error/change profiles. The long-term goal of the study is to build
estimation models for maintenance. There are 105 operational systems under

SEW Proceedings 8 SEL-93-003

maintenance totaling 3.5 million SLOC, ranging in size from 10 to 250 KSLOC. Eighty-

five percent of the code has been developed in FORTRAN, and 80% of the work has
been done on the mainframe computer. All activities after the first operational use of the

system are being examined to build this baseline understanding.

Pajerski first discussed error rates and cost of maintenance. She pointed out that single-
mission systems had detectable error rates of 0.1 errors/KSLOC and that multimission

spacecraft have detectable error rates of 1.5 errors/KSLOC. She noted that the cost to
maintain a multimission system was about 10% of the total development cost, whereas
the cost to maintain a single-mission system was only 2% of the development cost.

Pajerski conjectured that the difference in error rates as well as cost was due to the fact
that the multimission systems are used, updated, enhanced, and maintained more often.

Pajerski then discussed effort and change type distribution. She noted that, in the SEL
environment, about 27% of the requests for change received were for software enhance-
ments and 72% of the requests for change received were due to error conditions. The

actual effort to implement these changes, however, broke down differently: about 67%
of the effort was spent enhancing the code, 22% of the effort was used to correct errors,
and 11% of the effort was spent adapting the code to such things as new operating sys-

tems and compilers.

Pajerski then compared the effort distribution of development projects with maintenance
haracterizin the maintenance process. The most significant

ro'ects as another way. of c J _-g.-, ,,t ,_ff,,,-t " ibutions was that in devel-
Pif_rence between maintenance ano oewluv,,,'_ dlstr

opment, 30% of the effort was devoted to testing, whereas in maintenance, only 5% was

spent on testing.

Pajerski concluded her presentation by showing these studies in the context of the SEL
el She t_ointed out that the cost and schedule study had just

nrocess improvement rood . -. _--- were in the assessing stage; and
comoleted the packaging s_ge! testing approa_]rsk i maintained that none of these
maintenance was in the understanmng P.nas_._ '2J_h of them would repeatedly cycle
studies would ever be really complete, tn mat ca_,,,
through the understanding-assessing-packaging phases as part of the SEL's ongoing pro-
cess improvement program. With the change in the organization of the SEL, much effort
will be spent studying and experimenting with testing and maintenance processes, and in
time, the insights gained from studying these processes will be packaged as models,

guidebooks, and tools.

Question: I was interested in the slide that suggests that it's more expensive to
reuse Ada than it is to reuse FORTRAN, and I was wondering if there
was a difference in productivity that tends to compensate in terms of
the actual cost and also whether or not there are factors that are spe-

cial to the SEL that affect this difference.

Pajerski: The productivity numbers are not the same for FORTRAN and Ada,
and I did not have them up there on the chart. They do tend to bal-
ance one another out. John Bailey's Ada talk tomorrow is going to go
over FORTRAN and Ada comparisons like that in some detail.

SEL-93-003

SEW Proceedings 9

Session 2: Measurement

SPECIFICATION BASED SOFTWARE SIZING:

AN EMPIRICAL INVESTIGATION OF FUNCTION POINTS

presented by Ross Jeffery, University of New South Wales

Ross Jeffery started out by describing the goal of the study as an assessment of function
point metrics to evaluate the sources of variation in the metric. The organization that he
studied was looking for a language-independent software sizing metric that could be
applied early in the life cycle. The organization was the first to be certified to the
Australian quality standard (AS 3563) and thus was likely to have minimal variation inits process.

The study is based on 17 recently developed systems in a variety of application domains
by one software organization. The systems are implemented in C, Powerhouse, COBOL,Windows, and Excel macros.

The first part of the study compared function point metrics across the life cycle with the
goal of assessing the metric's stability. Jeffery compared function point counts taken
from specification products produced early in the life cycle with counts taken from final

specification products that document the completed systems. He showed scatter plots
that visually supported his statistics. The function point counts from the final specifica-
tions did well in predicting the effort even after removing some large projects that heav-
ily influenced the results. Counts based on the early specifications did not do as well.
His results using the post-completion counts were consistent with other studies in the lit-
erature. He pointed out that removing the outlier data from the post-completion correla-
tion did reduce the correlation as expected, but that the effort-predicting function did not

change substantially---evidence that the organization performed consistently across pro-ject size.

Analysis showed that one or two function elements accounted for much of the variation
seen m the complete function point metric. Others have reported similar results but with
internal correlation for different sets of function elements. Some of the function elements
showed a higher correlation with effort than the aggregate counts. With this result, it is

possible to develop another definition of function points, using fewer function elements,
that would simplify the estimation process in the early parts of the life cycle.

The weighting factors used to compute the level-2 weighted function points seemed to be

neutral for the set of data Jeffery presented. Applying the weights did not significantly
change the ability of the metric to predict effort.

In the last part of Jeffery's presentation, he discussed an analysis of the possible causes of

error in the process of developing function point counts. He considered three sources of

error: rater interpretation of the specification, applicability of the function point counting
method to the application, and rater interpretation of the function point counting rules.
His study used only one function point counting standard, thus the second and third
source of error could not be separated.

SEW Proceedings 10 SEL-93-003

Two raters were used to count function points for all the projects in the study. One was a

professional rater; the other was less experienced. (Function point counts used in the
earlier parts of the presentation were the average of the two raters' counts.) The results of
an analysis of the differences between the raters showed an average relative difference of

approximately 55% between the raters. About one-third of this difference could be
ascribed to rater error (the bulk of which came from the expert, ironically, Jeffery pointed

out). The remainder is attributable to the function point standard or the requirements

specification.

Jeffery presented a version of the function point scatter plot that showed a distinct pattern
of separation of the counts by application domain (distributed systems vs. traditional

centralized mainframe systems).

In summary, Jeffery said that function points showed a strong relationship with effort
based on counts taken after the project was completed. However, some of the internal
counts correlate, and this amounts to counting the same thing twice. Because the count-

ing process is manual, it is subject to variations due to human error.

He summarized future directions for the organization that he had studied. More accurate

effort predictions would result from putting more effort into the early requirement speci-
fications. Developing the metric automatically within a CASE tool would reduce the

human error as a source of variation in the metric.

Question: Do CASE vendors offer function point metrics'?

Jeffery: Yes. But what is that metric? Is it right for you'? Generally speaking,
CASE users do not understand the metric generated for them. The
real risk is that it comes free with the software so people don't ques-

tion it.

SOFTWARE COST FORECASTING AS IT IS REALLY DONE:
A STUDY OF JPL SOFTWARE ENGINEERS

presented by Martha Ann Griesel, Jet Propulsion Laboratory

Martha Griesel began by describing the situation in which engineers make cost forecasts.
Cost estimation is done at the same time as the engineering. Engineers have integrated
forecasting into their development process. Thus it is important to integrate forecasting
tools into the environment. It is also very important to develop tools that assist with the
forecasting process that they use now; engineers will not use tools that use a different

forecasting process.

The goal of the study was to discover the fundamentals of cost forecasting as it is actually
practiced by engineers. Are there only a few processes'? Are the indiv!dual methodi_
used by engineers so unique that there is no hope of developing toms to neap them. H
there are differences, where do they arise'?

A search of the literature supported the idea that there is a small number of forecasting

activities but also showed that studies of the process do not produce repeatable data.

Because of the multidisciplinary nature of the study team, it was possible to borrow sev-
eral useful techniques. In this study cognitive psychology provided a technique that
allows verbal dialog to be scored in a consistent manner. This enabled the construction

SEL-93-003
SEW Proceedings 11

of a "costing vocabulary." Stochastic processes provided transition probability matrices
as a tool for analyzing how people move from one activity to another.

The study used 28 verbal reports from software cost and size forecasters who had a great
deal of experience and who were also identified as personnel with good track records in

forecasting. The descriptions of forecasting activities came from early phases of devel-
opment. Analysis of the verbal reports developed a high-level set of forecasting activities
such as requirements identification, size estimation, and cost estimation. Each individual
report was then reviewed to extract the sequence of the high-level activities.

Griesel presented the COCOMO model as an example of how the forecasting activities
might be connected in sequence. (No one in the study used a model that remotely resem-
bled this example.) In an attempt to find patterns, all 28 activity sequences were over-
laid, but the result was a complete blur.

After some study, three basic forecasting approaches were identified: new/old decompo-
sition, assessment, and size estimation. The technique used in new/old decomposition
was to partition the system into parts familiar to the forecaster and those not familiar.
Different estimation techniques were then used for the new and old parts. The assess-

ment approach involved obtaining a second estimate as a sanity checkl Some forecasters
developed a size estimate before they developed an effort estimate. Some application
domains showed a preference for a particular basic approach.

Cost forecasting is roughly divided into three phases: problem definition and analysis,
cost determination, and cost assessment. Griesel presented and described composite
transition diagrams for each phase of each basic forecasting approach.

in summary, the study was able to identify some fairly well-defined paths through the
forecasting activities and to detect some dependence on the application domain. Most
forecasters used one approach to forecasting and very few performed detailed work in

more than one phase of forecasting. Forecasters use simple techniques and tend to keepthe number of attributes small.

Question:

Griesel:

It's great to have a multidisciplinary study on real tasks. Were you
able to relate accuracy of estimate versus the method used'?

The described activities were based on those used most recently and
were not tied to specific tasks. We would very much like to collect
that sort of data.

ASSESSING EFFICIENCY OF SOFTWARE PRODUCTION
FOR NASA-SEL DATA

presented by Anneliese von Mayrhauser, Colorado State University

Anneliese von Mayrhauser began her presentation with the statement that it would be a

"success story of sonqe failures." Her study used a technique prevalent in operations ,
research, production models. This presentation used data from the NASA SEL database.

Production models are attractive for this analysis because the efficiency of software de-
velopment has many drivers such as people, process, and product characteristics. An
analysis based on production models would use three steps. First, the measures used as

input and output to the models must be selected based on the goals of the study: what

SEW Proceedings 12 SEL-93-003

type of efficiency is to be evaluated? Second, the models are applied to projects and the
nd inefficient projects are identified. Third, a root cause analysis is performed

efficient a • • • • - -"........ ch as subiective measures.
based on other availatgle project clescnptu,_ _u j

In production model analysis empirical data are used to define a production function.
yon Mayrhauser described a simple production model with one input and one output to
demonstrate the principle behind a production function. In the example, she demon-
strated the definition of efficiency as the best observed ratio of the selected input and

output measures. Other (non-best) observed ratios of input to output would be some
fraction of the best. The relative efficiency of a project is the ratio of its efficiency to the
best. She assured the listeners that the simple example could be extended to more

complex situations. (von Mayrhauser's coauthor has applied this technique to another

environment.)

As she began to describe the results of one production model (the study investigated 1 i
models), she described ouble in identifying data to drive the production models andthe tr ¢ ,h,. _,, iective data she was using She con
her lack of faith in the ram_-oraer nature u. _..... bj " -
trasted the enormous size of the SEL database to the sparse list of acceptable data.to drive

the production models. Incomplete data and the small number of ratio-level metrics were
cited as disappointments. Specifically, she was unable to investigate quality metrics, per-

formance metrics, and effort data by phase as production model drivers.

The study looked at factors that impact overall efficiency, those that pertained to only ef-
ficient or inefficient projects, and factors that discriminate efficient from inefficient pro-

jects.

One study result, which she labeled curious, was that certain factors correlate with ineffi-

cient projects and not with efficient projects. She specifically cited development team
application experience as increasing the efficiency of inefficient projects but having no
effect on efficient projects. The audience was cautioned not to place much faith in this

result since the rank-order data were of unknown quality.

In conclusion yon Mayrhauser stated that a consideration of how metrics are to be evalu-
ated must be included in developing metrics. Avoid collecting lots of rank-order data;
there is not much you can do with them. She assured the audience that a disciplined met-

rics development would bring many successes.

Question: I'm concerned about isolating individual factors. Any individual fac-
tor may show strange behavior. Take the factor you found, experi-
ence, for example. If experienced people are put on a project because

negative things are happening on that project, then that will affect
things. So you are not going to find a relationship between experi-
ence and efficiency because of the other factors. The problem is

multivariant with tremendous interaction of those factors.

yon Mayrhauser: I agree with you. This is where you have to have a rich enough set of
factors for the production models and then, after efficiency is identi-
fied, other factors tell you if there is a reason for it. Then if you iden-

tify an unusual project you can just forget about it.

Follow-up: It's more complicated than that. One thing you can do is say: if the
system has a high complexity level, then experience becomes impor-
tant. But if it's not complex, the experience is not relevant.

SEL-93-003
SEW Proceedings 13

von Mayrhauser:

Experience in isolation is not an interesting variable.
dependencies among the factors.

I agree that we should not do one at a time.

There are inter-

SEW Proceedings 14 SEL-93-003

Session 3: Technology Assessment

THE (MIS)USE OF SUBJECTIVE PROCESS MEASURES
IN SOFTWARE ENGINEERING

presented by Jon D. Valett, NASA/Goddard

Jon Valett began his remarks by defining three categories of measurement data: quanti-

tative, characteristic, and subjective. By subjective data Valett meant "those data that are
based on the opinion of individuals." He suggested three reasons why people have tried

in the past to capture subjective data: (1) to help quantify the software process; (2) to
improve models of software process and product; and (3) to define software domains. As
examples of subjective measures he listed team experience, management stability, quality
of tool set, and product complexity. Among the previous models to make use of subjec-
tive measures were Walston and Felix, COCOMO, and various domain analysis models.

After setting the stage in this way, Valett launched into a historical summary of what the
SEL has done with subjective data over the past 17 years. In 1977, the philosophy
behind the SEL's original foray into collecting subjective measures was to validate the

models of other researchers and, in so doing, to fully characterize the SEL environment.
For each SEL project, over 300 pieces of data were collected and rated on a 0-5 scale.

Upper level managers made these assessments, and the resulting data were entered into
the SEL database with no validation or clarification.

Valett then briefly described two SEL research efforts, Bailey and Basili's "Meta-Model
for Software Development Resource Expenditures" (1981), and Card, McGarry, and

Page's "Evaluating Software Engineering Technologies" (1987). The first study
attempted to develop a cost model that incorporated subjective process measures. The
second attempted to answer the question "Do modern programming practices affect pro-

ductivity and reliability'?"

Valett drew two main lessons from these two early studies. First, having a lot of data
does not mean that one can generate a lot of results. Second, beware of false correla-

tions, because if you look hard enough, you are bound to find some correlations. To help

prevent such erroneous conclusions, he recommended that researchers confirm their
results over multiple similar data sets.

Following the Card study, the SEL revised its collection of subjective data. It reduced its
set of data to just 36 items. This smaller set contains most of Boehm's subjective mea-
sures from his Software Engineering Economics (leaving out a handful not thought

appropriate to the SEL environment) and includes a few additional measures thought
applicable based on SEL experience. The 36 measures were rated on a 1-5 scale, were
collected from the project leads (rather than upper management), and were again entered

into the SEL database with no validation or clarification.

Valett next summarized the analysis of subjective measures found in the recent SEL Cost

and Schedule Estimation Study Report, by Condonet al. (1993). Initial analysis here
seemed to find some relationships between effort and subjective measures, but further

analysis revealed no consistency across different subsets of SEL projects. Following this
discovery, the researchers replaced the SEL subjective data with random integers (1-5)

SEL-93-003
SEW Proceedings 15

for all projects and then repeated the analysis. With random data, about the same degree
and frequency of improvements were found in the accuracy of the resulting effort models
as had been found with the actual SEL data.

Valett's final research study was one that he himself performed shortly before the

Workshop. He tried to improve models for predicting effort, errors, and changes by
including subjective measures data. Valett converted the integer-based subjective mea-
sures to a binary scale (as did Bailey and Card in their studies). Valett also assumed
some dependency in the data. He found little or no consistency in his results across mul-
tiple SEL data sets and concluded that even conservative use of these data isquestionable.

In summarizing the lessons he had learned from the studies, Valett cautioned the audi-

ence not to collect too much subjective data, not to blindly search for correlations, not to
go beyond the validity and consistency of the data, and finally, not to rely on such data
except to spot trends or to set experiment goals.

Despite Valett's negative assessments drawn from these four studies, he did not totally
discount the value of subjective information. In his concluding remarks, he drew a dis-
tinction between the valuable nature of some subjective information--such as that col-

lected in "lessons learned" documents and in project annotations--and the very question-

able value of subjective measures data collected by survey forms. If there were to be any
hope that survey form data could serve some useful purpose, it would depend on more
rigorous local definitions of subjective measures and also on more consistent data collec-
tion methods than have been used previously by the SEE

Question:
In an experiment in which I was involved in the past year, we intro-
duced people to N-squared charts and data flow diagrams. We then
assessed them on their ability to learn, interpret, and use these tools.
We found that in many cases people's subjective response at the end
of a test was different from their objective performance. For exam-
pie, we found that test subjects would actually perform better with

one technique, but would say that they performed better or preferred
the other technique. Do you have any th.oughts on the kind of

research that might get to a deeper level on why this happens and why
in your research one person considers something a "3" and another
person considers it a "5."

Valett:
We have experienced similar things in the SEL. We did a comparison
of testing techniques: code reading, structural testing, and functional
!esting. People in the experiment said that they found the most errors
m functional testing, but in reality most of the errors were found in

code reading. For subjective data our best hope is to come up with
templates for definitions of subjective data so that we do understand
across our environment what a given score means. But that is not an
easy task at all.

2-

SEW Proceedings 16 SEL-93-003

ANALYSIS OF A SUCCESSFUL INSPECTION PROGRAM

presented by Ray Madachy, Litton Data Systems

Ray Madachy's talk presented the results of a couple of years' experience in implement-
ing inspections at Litton. He pointed out that the metrics collection program was some-
what more recent than the peer review program.

Among the unique features of the Litton inspections program is the absence of a "reader"
role. As Madachy explained, his company follows the Gilb method, not the Fagan
method, of inspections, so they do no paraphrasing. The Software Engineering Process

Group (SEPG) Peer Review Coordinator serves as the inspection moderator. Litton's
method sets no time limit on causal analysis, and it allows no discussion of defect cate-

gory during the inspection.

The inspection statistics data sheet that Madachy displayed reported the preparation time
of each participant plus the number of major and minor problems asserted by each par-

ticipant. (A major defect was defined as anything that caused a software trouble report; a
• was an thin else.) It also listed the total pages inspected, the duration of

hm°mrdtfmeg r of new defects found at the meeting but not caught duringand theY_um_ " "

the preparation time. These data all went into Litton's database. More recently Litton
has also collected and stored the number of rework hours spent, plus the number of major

and minor defects accepted by the author.

Madachy then presented slides demonstrating several relationships and conclusions from
the Litton experience. The first relationship showed a downward trend in average defects

per page as one progressed through the software life-cycle phases, backing up Madachy's
assertion that you "get more bang for your buck" from early inspections. A graph of

inspection effort over time showed, as might be expected, that effort peaks occurred
before each quarterly Technical Interface Meeting, when the customer evaluated

inspected documents. Using other graphs, Madachy showed that the optimum inspection
mode at Litton had the following characteristics: (1) 4 or 5 inspectors per meeting, (2)

40-50 pages inspected per hour, and (3) a ratio between 0.5 and 2.0 for preparation time
versus inspection time. The number of pages per hour includes all types of documents

except code. Litton recommends that 250 SLOC be inspected per hour. Inspections at
Litton were typically 2 hours long.

Madachy devoted two slides to addressing the return on investment for the inspection
..... arrive at this figure, Madachy subtracted the inspection effort from the testprocess To " :_,,,_n h,, multinlvin_ the number of major

saved. I his eHort savea was cSu, t,a_,_u _,: _ _ ,_ . ,
use effort ch ins ection b the average effort to fix a defect during the test phase.Phfects found at ea p Y

(For several years preceding this inspection experiment Litton had kept data on trouble

reports and the effort required to fix them; these data were used to provide the average
effort to fix.) The inspection effort included the preparation time, the time spent at the

actual inspection meeting, and also the time required after the meeting to fix the defects.
Using these formulas, Madachy showed that 139 out of 223 inspections saved time. The

average inspection savings for all inspections was 63.4 person-hours.

Madachy presented two slides showing the separate effects of preparation time (per page)
and inspection time (per page) on the number of new items found (per page) at an
inspection. He argued that both graphs showed that as the amount of time increased, so
did the number of items found. The effect of inspections on reducing the number of

trouble reports (TRs) written against a build was demonstrated by one graph which

SEL-93-003
SEW Proceedings 17

showed a 76% reduction in the TR density (TRs per KSLOC) following the introduction
of inspections.

In his concluding remarks, Madachy emphasized that inspections were a worthwhile
investment. In addition to the other points brought out earlier in his talk, he noted that

inspectors and authors had both improved since inspections began, and that the inspec-
tion analysis provided the impetus for improving Litton's metrics tracking procedures.

In response to two questions, Madachy pointed out that Litton had tried inspections both
with readers and without readers and found that, prior to coding, the reader did not add
much. In addition, the defect finding rate for documents was better without a reader.

Consequently Litton does not use a reader in its inspection process, although they are
looking into using a reader for code, where they think it might be valuable. In Litton's
process, the moderator takes over much of the reader's role, but Litton does not use
paraphrasing.

LESSONS LEARNED APPLYING CASE METHODS/TOOLS
TO ADA SOFTWARE DEVELOPMENT PROJECTS

presented by Maurice H. Blumberg, IBM Federal Systems Company

Maurice Blumberg began his talk by defining megaprogramming. STARS sees this as an
emerging paradigm of software development that is process driven, relies on domain-
specific reuse, and is supported by technology. In brief, it is "a product-line approach to
building a family of systems." The STARS strategy is to demonstrate the benefits of
megaprogramming on some real-world projects, not just pilot projects.

Blumberg's talk, however, was not about megaprogramming and the STARS demonstra-

tion projects, but rather about the precursor to megaprogramming. These precursor alpha
test projects provided early experience and feedback in the use of the IBM STARS
Software Engineering Environment (SEE) and helped define what it takes to transfer
technology to a project.

The three alpha test projects were all based on a RISC System/6000 primary develop-
ment platform running various CASE, publishing, and testing tools. This platform was
connected via a LAN to a Rational (300C or 1000) design facility and also to Xstation
and PS/2 (DOS, Windows 3.0) remote access workstations. Blumberg summarized the

various tools used by each of the three projects in each of the software development lifecycles.

Blumberg next presented some lessons learned applicable to all three projects. (Slides

detailing lessons learned from individual projects are included in these Proceedings as
well, but due to time limitations only the last two slides of this latter set were presented at
the Workshop.)

The main impediment to change was inertia. To overcome this obstacle, Biumberg rec-
ommended enlisting early customer support, involving developers in the planning, and
ensuring strong support and vision from management and technical leads. In addition,

one must protect against overblown expectations arising from marketing hype and
overzealous advocates of particular tools. Emphasizing realistic hopes, developing a
phased implementation plan, and relying on strong management vision could help a pro-
ject get over the initial setbacks involved in inserting new technology.

SEW Proceedings 18 SEL-93-003

Blumberg saw planning as a critical part of the success of a technology transfer. There
are many elements to the startup costs besides the mere purchase of software and some
hardware. One must plan for wiring, installation, and checkout. One must carefully
choose the number of licenses to support the planned uses, must factor in maintenance

costs, and must anticipate significant adaptation and integration expenses. All tools need
to be tailored, and each tool may require an administrator. Blumberg mentioned that all

of the alpha projects significantly underestimated the impact of introducing multiple

changes and technologies. Each project tried to do too much at once.

Despite the various difficulties encountered in each project in introducing new technolo-

gies, Blumberg noted that each project experienced a significant morale boost from the
new technology and that the upgraded technology resulted in upgraded skills. The new

process that evolved was more effective than the old process and involved better team
communication and coordination. Higher quality products resulted, and higher produc-

• it is antici ated in subsequent phases, now that most of the learning is over, the team

ti_VatcYclimated,l_nd many of the problems encountered have been resolved.

Question: How do you discriminate between temporary hurdles and truly bad
(for you) technology'?

Blumberg: You have to expect some loss in productivity the first time you adopt
a new tool. If the tool results in an unacceptably large drop in pro-
ductivity, however, you must fix the problem or consider dropping the

tool for that project.

SEL-93-003
SEW Proceedings 19

Session 4: Advanced Concepts

SOFTWARE ENGINEERING WITH

APPLICATION-SPECIFIC LANGUAGES

presented by David J. Campbell, Unisys Corporation

David Campbell began by observing that application-specific languages (ASLs) have the

potential to dramatically reduce cost and to increase software quality and reliability.
ASLs, he explained, are special-purpose languages designed to solve a specific class of
problems by automatically generating source code or other work products. Much less

code is required to write an application in an ASL than in a general-purpose program-
ruing language such as C or Ada. ASLs are also inexpensive to produce; an experienced
team can usually implement an ASL in a few weeks or person-months.

The software generation process starts with a specification that the programmer writes in

the ASL describing the requirements for the software to be produced. The specification
is read by an ASL translator, which then generates source code or other work products,
such as test cases or documentation. The high-order language code is then compiled to
obtain the application program. One of the key features of this process is that it main-

rains a clean separation between what the software does and how it does it, m_ing it
easy to port software to a different system. However, Campbell pointed out, ASLs can
be used only if you already know the solution to a problem. They allow you to formulate
a generic solution as a set of reusable code templates; the translator instantiates the tem-
plates and produces the required software from the specification.

Not all projects are candidates for implementation using an ASL, Campbell said,
although most large projects have some area that would benefit from ASL usage, such as
screens, reports, or parsing input commands. ASLs should be considered for use on a
project when coding tasks are repetitive, complex, or error-prone; when requirements are
subject to change; or when the problem being addressed will recur on other projects.

ASL technology requires an expert in the application area to design the solution to the re-

curring problem, and an expert in language design/compilers to develop a language that
allows the requirements to be specified in tenns familiar to those working in the applica-
tion area. The language expert will also develop the translator that checks the input
specification for semantic errors and generates the code that satisfies the requirements.

Campbell cited two examples of ASLs that have been applied on projects at NASA/JSC:

Editor Generator (Egen) and STMM (Strip Merge and Manipulate). Egen was developed
for the Tethered Satellite System (TSS) and was subsequently used on two other pay-
loads. STMM replaced 40 programs that performed specific operations on flight designdata files.

For the TSS, the custorner wanted a graphical-user-interface-based system for editing a
database of 5(i)0 variable-field satellite commands. The typical approach to developing
the 140 screens (that were needed in 3 months) would have been to divide them up and
give them to five engineers to code. Since design decisions would have to be known

ahead of time for this approach to work, an ASL was used instead. With Egen, all 140

screens were generated from a short input specification. In addition to the compilable

SEW Proceedings 20 SEL-93-003

source code, Egen also generated the 200-page user manual and prepared a test program

that found specification errors automatically.

While ASLs are not a panacea, Campbell said, they do provide benefits when code is

recurring. Not only do ASLs increase productivity (because less code is needed to
develop and maintain software), they also increase reliability; once the templates are cor-
rect, the code will be correct and will conform to project standards. The main benefit of
an ASL, however, is increased manageability. Updates to all 140 TSS screens can be

performed in a single location in the translator. User manuals can be kept in sync with
code by simply rewriting the input specification and regenerating the documentation.

Requirements changes create less of an impact; the addition of 40 new TSS commands
had no effect on the project cost or schedule.

Question: Some of what you are describing can be done with object-orien!ed
programming languages. Where do you draw the line between using
object-oriented programming and an ASL, where you have to
maintain the translator, the inputs, and the high-order language

source?

Campbell: In general, you make a cost assessment. An object-oriented language
may take more lines of code to accomplish the same task. Also, in
some cases, you may need to maintain only the generated output.
When a tradeoff study shows that you can use an ASL because there

is enough repetition, you will actually have fewer lines of code to
maintain with the ASL. For example, the TSS translator [Egen] was 7
KLOC. Because it was based on compiler technology, only 4K of
those lines of code were custom-written for the application. The rest
were reusable components, code from parser generators, etc. Of that
4 KLOC, 1/3 were for the test program, 1/3 were for documentation,
and 1/3 were for the actual application. The total generated TSS edi-
tor was 12 KLOC, of which only 4K were written. In general, there is

a magnification between what you have to write and what you get

generated: we get 2-1 to 10-1.

APPLYING FORMAL METHODS AND OBJECT-ORIENTED
ANALYSIS TO EXISTING FLIGHT SOFTWARE

presented by Betty H. C. Cheng, Michigan State University

This project, Betty Cheng said, was sponsored by a NASA faculty fellowship and was
performed at the Jet Propulsion Laboratory. The purpose of the effort was: (1) to inte-
grate formal methods into a portion of shuttle software; (2) to construct an object-
oriented view of the system, even though it was not developed using object-oriented

technology; (3) to demonstrate the utility of formal methods in an industrial application;
and (4) to facilitate current and future maintenance of the software, ensuring that the

original functionality and safety-critical properties are preserved when features are

added.

A formal method, Cheng explained, consists of a formal language with a well-defined

syntax, a well-defined set of semantics, and a proof system that allows you to manipulate
symbols in the language. Formal methods are used to improve the quality of a software
system by uncovering incompleteness and inconsistencies, and for automatic reasoning
and verification. Her project used a language called PVS (Prototype Verification

SEL-93-003
SEW Proceedings 21

System) which was developed by SR International. It is a predicate-logic-based language
with an interactive theorem proving capability.

Referring to the previous presentation, Cheng noted that object-oriented techniques, as
well as ASLs, can be used to develop software specific to an application. The benefits of

object-oriented techniques are abstraction, information hiding, and modularity, which
facilitate understandability, maintenance, and reuse.

In this project Cheng said, they were interested in the ability of formal methods to

support abstraction and to generate proof obligations. They chose the object modeling
technique (OMT) developed by Rombaugh because it offers three complementary per-
spectives: the object model gives the architectural view of the system, allowing informa-

tion to be organized pictorially and offering a view of how the whole system fits together
architecturally; the functional model provides data and control flow information; and the
dynamic model allows modeling of state transitions.

Although the shuttle has had an excellent record for software, computer scientists often
did not participate in early requirements analysis for shuttle software. Authors were free

to express requirements in the form they preferred, resulting in widely varying require-
ments formats, styles, conventions, and perspectives. To be able to insert new technol-

ogy and features, today's requirements analysts need to know what the requirements are
and whether the changes they propose will affect the original functionality of thesoftware.

The specific project Cheng's team tackled was the Phase Plane module within the Orbit

Digital Autopilot System (DAP). The Phase Plane module is a control system for moni-
toring the angular rotation of the shuttle. It sends information to a module that selects

which jets should be fired to attain a desired shuttle position. The wiring requirements
diagram for DAP that Cheng showed revealed a very complex system. Although the
module has worked successfully for thousands of hours, analysts have had difficulties in
understanding the requirements for the module and testing it, and they want to make
changes to it in the future.

The goals of the project were to obtain high-level requirements for the module by apply-
ing reverse engineering techniques, to develop an OMT "roadmap" for the system, and to
establish a linkage between the specifications and the diagrams. The team used an itera-

rive process. First they constructed a low-level specification corresponding to the wiring
diagrams and the source code. To introduce abstraction, they used data flow diagrams to
model the as-built layer. They then worked upwards, preserving the critical information

from one level to the next as they developed data flow diagrams and an object model forthe Phase Plane.

The team learned a number of significant lessons during the project. The first was that

several layers of specifications were needed to go from existing code to high-level speci-
fications. Theorems must be constructed to describe the properties that a given layer
obeys and to provide traceability from one level to the next.

The second lesson was that formal methods provide a mechanism for integrating dis-
parate sources of project information---e.g., wiring diagrams, the crew training manual,
and design notes. The third lesson was that object-oriented analysis and design tech-
niques can be exploited for reverse engineering to help understand the original function-
ality of a system, its architecture, and its state transitions.

SEW Proceedings 22 SEL-93-003

Finally, the team learned that reverse engineering is an iterative process; one level of
formal specifications is constructed, followed by a level of diagrams, and the process is

repeated for each higher level. The diagrams, Cheng noted, help introduce the abstrac-
tion necessary to produce the high-level requirements.

In summary, Cheng said, the project incorporated formal methods into an existing soft-

ware system to facilitate maintenance tasks, to aid verification of critical system proper-
ties, and to expedite future changes by using automatic reasoning to find requirements
violations. The project has also demonstrated that formal techniques are not merely aca-
demic. Currently, the team is developing mid-level specifications and constructing

proofs of correctness that will trace one level of the specification to the next. They hope
to integrate the formal specifications with the OMT diagrams more closely, and demon-
strate how formal methods can be used to assure that critical properties are satisfied.

Question: Are you aware of the work being done by Nancy Leveson at the
University of Washington'? She is using a state-chart technique to
reverse engineer systems for the FAA. Could you talk about the dif-

ferences in the approaches?

Cheng: Again, we want to capture all aspects of the system. State charts only
capture state transition information. We also want to have an archi-
tectural view of the system. The multiple views led us to use OMT.

INTEGRATING END-TO-END THREADS OF CONTROL INTO
OBJECT-ORIENTED ANALYSIS AND DESIGN

presented by Janet E. McCandlish, TRW System Development Division

Janet McCandlish opened her presentation by observing that current object-oriented
methodologies fall short in their representation of end-to-end system processing. With a
functional decomposition approach, data flow or process dependency diagrams show how

the entire system works. The focus of object-oriented technology, however is on indi-
vidual objects as reusable components, not on how they tie together. With object-
oriented technology, a system is represented piecemeal with multiple views, making it

difficult to get a full picture of how the system operates.

In addition, the goals associated with object-oriented and distributed systems are con-
" • . al-time distributed systems, competing demands for resources are recon-

fl.lct!ng Inre ,h _,,_m into multiole processes. Object-oriented techn°l°gy-°n
cneo oy partluonn)_; m_ ojo._. : " " nhi_-tS encat_sulating all oata ano as.so-
the other hand, strwes to parhtmn a system into ,,ujvc

ciated operations within the object.

The approach taken in the current research, McCandlish explained, is to represent threads
of control and associated class/objects to better illustrate how a system operates. The
researchers began by examining five different object-oriented analysis and design meth-

odologies: Coad and Yourdon, Shlaer and Mellor, Booch, Firesmith, and Rombaugh.
They then introduced a representation that overlays dynamic flow onto the static
architecture. Because of the amount of information being handled, they grouped classes
and objects at a higher level of abstraction in two phases: (1) logical groupings to

provide a coarse-grained partitioning and (2) process groupings to extend logical

groupings with process partitioning criteria.

SEL-93-003
SEW Proceedings 23

McCandlish highlighted key aspects of object-oriented methodologies. Static architec-

ture, she said, refers to a nontemporal representation of a system, typically depicted with
entity relationship diagrams that have been enhanced to include attributes, operations
s.pecifications, and relationships. Dynamic behavior is usually reflected in a different
view of the system, and contains state, data flow, and timing information. A thread of
control is a path that traces the sequence of operations for a particular execution of a

system. It represents a scenario for a particular test case, and can be used during analy-
s_s, design, or testing to trace through the model for completeness, and to address real-
time processing requirements, timing constraints, bottlenecks, and the like.

The research team found that static and dynamic representation methods exist, but
thread-of-control representations are limited. Showing a chart that compared the five dif-
ferent object-oriented methodologies, McCandlish noted that each is incomplete in some
aspect. Firesmith's comes closest to satisfying end-to-end traceability, but information is
spread over three different diagram techniques, making it difficult to assimilate.

In the team's approach, the logical view represents groupings of classes or objects that are

logically related. Partitioning into logical groups is accomplished based on engineering
judgment, and is designed to minimize the associations, aggregations, and generalizations
between groups. This type of logical grouping helps one understand the system as a
whole. It is not new; such groupings are addressed (using different terminologies) in
each of the methodologies previously cited.

McCandlish showed an entity relationship diagram with two logical representations. The
first showed the traditional logical partitioning of a system. The second representation
showed a new, logical composite class representation, in which thread-of-control infor-

mation is aggregated up to the logical grouping level and overlaid onto the logical view.
Because the focus of this representation is on "boundary class/objects"--i.e., objects that

communicate across the boundary lines of the logical grouping, these logical groupings
may differ from those of the traditional representation. The rationale for this new repre-
sentation, McCandlish reiterated, is to be able to look at the system from end-to-end. It is
also the first phase of partitioning for process composite classes.

Because the object-oriented methodologies previously mentioned do not address how
logical groupings may transition into allocations for processes, lVlcCandlish's team also
introduced a process view that maps the class/objects to processes (i.e., executable enti-

ties). To obtain this process view, the team took the logical composite classes and
applied process partitioning criteria keyed to communication and timing. To minimize

the cmru_unication among processes, classes and objects that corrununicate frequently
are grouped into separate processes, as are class/objects that occur along a particular
time-critical path or that access the database. Finally, the groupings are adjusted to
ensure that total execution-time criteria are met. The result, McCandlish showed, is a
process composite class representation.

To formulate these process composite classes, McCandlish said, the researchers store

representations of the classes, their attributes, and all of their interrelationships in a
database. They can then extract information and link it with threads of control to learn,
for example, that operation x impacts attribute y. From the database, they can determine

the number of dependencies amongst the threads-of-control and classes. They can then
take process partitioning criteria and system constraints and apply those through alloca-
tion algorithms, such as branch-and-bound, to determine the best grouping for the processcomposite classes.

SEW Proceedings 24
SEL-93-003

In summary, current object-oriented representations do not provide the viewer with a
clear understanding of the end-to-end processing that defines system operation.
Consequently, the research team has introduced logical and process composite classes
that act as structures for representing groupings of class/objects and the threads of control

through those class/objects. Further study is needed to extend these structures into a
design language and to address cases where the object-oriented and distributed system

partitionings are in conflict.

Question" Does the user actually see both the object view and the threads of
control so he can have an idea that the system will work or not work

at the design review'?

McCandlish: That's the plan. You identify classes and objects and build it bottom
• ltimatelv, the idea is to graphically represent this information,

up U. . -_ L_, ._...... h it and reoresent all the associated
draw tlareaas-or-contro_ u.uu_ ,
information in the database. Then you can pull out a thread-of-
control and look at all the things that are impacted by it, and can

assign timing information as well.

SEL-93-003
SEW Proceedings 25

Session 5: Process

FUSING MODELING TECHNIQUES TO SUPPORT DOMAIN ANALYSIS
FOR REUSE OPPORTUNITIES IDENTIFICATION

presented by Susan Main Hall, Softech, Inc.

Susan Hall's presentation described her team's experience performing a high-level
domain analysis fusing functional analysis techniques with object-oriented analysis to
facilitate reuse among several software development efforts. As part of the Army Reuse
Center, Hall's team is chartered to identify reuse opportunities for clients who reuse the

software and donors who produce software to be reused. Her group's specific assignment
was to perform domain analysis of four Army systems currently under development, in 6
person-months. Each of the systems was functionally oriented and developed in Ada.

Hall's team was experienced in software development but not in object orientation.
Because reuse is easier to achieve with object orientation, her group had to choose
whether to use the functional models and then struggle to move to objects later or to

struggle with the objects right from the beginning. After assessing their purpose, time
limitation, and current skills, they decided to merge the functional and the object model-ing techniques.

Hall began her discussion of the merged modeling techniques by first defining domain

analysis and the difference between vertical and horizontal domains. Hall's group was
tasked to examine a horizontal domain, application support layer (ASL) software. She
stated that just about all system types have an ASL.

In using the modeling techniques, they took advantage of everything a functional model
could offer (state transition diagrams, data flow diagrams, and flow charts) then moved to

a homegrown functional hierarchical grouping which helped in transitioning toRombaugh's object-oriented model.

Specifically, they began by reviewing the existing functional models and creating any
missing data flow diagrams, state transition diagrams, and flow charts. This enabled
them to capture the basic activities of the ASL. By noting commonalities and differ-
ences, they identified six components of the ASL domain:

° Perform utilities and services

• Provide user/machine interface

• Provide help information

• Provide application layer interface

• Manage ASLdata

• Provide COTS interface

The homegrown hierarchical modeling technique was introduced to avoid losing impor-
tant information when moving from a functional to an object model. This was needed
because their first attempts to move from functional to object-oriented were unsuccessful;

there wasn't enough information--not enough decisions had been made. The technique

SEW Proceedings 26 SEL-93-003

consisted of identifying functions in a hierarchical tree, grouping the lowest level func-
tions together based on objects manipulated, and dividing functions into those in the

domain and those interfacing with the domain.

Hall provided a sample of the hierarchical grouping technique they applied: ASL func-
tions "accept user input" and "display output" were grouped as the "user-machine inter-
face" object. The "store data" and "produce reports" functions were grouped into
"database" object. The "database" object was further broken down into what was actu-

ally being manipulated--files, records, and fields. At this point it was possible to attach

operations and attributes to the object-oriented model and to complete the transition from
the functional model to the object model.

Hall now returned to the main purpose of the domain analysis which, as stated previ-

ously, was to facilitate reuse within one or among several software development efforts.-" hal models and object models resulting from their

Because they now h_d e bothfut_°rusable functions as well as reusable objects in high-
analyses, they were
demand categories such as user-machine interface.

In summary, Hall stated that the multiple modeling approach enabled them to view the
domain more clearly and to identify more substantial reuse opportunities in the process.
She felt this approach was faster (completed in 6 person-months) than traditional domain

analysis would have been and that it provided an effective modeling technique to be used

in the future.

Question: Our group is starting to do object-oriented requirements development;
we have been totally functional up to this point. Do you have addi-
tional materials that show how to move from data flow diagrams to

some type of object-oriented, more detailed progralnmmg

instructions'?

Hall: Yes, we have all the models. The in-between models don't look like
any particular modeling technique. When we started, we started with
things we knew like Demarco, DFD technique. We went back to data
flow charts to detail things like how the computer and user interfaced,
down to studying a key and getting information back. As we did each
iteration, at some point in time, the model started to look like a par-
ticular, popular technique. We ended up with a definite data set dia-

gram and a definite Rombaugh object-oriented model.

AN EMPIRICAL COMPARISON OF A DYNAMIC SOFTWARE
TESTABILITY METRIC TO STATIC

CYCLOMATIC COMPLEXITY

presented by Jeffrey M. Voas, Reliable Software Technologies Corporation

Jeffrey Voas began his comparison of dynamic testability and cyclomatic complexity by
first differentiating between what it means to achieve versus assess quality. He stated
that it is easier to achieve quality than it is to assess or measure it. He explained that
assessing software provides the extra confidence not directly available from testing.
Because we can never be certain that a verification system is correct, software testability

has been introduced to give us a level of confidence that the software is correct.

SEL-93-003
SEW Proceedings 27

Voas emphasized the difference between testing and testability. Testing defines with
some "authority" whether an output is correct. Testability says nothing about correct-
ness, but rather the likelihood that errors are being hidden in the software. It takes
exhaustive testing, which is generally not possible, to be certain there are no hidden

errors. Testability is, then, a prediction of the probability that existing faults will be
revealed during testing according to some testing scheme.

Voas' testability rnodel or metric is based on two premises:

1) What is the likelihood that a fault will cause a failure during testing according to
some testing scheme.

2) A fault that is unlikely to cause a failure will be more difficult to see during testing.

Voas explained his fault size metric using an image of urns containing black and white
balls. Each ball represented one possible input to the software, with black balls
representing inputs that produce failures and white balls representing inputs that do not

produce failures. The occurrences of black balls are then strung or chained together to
produce a "fault size." Fault size is a way of quantifying the likelihood of discovering afault/error in the software.

For example, if five different inputs produce a failure due to one fault in the program,
five black balls are strung together, giving a string length, or fault size, of 5. They are
connected because those five balls all go to the same fault. When executed they cause
the state to become infected and that infected state propagates to the output. With a fault

size of 5, there are five chances (when pulling balls out of the urn) to pull one of the
black balls in the string of five that will reveal that fault. The greater the string length,
the higher the testability of the software, because there are more opportunities to discover

that fault. Five faults of size 1, on the other hand, means that there is only one input in
the entire urn that will reveal any one of those five faults, so the odds are lower of findingthem.

Voas relayed that for years reliability/testing researchers have asked the question, "What
is the probability that this program will fail'?" He has rephrased the question: "What is
the probability that this program can't fail even if the program is incorrect'?"

Voas applied his model to source code generated by CASE tools at NASA/Langley. This
software consisted of 3 to 4 KSLOC including 58 functions. He used 2,000 randomly
generated inputs and ran the simulator for 55 hours. His results showed that 15 of the 58
functions were of "high testability." The functions in the low testability range could eas-
ily be exhaustively tested. He also evaluated these 58 functions using McCabe's
Cyclomatic Complexity Metric. All 58 functions had complexity values of less than I0,
indicating that they were not very complex. He concluded that "chaining" within the urn

cannot be predicted based on the complexity measure. That chaining, though, is the key
to answering his question: "What is the probability that this program can't fail even if the
program is " '_"Incorrect.

Question:

Voas:

You mentioned doing a short study on a few thousand lines of code.

I'm interested in whether you did a comparison of what your model
predicts versus which modules were error prone'?

We did this for NASA/Langley on software where they knew where

the errors were. We wanted to test whether this technique would tell
us where the errors were. Our analysis came back and told us, to the
exact order of rnagnitude, the likelihood that those faults would affect

SEW Proceedings 28 SEL-93-003

Follow-up:

Voas:

the output. There's no way that you could come up with the exact
number, but as long as you are in the ballpark, you can then convert
it, using the probable correctness model, back to the number of test
cases you would need to catch that fault. If NASA had tested to the
level we said, they would have found the fault. This is the sort of

analysis that has to be done to test the technique.

You said that it took 55 hours on a SPARC II to apply your technique
to 3 to 4 thousand lines of code. Is it something that scales up linearly

or is it a more difficult problem'?

It does not scale up linearly; it is a more difficult problem. I would

never tell you to brutely apply it to 1 million lines of code. You
would apply this technique to the parts of your code that are most
critical; namely the parts where you want to make sure there are no

errors hiding.

SOFTWARE QUALITY: PROCESS OR PEOPLE

presented by Regina Palmer, Martin Marietta Astronautics

Palmer, a staff quality engineer, presented her perspective on software quality: "Is it due

to process or people?" She claims that a defined process is necessary for quality, but
without the right people working with that process, there may be no benefit to having it at
all. She based this statement on her experience examining 8 years of data collected from

six software development projects.

Palmer described the involvement of the Quality Assurance (QA) organization through-
out the development life cycle in her environment: They start with the beginning of the

project during process definition and develop a quality plan. At requirements time, QA
reviews the requirements and ensures that they are traceable from the customer-level
document and that they are complete, understandable, testable, and traceable. They fol-

low through design, participate in design walkthroughs as an independent evaluator, and

check that the code follows the design.

The projects Palmer studied were compared on the basis of

• Involvement of the developers with the process definition

• Stability of the requirements

• Thoroughness of the unit and system test

• Degree of quality oversight

• Variance from schedule

• Meeting budget and expected productivity

The first project, the only successful one of the six, was a critical software project

involving the safety of the astronauts. It had a well-defined process, very stable require-
ments, thorough testing, and met its schedule and planned productivity level. It was

developed by experienced people.
II TI

The other five projects, which Palmer defined as ranging from unsuccessful to
five projects the

II " IIdisastrous, had varying difficulties. For example, on four of the

SEL-93-003
SEW Proceedings 29

process was imposed; there was little or no involvement from the developers in defining
the process. Other problem characteristics were that the requirements were only stable in
two out of five projects; adequate testing was performed in one out of five projects; and
quality assurance was only performed in two out of five. The impact to these projects
was that delivery dates were missed and planned productivity levels were not met.
Software did not meet requirements and software was delivered with known errors.

According to data collected on these projects, the quality of the software produced did
not correlate to the experience of the developer.

Palmer concluded with some lessons learned: Everyone has to be involved when the pro-
cess is defined. Everyone has to agree with and abide by it. Get rid of people who are
not cooperative. It is necessary to have the right people for the job. The right people
may be experienced engineers or recent graduates.

All the metrics collected from these six projects were collected at the end of the projects
using a tool called the "Software Quality Assurance Interactive Database," which was

developed by Palmer's coauthor, Modenna LaBaugh. Palmer felt the tool was very
effective but believes it would have been better to collect the data earlier in the projects'
life cycle when there would have been a chance to correct problems.

Question:
In defining your process, do you have a standard process that you
tailor for use on each of the programs, or did you start from ground
zero each time?

Palmer:

Follow-up:

Palmer:

We have a standard process that we tailor. We have standards and
procedures that give you the minimum requirements. We have one

for programs that are small, medium, and large. We pick the one
based on size and tailor it for that program.

And, how do you get everyone involved in the process'?

To get everyone involved in the process we have a "tabletop" to dis-
cuss and write the first draft of the process document and pass it out

to be reviewed by all program members. That document is done by a
few people, Software Lead, Quality, Configuration Management, and
Test. They do the initial draft and include the generic things that have
to be there. Then we have another tabletop, attended by all members
of the group, to discuss the process and get agreement on the process.

SEW Proceedings 30 SEL-93-003

Session 6: Software Engineering Issues in NASA

PROFILE OF NASA SOFTWARE ENGINEERING: LESSONS LEARNED
FROM BUILDING THE BASELINE

presented by Dana Hall, Science Applications International Corporation

Dana Hall presented his experiences and highlights of the data he gathered while building
the baseline of software engineering within NASA. This work is being sponsored by the
NASA Software Engineering Program as the first essential step in establishing a long-
term evolutionary improvement program for software engineering organizations within

NASA.

Hall explained that obtaining a baseline understanding of the current softw_e products
and software engineering practices is a mandatory first step of any process improvement

program. The goal is to understand; not to judge right or wrong. This measured under-
standing is then used to identify and define potential process improvements and to later
measure improvement progress. Although his presentation mainly focused on the initial

baselining effort, he pointed out that the understanding part of the process improvement
paradigm is ongoing; in a continuously improving organization, baselining should be

done periodically to measure change.

He cited four categories of data of interest: Product data that provide end item charac-
teristics; process data that describe how the end item is developed and maintained, envi-
ronment information that describes how the process is supported by tools and infrastruc-

ture; and application domain information that describes the type of work being done,

providing an essential context for interpreting the other data. He then presented several
examples from the baseline of NASA/Goddard. For example, a surprisingly large
amount, 33%, of the 12,000 people who work at Goddard work on software. He esti-
mates that Goddard presently has about 43 million SLOC in operational use. He also

presented information regarding language usage and effort distribution across software

engineering activities.

Hall pointed out that data availability is often an indicator of process maturity of an orga-
nization. It is often very difficult to capture the data that you want. His experience indi-

cates that you can capture information on languages, budgets, and amounts of software
with an accuracy of +/-25%, but that less tangible data such as effort distribution by

phase, error statistics, productivity, investment in overhead functions, and software
longevity can be captured with an accuracy of only +/-50%.

Hall used a combination of four methods to gather the information: administered sur-

veys, informal roundtable discussions, data and documentation review, and one-on-one
interviews. He shared several key insights that he gained from this experience. He
stressed the need to prototype the survey instrument and to make the responses quantities
or checkmarks. He also stressed the importance of using a small team to gather the data

(1 or 2 people who are familiar with the organization, e.g., NASA). One team member
met with each respondent, listened to their responses and indicated the proper response
on the survey form. This ensured consistency in the data and reduced misinterpretations

of the questions or answers. Directed sampling produced the best results, starting with

SEW Proceedings 31 SEL-93-003

key senior managers and then sampling the "software pockets" within the organization to
cross-verify the results. Hall typically samples 10% of the software people.

Hall pointed out that baselining is not free, but that it is not terribly expensive either; 18
staff-months were spent over a 12-month period to produce the Goddard baseline.

Activities included survey development and testing, data gathering, data archiving, data
analysis and information extraction, and reporting the results.

In summary, Hall reviewed several lessons learned. It's important to be objective at all
times; learn, don't qualify. Be sure to gather the perspectives of those in different roles
within the organization, such as managers, developers, testers; this provides cross-verifi-

cation of the data. Layer the baselining, starting at the top and working down through the
organization; only go as deep as you need. When you are finished, give the organization
the opportunity to review your findings, but don't compromise them. Organizations don't
like to be surprised, and the review will provide one last check for oversights. Finally,
use a combination of methods to gather the information and data; it's the only way to suc-
cessfully gather relatively accurate baseline data and information.

IMPACT OF ADA IN THE FLIGHT DYNAMICS DIVISION:

EXCITEMENT AND FRUSTRATION

presented by John Bailey, Software Metrics, Inc.

John Bailey reported the results of an independent assessment that he has conducted over

the past year to determine the future of Ada in the Flight Dynamics Division (FDD) at
NASA/Goddard. The FDD began investigating Ada in 1985 with the expectation that
they would fully transition to Ada within 10 years. But today, 9 years later, only 15% of
the new code is being written in Ada. Bailey was to determine why and whether the
FDD should abandon or continue to pursue Ada.

Bailey reflected that the FDD originally pursued Ada because it was expected to be
"more that just another language;" it was expected to drive an integrated well-defined

software engineering process and lead to a major culture change; it would fielp build
better products, specifically by reducing life-cycle cost and schedule and by reducing
errors.

Over the past 9 years, the FDD has delivered approximately 1 million SLOC in Ada; they
delivered 11 systems, all satellite data simulation systems developed and operated on
VAX computers. The organization's goals with regard to Ada gradually changed over
this time period, beginning with familiarization and moving on to reuse, cost, generalized
systems, and process.

Bailey reported that measurements taken on the projects show promisel Process mea-

surements show a maturing use of Ada language features and evidence that a true process
change has occurred. Product measures indicate significantly increased reuse, lower

error rates, shorter project durations, and lower delivery cost when comparing recent Ada
projects to the 1985 FDD FORTRAN baseline. However, FORTRAN systems show
nearly the same degree of improvement over this same time period. The data also show
that it costs more to develop a new statement in Ada than in FORTRAN, but that the cost
to deliver a statement of Ada is lower due to high reuse.

Bailey was quick to point out, however, that although both Ada and FORTRAN systems
were reaping similar benefits from high reuse which is rooted in object orientation, the

SEW Proceedings 32 SEL-93-003

implementation approaches were distinctly different. In the Ada systems, generalized
reusable components were implemented as Ada generics facilitating reuse through

parameterized instantiation within the reusing system. Conversely, in the FORTRAN
systems, generalized components were written to handle all foreseen cases and isolated in
large independent modules that are linked with system-specific code to form the reusing
system. Although both approaches have led to faster, better, and cheaper development of
new systems, the FORTRAN reusable components have required more maintenance.

With such promising results, why didn't Ada flourish in the Division'? Bailey explained
that other unanticipated factors had derailed progress. System performance of the Ada

systems turned out to be a major issue. Little attention was paid to performance while
building the early Ada simulators, because performance had never before been an issue
for the FDD. But the early Ada simulators ran much slower than their FORTRAN coun-

terparts, giving users a very bad first impression of Ada. Ada still suffers from this bad
reputation today, even though the problems have been corrected and current simulators

outperform most previous FORTRAN simulators.

In addition, limited vendor support for Ada development environments hampered efforts

to expand use of Ada. The FDD began developing systems using a DEC Ada envi-
ronment in 1985 with the hopes of expanding within 5 years to the IBM mainframe
environment (where most of the large FDD systems are built and operated). DEC Ada

provided good tools and adequate performance; but several in-house evaluations of com-
pilers and tools for the mainframe proved them to have a very limited set of immature
tools that were hard to use. Thus, it was impossible to begin to transition Ada to the
mainframes as planned in 1990, and even today, Ada cannot be used in the FDD (main-

frame) operational environment.

With VAX Ada systems reaping the benefits of high reuse and with the inability to
and to the mainframe environment, the amount of new code written in Ada declined

exp , _,_ ...-,h .r,_,ut 25 30% of the staff having had exposure to
matlcau leveling on at _ov_ w,_,, au,., -dra Y' ,__._, ¢ ,.h,;,-_ develooers cited existing reusable code

Ada. When asKeo aoout men _,t,_ua_,_ ,,- , f
as the main driver for language choice in general; some regarded Ada as just another lan-

guage, while others declared Ada to have clear advantages, but noting that Ada requires

more tool support than other languages.

Looking at all of the evidence, Bailey concluded that Ada had a major impact on the
FDD. Even though the language itself had not been widely adopted, Ada concepts (e.g.,

generalization, object-oriented design, domain analysis, information hiding) laid the
foundation for broad process improvements. A healthy competition between FORTRAN

and Ada developers stimulated the infusion of Ada concepts into the FORTRAN projects
resulting in across-the-board improvements. Bailey attributed this phenomenon to the

strong emphasis on process and continuous improvement in the organization's culture.

In conclusion, Bailey recommended that Ada should not be mandated in the FDD,
because there is no pressing need for a common language as there is in DoD, for

example. Also, the FDD builds systems that are fairly small (200 KSLOC) compared to
the 1 million-line systems that Ada was designed to support. But Ada should not be
abandoned either; it should be used as any other method or tool when appropriate. Over
the comin ear, Bailey will be developing guidelines for when Ada should be .used
within the gYD. He concluded by pointing out that one of the expected major benefits of
Ada, lower maintenance costs over the long-term, has not been tested in the FDD
because, due to the mainframe situation, Ada is used primarily for the throwaway

simulators rather than the longer-lived ground support systems.

SEL-93-003
SEW Proceedings 33

Question:

Bailey:

How were the FORTRAN projects able to apply Ada concepts, since
FORTRAN doesn't support them?

FORTRAN doesn't enforce good software engineering practices as
Ada does, but FORTRAN does allow them--there is nothing in the
language that prevents the use of information hiding, for example.
Parnas was doing information hiding in FORTRAN in the 1970s.
Process was the key to this. The evidence here seems to indicate that
when an organization has a strong process, it can afford a wider
choice of languages.

SOFTWARE ENGINEERING TECHNOLOGY TRANSFER:
UNDERSTANDING THE PROCESS

presented by Marvin V. Zelkowitz, University of Maryland

Mary Zelkowitz summarized his findings thus far from a study of technology transfer
practices and policies within NASA. This work is being sponsored by the NASA

Software Engineering Program in an effort to characterize how software engineering
technology is transferred within the Agency.

His study addressed two fundamental issues. First, to determine how NASA technology
transfer is intended to occur, i.e., what are the official mechanisms and organizations that
have been established to facilitate technology transfer. Second, to determine how tech-

nology transfer actually occurs, by examining instances of successful technology transfer
within NASA. The study considered all technologies that are used to build software, but
its primary focus was on tools and processes developed specifically to support software
engineering activities.

Zelkowitz surveyed a broad-based group of software engineering professionals to iden-

tify software engineering technologies of interest. When asked to list the top five tech-
nologies that have had the greatest impact on their jobs since 1980, they most often cited
workstations and PCs, object-oriented methods, GUIs, process models, and networks.
NASA software engineers identified the same set, but also included measurement.

Zelkowitz noted that of this group of responses only object-oriented methods, process
models, and software measurement are limited to the software engineering field.

Zelkowitz reported that NASA views technology transfer as a critical part of its mis-

sion-to transfer to industry useful technologies that are developed through space
research. Thus, NASA's official technology transfer mechanisms focus on the transfer of

aerospace and engineering technologies out of the Agency. Little attention is paid to the
infusion of technology into the Agency; it's left up to the individual project personnel to

stay aware of and use the best processes and technologies available to do their jobs.
However, with shrinking budgets and NASA's current "faster, better, cheaper" emphasis,
technology infusion will become a critical element of the improvement programs that
will achieve these goals.

In addition, he pointed out that most technologies transferred in the engineering disci-
plines are product oriented, meaning that the process is packaged as part of the product.
But in software engineering, processes that describe the actions to take are as important
as the tools that are used; for example, inspections, object-oriented design, or Cleanroom

methodology. Thus, a successful technology transfer model for software engineering
technologies must address a process as well as a product.

SEW Proceedings 34 SEL-93-003

To understand the process of transferring software engineering technologies, he used a
directed study within NASA to identify instances of successful technology transfer
within, into, or out of NASA. He reported on the first stage of this work, where he

• nolo infusion into NASA. His preliminary results, based on
focused on study_rag tech . gY. _ _L__,^_;_o tt,_a object-oriented design, Cleanroom
four example sottware engmeerm.g tet;m___u_'_2"_ .- _i_ccessfullv transferred into spe-

1 ins ecuons) mat haw _,,_,_.... J •methodology, and.for.ma • P. - o distinct stages m me Infusion pro-
cific NASA orgamzaUons, indicate that there are tw

cess: understanding and transition.

The understanding stage is when the consumer organization is learning about the tech-
, and conducting pilot projects; this stage usually takes about 2.5

nolo_v, by experimenting . • _ . .L +o,-r,nolo,,v into full use in the orga-

years.-The transition stage mvowes pnasmg tne new _,_,-, _" the understanding stage,
nization for suitable projects; this stage lasts at least as long as
but can last much longer depending on the degree of change to the software development

process in practice in the organization. In all cases, people-contact seemed to be the
main transfer agent of change• Forward-thinking individuals within the organizations
became aware of the technologies through professional papers, journals, or conferences
and introduced the technology to their organization. In cases where personal contact was
made with the technology developer and they were involved in the transfer process, the

understanding time was shorter•

Zelkowitz closed by cautioning that his results are still preliminary and that he expects to
learn much more as he continues this study during the coming year.

SEL-93-003
SEW Proceedings 35

Session 1: The Software Engineering Laboratory

Victor Basili, University of Maryland

Frank McGarry, NASA/Goddard

Rose Pajerski, NASA/Goddard

SEW Proceedings 37
SEL-93-003

SEW Proceedings 38 SEL-93-003

H94-36485

The Maturing of the

Quality Improvement Paradigm

in the SEL

Victor R. Basili

Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland

5/& /

g_

The Software Engineering laboratory uses a paradigm for improving the software process and

, product, called the Quality Improvement Paradigm [Ba85, BaRo88]. But this paradigm has
evolved over the past 18 years, along with our software development pro_Sesses and product. Since
1976, when we first began the SEL, we have learned a great deal about improving the .softw_

process and product, making a greatm_y mistakes al_:ong_e^waYLaPtot_eXa_wP_e,_/_emn e_n a_osess
the quality of our processes ana prooucts oetore we unuerstouu -,,,,, ,,,,-_ _ ,,
understand, we were data driven rather than goal and model driven. We tried to use other people's

models to explain our environment rather than recognizing we had to build models of our own
environment before we could compare it with others.

The learning process has been more evolutionary than revolutionary. We have generated lessons
learned that have been packaged into our processes, products and organizational structure over the

ears. We have used the SEL as a laboratory to build models, test hypotheses. We have used the

_niversity to test high risk ideas and develop techno.lo.g!es, me_ods and theori__when n,e_ssary.
We have learned what worked and didn't work, applied ideas when appncanle anu _ept ua_

business going with an aim at continually improving and learning.

This paper offers a personal perspective on how our approach to quality improvement has evolved
over time and where I think we are evolving. I will try to carry you through various phases of our
evolutionary learning process, arbitrarily breaking the learning into five year periods, showing you
some of the things we did wrong and what caused us to change our ideas. I will use the Quality

Improvement Paradigm steps themselves, as it presently stands, as a guidelines to how our
thinking evolved based upon experiences in the SEL.

But first, let me give you thelQuality Improvement Paradigm, as it is currently def'med_In its full

version, it can be broken up into six steps:

i 1. Characterize the current project and its environment with respect to the
| appropriate models and metrics.

[2. Set the quantifiable goals for successful project performance and improvement.
[

_- 3. Choose the appropriate process model and supporting methods and tools for

this project.

4. Execute the processes, construct the products, collect, validate and analyze
the data to provide real-time feedback for corrective action.

5. Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.

:2

?

!

PNII_ r,a,qE _,..,J_K

SEW Proceedings 39
SEL-93-003

6. Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it in an
experience base to be reused on future projects.

We often use a shortened version of the paradigm which is def'med as three steps: understand,
assess, and package. These steps can be mapped onto the six steps by noting that understand is
step 1, assess is steps 2 through 5 and package is step 6.

Each of these steps changed over time, either in how we defined them or how we implemented
them. Characterization went from collecting metrics to defining baselines to building models. Goal
setting started out as simply data collection, evolved to being goal driven and f'mally goal and
model driven, i.e., data collected based upon goals and quantifiable models. The processes,
methods and technologies available in the process selection step evolved from combinations of
heuristic methods, to well-def'med technologies, to high impact, combinations of integrated
technologies, methods, and life cycle models, to the evolving and tailoring processes to the
situation. During process execution, we moved from loosely monitored projects to closely
monitored projects with well defined feedback loops. In the beginning we collected too much data,
independent of the process.Later data became embedded in the process. The types of analysis we
performed in the beginning were correlations and regressions, and we have evolved to other forms
of model building, based upon the nature of the software engineering data, and to the use of
qualitative analysis. Packaging began as recording and generating lessons learned but evolved to
focused tailored packages that were integrated into the development processes. We started by
packaging defect and resource baselines and product characteristics and have been evolving to
seeking the relationship between process and product characteristics.

1976 1980

What we did

We began the SEL in 19"/6_ At that time, the paradigm looked like:

.................... Apply Models
2. o_, r,__,_ Measurei,,J_, i, '_J v t,L,t,J

, O-I----_ ^__-._..... _ Study Process
4. Execute Process

..... _ Analyze Data Only , :
. rJA..! _,,, Record

We tried to characterize and understand by using other people's models. For example we spent a
great deal of time trying to apply such models as the Rayleigh curve model of resource allocation,
reliability growth models, etc. without asking ourselves if they were appropriate for our particular
environment.

We decided on measurement as an abstraction mechanism and developed data collection forms and
measurement tools. We collected data from half a dozen projects for a simple data base and we
defined the GQM as in informal mechanism to help us organize the data around the study of defects
[BaWe84].

It had not really occurred to us to select process as we did not yet understand that process was a
variable that needed to be selected and tailored to the environment. This was because we had not

yet understood our environment sufficiendy. So we started to study process, applied heuristically

=.

SEW Proceedings 40 SEL-93-003

def'med combinations of existing processes and began to run controlled experiments at the

university with students.

During development, data collection was an add-on activity and was loosely monitored. We
analyzed data only and began to build baselines and looked for correlations. We recorded what we
found, built defect baselines and resource models and measured project characteristics.

What we Learned

During this period we learned that we needed to better understand the environment, projects,
processes, products, etc. We needed to build our own models to understand and characterize our
environment, we could not just use other people's models. Those models were built for their
environments and could not be generalized easily.

We learned that we needed to understand what factors create similarities and differences among

projects so we know the appropriate model to apply. This included the need to understand how to
choose the right processes in order to create the desired product characteristics.

We realized that evaluation and feedback are necessary for project control and that data collection
has to be goal driven; we could not just collect data and then figure out what to do with it.

From our perspective, the major improvement technology that emerged from this period was the
Goal/Question/Metric Paradigm, even though it was still quite primitive.

An Example

As an example of what we learned, we tried to apply the 40120140 rule in SEE It had been reported

by Boehm [Bo73] that approximately 40% of project resources were expended in analysis and
design, 20% in code, and 40% in checkout and test. Shortly thereafter, Walston and Felix reported
that in IBM/FSD, 35% of the resources were expended in analysis and design, 30% in code, 25%
in checkout and test and 10% in other, whichclearly violated the 40/20/40 rule [WaFe77]. But in
the SEL, we were collecting two types of resource data, phase data and activity data. The phase

data represented milestone data. That is, analysis and design data represented the resources
expended up to the design review milestone (CDR). The activity data represented what a developer
did each week, e.g., 20 hours designing, 10 hours coding, 5 hours in training, 5 hours in travel.
Using the phase data, we found that 20% of the resources were expended in analysis and design,
45% in code, 28% in checkout and test and 5% in other, while using the activity data, we found
that 21% of the resources were expended in analysis and design, 28% in code, 23% in checkout

and test and 27% in other.

TRW IBM SEL
Phase Activity

Analysis/Design 40% 35% 20% 21%

Code 20 30

Checkout/Test 40 25

Other I0

45 28

28 23

5 27

SEW Proceedings 41 SEL-93-003

Table 1. Resource Allocation Data

It became clear that the data from the other environments represented phase data rather than activity
data since they did not collect activity data. It also was clear that each of the organizations defined
their milestones and phases differently, so each organization has a different model for resource
allocation and it is hard to compare them. Phase data is highly dependent on how an organization
defines its milestones. Since phase data and activity data represent two entirely different things, it
is not clear what the activity data look like in these other organizations. It should be noted that this
example represents an argument why it would be very difficult to build a national data base across
environments and share and compare data.

1981 - 1985

What we did

In the early eighties, the paradigm had evolved to look more like:
1. Characterize/Understand
2. Set Goals
3. Select Process
4. Execute Process

5. Analyze
6. taaekege Record

To characterize and understand the environment we built our own baselines/models of cost,
defects, process, etc. We began to set goals for all data collected and expandedour definition of the
GQM to perform studies across multiple areas and projects. We began to]ncorporate subjective
metrics into our measurement process. To help us select process we experimented with Well
defined technologies and began experiments with high impact technology sets, e.g., Ada & OOD.
During project execution, we collected less data than we had before and moved the data from a file
system to a commerciaI, relational data base. Webegan to undebstaiidhbw to combine Some of our
off-line controlled experiments with the case studies in the SEL. We shifted the analysis emphasis
to the process and its relation to product characteristics. We recorded lessons learned, and began
formalizing processes, products, knowledge and quality models.

What we Learned

During this period we learned that software development follows an experimental paradigm, i.e.,
you need to set your goals up front and check that you are achieving those goals. The design of
experiments is an important part of improvement and evaluation and feedback are necessary for
learning. We also learned that we needed to better understand relationships between various kinds
of experiences, e.g., the relationship between processes and the set of product characteristics it
evokes or the resources required to perform it, the relationship between component size and
complexity and defect rate. To do this process, product, and quality models need to be better
defined, experimentally tested, and improved.

We learned that reusing experience in the form of processes, products, and other forms of
knowledge is essential for improvement. We need to learn what works and what does not work
and what needs to be modified and what needs to be thrown out. At the same time we need to
experiment with new technologies, motivated by our experiences.

By this time, we had more data than we knew what to do with them, but we did not have the data

SEW Proceedings 42 SEL-93-003

we needed to help us interpret what was happening. We learned that you can drown in too much

data, especially if you don't have goals. Besides having a good data base, you need to store your
models as well as your data

An Example

As an example of demonstrating that we need to understand the relationship between variables,
consider the study in the SEL where we compared fault rate with component size and complexity.

In a study in the early eighties, we found that the simple minded view that defect rate increases
with size did not hold in the SEL environment. In fact, we found the opposite for the actual data
we had available for study [BaPe84]. We believe this relationship is due to the fact that interface
defects dominate the problem of the complexity of the individual component, when components are

small.

On the other hand, we have hypothesized that as the size grows beyond the developer's ability to

cope with its size and complexity, the complexity.of the individual component will dominate the

complexity of the interface and fault rate will again grow.

Fault
Rate Actual

Hypothesized

Size/Complexity

Figure 1. Relationship between Fault Rate and Size or Complexity

We have since found support for the In-st statement, i.e., fault rate decrease with size and

complexity in data from several companies. This result was a surprise at the time since most people
believed that smaller components were better. However. the relationship between size and fault rate

appears not to be that simple.

1986 - 1990

What we did

It was in this period that the QIP took its current form, recording being changed to packaging.
1. Characterize/Understand

SEW Proceedings 43 SEL-93-003

2. Set Goals
3. Select/Tailor Process
4. Execute Process

5. Analyze
6. Package

To characterize and understand we Worked on capturing experience through models. Goals and
models became the commonplace driver of measurement and we built SME [Va87], a model-based

experience base with dozens of projects. We began to tailor and evolve high impact technologies
based on experience, e.g., Cleanroom, and experimentation and feedback became an integral part
of the QIP. During process execution, we embedded the data collection process into the
development processes and more closely monitored projects, especially those where we were
experimenting with new approaches.We began to demonstrate various (process, product)
relationships, e.g., the effect of a particular method on defect reduction. We developed focused
tailored packages, e.g., generic code components, and learned to transfer technology better
through organizational structure, experimentation, and evolutionary culture change.

What we Learned

We learned that experience needs to be evaluated, tailored, and packaged for muse. That is, you
just cannot write lessons learned documents, you have to analyze and synthesize what has been
learned and integrate it into the existing knowledge so that it is usable by future projects. This
requires organizational support and resources.

A variety of experiences can be reused, e.g., process, product, resource, defect and quality
models. But processes must be put in place to support the reuse of experience and the development
process must be modified to take advantage of reusable experiences. Experiences can be packaged
m a variety of ways, e.g., equations, histograms, algorithms.

Packaged experiences need to be integrated. When introducing a new process, an organization
needs to make sure it fits and is supported by the other processes being used, that is, it needs to
understand the relationship between various changes in the parameters in one model and the effect
on another model. If I modify my reading technology, what will be the effect on the class of
defects I find, the resources allocated for rework, etc.

There is a tradeoff between reuse and improvement. Evolution is slow as I cannot introduce too

much change at one time. When I do introduce change, I loose experience and predictability. On
the other hand, processes have to be changed to cope with the continuously growing need for
quality.

During this period we evolved the GQM to include templates and models [BaRo88] and formalized
the organization via the Experience Factory Organization [Ba89].

An Example

To demonstrate that how a technology is packaged and Integrated has a strong effect on its
effectiveness, consider our experiences with evaluating and integrating reading technology.
We ran a controlled experiment comparing equivalence partitioning testing, structural testing, and
reading by step-wise abstraction[BaSe87]. Reading was found to be more effective and efficient
than testing in uncovering defects. Based upon these results, we put reading into practice as a
technology in the SEE But we found that reading had little effect on defects. This appeared to be
because the readers did not read well because they knew they were going to test and believed that,

z

Z

r

=

SEW Proceedings 44 SEL-93-003

in spite of the experimental results, testing was better. Our belief that reading is more effective
when not followed by developer testing motivated our use of the Cleanroom approach

[SeBaBa87]. When embedded in the Cleanroom approach, reading did demonstrate a substantial

lowering of defect rates.

1991 - 1995

What we are doing

This bring us up to the current time. The current evolution of the QIP appears to be aimed at
instantiating the steps, making them more specific, providing details, and developing support

technologies.

To characterize and understand the project and environment, we are building a repository of

(process,product) relationship models that characterize the SEL environment. We are working on
automating the GQM in order to support the setting of goals. We are studying what experience is

exportable to other environments in help other organizations take advantage of our process
experience We are working on building models to measure process conformance and domain

understanding.

During execution of the processes, we are working to capture the details of experience by
providing more interaction between developers and experimenters and more effective feedback
mechanism. This will help us to evolve processes that are more focused and detailed for our local

needs and goals.

We are building qualitative analysis approaches to extract our experiences and provide input to the
data models. We continue to evolve SME and we continue the evolution and packaging of the

Experience Factory Organization.

Many of the current, specific SEL activities are covered in this workshop proceedings. However,
there are more global SEL activities aimed at evolving the application of the QIP to other

organizations. These activities concern packaging the SEL organizational experience for other
groups in NASA, understanding whether and how to move activities to common use, and better

integrating reuse into the development process

The research activities are based upon instantiating the steps of the Quality Improvement Paradigm

by providing support technologies and automation, and integrating the various activities.

Where the research is going

The table below shows some of our current research interests aimed at instantiating the Quality

Improvement Paradigm.

Step
Studies / Research Projects

Characterize

Set goals

Perform domain analysis to identify similar projects using techniques

appropriate for SE data

Automate the model-based GQM as much as possible

SEW Proceedings 45 SEL-93-O03

Choose process

Execute processes

Analyze data

Package experience

Develop technologies tailorable to the specific project needs

Build a more powerful, flexible experience base

Learn how to run more efficient experiments and combine controlled
experiments with case studies

Build better models and modeling notations

Table 2: Instantiating the Quality Improvement Paradigm

Example research projects

To give some specific examples of research projects, let us consider three: the work on domain
analysis, reading technologies, and empirical modeling.

Domain Analysis

Problem Addressed:

How do you recognize which projects are most like yours in order to use the experiences from
these projects to allow you to build models, choose similar process, etc.?

faamal_SIa :
We have established procedures to identify and analyze software domains within and across
organizations so that opportunities for reuse of experiences may be identified [Lionel Briand]. This
has entailed defining both an experience-based procedure taking advantage of intuition and expert
knowledge as well as a data-based procedure for when data is available.

Validation Strate_:

We are using boda-procedures to identify domains within NASA, and have analyzed data within the
SEL data base to determine whether or not our assumptions are supported locally.

Focused Tailored Reading Techniques

Problem Addressed:

How do you tailor a process to the project goals and local organizational characteristics?

Have developed scenario-based technologies for reading various documents that are tailorable and
can be focused for the particular environment. As an example, we have developed several model-
based scenarios that take advantage of local knowledge and technical models to detrme a technology
for reading. For example, defect-based reading is based upon the different defect classes, e.g.,
missing functionality, data type inconsistencies, in a requirements document that have been found
in requirements [BaWe81].

We have run a couple of controlled experiments that show that defect-Based reading is significantly
more effective that ad hoc reading or checklists [PoVo94].

=

[

--7

SEW Proceedings 46 SEL-93-003

Empirical Modeling: Optimized Set Reduction

problem Addressed:
How do you build empirical models that allow you to define interpretable, accurate, easy to use
and automate modeling procedures that take into account the specific constraints of software

engineering data?

OSR has been developed based on pattern matching; searching for similar experiences in the data
set and the use of non-parametric statistics. There are no functional assumptions made; the

approach handles interactions and inter dependencies among variables, and no "learning"

parameters need to be tuned before hand.

We have shown OSR to be easier to interpret and more accurate than regression and tree-based

approaches for cost modeling and defective module prediction [BrBaTh92, BrBaHe93]. A
prototype tool exists and a commercial tool is under development-

Conclusion

Over the past 18 years we have learned a great deal about software improvement- Our learning
process has been continuous and evolutionary like the evolution of the software development
process itself. We have packaged what we have learned into our process, product and
organizational structure. This evolution is supported by the symbiotic relationship between
research and practice. It is based upon a belief that software engineering is a laboratory science. As
such it involves the interaction of research and application, experimentation and development- It is
a relationship that requires patience and understanding on both sides, but when nurtured, really

pays dividends!

References

[Ba85]
V. R. Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. of the First
Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also available as
Technical Report, TR-1519, Dept. of Computer Science, University of Maryland, College Park,

July 1985].

[Ba89]
V. R. Basili, "Software Development: A Paradigm for the Future", Proceedings, 13th Annual
International Computer Software & Applications Conference (COMPSAC), Keynote Address,

Orlando, FL, September 1989

[Ba90]
V. R. Basili, "Software Modeling and Measurement: The Goal/Question/Metric Paradigm,"

University of Maryland Technical Report, CS-TR-2956, UMIACS-TR-92-96, September 1992.

[BaRo88]
V. R. Basili, H. D. Rombach "The TAME Project: Towards Improvement-Oriented

SEW Proceedings 47 SEL-93-003

Software Environments," IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June
1988, pp. 758-773.

[BaPe84]
V. R. Basili, B. Perricone, "Software Errors and Complexity: An Empirical Investigation," ACM
Communications, vol. 27, no. 1, January 1984, pp. 45-52.

[BaSe87]
Victor R. Basili, R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies,"

IEEE Transactions on Software Engineering, Vol. SE-13, No. 12, December 1987, pp.
1278-1296.

lBaWe84]
V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,"
1EEE Transactions on Software Engineering, vol. SE-10, no.6, November 1984, pp. 728-738.

[B aWe81]
V. R. Basili, D. M. Weiss, "Evaluation of a Software Requirements Document by Analysis of
Change Data," Proceedings of the Fifth International Conference on Software Engineering, San
Diego, USA, March 1981, pp. 314-323.

[Bo73]
B. W. Boehm, "Software and its Impact: A Quantitative Assessment," Datamation 19, No.5 48-
59 (My 1973).

[BrBaTh92]
Lionel C. Briand, Victor R. Basili, and William M. Thomas, "A Pattern Recognition Approach for
Software Engineering Data Analysis," IEEE Transactions of Software Engineering, Vol. 18, No.
11, pp. 931-942, November 1992.

[BrBaHe93]
Lionel C. Briand, Victor R. Basili, and Christopher J. Helmanski, "Developing Interpretable
Models for Identifying High Risk Software Components," IEEE Transactions on Software
Engineering, November 1993.

[PoVo94]
Adam Porter, Larry Votta, "An Experiment to Assess different Defect Methods for Software
Requirements Inspections," Proceedings of the 16th ICSE, Sorrento, Italy, May 1994.

[SeBaBa87]
R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEANROOM Software Development: An
Empirical Evaluation," IEEE Transactions on Software Engineering, Vol. 13 no. 9, September,
1987, pp. 1027-1037.

[Va87]
J. D. Valett, "The Dynamic Management Information Tool (DYNAMITE):Analysis of the
Prototype, Requirements and Operational Scenarios," M.Sc. Thesis, University of Maryland,
1987.

[WaFe77]
C. E. Walston and C. P. Felix, "A Method of Programming Measurement and Estimation," IBM
Systems Journal, Vol. 16, No. 1, 1977, pp.54-73.

F--

-Z

SEW Proceedings 48 S EL-93-003

The Maturing of the
Quality Improvement Paradigm

in the SEL

Victor R. Basili

Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland

December 1-2, 1993

Maturing the Improvement Paradigm
Since 1976

In t 8 years have learned a great deal, e.g.,

tried to assess, before understanding

were data driven rather than goal and model driven

tried to use other people's models to explain our environment

Learning process has been more evolutionary than revolutionary

Generated lessons learned that have been packaged into our

process, product and organizational structure

Used the SEL as a laboratory to build models, test hypotheses,

Used the University to test high risk ideas

Developed technologies, methods and theories when necessary

Learned what worked and didn't work, applied ideas when applicable

Kept the business going with an aim at improvement, learning

Talk offers myperspective on
how we have evolved
and where we are going

SEW Proceedings 49 SEL-93-O03

Maturing the Improvement Paradigm
Quality Improvement Paradigm

Characterize the current project and its environment with respect to the
appropriate models and metrics.

Set the quantifiable goals for successful project performance and
improvement.

Choose the appropriate process model and supporting methods and tools
for this project.

Execute the processes, construct the products, collect, validate and
analyze the data to provide real-time feedback for corrective action.

Analyze the data to evaluate the current practices, determine problems,
record findings, and make recommendations for future project
improvements.

Package the experience in the form of updated and refined models and
other forms of structured knowledge gained from this and prior projects and
save it in an experience base to be reused on future projects.

Maturing the ImproVement Paradigm
Major Activity Evolution

Characterize

metrics > baselines > models

Set Goals

data driven > goal driven > goal/model driven

Select Process

heuristic > defined > high impact > evolving
combinations technologies combinations processes

Execute Process

add-on data collection > less data > data embedded in process

loosely monitored > closely monitored/feedback

Analyze

correlations • regressions • model • qualitative analysis

Package

recording > lessons learned • focussed tailored packages

defect • resources • product > process x product
baselines models characteristics relationships

SEW Proceedings 5O SEL-93-003

Maturing the Improvement Paradigm
1976 - 1980

Ch_ |zc,Undc::',cnd Apply Models
| r,a-,,,*l._.J| i • _ * hLooked at other people's models, e.g., HaleJg curve, MTTF models

Set-Geats Measurement
Decided on measurement as an abstraction mechanism
Developed data cotlection forms and measurement tool
Collected data from half a dozen projects for a simple data base
Defined the GQM to help us organize the data around a particular study

S_ Study Process
Used heuristically defined combinations of existing processes
Ran controlled experiments at the University

Execute Process
Data collection was an add-on activity and was loosely monitored

Analyze Data Only
Mostly build baselines and looked for correlations

Record
Recorded what we found, build defect baselines and resource models

Maturing the Improvement Paradigm
1976 - 1980

Learned

Need to better understand environment, projects, processes, products, etc.

Need to build our own models to understand and characterize
- can't just use other people's models

Need to understand the factors that create similarities and differences
among projects so we know the appropriate model to apply

Need to understand how to choose the fight processes to create the desired

product characteristics

Evaluation and feedback are necessary for project control

Data,collection has to be goal driven
- can t just collect data and then figure out what to do with it

,..

Developed the Goal/Question/Metric Paradigm

SEW Proceedings 51 SEL-93-003

Maturing the Improvement Paradigm
1976 - 1980

f

Trying to Apply the 40/20/40 Rule in SEL

TRW IBM SEL

Phase Activity

Des_n 40% 35% 20% 21%

Code 20 30 45 28

Checkout/Test 40 25 28 23

Other 10 5 27

Effort

The 40/20/40 rule does not apply to us

The rule does not imply what you may think

Maturing the Improvement Paradigm [191LF_-1gl_-
Applying a resolve All_..ation Model

Actual Data

Curve

Time

Need to understand the local context
Local context makes a big difference

J

=

=.

i
E

E

SEW Proceedings 52 SEL-93-003

Maturing the Improvement Paradigm
1981 - 1985

G#_,,ae_c,e/U nde rst a nd
Built our own baselines/models of cost, defects, process, etc.

Set Goals
Began to set goals and defined the GQM to study multiple areas
Began to incorporate subjective metrics into our measurement process

Select Process
Experimented with well defined technologies
Began experiments with high impact technology sets, e.g., Ada & OOD

Execute Process
Beaan to understand how to combine experiments and case studies
Co_ected less data and stored it in a relational data base

Analyze
Shifted emphasis to process and its relation to product characteristics

Peekege Record
Recorded lessons learned
Began formalizing process, product, knowledge and quality models

Maturing the Improvement Paradigm
1981 - 1985

Learned

Software development follows an experimental paradigm, i.e.,
Design of experiments is an important part of improvement
Evaluation and feedback are necessary for learning

Need to experiment with new technologies

Need to learn about relationships
- process, product, and quality models need to be better defined

Reusing experience in the form of processes, products, and other forms of
knowledge Jsessential for improvement

Can drown in too much data, especially if you don't have goals

Need a data base and you need to store your models as well as your data

,.,

Developed the QIP as:
Characterize, Set goals, Choose process, Execute, Analyze, and Record

SEW Proceedings 53 SEL-93-003

f

Fault
Rate

I Maturing the Improvement Paradigm]11981-1985

Measuring Fault Rate against Size and Complexity I

Ac_al

Size/Complexity

We need to understand the relationship among variables
The relationship between fault rate and size is non-linear

Maturing the Improvement Paradigm
1986 - 1990

J

Characterize/Understand
Worked on capturing experience in models

Set Goals

Goals and Models became the commonplace driver of measurement
Built SME, a model-based experience base with dozens of projects

Select Process

Tailored and evolved the high impact technologies based on experience
Experimentation and feedback became and integral part of the QIP

Execute Process

Embedded data into the processes and closely monitored study projects

Analyze
Uemonstrated various (process, product) relationships

Package

LDeevelo.ped" !ocus_sed tailored packages, e.g., generic code components
amed to transfer technology better through organizational structure,

experimentation, and evolutionary culture change

SEW Proceedings 54 SEL-93-003

Maturing the Improvement Paradigm
1986 - 1990

Learned

Experience needs to be evaluated, tailored, and packaged for reuse

There is a tradeoff between reuse and improvement

Software processes must be put in place to support the reuse of experience

A variety of experiences can be reused, e.g., process, product, resource,
defect and quality models

Experiences can be packaged in a variety of ways, e.g., equations,
histograms, algorithms

Packaged experiences need to be Integrated
,..

Reformulated QIP as:
Characterize, Set goals, Choose process, Execute, Analyze, and Package

Evolved GQM to include templates and models

Formalized the organization via the Experience Factory Organization

Maturing the Improvement Paradigm
1986 - 1990

Evaluating and Integrating Reading

Testing vs. Reading experiment

Reading more effective and efficient than testing

Reading in Practice

Reading had little effect

Reading as part of Cleanroom at the University

Reading had a high impact

Reading as part of Cleanroom in the SEL

Reading had a high impact

How a technology is packaged and integrated has a strong effect
Reading more effective when not followed by testing

SEW Proceedings 55 SEL-93-O03

Maturing the Improvement Paradigm
1990 - 1995

Characterize

Building (process,product) relationship models

Set Goals
Automating the GQM

Select Process : ::_ _ _
Study what experience is exportable
Study process conformance and domain understanding

Execute Process
Capture the details of experience- more interaction between developers

and experimenters- more effective feedback
More focused and detailed on our local needs and goals

Analyze
Qualitative analysis to extract experiences

Package
Continuing to evolve SME
Evolving and packaging the Experience Factory Organization

Maturing the Improvement Paradigm
1991 - 1995

Many specific activities in the SEL will be covered in this workshop

SEL activities aimed at evolving the application of the QIP concern

packaging the SEL organizational experience for NASA

understanding whether and how to moVea_tiVities to common use

better Integrating reuse into the development process

Research activities aimed at evolving the QIP are mostly based upon

inslantlating the steps of the Quality Improvement Paradigm

providing support technologies and automation, and

Integrating the various activities.

E

F

E
F_

SEW Proceedings 56 SEL-93-003

Maturing the Improvement Paradigm
1991 - 1995

Instantiating the Quality Improvement Paradigm

Characterize

Set goals

Choose process

Execute processes

Analyze data

Package experience

Perform domain analysis to identify similar projects
using techniques appropriate for SE data

Automate the model-based GQM as much as

possible

Develop technologies tailorable to the specific
project needs

Build a more powerful, flexible experience base

Learn how to run more efficient experiments and
combine controlled experiments with case studies

Build better models and modeling notations

Maturing the Improvement Paradigm
Domain Analysis

Problem Addressed:

How do you recognize which projects are most like yours to build models,
choose process, etc.?

Current Status:

Estab sh ng procedures to
dentify and analyze software domains within ano across or_lantza_lons
so that opportunities tor reuse ot experiences may oe aoem neo.

We have defined
- a data-based procedure
- an experierme-based procedure

Validation Stralegy:

Identify domains within NASA, analyze data to determine whether or not our
assumptions are supported.

Lionel Briand

SEW Proceedings 57 SEL-93-003

Maturing the Improvement Paradigm
Focused Tailored Reading Techniques

Problem Addressed:

How do you tailor a process to the project goals and local organizational
characteristics?

Current Status:

Have developed scenario-based technologies for reading various documents
that are tailorable and can be focused for the particular environment

Example: Defect-based reading is based upon the different defect classes,
e.g., missing functionality, data type inconsistencies, in a requirements
document

Validation:

Defect-Based reading has been shown to be significantly much more
effective that ad hoc reading or checklists

AdamPorter,LarryVotta

Maturing the Improvement Paradigm
Empirical Modeling: Optimized Set Reduction

Problem Addressed:

How do you build empirical models that allow you to define interpretable,
accurate, easy to use and automate modeling procedures that take into
account the specific constraints of software eng neering data?

Current Status:

OSR has been developed based on
- pattern matching; searching for similar experiences in the data set
- non-parametric statistics

- no functional assumptions, handles interactions and interdependenoies
- no "learning" parameters to be tuned before hand

Validation:

Shown easier to interpret and more accurate than
regression and tree-based approaches
for cost modeling and defective module prediction

Prototype tool exists; commercial tool under development

LionelBriand,ChetHetmanski,BillThomas

SEW Proceedings 58 SEL-93-003

Maturing the Improvement Paradigm
Conclusion

Over 18 years we have learned a great deal about software improvement

Our learning process has been continuous and evolutionary like the
evolution of the software development process itself

We have packaged what we have learned into our process, product and
organizat=onal structure

The evolution is supported by the symbiotic relationship between
research and practice

It is a relationship that requires patience and understanding on both sides,
but when nurtured, really pays dividends!

SEW Proceedings 59 SEL-93-003

N94- 36486

: L ,¸ _ :

PROCESS IMPROVEMENT AS AN INVESTMENT:
MEASURING ITS WORTH

/2 6#Y Frank McGarry

Kellyann Jeletic

SOFTWARE ENGINEERING BRANCH
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

(301) 286-6347
(301) 286-7698

ABSTRACT

: This paper discusses return on investment (ROI) generated from software
process improvement programs. It details the steps needed to compute ROI and
compares these steps from the perspective of two process improvement
approaches: the widely known Software Engineering Institute's Capability
Maturity Model and the approach employed by the National Aeronautics and
Space Administration's (NASA's) Software Engineering Laboratory (SEL).
The paper then describes the specific investments made in the SEL over the past
18 years and discusses the improvements gained from this investment by the
production organization in the SEL.

INTRODUCTION

For many years, various organizations have
put forth significant efforts toward the im-
provement of software process and product.
In recent years, the development of the
Software Engineering Institute's (SEI)
Capability Maturity Model (CMM) has sig-
nificantly accelerated interest in the overall
improvement process for software. With the
development of this model, software devel-
opment organizations have a relatively clear
definition of recommended approaches for
attaining better and better levels of software
process that, in turn, is expected to result in
better and better software products. After six
years of experience with the application of the

CMM concept, there still is a shortage of
empirical evidence quantifying the impact of
investments in software process improvement.
In general, there has been significant
uncertainty in the return on investment
stemming from process improvement
activities. As organizations invest resources
in software process improvement efforts, they
need to understand what they are getting for
their money and determine whether there has
been any benefit from this investment.

This paper details the steps needed to com-
pute return on investment (ROI) and com-
pares these steps from the perspective of two
process improvement approaches: the widely
known Software Engineering Institute's

=

[

SEW Proceedings 60 SEL-93-003

Capability Maturity Model and the approach
employed by the National Aeronautics and
Space Administration's (NASA) Software
Engineering Laboratory (SEL). It then
describes the specific investments made by
the SEL over the past 18 years and discusses
the benefits gained from this investment by

this production organization.

SEL OVERVIEW

The SEL is an organization sponsored by
NASA's Goddard Space Flight Center
(GSFC) which was created to investigate the
effectiveness of software engineering
technologies when applied to the development
of applications software. The SEL was
established in 1976 and has three primary

organizational members: NASAIGSFC's
Software Engineering Branch, the University
of Maryland's Department of Computer
Science, and the Computer Sciences

Corporation's (CSC's) Software Engineering
Operation. The goals of the SEL are (1) to
understand the software development process
in the GSFC environment; (2) to measure the
effect of various methodologies, tools, and
models on this process; and (3) to identify
and then apply successful development

practices.

Within the SEL, over 100 production projects
have been monitored and studied over an 18

year period to assess the impact that process
change has on the developed software
products. These production projects result in
software that is used for ground support for
GSFC missions and is typically used to carry
out all Flight Dynamics functions at the
GSFC. These software projects range in size
from 4 or 5 thousand (K) source lines of

code (SLOC) to over 1 million SLOC, with a
typical size of 100-300 KSLOC.

In carrying out these 100 'experiments' with
software process, the SEL has accumulated
detailed information on specific processes
used for each project as well as the resultant

product characteristics such as cost, error
rates, cycle time, rework required, etc. With
this information, some insight can be gained
into the ROI that is attained with the usage of

particular process changes within the
environment.

CHARACTERISTICS OF TWO SOFT-
WARE PROCESS IMPROVEMENT

pARADIGMS (CMM AND SEL)

Although the paradigm used by the SEL
differs from the SEI's Capability Maturity
Model (CMM), both approaches share the
underlying principle of continuous, sustained
software process improvement. The CMM
focuses on improving an organization's

software process by evolving through a series
of maturity levels to attain the ultimate goal,
becoming a continuously improving
organization ('level 5"). At each level, the
organization must meet a set of well-defined
criteria to advance to the next level or beyond.

Within the CMM, an organization strives to
mature to a continuously improving process.
To do so, the organization must advance
through the following maturity levels
[Reference 1] where the organization's software

process is defined as:

Level 1 - an ad hoc process
Level 2 - a repeatable and more

disciplined process
Level 3 - a standard, consistent, and

defined process
Level 4 - a predictable and

manageable process
Level 5 - ar_ optimizing and continu-

ously improving process

The SEL's process improvement paradigm
consists of a three step iterative process
driven by the specific goals of an organization
(e.g., to decrease average error rates) and the
experience gained from earlier development
efforts (e.g., most errors are interface errors).
These three steps include:

1) Understanding - a baseline of an
organization's software process and
product is developed. How is the
organization's software business
done? What is the lifecycle process.'?
What standards are used? What are
the characteristics of its software

SEW Proceedings 61 SEL-93-O03

product (e.g., cost, error rates,
productivity)?

2) Assessing - based on the goals of an
organization (e.g., reduce error rates),
some change is introduced to the
process and the subsequent result of
that change is assessed.

3) Packaging - once improvements have
been identified and verified, they are
packaged in some tangible form (e.g.,
training, standards) and infused back
into the organization's process.

These three steps are performed
iteratively and continuously over time.

The two process improvement paradigms, the
CMM and SEL, are depicted in Figures 1 and
2, respectively.

HOW IS ROI COMPUTED?

With any process improvement approach, an
organization is eager to determine what it has
gained from its investment. There are five
steps necessary to determine the benefits

.gained from investing in software process
tmprovement. These are:

(1) Define goals. The organization
must set goals for what is to be
improved.

(2) Produce a baseline. The organi-
zation must establish a basic

understanding of its current
software process and product.

(3) Invest in change. To improve
anything, change must first be
made. An investment in this change
must be made.

(4) Assess change. Once a change has
been made, its effects must be

measured to determine if any
improvement has been achieved.

success? What has the investment

been and what has been gained from
this investment? The ROI must be

measured by (a) determining what
resources have been expended for
software process improvement, (b)
establishing what improvements,
both quantitative and qualitative,
have been achieved, and (c)
determining the difference between
the investment made and the
benefits obtained. Has the
investment been worthwhile?

How are these steps achieved within the
framework of the CMM and SEL process
improvement aplaroaches? Each step is
addressed below from the perspective of both
approaches.

Throughout this paper, 'process' refers to the
characteristics of how an organization
develops and maintains software. 'Process'
includes the organization's tools, standards,
policies, life cycle, management approaches,
etc. It also includes all measures reflecting
these items such as effort distribution, error

distribution, profile of software change and
growth rate, etc. 'Product' refers to the
characteristics of the resultant software

including productivity, reuse levels, error
rates, cycle time to produce, etc.

1 - DEFINING GOALS:

Each organization must set goals for what is
to be improved. With the CMM, the goal is
generalized, i.e., to improve the software pro-
cess. With the SEL, goals are product-driven
and vary from organization to organization.

CMM: There is a generalized, domain-
independent goal that focuses on process.
Every organization strives to improve the
software process and, ultimately, evolve to a
continuously improving, optimizing process
(maturity level 5). Organizations A and B
both try to improve their processes and
become level 5 organizations, thereby
minimizing any risk incurred because of

(5) Measure ROI. Has the investment software development.
in process improvement been a

SEW Proceedings 62 SEL-93-003

5 - OPTIMIZING "_Change management
Defect prevention .j

4 - MANAGEDMeasurement

3 - DEFINEDDocumented
,.Training

2- REPEATABLE_

Project management j

1 - INITIALAd hoc

Figure 1. CMM Process Improvement Paradigm

!

_ PACKAGE
|Infuseimproved

/ ASSESS |(verified) process

/ _ _, ,-IP" _IX'P_IME'NT)/ * Standards and training

/ GOALS [Determine improvements to your business

I .What impactdoes change have?
UNDERSTAND

Know your softwarebusiness (process and product)
• How do I do businesstoday? (e.g., standardsand

techniques used, % time in testing, module size)
• What are my product characteristics? (e.g., error

rates, productivity, complexity)

Figure 2. SEL Process Improvement Paradigm

SEW Proceedings 63 SEL-93-003

SEL: The emphasis of the SEL approach is
to improve the organization's software
product. Goals vary from organization to
organization and are driven by product, not
process characteristics. Organization A may
attempt to improve reliability by decreasing
error rates. Organization B may strive to
decrease development cycle time. Goals are
domain-dependent.

2 - PRODUCE BASELINE

Each organization must establish a basic
understanding (baseline) of its current
software process and product. The CMM
baseline is process-based and established
against a 'common yardstick.' The SEL
baseline is domain-dependent and is both
process- and product-based.

CMM: Baselining within the CMM is
achieved by performing an assessment of the
organization's process. This assessment is
made against well-established criteria defined
by the SEI [Reference 1] and the organization is
baselined at some maturity level. These
criteria enable comparisons across domains
since every organization is assessed against
the same criteria, a 'common yardstick.' The
same elements are examined for every
organization: does it have good standards,
what is its training program like, how is its
measurement program, etc. Based on the
examination of these criteria, the organization
is baselined at some maturity level.

SEL: Baselining involves understanding the
process and product of each individual
organization. This baseline is organization-
dependent (or domain-dependent). Unlike
the CMM, there is no common yardstick
enabling comparison across organizations.
Some factors need to be characterized

(baselined) by all organizations, e.g., how
much software exists, what process is
followed, what standards are used, what is the
distribution of effort across lifecycle phases,
etc. Other factors of interest depend on the
goals of the organization. Organization A, for
example, would want to baseline its error rate,
while Organization B needs to determine its
development cycle time.

The SEL process improvement approach
emphasizes introducing change to attain
process improvement. The effects of changes
to process can only be measured by
comparing them to the existing baseline.
Understanding is a critical and continually
needed element of the SEL approach.

Figures 3 and 4 are examples of the SEL's
baseline measures. They represent data from
Flight Dynamics projects as specified on the
individual figures. Figure 3 depicts baseline
values pertaining to process. It shows the
SEL's typical effort distribution and classes
of error. Figure 4 depicts baseline values
associated with product. It shows the SEL's
typical error rates, cost, and level of code
reuse.

These examples represent some elements that
may be characterized by an organization
baselining its process and product.

3 - INVEST IN CHANGE

Organizations striving for software process
improvement must invest in change. Within
the CMM, the common yardstick drives
change. Within the SEL, organizational goals
and experiences drive change.

CMM: The CMM's common yardstick
drives change. That is, the elements by which
the CMM assesses maturity levels drive
change. If an organization is baselined at
some level, it will change elements necessary
to get to the next maturity level. If an
improved measurement program is needed to
advance to another maturity level, the
organization will focus on changing its
measurement program to meet the CMM
criteria. This common yardstick enables a
common roadmap to success -- continuous
improvement.

SEL: The goals and experiences of individual
organizations drive changes. Changes to the
process are made in an attempt to improve the
product. An organization interested in
increasing its level of reuse will invest in
changes that focus on that improvement goal.
For instance, they might decide to experiment

SEW Proceedings 64 SEL-93-003

Effort Distribution*

85% code
writing

15% code
reading

Classes of Errors*

%oN _

/
o_p /\ "w_.;:_ l

\ / ,.TE_ACE_/

*Data from 11 Flight Dynamics

projects (1985-1990)

Figure 3. Sample SEL _ Baseline

(19ss-19eg)

o_ _ 600 Ave2ag_2 _292

_0 J.J ['-JL-"LAverag e=-4"5 _ 400

,. "o Jl 200LLI"---"2

0 _ 0--

= Reuse

4O

3O
(9
u}

20

_ 10

(19es-19e9)

Average = -20%

13

0 FORTRAN Ada

(6 similar systems) (2 similar systems)

Figure 4. Sample SEL Product Baseline

SEW Proceedings 65 SEL-93-003

with object-oriented design (OOD) to
improve reuse. The organization interested in
reducing error rates might decide to
experiment with the Cleanroom methodology
[Reference 2l. Each organization (or domain)
must identify the most appropriate process
changes to achieve its product goals.

The CMM is an excellent model of potential
process changes that could be selected.
Various elements of the model (e.g., key pro-
cess areas (KPAs)) have emphasis on specific
product improvements that can help in
selecting potential changes in the SEL model.

4- ASSESS CHANGE

Each organization must introduce change to
make some improvement. An assessment of
the changes must be made to determine if
there has been improvement. The CMM
assesses change by reassessing the process.
The SEL assessment of change is domain-
dependent and focuses on both process and
product.

CMM: With the CMM, assessment of
change is accomplished by reassessing the
process. An organization is baselined at one
level, makes changes to try to attain a higher
level, and is then reassessed to determine if it
has progressed to another level. Success is
measured by process change. The ultimate
success is changing the process until it is a
continuously improving, process. The
organization achieves the highest maturity
level rating, that is, advancing to level 5. The
measure of success is domain-independent,
since all organizations are measured against
the same criteria, a common yardstick.

SEL: Assessment of change is domain-
dependent. An improvement goal is set,
change to the process made, change to the
process and product examined and verified,
and the effect of change evaluated against the
original goal. Success is measured by
product change and is determined based on
the goals of the individual organization. The
organization attempting to improve its
reliability would institute a change, e.g., the
Cleanroom methodology, to try to reduce its

error rates. It would then assess the result of

the Cleanroom experiment based on its
original goals. What were the baseline error
rates? What were the error rates resulting
from the Cleanroom experiment? Did
Cleanroom reduce error rates? The

organization attempting to attain higher levels
of reuse would make a change, e.g., OOD.
Similarly, it needs to determine the level of
reuse achieved using OOD and compare
these reuse levels with the original baseline.
The SEL examines both changes to process
data and changes to product data.

Figures 5 and 6 show some sample
assessments from the SEL representing
process and product data. They represent
data from actual Flight Dynamics projects as
specified on the individual figures. Figure 5
depicts a process assessment showing the
impact of a technology (Cleanroom) on the
SEL's baseline effort distribution. Figure 6
shows an assessment of SEL products for the
period 1990-1993. The error rates, cost, and
level of reuse are reexamined to determine if

there was any change from the early baseline
(1985-1989) shown previously in Figure 4.

These examples also reemphasize the need
for baselining of both process and product.
Without the basic understanding provided
by the baseline, no change can be assessed.

5- MEASURE ROI

Goals have been set. Baselines have been

established. Investment in change has been
made. Changes have been introduced and
their effect assessed based on the original
goals and the baseline values. Organizations
must now determine if the results of change
have been successful. Once 'success' has

been determined, then they can attempt to
answer the question, "Has the investment
been worth it?"

CMM: The CMM measure of success is

domain-independent and is the same as its
generalized goal. An organization is
successful if its process becomes mature and
it becomes a continuously improving,

SEW Proceedings 66 SEL-93-003

IMPACT ON EFFORT DISTRIBUTION

Baseline Cleanroom

;iii.i33% i=:i'_i_i_i!_+ii_

.,++ lc+o i il
writing _ writing

_l:;_inC; de reading

Figure 5. Sample SEL _ Assessment

lO

8"

Q)rS"
..It_
,'__0

"O

.IJ"_"
2-

Error Rates

J

High = 8.9

Avg =-4.5

r-_ High = 2A
Low = 1.7 I..._]Avg = -1

l-.---I Low= .2
0 Early Baseline Current

8 similar systems 7 similar systems

Cost
800

600"
(/}

JE

*E

0 400

O0
200

[_High = 755

Avg = -490

.ow = 357 F._.__]Hig h = 277

Avg = -210

I ILow = 98

0 Early Baseline Current
8 similar systems 6 similar systems

supporting 4 missions supporting 4 missions

Q)

n-
o_

100

8O

60

40

20

0

R_C.g.,,_,_
90

61

IFORTRAN

Avg • /(3 similar

-20% _syst eros)

Early Baseline Current
8 similar systems 8 similar systems

.... _v._ ~7 9%_

Ada
(5 similar I

systems) I

£
Early baseline 1985-1989
Current 1990-1993

Figure 6. Sample SEL product Assessment

SEW Proceedings 67 SEL-93-003

optimizing process, a maturity level 5.
Organizations progress to higher levels and,
in doing so, expect to reduce risk and
generate better products. Success can easily
be determined, but how is ROI determined?
After six years of experience with the
application of the CMM, there is still no clear,
accepted mechanism for determining the value
of return for the investment required to
implement software process improvement
programs.

SEL: The SEL measure of success will vary
from organization to organization. Success
depends on the goals set by the individual or-
ganization. Success for Organization A is
decreased error rates; success for

Organization B is decreased cycle time. How
is ROI determined? The baseline of both

process and product and the assessment of
change to the baseline result in quantified
measures that can be examined to determine

the ROI in process improvement. The re-
mainder of this section discusses the ROI for

the SEL's process improvement paradigm.

THE ROI FOR THE SEL

GSFC's Flight Dynamics Division (FDD) is
the production organization with which the
SEL is associated. FDD software develop-
ment is driven and guided by the SEL process
improvement paradigm. Over the past 18
years, the FDD has invested approximately
210 million dollars ($M) in software devel-
opment activities. Of this amount, the FDD
has invested approximately 11%, roughly
$24M, in software process improvement.
Figure 7 shows the breakdown of this
investment. About 1.5% of the total invest-

ment (<$3M) is attributed to project overhead
including form completion and collection,
training, and other similar activities. Another
3% ($6M) was spent processing data:
archiving data, maintaining the data base,
quality assudng the data, etc. The largest part
of this investment has been in analyzing the
data. About 7% ($15M) has been spent
defining experiments, analyzing results of
SEL experiments, developing the SEL models
and processes, producing software policies
and standards (e.g., References 3 and 4), devel-

oping training material, carrying out training
in changing processes, and other activities
associated with improving the FDD's
software products and process.

Has the FDD's 11% investment in software

process improvement been worth it? In com-
paring projects developed in the mid 1980s to
those developed in the early 1990s, several
significant benefits have been achieved.
Figure 6 depicted some of these results. The
average level of reuse has increased by 300%,
from -20% to nearly 79% for similar classes
of software. Reliability (errors/KSLOC) has
improved significantly as the error rate has
decreased by 75% from 4.5 to 1
error/KSLOC. The cost of developing Flight
Dynamics software has also decreased
significantly. The average cost of software
per mission has decreased by 55% from
-490 staff months (SM) to -210 SM.

These quantifiable improvements are
complemented by more subjective ones. The
SEL's process improvement activities have
resulted in many impacts to the software
production organization. First, the SEL
integrates and focuses activities that were
previously disparate. Training, standards,
policies, technology insertion, and
measurement have gradually become
integrated as a result of the SEL's process
improvement approach. Figure 8 depicts
these items with respect to the three steps of
the SEL improvement approach.

Second, there has been a cultural change
within the production organization. The
developers have become an integral part of
process change. In fact, their experiences are
the basis for process change. Developers
have become more intimately involved with
the SEL process improvement approach. For
instance, developers on early Cleanroom
experiments drove the development of a
Cleanroom process handbook for use on later
Cleanroom projects. By doing so, they
packaged their experiences for future use.
Another cultural change lies with the software
being produced. Software development
within the FDD is now process-driven and
much less people-driven. The process is so

SEW Proceedings 68 SEL-93-003

100 $210M

10

09

'-t

T
o_ 4

<$3M
2"

• Fill out forms
• Collect data
• Attend trainin

0

Project
Overhead

$15M
71%

Develop
models

$6M (processes)
2.9% Develop

_chive all standards
results • Analyze result'

• Maintain data • Train staff
base Define

• QA experiment

• Develop
and maintain
mission

support
software

Production
Data Analysis/ Software

Processing Application Developed

Figure 7. FDD Investment in the SEL and Software Process Improvement

Technology
UNDERSTAND

PACKAGE

• Training
• Standards

insertion

Figure 8. Integration of Software Activities via the SEL Process Improvement Paradigm

SEW Proceedings 69 SEL-93-003

well-defined that 'heroes' are not necessary
for the well being of a software project.

Finally, there is now a focused role of soft-
ware engineering research. This research has
become goal and product-driven rather than
being performed in an ad hoc fashion. There
is also a well-established mechanism by
which experimentation, assessment, and
adoption of technologies are performed.
Within the SEL, process improvement has
driven organizational evolution and optimized
the allocation of software-related resources.

While not quantifiable, these have been
significant benefits achieved from the 11%
investment in software process improvement.

Although there has been significant improve-
ment in the software products in the SEL,
there is no way of determining how much of
this improvement is attributable to software
process improvements and how much is at-
tributable to normal improvements in technol-
ogy. There have been significant changes to
technology such as available tools, support
environments, better operating systems, better
trained personnel, work environments, faster
machines, etc., but there has been no attempt
by the SEL to distinguish between
improvements driven by the technology
maturation vs. software process maturation.

SUMMARY

As already discussed, there have been
substantial benefits gained from the
investment made in the SEL process
improvement activities in the areas of level of
reuse, reliability, and cost. While these
benefits were being attained, the software
being produced was also increasing in
complexity (Figure 9). As a result of the
SEL, the FDD was able to produce more
complex software with more functionality
while improving reliability and reducing cost.

The FDD's $24M investment over the past
two decades has resulted in substantial

benefits for the Division itself and many other
organizations. As NASA focuses more on
technology transfer, the latter may become a
more significant factor in evaluating the ROI

for the SEL. Not only has the SEL improved
the software process and products of its own
production organization, GSFC's Flight
Dynamics Division, but it has shared these
experiences with many other software
organizations both within and outside the
Agency. The impact on other organizations
cannot be measured, but it certainly is a factor
to be considered when determining the value
added by the SEL and its process
improvement paradigm.

.

.

°

.

.

REFERENCES

Paulk, M., B. Curtis, M. Chrissis, and
C. Weber. Capability Maturity Model

for Software, Version 1.1, Software
Engineering Institute, Carnegie
Mellon University, CMU/SEI-93-TR-
24, February 1993.

Software Engineering Laboratory
(SEL) Cleanroom Process Model, S.
Green, NASA Goddard Space Flight
Center, Software Engineering
Laboratory, SEL-91-004, November
1991.

Manager's Handbook for Software
Development (Revision 1), L. Landis,
F. McGarry, R. Pajerski, S. Waligora,
et al. NASA Goddard Space Flight
Center, Software Engineering
Laboratory, SEL-84-101, November
1990.

Recommended Approach to Software
Development (Revision 3), L. Landis,
F. McGarry, R. Pajerski, S. Waligora,
et al. NASA Goddard Space Flight
Center, Software Engineering
Laboratory, SEL-81-305, June 1992.

Boland, D., A Study on Size and
Reuse Trends in Attitude Ground

Support Systems (AGSSs) Developed
.for the Flight Dynamics Division
(FDD) (1976-1988), Computer
Sciences Corporation, CSC/TM-
89/6031, February 1989.

SEW Proceedings 70 SEL-93-003

30

25'

10
o
o 5

Con_'oi
Sensors

Torquers
OBC

Telemetry
Data Rates
Accuracy

Complexity of systems has increased appreciably*

976 1978 1980 1982

Late '70s-Early '80s
Spin stabilized
1
1
Analog simple control
5
2.2 kb/s

1 degree

1984 1986 1988 1990 199;=

Late '80s-Early '90s
3-axis stabilized

8to 11
2to3
Digital autonomous control
12 to 15
32 kb/s

0.02 degree

*[Refe_,nce 5]

Figure 9. FDD Software Complexity

SEW Proceedings 71 SEL-93-003

PROCESS IMPROVEMENT AS AN
INVESTMENT:

MEASURING ITS WORTH

Frank E. McGarry

Kellyann F. Jeletic

NASA/GSFC

N/_AtGSFC

M46 001

MEASURING ROI* FOR PROCESS
IMPROVEMENT

TOPICS OF DISCUSSION

1. CHARACTERISTICS OF TWO PROCESS IMPROVEMENT PARADIGMS

2. INFORMATION NEEDED TO DETERMINE ROI

3. MEASURING ROI IN NASA/SEL

N346 002

SEW Proceedings

*ROI = RETURN ON INVESTMENT

72 SEL-93-003

TWO PARADIGMS FOR PROCESS IMPROVEMENT

Capability Maturity Model (CMM)

.==J"-5 - OPTIMIZING
Continuously/-] Chanoe management

Predictable _'_4- MANAGED h

!_ 2T°'" J
Standard, /_3- DEFINED h

consistel_t t _ Documented I

[_Tra_nng ,,.,,)

../2 -REPEA'rAB_''_

L,d.°_ J

NASA/SEL

I
PACKAGE

lnfuse improved (venfied/process

/ ASSESS | • Standards and training
/ (EXPERIMENT)/

.-U F" /

/ GO._LsVI oete..,.e.._rovem_ts'oyo_'b"'ine's

'°":""'"_.,_at,m.ct0oe._ao.,.--_.
LINDERSTAND j

Knowyour software business(procos._ =rid productl"

•How 0o I do business today?

•Whet are my productcharacteristics?

• Process:
• How do you do business (e.g., standards and techniques used)
• Associated measurements (e.g., % time in testing, module size)

Product:
• End item attributes (e.g,, error rates, productivity, complexity) g3Ml 1O_ .003

TWO PARADIGM FOR
PROCESS IMPROVEMENT

STEPS . - , : _ .

1, DEFINE GOALS
" , !'_! :;i_ !.i

2. PRODUCE BASELINE PROCESS "ASSESSMENT"

: ' :.i :; (AGAINST ONE YARDSTICK

:3. INVEST IN CHANGE COMMON YARDSTICK
;.... .. DRIVES CHANGE

4 ASSESS'CHANGE REASSESS PROCESS
.... ;_ _:,_;_::_;:!,_ _:_: _,il SUCCESS - HIGHER LEVEL

CMM EMPHASIS

MPROVE PROCESS

(GET TO HIGHER LEVEL)

NAsAJSEL EMPHASIS

_MPROVE PRODUCT

PROCESS AND PRODUCT

INDERSTANDING

EXPERIENCES AND

GOALS DRIVE CHANGE

"R-EEXAMINE PROCESS AND

PRODUCT
SUCCESS - BETTER PRODUCT

TODAY'S TOPIC

A846 O_

SEW Proceedings 73 SEL-93-003

SOFTWARE PROCESS
IMPROVEMENT

STEP 1 - DEFINE GOALS

CMM PARADIGM NASA/SEL PARADIGM

EMPHASIS --

IMPROVE PROCESS

EMPHASIS --

IMPROVE PRODUCT

ORGANIZATION I "GET TO LEVEL 5" INCREASE LEVEL OF REUSE

ORGANIZATION 2 "GET TO LEVEL 5" DECREASE ERROR RATES

I SEL: IMPROVEMENT GOALS MAY VARY ACROSS DOMAINS I

A_4E GO?

SOFTWARE PROCESS
IMPROVEMENT

STEP 2 - PRODUCE BASELINE

ORG 1

ORG 2

CMM PARADIGM NASAJSEL PARADIGM

EMPHASIS -- EMPHASIS -
PROCESS ASSESSMENT PROCESS AND PRODUCT

UNDERSTANDING

STANDARDS - GOOD ± WHAT IS YOUR DOMAIN?

TRAINING - WEAK _1) LEVEL I WHAT STANDARDS DO YOU USE?MEASUREMENT - WEAK WHAT IS YOUR LEVEL OF REUSE?

LEVEL 3
STANDARDS - WEAK ±
TRAINING - GOOD
MEASUREMENT - GOOD

WHAT IS YOUR DOMAIN?
WHAT STANDARDS DO YOU USE?
WHAT IS YOUR ERROR RATE?

I SEL: MEASURES ARE DOMAIN-DEPENDENT I
NO COMPARATIVE MEASURE ACROSS DOMAINS

CMM: HAS COMMON "YARDSTICK''. CAN COMPARE ACROSS DOMAINS
,N_46 0(_

SEW Proceedings 74 SEL-93-003

Lp_I_,_ _,_ BASELINE EXAMPLENASAJSEL *_ _ _ _

Effort Distribution" Classes of Errors*

9

Source Code Growth Rate"

O DESIGN CODE SYSTEM ACCEPTANCE
TEST TEST

PROJECT PHASE

"Da%a Fror_ %1 Fkght Dynamics projects (mid !9ROs)

9"_111U_ 007

10

2-

0

NASA/SEL _,i,tJD_;7 BASELINE EXAMPLE

Error Rates Cost

(1985-1989) (1985-1989)

]
I

Avo_nt?e = _15

30-

Average * -2_%

_ 2o

10

0

r-4)RXN AN

16 m'nilar systems)

"°t60O

i

1ZC3

0

_C

ReUSe

(1985-1989)

A_wlgo = -.44o

L
UA_S

32

Ada

(2 srr, iI'r syslems)
93M_ IU1 CO8

SEW Proceedings 75 SEL-93-O03

SOFTWARE PROCESS
IMPROVEMENT

STEP 3 - INVEST IN CHANGE

ORGANIZATION 1

ORGANIZATION 2

CMM PARADIGM

EMPHASIS --
COMMON YARDSTICK
DRIVES CHANGE

MAINTAIN GOOD STANDARDS
IMPROVE TRAINING
IMPROVE MEASUREMENT

nWRITE BETTER STANDARDS
MAINTAIN GOOD TRAINING
MAINTAIN GOOD MEASUREMENT

NASA/SEL PARADIGM

EMPHASIS -
EXPERIENCES AND GOALS
DRIVE CHANGE

EXPERIMENT WITH OOD TO
IMPROVE REUSE
- TRAIN IN OOD

EXPERIMENT WITH CLEANROOM
FOR LOWER ERROR RATES
- DEVELOP CLEANROOM

PROCESS HANDBOOK

J SEL: EACH DOMAIN MUST IDENTIFY MOST APPROPRIATE PROCESS CHANGE I
AB46 011

A846 012

SOFTWARE PROCESS IMPROVEMENT
NASA/SEL INVESTMENT IN CHANGE

lOO

8o
O3
I-
z
UJ

¢: 60
mml

X
LU

{ZZ
ILl

:E

z

INSPECTIONS _ t@SPR_UCTt_ON

DESIGN I_C_UES/_ _ _ DEV_LC.PMENrrb_t_qDS (_)

_AV,AG EMENT _O_IC)ES (_)

_2.2/ .rY"

of I I I I
976 _98o _9_ _9_ _992 _.

[_,'E.,E.CEO.,VESPROCESSO.ANGE]

SEW Proceedings 76 SEL-93-003

SOFTWARE PROCESS
IMPROVEMENT

STEP 4 - ASSESS CHANGE

CMM PARADIGM NASA/SEL PARADIGM

EMPHASIS -- EMPHASIS --
REASSESS PROCESS REEXAMINE PROCESS

AND PRODUCT

MAINTAINED GOOD STANDARDS A VERIFY ODD IS USED

ORG 1 IMPROVEDTRAINING _LEVEL 5" VERIFY REUSE IS HIGHER**
IMPROVED MEASUREMENT

IMPROVEDSTANDARDS _k VERIFY CLEANROOM IS USED

ORG 2 MAINTAINEDGOODTRAINING _)LEVEL5* VERIFY ERROR RATES LOWER**
MAINTAINED GOOD MEASUREMENT

*HOPEFULLY LEADS TO LOWER RISK **POSSIBLY LEADS TO LEVEL 5

SEL SUCCESS IS MEASURED BY PRODUCT CHANGE (DOMAIN-DEPENDENT)CMM: SUCCESS IS MEASURED BY PROCESS CHANGE {DOMAIN INDEPENDENT)

A846 013

ASSESSMENT OF CHANGES
HAS " - _+''_ _P.F_tO'g_a_ CHANGED?

E[ffect of Cleanroom

IMPACT ON EFFORT DISTRIBUTION

Cleanroomvs. baseline

52%vs 15%

IMPACT ON SOURCE CODE (LOC) GROWTH RATE

1oo

o

,o
"E 20

_. o SYSTEM ACCEPTANCE

DESIGN CODE TEST TEST

PROJECTPHASE

Impact of changes are verified with process data vs. baseline

!liOM11Ut.0t2

SEW Proceedings 77 SEL-93-003

ASSESSMENT OF CHANGES
HAS IP_iIO_!U_V IMPROVED?

Io - __

>= 6-

4- F

I 2-

o

Error Rates

Hl_ =89

Avg = -4 5

'_ High _ 2 4
Low: 17 I-=-==-J AVg : "1

_ ,[.____._ Low _ 2

Ea#y 8asogme

8 _mi_ar sysl_s

Current

7 similar sysie_s

4o

Avg

_rly _se_o

8 slm_r SySlm_S

Rottse

Cost
800 -

H_h = 755

600

Avg = - 490
4OO

Low. 35_

ZOO ' _

0
Ea#y Basebne

B slmitar systems

supporling 4 missions

9O

-- ;Avg -7 _

61

(5 sirngw

syslems)

l=;
Cun_rll

H_h = 277

Avg = -210

Low: 98

C_rrrent

6 sbrndar syslenls
suppori_g 4 missio.s

EaHybasefine t985-t989
Current t 990- f993

mprovement is measured against lhe goals of an organization_

B3MI1U.C13

SOFTWARE PROCESS
IMPROVEMENT

STEP 5 - MEASURE ROI
INVESTMENT IN THE NASA/SEL

100% [5210M

03
UJ i
l'r :

=-" 10% _'"-""'_

Z
UJ $15M

n B% -- 7.1%
X
LU

--I
< 6%- i
f-

4% - 29% i. m"_c,

<$3M I.___ is'

I:_, _, ,,.__=

0% PROJECT DATA ANALYSIS/ PROOUCTION

OVERI-IEAD PROCESSING APPLICATION SOFTWARE
DEVELOPED

COST OF SEL PROCESS IMPROVEMENT ACTIVITIES TOTAL ~11% OF ALL EXPENDITURES]

A&46 016

SEW Proceedings 78 SEL-93-003

MEASURING I_t_-'_'_J_t__] ON INVESTMENT IN THE SEL
(BASED ON CHANGES FROM MID 80s TO EARLY 90s)

j_ Errors,qKSLOC down by 75% (trom 4.5 to 1)

,_ Average level of code reuse increased by 300% (from -20% to -80%)

• DEVELOPMENT _ Average mission cost' down -55% (from 490 to 210 staff mos)

"Reflects reuse change

I Investment in product-driven goals .,_enables direct measurement of return

93M_IU 015

MEASURING ROI FOR PROCESS IMPROVEMENT
OBSERVED ORGANIZATIONAL IMPACTS

l -- TRAINING • sT__

- STANDARDS, POUCIES JTECHNOLOGYINSERTIONL_'_ I

. MEASUREMENT _ / _ J
{NAS.AJSEL PROCESS IMPROVEMENT)

• ENHANCES ROLE OF ORGANIZATIONAL ELEMENTS (CULTURAL CHANGE)

- DEVELOPERS -. BECOME AN INTEGRAL PART OF PROCESS CHANGE

- SOFWVARE -- PROCESS DRIVEN (LESS PEOPLE DRIVEN)

• FOCUSES ROLE OF SOFTWARE ENGINEERING RESEARCH

- BECOMES GOAL/PROBLEM DRIVEN

- EXISTS MEANS TO EXPERIMENT, ASSESS, ADOPT

I PROCESS IMPROVEMENT WILL DRIVE ORGANIZATIONAL EVOLUTIONAND OPTIMIZE ALLOCATION OF SOFTWARE-RELATED RESOURCES
.N_46 17A

SEW Proceedings 79 SEL-93-003

MEASURING ROI FOR PROCESS IMPROVEMENT

I

IO

CO_Pl.EXff'_ OF" SYSTEMS HAS INCREASED APPREC=,_tY"

I I 1] I I I

1976 19111 IMO 1182 1llll4 i1itt6 i Illll illlO iigl

LATE" '70s EARLY "B,0s

GOH 1'1_ SPIN ST A,BIU.ZE D

SEN_)RS _ 1

_._OG SIIt._LE CA_ITROL

TELEMETRY

DAT_ RATES 2? kb_f

ACC UR_C_ _ ctlgml

3 AXIS STABILIZED

_'t" 0 11

2TO3

DIGITAL AD'TONOMOU$ CONPr ROL

12 TO 15

3? IdD_S

THE NASA/SEL IS PRODUCING MORE FUNCTIONALITY, FOR MORE COMPLEXSYSTEMS WITH HIGHER RELIABILITY, AT SIGNIFICANTLY L-"O"W_R_"_O"_'T,

• D ROLAND. "A STUDY ON SIZE AND REUSE TRENDS IN A'FrlTUDE GROUND SUPPORT SYSTEMS (AGSSs)

A846 ole DEVELOPED FOR THE FLIGHT DYNAMICS C_V1SION (FDD) (1976 1988)', CSC;TM-89/6031, CSC FEBRUARY 1989

SEW Proceedings 80 SEL-93-003

N94- 36487

RECENT SEL EXPERIMENTS AND STUDIES

= =

Rose Pajerski
Donald Smith

SOFTWARE ENGINEERING BRANCH
Code 552

NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

f

INTRODUCTION

Since 1976, the Software Engineering
Laboratory (SEL) has been dedicated to
understanding and improving the way in
which its organization, the Flight Dynamics
Division (FDD) of NASA/Goddard Space
Flight Center, develops, maintains, and man-
ages complex flight dynamics software sys-
tems. During the past 17 years, the SEL has
collected and archived data from over 100
software development projects in the organi-
zation. From these data, the SEL has derived

models of the development process and prod-
uct, and conducted studies on the impact of
new technologies.

One of the SEL's overall goals is to treat each

development effort as a SEL experiment that
examines a specific technology or builds a
model of interest. The SEL has undertaken

many technology studies while developing
operational support systems for numerous
NASA spacecraft missions. Viewgraph 2 is a
rough mapping of spacecraft missions and
support software systems (on the top) to SEL
studies (on the bottom) over the past 17 years.
Measures and experiences from these devel-

opment projects have been saved and used to
understand, characterize, and improve the

development environment.

The SEL's basic approach to software process
improvement is first to understand and char-
acterize the process and product as they exist
to establish a local baseline. Only then can
new technologies be introduced and assessed
(phase two) with regard to both process

changes and product impacts. The third phase
synthesizes the results of the first two phases
into various packages such as process and
product models, training materials, and tools
and guidebooks. These products are then fed
back into the development environment for
subsequent projects to use and benefit from.
Viewgraph 4 illustrates the SEL three-phase
process improvement model.

The SEL organization consists of three func-
tional areas: software project personnel,

database support personnel, and software
engineering analysts. The largest part of the
SEL is the 250-plus software personnel who
are responsible for the development and
maintenance of over 4 million source lines of
code (SLOC) that provide orbit and attitude
ground support for all GSFC missions. Since
the SEL was founded, software project per-
sonnel have provided software measurement
data on over 100 projects. These data have
been collected by the database support per-
sonnel to be stored in the SEL database for

use by both the software project personnel
and the software engineering analysts. The
database support staff enter measurement data
into the SEL database, quality assure the data,
and maintain the database and its reports.
The software engineering analysts define the
experiments and studies, analyze the data, and
produce reports which now number over 300.
These reports affect such things as project
standards, development procedures, and pro-

ject management guidelines.

The SEL has been a fairly stable organization;
however one significant change has occurred

SEW Proceedings 81
SEL-93-003

recently. About a year ago, the FDD reorga-
nized and the SEL became responsible for the
maintenance of all operational software in the
environment. Along with consolidating
development and maintenance into one organ-
ization, all acceptance testing was added.
Now one organization, the SEL, is respon-
sible for a significant portion of the develop-
ment life cycle, from requirements analysis
through maintenance.

The SEL's new areas of responsibility, main-
tenance and testing, have become focal points
for current studies which correspond to the
three phases of the SEL improvement model:
(1) understanding maintenance processes and
products, (2) assessing the effectiveness of
different testing approaches, and (3) analyz-
ing our locally derived cost and schedule
estimation models to determine if they need
updating. These studies will be discussed in
reverse sequence, however, going from the
most complete data to the most preliminary
findings.

SEL COST AND SCHEDULE
ESTIMATION MODELS

Over the past several years, organizational
and technology changes have occurred in the
FDD software development environment that
may have affected many of the SEL's baseline
models that characterize some of the products
and processes of the FDD. The purpose of
the cost and schedule estimation studylwas
to update the SEL cost and schedule estima-
tion models. Thirty-nine FDD development
projects measured over 15 years were exam-
ined. Specific factors which may have an
impact on cost and schedule were analyzed.
These factors included code reuse, language,
application type, and subjective data such as
team experience level and technology usage.

Cost Estimation Factors

The SEL baseline cost model is based on soft-

ware size, productivity, and a weighting term,
the growth factor:

Effort = size / productivity x
growth factor

In this environment, managers compare cur-
rent system requirements with historical expe-
rience on earlier systems to estimate initial
software size in terms of both new SLOC and

reused SLOC. Productivity values are also
based on data from previous representative
development efforts. While size and produc-
tivity are commonly used terms, the definition
and usage of the growth factor in the above
expression is umque to our environment.
Previous experience had shown that the size
of a software system will grow by 40% from
the time the requirements are baselined at the
Software Requirements Review to when the
system becomes operational. This growth is
due to early uncertainties in operational sup-
port scenarios as well as changes in the
spacecraft hardware which result in software
requirements changes.

The current study results (viewgraph 7) indi-
cate that the basic effort model is still valid

but that accuracy can be improved by includ-
ing new weighting factors based on language
and reuse levels. The language selected,
FORTRAN or Ada, has an impact on both the
cost of reusing code and the productivity val-
ues to be applied. For FORTRAN reuse, a
20% cost multiplier is used while the Ada
reuse multiplier is 30%. The productivity
values for FORTRAN and Ada are 3.5 and

5.0, respectively. The software growth factor
is also affected by the level of reuse. The
40% value still holds for low-reuse systems
but decreases by 15% for high-reuse systems.

Schedule Estimation Factors

The study concluded that the only quantifi-
able factor affecting schedule estimates was
the application type. There are two applica-
tion types in the FDD environment, opera-
tional ground systems and simulators. The
simulators, which usually begin development
with significant requirements undefined, take
about 35% longer to develop than the opera-
tional ground systems. Neither the cost nor
schedule models contain any subjective fac-
tors, although the study did look at the effects
of subjective data on these models. (Jon
Valett's report in Session 3 discusses the
results of that part of the study.)

SEW Proceedings 82 SEL-93-003

SEL TESTING STUDIES

Over the years, several testing methods have
been used in the FDD environment. The goal

of the ongoing SEL testing study is to deter-
mine the relative effectiveness of each

method by examining key product and pro-
cess measures such as effort and error rates.

The testing approaches include:

• SEL Standard Test Process

• Independent Verification and Validation
(D/&V)

• SEL Cleam'oom

• Independent Test Team

The organizational boundaries and key pro-
cess elements of each approach are described
below and are tabulated in viewgraph 10.

The SEL standard test process involves

two separate organizations, the develop-
ment group and an acceptance test (AT)
group. The developers implement and
system test the software by integrating
and verifying the end-to-end system flow.
Then the final build of the software is
turned over to a separate AT group that

performs functional acceptance testing
based on the requirements.

The IV&V approach added an indepen-
dent test group to the standard process.
That group worked in parallel with the
development and AT groups to com-
pletely test the software as well as to
verify the requirements and operational
scenarios for the system.

The SEL Cleanroom methodology has

separate development and test teams that
develop and test, respectively, in builds.
The test team generates the test cases
using a statistical method based on the
frequency of activities of various oper-
ational scenarios. The final build of the
software is then passed to a different

organization for acceptance testing.

The most recent approach to be applied
uses an independent test team and is a
direct consequence of the organizational
changes within the FDD. This approach
has separate development and test teams

under the same organization. The test
team handles all the build testing of the
software using functional test case
selection.

The IV&V approach will be discussed briefly
because of its relevance to NASA programs

today. The other three approaches will be
contrasted and compared with one another in
terms of some key process and product mea-
sures. The process measure that will be used

is effort distribution by activity and the prod-
uct measure is the error rate through devel-

opment and testing.

IV&V Test Study

A recent National Research Council (NRC)

report 2 recommends that IV&V be part of the
standard NASA testing process. This recom-
mendation may be appropriate for the Space
Shuttle software that was studied in the NRC

report; however it is certainly not appropriate
for all NASA software. Results of SEL
IV&V experiments 3 conducted in the early
1980s in the FDD environment were not pos-
itive. Although one of the expectations for
IV&V within the environment had been
increased software reliability, the study found
that the error rates were not favorably

impacted and that total development cost of
the software increased significantly (between
30% and 60%). Consequently, it was deter-
mined that IV&V was not appropriate for

adoption in the FDD.

Process Measures Comparison

Using effort distributions to compare test
approaches is an effective way to identify
process differences. The point of interest is to
see if there is any apparent impact or
observable change when compared to the SEL
standard process. Viewgraph 12 shows the
distribution of effort involved in design and
code versus test for the three test methods.
There is little difference between the SEL
Standard and Cleanroom effort distributions;
however, the independent test team approach
does display a very different effort distribu-
tion. Simply using process measures will not
determine which of these approaches is "best"
but it does highlight process differences.

SEW Proceedings 83
SEL-93-003

Product Measures Comparison

Examining the average error rates as recorded
from the design phase through the acceptance
test phase is a good way to determine the
effectiveness of testing methods. The exam-
ple in viewgraph 13 shows two ways of
viewing error rate data on the same set of
project data.

The chart on the left is the average error
detection rates grouped by testing approach.
Two points of interest are noted:

1) Cleanroom stands out as having a higher
error rate than the other two methods.

However, this is somewhat misleading
because the Clearu'oom process includes
different types of errors in the error statis-
tics. Previous studies 4 have shown that

the Cleanroom process actually produces
error rates that are lower than the FDD

baseline for certain classes of projects.

2) The independent test team approach
shows lower error rates, indicating that
this approach shows some promise and
deserves further study.

The chart on the right groups the data by low-
and high-reuse projects. There is indication
that factors such as the level of reuse may
affect error rates.

The testing effectiveness study is not yet
complete because other process and product
measures need to be assessed, including an
evaluation of data collected during the
maintenance phase.

SEL MAINTENANCE STUDIES

The first area of focus by the SEL in the
maintenance arena is to build a baseline

understanding of maintenance products and
processes such as software characteristics,
effort distributions, and change and error pro-
files. Understanding these elements will
enable cost and schedule estimation models to

be built, which is one of the future goals of
studying maintenance. The number of sys-
tems and the size of the software being main-
tained varies: 105 systems ranging in size

from 10,000 SLOC to 250,000 SLOC totaling
3.5 M lines of code. A high percentage cf
these systems are FORTRAN mainframe
systems so they are the first ones to be ana-
lyzed in the study. Information learned so far
is based on data from a handful of these sys-
tems, so the maintenance baseline presented
(in viewgraphs 14-16) is considered a pre-
liminary characterization of the maintenance
process and products.

FDD is currently maintaining two types of
systems: multimission systems, which sup-
port many spacecraft and have a software
lifetime of 10-30 years, and single-mission
support systems, which run as long as the
spacecraft is operational (typically 2-7 years).

Error and Change Characteristics

Preliminary studies reveal that although the
software sizes are similar, these two types of
systems show very different error characteris-
tics after 5 years of operations (viewgraph
15). For multimission systems, the error rate
is an order of magnitude higher than the rate
for single-mission systems. There are many
possible explanations for this. The multimis-
sion systems are used more and they are also
updated with more frequent enhancements. If
the difference in error rates shown here is
confirmed by further analysis, the reasons for
it will need to be examined and evaluated.

Also shown in the viewgraph are two pie
charts depicting two types of change distribu-
tions:

• Change type (right chart) as determined

by the requestor on the change request
forms: about 25% of the changes are en-
hancements and 75% are error corrections

with less than 1% being adaptations
(changes due to operating system or com-
piler upgrades).

• Effort distribution (left chart) as deter-

mined by the maintainers in satisfying the
change requests: about 66% of the main-
tainers' time is spent on implementing
enhancements and the remainder is spent
correcting errors and adapting software.

SEW Proceedings 84 SEL-93-003

Effort Characteristics

V
, assessing efforts.
i
.7-

Cost (effort) is another important element for --
understanding software maintenance. View-
graph 16 displays several cost characteristics,
again divided into multimission and single- _--
mission systems.

The cost to initially develop these systems is
about the same for both types of system;
however, the cost of maintenance varies.
Maintenance costs on the multimission sys-
tems are running about 3 staff years per year,
or about 10% of the development cost per

year. (The 10% figure has been used as a rule
of thumb in the FDD for many years in cal-
culating maintenance costs, so it is interesting
to see it confirmed with some recent data).

The yearly maintenance cost for single-
mission systems is currently running at about
2% of development cost, which is probably
due to these systems being enhanced less
often.

Another way of understanding an unfamiliar
process such as maintenance is to compare it
with an established process that has been
baselined. The pie charts on viewgraph 15

compare the maintenance and development
processes in terms of effort distribution. The
biggest difference is the relative effort spent
in testing activities: 30% for development
and 5% for maintenance. This difference

certainly must be probed further in defining a
baseline understanding of maintenance pro-

cesses and products in the FDD environment.

\

Finally, the derivation of
cost and schedule estimation models from

locally driven factors such as reuse level,
application type, and language is an example
of experience packaging.

In the SEL, no study is ever really completed.
Studies will be repeated and iterated upon in
the future as part of the ongoing software

improvement process.

REFERENCES

.

.

Condon, S., et al., Cost and Schedule
Estimation Study Report, SEL-93-002,
November 1993

An Assessment of Space Shuttle Flight
Software Development Process, National
Research Council, 1993

. Page J., "Methodology Evaluation:
Effects of Independent Verification and
Integration On One Class of Application,"
Proceedings of the Sixth Annual Software
Engineering Workshop, SEL-81-013,
December 1981

. Green, S. E., and R. Pajerski, Cleanroom
Process Evolution in the SEL,"

Proceedings of the Sixteenth Annual
Software Engineering Workshop,
SEL-91-006, December 1991

SUMMARY

_I The studies discussed in this paper are all

examples of activities that are performed as
part of the SEL's process improvement model.
Using this model, the SEL starts by under-

j standing the product and process, then
assesses the impact of new technologies, and

= finally packages what was learned. The pre-
liminary examination of maintenance effort,
error, and change profiles to establish a
maintenance baseline exemplifies under-
standing-phase activities. The ongoing test-
ing study that is examining the effects of
various testing approaches on process and

product measures is an example of typical

SEW Proceedings 85 SEL-93-003

B649.001

RECENT
:SEL.,Ij ERIMENTS
 BSTUDIES

18TH ANNUAL
:SOFI-WARE IENGINEERING

'WORKSHOP

ROSE PAJERSKI
DONALD SMITH

NASNGSFC

STUDIES ON OVER 1O0 PRODUCTION PROJECTS

IO0

ku

60

g 40

MISSIONS/PROJECTS so_MY

SUPPORTED F/_I"./

CO_v_yl_ntenancel
80 ISTP / Reuseanal_s Pl

/ _ (2)
_PEX/ Des,gnmeasuresPl

EUVE _

u,'_/I o_oo,, J41
GOES/ OOD II o)

/
/ l:_sign _t_clues IS}

c'R°./I _,= r_
COBE ,,,/1 Test_ 9 approaches (41

Er_S / ._ructu_ecl tecnr'_ues

20 -/ I _J_ M,.=_ 141

STUDIES/EXPERIMENTS

0 / '_'_'l-"_-'_'_is I I (xl # expel,merits"_
1976 1980 1984 1988 1992 1994

I EVERYDEVELOPMENTPROJECTCONTRIBU'rlESTO SELRESULTS]

SEW Proceedings 86 SEL-93-003

SEL ORGANIZATIONAL STRUCTURE

SOFTWARE PROJECT PERSONNEL

DEVELOP/MAINTAIN FLIGHT DYNAMICS SAX/)

STAF_ SIZE 175 - 250

"P'PICAL PROJECT SIZE 10G - 300 KSLOC

DEVELOPMENT PROJECTS 6 - I O IAT ANY
GIVEN TIME

IVlAINTEIW_ICIE PROJECTS > 100 SYSTEMS

PROJECT STAFF SIZE S - 25 PEOPI_E

1976-1993: 10S PROJECTS

DEVELOPMENT
MEASURE3

FOR EACFI FROJEET

REFINEMENTS TO
DEVlELOPMENT

PI10,CCESS

STAFF SIZE

FUNCTION

2-5

• PROCESS FORMS/DATA

oOA

• RECORDfARCFIIVE DATA

• M_JNTAIN SEL DATA BASE

• OPERATE _L UBRARY

SOF"I-E/ARE ENGINEERING ANALYSTS

IANALY-Z E PROCESS)

STAFT

FUNCTION

197b-1902:

i

DATA BASE SUPPORT

(MAINTAIN/OA SEL DATA}

SEL DATA BASE

FORMS UB_i?Y

REPORTS LIBRARY

5 - I0 RESEAI_HERS

• SET GOALS/QUESTIONS/METRICS

- DESIGN STUDIES___..XPERIMENTS

• ANALYSIS/RESEAIEH

• REFINE S/W pROCESS

- PRODUCE REPORTS/FINDINGS

300 REPORTS/DOCUMENTS

_ 160MB

_ 220,000

S,OOO TO 70.000

B649.003

SEL IMPROVEMENT MODEL - CURRENT ACTIVITIES

PACKAGING CURRENT ACTIVrrlES
1• "COST AND SCHEDULE

//- _ .MODELS I ESTIMATION"

ITERATE // " • GUIDEBOOICS I
./../ 6K ,TOO ,I

////
I I ,/'_,_J'/- AND APPROACHES ON PROCESS • TESTING AP_ pr'_DACHES

.9, _ AND PRODUCT

UNDERSTANDING

TIME

B649.004

• PRODUCT CHARACTERISTICS

• PROCESS Cl--IAP, ACTERISTICS

,, : •

• Ada - . -°

• MAINTENANCE " :: -

-: L C HARACTERIZA, TIO N {- .:,

:-"_ :- !:..i_ !-: :'_.:

:L. .'.::-: "': '_ ;_4"i

SEW Proceedings 87 SEL-93-O03

PLAN

TRAINING

IMPLEMENT

TEST

MAINTENANCE

_4g.005

SUMMARY OF RECENT SEL STUDIES

i.• CO_D SCHEDULEEST;rv_TIONSTUO¥ _ O
• SUBJECTIVE FACTORS EVALUATION
• NASA DOMAIN PROFILES
• TECHNOLOGY TRANSFER

• RECOMMENDED APPROACH TO SOFTWARE DEVELOPMENT
• GOVERNMI_NT/CONTRACTOR TASK MANAGEMENT
• FLIGHT DYNAMICS APPHCATIONS

• DESIGN MEASURES
• CASE

I •_a J
• OOD

J iiCOMPARiSON OFAPPROCHES -_.:_ _.'_:_._ _: , :_ :

I. PROCESS UNDERSTANDING! _- :-__:i:,__ _:-_:i_ :, :- --

(_ COST AND SCHEDULE STUDY*

GOAL UPDATE SEL BASELINE EFFORT ESTIMATION MODEL
SCHEDULE ESTIMATION MODEL

DETERMINE IMPACTS OF REUSE (CODE)
LANGUAGE
APPLICATION TYPE
SUBJECTIVE FACTORS

(EXPERIENCE, TECHNOLOGY)

STUDY PARAMETEr_S 39 PROJECTS (1977-1992)

2 LANGUAGES (FORTRAN, Ada)

2 APPLICATION TYPES

20K-300K SOURCE UNES OF CODE

* "SOFTWAREENGINEERING LABORATORYCOST AND SCHEDULEESTIMATION STUDYREPORT,"
S. CONDON, M. REGARDIE,S.WAUGORA, SEPTEMBER1993

SEW Proceedings 88 SEL-93-003

WHAT IMPACTS COST?

EFFORT = SIZE/PRODUCTIVITY x GROWTH FACTOR

EFFORT (Adal = (NEW SLOC + 30% REUSEDSLOC)

PRODUCTIVITY IAda) .4 (REUSE<70%)_X .2 (REUSE>--70%))

EFFORT (FORTRAN) = (NEW SLOC + 20% REUSEDSLOCJ
PRODUCTIVITY (FORTRAN) _11.4 (REUSE<70%)'_x .2 IREUSE->-70%))

COSTS 50% MORE TO REUSE A LINE OF Ada CODE
THAN A LINE OF FORTRAN

SOFTWARE SIZE GROWTH IS 15% LOWER FOR

HIGH REUSE SYSTEMS

B649.007

WHAT IMPACTS SCHEDULE?

SCHEDULE = COEFF x (EFFORT) 03

SCHEDULE (GROUND SYSTEMS) = 5.0 x (EFFORT) Q3

SCHEDULE (SIMULATORS) = 6.7 x (EFFORT) Q3

SCHEDULE IMPACTED BY APPLICATION

TYPE, NOT BY LANGUAGE OR REUSE LEVEL

B649.00_1

SEW Proceedings 89 SEL-93-003

(_ EXPERIMENTS IN TESTING

GOAL

B649._D9

• ASSESS THE IMPACT OF ORGANIZATIONAL CHANGES

• COMPARE TEST APPROACHES

- INDEPENDENT VERIFICATION

AND VALIDATION

- SEL STANDARD TEST PROCESS

- SEL CLF_ANROOM

- INDEPENDENT TEST TEAM

1982 STUDY

1978 - CURRENT

1986 - CURRENT

1992 - CURRENT

®
SI=L STANDARD PROCE.SS 124- PROJECTS)

REQUIREMENTS DEVELOPMENT IS¥_TEM TEST

: _i_-._=:_-!._'_-i CODE READING IIEND-TO-END
,FLow

iV & V 13 PROJECTS

REQUIREMENTS

OVERVIEW OF FOUR TEST APPROACHES

• : ACCEPTANCE TEST
FUNCTIOI_L,
REQUIREMENTS BASED

DEVELOPME_IT SYSTEM TF___r ACCEPTANCE I_-31

IV & V TEST TEAM
r,

SEL CLEANROOM (4 PROJECTSI

REQUIREMENTS' DEVELOPMENT/TEST i-:.

STATISTICAL _ES; _- :_:_!:_ CODE R_ING :-_;i_: :::
• : !_.i_..: ::_ _!_ _/.,..

INDEPENDENT TEST TEAM (3 PROJECTS)

,_._ ACCEPTANCE TEST
FUNCTIONAL, --

i .I_E'Q.UiREMENTS BASED

B645.010

REQUIREMENTS DEVELOPMENT/TEST ACCEPTANCE TEST

FUNCTIONAL CASES B'(' f3UILD
REQUIREMENTS BASED

SEW Proceedings 90
SEL-93-O03

k.I

o
v1

n-
DJ
O..

I--

z
O

El_
L_

_<

3

2

1

IV & V TEST APPROACH

IV& v IV& v

COST INCREASED RELIABILITY DIDN'T
BY 30-60% INCREASE

k.;

03
LLJ

r_

w 2
r,

o_
r_
klJ

DOMAIN AND PRODUCT GOALS ARE KEY DRIVERS
FOR PROCESS CHANGES

B649,0_I

TEST EFFORT DISTRIBUTION

SEL STANDARD

(BY ACTiViTY)

SEL CLF_ANROOM IND. TEST TEAM

INDEPENDENT TEST TEAM APPROACH
IMPACTING TEST PROCESS

B649,012

SEW Proceedings 91 SEL-93-003

ERROR DETECTION RATES - TWO VIEWS
(DESIGN THROUGH ACCEPTANCE TEST)

9,01

u 5
O

"_4
U.I

_- 3
tv

u_ I
0

__ SEL, CLEANROOM

SEL ----7
STANDARD

PROJECTS: 1986 - 1992

u 5 -
O
.J

v 4 -

l-w
UJ

e_ 3 -

r,-

o
r_ 2 -

u.l

u_ I -
O

0 -

LOW
REUSE

HIGH
REUSE

PROJECTS: 1986 - 1992

TEST APPROACH AND REUSE LEVEL
IMPACT ERROR RATES

o64g.o_4

MAINTENANCE STUDY

CURRENT BUILD BASELINE
FOCUS UNDERSTANDING

SOFTWARE CHARACTERISTICS

EFFORT DISTRIBUTIONS
ERROR/CHANGE PROFILES
ESTIMATION MODELS

OPERATIONAL SYSTEMS UNDER MAINTENANCE*

105 SYSTEMS

LANGUAGES

PROCESSORS

RANGE FROM 10 KSLOC TO 250 KSLOC
TOTALS 3.5 MILLION SLOC

850/0 FORTRAN 10% Ada 5% OTHER

80°/o MAINFRAME 5% OTHER 10% PC/WKSTN

I MAINTENANCE ACTIVITY PRIMARILY SUPPORTSFORTRAN MAINFRAME OPERATIONAL ENVIRONMENT

* MAINITNAN(I INCLI.,_ES _ ACDVI'_ _ OPERATIONAL START

SEW Proceedings 92 SEL-93-003

MAINTENANCE CHANGE/ERROR PROFILES

SYSTEM TYPE ERRORS DETECTED
(SIZE IN KSLOC) (5 YEARS OF OPERATIONS) # DALLYUSES

MULTI-MISSION 1.5 ERRORS/KSLOC 20-40

(_200 KSLOC}
SINGLE MISSION 0 1 ERRORS/KSLOC 1-5

[_ 150 KSLOC)

EFFORT DISTRIBUTION

(BY CHANGE TYPE) _Ee/MENT'X _

,J_,TA_ON\ / \ I

CHANGE EFFORT DISTRIBUTION NOT

CHANGE TYPE f"'--T""_
OISTRIBUTION/ I \

ENHANCEMENT] \

t 2,,_ 1 \

< I% __

i
PROPORTIONAL TO NUMBER OF CHANGES

B649,015

5649.015

MAINTENANCE EFFORT

SYSTEMTYPE
(SIZE IN KSLOC]

COST TO DEVELOP
(STAFFYEARSISY))

COST TO MAINTAIN
[SY/YEAR)

MULTI-MISSION
(,--,200KSLOC)

SINGLE MISSION
[_ 150 KSLOC)

30-40

25-35

3.0

0.5

MAINTENANCE EFFORT
DISTRIBUTION

T

DEVELOPMENT EFFORT

DISTRIBUTION ____

MAINTENANCE COST SIGNIFICANTLY
DRIVEN BY SYSTEM TYPE

SEW Proceedings 93 SEL-93-003

SEL IMPROVEMENT --AN ONGOING PROCESS

PACKAGING

//_P- _1 • MODELS

// u / "TOO_
// _SESS,NGI
//
I ['/////////'f/_---'_ • IMPACTOF NEW TECHNOLOGIES

J L X.;;" AND APPROACHESON PROCESS
V U ,_o PROOUCT
UNDERSTANDING

• PRODUCTCHARACTERISTICS

• PROCESSC_CTERISTIC.S

TIME

CURRENTACTIVI_E

r® ""COST AND SCHEDULE

-I ESTIMATION"

I_) TESTING APPROACHES

I_-_NTENANCE : : :::
CHARACTERIZATION: -

i-.:: : j :: ::. ::

B649,04A

SEW Proceedings 94 SEL-93-003

Session 2: Measurement

Ross Jeffery, University of New South Wales

Martha Ann Griesel, Jet Propulsion Laboratory/
California Institute of Technology

Anneliese von Mayrhauser, Colorado State University

SEW Proceedings 95 SEL-93-003

SEW Proceedings 96 SEL-93-003

N94- 36488

Specification-Based Software Sizing:

An Empirical Investigation of Function Metrics

Ross Jeffery & John Stathis

School of Information Systems

University of New South Wales

P.O. Box 1, Kensington, NSW, 2033
AUSTRALIA

/

1. Introduction:

For some time the software industry has espoused the need for improved specification-

based software size metrics (see Evanco et. al. 1992). During the 1980's significant

resources have been applied to the development and use of metrics such as function points

[Albrecht79], function weights [DeMarco82], feature points [Jones 1988] and other

metrics. Earlier research [Jeffery&Low93] has established the similarity of these metrics.

These metrics are used as one of the bases for cost estimation, software development

management, software maintenance management, software value measurement, and so on.

The proliferation of the use of the metrics and the tools now developed to support the

measurement process to provide these measures, suggests that they fdl an established need

within the software industry. However the empirical research into these metrics has been

sparse and generally not particularly favourable. Once again we see industry seeking

problem solutions in the absence of experimental findings which support the solutions on

offer.

This paper reports on a study of nineteen recently developed systems in a variety of

" :_ _ application domains. The systems were developed by a single software services

:-; corporation using a variety of languages. The study investigated the following metric

characteristics and questions_ r. " _=_ _ __

Using both early and late lifecycle system documents as input to the counting process,

what variation occurs in counts produced for the same system, and what gives rise to that

variation? The research methodology adopted was to perform multiple independent

counts of the system function size for the systems using the IFPUG Standard version 3.4.

For each system this resulted in two measured function counts. The difference between

these counts was analyzed both for its magnitude and the reasons for the variation. The

internal validity of the function point metric was also studied and the appropriateness of

the metric to the application portfolio of the organization.

This paper presents the results of this study. It is shown that:

PAGE m..ANK NOT FtLI_D
SEW Proceedings 97

B_

SEL-93-003

1. Earlier research [Kitchenham 93] into inter-item correlation within the overall

function count is partially supported

2. A priori function counts, in themself, do not explain the majority of the effort variation

in software development in the organization studied.

3. Documentation quality is critical to accurate function identification

4. Rater error is substantial in manual function counting.

The implication of these findings for organizations using function based metrics are

explored.

2. The Data Set:

The source of data for this project was an Australian software development organisation,

MEGATEC Proprietary Limited, a company with approximately 50 employees that

develop and distribute a range of computer software products in Australia and overseas.

This organisation was selected as a test site for this work because it was one of the first

software companies in Australia to gain certification to Australian Standard AS3563 for

Software Quality Management. The commitment to quality in this organisation meant that

managers were highly motivated to provide good quality data and there was a well

established research ethic within the organisation. The 19 projects in the data set are

drawn from a variety of applications. In total 17 recently completed projects were

eventually included in the project database as two of the nineteen projects were not

completed at the time of data analysis. A summary of the data is given in Table 1. The

projects were developed during the period August 1990 to May 1993 and a high

consistency in the quality staff in the use of methodology was expected in the database.

The systems were written in a variety of languages including COBOL, Powerhouse, C and

MS Windows, Excel Macro, SQL windows and combinations of these. It was decided

that for the initial study tests would be carded out using the Albrecht Function Point

counting technique as embodied in the International Function Point User Group standards
as the basis for research.

TABLE I
PROJECT SIZE AND DEVELOPMENT EFFORT DATA

Project Size (UFP) Development Effort (Hours)

No. Projects Mean Std Dev Range Mean Std Dev Range

17 551 923 38 - 3656 2093 3266 262 - 13905

Function Point were counted from documentation provided by the corporation. Each

system was counted by two independent raters with experience in the IFPUG standard.
One of the counters was an external consultant and the other was one of the researchers in

the current study. Where we are studying the relationship between FP and other project

phenomena we use the mean FP value. Data was available to derive the unadjusted

SEW Proceedings 98 SEL-93-003

function point count and also the fourteen complexity factors. In order to validate the

data, structured interviews were held with all of the project managers. These interviews

were used to validate the function point count, the effort data and to search for any reason

behind abnormal results. There were three basic research questions which were being

explored.

Firstly, we were interested in exploring in this organisational setting the relationship
between development effort and function points. This question has had some considerable

research over recent years, generally showing a consistent and significant relationship

between the size measure and effort.

The second research question concerned replicating some of the work carried out by

Kitchenham and Kansala (1993) concerning the relationships between constituent elements

of the function point metric.

Thirdly, we were concerned with investigating the consistency of function point counting.
There had been no study in which multiple systems were counted by multiple raters and

yet it seemed that this is one of the critical elements given the current manual basis of

function counting.

3. Results:

3.1 Effort Relationships

An initial Kolmogorov-Smirnov test indicated that the unadjusted and unweighted

function count(UUFC), as well as the unadjusted function point (UFP) and effort data

belonged to normal distributions. The results are shown in Table 2. That allowed us to

proceed with a range of parametric statistical tests.

TABLE 2
KOLMOGOROV-SMIRNOV TEST

No of Projects UUFC UFP Effort
p P- -P-

17 0.012 0.015 0.05

Figure 1 shows an initial plot of project size against effort for the full data set. The

Project Sizing Figure 1 was unadjusted function points counted from early life-cycle
documentation of a systems requirements. In this plot we can see that two of the projects

are significant outliers in terms of effort and the other in terms of project size. We also
note the scatter of points which has been typical in prior data when comparing size against

function points. The R2 for this data set is relatively poor showing a value of 0.228 (p <

0.05) for a linear regression of size against function points.

SEW Proceedings 99 SEL-93-003

E
f
f
o

r

t

16OOO

14OOO

12000

10000

8OOO

6OOO

4OOO

2OOO

0

o

• C o O0

_ _ °

o lo(o

Project Size (Unadjusted Function Points)

20OO

Figure I. Scatter plot of A priori UFP against Effort

In the project manager interviews it became apparent that for some of the measured

systems in the database, the project data which we show in Figure 1 was not a fair

representation of the systems implemented. Taking this into account, the function point

count and effort count was carried out again in order to correct any identified errors in the

effort recorded or in the function point count. For example, it was found that for some of

these systems the functionality had changed significantly during development and that it

would be expected that a better relationship between size and effort would be found using

the implemented function point count. Figure 2 shows a scatter plot for the seventeen

data points after the validation of the data. The R 2 for this data set was 0.95 (p < 0.001).

It is interesting to note the enormous difference between the data set derived at systems

requirements specification stage versus the data set at implementation. This suggests that

in this corporation considerable work will need to be invested to ensure requirements

stability in the future if they are to gain control over predicted effort distribution.

16O00'

1400O.

12O00

1(3000

8000

60O0

4000

20O0

0,
0

o
a

16oo _o 3600

UnadjustedFtmaionPoints

Figure2. Scatter plot of A posteriori UFP against effort

4_00

SEW Proceedings 100 SEL-93-003

Further analysis of the data revealed that three of the projects could be considered outliers

and in line with conservative statistical analysis. Table 3 shows the regression results for

the complete and the reduced data set where the outliers have been removed. Notice the

reduction in the R 2 and that the effort-size relationship as expressed through the

regression equation has not changed significantly suggesting that the outliers were in fact

normal for this organisation.

TABLE 3

COMPARISON OF REDUCED AND FULL DATASET

Full Dataset Reduced Dataset

No. Projects 17 14

Equation Effort= 192.31 + 3.45 * UFP Effort = 187 + 4.03 * UFP
R _ 0.95 (p<0.001) 0.58 (p<0.01)

3.2 Internal Consistency of Function Points:

Table 3 shows the Pearson correlation coefficient between all pairs of function point

elements using the reduced data set for conservatism. The results shows that three of the

five function elements are significantly correlated. These are external inputs, external

enquires and logical internal files.

TABLE 4

PEARSON CORRELATION COEFFICIENTS BETWEEN UFP ELEMENTS

Fn Point Element

External Input

External Output

External Inquiry

External Interface

File

Logical Internal File

Total

Unadjusted
Function Point

0.90

(p<O.O01)
0.14

(n.s.)
0.93

-0.33

0.92

I EI

-0.07

0.91

-0.46

0.74

EO
i

F,xt Extnl

Inquiry Int File

-0.45

0.90

Kitchenham and Kansala's study used Kendall's t as a robust measure of correlation. In

their study they found significant correlations between three pairs of function elements not

reported as significant in our study. These were outputs and inputs, outputs and enquiries

and outputs and internal logical files.

SEW Proceedings 101 SEL-93-O03

The results of both of these studies shows that the function elements are not independent

and therefore it is possible that there may be a better effort relationship between

constituent elements an effort than there is between function points. The Pearson

correlation between each function point element and actual development produced the

results in Table 6. These show that internal logical ftles and external enquiries had a

higher correlation with effort than the total unadjusted function point count. This suggests

that an effort estimation model derived on the internal logical file count may in fact

perform better than function point for this organization.

TABLE 6
PEARSON CORRELATION RESULTS

FUNCTION ELEMENTS AGAINST EFFORT

Function Element R2 p

Logical Internal File 0.73 < 0.001
External Inquiry 0.63 < 0.001
External Input 0.37 < 0.001
External Output 0.03 n.s.
External Interface File 0.005 n.s.

Sum of Function Elements (UFP) 0.58 < 0.01

These results are somewhat different to Kitchenham and Kansala who found that a

combination of external inputs and outputs provided a better effort predictor than

unadjusted function points.

A further analysis was carried out was to compare the extent to which the complexity

adjustments in the function point model add to the value of the model in explaining effort.

Table 7 shows the regression results for the unadjusted and unweighted function count

versus the unadjusted function point count. It can be seen from this table that once again

the function point metric as a measure of size when used in its relationship with effort,

appears to be performing less well than some of the constituent elements of that count.

6

SEW Proceedings 102 SEL-93-003

TABLE 7
PEARSON CORRELATION RESULTS

FUNCTION ELEMENTS (UUFC & UFP) AGAINST EFFORT

Level 1 Level 2

UUFC UFP

Function Element R 2 p R 2 p

Logical Internal File 0.75 < 0.001 0.73 < 0.001
External Inquiry 0.65 < 0.001 0.63 < 0.001

External Input 0.37 < 0.001 0.37 < 0.001
External Output 0.04 n.s. 0.03 n.s.
External Interface File 0.002 n.s. 0.005 n.s.

Sum of Function Elements 0.56 < 0.01 0.58 < 0.01

3.3 Rater Consistency:

The model used in this study to investigate rater consistency is shown in Figure 3 in which

we see that three elements which can contribute to inconsistency. These have been

identified as the system specification, the function point counting method and the rater.

For example, inconsistency can be derived from the fact that the raters themselves may

simply introduce errors into the function point process. It can also be that the

specification can be ambiguous or at an inappropriate level of granularity such that the

function point is difficult to determine, or else it could be that the function point method

could be ambiguous or incomplete with respect to the function counting process that is at

hand.

SEW Proceedings 103 S EL-93-003

f
Razer Interpretation of f

System_pec_3cation/

I SystemSpecification "

_ Stage in life c_:leGranularity level

Ambitmity in specification

Rater

Applicability of

me_hod f_ System

Exp_ienc¢
O_anisational
Differences

Rat_ interpretation of

in counting method

I Function PointMethod

incomplete Kta_Igrds

Figure 3 - A Model of the Factors Affecting Function Point Reliability

In our research we had two raters count the same systems and used variations on absolute

relative difference between counts as the measure for analysis. We define the magnitude

of the difference in counts between rater A and rater B as shown in equation 1 where the

absolute relative is a normalised difference between the two raters normalised by average

system size. We further refined this metric to the weighted absolute relative difference

WARD, where we separate out the effect of each of the internal components of the

function count so that errors in inputs for example, are not washed away by errors in

outputs which happens if they move in opposite directions.

IRaterAtr _ - Rater Btra, [

ARDtw-P(R_A;_'_B' = (RaterAtr p + RaterBtrp) / 2

m

WARD(I;./.EO.INQ.LIF.H;Rat_A. RatcrB)) m ARDb.. I x _EI(RamA'RaterB)
UFP(Rater A, RaterB)

EIF(Rater X. Rater B)
+ .., +ARDE_rx

UFP(RaIer A, Rater B)

Table 8 shows the analysis results for this and in this we see that the mean WARD for

these two raters is 55%. This suggests that the counting practice is relatively unstable

when looked from this perspective.

Hours Per
Project Rater A Rater B ARD WARD Effort Function Point
Number UFP UFP CA,_B).

Mean 302.8 337.1 0.31 0.55 1947 (7.50, 6.52)

SEW Proceedings

8

104 SEL-93-003

Further analysis of this data revealed that 68% of the variation between the two counters

could be attributed to rater interpretation of the specification or the application of the

counting standard to that specification. Some 32% of the difference could be attributed to

a simple error on the part of the rater.

4. Conclusions:

The following can be concluded from this study:

. In a pragmatic sense the relationship between a posteriori function points and a
posteriori effort is very strong for this organisation with an R 2 of .95 for the full data

set or .58 for the reduced data set. This suggests that function points could be used

effectively as a basis for software management in this organization.

. From a scientific perspective it appears clear that the function point metric has some

significant limitations. There is reason for concern about the function point metric.

The structure of the metric is such that the components are not orthogonal which

introduces issues concerning the structure of the metric. It is also of concern that the

addition of the function component complexity ratings does not add to the effort

relationship or the power of the effort explanation of the model. As this is counter-

intuitive it warrants further investigation.

° Inconsistency which has been observed in this study between the raters' function point

counts (58%) and the high component of that difference (68%) which can be ascribed

to either the function points standard or the requirements specification, suggests that

the function point counting or at least the base function counting needs to be

automated.

. Given the results concerning the strong relationships between the number of internal

logical files or data entities and effort, may well be possible that given further research,

that if a consistent relationship holds between data entities and effort than automated

size counting from data models may well be a fruitful area for further investigation.

5. References:

Albrecht, A.J. "Measuring Application Development Productivity", Share/Guide

Application Development Symposium, Oct, 1979.83-92.

DeMarco, T. (1982) Controlling Software Projects: Management, Measurement, and

Estimation, Yourdon Press, New York.

Evanco, W.M., Thomas, W.M. & Agresti W.W. "Estimating Ada System Size During

Development", Rome Laboratory Technical Report, RL-TR-92-318, New York,

December, 1992.

SEW Proceedings 105 SEL-93-003

Jeffery,D.R Low, G.& Bames,M. "A Comparison of Function Point Counting

Techniques", IEEE Trans. on S'ware Eng., May 1993.

Jones,T.C. "A Short History of Function Points and Feature Points", Software

Productivity Research, 1988.

Kitchenham, B & Kansala, K. "Inter Item Correlations Among Function Points", Proc

First International Software Metrics Symposium, IEEE computer Society, Baltimore,
May, 1993. 11-15.

10

SEW Proceedings 106 SEL-93-003

Specification Based Software Sizing:

An Empirical Investigation of Function Metrics

Ross Jeffery & John Stathis

University of New South Wales

P.OBox 1, Kensington, NSW 2033

Australia

NASA SEL Workshop 1993

Level-3 [ro,,_r_...,j.,,,

PoJVL8 _ Pzc_est._g

Co,npk_

A(li,_mc_r

14 G_l_al Appk:No_ &Eavimumemal Auri_u_

Level-2. - •

Level-l--"

/\ / /\ C*m_r
L A H L h H T_ A H L A H L A H we_u_

2 RossJeffe_ NA$ASELWorluhopI993

SEW Proceedings 107 SEL-93-O03

TABLE I

PROJECT SIZE AND DEVELOPMENT EFFORT DATA

No. of Projects

__ Project Size (UFP)

Mean Std. Range
Dev.

Development Effort (Hours)

Mean Std. Range
Dev.

17 551 923 38-3656 2093 3266 262-13905

3 ROSS Jeffery NASA SEL Workshop 1993

E
f
f
o

r

t

16OO0

14000

12000

10000

80OO

6OO0

4OOO

2OOO

0

0

o

o 0 o 0 o

lOOO

Project Size ('Unadjusted Function Points)

2000

4 Ross JefferyNA,_ SEL Workshop 1993

SEW Proceedings
108 SEL-93-003

E
f
f
o

r

t

16O00

1400O

12000

I0000

8OO@

600(_

2 o °o°°

0Y:
0 16oo 2_o 36oo 4o'oo

Unadjusted Function Points

5 Rosa JefferyNASA SF..LWorkshop 1993

TABLE II

COMPARISON OF PRE AND POST IMPLEMENTATION DATASET

Pre Implementation FP Post Implementation FP

No. Projects 17

Regression Equation effort = 914.6 + 3.7 * UFP

(UFP against effort)
R 2 _) 0.228 (0.05)

17

0.95

6 RassJeffery blA._ASF-.I.Work,chop 1993

SEW Proceedings 109 SEL-93-003

TABLE III

COMPARISON OF REDUCED AND FULL DATASET

Full Dataset Reduced Dataset

No. Projects

Regression Equation

(UFP against effort)
R2(p)

17

effort = 19221 + 3.45 * UFP

0.95(p < o.ool)

14

effort = 185.37 + 4.03 * UFP

o.58 (p< O.Ol)

7 Ross Jeffery NASA SEL Word.hop 1993

Study

TABLE IV

PREVIOUS STUDIES -UFP AGAINST EFFORT

No. of Unadjusted Function
Projects Points

R2 (p)

Albrecht and Gaffney, 1983
Kemerer, I987

Kitchenham and Kansala, 1993

Jeffery el= al., 1993

Jeffery & Stathis, Current Study

24 0.90 < 0.001

15 0.54 < 0.001

40 0A1 < 0.01

64 026 < 0.001

14 0.58 < 0.001

8 Ro_ Jeffery NA,Y_ SEL Work.shop 1993

SEW Proceedings 110 SEL-93-003

F

TABLE V

PEARSON CORRELATION COEFFICIENTS BETWEEN UFP ELEMENTS

Function

Point Element

External

Input
External

Output
External

I_uiry
External
Interface File

Logical
Internal File

Total

Unadjusted
Function

Point

i0.90

(p<O.OOl)
10.14

(n.s.)
0.93

(p<0.001)
-0.33

(n_.)
0.92

(p<0.001)

External Input External External External

Output Inquiry Interface File

-0.07

(n_.)
0.91

(p<O.O01)
-0.46

(..s.)
0.74 -0.06

(p<0.01) (n.s.)

-0.17

(n.s.)
0.22 -0.45

(n.s.) (n.s.)
0.90

(p<O.O0.1)

-0.33

(n.s.)

9 Ross Jeffet7 NASA SEL Workshop 1993

TABLE VI

PEARSON CORRELATION RF_,SULTS

FUNCTION ELEMENTS AGAINST EFFORT

Function Element R2 p

Logical Internal File 0.73 < 0.001

External Inquiry 0.63 < 0.001

External Input 0.37 < 0.001

External Output 0.03 n.s.

External Interface File 0.005 n.s.

Sum of Function Elements (UFP) 0.58 < 0.01

10 Ross Jeffery NASA SEL Work,shop 1993

SEW Proceedings 111 SEL-93-003

TABLE VII

PEARSON CORRELATION RESULTS

FUNCTION ELEMENTS (UUFC & UFP) AGAINST EFFORT

Level 1 Level 2

UUFC UFP

Function Element R 2 p R 2 p

Logical Internal Fde 0.75 < 0.001 0.73 < 0.001
External Inquiry 0.65 < 0.001 0.63 < 0.001
External Input 0.37 < 0.001 0.37 < 0.001
Extermd Output 0.04 n.s. 0.03 n.s.
External Interface File 0.002 n.s. 0.005 n.s.

Sum of Function Elements 0.56 < 0.01 0.58 < 0.01

i I Ross Jeffery NASASEL Wor_hop 1993

TABLE VIII

EFFORT ESTIMATE ARE t-TESTS FOR

UUFC AND UFP

Unweighted and

Unadjusted Function

Count (UUFC)

Unadjusted Function

Point (UFP)

No. of Projects Mean Std. Mean Std. t p
ARE Dev. ARE Dev.

17 0.53 0.64 0.51 0.60 0.70 0.492

12 Ross Jeffery NASA SEL Workshop1993

SEW Proceedings 112 SEL-93-003

Rater A

mapping

p

Rater B

mapping

Objective

mapping

according to
method

I 1 I1 I \ _
I I I I

iiitl I I
3 4 5 6 7 10 15

b'ilm,¢ 11. Mapping a ._t of Ftmztio_ to Func:ion Point Units

Set of functions in a

system (differring

levels of granularity)

Set of function points

indentified by raters

Function point
units

13 Ross Jeffery NASA SEL Workshop 1993

t
Rater Interpretation of

System/Spccificatio/

System ,4"

Specification _"

_ Stage in LLfecycleGrataularity levd

Ambiguity m specification

Rater

Applicability of

method for System

F

Experience

Organisational
Differences

Rater interpretation of

s in counting method

Function Point

Method

---- Different Methods
Ambiguous or
incomplet_ standards

l;'ilw'c /l/ . A Mode! _tht I;'acl_n Afftctia| Fw_'flo4 .Po_ P.tliabi/it7

14 Ross leffe_ NASA SEL Wori_thop I99.J

SEW Proceedings 113 SEL-93-003

I 19 System 1

Specifications I

F'qttr¢ "all-Re_tarch Desila _t CurrentStud?

_1 Rater A

"1

) I Rater B

15 Ro,_ Jeffery NASA SF.£ Work.shop1993

Rater AOFP - Rater BUFP]

AR'DuFP (RaterA;RaterB) = (Rater ALrv-P + Rater Btm-p) / 2

= 31%

W/Id:?_(EI-EO.INQ.LIF.EIF; Rater A, Rater B))

= ARDEs x EI(Rater A, Rater B) + ...

U'_(ma_ A,Pater _)

ElF(Pater A, Rater B)
+ ARDEn: x

UF--P(Pa_A,Pater 13)

= 55%

16 Ross JefferyblA_ $EL Work,shop 1993

SEW Proceedings 114 SEL-93-003

MEAN ABSOLUTE RELATIVE DIFFERENCE (MARD)

UNWEIGHTED AND WEIGHTED FUNCTION POINTS

Total External External External External

Function Input Output Inquiry Interface File

Point Count

(UUFC)
(UFP)

Logical
Internal File

Unweighted 0.33
Function Points

Weighted 0.31
Function Points

0.76 0.69 0.65 0.54 0.45

0.67 0.70 0.62 0.54 0.43

17 Ross Jcffcry NASA SEL Workshop 1993

1.Strong a posteriori function points and a posteriori effort relationship for this

organisation - R2 of 0.95 for the full data set or 0.58 for the reduced data set.

2.The function point metric has some significant limitations.

Components are not orthogonal

Function component complexity ratings does not add to the effort explanation

of the model.

3. Inconsistency has been observed between the raters' function point counts

(58%)

A high component of that difference (68%) can be ascribed to either the

function points standard or the requirements specification

4. Automated size counting from data models may well be a fruitful area for

further investigation.

18 RossJefferyNASA SEL Workshop1993

SEW Proceedings 115 SEL-93-003

N94- 36489

I34.?7

Software Forecasting As It Is Really Done:
A Study of JPL Software Engineers

Martha Ann Griesel
Jairlls M. Hihn

Kristin J. Bruno
Thomas J. Fouser

Robert C. Tausworthe

Jet Propulsion Laboratory/California Institute of Technology
4800 Oak Grove Avenue

Pasadena, Ca. 91109

Abstract

This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally
funded research task to study the costing process and parameters used by internally recognized
software cost estimating experts. Protocol Analysis and Markov process modeling were used to
capture software engineer's forecasting mental models. While there is significant variation between
the mental models that were studied, it was nevertheless possible to identify a core set of cost
forecasting activities, and it was also found that the mental models cluster around three forecasting
techniques. Further partitioning of the mental models revealed clustering of activities, that is very
suggestive of a forecasting lifecyle. The different forecasting methods identified were based on the

use of mul.tiple-decompo, sition steps or multiple forecasting steps. The multiple forecasting steps
mvowea elmer rorecaslang sottware sLze or an additional effort forecast. Virtually no subject used
risk reduction steps in combination. The results of the analysis include: the idenlLfication of a core
set of well defined costing activities, a proposed software forecasting life cycle, and the
identification of several basic software forecasting mental models. The paper concludes with a
discussion of the implications of the results for current individual and institutional practices.

1.0 Introduction

In today's cost constrained environment, cost estimation is becoming an integral part of the
engineer's job. Therefore, tools and databases are needed that are consistent with engineering
based costing methods. Previous surveys have shown that engineers in general do not use tools

and databases, finding them inconsistent with their intuitive engineering-based costing methods, in
particular a_aalogy_.related.techniques. (Hihn and Habib-agahi, 1991) This lack of correspondence

een sottware zorecasung practaces and available computer-based tools prompted the current
research.

To be able to design and develop tools and databases that are more consistent with engineering-
based costing methods requires that there exist a relatively small number of costing activities and
that these activities are primarily used in a few well defined sequences. A sequence of activities is
what makes up a costing method or, in cognitive psychology terminology, the cost forecaster's

mental model. The existence of a small number of basic forecasting mental models requires that the
mental models depend on high-level domain and environment conditions, rather than personal
style and low-level domain details.

To the best of the authors' knowledge, there have been only three attempts to develop such mental
models of the forecasting process that are documented in the literature: Vicinanza et. al. (1991),
Howard (1992), and Hihn eL al. (1993).

SEW Proceedings 116 SEL-93-003

Vicinanza et. al. completed an exploratory study of the methods used by experts. In Vicinanza et.
al. five respondents who ranked a series of cost drivers and then estimated the development effort
that would be required for 10 projects. The forecasters' methods were categorized into four
groups: algorithmic initial condition, algorithmic effort estimate, analogical initial condition, and
analogical effort estimate. For a method to be algorithmic the forecaster had to mention and use
productivity figures. For a method to be analogic_ the forecaster had to mention a reference
project. Four of the estimators used an algorithmic approach and only one used analogy. Vicinanza
et. al. propose a logic flow (mental model) for algorithmic and analogical forecasting (see Figure 1
for the analogy model). Given their simple categorization scheme it is unclear how they derived
their mental model. Also, the experimental design required that the engineers use COCOMO cost
drivers (Boehm, 1981) and function point descriptors (Albrecht and Gaffney, 1983), neither of
which may have been natural to them; and the terms used in the proposed mental models are neither
goals nor the vocabulary that are commonly used by software engineers.

Determine Rde_mt Project

They Sugg_-_',_

Past Project/

Yes

Adjust Estimate based
cqaResults of'Rmming"
the Rdel"eat Project with
Feature Value

FILTERUSERSIDEMANDS

GANI SYSTEM [i

TO OBTAI]qWORKING _---.._ GENERATE THERFSII_AL

SYSTEMM

[ASSIGNI_ EFI_T

MAKEA RISKANALYSIS [

Figure 1 : Abstraction of
Analogical-Estimation Strategy
from Vicinanza et. al. (1991)

Figure 2 :
Estimation

A Bottom Up Approach to
from Howard (1992)

Howard (1992) reports the results of two surveys on software cost estimation practices for
standard information systems such as a banking transaction system. Approximately 50

SEW Proceedings 117 SEL-93-003

observations were collected using a survey form. Twelve observations were collected using semi-
structured face-to-face, interviews based on a case description, given to the subjects before the
interview. The main objective of the research is to study how cost estimates are developed in
group settings. The objective of the reported portion of the research task was to develop a mental
model of the processing steps that estimators follow that could be used to support the study of
group cost forecasting. A very high level model with about 20 possible steps based upon cognitive
processing theories was proposed. Figure 2 illustrates the mental model of individuals applying the
"bottom up" process. Interestingly, aggregation was never mentioned, even though "functional
breakdown into components" is explicitly shown. The model proposed is intuitively appealing.
However, the respondents provided quite generic responses in describing how they normally do
cost estimating. Howard reports this is because the case example was found to be too poorly
defined. Verbal reports of this type are well known to lead to biased, and very likely, inconsistent
results [see Ericson and Simon, (1984)].

In both of the papers described above, the bases by which the proposed software forecasting
mental models were derived is not explained. Howard followed some basic cognitive psychology
techniques, but it was not clear that they were derived by a repeatable analysis. A significant
problem, from the perspective of identifying a more detailed picture of the underlying mental
model, was that most of what distinguishes an expert from a novice is in how they generate and
"factor residuals" or, in other words, incorporate their cost drivers and adjustment factors.

Hihn et. a1.(1993) attempt to address these problems by using a more precise data capture and
analysis technique. In Hihn et. a1.(1993) a combination of Protocol Analysis Ericson and Simon
(1984) and Markov process modeling Papoulis (1991) is shown to be a viable technique for
capturing the engineers' cost forecasting mental models in a repeatable manner. With this
technique, Protocol Analysis was used to extract a common forecasting vocabulary across
engineers and application domains by translating the engineers' self reports into verbal protocols,
and Markov analysis was used to identify the common transitions, or steps, in the engineers'
mental models. Seven primary cost forecasting activities were identified that clustered into 6
different, but not mutually exclusive, sequences (mental models) using this analysis technique.
The 7 activities that were identified are requirements identification, attribute identification, attribute
application, decomposition, estimation, aggregation, and adjustments. The definition of these
terms are reviewed in Section 3.0. The original clusters of sequences were derived based upon
purely data descriptive criteria. For example, a sequence that contains a single decomposition and
single estimation activity is in a different sequence cluster then a sequence with multiple
decomposition and multiple estimation activities. A very simplified example of the type of mental
model this approach produces is displayed in Figure 3.

In this paper we are reporting an extension of these results that incorporates an increased number
of cost forecasting activities and the identification of activity sequences (mental models) that
correspond to software domain and development environment criteria. In addition, as part of
identifying a number of basic mental models, it was possible to derive the components of a
software cost forecasting life cycle based upon actual costing behavior.

2.0 Sample Definition and Institutional Background Information

Jet Propulsion Laboratory (JPL) is a Federally Funded Research and Development Center run by
the California Institute of Technology under a government contract with National Aeronautics and
Space Administration. As a national laboratory, it performs re.search and development activities in
the national interest, primarily the development of robotic spacecraft for interplanetary studies. In

SEW Proceedings 118 SEL-93-003

addition, a portion of JPL's budget is supplied by non-NASA organizations such as the
Department of Defense.

] Attribute Identification] -_ [Requirements Identification i"_'"_

[Etfo_tE_ti_au _ [Size Estimate I

__t___A _ _ Applicati. °n]

Figure 3 : Example of a CER-Based Forecasting Mental Model

A survey was conducted of the technicalstaff that had experience forecasting software
development costs during the summer and fall of 1989. Over 185 software engineers were
contacted for participation in the original survey. Of the 185 contacted, over 100 were identified
who estimate effort, size and/or cost for software tasks. Of these, 83 were willing to complete a

questionnaire on current software cost estimation practices. Of these, 28 responses provided
sufficient information for use with the current analysis. For a detailed discussion of how the

original data was collected see Hihn and Habib-agahi (1991).

The original purpose of the survey was to study the ability of software engineers to estimate effort
and size given an architectural design document. In addition, the survey included a brief
description of the typical approach each estimate used. The verbal protocols describing the cost
forecasts used in the study were made during the system functional design and software
requirements analysis phases (see Figure 4). Since data collected in this manner is not strictly
appropriate for Protocol Analysis, conclusions drawn from this secondary analysis of the data may
be questionable.

S ystera
Functional Desi

.war_

Software Design

Cost Forecast

Figure 4: Timing of Cost
Relative to

& Test

S ys texn
ration & Test

Forecasting Verbal Protocol Collection
the Software System Development Lifecyle

SEW Proceedings 119 SEL-93-O03

Table 1: Hypothetical Software Cost Forecasting Activities

Activity Definition

The obtaining or retrieval of information.Requirements
Identification

Attribute
Identification

Decomposition

....Esti-maiion

Attribute

Application

Aggregation

Adjustments

Evaluation

Key vocabularywordsarc:readrequirements,talktoexlxa'ts,reviewrequirements,and obtain

requiremoats.

Attributes are key aspects of a task that are used in forming the system mental model and are

also used as analogy discriminators and cost drivers. This is one of the main products of the
analysis of the requirements. Attribute identification is generally described by the basic
activity that was undertaken with the result that precise attributes are rarely sl3edfied at this
poinL These consist of both product and process attributes.

Key vocabulary words are: i.dentify., anderstand, analyze, and include.
The breaking dora of a software entity (system, subsystem, etc.) into smaller and simpler

pieces. The types of decomposition that have so far been identified are:
functional,
work breakdownstructme(WBS),

new vs old system components

requirements.

Key vocabulary words are: breakdown (functions), identify sub-ta._,s, develop WBS.
The prediction of future cost and other key project management dimensions. Three types of
forecasts were reported: size, effort, and COSL

Estimation was further divided by type of technique used:

analogical
expert judgement
explicit analogy

algorithmic
rulesof thumb

cost estimating relationships

Key vocabularyw_Js are:use (analosy,ruleofthumb),estimate(SLOC, effort),and cost

The explicit use of the system attributes to discriminate between systems for purposes of
analogical comparison or as cost drivers when using an algorithmic approach. Identification
primarily depends upon specific mention of attribute.

While there is less homogeneity in the vocabulary some common phrases are: adjust, use

(fog factor), add (chan_e, fog factor, etc.), multiply 7
The combinationofforecasted valuesassociatedwiththesystempiecesproducedby

decomposition.

Key vocabulary words are: add-up, and run SRM (JPL _ce management tool)

Multipliers used independently of the system being estimated. Usually applied at a higher
level then attributes. Consist of adjustments for purposes of risk, scaling, and bias(error).

Key vocabulary word is: add iL--ment.

Any activity performed as part of checking that a forecast meets certain criteria. Most often

this is the comparison of effort or cost estimate and is the last activity completed. Can also
be a design-to-cost activity.

Key vocabulary word is: compare to (cost of last task, budget).

SEW Proceedings 120 S EL-93-003

3.0 Cost Forecasting Activity Definitions

Table 1 contains a list of the software forecasting activities and sub-activities that were identified in

the process of converting the verbal protocols into data. These activities constitute an abstract
vocabulary that was used to describe the forecasting process. The activities and their definitions
were derived from the literature, JPL experiences documented in Lessons Learned, and the

personal costing experiences of the authors, then.mod!fied by the data available in .the verbal
protocols to maximize the scoring of the lingmsttc umts into one ana omy one scoring category.
The level of granularity of the activities determined the information obtainable from analysis of the
forecasters' activity sequences. An activity set defined at too coarse a granularity can not

distinguish between sequences and _1 protocols will appear identical. An. activity set de fnm.,ed.with
to much detail, at too fine a granularity, max.es evew protocol appe..ar..muque..Hen_ .tae mrym. g
the right granularity, or level of abstract.ton, ts crucial. For a detatteo aescnpuon oI me mapping
of the vocabulary used in the verbal protocols to these activities see Appendix A in Hihn et. al.

(1993).

The activities that have been added or changed since the analysis documented in Hihn et. al. (1993)
are Evaluation and a re-grouping of the estimation sub-activities. The Estimation activity has been
dis,aggregated into Size Estimation, Effort Estimation and Cost (dollar) Estimation. A distinction
has also been made between Formal and Informal Effort Estimation. Formal Effort Estimation

corresponds to the use of a CER or an analogical reference to a specific task or cost or size
database, and Informal Effort Estimation corresponds to the use of a rule-of-thumb or any form of

expert (engineering) judgment. When Effort Estimation is referred to as part of a specific mental
model, it always should be understood to mean Informal Effort Estimation. The addition of the
Evaluation activity to the activity list is the most fundamental change because it is a completely new
activity. The specific activities that are used for describing forecasters mental models in the current
analysis are Requirements Identification, Attribute Identification, Attribute Application,
Decomposition, WBS Decomposition_New/Old Decomposition, Size Estimation, Cost Estimation,
Informal Effort Estimation, Formal Effort Estimation, Aggregation, Adjustments, and Evaluation.

4.0 Software Forecasting Activity Analysis

The cost forecasting activities were analyzed several different ways in order to discern if there were

any well defined patterns in the data. The purpose in this part of the analysis was to see if the
frequency of use of an activity could be explained by s0_me aspec, t of the system, en .viro.nment, or
an overall method that was being used. The most significant retationship we iouna ts oasptayea m
Table 2. For additional analysis of the activities see Hihn et. al. (1992). Some activities such as

requirements identification and attribute identification were used by all the engineers interviewed.
Some activities were used infrequently, e.g. adjustments and evaluation. There were three
activities that were found to def'me relatively distinct sub-populations and correlated with the type

of system being developed. These were the use of New/Old decomposition, size estimation, and
the execution of a second effort estimate, which we shall call an assessment I. The other category
consisted of cases where no pattern of activity use could be discerned. If a protocol used both a
size estimate and an assessment it was counted twice. As will be seen in Section 6, the occurrence
of these activities drives the whole sequence of activities.

The different types of software systems identified were rapid prototyping, formal military, research
and development (R&D), evolving ground systems, and flight software. At JPL, rapid protoyping
is used primarily to support military systems that automate.Support _tivities and also have vague
requirements. There is a delivery at teast once per year, warn extensive user evaluation.

1. As will be seen in section 6 the use of multiple effort estimation activities was used to

identify a Cost Assessment life cycle phase.

SEW Proceedings 121 SEL-93-003

Documentation is kept to a minimum. The requirements are revisited with every delivery and a
new rank ordering of the requirements is produced. Formal military systems follow DOD-STD-
2167A. The R&D tasks cover a wide range of types of software from artificial intelligence to
human-computer interface to network protocols. The evolving ground systems consist of
software that supports the Deep Space Network and Space Flight Operations Center. Flight
software consists of on-board or flight support software, such as software that helps to develop the
navigation commands. Both ground and flight systems follow the JPL Software Management
Standard. Our analysis indicates that forecasters working with Rapid Prototyping systems use
assessment more extensively, Flight and Formal Military systems use size estimates more

extensively, Evolving Ground Systems use New/Old Decomposition more extensively, and the
R&D systems are uniform across the different key activities. The implications of these results am
that, while there is diversity in engineering-based costing approaches, there is also a clustering
around a few basic techniques.

Table 2: Sample Breakdown by Type of System and Forecasting Technique

System

Rapid
Prototype
Formal

Military
Research

Evolving
Ground

System
Flight
Technique
Percentage

New/Old

Decomposi-
tion

Assessment Size Estimate

20 % 60 % 20 %

20 % 80 %

18%

43 %

18%

21%

25 %

26 %23 %

27 %

14%

75 %
33 %

Other System Type
Percentage

13%

13%

37 % 28 %

21% 36%

10%
18% 100 %

5.0 Software Forecasting Life Cycle

As the focus of the analysis shifted from a static, or snapshot, view of what activities were
verbalized to a dynamic view of the data, or time sequencing of the activities, the variation in the
mental models due to personal style De_came even more apparent. The result is that most summaries
of the mental models basically produced a blur. This is shown very well by the graph in Figure 5,
which maps the sequence of activities to the order that they were verbalized.

Thus, we needed objective criteria by which to partition the set of verbal protocols to determine if
there was any clustering. The criteria could either partition the cases or partition time. As
discussed above (see Section 1), a number of approaches were tried. These were refined as
described in Section 4 to actually correlate the types of software systems with use of specific
decomposition and estimation activities. However, this was not enough, as analysis of the
probability transition networks revealed the existence of cyclic behavior. Breaking up these cycles
required that the mental models be partitioned over time as well. One systematic way to def'me a
partitioning over time is to specify a forecasting life cycle. Four phases were initially identified;
Problem Def'mition, Problem Analysis, Cost Determination and Cost Assessment. Due to the
nature of the verbal reports, it was not possible to distinguish between the fast two phases, so for
purposes of analysis they were combined into a single Problem Definition and Analysis phase.

SEW Proceedings 122 SEL-93-003

Figure 5

I_r _ ', /: ",,/:

]. 2 3 4 5 6 7 8 9 10 I1

Ti_ S_ClU _t-t_B

: Graphical Summary of Time Sequence of Activities
(Hihn et. al., 1993)

Table 2: List of Activities by Cost Forecasting Phase

Problem Definition

and Anal) sis
Attribute Identification

Attribute Application
Requirements Identification
Decomposition

WBS
New/Old

Cost Determination

Attribute Identification

Attribute Application
Estimation

Size
Effort
Cost

Aggregation
Adjustment

Cost Assessment

Attribute Application
Estimation

Informal Effort
Formal Effort

Evaluation

The assignment of activities, in the sample, to the phases is displayed in Table 2. The assignment
is based on the protocols that were available. It is expected that the number of activities, with
further studies, could increase in each phase due to access to more detailed protocols. Some
activities, such as attribute Identification and Application, are ubiquitous, appearing in every phase.
Other activities appeared only once, for example, Requirements Identification and Decomposition
appeared only as part of the Problem Definition and Analysis phase. Some care had to be taken in
determining when a verbal report transitioned between phases. The transition between Cost
Determination and Cost Assessment was signalled by phrases such as "and then we did a backup
estimate" or "compared our estimated cost to what it cost last time." The transition between the
Problem Definition and Analysis phase and the Cost Determination phase was signalled when any

type of estimate was mentioned. The one problem that arose in the verbal reports related to
Attribute Identification that supported both Decomposition and Estimation activities. When
Attribute Identification supported Decomposition, it was recorded in the Problem Definition and
Analysis phase; when it supported estimation, it was recorded in the Cost Determination phase.
When Attribute Identification occurred on the boundary between the phases, it was recorded as

part of the Problem Definition and Analysis phase. In only one case was there compelling evidence
to do otherwise.

Figure 6 displays how this costing life cycle relates to the software development life cycle for the
verbal protocols used for this analysis is displayed in Figure 6. Cost estimates were made
throughout the life of a software development task. Clearly, the amount of effort put into the
different cost forecasting phases changes over the development life cycle. It is believed that, in the

SEW Proceedings 123 SEL-93-O03

early stages of the development life cycle, more time tends to be spent in Assessment due to a lack
of information required to do a comprehensive detailed cost estimate. The main changes in our
model with respect to the Problem Definition and Analysis phase should be in the level of detail in
the decomposition. The overall result should show a decrease in time spent in the first phase
because each re-estimate builds on the previous one. The current data does not provide sufficient
information to test these hypothesis.

Syslem I
Requhement s Analysis [

System

Ftmc_nal Design

_ roblem Definition& Analysis Paase

CCost Determination Phase _

(Cost Asseslmnt Phase)

on

Software

st

System

Integration & Test

Figure 6 : Forecasting Life cycle Compared to the Software
Development Life cycle

6.0 Software Forecasting Mental Models

The forecasters' mental models can be represented, using Markov process modeling, by activity
flow diagrams. It was possible to identify four mental models that partitioned the data. The
activities and their wansitions for each mental model are shown in Figures 7 through 11. Figure 7
shows the mental model of those who always used a New/Old Decomposition to support their cost
estimate. Figure 8 shows the mental model of those who always used a size forecast to support
their cost estimate. Figure 9 shows the mental model of those who always used an assessment
effort estimate to support their cost estimate. Figure 11 shows the mental model of those who used
both size and assessment. Figure 10 shows the activities and sequences for everyone in the sample
who had a cost assessment phase. The thickness of the line indicates the number of transitions
between activities, making it easier to visually discern where the major activity transitions occur.
The thickness of the line is 2 pixels for each observation.

SEW Proceedings 124 SEL-93-003

q

Z

©

c_

O

O
r,j

ov,_l

©

0

_iiiii_iiiiiiiiiii
iiiii_iiiiiiiiii!

iii!i_iiiiii!i!i_

SEW Proceedings 125 SEL-93-003

0

N

r_

i

SEW Proceedings 126 SEL-93-003

SEW Proceedings 127 SEL-93-O03

©

<

0
r,j

I\

0

F

<

SEW Proceedings 128 SEL-93'003

cD

0

cD

_D

"2
cD

cD

m m

\

sew Proceedings 129 SEL-93-003

Note that in Figures 7-9 and 11 the Effort Estimate, Aggregation, and Cost Estimate activities are
shaded in grey because there was some difficulty in discerning the actual sequence of these
activities. This was primarily due to the way in which the System Resource Management (SRM)
Tool, a cost accounting tool, was used. In many cases the respondent simply said and then "run
an SRM". This tool can be used in a variety of ways, however, because it aggregates effort levels,
adds planned procurement expenditures, and calculates overhead rates. It was frequently not clear
how detailed the work was in determining the effort levels and procurements. Therefore, one level
of interpretation of these activities in the mental models was simply into and out of the box that
represents the combination of Effort Estimate, Aggregation and Cost Estimate.

It can be seen that, while there is a variety of activity sequences for each cost life cycle phase, there
is also a clear dominant route. In Figure 7, the New/Old Decomposition Mental Model, the route
was Requirements Identification, Attribute Identification, Decomposition (usually functional),
New/Old Decomposition, a branch between exiting to the Cost Determination Phase or repeating
Attribute Identification, finally exiting to the next phase. The Cost Determination Phase is less
clear but the most likely route appears to have been: Effort Estimate, Attribute Application,
Aggregation, Cost Estimate, Stop.

The dominant routes for the other mental models,while having similarities, do differ. Table 4
presents a summary of the sequence of activities for the main paths of the four mental models.
Two interesting behavior patterns appear: the increased use of attributes among those using
New/Old Decomposition and the lack of a Decomposition activity on the dominant path for those
using only Assessment. The latter most likely occurs because those who reported only using
Assessment did not have sufficient acc,,ess to information: either because these were done as early,
high level estimates or cost estimates for R&D tasks. In the New/Old mental model, the increased
use of Attribute Identification reflects the impact of grouping functions by degree of inheritance.
This is important because how the effort estimate was made depends upon the degree of experience
of those developing the functions.

Table 4: Activity Sequence Summary of Major Activity Transitions
for Forecasting Mental Models

Activity

Requirements
Identification

Attribute
Identification

Decomposition
New/Old

Decomposition
Size Estimation

Effort and Cost
Estimate
Attribute

Application
Assessment

2,5

3
4

6,8

7

9

2

3
4

5

Assessment

3

4

5

Size and
Assessment
A B

1 1

2 2

3 3

4 4
5 6

5

6 7
7 8

New/Old Size

2

A cursory review of the different mental models revealed to us that there exist substantial personal
style variations because there seems to be no one way to get a job done. However, there were
dominant pathways, and the mental models are clearly different. We interpret the primary

SEW Proceedings 130 SEL-93-003

differences in the mental models as representing the different ways that forecasters attempted to
reduce risk in their cost forecasts. The risk reduction techniques were based upon the use of either

multiple-decomposition steps, in this case additional New/Old Decompositions or multiple

forecasting steps. The multiple forecasting stepsinvolve.ei.ther forecasting.SOfs%oaor_ size or an
additional effort forecast (Assessment). very iew used mese riSK reOUCUOn soep in

combination.

7.0 Summary and Conclusions

A viable process for capturing and analyzing the mental models software engineers use for cost and
size forecasting has been demonstrated. Our analysis demonstrates the existence of three
interdependent cost forecasting life cycle phases. The data analysis of the last few sections
provides a basis for us to begin to identify where software engineers can best use supporting
methods, tools, and data. Unfortunately, the currendy available costing methods and tools only

support the Cost Determination phase. Methods, tools and data are needed that will:

support sequential estimation steps

support different techniques, save and assist in comparing results

store design information and supporting estimates

provide assistance in identifying task analogies

In addition the idiosyncratic nature of the individual protocols indicates that supporting methods
and tools need to capture and record the steps followed and information used by the forecaster.This
will provide a record of the assumptions and context within which the estimate was made, and
should improve the quality of updated estimates.

Finally, previously published analysis of this data showed that for experienced forecasters, those
who forecast frequently (at least every.6 months) on the average forecast effort 12% high, whereas
those who forecast less frequently (at greater than 6 month intervals) on the average forecast effort
44% low. This suggests examining the mental models of those activities and transitions most

dependent on memory and determining corrective support methods, tools and data.

SEW Proceedings 131 SEL-93-003

forecasts. The risk reduction techniques were based upon the use of either multiple-decomposition
tePs, in. this case.addition_ New/Old Decom_positions or multiple forecasting steps. The multiple

as tmg stel_, revolve either fo .recasting software size or an additional effort forecast (Assessment)
cry Iew usea mese nsz reouction steps in comoination.

7.0 Summary and Conclusions

A viable process for capturing and analyzing the mental models software engineers use for cost and
size forecasting has been demonstrated. Our analysis demonstrates the existence of three

interdependent cost forecasting life cycle phases. The data analysis of the last few sections provides a
basis for us to begin to identify where software engineers can best use supporting methods, tools, and
data. Unfortunately, the currently available costing methods and tools only support the Cost
Determination phase. Methods, tools and data are needed that will:

support sequential estimation steps

support different techniques, save and assist in comparing results

store design information and supporting estimates

provide assistance in identifying task analogies

In addition the idiosyncratic nature of the individual protocols indicates that supporting methods and
tools need to capture and record the steps followed and information used by the forecaster.This will
provide a record of the assumptions and context within which the estimate was made, and should
improve the quality of updated estimates.

Finally, previously published analysis of this data showed that for experienced forecasters, those who

forecast frequently (at least every 6 months) on the average forecast effort 12% high, whereas those
who forecast less frequently (at greater than 6 month intervals) on the average forecast effort 44% low.

This suggests examining the mental models of those activities and transitions most dependent on
memory and determining corrective support methods, tools and data.

References

Albrecht, A. and J. Gaffney, "'Software Function, Source

LOC and Development Effort Prediction, A Software
Science Validation," Transactions of Software

Engineering, Vol. SE-9, No. 6, November, 1983,
p. 639-648.

Hihn, J. and Habib-agahi, H., Cost Estimation of

Software Intensive Projects: A Survey of Current

Practices, Proceedings of the 13th International

Conference on Software Engineering, May 17-19,
1991, pp. 276-287.

Boehm, B., Software Engineering Economics,
Prentice Hall, 1981.

Ericson, IC and Simon, H., Protocol Analysis, M1T
press, 1984

Hihn, J, Cn'iesel, A., Bruno, K, Fowser, T., and

Tauswofthe, R., Mental Models of Software Forecasting,
Proceedings of the 15th Annul Conference of

the International Society of Parametric

Analysts, San Francisco, Ca, June 1-4, 1993,
pp. K2-K28.

Howard, M., _ Creation of a Research Model for

Estimation", Proceedings of the European
Software Cost Modelling meeting 1992
(ESCOM), Munich, germany, May 27-29, 1992.

Papoulis, A., Probability, Random Variables and

Stochastic Processes, Mcgraw-Hill Inc, 1991.
Vicinanza, S., Mukhopadhyay and Priemla, M., Software-

Effort Estimation: An Exploratory Study of Expert
Performance, Information Systems Research, vol

2, December 1991, pp. 243-262.

SEW Proceedings 132 SEL-93-003

Software Cost Forecasting As It Is Really
A Study of JPL Software Engineers

NASA Goddard Space Flight Center
SEL Software Engineering Workshop

December 1-2, 1993

Done:

Martha Ann Griesel
Jairus M. Hihn
Kristin J. Bruno

Thomas J. Fouser
Robert C. Tausworthe

-IPL

Jet Propulsion Laboratory
California Institute of Technology

Pasadena, California 91109

Why Should We Care
How Experts Forecast Software Costs?

In today's cost-constrained environment, cost estimation is an integral
part of the engineer's job

Therefore, tools and databases are needed to support integrating cost

analyses with traditional engineering practices

Previous surveys have shown that engineers in general do not use
tools and databases they perceive to be inconsistent with their
software cost forecasting mental models

The purpose of this study was to determine the requirements for
methods, tools and databases that are consistent with engineers'
software cost forecasting mental models

MAG/'JMl-I/_vembea" 29, 1993

SEW Proceedings 133 SEL-93-003

Questions That Needed to be Answered

Is there a set of well-defined software cost forecasting activities?

Do these activities combine into a small number of well-defined
mental models?

To what degree are differences in the mental models dependent upon
personal style, problem domain, and environment?

Do the different mental models fit within a single software forecasting
lifecycle?

How can a better understanding of existing software cost forecasting
practices improve the implementation of those practices?

Gc.rt,-_Jl_LF_ove_ber 29, t993

Background

Literature on mental models of forecasting is sparse:

results are not repeatable

previous studies support the assumption that there are a small
number of basic activities

Previous work by the authors identified more rigorous methods of
data capture and analysis

Cognitive Psychology provides a method of data capture
(Protocol Analysis)

Stochastic processes provide a method of analysis
(Transition Probability Matrices)

MAG/JMH/,Jl_.Jl4ovember 29, 1993

SEW Proceedings 134 SEL-93-003

Background (Cont.)

The current analysis uses data that existed from a previous study

We have been able to identify 28 observations that provide sufficient
detail for analysis

Respondents types and number of years of software experience varied

Protocols reflect forecasts made during either System Architectural
Design or Software Requirements Analysis

MAG/JldH/.ll_l./Novembcr 29, 1993

Forecasting Activities

Requirements Identification

Attribute Identification - People, Product, Process

Attribute Application - People, Product, Process

Decomposition - WBS, New/Old, Functional, Requirements

Aggregation

Size Estimation - Expert Judgement, Analogy, Rules of Thumb, CER

Effort Estimation - Expert Judgement, Analogy, Rules of Thumb, CER

Cost Estimation - Generic, SRM

Adjustment - Risk, Scaling, Bias

Evaluation

MAG/JMI._vcraber 29, 1993

SEW Proceedings 135 SEL-93-003

An Example of a COCOMO Software Cost Forecasting Mental Model

[Identify Attributes I_" [Identify Requirements [_

Activity Clustering and Differences

Sample Breakdown by Type of System and Forecasting Technique

System

Rapid
Prototype
Formal
Military
Research

Evolving
Ground
System
night
Technique
Percentage

New/Old

Decomposi-
tion

20%

Assessment Size
Estimate

60_ - 20 %

Other

20% 80 %

18 % 18 % 27 % 37 %

21%21%43 % 14 %

25 % 75 %
23 % 26 % 33 °k 18 ok

System
Type

Percentage
13%

i3%

28 %

36%

10%
100%

Sample Size equals 28, Due to use of multiple techniques total count is 39.

ldACCJl_ll/,JlatJl_r_ml_t 29, t993

SEW Proceedings 136 SEL-93-003

Scope of the Current Software Cost Forecasting Life.cycle
Relative to the Software Lifecycle

Requirements Analysis

System
FunctionalDesign

(Problem Definition !& Analysis Phase

(Cost Determination Phase

Cost Assesment Phase

Software
& Test

System

MA_D_R-1/Jl_._lo_.mbe_29, 1993

Problem Definition and Analysis Phase

New/Old Only

AttributeIdentification
Requirements Identification

Decomposition]

New/Old

t Detetminalion

SEW Proceedings 137 SEL-93-003

Problem Definition and Analysis Phase
Size Forecasts Only

Attribute Application

Decomposition

@ost Determination)

Problem Definition and Analysis Phase
Size and Assessment Forecasts

[Attribute Identification Requirements Identification I

Decomposition J

@ost Determination_

SEW Proceedings 138 SEL-93-003

Problem Definition and Analysis Phase
Assessment Forecasts Only

r

Decomposition

Cost Determination

Cost Determination Phase
New/Old Only

C Problem Definition/Analysis)

[Attribute Identification]

Attribute Application

SEW Proceedings 139 SEL-93-003

Cost Determination Phase

Size F_rccasts Only

C Problem Definition/Analysis)

Aggregation Cost Estimate] Attribute Application]

Adjustment

Cost Determination Phase
Assessment Forecasts Only

C Problem Definition/Analysis)

I Aggreg ati°n ['_k _l- - I] AttributeA lication
' / _t.:ost l=stirnate i i PP]

\

SEW Proceedings 140 SEL-93-003

Cost Determination Phase
Size and Assessment Forecasts

Problem Definition/Analysis
[Attributeldentification]

Size Estimate

Effort Estimate

Cost Estimate

k , _Assessment)

Attribute Application

Cost Assessment Phase

Informal Effort Estimate [

/
Attribute Application I_-q Formal Effort Estimate

Evaluation

SEW Proceedings 141 SEL-93-003

Conclusions

Expert forecasters use simplification in the face of complexity

86 % only use one technique to reduce cost forecast risk

more detailed decompositions

more detailed forecasts

they keep cost techniques simple and use only a few cost drivers

Personnel Quality, Complexity, Language

Consistent with Cognitive Psychology findings in other fields

MAO'_IH/_rNov_rnber 29, 1993

Conclusions

Experts tend to use techniques based on domain knowledge
and rules of thumb

single domain experts generally get into
detailed forecasting quickly

multiple domain experts do
more abstract or generic forecasting

Design-To-Cost differs in that

Attribute Identification is more likely to be used as a first step

forecasts are iterated based upon cost-budget comparison

MACdIM_.ll_._ovr.mbe_ 29. 1993 10

SEW Proceedings 142 SEL-93-003

Summary

Spanning the Mental Model Problem Space

A

P
P
r

o

a

c

h

o

f
Cost Drivers

lVlAG/JMH/,dlll_./November 29, 1993 11

SEW Proceedings 143 SEL-93-003

- N94-36490

D-]3 Assessing Efficiency of Software Production for NASA-SEL Data

Anneliese von Mayrhauser Armin Roeseler

Computer Science Department

Colorado State University

Fort Collins, CO 80523

Abstract

This paper uses production models to identify and quantify efficient allocation of resources and key
2

: drivers of software productivity for project data in the NASA-SEL database. While to analysis
allows identification of efficient projects, many of the metrics that could have provided a more

detailed analysis are not at a level of measurement to allow production model analysis. Production

models must be used with proper parameterization to be successful. This may mean a new look at

which metrics are helpful for efficiency assessment.

1 Introduction

Many organizations collect a plethora of metrics to help them analyze efficiency of software devel-

opment and maintenance. Just how helpful are they? We used production models and associated
metrics to assessment efficiency of NASA-SEL projects.

While production models have been used in Operations Research for quite a while, their use in

the computing field has been limited [1], [10], [13]. One reason for this is that successful develop-

ment of such models for the software development and maintenance process requires appropriate

parameterization (i. e. metrics that are able to help with root cause analysis for process inefficien-
cies). We can consider software development and maintenance as a production process and model

it accordingly. Inputs to the production model are various indicators of resources (effort, tools,

capital, expertise, etc.). Outputs reflect the characteristics of software produced (size, quality,
etc.). The production mode] then identifies which development activities were efficient and which

factors are related how much to inefficiencies found. This targets specific production activities for

improvement. At this point we need to look at more detailed metrics to identify further cause and

possible improvement actions. Except for [10, 9] all other applications in the computing field have
not provided metrics with the production model that make process improvement possible. Further,

[1] only models maintenance requests. To make production models useful for quantitative assess-

ment (and improvement) we must provide a hierarchy of metrics for further analysis of production

model results. Both metrics and production model are then bound into a process improvement

program.

Section 2 gives a short synopsis of how production models work and how they analyze parame-

ters. A more complete description can be found in [13]. Section 3 reports on the efficiency analysis

of NASA-SEL project data. Section 4 gives recommendations for using a production model for
efficiency assessment.

SEW Proceedings 144 SEL-93-003

Inputs _ Outl_ts =

I. J

Feedback

Figure 1: A Simple Causal Model of the Software Process

o

Figure 2: Production Function and Efficiency Frontier

2 Production Models

Production models are causal models that integrate technical and economical analysis perspectives

to assess the efficiency of resources used to achieve software development goals. The motivating

idea of the production system model is the notion that the software development process transforms

resources (e.g., Programmer time, CPU time) into software products. The production function f

relates the inputs to the outputs and describes the resource transformation process. We say a

software development process is optimized if maximal levels of outputs are attained, given a set of

production input quantities.
Figure 1 depicts a production system model that describes how (possibly multiple) input factors

(resources) are transformed into (possibly multiple) output factors (e.g., deliverables, quality as-

pects) using a software development process. Feedback in the production system model is provided

through managerial decision making (e.g., deciding on process, project plan and resources).

Because of the complex interactions of software development components, the analytic spec-

ification of the production function f is rarely feasible. In the absence of quantitative means to

determine the interactions and causalities of components in the production process directly, we

take an empirical approach to identify optimal production conditions based on historical data on

the software development process.
Via linear programming techniques, a convex set of production component data is constructed,

and a piecewise linear description of the efficient production frontier is obtained. The efficient

production frontier consists of observations that maximize software development goals, given re-
sources consumed, and sets the standard against which other projects or development periods are

evaluated. In the process, input efficiencies (slack values), and desired output targets are obtained.

Figure 3 shows a production function (A, B, C, D, E) and an efficient production frontier (OO')

for a model with one input and one output.

Knowledge of a project's relative (in)efficiency, amount of excess input, and desired output goals

SEW Proceedings 145 SEL-93-003

can then be used to

• evaluate the efficiency of a SW process,

• decide on strategies to improve efficiency, and

• develop improved SW processes.

3
Production Model Analysis of Project Data in the NASA-SEL
Database

We are evaluating project data in the NASA-SEL database with regards to the following:

• does the production model identify efficient and inefficient periods of production?

• are the metrics pinpointing the proper cause?

3.1 Production Model Analysis

We selected 49 projects for analysis. The selection criteria was completeness of project data

recorded. We wanted to start our analysis with a rich set of project descriptors. The following
projects qualified:

2,6,8,10,19,26,34,35,36,37,38,39,40,46,47,48,49,50,51,52,53,54,55,56, 65,68,70,73,74,80,81,90,

101,102,103,104,105,106,108,110,114,115,116, 117,126,131,132,134,135

Production model analysis must identify inputs and outputs to the production process. These

must be at a ratio level of measurement. Rightaway, we face a severe restriction in possible inputs

and outputs to the model, since many of the data items are really ranks (e. g. Stability of

Requirements). Pretending such data is ratio level is inappropriate, much as we would like to

include such key productivity drivers. We decided on a two phase analysis, the first phase uses

the (small) set of production inputs and outputs that are at the proper level of measurement. The

second phase analyzes rank data, how they appear to influence efficent and inefficient projects.
Input Factors

P132 Total technical and management hours expended on project
P135 CPU hours used

Output Factors

P139 Number of changes made to system components

P141 Total SLOC for all components in the system

The production model clearly identified efficient and inefficient projects. The efficient projects
were: 53,54,55,74,110,134. We also included Project 48 with an Efficiency Score of 0.98. The

production model clearly identified the periods of inefficiency and the magnitude of inefficient
resource usage.

3.2 Metrics Analysis

Next lower level analysis uses the remaining metrics to identify:

• major factors that impact overall project efficiency

SEW Proceedings 146 SEL-93-O03

• factors that pertain to efficient or inefficient projects only

• Identify factors that most sharply divide efficient from inefficient projects

A properly defined set of metrics is indispensable for successful use of the production mode].

We found the following results:

l. Factors that correlate with both efficient and inefficient projects.

• Pos. Correlation (i.e., 'more' is beneficial)

- P90 Stability of Requirements

- P100 Stability of Management Team

While this confirms other analyses (e. g. those underlying the COCOMO model), this

correlation by itself does not tell us whether a lack of stability in requirements and

management team caused the inefficiency. Had this data been collected at a ratio level

of measurement, we could have identified cause.

• Neg. Correlation (i.e., 'less" is beneficial)

- P93 Rigor of Requirements Review

- Pl15 System Response Time

Again, this data is ordinal, and gives rise to possible interpretations. One might venture

to say that this result indicates that rigor can go overboard and thus causes inefficiencies,

but this might also be due to inconsistent data collection, specifically lack of inter-rater

reliability for P93. This would point to a need for metrics validation before collecting

them on a large scale.

2. Factors that correlate with inefficient projects, but do not correlate with efficient projects.

That is, efficient projects are immune to the factors listed below, while inefficient projects are

influenced by them.

• Pos. Correlation (i.e., 'more' is beneficial)

- P95 Development Team Application Experience

This is a very interesting result as it appears to say that "if you're not as efficient as you

could be, the experts bail you out".

• Neg. Correlation (i.e., 'less' is beneficial)

- P88 Problem Complexity

- P105 Discipline in Requirements Methodology

- Pl12 Access to Development System

- Pl13 Ratio of Developers to Terminals

Again, much of this is ordinal data, some might be dependent, so if anything we should

investigate this further. What is quite interesting is that the efficient projects don't seem

to be affected by this.

3. Factors that most sharply discriminated efficient and inefficient projects (statistics probably

not significant)

• Pos. Correlation (i.e., 'more' is beneficial)

- P106 Discipline in Design Methodology

SEW Proceedings 147 SEL-93-O03

- Pl19 Quality of SW

• Neg. Correlation (i.e., 'less' is beneficial)

- P91 Quality of Requirements

4. ALl Other Factors:

• No significant correlations to efficient and inefficient projects detected.

• Incomplete data for factors P104 and PllT.

While we could identify efficent and inefficient production outcomes for these 50 projects, many

of the State-of-the-art metrics in the NASA-SEL database do not have enough power to assess

the efficiency of software production in enough detail to suggest improvements. Two problems,

subjective ranking and questions about inter-rate reliability are key to the situation. Unfortunately,
this is a very common problem.

4 Conclusion

We clearly need methods to assess efficiency of software production. Reliable quantitative methods

paired with engineering judgement appear most promising. This paper described production models

and how to use them for efficiency assessment. We applied the approach to data from 49 projects

in the NASA-SEL database to show its benefits and the needs for better, more relevant metrics to
drive any quantitative evaluation.

References

[1]

[2]

[3]

[4]

R. Banker, S. Datar, Ch. Kemmerer; "A Model to Evaluate Variables Impacting the produc-

tivity of Software Maintenance Projects", Management Science 37, l(Jan. 1991), pp. 1-18.

A. Roeseler; A Production-Based Approach to Performance Evaluation of Computing Technol-

ogy, PhD Thesis, Illinois Institute of Technology, 1991.

A. Koeseler, A. von Mayrhauser, "A Production-Based Approach to Performance Evaluation

of Computing Technology", Journal of Systems and Software, to appear 1993.

von Mayrhausr, A., Roeseler, A.; "Software Process Assessment and Improvement using Pro-
duction Models", Procs. COMPSAC 93, Nov. 1993, Phoenix, AZ.

SEW Proceedings 148 SEL-93-003

Slide 1

Assessing Efficiency of Software

Production

for NASA-SEL Data

Annebese yon Mayrhauser

Computer Science Department

Colorado State University

Fort Collins, CO 80523

avm@cs.colostate.edu

Armin Roeseler

AT&T Bell Laboratories

Warrenville Road

N aperville, IL

doit@ihlpa.at t corn

Slide 2

Outline

1. Production models in software engineering

2. Production model analysis

3. Analyzing NASA-SEL Data

• Productivity Analysis

• Metrics Analysis

4. Conclusion

SEW Proceedings 149 SEL-93-O03

Slide 3

. Production Models in Software Engineering

• Productivity is multi-faceted

• Analyze software development & maintenance as a

microeconomic production process

- resource transformation (empirically-based)

- mathematical approach to efficiency measurement

- incremental process of achieving/maintaining successively

higher levels of efficiency

Slide 4

2. Production Model Analysis

t
t
!

t. j

I(Qo;QI) /(Q_,.. u. ,= ., Qo, QI,...,QT) = o

• Q_ level ofm-th output, m - 1,...,M

• Q_ level of n-th input, n = l,...,N

• f : R_ ¢ _-. R M production function giving maximal output for

given input

SEW Proceedings 150 SEL-93-003

Slide 5

Production Function

• complex interactions

• analytic specification rarely feasible

• use empirical approach based on historic production

observations

Slide 6

Estimation of Production Function

• O*

D" o "J

o

SEW Proceedings 151 SEL-93-003

Slide 7

Measure of Efficiency of i-th Production Period

Y(¢_') <1
o <_ Q_,, I q), -

Ratio of observed versus desired

Slide 8

Production Model Use

• evaluate productivity (efficiency) of software production

• decide on strategies to improve overall efficiency

• develop improved process/plans

SEW Proceedings 152 SEL-93-003

Slide 0

Efficiency rating

Ratio 0-01 = I_ to O-Ok = i_ is efficiency rating

11 [1 k=l

Effk = _= / < 1 k¢l

Slide 10

Implications

• most efficient periods set standards

• no measure of absolute efficiency provided

• new periods added may change standard and efficiency rating

• poor periods don't lower standard

• best rating is one

• observations remain in original, possibly non-commensurate

units

SEW Proceedings 153 SEL-93-O03

Slide 11

3. Analyzing NASA-SEL Data

Objectives:

* does the production model identify efficient and inefficient

periods of production?

• are the metrics pinpointing the proper cause?

Slide 12

3.1. Production Model Analysis

49 projects with complete project data.

project metrics must have at least ratio level,

use 2 phase analysis:

• identify efficient projects based on ratio-level data

• analyze effect of rank data

SEW Proceedings 154 SEL-93-003

Slide 13

Factor Selection .

P135
P132

_P14____1

Input Factors

Total technical and management hours expended on project

CPU hours used

Output Factors

Number of changes made to system components

Total SLOC for all system components

Efficient Projects: 53, 54, 55, 74, ll0, 134, and 48.

Slide 14

3.2. Metrics Analysis

• major factors that impact overall project efficiency

• factors that pertain to efficient or inefficient projects only

• factors that most sharply divide efficient from inefficient

projects

SEW Proceedings 155 SEL-93-003

Slide 15

Factors that correlate with both project types

• more is better:

- Pg0 Stability of Requirements

- PI00 Stability of Management Team

• less is beneficial

- P93 Rigor of Requirements Review

- Pl15 System Response Time

Slide 16

Factors that correlate with inefficient projects

• more is better:

- P95 Development team application experience

• less is beneficial

- P88 Problem Complexity

- P105 Discipline in Requirements Methodology

- P112 Access to Development System

- Pl13 Ratio of Developers to Terminals

SEW Proceedings 156 SEL-93-003

Slide 17

Factors that sharply discriminate efficent vs. inefficient projects

• more is better:

- P106 Discipline in design Methodology

- Pl19 Quality of Software

• less is beneficial

- Pgl Quality of Requirements

Slide 18

Disciplined Metrics Development

• evaluate quality of current metrics

- validity

- reliability

• develop hierarchy of production relevant factors to measure

• identify for all metrics: what/why/meaning

• parameterize the software development process

• determine goal oriented selection process

• bind into general metrics program

SEL-93-003
- SEW Proceedings 157
!

Slide 19

4. Conclusions

Production Model Approach

• analytically identifies most efficient software development

• derives a single measure of relative efficiency

• handles non-commensurate multiple output measures, multiple
production factors

• provides insights into how factors contribute to relative

efficiency ratings

SEW Proceedings 158 S EL-93-003

Session 3: Technology Assessment f_l f-

Jon D. Valett, NASA/Goddard

Ray Madachy, Litton Data Systems

Maurice H. Blumberg, IBM Federal Systems Company

SEW Proceedings 159 SEL-93-003

SEW Proceedings 160 SEL-93-O03

N94- 36491

THE (MIS)USE OF SUBJECTIVE PROCESS
MEASURES IN SOFTWARE ENGINEERING

Jon D. Valett

SOFTWARE ENGINEERING BRANCH
Code 552

NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

/f
t"

Steven E. Condon

COMPUTER SCIENCES CORPORATION

GreenTec lI--10110 Aerospace Road
Lanham-Seabrook, Maryland 20706

WHAT ARE SUBJECTIVE

PROCESS MEASURES?

i
A variety of measures are used in software
engineering research to develop an under-
standing of the software process and product.
These measures fall into three broad cate-

gories: quantitative, characteristics, and sub-
jective. Quantitative measures are those to
which a numerical value can be assigned, for

example effort or lines of code (LOC). Char-
acteristics describe the software process or

product; they might include programming
language or the type of application. While
such factors do not provide a quantitative
measurement of a process or product, they do
help characterize them. Subjective measures
(as defined in this study) axe those that are
based on the opinion or opinions of individ-
uals; they are somewhat unique and difficult

to quantify.

each team member's years of experience
appears inadequate. In fact, most researchers
would agree that "years" do not directly
translate into "experience." Team experience
must be defined subjectively and then a scale
must be developed----e.g., high experience
versus low experience; or high, medium, low
experience; or a different or more granular
scale. Using this type of scale, a particular
team's overall experience can be compared
with that of other teams in the development
environment.

.J

Defining, collecting, and scaling subjective _:
measures is difficult. First, precise definitions :
of the measures must be established. Next,
choices must be made about whose opinions
will be solicited to constitute the data.

Finally, care must be given to detrming the :
right scale and level of granularity for :
measurement

Capturing of subjective measure data typi-
cally involves development of some type of i
scale. For example, "team experience" is one :
of the subjective measures that were collected ._
and studied by the Software Engineering
Laboratory (SEL). Certainly, team experi-

ence could have an impact on the software :
process or product; actually measuring a
team's experience, however, is not a strictly
mathematical ,.exercise. Simply adding up

E

WHY DO SOFTWARE ENGINEERS

NEED SUBJECTIVE MEASURES?

Despite the difficulties inherent in working
with subjective measures, many researchers
propose that the software process and product
can not be characterized fully without them.
Early work by Walston and FeUx 1 used sub-
jective data for characterizing software.
Intermediate COCOMO 2 uses 16 subjective

SEW Proceedings

__ LNTE_'I_L_Y B.,[,_ _

161 SEL-93-003

cost drivers for estimating software cost.
These subjective measures range from
"amount of experience with the development
programming language" to "product complex-
ity." For a given project, each of the 16 fac-
tors is rated and used to develop the basic cost
estimate. The expectation is that inclusion of
these factors will yield a more pre-
cise/accurate cost estimate. In fact, almost all
cost models use some subjective factors.

In addition to cost modeling, software engi-
neering researchers use subjective measures
to help quantify other aspects of the software
process. For example, they might lay to deter-
mine if the team experience factor has any
impact on productivity or reliability. In
developing a reliability model, they might
look at the quality of the team's code reading.
Subjective measures can also be used in
defining software domains. In this applica-
tion, a subjective measure might be consid-
ered a defining factor in placing particular
software in one domain versus another.

Projects that use formal structured analysis,
for example, may be in a different domain
from those that use other methods.

This research examines the use of subjective
measures in software engineering experi-
mentation. In the sections that follow, this
paper discusses the early experiences of the
SEL collecting and applying subjective mea-
sure data, looks at refinements the SEL made

to their collection and analysis process, and
then reports on more recent SEL studies using
subjective data. Some general recommenda-
tions are made for the collection and use of

subjective data based on lessons learned in
the SEL.

THE SEL AND SUBJECTIVE
MEASURES

The SEL is a research organization that sup-
ports the Flight Dynamics Division of
NASA/Goddard Space Flight Center. Its pur-
pose is to investigate the effectiveness of
software engineering technologies applied to
the development of flight dynamics software.

The SEL collects a variety of data from appli-
cation software projects for use in its research

and experiments. These data include infor-
mation on effort, size, computer resources,
project characteristics, and a number of sub-
jective measures. (For a complete description
of the data collected see Reference 3.) The
SEL began collecting subjective measures
data in 1977. The primary goals for these
data were to validate the models of other

software engineering researchers and to fully
characterize the SEL environment. As with
many early SEL data collection efforts, an

attempt was made in this case to collect every
possible piece of data. On each project, over
300 individual subjective measures were
collected.

For each measure, managers gave an opinion
expressed as a rating based on a 0-5 scale.
The data were not validated/cross-checked in

any way before being stored in the SEL
database. No one else examined the ratings
given or tried to provide consistency across
projects. Furthermore, the 0-5 ratings were
not defined. Thus, for the same measure on
the same project, two different individuals
might have given different ratings. While this
was somewhat minimized because there were
very few people providing the data, the data
were still inconsistent. Also, due to the lack

of precise definitions for ratings, inconsis-
tency was possible not only amongst data
providers but also from project to project and
from year to year. That is, because of
changing perceptions, similar projects may
have been given different ratings. Neverthe-
less, these data were used by the SEL in a
variety of experiments, two of which are
detailed below.

Early Uses of Subjective Measures

One early experiment using subjective mea-
sures was the development of a meta-model
for software development resource expendi-
tures. 4 The goal of the experiment was to
develop a cost model that included subjective
process measures. First, the subjective data
from the SEL database were converted from

the 0-5 scale to a binary (high/low) scale for
use in the experiment. Second, the re-
searchers selected one manager who was
familiar with all the projects as a source for
establishing consistency across the projects.

SEW Proceedings 162 SEL-93-003

Using data from 17 projects, the researchers
developed a baseline cost model that related
effort to LOC. They examined the impact on
cost of 71 different subjective measures to
determine if any of them showed a significant
relationship to the cost of the project. No sig-
nificant correlation was found. The data

proved to be too detailed to really determine
if there was any impact. While the
researchers were able to find some correlation
between certain measures and cost, it was not
consistent. The researchers then applied a

grouping technique to the measures, convert-
ing the 71 measures into three groups. This
allowed them to build new, broader-based

subjective measures. Using these three mea-
sures they built a new cost model which they
later confirmed against new projects that were
similar to those in the data set.

Two main points emerge from reviewing this
experiment:

• Be wary of"looking for correlations."
While these researchers found some cor-

relations when using the detailed data,
they proved to be inconsistent. In almost
any experiment using subjective data
some correlations may exist, but they
must be repeatable to be significant.

• Collecting lots of data does not guarantee
lots of results. In this experiment the vast
amount of data collected had to be con-
verted to a much less detailed set.

In a second experiment using subjective mea-
sures, SEL researchers sought to determine
the effect of modern programming practices
(MPPs) on productivity and reliability. 5

Again, the subjective measures data in the
SEL database were used after being convened
to a binary scale and combined into groups.
However, the grouping method used in this
experiment differed from the method used in
the previous experiment. Various subjective
measures were combined with quantitative

data to predefine MPPs such as structured
coding and tool use. Then, analyzing data
from 22 projects, the researchers tested the
effects of MPPs on productivity and relia-
bility. No correlation was shown on produc-
tivity, while quality of documentation,
amount of quality assurance, and quality of
code reading did have an impact on error rate.

Unfortunately, these results were never con-
firmed over other data sets.

Major lessons on subjective measures from
this study are:

• Detailed subjective data probably are not
useful. Having over 300 different subjec-
tive measures actually proved to be less
useful than having fewer, more general
categories of subjective information.

• To validate results using subjective data,
confirm the results across multiple data
sets.

Refining SEL Subjective
Data Collection

In 1987, the SEL (recognizing the difficulty
with collecting and using over 300 detailed
subjective measures) set out to significantly
reduce the data set. Based on the experience
of other researchers and the specific experi-
ence of the SEL, a new set of 36 measures
was defined. These data continue to be col-

lected today.

Subjective measure data are now provided by
project leads. At the end of each project, the
project lead completes a questionnaire that
uses a 1-5 scale. (The questionnaire is
included as an appendix.) The opinions of the

project lead are presumed to be accurate; no
other validation or cross-checking of the data
is done. This data collection policy still
allows bias and potential inconsistency within
the data as people with different perspectives
and experiences might give the same project
different scores. Two experiments using the
newer subjective data are discussed below.

Recent Experiences with
Subjective Measures

Recently, a study was conducted in which the
36 subjective measures were applied to a
basic cost model. This was done as part of a

larger effort to build a specific cost model for
the SEL environmentP In this study the
researchers used the measures as they were
recorded in the SEL database. They devel-

oped a basic cost model and then attempted to
improve that model by adding various

SEW Proceedings 163 SEL-93-003

subjective measures. On the initial data sets
used, some of the measures did appear to
improve the cost models, but when the
researchers tried to validate the models using
different data sets (from similar projects) they
were unable to duplicate the results. In fact,
they found similar improvements in the mod-
els when they substituted random data for the
actual subjective measures data. Given these
results, the researchers concluded that the cur-
rent subjective data should not be used as a
factor in projecting cost.

Two lessons learned from this experience:

• Collecting data on a 1-5 scale is probably
not optimal. Distinguishing each rating,
for example a "2" versus a "3," is difficult.
In the past, when these data have been
used in analysis they have been converted
to a binary scale. The scale should be
reduced either when the data are collected

or when they are used.

• Results should be confirmed over multiple
data sets. This has been pointed out
before, but it bears repeating. In too many
instances researchers have come to con-

clusions based on one set of projects
without checking out the results on other
similar projects.

Another study was conducted (specifically for
this report) with the goal of determining the
impact of subjective measures on effort,
errors, and changes. Data were converted to a
binary scale. Also, the analytic method used
assumed that the 36 measures were not inde-

pendent. (The previous study did not address
the dependency of the data.) For any set of
projects, a linear model was built relating the
size of a project to a particular measure, such
as changes. Then a set of subjective measures
that may have had an impact on the chosen
measure was identified. From that set, the
factors that were most likely to have had an
impact and those that best represented the
dependent set of measures were added to an
enhanced linear model. Attempts to validate
these models against multiple similar data sets
showed little or no consistency.

Based on this study and the others discussed,
it appears that even the conservative use (i.e.,
using a binary scale and incorporating data

dependency) of the subjective measures data
collected by the SEL is of questionable value.
While previous analyses of the data showed
some promise, recent experiences have been
less successful.

MISUSES AND USES OF

SUBJECTIVE MEASURES

Based on these findings, SEL researchers
have questioned the value of collecting these
data. Although the data may not be viable for
rigid statistical analyses, they can be impor-
tant tools for environment characterization

and research planning purposes. When work-
ing with subjective measures, the following
guidelines should be considered:

• Be cognizant of the data collection mech-
anism and the extent to which the data are

validated. Make no assumptions con-
cerning the accuracy and validity of the
data.

• When defining subjective measures for
collection, less is usually better. Collect-
ing a wide variety of data without a plan
for their use is pointless.

• Use subjective measures to spot trends
and set goals for more detailed experi-
ments. General subjective measures can
be a good place to start when setting goals
for research. This is probably the best
way to use loosely defined, nonvalidated
subjective measures such as those col-
lected by the SEL.

Given the somewhat limited usefulness of the

SEL's subjective measure data, the SEL might
be expected to abandon collection of subjec-
tive data. Subjective information, however, is
important for understanding an envn'onment
and it provides a context for data analysis.
When designing experiments or studies, a
researcher needs to examine subjective infor-
marion about a project to decide if that project
is appropriate for inclusion in a particular
study. That information might, however, be
more likely found in project documents (e.g.,
lessons learned reports) than in ranked ques-
tionnaire responses.

Rather than abandon subjective measure data
collection, the SEL needs to define a set of

SEW Proceedings 164 SEL-93-003

subjective measures that accurately captures
the critical elements of the local environment.

From there, a set of goals for the subjective
measures must be identified and a set of

questions generated that precisely defines the
measures for the local environment. The last

step would be to develop a methodology for
collecting and validating the data. If such
steps are taken, the validity of the subjective
measures data could be improved and their
usefulness in the SEL's ongoing process
improvement program could be reexamined.

REFERENCES

° Walston, C., and C. Felix, "A Method of
Programming Measurement and Estima-
tion," IBM Systems Journal 16, Number 1,
1977

. Boehm, B. W., Software Engineering
Economics, Prentice-Hall, Englewood
Cliffs, New Jersey, 1981

. Heller, G., J. Valett, and M. Wild, Data
Collection Procedures for the Software

Engineering Laboratory (SEL) Database,
SEL-92-002, Software Engineering Labo-

ratory, Greenbelt, Maryland, 1992

, Basili, V. R., and J. W. Bailey, "A Meta-
Model for Software Development
Resource Expenditures," Proceedings of
the Fifth International Conference on
Software Engineering, IEEE Computer
Society Press, New York, New York,
1981

. Card, D. N., F. E. McGarry, and G. T.

Page, "Evaluating Software Engineering
Technologies," IEEE Transactions on
Software Engineering, July 1987

, Condon, S., et al., Cost and Schedule
Estimation Study Report, SEL-93-002,
Software Engineering Laboratory,
Greenbelt, Maryland, 1993

SEW Proceedings 165 SEL-93-003

APPENDIX---SEL SUBJECTIVE DATA COLLECTION QUESTIONNAIRE

EVALUATION FORM

DaIo:

In<:r_.,_e response by dfding the corTespon_ng numeric ranking.

L PROBLEM CHARA.C'T1EFIJSTICS

1. Assess the in_n_ _liffl_/c¢ complexity of the prol_em that was addressed by the software development.

1 2 3 4 5

Easy Average Difficult

2. How_ght were schedule oonnlints on project?
1 2 3 4 5

Loose Average "T'Kjht

3. How stsl_e were requiroments over development pedod?

I 2 3 4 5

Loou Average High

4. Assess the ovecaJl quaJlty of the requirernonts speciflcalon documents, including their danty, accuracy,

oonmtency, and completeness.

1 2 3 4 5

Low Average High

5. How extensive were documentltJon requirements?

1 2 3 4 5

Low Average High

6. HOW dgorous were formal review requirements?

1 2 3 4 5

Low Average High

II. PERSONNEL CHARACTERIS'llCS: TECHNICAL STAFF

7. Ass_Ds Overall quality and _birdy of development team.

I 2 3 4 5

Low Average High

8. How wouk:l you characterize the devolopment team's experience and familiarity v_th the application area of

the ;xoject?

1 2 3 4 5

Low Average High

9. Asse_ the devek3pment team's expedonce and familiarity with the development environment (hardware

and _ sottw_o).

1 2 3 4 5

Low Ave-age High

10. HOw stablo was the oompos/_on of the development team over the duration of the project?

1 2 3 4 5

Loose Average High

FOR LIBRARIAN'S USE ONLY

Number: Entored by:

Date: Checked by:

NOVEMBER 1991

SEW Proceedings 166 SEL-93-003

APPENDIX---SEL SUBJECTIVE DATA COLLECTION QUESTIONNAIRE

IlL PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11. Assess _e overall performance of project management.
1 2 3 4 5

Low Average High

12. Assess project rnanagement's experience and familiarity with the application.
1 2 3 4 5

Low Average High

13. How stab/e was project management during the project?
1 2 3 4 5

Low Average High

14. W%at degree of disciplined project planning was used?
1 2 3 4 5

Low Average High

15. To what degree ware project plans followecl?

1 2 3 4 5

Low Average High

IV. PROCESS CHARACTERISTICS

16. To what extent did the development team use modern programming practices (PDL, top-down

development, structured programming, and code reading)?
1 2 3 4 5

LOW Average High

17. To what extent did the development team use well-defined or disciplined procedures to record

specification modifications, requirements questions and answers, and interface agreements?
1 2 3 4 5

Low Average High

18. To what extent did the development team use a well-defined or disciplined requirements analysis

methodology?
1 2 3 4 5

Low Average High

19. To what extent did the development team use a well-defined or disciplined design methodology?

1 2 3 4 5

Low Average High

20. To what extent did the development team use a well-defined or discil:_ned testing methodology?

1 2 3 4 5

Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Check all that apply from the list that follows

and ident_ any other tools that were used but are not listed,

[] Compiler

[] Linker

[] Editor

[] Graphic display I_Jitder

[] Requirements language processor

[] Structured analysis support tool

[] PDL processor

[] is_,F
[] SAP

[] CAT

[] PANVALET

r-] Test ooverage tool

[] Interface checker (RXVP80, etc,)

[] Language-sensitive editor

[] Symbolic debugger

[] Confkjura_on Management Tool (CMS, etc.)

[] Others {identity by name and function)

22. To what extent did the development team prepare and follow test plans?

1 2 3 4 5

Low Average High

SEW Proceedings 167 SEL-93-003

APPENDIX--SEL SUBJECTIVE DATA COLLECTION QUESTIONNAIRE

_i _ _,iii,:_i_ :_i: SUBJECTIVE EVALUATION FORM
i :!_-ii_i-"_'-":z'-:_;i_,__.". i-_-."'_:i "'"_::_"i'_ :'.... :-

IV. PROCESS CHARACTERtSTICS (CONT'D)

23. To what extent old the development team use well-defined and disciplined qual;ly assurance procedures

(reviews, inspections, and walkthroughs)?
t 2 3 4 5

LOw Average High

24. To what extent did development team use well-defined or disaplined configuration management
procedures?-

1 2 3 4 5

Low Average High

V. ENVIRONMENT CHARACTERISTICS

25. How would _ characterize the devek:_ment team's degree of access to the development system?
I 2 3 4 5

Low Average High

26. What was the ratio of programmers to terminals?
1 2 3 4 5

8:1 4:1 2:1 1:1 1:2

27. To what degree was the development team constrained by the size of main memory or direct-access
storage available on the development system?

I 2 3 4 5

Low Average I-kjh

28. Assess the system response time: were the turnaround times experienced by the team satisfactory in

light of the size and nature of the jot)s?
1 2 3 4 5

Poor Average Very Good

29. How stal_e was the hardware and system support software (including language processors) dudng the

project?
1 2 3 4 5

Low Average High

30. Assess the effectiveness of the software tools.
1 2 3 4 5

LOW Average High

'41. PFIODUCT CHARACTERISTICS

31. To what degree does the delivered software provide the capabilities specified in the requirements?
1 2 3 4 5

LOW Average High

32. Assess the quaJity of the delivered software product.

1 2 3 4 5

Low Average High

33. Assess the quality of the design that Is present in the software product.
1 2 3 4 5

Low Average High

34. Assess the quality and ¢omldeteness of the delivered system documentation.
1 2 3 4 5

Low Average High

35. To what degree were software products dalivered on time?
1 2 3 4 5

Low Average High

36. Assess smoothness or relative ease of acceptance testing.
1 2 3 4 5

Low Average High

SEW Proceedings 168 SEL-93-003

The (Mis)use of Subjective Process
Measures in Software Engineering

Jon. D. Valett
NASA/GSFC

Steve Condon
CSC

G218 00_

Categories of Measurement Data

Quantitative

- Effort

- LOC

- Computer use

Characteristics Subjective

- Programming Language - Team experience

- Platform - Requirements stability

- Application - Degree of MPP

Subjective Measures -
those that are based on the opinion of individuals

I How Measures be Used in Software Engineering? IShould Subjective

G21S.0(_

SEW Proceedings 169 SEL-93-003

Need for Subjective Measures

• Help to Quantify the Software Process

- Does team experience impact productivity?

- Do Modern Programming Practices (MPPs) impact the development
process and product?

• Improve Models of Software Process and Product

- Error Rate = X * Developed LOC - Y * Quality of Code Reading

- Intermediate COCOMO

• Define Software Domains

- Are projects that use structured analysis different from those that don't?

G218,0¢e

G218.004

Subjective Measures

• There are many subjective measures
e.g.

- Team experience

- Management stability

- Machine availability
- Quality of tool set

- Schedule constraint

- Product complexity
etc.

• There have been many proposed uses -
- Walston and Felix

- COCOMO

- Other Cost Models

- Domain Analysis

SEW Proceedings 170 SEL-93-003

The SEL and Subjective Measures

I Beginning in 1977 the Software Engineering Laboratory (SEL) began Icollecting subjective measures I

PhUosphy -

Validate models of other researchers

Fully characterize the environment

G2 te,O05

Sumary

What Data?

Who Provides?

How Collected?

How Clarified/Validated

Collect Everything (over 300 individual measures)

Managers rate

After project completion
Use 0-5 scale

None

Use of Subjective Measures
"The Meta-Model for Software Development Resource Expenditures*"

Goal:

Develop a cost model that
incorporates subjective
process measures

Subjective Measures:

- Converted to binary scale
- Validated measures using 1 manager as source
- Converted detailed data into three groups

Process:

measures to ml_ effort" =' ir_Ual model +
Efforl i=172 DevLOC +3.4 mTr Yielded meaningless _ 3 groups _ -- effort multipliers

Result;

Model confirmed using new projects similar to those in data set

G2_8.0O6

I Lessons: I
- If you look hard enough you may lind some correlations * s_ _d sa=_
- A lot of data does not generate a lot of results _

SEW Proceedings 171 SEL-93-003

Use of Subjective Measures
"Evaluating Software Engineering Technologies*"

Goal:

Do MPPs affect

productivity and reliability?

Subjective Measures:

- Converted to binary scale

- Combined data into groups

Process:

Combined subjective
measures with quantitative
data on 22 projects to ,lilt
define MPPs

C-,218 007

Result:

Tested affects of MPPs such as

Quality assurance
Tool use
Structured Code

Code reading
t

No findings on cost

Error Rate affected by -
Documentation

Quality assurance

Code reading

Not confirmed over other data sets (within the same domain) - conclusions questionable

I Lessons: I
- Confirm results over multiple similar data sets

A lot of data does not generate a lot of results
* Carc, McGar_.

Page 19B7

Reducing the Measure Set
Boehm's Software Engineering Economics •

!_ Language exp_rce

_ .Scttedule c_l

Dalabases_ze

Turnaround lime

:,_ ':I_ _ Vidua] machine volalHity "I"

j

SEL Experience

- RequirementsStability
- ManagementExperience
- Use of testplans
- Configurationmanagement

too 'L+mO 2.OO P.+SO _._ -'+.SO +.00

W<X ,_"wam _o_uctim_'y range

- Releva_ to I_e SEL

36 measures

SEW Proceedings 172 SEL-93-003

Current Subjective Measures (1987 - Present)

Phiiosphy -

Determine the impact of key measures on the software process and product

Characterize the environment

Sumary

What Data?

Who Provides?

How Collected?

How Clarified/Validated

36 General subjective measures

Project leads

After project completion
Use 1-5 scale
Survey form

None

The SEL continues to collect high level subjective measures]

G2t$.009

Use of Subjective Measures
"Cost Estimation Study"

Goal:

Improve a basic cost model
using subjective measures

Subjective Measures:

- Used the 1-5 ratings

- Used multiple data sets

Process:

. .:. : Use subjective data to find : ;:_ :

Statl with basic cost n'x:_el i new models _ Some _ures _ - t_;ing muliiple
Effort - DevLOC/3.2 ,my effort = DevLOC improve:rrmde_ _ data sets

3.2"EI- (weig_,su.pj:m,_re_ :: -try random numl_ers

Results:

- Enhanced models inconsisten! over multiple data sets

. Random numbers improve_ models as well as the real dala

G218 OlO

Lessons:
- Tend toward conservative use of measures

(1-5 scale too detailed)
- Carefully evaluate all results

• Condon.

Regarclie 1993

SEW Proceedings 173 SEL-93-003

Use of Subjective Measures
"Impact of Subjective Measures on Effort, Errors, and Changes"

Goal: Subjective Measures:

Are there subjective - Converted to binary scale
measures that impact
effort, errors, and - Assumed dependency in the data
changes? - Used multiple data sets

Process: Find subjec.twe measures 1hat

. -: may impa_ : Develop enhanced
Develop a-linear moclel __ e.g,.::.:.:::::-. : :::.: :: _ ;: linearmodef ::: :
_ _-::'.!:_.::: :: : : _ - Quality of design ._:-0. I_ : ::: :

""It:C6anges _: X:* Dev[.OC 'IF :i Quali_t_/°:l:_mentatgn changes =X * OevLOC-

"-_ :- " .' ' : .-_ _ • = Y*Subjectivsmeasure

Result:

Littleor no consistencyfound among data sets

Lessons:
- Even conservative use of data is questionabIe

The 36 measures are not independent
G2.18.011

Validate •

JJ_ - Using multiple
data sets

Misuses of Subjective Measures

• Don't search for correlations, because you will find at least one

• Don't collect too much data without understanding how to use it

• Don't go beyond the validity and consistency of your data

• Don't rely on on-line data - except to spot trends/set goals

I The measures contain no miracle answers. They are only one tool. I

G21111.012

SEW Proceedings 174 SEL-93-003

Subjective Measures _ Subjective Information

!
G218.O13

• Subjective Information Provides Context for Analysis

- Lessons learned documents

- Project annotations

• Set Goals for Subjective Information

• Subjective Information Transformed into Subjective Measures by

- Local definitions

- Using consistent data collection methods

Subjective information is critical to understanding an environment,

but don't think it is easy

SEW Proceedings 175 SEL-93-003

ANALYSIS OF A SUCCESSFUL INSPECTION PROGRAM

Ray Madachy
Linda Little

Sylvia Fan

Software Engineering Process Group

Litton Data Systems

Agoura Hills, CA

N94- 36492

ABSTRACT

| Litton Data Systems has institutionalized the inspection process, and achieved

t dramatic results in terms of defect prevention and cost savings thus far. Additionally,

-=- several findings have been gleaned from an analysis to optimize the process. Over 300

- inspections have been performed over the last two years on many types of documents, and

_ this paper describes some quantitative results to-date from the initial "champion" project.

BACKGROUND

Litton was first trained in inspections by Tom Gilb in 1989. His method differs from

Fagan's [Gilb 88], and Litton has subsequently modified Gilb's method for in-house. The

success of our program owes much to strong executive support. Inspections are now the

cornerstone of our peer review process.

Over 400 software personnel have been trained in inspections, and inspections are

now being used on four major development programs. Our software director set project

goals to save at least 50% of integration effort by spending more effort during design and

coding for inspections. Thus far, we appear to be achieving this goal.

Unique properties of the Litton inspection process include no "reader" role, no

discussion on defect category during inspection, a routing process for inspection results, no

time limit on causal analysis and the use of a Software Engineering Process Group (SEPG)

Peer Review Coordinator. A standard reporting form, as shown in Table I, has been

devised for collecting the inspection data.

Though project management has collected some high-level inspection statistics, the

SEPG instituted an inspection database as part of its metrics program to evaluate process

improvement. Data from the form in Table 1 goes into the database, and is regularly entered

at the end of each week. The database was used for this analysis, and validated against high-

level project management daia. The provision on the form for defect categories supporting

causal analysis is a recent addition, so little data has been collected for defect category

analysis up to this point. The following sections describe some results-to-date of our analysis

of the inspection data.

SEW Proceedings 176 SEL-93-003

Table 1" Typical Data Sheet

MODERATOR:

SUBJECT: DP 18.14

INSPECTION STATISTICS

DATE: 16 Novembe _ 1993

CHUNK:. _ SUBJECT TYPE: Detail Desiqn

PRE INSPECTION MEETING DATA

INSPECTOR

A

TOTALS

PREPARATION MAJORS MINORS TOTAL
TIME (minutes) ITEMS

60 o _

60 _ 1 ___3____

_ s s

INSPECTION MEETING DATA

Estimated SLOCs (from FDB): N/A

Changed Pages/Changed Lines Inspected:

Total MAJORS Asserted;

Total MINORS Asserted; 22

Total Defects Asserted: _2

550 Start Time: 9.'09

Stop Time: 9:40

Inspection Time (mln):31

Defects Asserted Per Minute: __

Changed Pages/Changed Lines Inspected Per Hour:

Mew Defects Found During Meeting: 5

POST INSPECTION MEETING DATA

Total MAJORS Accepted: @ Total Minors Accepted: ;_

Rework Hours: 4 Hours Working Causal Analysis Items: N/A

Number of Causal Analysis Items Requiring Action: None

Category Totals: I:.___ 2:_1_._ 3:.__1 4:_I.__ 5:_ 6:.____ T:.____ 8:..___

9:__L 10: • 11: 0.__.._ 12:_ 13: 7_!__

ANALYSIS

This analysis concerns both optimization of the inspection process, as well as

performing a cost/benefit analysis to determine how much extra effort is used during design

and coding for inspections and how much is saved during testing and integration. This effect

on project effort is shown in Figure 1 from [Fagan 86].

SEW Proceedings 177 SEL-93-O03

'WITHOUT

r
o/, _-iI zi, / "\ 1

°., ,/// _N! ,.,' / , I \
eL Zl ::3 ' " /

I-Ji w I _f _ i ! •
Ino _0 _lj °" i i _,

Ir__cT....'_, / I !

o _s,_=o,.c:-- TE=,._ -;s.,Pt
SCHEDULE "_

Figure 1: Effect of Inspections on Project Effort (from [Fagan 86])

The following formulations are used in this analysis:

defects found = items from preparation + new items

inspection effort = preparation effort + meeting effort + rework effort

defect removal effectiveness = defects found I inspection effort

finding rate = defects / meeting time

inspection rate = inspected pages / meeting time

meeting effort = (meeting time) * (# personnel involved).

Preparation effort is the total effort for all inspectors. A major defect is defined as an error

that would lead to a trouble report during testing and integration. A new item is one found

during the inspection meeting that was not identified by any inspectors during pre-inspection

preparation. We decided to separate new items discovered at the inspection meeting from

defects noted during preparation, as we have observed that certain practices increase the new

item finding rate and wish to investigate further.

Several types of documents are inspected: requirements (both requirements

description and requirements analysis); design (top-level and detailed design); code; and

change requests. Summary statistics are shown in Table 2. The total inspection effort was

distributed as follows: preparation effort - 27%, inspection meeting effort - 39% and rework

effort - 34%. The last column in Table 2 represents the defect removal effectiveness. As

seen, the effectiveness decreases for later documents.

SEW Proceedings 178 8EL-93-003

Table 2: Summary Statistics

Subject Type
REQUIREMENT DESCRIPTION

REQUIREMENT ANALYSIS

HIGH LEVEL DESIGN

DETAILED DESIGN

Subtotal

CODE

CHANGE REQUEST

Grand total

Inspe_ion LOC Major Defe_sl

T_alDefects T_al Majors EffoR # Pa_eslnspectedlnspectionEffo_

460 72 78 179 0 .923

2165 177 483 1065 0 .366

2199 188 655 1592 0 .287

1550 127 610 1387 19007 .208

6374 564 1826 4223 19007 .309

4272 432 1742 5047 149361 .248

814 27 309 1579 0 .087

11460 1023 3877 10849 168368 .264

When the defect density for these document types are ordered by activity, the results

show that the defects steadily decrease since the predecessor artifacts were previously

inspected. This is shown in Figure 2, overlayed with similar results from JPL [Kelly-Sherif

90]. The trend seems to corroborate the previous results. Code is not shown because of

inconsistencies in reporting the document size. These results strongly support the practice of

inspecting documents early as possible in the life cycle.

_D

m
L

3.5

3

2.5

2

1.5

I "1 "',

"_. ° •

!
I

o I f 1 t

0.5

R_uiremeats Requirements H_h level Low Level

Desc_p_on _ Des_ Des_

Inspection Type

_ Litton I""*"" JPL [Kelly-Sherif90]

Code

t

Figure 2: Defect Density per Subject Type

SEW Proceedings 179 SEL-93-003

Project Effort for Inspections

We tracked the inspection effort as a portion of the total software development effort

over the last year. The effects of schedule pressure were seen on inspection data, much as it

is observed for staff coding and integration efforts before a "drop dead" date. This trend is

shown in Figure 3, where the percent of project effort dedicated to inspections is plotted.

The monthly inspection effort profile shows extreme peaks right before two Technical

Interface Meetings where the customer evaluates the inspected documents, and right before a

Preliminary Design Review with the customer. For this time period of regular inspections,

an average of 2.9 % of effort was spent on inspections. Both preparation time and

inspection time increased during the peaks, but preparation time increased much more

severely. The relatively small increase in actual inspection time indicates that the meeting

process remained under control, instead of moderators drastically slowing the pace to find

more defects. These dynamic effects on effort due to schedule pressure affect the long term

averages and short-term project behavior, and should be kept in mind when planning effort

or evaluating project trends since process stability is affected.

! t t ! ! "-1 r _ t t t [

Month

Figure 3: Percent of Project Effort for Inspections

Based on statistics on the inspection effort and knowledge about the process, a

bottoms-up inspection costing algorithm has been devised. It identifies effort for pre-

inspection, inspection and post-inspection activities based on the type and length of the

inspected document(s). The algorithm is being included in a cost model used in the
Division.

Return on Investment

The following return on investment (ROI) method of tracking inspection success

calculates the difference of testing time saved and inspection effort for each meeting [Grady
92], [Rodriguez 91]. It uses the formulation

ROI = (found defects) * (average effort to fix defect in test) - inspection effort

SEW Proceedings 180 SEL-93-003

for each inspection meeting, using major defects only. The rationale for equating test defects

with design defects follows from the previous def'mition of a major defect. At Litton, our

historical data on the product line shows an average of 17.6 person-hours is spent to fix

defects during testing. Using this value, the ROI for each inspection is shown in Figure 4.

Overall, the total return from these inspections has been 14,210 person-hours of effort, with

an average return of 63.4 person-hours per inspection. Out of 223 inspections, 139 have

provided savings.

900

"0 80o

> 700

(/j soo

O 400

r-
0 2oo

a. o

-100

Inspection Number

Figure 4: Return on Investment per Inspection

Statistics have been kept for several years on the number of trouble reports

encountered during integration and the associated costs to fix them for this particular product

line. When comparing trouble report data before and after inspections were introduced,

there is a 76% reduction in trouble report density. This appears to be on the high end of

reported results for defect reduction. Using the historical data on average efforts to fix

inspection defects and trouble reports, about 573 labor-hours per KSLOC have been saved.

Process Control

Figures 5-7 show control charts for defect finding rate, design document inspection

rate and code inspection rate. The bands shown on them represent the average values plus or

minus a standard deviation for the upper and lower control limits. The overall items/minute

for this project is apparently on the low end of the industry standard. The variances of

inspection rates are higher relative to the variances of defect finding efficiency due to

aforementioned dynamic schedule effects and other phenomena such as "process tweaking"

and new personnel.

In Figure 5, it appears that the defect finding rate seems to have come down since

the beginning of the program. This trend of project evolution could be due to the earlier

documents having higher defect densities per Figure 2. In Figure 6, note that there

seems to be a relatively sudden ending to the activity near 5/93. This corresponds to the

date when coding started in earnest, and much design documentation was completed at

that time.

SEW Proceedings 181 SEL-93-003

2.5

2

• • =II • =_=w=.= • %= .i' • •
1.5_ - ;

................................m•m _ 1--_mmw"'_mm= • m-MN• RI m = m • •mm im • • _ _ •1 , • • -- •• _=- =.=. .= =__=.
m _ • • inlmllOll In _m mm I,- • _Jm

...... Wl _I • • = •

0 I

Date

Figure 5: Defect Finding Rate Control Chart

350

3O0

250

200

150

... • u-

50 _

• •! • am •
o __-- , -

Date

Figure 6: Document Inspection Rate Control Chart

7000 •

6000

5000 • •

z,ooo • • % .

 ,ooo • .: ;..................... ------=.................... _l ,- ,=, =, •

_J 2000 • • •mm • • • • •me
• I • wlB

I000 • • • • "w_m #e•• • m, • "1_ •m

0 _____m_ _ "i =¢ • i , mw • -='•

_, _ _, o

Date

Figure 7: Code Inspection Rate Control Chart

When analyzing the data for adherence to process control limits for inspection rate

and item finding rate, several outlying data points were identified. Upon further

investigation, it was seen that there was a single moderator who was not particularly well-

SEW Proceedings 182 SEL-93-003

suited to the task. This moderator had been previously identified as one who rushed through

the documents too fast, and the analysis confirmed that perception•

Along these same lines of inquiry, we wanted to see if outlying moderators could be

detected by looking at individual performance. Figure 8 shows the average items found per

minute for all moderators, and they all are in the same approximate range. This depiction

showed some disparate ranges between moderators earlier in the program, thus we feel that

the process has stabilized among moderators over time. This provides confidence that the

process is relatively independent of individual moderators used and shows the benefits of

good training.

t-
im

¢/)
E

m

1.2

1

0.8

0.6

0.4

0.2

0

Moderator #

• Average items/minute

[] Std Deviation of

items/minute

Figure 8: Moderator Finding Efficiency

The inspection rate is an important parameter to optimize• Going too slow may waste

time, but going too fast will miss defects. Figure 9 shows the average defect density for

different ranges of inspection rate. Note that we have normalized the defects found by the

document size. As seen, going faster than about 50 pages per hour seems to substantially

decrease the defects found. The overall average is 48 pages per hour, though we are

currently trying to slow down the rate at meetings to be closer to 30-40 pages per hour.

Inspection Rate (pages/hour)

Figure 9: Effect of Inspection Rate on Defects Found

SEW Proceedings 183 SEL-93-003

We also wish to know the optimal number of inspectors to maximize the defect

removal effectiveness. Other studies have shown that 4-5 inspectors is the optimal number

[Grady 92], [Gilb 88], and our data also supports this number. Figure 10 shows the average

defect removal effectiveness for the number of inspectors. From our data, the optimum does

not appear quite as clear-cut for major defects alone.

0.14 --

m

4 5 6 7

Number of Inspectors

_] Minor defects• Major defects

Figure 10: Average Defect Removal Effectiveness vs. Number of Inspectors

Yet another process parameter to optimize is the ratio of preparation time to

inspection time. Grady and others [Grady 92] indicate an optimum value greater than 1.75,

with some sites averaging about 1.5. Figure 11 shows our results. The optimum ratio

appears to be somewhere between .5 and 2.0, with our average ratio being 1.4.

W

tO

E

I

2.5

2

1.5

I

0.5

0

o = o = o = ^

Preparation time/Inspection time

Figure 11" Defects Found vs. Preparation/Inspection Time

One counter intuitive result not previously reported in the literature is a high

correlation (.8) between the preparation time (averaged over the inspectors) and new

items/page or new items/KSLOC found during the inspection. Instead of catching less new

SEW Proceedings 184 SEL-93-003

defects during inspection after more thorough preparation to identify defects before the

meeting, the inspectors are more familiar with the subject matter and thus able to find even

more new items during the inspection meeting. A scatterplot of this data for all non-code

documents is shown in Figure 12.

1.2

1

¢_. o.e
f_

E 0.6

_ 0.4-i

°tZ o.2

0 _

• • • •

2 4 6 8 10 12 14

Preparation time/Page

Figure 12: Effect of Preparation Time on New Items Found

As expected, there were also high correlations between preparation time and total

items found (pre-inspection and new items) and inspection time versus both total items and

new items. These relationships are more stable for design documents as opposed to code

documents, due to the reduced clarity and understanding of program code.

Resulting Defect Density During Integration

Inspections are expected to severely reduce the number of problems encountered

during testing and integration activities. Though this project is not 100% complete, data

from the first couple of builds supports this hypothesis. Figure 13 shows the resulting defect

density during integration, as the trouble report density running average by build. The first

10 builds were before inspections started, and the last two are for the current project within

the same product line after inspections were mandated. Other project environmental factors

are virtually identical except for the use of inspections. We are confident that something is

helping to reduce the trouble report density.

Attempts were also made to perform a t-test on individual modules to determine if

there are significant differences in defect density during testing due to inspection. The

metrics tracking procedures did not lend themselves to such analysis due to intractable

mappings between design documents and implemented code functions, actual code sizes

could not be mapped at a low level to what was being inspected, and the inability to

distinguish new development from modified code.

This experience was a lesson learned. In order to evaluate new techniques in the

future for process improvement, the metrics procedures have to be restructured on the

program, so that individual modules can be tracked throughout the lifecycle.

Recommendations for the changes are being documented.

10

SEW Proceedings 185 SEL-93-003

6O

"_ 50

pre mspectnon running average post-inspection running average

I I v _ I I I : I

2 3 4 5 6 7 8 9 10

Build #

e r

1 2

Figure 13: Defect Density During Integration

CONCLUSIONS AND FUTURE WORK

Though this initial major project using an inspection-based process is not complete,

the preliminary results indicate a large return on investment. Since inspections began,

inspectors have increased their effort and authors are producing higher quality documents,

indicating buy-in to the new process.

Some process stabilization occurred during the first year of practice, and the teaching

method and the process itself has been modified based on the statistical results. Inspections

are being used on more ongoing projects, and the results appear to be repeatable within the

company. The process is now mandated on all new projects.

This analysis has .helped to identify areas of improvement for software metrics

collection. This impetus will lead to revised procedures to enable more thorough analysis of
process improvement activities.

Analysis of inspection data will continue in order to understand and account for the

confounding factors of inspectors and authors, to continue identifying optimal practices, to

perform more detailed cost/benefit analysis and to investigate other related process issues.

Analysis of variance will be performed to determine the contribution of different process
parameters to overall defect removal effectiveness.

With the recent enhancement to the data form for defect category information, defect

metrics will be collected to support causal analysis activities. Additionally, a system

dynamics model of an inspection-based process is under development, and will be calibrated

to Litton data to assist in process improvement activities.

11

SEW Proceedings 186 SEL-93-003

BIBLIOGRAPHY AND SELECTED NOTES

[Ackerman et al. 84] Ackerman AF, Fowler P, Ebenau R, Software inspections and the

industrial production of software, in "Software Validation,

Inspections-Testing-Verification-Alternatives" (H. Hausen, ed.),

New York, NY, Elsevier Science Publishers, 1984, pp. 13-40

Describes inspections as performed at Bell Laboratories and discusses use of inspections in

conjunction with other verification and validation techniques.

[Boehm 81] Boehm BW, Software Engineering Economics. Englewood Cliffs,

NJ, Prentice-Hall, 1981, pp. 383-386

Discusses error removal production functions for inspection, unit test and other error

removal techniques. Points out difficulty of overlap between methods for removing different

classes of errors.

[Buck-Dobbins 84] Buck R, Dobbins J, Application of software inspection methodology

in design and code, in "Software Validation, Inspections-Testing-
Verification-Alternatives" (H. Hausen, ed.), New York, NY,

Elsevier Science Publishers, 1984, pp. 41-56

[Fagan 76] Fagan ME, Design and code inspections to reduce errors in

program development, IBM Systems Journal, V. 15, no. 3, 1976,

pp. 182-210

The original article by Mike Fagan that introduced the IBM inspection experience.

[Fagan 86] Fagan ME, Advances in software inspections, IEEE Transactions

on Software Engineering, V. SE-12, no. 7, July 1986, pp. 744-751

A more recent article by Fagan provides additional evidence of inspection benefits over the

years, indicating slight front-end loading of the development effort and significant reduction

in testing and rework effort.

[Freedman-Weinberg 82] Freedman D, Weinberg G, Handbook of Walkthroughs,

Inspections, and Technical Reviews: Evaluating Prgoram, Projects

and Products, Little Brown, 1982

Good material on the human and organization aspects of inspections.

[Gilb 88] Gilb T, Principles of Software Engineering Management. Addison-

Wesley, Wokingham, England, 1988, pp. 205-226, 403-422

Gilb originally taught the inspection method in-house, which was attended by high-level

engineering management. Their strong support of the method led to our inspection-based

process. This book provides ample detail to start an inspection progam.

12

SEW Proceedings 187 SEL-93-003

[Grady 92] Grady R, Caswell D, Practical Software Metrics for Project

Management and Process Improvement Prentice-Hall, Englewood

Cliffs, NJ, 1992

Good current book on process improvement metrics with relatively brief but worthwhile

treatment of inspections. Has an illustrative complete example of calculating inspection

savings and cost/benefit on page 180.

[Kelly-Sherif 90] Kelly J, Sherif J, An analysis of defect densities found during

software inspections, Proceedings of the Fifteenth Annual Software

Engineering Workshop, Goddard Space Flight Center, 1990

[Radice-Phillips 88] Radice R.A, Phillips RW, Software Engineering - An Industrial

Approach, Englewood Cliffs, NJ, Prentice-Hall, 1988, pp. 242-
261

A good overall treatment and summary of how to do inspections, by someone who helped

pioneer inspections at IBM.

[Remus 84] Remus H, Integrated software validation in the view of inspections

/reviews, in "Software Validation, Inspections-Testing-Verification-

Alternatives" (H. Hausen, ed.), New York, NY, Elsevier Science

Publishers, 1984, pp. 57-64

[Rodriguez 91] Rodriguez S, SESD inspection results, April 1991

The ROI tracking method was used at Hewlett-Packard.

[Scott-Decot 85] Scott B, Decot D, Inspections at DSD - automating data input and

data analysis, HP Software Productivity Conference Proceedings,

1985, pp. 1-79- 1-80

[WeUer 93] Weller E, Three years worth of inspection data, IEEE Software,

September 1993, pp. 38 - 45

Weller published a previous article in Crosstalk on the first two years of data at Bull HN

Information Systems, and this article improves upon it.

13

SEW Proceedings 188 SEL-93-003

ANALYSIS OF A SUCCESSFUL

INSPECTION PROGRAM

Ray Madachy

Linda Little

Sylvia Fan

Litton Data Systems

Agoura Hills, CA

Presented at the Eighteenth Annual Software Engineering Workshop

NASA Goddard Space Flight Center

December 1, 1993

Litton
Data Systems

Outline

• Introduction and background

• Defect density versus inspection subject

• Inspection effort

• Return on investment

• Process control

• Defect density dudng integration

• Conclusions and future work

• References

Litton

Data Systems

SEW Proceedings 189
SEL-93-003

Unique Properties of Litton Inspection Process

• No "reader" role (Fagan).

• No discussion on defect category during inspection.

• Routing process.

• No time limit on causal analysis.

• SEPG Peer Review Coordinator serves as moderator.

Litton

Data Systems

Utton

Typical Data Sheet
ZIS_¢CT]ON ST*_2ST]¢$

IOD[laTOI, DAT_,_

_¢]"SP[CtlO_WC_]J¢ DATA

xmm¢cme PICPAm*f[OM nA_WS _ZlWS VOTAL

¢

¢

"t1_ lSl _ i:] _4

Data Systems

SEW Proceedings 190 SEL-93-003

Summary Statistics

Subject Type

REQUIREMENT DESCRIPTION

REQUIREMENT ANALYSIS

HIGH LEVEL DESIGN

DETAILED DESIGN

Subtotal

CODE

CHANGE REQUEST

Grand total

Inspection LOC Major Defects/

Total Defects Total Majors Effort # Pages Inspected Inspection Effort
460 72 78 179 0 .923

2165 177 483 1065 0 366

2199 186 655 1592 0 287

1550 127 610 1387 19007 .208

6374 564 1826 4223 19007 ,309

4272 432 1742 5047 149361 .248

814 27 309 1579 0 ,087

11460 1023 3877 10849 168368 ,264

Litton

Data Systems

o
J

ca

el
L
o

Uttolt

3.5

3

2.5

2

1.5 --

!

0.5

0 L

Defect Density per Subject Type

! --*-- U.oo 1

..._ I.\ I """- IPL [Kdly-Shefif 90]

"e.

"'-...

I I t 1

Req_remeaa]_1_ _ low Level Code C'=mCe

Inspection Type

Data Systems

SEW Proceedings 191 SEL-93-003

Inspection Effort

6

|.!5

i

!,_l

I:

E l

o

Momh

Litton

Data Systems

Return on Investment

• For each inspection, ROI = (test effort saved} - (inspection effort}

where

test effort saved =

(# major defects found}*(average effort to fix defect during test)

inspection effort = preparation effort + meeting effort + rework effort

-- total preparation effort

+ (meeting time} * (# personnel involved in meeting}
+ rework effort

Litton

Data Systems

SEW Proceedings 192 SEL-93-003

Return on Investment

total return = 14210 person-hours

average inspection savings = 63.4 person-hours
139/223 inspections saved time

"0
@
>
@

¢/)

==
0

t-
O
==
@

D.

9OO

8OO

70O

6O0

5O0

4O0

3O0

2OO

100

0

-I00

Inspection Number

Utton

Data Systems

Effect of Inspection Rate on Defects Found

M
t; 3
@

ii_ ¢I 2.5
"0 O}

¢8 2

O_ 0
_ 0.5

@

< o

o_ _ o o = o
Inspection Rate (pages/hour)

Data Systems

SEW Proceedings 193 SEL-93-003

Defect Removal Effectiveness vs.

Number of Inspectors

0.14

u

i _0_ 0.t2

=_. o.1
o 0..

O_
m 0.04
I,.
O

> _ 0.02 I

3 4

__i
5 6 7

Number of Inspectors

[] Minor defects

• Major defects

Uttort

Data Systems

Moderator Finding Efficiency

1.2

I

°" l" "vera0e'te°s'm'n°'elo.6 _ Std Deviation of |

0., items/minute |
0.2

O

Moder_or #

Litton

Data Systems

SEW Proceedings 194 S EL-93-003

Effect of Preparation/Inspection Time Ratio on
Defects Found

2.5 -

= o = o =

Preparation time/Inspection time

Utton

Data Systems

Litton

Effect of Preparation and Inspection Time on
New Items Found

O.s

J 0,8

O.4
O
Z

0.2

o =

O

•1

• = • =

z

"I,

_o.f
0.°

"t
_ 0.4 •

Z o,2 - • el

0, • -:;' " ."

i

4 s I 10 12

Preparation dine/Page

$ • s

InspeclJon time/Page

Data Systems

SEL-93-003SEW Proceedings 195 . -

Defect Finding Rate Control Chart

2.5 -,

-= ,i

S,., i ..

'i _ " " "_":"_"_"......"-._."_ -_'""e,""_--".,_.....'-._.....r--fG.¶l -, r ,, = r._ .,_,

_,,.;'..,# . .
0

Date

Litton

Data Systems

Document Inspection Rate Control Chart

o

@

a.

3SO

3OO

250

20O

150

100

50

0

......................................."-;.........r,..........._t • " 'o

.._'_.............•.................• -,______/__"

Date

IJtton

Data Sy_ems

SEW Proceedings 196 SEL-93-003

Code Inspection Rate Control Chart

o
-r

(J
o
.J

7OO0

6OO0

5OO0

4OOO

3OOO

2O00

1000

0

.................. m-"

g

;," ,-, ,; "--" i
IB I

":_.,.-..,.:°=i.: . ::.:::.-....

Date

Utto_

Data Systems

Resulting Defect Density During Integration

p lo

0

/
pre-inspection running average

post-inspection runningaverage

-----._.__.
r i i , i i i i i

i, i 1

2 3 4 5 6 7 B 9 10 l 2

Build #

Litton

Data Systems

SEW Proceedings 197 SEL-93-003

Conclusions and Future Work

• Inspections are a worthwhile investment.

• Peer review coordinator essential to keeping process under control.

• Strong correlation between pre4nspection effort and new items found.

• Inspections appear to affect downstream artifacts and eventual system integration.

• Inspectors and authors have improved since inspections began.

• Some stabilization observed dudng first year of practice.

• Improved teaching method and changed process based on statistical results.

• Inspection analysis has provided impetus for improved metrics tracking procedures.

• Further analysis desired.

- understand end account for confounding factors
- defect category metdcs and causal analysis
- process control and optimization
- ANOVA, other

Litton
Data Systems

References

Fagan ME, Design and code inspections to reduce errors in program development, IBM
Systems ,_oumal, V. 15, no. 3, 1976, pp. 182-210

Glib T, Principles of Software Engineering Management, Addison-Wesley, Reading MA,
1988, pp. 205-226, 403-422

Gmdy R, Caswsil D, Pract/cel Software Metrics for Project Management and Process
/mptovement Prentice-Hall, Englewood Cliffs, NJ, 1992

Remus H, Integrated software validation in the view of inspections/reviews, in "Software

Validation, Inspections-Testing-Vedfication-Altematives" (H. Hausen, ed.}, New York,
NY, Bsevler Science Publishers, 1984, pp. 57-64

Weller EF, Three years worth of inspection data, IEEE Software, September 1993, pp. 38-
45

Utton

Date Syslllms

SEW Proceedings 198 SEL-93-003

N94- 36493

18th Annual Software Enginnering Workshop

Lessons Learned Applying CASE Methods/Tools
To Ada Software Development Projects

December 1, 1993

Maurice H. Blumberg

(301)240-6018

blu m be r m@wm avm7. vnet. ibm. com
Dr. Richard L. Randall

(719)554-6597

randallr@wmavm7.vnet.ibm.com

STARS Project

IBM Federal Systems Company
800 N. Frederick Ave.

Gaithersburg, Md. 20879

SEW Proceedings 199 8EL-93-003

Abstract

:_ This paper describes the lessons learned from introducing CASE methods/tools into organizations
i and applying them to actual Ada software development projects. This paper will be useful to any
[organization planning to introduce a software engineering environment (SEE) or evohSng an ex-
! isting one. It contains management level lessons learned, as well as lessons learned in using specific

I SEE tools/methods. The experiences presented are from Alpha Test projects established under thethe STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the

i frontend efforts by those projects to understand the tools/methods, initial experiences in their in-
troduction and use, and later experiences in the use of specific tools/methods and the introduction

i of new ones.
|

Abstract iii

SEW Proceedings 200 SEL-93-003

Preface

This paper "*'as prepared by the Maurice H. Blumberg and Dr. Richard L. L. Randall of the IBM
Federal Systems Company, located at 800 Noah Frederick Avenue, Gaithersburg, MD 20879.
Many thanks to fellow IBMers, Terry Snyder and Ron Backus of the GPS project and Frank
Hyson and Neal Wahers of the ACE project, for their inputs on lessons learned from their projects.

The following trademarks are used in this paper.

AIX, RISC System/6000, PS/2, and IBM are trademarks of the IntemationaI Business Ma-

chines Corporation.

Rational, R 1000, R300C, and Rational Environment are trademarks of Rational Corporation.

AdaMAT is a trademark of Dynamics Research Corporation.

Interleaf is a trademark of Interleaf, Inc.

Teamwork is a trademarks of Cadre Technologies Inc.

DocEXPRESS, DoDEXPRESS, and Methods_Help are trademarks of ATA Inc.

ObjectMaker (Adagen) is a trademark of Mark V Ltd.

STATEMATE is a trademark of i-Logix, Inc.

RTrace is a trademark of Protocol Company.

PVCS is a trademark of INTERSOLV, Inc.

CCC is a trademark of Softool, Inc.

LOGISCOPE is a trademark of Verilog, Inc.

Windows is a trademark of Microsoft Corporation.

Vax is a trademark of Digital Equipment Corporation.

Keywords: Software Engineering Environment, CASE, STARS, .Methods, and Lessons Learned.

Preface
iv

SEW Proceedings 201 SEL-93-003

Table of Contents

Introduction
"'''''''''''''''''''''' "'''''*'°° "'''o..°.... |

IBM STARS Alpha SEE Solution
"'°°''''''''''''°" "*'.,....*°°oo...°°. 2

IBM STARS Alpha Test Projects .. 3

Lessons Learned Introducingand Using CASE Tools
Global PositioningSystem (GPS) 4

Description .. 4

........... ii_iiiiiiiiiiiiiiii_iiiiliill4GPS Hardware'/So(t&-_e" Confi_r'ation i.. i i 4
GPS SEE Tool Usage

Teamwork ... 5
5

ObjectMaker iJ_clageni" i i i i i [i [[i i i i i [[i [_ i i i : i i i i i 6
Rational

...............................

oPS LessonsL_-.ea fromIntroducingCASETool,"i. ii i iiii i i i i ii i _ii_ii __ii i 6
GPS Ada Lessons Learned from Using CASE Tools

Teamwork Lessons Learned 7
Adagen Lessons Learned ... 7
Rational Lessons Learned i ii[iiii[iiiii 8

8
Integration Lessons Learned iiiii 9

Ada CASE Engineering (ACE) .. 9
Description
ACE Hardware/Software Configuration 9
ACE Tool Usage 9

STATEMATE 10
RTrace ... 10
Rational 11
ObjectMaker .. 11
LOGISCOPE .. 11
AdaMAT .. 12

ACELessons/A_Ae,i_iomi/,i_o/t/,_g'CkSE'Vool_............................ 12
12

ACE Lessons Learned from Using CASE Tools
STATEMATE 13
RTrace ... 13

Miscellaneous Lessons Learned iiiii 13
14FAADS

..

Description i .. 1515
FAADS Hardware,Software Configuration 15
FAADS Tool Usage ... 16

Teamwork 16
ObjectMaker(Adagen) [[[[[[[[[[[ii[[[[[[[[[[[[[[[[[[[[[[[[[[[[[17
DocEXPRESS
Interleaf ... 17
PVCS ... 17

FAADS Lessons Learned from Introducing CASE Tools .. [[[i [[[[[i [[[[[[[[[i [[1818
FAADS Lessons Learned from Using CASE Tools

Teamwork Lessons Learned 18
.................. 19

ObjectMaker (Adagen) Lessons Learned 22
DocEXPRESS Lessons Learned

... 2

Table of Contents

SEW Proceedings 202 8EL-93-003

23Interleaf Lessons Learned ..
23PVCS Lessons Learned ...
24Miscellaneous Lessons Learned ..

Summary of Combined Lessons Learned on STARS Alpha Test Projects 25
Impediments to Change/Remedial Strategies 25

26Combined Lessons Learned: Planning ..
Combined Lessons Learned: Maintain a Healthy Respect for Murphy's Law 27
Combined Lessons Learned: Technical Tidbits 28
Combined Lessons Learned: Potential Rewards

Table of Contents vi

SEW Proceedings 203 S1=L'93"003

Introduction

The objective of the Software Technology for Adaptable, Reliable Systems (STARS) Program is
to develop, engineer, and integrate technologies that, when employed in the development of DoD
software systems, will improve quality and predictability, and reduce the cost of development.
STARS believes these improvements will primarily result from applying the "megaprogramming"
paradi.grn which involves designing and building systems based upon taiiorable reusable compo-
nents, tmprovements in the software process, and through technology support for the development
process. The STARS solution will embody these concepts with megaprogramming processes sup-
ported by software engineering environments (SEE).

STARS will accelerate a transition to a megaprogramming paradigm by demonstrating the benefits
of megaprogramming on real DoD projects. This is being accomplished by a STARS Demon-
stration Activity, which was initiated in the 3Q92 and involves multiple "demonstration projects"
in different application domains. The demonstration projects wq_Uformally begin their performance
phase in 4Q93.

The STARS program is evolving and instantiating SEE solutions to support the demonstration
projects. Prior to 4Q93, the STARS SEE solutions will evolve from the 1991-1992 *alpha versions"
to integrated versions in 4Q93, running on various hardware platforms. In 1991 the IBM STARS
team defined an initial generic instantiation of a SEE solution, designated as the IBM STARS
Alpha SEE.

During 1Q9 I, IBM created the organization and structure to support "Alpha Test* projects, devel-
oping Ada software. The purpose of Alpha Test projects is to:

• Gain early experience and feedback in the use of the IBM STARS Alpha SEE Solutions

• Provide vehicle for early technology transfer of IBM STARS capabilities

• Be a precursor for STARS Demonstration Projects in defining:

• A technology transfer process

• How to support projects using a SEE

• How to capture lessons learned information

Introduction !

SEW Proceedings 204 SEL-93-003

IBM STARS Alpha SEE Solution

The IBM STARS Software Engineering Environment (SEE) is a combination of hardware plat-
forms and software tools which support Ada software development from requirements analysis

through code generation, testing and maintenance. The SEE is adaptable, i.e., it is tailorable to a
"SEE Solution" which meets the specific needs of a project.

The IBM STARS Alpha SEE is based on IBM's AIX CASE Solutions. These solutions consist
of IBM and IBM Business Partner products that support the software development process
through software engineering methodologies, distributed workstation-based environment, and open
system applications. The AIX CASE Solutions provide an open framework and a set of solutions
and products supported across the range of the RISC System/6000 family. The IBM STARS team
incorporated value add efforts from STARS into solutions where applicable.

The initial IBM STARS Alpha SEE solution was assembled from IBM AIX CASE Business
Partners and other AIX CASE vendors. The figure below depicts the major hardware and software

components.

o AIX I Xstation I
I 12o I
I 130 I

........ o AIX

I RISC [o AIX CASE Tools (e.g.,Teamwork)
I System/I o Publishing Tools (e.g., Interleaf)

I 6000 I

I
I

......................... o Design Facility

I Local I I Rational I o Ada Language
I Area I I 300C or [Development

I Network I [I000. [Environment
......................... o AdaHAT

I
l

I I o AIX
l PS/2 l o AdaHAT Hetrics Display Tool

I I

The software tools are integrated at varying levels within the initial solutions, e.g., there is a
Rational/Teamwork interface which allows Teamwork analysis diagrams and text to be imported
into Rational and a Teamwork/Interleaf interface for generating specifications and design docu-

ments.

The IBM STARS Team supported the Alpha Test projects in modifying the solution and adapting

it to fit the project's process and methods.

IBM STARS Alpha SEE Solution

SEW Proceedings 205 SEL-93-003

IBM STARS Alpha Test Projects

The IBM STARS team has established three Alpha Test projects which are using the capabilities
of the IBM STARS Alpha SEE to develop Ada software. The IBM STARS team has provided
support to these Alpha Test projects and has collected feedback from them on their experiences
with their SEE solutions.

The current IBM STARS Alpha Test projects are as follows:

• Global Positioning System (GPS)

• Ada CASE Engineering (ACE)

• Forward Area Air Defense (FAAD) Electronic Support Measure (ESM) Non-cooperative
Target Recognition (NCTR) System (FAADS)

The table below provides a summary of the major tools used by the Alpha Test projects, categor-
ized by system life cycle activities (see Appendix A for a description of these tools).

Life Cycle Activity

Analysis

Design

Implementation

Document Generation

Reverse Engineering

Requirements Traceability

GPS

Teamwork

Adagen Ra-
tional

Rational

Teamwork
DocEXPRESS
Interleaf Ra-
tional

Adagen

Rational

ACE

Teamwork
STATEMATE

Adagen Ra-
tional

Rational

Rational

Adagen

Rqt RTrace
RTM Rational

FAADS

N/A

Teamwork/Ada
& DSE

TLD Ada
Compiler

Teamwork
DocEXPRESS
Interleaf

Adagen

Manual

Table !. Alpha Test Projects SEE Tool Usage

The Alpha Test projects are using a wide range of SEE tools and methods coveting the entire sys-
tem life cycle. However, to provide some focus to the Alpha Test efforts, each project was asked
to concentrate on a specific aspect of the lifecycle. GPS is focusing primarily on system engineering
and software design, ACE on requirements traceability and software design, and FAADS on soft-
ware design and reusability.

Each of the Alpha Test projects are described in the sections that follow. The descriptions include
their hardware,;software configuration, tool usage, and lessons learned from introducing and using
CASE tools/methods. The "introdt/ction" lessons learned reflect, for the most part, the frontend
efforts to understand the tools/methods and some early experiences in the use of them. The "using"
lessons learned reflect, for the most part, later experiences in the use of the specific tools/methods
and the introduction of new ones.

IBM STARS Alpha Test Projects

SEW Proceedings 206 SEL-93-003

Lessons Learned Introducing and Using CASE
Tools

Global Positioning @stem (GPS)

Description

The Global Positioning System is a space based navigation system consisting of a constellation of

Space Vehicles (SVs) and a ground support system. The GPS project is responsible for the hard-
ware and software development of the ground support system. This includes software to generate

the navigation data, upload the SVs, process telemetry data, and in general, provide commanding
and control of the SVs. Project responsibilities also include the maintenance and upgrade of hard-
ware at the remote tracking stations and master control station. The GPS project is in its 13th year

of development and follow-on contracts. The system consists of approximately ! million SLOC,

mostly in JOVIAL.

The current GPS effort includes the development of two new Computer Software Confi_ration

Items (CSCIs), requiring approximately 32 KSLOC of Ada. These CSCIs are being developed on
RISC System/6000 and workstations; they will also be run operationally on RISC System/6000 and
Rational hardware.

Initially, the IBM STARS Alpha SEE was used to support the Ada software design, Software De-
sign Document (SDD) generation, and Ada code development for the CSCIs. Subsequently, the
SEE was also used to develop a Software Requirements Specification (SRS) using OOA and the
SEE Tools, Teamwork and Interleaf. Future plans include use of Teamwork/Aria for high-level

software design.

GPS Hardware/Software Configuration

The GPS hardware/software comqguration is depicted in the figure below.

Lessons Learned Introducing and Using CASE Tools

SEW Proceedings 207 SEL-93-003

GPS Hardware�Software Configuration

o AIX

--..------.--__

I I
I PS/2 I....
I I

------..

o DOS

o Windows 3.0

o Adagen

o FTP (TCP/IP)

........ o AIX

I RISC I o Teamwork

I System/l o ObjectMaker (Adagen)

I 6000 I o Interleaf

I
I
I

......................... o Design Facility

I Local Area I [Rational I o Ada Language

I Network I I 300C I Development

I (Token Ring) l I I Environment

......................... o Remote Compile

I I I Integrator
I +.............+ I
I I [Ethernet

[I [RISC I o DASD for Rational

I PSI2 I I System [

I I I 6000 I

GPS SEE Tool Usage

The IBM STARS Alpha SEE tools currently being used by GPS are Teamwork (and
DocEXPRESS), ObjectMaker (formerly known as Adagen), and Rational. The use of these tools
is described below.

Teamwork

GPS initiated an effort to use OOA methods and Teamwork to generate an SRS for the Onboard
Processor CSCI (Computer Software Conti_maration Item). Because of funding and scheduling is-
sues, the system engineer (SE) responsible for the SRS could not take any formal classes on OOA
or Teamwork. This provided an opportunity to determine the effectiveness of learning a CASE tool
and the methods it supports without formal classroom training. The training approach developed
by STARS for the GPS system engineer was as follows:

* Go thru on-line Teamwork/SA tutorial - 1 day

* Go thru "Strategies for Real Time Systems Specification" book by Derek Harley - 3 days

• Go th.ru "Object-Oriented Analysis: Modeling the World in Data" and "Object Lifecycles:
Modeling the World in States" books by Sally Shlaer and Steve MeLlor - 3 days

• Go thru on-line training tools, DoDEXPRESS and MethodsHelp - 1 1/2 days

• Experiment with Teamwork - 2 days

• Bring in Cadre system engineer (no charge) for a Q & A
session - 1 day

GPS also used the DocEXPRESS tool which generates a DoD-STD-2167A compliant SRS from
the Teamwork developed OOA model. The DocEXPRESS vendor, ATA Inc., was funded to en-
hance the tool to generate requirements traceability matrices as part of the SRS.

Lessons Learned Introducing and Using CASE Tools

SEW Proceedings 208 SEL-93-003

Teamwork is also being considered by the GPS software engineering team to support an object
based Ada software engineering methodology. This includes use of Teamwork/Ada for creating
Ada Structure Graphs as well as compilation dependency and Buhr diagrams. The interface be-
tween Teamwork and Rational is also being studied to determine how far to go with Teamwork

before migrating to the Rational.

ObjectMaker (Adagen)

ObjectMaker (Adagen) was originally used by GPS for early conception of design, preparation of
high level architecture and design overview material. Later on, it was used for reverse engineering
of Ada code to diagrams for inclusion in the SDD (Software Design Document). Specifically, for
conceptual design, Adagen was used to draw bubble charts which showed relationships between
objects and message flow. In addition, Booch class category charts were used for CSC (Computer
Software Component) evolution, and Buhr diagrams were used for CSU (Computer Software Unit)
evolution and interaction. Reverse engineering of Ada code, using Adagen, was employed to ensure
that the Ada graphical diagrams in the SDD were consistent with the Ada source code. The dia-
grams generated by Adagen were compilation dependency diagrams, which showed the "withing"
relationship between Ada packages and Buhr diagrams, which graphically depicted the contents of

each Ada package.

Rational

The Rational design facility and environment was originally used by GPS for development of PDL
for preliminary and detailed design, generation of SDDs, code development, some unit testing, and
requirements traceability to code. The Rational Design Facility was further customized to provide
the capability to include Ada package specifications in-line in the Software Design Document.
Additionally it provided for Appendices to address what Non-Developed Software (NDS} is being
used in the system. In addition, the newly available Remote Compilation Integrator (RCI) was
used to allow source code on the Rational to be compiled on the RISC System/6000. The RCI

was used in conjunction with Rational's Comq_maration Management Version Control.

GPS Lessons Learned from Introducing CASE Tools

The lessons learned by the GPS project from introducing the IBM STARS Alpha SEE are de-
scribed below:

* Significant start up preparation and cost for a new Ada project

For GPS, an existing project transitioning to Ada, many new things needed to be learned by
the software developers, including a new language, a new set of tools and methods, and a new
process (i.e., DoD-STD-2167A). This j'edluired considerable training costs and a significant

learning curve for the project team.

• Customization of SEE tools requires significant resources

Several of the tools used by GPS required customization, e.g., Rational needed customization

to produce an SDD which conformed to the customers requirements, provide requirements
traceability, and imbed diagrams from Adagen. Additional customization of Rational was re-
quired to extract PDL for the SDD. This customization required several labor months of ef-
fort, with additional customization still required.

* Choose a project methodology and train developers early

The decision to use Ada as the programmming language was made well after the start of the
current GPS effort. Thus, choice of a method and tools, and all the startup costs mentioned

above, were not part of the initial project planning and required significant adjustments to the

original plans and schedules.

o Have engineers use object oriented analysis for specifications

Lessons Learned Introducing and Using CASE Tools

SEW Proceedings 209 SEL-93-003

The GPS system engineers used functional decomposition methods to generate their SRS,
while the software engineers used object-based design methods for the Aria software design.
The use of an object oriented approach to defining requirements would reduce the effort re-
quired to transition between the specification and design phases.

• Use Ada as the design language

Using Ada as the design language provides a compilable design which can be checked for
completeness/consistency of interfaces, data definitions, etc.

• Preserve ability to extract PDL after code completion

The ability to extract PDL from the code (e.g., for inclusion in an SDD) allows design and
code to be maintained in a single place and decreases configuration management requirements.

• Agree with customer on diagramming and PDL techniques early into a project

As mentioned above, choice of Ada and associated design methods and tools were made after
the start of the current GPS effort. As a result, several iterations with the customer were re-

quired to gain agreement on issues regarding the formats and styles of Ada diagrams (e.g., Buhr
diagrams) and PDL.

• Plan for a target code version and unit tests on target

The GPS Ada source code was developed, compiled, and partially unit tested on the Rational
hardware. Since the target machine is the RISC System/6000, provision was made for com-
prehensive unit testing on the target machine, even though the Aria code is "compatible". In
addition, configuration management of source and target software needed to be provided for.

• Need additional personnel roles

New project roles are required as a result of introducing SEE methods and tools into a project.
In addition to a methods/tools "guru(s)" for consultation, GPS required the following addi-
tional personnel roles:

• Rational System Administrator

• Rational CMVC/RCF Administrator

• Rational Design Facility Customizer

• Adagen Support Expert

Note: Multiple roles can be played by one person.

GPS Ada Lessons Learned from Using CASE Tools

The lessons learned on the GPS project from using the IBM STARS Alpha SEE tools/methods
are described below:

Teamwork Lessons Learned

• An understanding of the basic capabilities of Teamwork was gained without formal classroom
training.

The Teamwork tutorial which provides hands-on training is adequate for new users to learn
the basic capabilities of Teamwork. Building data flow diagrams, entity relationship diagrams,
and defining entities, data flows, processes, stores, their corresponding attributes is relatively
straight-forward. TeamworkjAda was also fairly easy to use without formal training. The
various user's guides, provided for each of the editors, are also well-written and provide detailed
information on the use of the editors.

• Formal classroom training is required for understanding object-oriented methods.

Lessons Learned Introducing and Using CASE Tools

SEW Proceedings 210 S1=L-93-003

Learning any new methodology is a challenge. However, object-oriented methods require a
totally different approach and way of thinking that is quite different from traditional structured
analysis (SA) and design methods. For example, most system engineers are so ingrained in
using some form of SA for requirements analysis that without formal training, they will have
a difficult time understanding OOA and transitioning from SA to OOA methods.

Generating an SRS which satisfies the customer's DoD-STD-2167A DIDs (Data Item De-
scriptions) requires considerable tailoring of the Teamwork provided templates.

The Teamwork document generation capability is powerful, but fairly complex. Tailoring the
SRS and extracting the specific data requires significant time and effort. Also, the lack of a
table building capability contributes to the difficulty in generating documents. The use of
DocEXPRESS simplified generation of 2167A compliant documentation from Teamwork, but
it required considerable enhancements (by the DocEXPRESS vendor) to generate an SRS
which satisfied the customer's DoD-STD-2167A DIDs (e.g., provide requirements traceability

matrices).

Adagen Lessons Learned

• An understanding of the capabilities of Adagen was gained without formal classroom training.

Adagen was fairly easy to learn and has a well-designed user interface. The Adagen tutorial
provides hands-on training and is adequate for new users to learn the basic capabilities.

• Reverse engineering of Ada code to create design diagrams for documentation and cornmuni-
cation of design is very effective.

The reverse engineering of Ada code ensured that the Ada graphical diagrams in the SDD were
consistent with the Ada source code. However, some manual editing of the diagrams generated

by Adagen was required.

Rational Lessons Learned

• Expense and overhead of supporting the Rational development environment is hig,h.

The Rational development environment has served the GPS project well in developing and

testing of Ada code. However, Rational is somewhat inflexible in its ability to increase the
number of users. Tokens are also fairly expensive and cannot be leased. Upgrading the Ra-

tional hardware to support additional users can also become an issue.

• A significant effort was required to customize the Rational Design Facility (RDF).

The customization of the RDF to include Ada package specifications in-line in the Software

Design Document and provide appendices for NDS required several labor-months to com-
plete.

• Extensive training was required to full3' utilize Remote Compilation Integrator.

Extensive training was required to fully understand the implications of using the Remote
Compilation Integrator, in conjunction with Rational's Configuration Management Version
Control.

• Unit testing within Rational of Ada code using multiple COTS tools requires a significant ef-
fort.

The Rational debugger works weU for code which is machine independent and does not call
the operating system or other COTS software. Unfortunately, the GPS application is de-
pendent on the operating system and on a COTS GUI package. The Remote Procedure Call
(RPC) capability of Rational would enable GPS to use the debugger through more of the unit
testing cycle. However, a significant amount of resources is required to implement and support
RPC.

Lessons Learned Introducing and Using CASE Tools

SEW Proceedings 211 SF_..L-93-O03

Integration Lessons Learned

Integrating tools to build an environment to support the entire life cycle is difficult.

Although each of the GPS CASE tools performed well in its intended phase of the life cycle,

their underlying data representations are not easily shared across other tools or products. In-
corporating changes in one phase into the products of a previous or future phase is difficult if
another tool is required to produce those products.

No CASE tool currently addresses the need for page integrity.

As software is modified to incorporate enhancements, the supporting document's page num-
bers cannot change. Add pages are used to accomplish this. Many CASE tools can generate a

document but they are not good publishing tools. As a result, none support page integrity. It
is hoped that Interleaf, which is a publishing tool, will address this issue. Unfortunately, using
another tool adds to the problem of configuration management across tools.

A da CA SE Engineering (ACE)

Description

The Ada CASE Engineering (ACE) project was established at the end of 1988 to perform ongoing
evaluations of tools and methods that can improve the process of developing Ada software, from

proposal activity through maintenance. To accompfish this, a CASE tool environment laboratory
was set up at FSC Manassas and investigations of various methods which could be successfully used
with these tools were performed (this included conducting pilot projects).

Since 1988, the ACE project has played a lead role in infusing new tools and methods into FSC

systems engineering and software development, with the goal of improving the productivity and
quality of Ada software. This has included providing a variety of training classes for both tools and
methods. ACE has also supported new Ada projects that use CASE tools and the Rational Ada
development environment.

In 1992 the ACE project has continued to investigate the application of CASE tools and methods
for Ada systems development. Early this year the project supported the IBM Manassas' efforts to
evaluate the Integrated CASE (I-CASE) RFP from the U. S. Air Force. The I-CASE RFP was

reviewed and found to contain more than 900 requirements. The large number of requirements
gave ACE an opportunity to put the draft RFP under the RTrace requirements tool so that they
could better manage the total scope of the requirements.

The ACE project continues to strongly focus on CASE tools hosted on the IBM RISC

System/6000. A major emphasis has been on the requirements definition and modeling tool,
STATEMATE, from i-Logix, the requirements traceability tool, RTrace, from Protocol as well as
other tools. Efforts axe on-going for investigating reuse techniques including the formulation of an

object-oriented domain model for an existing project. ACE is using STATEMATE, RTrace,
ObjectMaker, Rational and other tools to develop a SEE.

ACE Hardware/Software Configuration

The ACE hardware/software con_figuration is depicted in the figure below.

LessonsLearned Introducing and Using CASE Tools

SEW Proceedings 212 S EL-93-003

ACE Hardware/Software Configuration

........ o AIX

I RISC [o STATEHATE

I System/l o IBM Ada Compiler

I 6000 i o Interleaf

........ o ObjectMaker

I o Teamwork

I o LOGISCOPE

I o RTrace

I Xstation I I Local Area IEthernetl Rational I

I 120 I 1 Network I I RIO00 I

I I I (Token Ring) i I I

o AIX I
I

I I o DOS
I PS/2 I o Windows 3.0

I I o Rational Interface
........ o AdaMAT Metrics Display Tool

o FTP (TCP/IP)

o Design Facility

o Ada Language

Development

Environment

o AdaMAT

o Custom Tools

The specific components of configuration are as follows:

• RISC System/6000 Model 530

• Rational R1000, Series 400

• Token Ring and Ether'net LAN

• Xstation terminals for LAN access

• PostScript Printer (IBM 4216)

• STATEMATE, ObjectMaker, Teamwork, RTrace, Ada Compiler, LOGISCOPE, and Inter-

leaf on RISC System/6000

• Rational Design Facility (RDF) on Rational R1000

• Rational interface, AdaMAT Metrics Display Tool (MDT) on PS/2

ACE Tool Usage

The IBM STARS Alpha SEE tools currently being used by ACE are STATEMATE, RTrace,
Rational, and ObjectMaker. Other tools used include LOGISCOPE, AdaMAT and the AdaMAT
Metrics Display TooI (MDT), text editors, and text postprocessors. The use of these tools are de-

scribed below.

S TA TEMA TE

STATEMATE, from i-Logix Company, is a graphic modeling tool. It ties together three types of
diagrams which can be used to model systems. The Statechart is vet3' much like a state transition
diagram. The Activity chart is like a data flow diagram and Module charts show the structural view
of a system. The qanguages" of the Statechart and the Activity chart are very sophisticated, in-
cluding time based functions, yet simple to draw and manipulate. STATEMA_FE includes exten-
sive model checking, DoD documentation generation, model simulation and prototype code

Lessons Learned Introducing and Using CASE Tools
10

SEW Proceedings 213 SEL-93-003

generation. The prototype code generated by STATEMATE can be used to drive screen panels,
and take panel actions as inputs.

STATEMATE is used by ACE to perform requirements analysis and modeling of the problem
domain. This methodology uses a technique for characterizing requirements as objects and accu-
rately models system behavior. STATEMATE performs completeness/consistency checking and
captures all definitions of external and internal data. STATEMATE produces the SRS and IRS
(Interface Requirements Specification) documents according to DoD-STD-2167A standards. The

ACE project customized this documentation facility to better match the object-oriented method-
ology that it is defining as part of its SEE development effort.

Modeling

The ACE group used STATEMATE to build an object-oriented analysis/design model. The
model is built using Module Charts to represent the objects, Statecharts to represent the behavior
of each object and the interaction between objects, and an Activity Chart to show the context of
the problem. The Statecharts were executed to illustrate performance modeling (run-time overhead
and processing times), event-response scenarios and error recovery scenarios. The STATEMATE
model and timing chart outputs will be documented in Version 2. I of the model software specifi-
cation that the project is writing.

Rapid Prototyping in Ada

There was a two week effort to evaluate the Ada prototyping capabilities of STATEMATE. A
Traffic Light Model and Panel were successfully built and executed. The last obstacle regarding the
prototype code driving the display panel was solved, by using the "hooks* option. STATEMATE
code generation does not normally generate hooks for states, activities, etc. unless specifically asked
for.

The Ada code for the system (1 Statechart, 1 Activity chart, 8 states and one panel) amounted to
about 1500 SLOC of Ada. The Ada code generated models the states and events defined in the
system, and drives a simple panel.

R Trace

The RTrace requirements traceability tool currently is used by ACE as a stand-alone package to
identify requirements from a customer A-Spec and to build a requirements data base. These re-
quirements are then allocated to various system objects and components. This allocation may be
used to do impact analysis if, for example, a requirement should change. This tool has extensive
reporting capabilities, and some report formats were customized to better support technical and
project management activity,

RTRACE is currently hosted on a SUN or DEC platform. Protocol has recently ported RTRACE
to the RISC System/6000.

Rational

The Rational design facility and environment is used by ACE to produce various DoD-STD-2167A
documents including preliminary SDDs and IDDs from the preliminary design activity, and final
SDDs and IDDs (Interface Design Document) from the detailed design activity. Rational's auto-
mated document generation facility allows documents to be produced from one common evolving
source. An interface from Rational to ObjectMaker is also used to allow diagrams generated by
ObjectMaker to be included in the appropriate documents. Rational is used for design, code de-
velopment, unit testing, and requirements traceability to code.

ObjectMaker

ObjectMaker is used by ACE to support the development of high level graphical Ada design con-
structs that result from the STATEMATE model. ObjectMaker is then used to develop Ada code
design diagrams (Buhr diagrams), and from these diagrams, generate Ada skeletal code. After code

completion, ObjectMaker is used to perform reverse engineering to create accurate Ada graphical

Lessons Learned Introducingand Using CASE Tools !1

SEW Proceedings 214 SEL-93-003

diagrams from the Ada code, for reviews and incorporation into the SDD. The diagrams generated
by ObjectMaker are compilation dependency diagrams, which show the "withing" relationship be-
tween Ada packages and Buhr diagrams, which graphically depict the contents of each Ada package.

LOGISCOPE

LOGISCOPE is used to perform metrics analysis of Ada code to enhance reliability, maintainabil-
ity, and portability. By quantifying the Ada software quality, LOGISCOPE identifies potential
problems in the Ada code, provides test coverage and complexity metrics, and addresses perform-
ance issues. LOGISCOPE is also used to provide graphical reports of the metrics.

AdaMA T

AdaMAT is an Ada metrics tool that runs on the Rational. Like LOGISCOPE, it checks on the
conformance of Ada code to a wide variety of quality indicators. AdaMAT provides a number of

reports and generates data that may be further analyzed off-line with a PS/2 based tool.

ACE Lessons Learned from Introducing CASE Tools

The lessons learned by the ACE project from introducing the IBM STARS Alpha SEE are de-
scribed below:

• The single most important key to the success of a project is still to understand the problem
thoroughly.

There is still no substitute for sound systems and software engineering. SEE tools and methods

only provide support to this process by providing a structured approach to recording and
checking the results of sound engineering, and a means for communicating the results more
clearly to others.

• Adequate training in tools/methods must be provided.

SEE tools/methods require significant training to learn. Lack of adequate training can lead to
misuse of tools, causing a negative impact on a project, and resulting in tools becoming ex-
pensive "sheLfware".

• New methods and tools require considerable tkne to learn and this time must be allocated to

a project schedule.

In addition to proper training, SEE tools/methods require considerable hands on use before
developers are proficient in their application to real problems. This learning curve must be
accounted for, especially in the front end costs of a project.

• Tools require considerable lead time before they are operational.

Significant customization of tools to a project's specific needs and documentation of detailed
project standards and procedures are required to make SEE tools "operational _. In addition,
bridges between tools, e.g., Adagen and Rational need to be developed.

• New methods/tools need to have a strong project advocate.

Because of the si_cant startup costs mentioned above, and the the long lead times required
before new methodsjtools begin to make an impact, a strong project advocate is needed to
maintain the project commitment until the benefits of the tools/methods are realized.

• A project should have a "toolsmith" who can customize tools to the project when necessary.

In addition to the initial customization of tools, there is an ongoing requirement for
customization to tailor tools to the changing needs of a project.

• Consider whether a tool/method might not "scale up" to a large project.

Lessons Learned Introducing and Using CASE Tools 12

SEW Proceedings 215 SEL-93-003

Many tools/methods/notations look very good when applied to relatively simple problems, but
yield very complex and difficult to understand results when applied to large, fairly complex
problems. In evaluating tools/methods, system developers need to look beyond the simple
examples that are used to demonstrate the application of those tools/methods and determine
if they will scale up to their specific problem domain.

Having tools available in the office via networking is a productivity enhancer.

Having access to SEE tools from office desktop computers, provides convenient access to these
tools, while taking advantage of existing computing resources.

New tools and methods should not be seen as a panacea.

This is another way of emphasizing that there is still no substitute for sound systems and
software engineering.

ACE Lessons Learned from Using CASE Tools

The ACE project has recently been developing a software engineering environment to be used by
an upcoming Ada project at Manassas. This tool's environment will provide life-cycle support
from requirements tracing and capture through software design and development, testing and
maintenance activities. The lessons learned are from the experience in developing this SEE and
from other activities.

STA TE34A TE

• The STATEMATE panel generator and Ada Prototyper provide an interesting and inform-
ative view into a model.

These tools have great potential for modeling network and processor performance, timing,
concurrent processing, error paths and event-response. They are also good for demonstrating
user interfaces, but the generated code models STATEMATE states/events/etc, and is not
likely to be useful for real code design/development.

• The language and semantics of STATEMATE require a steep learning curve.

STATEMATE is a powerful tool that requires a fair amount of time to fully understand. For
example, it was very time consuming to figure out the best way to model the first object under
STATEMATE; however, once this was understood it became fairly mechanical to add new
objects.

The ACE estimate for training is a minimum of one week of hands-on training, foUowed by
three weeks of hands-on prototyping with available expert consulting. The training and con-
suiting could be provided internally as sufficient skills are developed and a course/prototyping
exercise is developed.

• Definition of STATEMATE naming conventions is very important.

Good naming conventions are important not only for STATEMATE modeling and proto-
typing activities, but for all CASE tool efforts. In the STATEMATE object model, each ob-
ject service needs two conditions and two events associated with it as well as data-items to
define simulated processing times. All these items require names. Some of these items need
to be _obal in scope, some are of local scope - they can be defined either way. (In this sense
STATEMATE is somewhat like Ada - you can overload a name in the proper context).

R Trace

• RTrace supports 2167A requirements traceability.

Based on the testing done, the review of the documentation and the support received from
Protocol Company, ACE recommended using RTRACE for projects requiting 2167A

Lessons Learned Introducing and Using CASE Tools 13

SEW Proceedings 216 SEL-93-003

traceability. RTrace can also be used for proposal requirements management, e.g., tracing
RFP requirements to proposal sections and responsible authors.

• RTrace is easy to use and should not require formal education.

The current version of RTRACE has a fairly straight-forward and menu oriented, key-
intensive user interface. Protocol is planning to have a future Motif user interface. Protocol
should help set up the ftrst project's database. It will save a lot of time later if all the "objects"
and their relationships are defined completely and correctly before the requirements are loaded.
Examples of RTRACE objects are: Configuration Items, Functions and Sub-Functions, re-
sponsible engineer, test drop, build number, test procedures, etc.

• RTRACE is not integrated with any other CASE tool.

Because RTrace is a standalone tool, this means all updates must be done manually. Updating
data from tool to tool will be easier in the future windows environment.

• Projects using RTRACE will need a "guru" to support users.

Projects using RTRACE can use co-ops or junior level people to parse e:dsting documents to
enter into the RTRACE database. After that, knowledgeable engineers, programmers, and
testers must assign characteristics and link objects to each requirement being traced. A tools
"guru" is needed to customize reports and do some tool administration functions.

• The current release of RTRACE does not support any automated configuration management
or version control.

Some form of version control is planned for future releases. This should provide the potential

for integration with corrignration management tools.

Miscellaneous Lessons Learned

• Many tools need to be customized before they can be used on a project.

Most CASE tools, such as STATEMATE and Rational, require customizing in order to sup-
port the desired methodology and unique requirements of a project (including the customer's
requirements). Thus, for most projects a toolsmith is a necessity.

• .Many new tools have a significant learning curve.

If the users do not have adequate learning time and motivation, this will likely kill the tool's
chance of acceptance with users and management. If possible, new too'Is should be chosen to
operate in the same manner as earlier tools they replace. This will give the user the sense that
their previous skill with the older tool has not been wasted.

• Educating the user group is an important part of introducing a new toolset.

Once a toolset and methodology are selected, an educational plan (schedules, preparation,
funding) needs to be addressed as early as possible that will support this methodology. In the
beginning, tools environments may succeed by virtue of attracting enthusiastic individuals.
Ultimately a good teaching method is needed to extend tool use to those who would rather

keep the status quo.

• Anticipated users of a toolset should have training and access to the toolset prior to its needed

use on a project.

If possible, users should gain familiarity with a toolset before the demands of the project are
felt. There should be some opportunity to experiment with the tool on a prototype or small

pilot project before using it on the actual project.

• Bringing users onto a technology transition oriented project such as the ACE project, before
their real use of the tool is required, eases the learning process and makes the user more re-

ceptive.

Lessons Learned Introducing and Using CASE Tools
14

SEW Proceedings 217 SEL-93-003

The ACE project found that training new users by participating in the ACE project was a very

effective way of producing enthusiastic users, but is limited in terms of how many users can

be trained this way. Another approach is to seek out receptive individuals who express an
interest and enthusiasm for working with new tools and methods. Obviously lead positions

need to be flied with such persons.

A course in how to write a good specification can improve the quality of specifications.

The ACE project developed a 2-hour model SRS writing course that teaches the fundamentals

of "good" SRS writing techniques. This course is tauojat just before the students are to begin
developing real SRSs and the techniques are fresh in mind. A class needs to be timed for op-

timal effectiveness. If it's given too soon, the motivation may not be there, and retention may
be a problem. Waiting too late may overload users with too much last minute information.

The lesson is to have material on the shell" ready to go at the optimum time. A good teaching
technique is to use illustrated examples of the principles being taught. Continuous process

improvement and defect analysis techniques should be applied to a course, after student cri-
tiques are received, to improve the course for next time.

FAADS

Description

The FAADS contract, which was started on April 1, 1991, is responsible for the development of

hardware and software for a passive ESM system to support tactical forward area defensive weapons
platforms in detecting airborne threats and cueing weapons operators. Magnavox is the prime

contractor and the IBM Federal Sector Company in San Diego is the software developer.

Although this program is informally known as FAADS, it is actually only a portion of a much

larger program, the Forward Area Air Defense System. The specific portion under contract is the
AN/VSX-2 program, also known as the Non-Cooperative Target Recognition program, or
NCTR-1. IBM is under contract with Magnavox Electronic Systems Company to develop a por-
tion of AN/VSX-2.

The FAADS Software v-ill be developed in two phases, with a Model I consisting of one CSCI
developed in the first phase' and a Model II consisting of three CSCIs developed in the second

phase. There is planned heavy reuse of Ada code from model I to Model II. The Model I software
architecture is based on an existing Ada system consisting of approximately 15 KSLOC of Ada
code. Model I software will consist of approximately 12 KSLOC of Ada code. The software win
run on 1750A processors; Ada compilations, which were originally being done on a uVax II, are

now being performed on the RISC System;6000.

FAADS Hardware/Software Configuration

The FA._DS hardware/software configuration is depicted in the figure below.

Lessons Learned Introducing and Using CASE Tools 15

SEW Proceedings 218 SEL-93-003

FAADS Hardware/Software Configuration

iPrinterl

I
I

Vax

I

iTape

[IBM

I WAN

............... o AIX

IPostScrl] o Teamwork

iPrinterl---I RISC l] o DocEXPRESS

....... [System II o Interleaf

I 6000 I o ObjectHaker (Adagen)

........ o TLD Ada Compiler

I

i nAN I i I

I............... l(Token I...... I PS/2 I.... I 1750 [
I Ring) i I I I Target I

I
I i

I

I [o DOS

i.................. I PS/2 I o MS Windows&OS/2

I i i o FTP (TCP/IP)
........ o XVision (XServer)

The specific components of configuration are as follows:

• Two RISC System/6000 Model 320s

• Token Ring LAN

• PS/2 Workstations for LAN access

• PostScript Printer

• Teamwork, DocEXPRESS, Interleaf, and Adagen on RISC SYSTEM/6000

• Ada TLD Compiler on RISC SYSTEM/6000 and Vax

FAADS Tool Usage

The STARS Alpha SEE tools currently being used by FAADS are Teamwork, ObjectMaker
(Adagen), DocEXPRESS, Interleaf, and PVCS. A member of the FAADS team, who had some
prior background in tools and methods, ser_'ed as a SEE tools/methods consultant.

Teamwork

Ori_.qinally, IBM planned to use Teamwork/SA for software requirements analysis, but since the
prir_e contractor retained this responsibility, this was not possible. IBM did use Teamwork_SA
on a very limited basis to analyze the SSDD (System/Segment Design Specification) and the SRS
earl} in the program. This effort yielded some useful feedback to the prime contractor as to omis-
sions and inconsistencies.

In another change to the original plans, IBM elected to use Teamwork/Ada rather than Adagen to

support software design, for these reasons:

• Teamwork had built-in multi-user support

• Teamwork had built-in document production support

Lessons Learned Introducing and Using CASE Tools 16

SEW Proceedings 219 S£L-93-003

Cadre delivered a new Teamwork module called the Ada Design Sensitive Editor (DSE) which
was integrated with the Teamwork/Ada graphical design tool and which supported code gen-
eration.

The FAADS software engineers are actually doing their development (i.e., the Ada design and Ada
code generation) from within Teamwork/Aria. They are doing the design by creating Buhr dia-
grams and automatically generating the Ada skeleton code from the diagrams. They are using the
DSE to create the detailed Ada code. The DSE does not allow code generated from the diagrams
to be changed, without first changing the associated diagram and regenerating the Ada code. This
assures that the code and the design documentation are always in synch.

The SDD documentation generation is being done with DocEXPRESS, a third party tool which
is integrated within Teamwork. DocEXPRESS uses Teamwork's Documentation Production
Interface (DPI) to generate 2167A-compliant documents.

Budgetary constraints prevented formal tool training. To partially offset this deficiency, the fol-
lowing measures were taken:

Some team members attended the two week Paul Ward Real-time CASE curriculum. Al-
though this class concentrated on method, it did utilize the diagrammatic conventions sup-
ported by Teamwork.

The SEE Consultant (SC) provided a two-day informal hands-on training class, which in-
cluded an introduction to the Teamwork environment.

Team members referred to the Teamwork users manuals, including the limited amount of tu-
torial material.

• The SC circulated among the team and provided case-by-case suggestions.

* On two occasions, Cadre made one-day site visits, which included question and answer ses-
sions and hands-on demonstration sessions.

ObjectAlaker (Adagen)

Originally, IBM intended to use Adagen for software design. The reasons for shifting to Teamwork
are discussed above.

Since FAADS future phases involved reuse of existing Ada code modules, some experimentation
was conducted to evaluate Adagen's reverse engineering capability. The diagrams produced were
of limited value by themselves, and since Teamwork had been chosen to support design, no attempt
was made to modify them to make them usable. Future experimentation is planned with both
Adagen's and Teamwork/Ada's reverse engineering capabilities.

DocEXPR ESS

The FA.ADS documentation strate_, called for producing documentation from the Teamwork de-
sign model, with minimal additional text publication work. DocEXPRESS supports this strategy
by smoothing the interface between the Teamwork Document Production Interface (DPI) and the
chosen text publishing software (Interleaf or FrameMaker).

The SC attended a three-day course offered by ATA (the vendor for DocEXPRESS) on 2167A
software analysis and design. This course included an introduction to using DocEXPRESS, and
was sufficient for the SC to set up tailored support for FAADS. Users required very little under-
standing of DocEXPRESS, since it was designed to be relatively transparent.

Interleaf

FAADS users had very little need to work within Interleaf, since most of the work was done by
Teamwork and DocEXPRESS. None of the team received any relevant training.

Lessons Learned Introducing and Using CASE Tools 17

SEW Proceedings 220 SEL-93-003

The SDD is the only document produced with Interleaf (other project deliverables have been

produced using Bookmaster, Word for Windows, and other tools). Interleaf was chosen for the
SDD because it was one of two publication systems supported by Teamwork/DPI.

P VCS

PVCS was chosen to support configuration management aspects of the project. PVCS includes

support for version management and configuration building. To date, only the latter capability is
in use. None of the team received any PVCS training.

FAADS Lessons Learned from Introducing CASE Tools

The lessons learned by the FAADS project from using the IBM STARS Alpha SEE during the

S-Increment are described below:

• Significant frontend budget allocation required for training and tools procurement and for in-
stallation and maintenance of SEE tools and network.

Introduction of a new operating system (AIX), tools, and methods required considerable

training costs and a significant learning curve for the project team, which are often underesti-

mated in the original budget allocations.

• Strong management commitment and vision essential.

Management must provide leadership and vision, as new (and often immature) SEE tools and
methods are introduced into a project, to ensure that any initial negative (often valid) reactions

are overcome and the necessary adaptations are made.

• New project roles required, e.g., system administrator for LAN and AIX, toolsmith for cus-

tomizing and supporting use of tools.

This is an especially difficult problem for a small site with limited access to support personnel.

• Sin_e, integrated desktop access to SEE tools important for productivity and use of existing

assets.

A sin_e virtual desktop access to all heterogeneous software/platforms preserves access to fa-
rniliar tools, while taking advantage of existing site assets (rather than buying additional

workstations or X terminals).

• Immaturity of methods (e.g., Buhr notation) and tools in design of large scale systems.

Many of the notations currently being used for Ada design are relatively immature and evolv-

ing. As a result, problems occur when trying to scale up these notations to large systems, e.g.,
Ada design diagrams become very complex and difficult to understand.

• Immaturity of methods and tools in reverse engineering and reuse.

Because of its immaturity, reverse en_fineefing is an art, requiring careful tailoring of directives

and manual post-processing. In addition, ver3 _little training is available on reverse engineering

tools.

FAADS Lessons Learned from Using CASE Tools

The lessons learned on the FAADS project from using the IBM STARS Alpha SEE tools/methods

are described below:

Lessons Learned Introducing and Using CASE Tools 18

SEW Proceedings 221 SEL-93-003

Teamwork Lessons Learned

Some Teamwork tools/methods training would have been beneficial.

Although the training described in the prior section was useful, users failed to pick up numer-
ous time-saving techniques that would have been covered in Cadre's tool training classes.
Although it is difficult to quantify, the training might have ended up paying for itself in the long
r'un.

Even more important than tools training, however, is methods training. Only a few team
members received any methods training, and even that training concentrated on the analysis
phase -- which was wasted to some extent since IBM ended up not being responsible for the
SRS.

The best possible course would a hybrid method/tool course, in which a specific method is
taught using the tool as a hands-on vehicle. A one week Ada Design method course coupled
with Teamwork/Ada would have been ideal.

The value of prior experience.

As echoed throughout the industry, there is no substitute for prior experience. This holds true
with respect to methods, tools, and environments.

Based on the reports of other projects, IBM had a basic understanding of the impact that
would result from the number of changes being introduced for FAADS. These changes in-
cluded:

• Migration from a centralized, Vax-based environment to a networked AIX-based envi-
ronment;

• Use of several significant new tools;

• Adaptation of the existing software methods and process to the above.

The project felt that it would break even, at best, during the incorporation of these changes,
but that the investment during the fi.rst phase of the contract (FAADS Model I) would result
in higher quality for the Model I (which it has) and higher productivity during the subsequent
phase (Model II). In retrospect, the impact was underestimated: the number of changes may
have been too ambitious for a relatively small project. Unfortunately, it is impossible to
quantify the productivity impact, since there have been too many other variables.

Although the project is not yet complete, it does seem likely that the next phase will realize the
improved productivity that was assumed when it was bid. This is due to several factors:

• Most of the lea.rr_g curve is over, and the team is acclimated to the adapted software
process using the new environment and tools;

• Many of the problems encountered during the first phase have either been solved or
workarounds have been devised;

• A Teamwork reuse base has been established for the next phase, providing a head-start
in developing the three Model II CSCIs;

• The performance of the Ada compilation system is so much better on the new RISC
System/6000 than it was on the previous Vax system that much less time is lost waiting
for compilations, simulation runs, and builds.

Immaturity of Teamwork/Ada and DSE impacted their use.

Teamwork/Ada, and particularly the DSE, are very new products. In addition, because of their
enhanced functionality, the FAADS project opted to introduce these tools during their beta
test phases. Both of these facts resulted in significant impacts due to bugs and problems in the
use of the tools (e.g., crashes and loss of data).

Availability of needed resources on contignred hardware.

Lessons Learned Introducing and Using CASE Tools 19

SEW Proceedings 222 SEL-93-003

The FA.ADS project encountered some stability problems because the RISC System/6000
hardware was configured with marginal memory and disk space. Orders placed to remedy this
problem could not be fiUed until late in the program because of high demand for RISC
System/6000 hardware. For most of the program, Teamwork was running on machines with
only 16MB memory; experience has shown that a minimum of 64 MB is needed for a Team-
work server machine, and that a minimum of 24 MB is needed for a user on a remotely con-
nected RISC System/6000. Currently, the project is using a RISC System/6000 Model 550 for
the server machine; this comfortably supports our average of three to four user sessions.

The architecture of the Teamwork product calls for a single model database on a host machine.
There are then two methods of using Teamwork from another machine on the network:
mounting the Teamwork directories using NFS (and running Teamwork locally), and remotely
loo_jng on to the server machine (and using the local machine as an X Server). Using the
Model 550 as a host, users have found that the latter method is the most stable; and they pay
no response time penalty to use it.

Teamwork/Ada functionality

The Teamwork/Ada graphical editor is responsive and robust. The Ada Structure Graph
(ASG) notation implemented by the editor (based on the Buhr notation), however, while good
at reflecting Ada code structure, has proven insufficient by itself to communicate the software
design, and the customer was unhappy with it. The problems were that its notation was un-
familiar and that it does not adequately reflect the following aspects:

• Data flow

The notation shows packaging and invocation well, but falls short in showing accesses to
data structures, and the functional interfaces among high-level software components.

• Operational flow

Using standard ASGs, there is no good way to show how the software components
combine to respond to external stimuli (such as an operator action, or the arrival of a
signal event).

To supplement the design documentation, the team added high-level data flows (using
Teamwork/SA), and a set of hybrid operational flow diagrams (using Teamwork/Ada).

Teamwork/DSE functionality

The users found that the DSE provides significant value added when compared with an ordi-
nary text editor, since it understands Ada syntax. Among other benefits, it automates much
of the formatting (reducing keystrokes), identifies syntax errors during text entry, and enhances
on-screen readability of the code.

Teamwork/DSE is integrated with the Teamwork/Ada model and enforces adherence to the
design diagrams. Since the SDD documentation is also driven from the same model, this
paradigm assures a level of agreement among the documentation, the design model, and the
code. Most importantly, using Teamwork_ DSE for Ada code development provides the ca-
pability to generate both the design documentation and the code from the same design (model)
database, helping to assure agreement between them. This is a major strength of using
Teamwork_Ada and DSE.

While problems with the DSE product (bugs and limitations) have hampered full realization
of the benefits of the approach, the team generally regards its use as a significant improvement
to the Ada development process.

As of this writing, Cadre has initiated an effort to improve the product. The major problems
are:

• The editor is prone to crashing, causing some loss of data. Users have adopted a practice
of saving frequently.

• Transitioning from the ASG editor to the DSE editor sometimes results in truncation of
the Ada source code.

Lessons Learned Introducing and Using CASE Tools 20

SEW Proceedings 223 SEL-93-003

The "pretty-print" rules adopted by the editor sometimes renders the code much less

readable: users want the ability to selectively inhibit the reformatting, or to have more
ability to modify the formatting rules.

Teamwork/DPI Functionality

Teamwork's Document Production Interface (DPI) is intended to make it possible to generate
a document from the Teamwork model database. Most projects suffer from the *multiple,
inconsistent databases" problem, and one of Teamwork's central appeals is the advertised
ability to produce both documentation and code from a sin#e database. The FAADS team
has realized this goal to some extent, but several major problems remain. Some of these
problems are addressed by the new Teamwork/DocGEN module, and the team plans to take
advantage of its new features when producing the final version of the SDD.

The following lists the major DPI problem areas:

• Text Formatting

DPI offers little capability to affect the formatting of the published text. Ideally, one
would like the ability to enter text using the publication software (Interleaf in this case),
since this would allow direct entry of lists, tables, etc., and since it would allow complete
control over readability techniques such as italics and underscoring. Instead, the user must
use Teamwork's rudimentary text editor and resort to a very limited set of DPI formatting
commands.

• Hierarchical Descent of the Software Structure

DPI provides a powerful "parse_model" command that allows most of the SDD to be
constructed automatically from the model. Parse model starts from a specified node in
the software component hierarchy (in this case a specific Ada Structure Graph diagram)
and descends the subtree below this point -- embedding text and other pictures that are
attached as notes to the ASG diagrams. The user controls the manner in which these
notes are embedded using a format specification fde. Unfortunately, there are several
notable limitations:

At each level of the hierarchy, the diagrams are introduced in alphabetical order, ac-
cording to the ASG diagram names; this is almost never the best order in which to
introduce them from an understandability standpoint.

Once a parse_model descent is started, it continues to the bottom-most points in the
hierarchy. This fact makes it very. difficult to adhere to the 2167A DID for the SDD,
which calls for a top-level depiction of the software in Section 3 and an intermediate-

to low-level depiction in Section 4. This would seem to dictate two different design
models, one for the hi#-level design and one for low-level design. The team decided
to stick with the one-database philosophy, but this decision carried with it the need
to develop some workarounds to the DPI limitations.

Unfortunately, the decision also affected the CSC/CSU design structure. In Section
3, the SDD should decompose the software down to the CSC level, but DPI provides
no way to cut the parse_model descent short. As a result, Section 3 descends down
to the CSU level.

There is no provision for parsing the model multiple times in a sin#e document with
different formatting rules. The team was able to develop a work-around for this
limitation, but it should be a part of the product.

Unfortunately, none of the parse_model limitations are addressed in the new DocGEN
product component.

As of this writing the new DocGEN facility is available, and the team plans to take advantage
of several of its features to improve the final version of the document:

• New formatting features are now available, including the ability to construct fists and ta-
bles.

Lessons Learned Introducing and Using CASE Tools 21

SEW Proceedings 224 SEL-93-003

• It is now possible to compare earlier versions of documents with newer ones and generate
a new document with change bars.

Model Configuration Management (MCM) functionality

Teamwork includes some basic CM features, retention of the past 16 versions of each model

object, multi-user checkin/checkout of model objects, and the ability to baseline models (and
to construct "derivative = models where modifications are separately maintained). These fea-

tures have proved useful as far as they go: users have been able to work effectively as a team
without wort3"ing about losing data due to conflicts.

Some improvements are needed, however, to fully enable the "single database" strate_ (pro-
duction of documents and code from a single Teamwork model). A standard software CM

practice is to control software products in a hierarchical library structure, with higher levels
containing previously released software and lower levels containing incremental changes
awaiting testing so that they can move to higher levels of control. With this strategy, a method
is needed to "promote" components from lower library levels into the higher ones. With
conventional files, this can be accomplished by fde moves from one directory to another (with
suitable controls, of course). Similar functionality is provided with commercial CM tools such
as PVCS and CCC.

Ideally, the project should be able to manage the Teamwork model in the same way so that
the Ada code levels can be kept in perfect sync with the corresponding model levels. Unfor-

tunately, MCM offers no way to implement the "promote" function.

Cadre has been receptive to this problem and is considering ways to address it. Aaaother ven-
dor, Softool, is currently working to tailor its product to Teamwork to provide this
functionality in its commercial CM product, CCC.

ObjectMaker (Adagen) Lessons Learned

As mentioned earlier, the project originally intended to use Adagen to support the design process.
As Cadre added Teamwork/Ada, and later DSE, the strategy changed to use Teamwork instead of

Adagen. As a result, FAADS gained little experience in using Adagen, other than some initial ex-
perimentation with its capability to reverse engineer Ada code. It should be noted that Adagen has
gone through significant improvements since FAADS early use of it.

DocEXPRESS Lessons Learned

* DocEXPRESS Functionality

DocEXPRESS simplifies the transition between Teamwork/DPI and publication software
(Interleaf or FrameMaker) -- with specific support for producing 2167A documentation. It
provides:

• Additional Teamwork menus for building documents (by itself, DPI must be invoked

outside of Teamwork);

• Predefmed templates including boilerplate, to give a headstart for the standard 2167A
documents;

- Consistent formatting among documents, conforming to DID standards as to headings,
section and page numbering, etc.

Unfortunately, DocEXPRESS executes on top of Teamwork/DPI and inherits underlying
limitations of that tool. It should be noted that substantial improvements in both
DocEXPRESS and Teamwork document generation have been made since the time of this
experience. Even with these improvements, however, generation of deliverable-quality doc-
umentation remains a significant challenge. .m

• Doe EXPRESS Documentation and Support

The users manual is vet3 cleat and provides specific, detailed usage instructions.

Lessons Learned Introducing and Using CASE Tools
22

SEW Proceedings 225 SEL-93-003

One of the biggest advantages of using the product is the excellent support offered by the

vendor, ATA. ATA personnel have a significant experience base in systems, and specifically
in 2167 and 2167A systems. They are also intimately familiar with both Teamwork and the
text publication software.

Armed with this experience, they were very responsive in providing product support, including
advice on methodology.

Interleaf Lessons Learned

Publishability of Documents

In accordance with the "single database _ strategy, the team spent minimal time using Interleaf.
As discussed elsewhere, however, due to limitations of DPI, the resulting SDD was marginally
publishable. It would have been possible to greatly enhance the appearance of the document
by using the considerable power of Interleaf, but to do so would have meant introducing
multiple databases.

Tool Integration

Ideally, tools for modeling (e.g., Teamwork) and documenting (e.g., Intedeat) should be more
closely integrated. Several vendors are pursuing this concept. One possible approach would
be to allow the Teamwork user to use the publication software while entering text. Another
approach would be to give the user transparent navigation between the publication software
and the modeling tool.

Licensing

There are two means of licensing Interleaf: networked and node-locked. With the networked
method, Interleaf can run anywhere on the network, but only a maximum number of users can

run it at one time. With the node-locked method, Interleaf only runs on one machine, but any
number of users can use it at one time. The cost of the node-locked license is the same as a
one-user networked license.

Because Interleaf is only used for the SDD, and because one user is assigned the task of
building the document, it is rare that more than one user is accessing Interleaf at once. Hence,
the node-locked method has proven more economical for FAADS.

Interleaf is installed on the server machine. Users on remote nodes can connect to the product
via remote logon, using tl_eir local machines as X Servers. Given the limited need for inter-
active use, response time using this approach has proven adequate.

P VCS Lessons Learned

Version Manager

As of this report, the project has not yet incorporated the Version Manager. The site has an
established practice of using a multi-level library scheme for controlling incremental software

releases. With this scheme, all fries are separately maintained, and promotions to higher library
levels are accomplished by moving integral fdes.

In contrast, the PVCS Version Manager uses monolithic fries to store multiple versions of each
software component. This method represents a significant departure for the organization, and
its incorporation is still under study. Advantages of using the Version Manager would include:

• More concise storage of multiple versions of source fries by using "delta n techniques; and
• Opportunity to store all archived versions on-line (because of the reduced storage re-

quirements) and to readily reconstruct past archived contigurations.

• Configuration Builder

Lessons Learned Introducing and Using CASE Tools 23

SEW Proceedings 226 SEL-93-003

The PVCS Configuration Builder is based on the Unix make, with additional enhancements.
PVCS has enabled straightforward automation of the software compilation and build process,
including the handling of multi-level libraries.

If the project elects to move to the Version Manager (see above), PVCS includes provisions
for integrating the Configuration Builder capabilities with minimal effort.

Integration

PVCS by itself provides no capability for integrating Teamwork model artifacts with the code
artifacts (the need for doing this has been discussed earlier, in the topic of Teamwork's Model
Confiomaration Management facilities).

Another vendor, Softool, is developing integrated support for Teamwork and code for its CM
tool, CCC.

Multi-Platform Considerations

One of the FAA.DS software CSCs is being implemented in the C language, and it is being
developed on an IBM PS/2 since there is no appropriate RISC System/6000 compiler for the
processor on which the CSC executes. Although it is desirable to have a sin_e CM database
for the entire project, this separation of platforms poses problems.

At present, the PS/2 software construction process is Segregated from the RISC System/6000
process for Ada code. The project is assessing the possibility of integrating the two processes,
using NFS on the PS/2 to mount the RISC System/6000 code libraries.

Should the proiect also adopt the PVCS Version Manager, Intersolv markets a networked
version of PVCS for the PS/2 which would allow common usage of the PVCS database from

both platform types.

Miscellaneous Lessons Learned

• The impact of introducing multiple changes/technologies was underestimated (the number of
changes may have been too ambitious for a relatively small project). These changes included:

• Migration from a centralized, Vax-based environment to a networked AIX-based envi-
ronment.

• Use of several significant new tools, e.g., Ada, Teamwork, Interleaf.
• Adaptation of the existing software methods and process to the above.

• One of the greatest performance improvements accrued from upgrading the SEE CPU
"horsepower":

• Ada compilations
• System builds
• Test runs using the target computer emulator

• tligher quality was realized in the first phase of the contract (FA.ADS Model I) and hiDher
productivity is expected for subsequent phase (Model II), due to:

• Most of the learning curve is over, and the team is acclimated to the adapted software
process using the new environment and tools

• Many of the problems encountered during the first phase have either been solved or
workarounds have been devised

• A Teamwork reuse base has been established for the next phase, providing a head-start
in developing the three Model II CSCIs

Lessons Learned Introducing and Using CASE Tools 24

SEW Proceedings 227 SEL-93-003

Summary of Combined Lessons Learned on STARS
Alpha Test Projects

In this concluding section, we reflect on all three projects and attempt to distill some of the com-
mon lessons learned.

Impediments to Change]Remedial Strategies

All of the projects were groundbreakers, and (to push the metaphor a bit) they all encountered
boulders as they were getting underway. The following impediments are representative of the type
that may be encountered on any similar project attempting to inject new SEE approaches. For
each category, we include some constructive ideas on how a project might attempt to prepare for
and offset these impediments.

• Problem: Inertia

• People are comfortable with the existing process

• There is a tendency to subvert new methods to old ways of thinking

• Attitude is all-important

Strategies:

• Insure strong support, vision from management and tech leads

• Enlist early support, involvement from customer

• Involve people in planning, preparations

• Develop phased implementation plan, tailored to group

• Consider formal Technology Transition training

• Problem: Overblown Expectations

• Marketing hype, overzealous advocates are common

• Unrealistic hopes lead to disillusionment

• Unanticipated costs can blossom

Strategies:

• Interview teams with real-project experience

• Try out SEE, tools, methods, process on pilot project

• Carefully weigh degree of change against cost uncertainties

• Explicitly plan for each cost category (see checklists, below)

• Expect no productivity increase on first system

Summary of Combined Lessons Learned on STARS Alpha Test Projects 25

SEW Proceedings 228 SEL-93-003

• Avoid "panacea mentality":

• New methods and tools are no substitute for domain expertise

• Poorly thou_t-out SEE strategy can degrade effectiveness

Key: Match Resources to Ambitions

• Small projects should focus on incremental change

• Large projects can handle more change, but only with careful planning

Combined Lessons Learned: Planning

Because of the potential risks in introducing new approaches, and because it's vital to get off to as
sound a start as possible, planning is especially important. Here are some of the considerations to
take into account when planning the project.

• Anticipate Essential Startup Activities

• Clcar identification of methods

• Methods training

- Tool evaluation, selection

• Tool adaptation/integration design & implementation

• Tool training

• Assess Cost of SEE Realistically, including:

• HiW components and networking

• Consider ..q_ring, installation, checkout, support, maintenance

• Insure necessa-,3' computing resources & seats to deliver tool capability to users with

adequate response time

• If possible, install trial configx*ration before final planning

• S/W

• Be sure number of licenses will support planned roles

• Don't forget software maintenance (typically 15%/yr)

• Adaptation and Integration Expenses

Note: This can turn out to be extensive:

• Each tool typically requires tailoring to fit process

• Varying degrees of integration required for tools to work together

• Databases typically stretch across heterogeneous platforms

• Requirements will continue to emerge throuowhout project

• Administration: H/W, Networking, and Tools

• Plan for Ongoing Roles, such as:

• SEE and tool administrators

• Adaptation & integration evolution and support

Summary of Combined Lessons Learned on STARS Alpha Test Proiects
26

SEW Proceedings 229 SEL-93-003

• Methodology consultants (motivated, knowledgeable, proactive)

Involve the Customer Early

• Agree on approach and required mutual investment

• Consider including customers in training sessions

• Tailor documentation/deliverable plan (e.g., 2167A)

Plan for Balanced Learning Approach

• Classes (methods, tools, SEE)

(Note: "Just-in-time x Training is most effective)

Domain-specific workshops, with expert consulting

Pilot project

Hands-on Experience

Combined Lessons Learned: Maintain a Healthy Respect
for Murphys Law

When introducing a significant amount of new technology into a project, it is definitely not the time
to utter the phrase "...now, if everything goes well...". The more opportunities for the unexpected
to arise, the more opportunities for things to go wrong. Each of the three Alpha projects found
ample proof of this principle, and the following examples are cited to provide a flavor.

• Be Wary of Beta Test Versions and Initial Releases

When you fred out the limitations of a tool you've decided to use, you may be anxious to get
the next version, perhaps even a Beta (or even an Alpha?). Bear in mind, however, that the
inevitable bugs will compound the group's problems of assimilation. If things are bad enough,
it might kill the initiative before it gets a real start. Before yielding to the temptation to get the
latest and greatest, consider the vendor's past quality record.

• "You only know what you're in for when you're in it*

This point cannot be overemphasized. Students of calculus often fred out the hard way that
you don't really learn the subject until you do the problems, and the same principle applies to
learning to apply new SEE approaches. All three of the projects rediscovered this as they
found that what seemed so smooth in the visionary's pitch (or the vendor's sales literature) had
lots of bumps in practice. Experiences from FA.AD/NCTRI are offered as illustrations. These

are given without elaboration; interested readers are invited to contact the authors for specifics.

• Bugs & Kinks

(e.g., Transition from Teamwork _ graphical editor to DSE editor sometimes resulted in
truncated Ada code files)

• Gaps

(e.g., Buhr notation not sufficient for representing the design. This point is discussed in
more depth in the next subsection.)

• Misapprehension of function

Please note: these problems are not meant as criticisms of Teamwork; rather, they are meant to illustrate
the problems that can be expected from any set of tools.

Summary of Combined Lessons Learned on STARS Alpha Test Projects 27

SEW Proceedings 230 SEL-93-003

(e.g., Built-in Teamwork CM did not mesh with the organization's hierarchical library

process)

Integration with other parts of the SEE

(e.g., Project legacy documents in Bookmaster, new documents in Interleaf)

Combined Lessons Learned: Technical Tidbits

This subsection lists some of the more interesting and salient technical points that mio_t turn out

to be of practical value to new projects.

• Key Objective: Retain Currency of Design as Code Evolves

• GPS/ACE strategy: PDL maintained in Rational code; diagrams produced from code via

reverse engineering

• FAADS strategy: Teamwork/Ada & DSE: models & code kept in lockstep

• Key Objective: Provide User with Single Desktop Access to SEE Assets

• GPS, ACE used RISC System/6000 workstations and PS/2s

• FAADS supplemented workstations with PS/2 with MS-Windows X Server

• Methods Lessons Learned

• Buhr notation (as per Teamwork/Ada) not sufficient for design

• Describes static Ada structure

• Additional diagr_xns needed for

.', Interfaces and dynamic behavior

z_ Operational flows in response to usage scenarios

• Reverse Engineering Requires Manual Assistance

• Making diagrams readable

• Discovering and reflecting interfaces and dynamic behavior

• Documentation Consistently Proved Harder to Produce than Expected

Combined Lessons Learned: Potential Rewards

This section has thus far emphasized caution, and the reader may have begun to conclude that the
authors are against the introduction of change. On the contrary, we believe that despite growing
pains, the Alpha Projects have shown that the future of automated support of the software process
,s veD" promising.

To help make this point, this final subsection is devoted to one of the key positive lessons learned:
that there are substantial potential rewards for an organization that manages to weave its way

through the obstacle course without crashing.

• Significant Morale Boost

• Upgraded technology = = > upgraded skills

• Willingness of management to invest in improving workplace

• More Effective New Process

Summary of Combined Lessons Learned on STARS Alpha Test Projects
28

SEW Proceedings 231 SEL-93-003

• Better team communication/coordination

• Higher indi_Jdual and team productivity

• Better quality work products

Summary of Combined Lessons Learned on STARS Alpha Test Projects 29

SEW Proceedings 232 SEL-93-003

18th Annual Software Enginnedng Workshop

Lessons Learned Applying CASE Methods/Tools
To Ada Software Development Projects

December 1, 1993

Maurice H. Blumberg
(301)240-6018

blu mberm@wmavm7.vnet.ibm.com
Dr. Richard L. Randall

(719)554-6597
ra ndallr@wmavm7.vnet, ibrn.com

STARS Project
IBM Federal Systems Company

800 N. Frederick Ave.

Gaithersburg, Md. 20879

_ ._ December 1, 1993

Outline of Talk

• Overall Context Setting - STARS Program

- STARS Vision/Mission

- STARS Strategy

• Lessons Learned Context - Alpha Test Projects Selected

- GPS

- ACE

- FAADS

• Summary of Combined Lessons Learned from Alpha Test Projects

• Project-by-Project Lessons Learned

Lessens Learned Applying CASE Methods/Tools TO Ads SMtwlre Development Projects I

SEW Proceedings 233 SEL-93-003

" STARS Program Overview IMEGAPROG_NG - AN EMERGING I
PARADIGM I

x:, t-,,o,mo-)
i i

Lessons Learned Applyin 9 CASE MethodsrTools To Ada So/tware INtvelopment Pro_ects 2

X]_ December 1, 1993

MEGAPROGRAMMING SUPPORT
STARS Program Overview

ELEMENTS

Process Driven

• Guided by a Uefinedprocess.
- Deve_KI {tOm _ p_s buildl_ blocks.

- _a_:Jap*,,_tome_ proJect/_oOucl Oo_s.
- Promote_coitl_allon andteamwork.

• SuppOaledby tOOlS.

• Supports ¢onS'=uousImprovemenlin process
and product.

Denmln-Specifl¢ Reuse

• G_ t:_,rmJseprocess.

• Ba,_t-don mppJlca_ondomain _

• Sy=ems composed kom rema_e

• Assm lndude =ny/a_ life-cycle ='t_lacts.

• Supporls ¢om_nuo_ Im_ In m,se
Ixoce_p_lu¢_

 iEGAPRO

i moc._.,.,. ,:'.c,_ In, see 8"
)• Based upon open erch_ectureIramewor_ P"

i- Adap_le aplxoach for Incorpora_ngnew
.c_. i

• C_tk._s Improvemem In l_:rtal_l_, _
i_y,reJ_abnity,and _v_lv_.

Lessons Learned Applying CASE Methods/Tools To Ada Software Development ProJeds

SEW Proceedings 234 SEL-93-003

Z_M December 1, 1.3

STARS Update (__
STARS STRATEGY AND PRODUCTS

!LI I_ ,;""L i

i iil _ c_os i
: • • o..°.o

. fr,_t.s dJ,._ lallmm CO'r3 - C4mmrc_

- $'?JdtS I _eu Of-aw-d_t

Lessons Learned Applying CASE MethodsfTools To Ade Software Oevel,_pi-r,_nt Projects

T]B_ December I, 1953

Purpose of Alpha Test Projects

• Gain early experience and feedback in the use of the IBM STARS Alpha

SEE Solutions

• Provide vehicle for early technology transfer of IBM STARS capabilities

• Be a precursor for STARS Demonstration Projects in defining:

- A technology transfer process

-- How to support projects using a SEE

- How to capture lessons learned information

Lessons Learned Applying CASE Methods/Tools To Ada Software Developmen! Projects

SEW Proceedings 235 SEL-93-003

Z_]_ December1.1993

IBM STARS Alpha SEE Solution

o AT.X

Xstation I
120

138

I R,SCISystem/I
60001

P

Local I
Area

Network

I
PS/2

o AIX

o AIX CASE Tools (e.g.,Teamwork)

o Publishing Tools (e.g. Tnterleaf)

Rational

3ggC or

lOgO

o Design Facility

o Ada Language

Development
Environment

o AdaMAT

o AIX

o AdaMAT Metrics Display Tool

Lessons Learned Applying CASE Melhodtrrool; To Ada Software Development ProJeds

IBM
Oecember 1, 1993

Current Alpha Test Projects

Global Positioning System (GPS)

Ada CASE Engineering (ACE)

Forward Area Air Defense (FAAD) Electronic Support Measure (ESM)

Non-cooperative Target Recognition (NCTR) System (FAADS)

Lessens Learned J_pplylng CASE Melh_ll/Tc_hs To Ache SoRwm Devtlopment Projects

SEW Proceedings 236 SEL-93-003

Alpha Test Projects SEE Tool Usage

Life Cycle Activity

Analysis

Desig n

Implementation

Document Generation

GPS

Teamwork

Adagen
Rational

Rational

Teamwork

DocEXPRESS

Interleaf Rat.

ACE

Teamwork

STATEMATE

Adagen

Rational

Rational

Rational

FAADS

NIA

Teamwork/

Ada & DSE

TLD Ada

Compiler

Teamwork

DocEXPRESS

Interleaf

i Reverse Engineering Adagen Adagen Adagen

FRequirements Traceability Rational Rqt RTrace Manual
RTM Rat.

i

Lessons Learned Applying CASE Methc<ls/Tocls To Ads Software Develol_,,,in! Projects

13M December 1, t993

GPS Hardware/Software Configuration

........ o AIX

PS/2 I

o DOS
o Windows 3.0 PS/2

o Adagen
o FTP (TCP/IP)

o AIX

RISC o Teamwork

System/ o ObjectMaker (Adagen)

6000 o Interleaf

L
Local Area 1
Network

(Token Ring)

I Ethernet

RISC ISystem
6000

............ o Design Facility

Rational I c Ada Language
300C Development

Environment
............ o Remote Compile

Integrator

o DASD for Rational

Lessons Learned Applying CASE MnthodsJToo|s To Ads Software Develop;;-,;nt _;,;¢ls

SEW Proceedings 237 SEL-93-003

]FBM Dicomb,r 1, tN3

GPS Ada Design / Development Environment

r:--i-+ 1
Objeet-Ori,mled
Anal_rsis

SRS Development

Interleaf

HighLevel_iS. t_ C_e,'UnltT_ [_ •
(Object Based) I _ Aria Packages I RqmLs Traccabilily IRever_£.pn_rl_ I
ofAda Cede J Reuse J

Cmlfig. Mgml [

_@ _S/W Qualily
Indicators

JAdaMAT or STATS I

I" '_ son.re I

I Q"'"t'E_'"_I

Lemns Learned Applying CASE Methe<ls/Tooi8 To Ad8 Softwlm De_elo/pment Proh_'_ Io

IBM
Oeoemb_-l,1993

ACE SEE

Xstation [
120

o AIX

........ o AIX

I RISC l o STATEMATESystem/I o IBM Ada Compiler
6000 l o Interleaf

........ o ObjectMaker
o Teamwork

o LOGISCOPE
o RTrace

......................... o Design Facility
Local Area [EthernetI Rational o Ada Language

Network d [........ RIO00 Development(Token Ring) Environment

......................... o AdaMAT

l o Custom Tools

j joo+PS/2 o Windows 3.g
o Rational Interface

........ o AdaMAT Metrics Display Tool

o FTP (TCP/IP)

L.essona Learned Applying CASE M4dhode,'Toels To Ada 8_hvmre Development PToJects 11

SEW Proceedings 238 SEL-93-003

December 1, 1993

IBM December 1, 1993

FAADS SEE

PostScr

Printer ---

!Printer I

I
I v_ I...............

I

IT_pe I

........ o AIX

........ I o Teamwork
RISC o DocEXPRESS

System o Interleaf

6000 o ObjectMaker (Adagen)

........ o TLD Ada Compiler

I

LAN

(Token

Ring)
......,.s,,,I....I;::+°.,.I

I'"I,,,A,,,..................
o DOS

PS/2 o MS Windows&OS/2

o FTP (TCP/IP)
........ o XVision(XServer)

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projeds

SEW Proceedings 239 SEL-93-003

X2M De._.r 1,,.3

Summary of Combined Lessons Learned on Alpha Test
Projects

Impediments to Change/Remedial Strategies

o Problem: Inertia

People are comfortable with the existing process

There is a tendency to subvert new methods to old ways of thinking
Attitude is all-important

Strategies:

Insure strong support, vision from management and tech leads

Enlist early support, involvement from customer

- Involve people in planning, preparations

- Develop phased implementation plan, tailored to group

- Consider formal Tech Transition training

Lessons Learned Applying CASE MelhodsFl'ools To Ada Software Development Projects

IBM
December I, lg93

o Problem: Overblown Expectations

- Marketing hype, overzealous advocates are common

- Unrealistic hopes lead to disillusionment

- Unanticipated costs can blossom

Strategies:

- Interview teams with real-project experience

- Try out SEE, tools, methods, process on pilot project

- Carefully weigh degree of change against cost uncertainties

- Explicitly plan for each cost category (see checklists, below)

- Expect no productivity increase on first system

- Avoid "panacea mentality":

-- New methods and tools are no substitute for domain expertise

-- Poorly thought-out SEE strategy can degrade effectiveness

o Key: Match resources to ambitions

Small projects should focus on incremental change

- Large projects can handle more change, but only with careful planning

Lessons Learned Applying CASE Methods/Tools To Ade 4,_MItwereDevelopment Projects 15

SEW Proceedings 240 SEL-93-003

I_7"_ December I. 1993

Combined Lessons Leamed: Planning

o Significant Startup required, including

- Clear identification of methods

- Methods training

- Tool evaluation, selection

- Tool adaptation/integration design & implementation

- Tool training

o Assess cost of SEE realistically

- H/W components and networking
-- Consider wiring, installation, checkout, support, maintenance
-- Insure necessary computing resources & seats to deliver tocl

capability to users with adequate response time
-- If possible, install trial configuration before final planning

- s/w
-- Be sure number of licenses will support planned roles

-- Dom't forget software maintenance (typically 15%/yr)

LesSons Leamed Applying CASE Methods/Tools To Ads Software Development IMmjeds is

- Adaptation and integration expenses - note: can be extensive

-- Each tool typically requires tailoring to fit process

-- Varying degrees of integration required for tools to work together

-- Databases typically stretch across heterogeneous platforms

-- Requirements will continue to emerge throughout.project

- Administration: H/W, networking, and tools

o Plan for ongoing roles, such as:

- SEE and tool administrators

- Adaptation & integration evolution and support

- Methodology consultants (motivated, knowledgable, proactive)

o Involve the Customer early

- Agree on approach and required mutual investment

- Consider including customers in training sessions

- Tailor documentation/deliverable plan (e.g., 2167A)

o Plan for balanced learning approach

- Classes (methods, tools, SEE)

(Note: "Just-in-time" Training is most effective)

- Domain-specific workshops, with expert consulting

- Pilot project

Lessons Learned Applying CASE Methods/Tools To Adi Software Development Pro_lct=

SEW Proceedings 241 SEL-93-003

Combined Lessons Learned: Maintain a Healthy Respect for Murphy's Law

o Be wary of Beta test versions and initial releases

o "You only know what you're in for when you're in it"

Examples from FAAD/NCTRI:

Bugs & Kinks
(e.g., Transition from Teamwork* graphical editor to DSE editor

sometimes resulted in truncated Ada code files)
- Gaps

(e.g., Buhr notation not sufficient for representing the design)
- Misapprehension of function

(e.g., Built-in Teamwork CM did not mesh with the organization's
hierarchical library process)

- Integration with other parts of the SEE
(e.g., Project legacy documents in Bookmaster, new documents in

Interleaf)

* Please note: these problems are not meant as criticisms of Teamwork;
rather, they are meant to illustrate the problems that can be
expected from any set of tools.

Lessons Learned Applying CASE Methods/Tools To Aria Software Developmenl Prolects 11

Combined Lessons Leamed:TechnicalTidbits

o Key objective: retain currency of design as code evo]ves

- GPS/ACE strategy: PDL maintained in Rational code; diagrams produced
from code.via reverse engineering

- FAADS strategy: Tean_ork/Ada & DSE: models & code kept in lockstep

o Key objective: provide user with single desktop access to SEE assets
- GPS, ACE used RISC System�6000 workstations and PS/2s
- FAADS supplemented workstations with PS/2 with MS-Windows X Server

o Methods Lessons Learned

Buhr notation (as per Teamwork/Ada) not sufficient for design
-- Describes static Ada structure

-- Additional diagrams needed for

--- Interfaces and dynamic behavior

--- Operational flows in response to usage scenarios
- Reverse engineering requires manual assistance
-- Making diagrams readable

-- Discovering and reflecting interfaces and dynamic behavior

o Documentation consistently proved harder to produce than expected

Lessons Learned Applying CASE Methods/Tools To Ada Software I)tveiopment ProJecls lJ

SEW Proceedings 242 SEL-93-003

CombinedLessonsLearned:PotentialRewards

o Significant morale boost possible
Upgraded technology ==> upgraded skills

- Willingness of management to invest in improving workplace

o More effective new process

- Better team communication/coordination

- Higher individual and team productivity

- Better quality work products

Lessons Learned Applying CASE Methods/To_4s To Ade Software Development ProJeclls

Z_ December I, 19qJ3

Project-by-Project Lessons Learned

Global Positioning System (GPS)

Description

• GPS project is in its 13th year of development and follow-on contracts.

• The current system consists of approximately 1 million SLOC, mostly in

JOVIAL.

* Current development effort is for hardware and software to enhance

GPS ground support system, including:

- Development of Soltware Requirements Specifications (SRS)

- Development of Software Design Documents (SDD) and associated

Ada code

- Development of future Computer Software Configuration Items

(CSCIs) on RISC System/6000 work stations, using Ada (planned but

canceled)

Lessons Learned Applying CASE Methods/Tools To Ada Soflware Development Projects

SEW Proceedings 243 SEL-93-003

_rB_r_ December 1, 1993

GPS Ada Lessons Learned from Introducing CASE Tools

• Significant start up preparation and cost for a new Ada project

• Customization of tools (e.g., Rational) requires significant resources

• Choose a project methodology and train developers early

• Have engineers use object oriented analysis for specifications

• Use Ada as the design language (design compiles)

• Preserve ability to extract PDL after code completion

• Agree with customer on diagramming and PDL techniques early

• Plan for a target code version and redoing unit tests on target
• Need additional personnel roles:

-- Rational System Administrator

- Rational CMVC/RCF Administrator

- Rational Design Facility Customizer

- Adagen Suppo_ Expert

Lessons Learned Applying CASE Methods/Tools To Ada Software Developmenl Projects 22

IBM
December 1, 1993

GPS Ada Lessons Learned from Using CASE Tools

Teamwork Lessons Learned

• An understanding of the basic capabilities of Teamwork was gained

without formal classroom training (one person).

• Formal classroom training is required for understanding object-oriented
method (Shlaer/Mellor) used by Teamwork.

• Generating an SRS which satisfies the customer's 2167A DIDs (Data Item

Descriptions) requires considerable tailoring of the Teamwork templates.

DocEXPRESS Lessons Learned

• DocEXPRESS simplified generation of 2167A compliant documentation

• DocEXPRESS required considerable enhancements (by the DocEXPRESS

vendor) to generate an SRS which satisfied the customer's

DoD-STD-2167A DIDs (e.g., provide requirements traceability matrices).

• DocEXPRESS documentation and support are of high quality.

Lesso.n= Learned Applying CASE Meihods/'rool= To Ade Software Development Projects 23

SEW Proceedings 244 SEL-93-003

_ =_-_ December 1, 1993

ObjectMaker (Adagen) Lessons Learned

• For its limited use on GPS (primarily conceptual design and reverse

engineering), an understanding of the capabilities of Adagen was gained

without formal classroom training.

• Reverse engineering of Ada code to create design diagrams for software

design documents (SDD) ensured that the Ada graphical diagrams in the

SDD were consistent with the Ada source code.

- Education of the customer was required to gain their acceptance of

Ada Structure Diagrams in the SDD.

- Some manual editing of the reverse engineered diagrams generated

by Adagen was required (to simplify and improve readability and

satisfy the customer).

Lessons Learned Applying CASE MethodsfTools "re Aria Software Development Projects

I_ft_ L De.tuber I, 1993

Rational Lessons Learned

• The Rational development environment was very effective in developing

and testing of Ada code.

= Significant training is required to become proficient in the use of the

Rational development environment.

• Expense and overhead of supporting the Rational development environ-

ment is high.

• A significant effort was required to customize the Rational Design Facility

(RDF) to generate the GPS 2167A Software Design Documents.

Integration Lessons Learned

• Integrating tools to build an environment to support the entire life cycle

is difficult.

• Generating documents automatically from CASE tools does not satisfy

the requirement for page integrity.

Lesso.s Learned Applying CASE Methods/reels To Ada Software Development Projects
15

SEW Proceedings 245 SEL-93-003

2 December 1, 1993

Ada CASE Engineering (ACE)

Description

• Internal FSD project

• Setup CASE Tool Environment Laboratory in Manassas

• Performs ongoing evaluations of tools and methods that can improve

Ada software development (including maintenance)

• Provides education for tools and methods

• Supports new Ada projects that use CASE tools and Rational Aria devel-

opment environment

-- Fixed Distributed System (FDS)

- Advanced Training System (ATS)

- Global Positioning System (GPS)

Less_ns Learned Applying CASE MethodsFrools To Ada Software Development Prn|ects 26

X_ December 1, 1993

ACE Lessons Learned from Introducing CASE Tools

• The single most important key to the success of a project is still to

understand the problem thoroughly.

• Adequate training in tools/methods must be provided.

• New methods and tools require considerable time to learn and this time

must be allocated to a project schedule.

• Tools require considerable lead time before they are operational.

• New methods/tools need to have a strong project advocate.

• A project should have a "toolsmith' who can customize tools to the

project when necessary.

• Consider whether a tool/method might not 'scale up' to a large project.

• Having tools available in the office via networking is a productivity
enhancer.

• New tools and methods should not be seen as a panacea.

Les_ms Learned Applying CASE Me_hodsrroots To Acla Software Oevelopment Projects 27

SEW Proceedings 246 SEL-93-003

,_='.,=_ December1,ISS3

ACE Lessons Learned from Using CASE Tools

STATEMATE Lessons Learned

• STATEMATE panel generator and Ada Prototyper provide very useful

and informative modeling views (e.g., for specification execution (ani-

mation), network and processor performance, and user I/F prototyping).

• Language and semantics of STATEMATE require a steep learning curve.

• Definition of STATEMATE naming conventions is very important.

RTrace Lessons Learned

• RTrace supports 2167A requirements traceability.

• RTrace is easy to use and should not require formal education.

• RTRACE is a standalone tool and is not integrated with any CASE tool.

• Projects using RTRACE will need a "guru" to customize reports and

perform tool administration functions.
• The current release of RTRACE does not support any automated config-

uration management or version control.

Lessons Learned Applying CASE MelhodsfTool= To Ado Software Development Pro|eels

Miscellaneous Lessons Learned

• Many tools need to be customized before they can be used on a project.

This will require a project "toolsmith".

• Most CASE tools have a significant learning curve. Adequate training

and learning time are required before users will become proficient in

using CASE tools/methods.

• Bringing users onto a technology transition oriented project or a pilot

project, before their real use of the tool is required, eases the learning

process and makes the user more receptive.

• A course in how to write a good specification improved the quality of

specifications produced by the developers.

Lessons Learned Applying CASE Melhods/Tools To Ado Sollwere Development Pr_Jecb= 2S

SEW Proceedings 247 SEL-93-003

IB]_t_L December 1, 1993

FAADS

Description

• Development of hardware and software for a passive ESM system to

support tactical forward area defensive weapons platforms in detecting

airborne threats and cueing weapons operators.

• Magnavox is the prime contractor.

• IBM is the software developer.

- Software to be developed on RISC System/6000 workstations, but

will run on 1750A processors.

- Software to be developed in two phases with planned reuse of Ada

code in the second phase.

Lessons Learned Applying CASE Methods/Tools To Ads Softwaro Developmenl Pro|eds 30

IBM
December 1, 1993

FAADS Ada Lessons from Introducing CASE Tools

• Significant frontend budget allocation required for training and tools pro-

curement and for installation and maintenance of SEE tools and network.

• Strong management commitment and vision essential.

• New project roles required, e.g., system administrator for LAN and AIX,

toolsmith for customizing and supporting use of tools.

• Desktop access to SEE tools important for productivity and use of
existing assets.

• Methods and automated support are still immature, e.g.,

- Graphical design depictions for large Ada systems (Buhr diagrams
are not sumcient).

- Reverse engineering (significant amount of manual work needed to

supplement automatically generated diagrams).

Lesscms Learned Applying CASE _sFrools To Ada Software Development Projects 31

SEW Proceedings 248 SEL-93-003

1 December 1, 1993

FAADS Lessons Learned from Using CASE Tools

Teamwork Lessons Learned

• Combined Teamwork tools/methods training would have been beneficial

• Immaturity of TeamworklAda and Teamwork/DSE impacted their use

• It is important to ensure that needed resources on configured hardware

are available for adequate tool stability and performance

• Teamwork functionality had both strengths and weaknesses:

- Teamwork/Ada

- Teamwork/DSE

- Teamwork/DPI

- TeamworkJMCM

Lessons Leamed Applying CASE MetlhodslTools To Ado Software Development Prejeds

___ December 1, "1993

DocEXPRESS Lessons Learned

• DocEXPRESS simplified the transition between TeamworkJDPI and publi-

cation software (Interleaf) and provided specific support for producing

DoD-STD-2167A compliant documentation.

• DocFXPRESS executes on top of Teamwork/DP! and inherits underlying

limitations of that tool.*

• DocEXPRESS documentation and support are of high quality.

* Substantial improvements in both DocEXPRESS and Teamwork document

generation have been made since the time of this experience. Even with
these improvements, however, generation of deliverable-quality

documentation remains a significant challenge.

Lessons Learned Applying CASE Melhods/Tools To Ada SoflwatrQ Developmenl Projects

SEW Proceedings 249 SEL-93-003

= December 'f, 1.3

Miscellaneous Lessons Learned

• The impact of introducing multiple changes/technologies was underesti-

mated (the number of changes may have been too ambitious for a rela-

tively small project). These changes included:

- Migration from a centralized, Vax-based environment to a networked
AIX-based environment.

- Use of several significant new tools, e.g., Ada, Teamwork, Interleaf.

- Adaptation of the existing software methods and process to the
above.

• One of the greatest performance improvements accrued from upgrading
the SEE CPU "horsepower":

- Ada compilations

- System builds

-- Test runs using the target computer emulator

Lessons Learned Applying CASE Methods/Tools To Ads Software Developmonl Pro|eels 34

December 1, 1993

Higher quality was realized in the first phase of the contract (FAADS

Model I) and higher productivity is expected for subsequent phase
(Model II), due to:

- Most of, the learning curve is over, and the team is acclimated to the

adapted software process using the new environment and tools

- Many of the problems encountered during the first phase have
either been solved or workarounds have been devised

- A Teamwork reuse base has been established for the next phase,
providing a head-start in developing the three Model II CSCIs

Lessons Learned Applying CASE Methods/Tools To Ads Software Development Projects 35

SEW Proceedings 250 SEL-93-003

Session 4: Advanced Concepts

David J. Campbell, Unisys Corporation

J

Betty H. C. Cheng, Michigan State University

Janet E. McCandlish, TRW

SEW Proceedings 251 SEL-93-003

SEW Proceedings 252 SEL-93-003

N94- 36494

Software Engineering With Application-Specific Languages

David J. Carnpl)ell

Unisys Corporation

Valley Forge Engineering Center

P.O. Box 517, Paoli, PA 19301-0517

Linda Barker

Deborah Mitchell

Unisys Corporation

Space Systems Division

Mail Stop U04D

600 Gemini Ave, Houston, TX 77058

Robert H. Pollack

Unisys Corporation

Valley Forge Engineering ('enter
P.O. Box 517, Paoli, PA 19301-0517

J)d t/

Abstract

Application-Specific Languages (ASLs) are small, special-purpose lan-

guages that are targeted to solve a specific class of problems. Using

ASLs on software development projects can provide considerable cost

savings, reduce risk, and enhance quality and reliability. ASLs pro-

vide a platform for reuse within a project or across many projects

and enable less-experienced programmers to tap into the expertise of

application-area experts.

ASLs have been used on several software development projects for the

Space Shuttle Program. On these projects, the use of ASLs resulted

in considerable cost savings over conventional development techniques.

Two of these projects are described.

1 Introduction

An application-specific language is a special purpose language that is oriented towards

writing programs for a specific class of problems. An ASL presents the programmer wilh a

higher level of abstraction than a general-purpose programming language, and, as a result.

the programmer needs to write much less code to implement a software system.

The ASL code written by a programmer is called a specification: it describes the requiro-

ments for a software system. A translator reads a specification, as shown in Figure 1, and

automatically generates software and perhaps other related products, such as accompanying

SEW Proceedings 253 SEL-93-003

Writtenin an application specfic language

Application

Specification

Application I

_ik_i!PegrOmoddUeC:idol!o:iMor e!nCanltF:ii_;ii: I...... /_p_i_ti:n ,

Figure 1: The ASL translator generates software and other related products based on
a specification written in a high level language.

design documentation, that satisfy the specification. Usually, the generated software is in a

high-order language such as C or Ada.

Today, there are many ASL based commercial off-the-shelf products (sometimes called

4GLs), that address such diverse application areas as data base applications, spread sheets,

and graphical user interfaces. If a COTS ASL can be found which meets the needs of a

software development project, it will often produce seemingly miraculous results. If such a

tool cannot be found, however, an ASL approach is usually abandoned.

This is unfortunate because custom ASLs can be created rather inexpensively, and thev

can provide considerable advantages to projects that are developing software with certain

characteristics. ASLs can increase productivity and reliability by shifting more of the tedious

work and mechanical details to the computer, freeing programmers to spend more time

addressing the decisions that require creative thinking. ASLs also provide a single point of

control for a large amount of software. This enables requirements and design decisions to

change with minimal impact on cost and schedule.

2 An Overview of ASL-Based Software Engineering

ASL-based software engineering is a software engineering technique for creating software

through automatic code generation. It is not suited to all projects, but there is a large

SEW Proceedings 254 SEL-93-003

class of applications where its use can dramatically reduce cost and schedule. For any given

project, many different techniques may be applicable, and the best approach may be a

combination of techniques. Since software engineers are relied upon to identify the most

cost-effective approach, they should be knowledgeable of this technique.

An ASL approach is indicated for a software system when it has recurring similar

requirements, especially if there is a large number of them. For example, the requirements

might define a series of screens that a system uses to interact with its user. While each

screen is different, they are also similar, e.g., each screen contains editable fields for data

entry and data validation must be done on each field. If these similar requirements can be

implemented with similar code, and an algorithm to transform the requirements into the

code can be found, then an ASL can be used.

Cost

T
One-time cost
to implement

ASL

1

?7 Y .o,_.o...o,

N umber of similar requirements

T
Cost
Savings
w#h ASL

1

Figure 2: This graph compares the cost of using an ASL versus the cost of using a

general-purpose programming language, based on the number of similar requirements.
Initially, the ASL is more expensive, because of the one-time only cost to develop the
translator. With sufficient repetition in the requirements, however, the cost to develop

translator pays for itself.

With ASLs, there is a one-time cost to implement the translator. After the translator

is implemented, a specification still must be written to obtain any application code. How-

ever, compared with a general-purpose programming language, fewer lines of ASL code are

required to implement a corresponding amount of the system's functionality. Moreover, a

programmer can typically write more lines of ASL code per day, because, with ASLs, the

programmer is transcribing already written requirements into the syntax of the ASL, whereas

with a general-purpose programming language, the programmer must write code which

describes how to implement the requirements. Consequently, as the amount of repetition

in the requirements increases, the cost of implementation with an ASL falls below the co._t

of implementing software with general-purpose programming language. This relationship is

shown in Figure 2

Even if there is not enough repetition to produce a dramatic cost difference, other factors

may warrant the use of an ASL. For example, can the ASL be reused on other projects?

SEW Proceedings 255 SEL-93-003

Is the algorithm to transform requirements into implementation so complex, that it is best

handled by a computer? Are the requirements volatile? Are there risk factors that might

cause a possible re-design of the software, e.g., performance issues? If there is significant risk

that the requirements or the design may change, then using an ASL will make the software

more manageable, because the code is controlled from a single point.

Implementation of an ASL requires a team of engineers with collective expertise both in

the application area being addressed and in language implementation. This team must design

a generic solution to the problem, which is expressed as a set of reusable code templates and

an algorithm to instantiate these templates based on requirements. This design, i.e., the

templates and the translation algorithm can be reviewed just like any other form of design.

The language expert designs a language for expressing the information required to instan-

tiate the templates. This language will typically incorporate terminology and notations used

by the application experts so that they can easily write or review the specifications. The

language enables the variances in the similar requirements to be expressed. For example,

while each screen consists of a set of unique fields and control buttons, they may also contain a

set of standard controls, e.g., controls that return to the previous screen or quit the program.

Since the standard controls appear on all screens, they do not need to be specified in the

ASL; instead, the translator can automatically supply them.

The language expert also builds the translator. The translator reads an input specifica-

tion, extracts the information needed by the translation algorithm, and generates the output

products by instantiating the templates. The translator may perform semantic checks on

the input specification to check that it describes a valid application.

In order to produce other related products from the same specification, such as design

documents, test plans, or test data, templates for these products must be designed and logic

must be added to the translator to instantiate these templates. The ASL may be enhanced

to include additional information that is necessary to instantiate these templates.

Based on our experiences at Valley Forge Engineering Center implementing many dif-

ferent ASLs over t'he past decades, implementing an ASL, i.e., designing the language and

implementing the translator, typically takes from a few weeks to several months, depending

on the complexity of the specification language. This cost includes designing the language

and implementing the translator only; it does not include the cost of writing any required

support software which the generated code may call upon. Since the support software (or

software with similar functionality) is usually required whether or not an ASL is used, it is

not be figured into the cost of implementing the translator.

There are two reasons why ASLs are relatively inexpensive to implement. First, the un-

derlying technology and theory used to build ASL translators comes from the well-understood

software domain of compilers. Many automated tools exist for this domain, e.g., code gener-

ators for building lexical analyzers and parsers. Besides automa.ted tools, there are standard

architectural designs for translator programs and libraries of commonly used component._.

Second, ASLs are much easier to implement than compilers. The generated code is a

high-level language, instead of a machine language. The generated code can interface wi! h

other software components to implement its functionality. Also, ASLs are much simpler

SEW Proceedings 256 SEL-93-003

languages than general-purpose programming languages. Since the design of tile language

is under the control of the implementer, language constructs which are hard to implement

can be avoided. It, therefore, is possible to design and implement a translator for a small,

special-purpose language, at lower cost and risk than most other types of software.

The Benefits of ASL-Based Software Engineering

ASL-based software engineering provides a number of benefits, including:

• Increased Productivity

• Increased Reliability

• Better Control

• Lower Maintenance Cost,

• Increased Reusability

Increased Productivity

First, there is less code to write, because a software description written in an ASL is
much shorter than that same software written in a general-purpose programming language.

Second, more lines of ASL code can be written per day than lines of a general-purpose

programming language, because, when an ASL is used, the programmer writes a description

of what the application does, instead of writing a description of how it does it.

Moreover, ASLs can be use to capture the expertise of an experienced programmer and

transfer it to less experienced programmers. For example, an ASL that allows programmer

to build screens for X-windows by just describing their appearance, enables the coding of

the screens to be done by a programmer that does not know X-windows. The translator

contains the knowledge of an X-windows expert on how to transform the descriptions into

the appropriate X-windows code.

Increased Reliability

Generated code is more reliable than hand-written code. Since all of the code is based on

the same set of templates, once the templates are correct, all of the code will be correct. The

computer can be counted on to perform the repetitive task of instantiating the templates

accurately.

Better Control

The form and content of the generated code is controlled from a single-point, the trans-

lator; consequently, all of the generated code can easily be changed. A single poinl of

control reduces risk by allowing many design decisions to be deferred. For example, if, a

generated system interfaces with another complex system, e.g., X-Windows, the design o1"

the generated system can be fine-tuned later, after more experience is gained, by simply

5

SEW Proceedings 257 SEL-93-003

changing the generator. On the other hand, when there is large amount of hand-written

code, it is desirable to completely decide on the design before the code is written, because

of the cost of retrofitting a change in all of the code.

Also, if the translator generates multiple products, then the products are kept in syn-

chronization automatically. For example, if a translator generates a program and a structure

chart which describes the design of the program, then the design documentation and program
always parallel each other.

Lower Maintenance Cost

Perhaps the biggest benefit of using an ASL approach is realized in the maintenance

phase of the life cycle. There is less code to maintain. Moreover, the capability evolve the

system to accommodate new requirements is built into the system; features can be added or

modified by making changes to the specification.

Sometimes, over the lifetime of a program, fundamental changes must be made to its

overall design, e.g., porting the program to a different hardware platform, operating system,

windowing system, database, or even programming language. ASLs facilitate this, because

the specification and translator maintain a clean separation between what a program does

and how a program does it. In order to retarget a program, only the translator must change.

All of the code invested in the specification is still valid because it is independent of the

implementation.

Increased Reusability

ASLs extend the scope of reuse beyond what is possible with conventional development

techniques and general-purpose programming languages. When an software component is

implemented in a general-purpose programming language, the amount of customization that

can be done is limited by the parameterization methods available in the language. When

a component is generated, however, more possibilities for customization exist, because the

generator can add, modify or omit code.

3 Examples of ASLs

ASL technology has been applied on several software development project at NASA/Johnson

Space Center. The work was performed under the Space Transportation System Operations

Contract (STSOC) on which Unisys Space Systems Division is a subcontractor to Rockwell

Space Operations Company.

In this section, we present the work done on two projects to give examples of two ASLs

that address completely different kinds of problems. On one project, (tone for the Payload

Operations branch, a command editor for the Tethered Satellite was implemented using

ASLs. On the other project, done for the Shuttle Flight Design and Dynamics branch, an

ASL was implemented to serve as a general-purpose tool for analyzing data files used during

flight design.

6

SEW Proceedings 258 SEL-93-O03

3.1 Tethered Satellite Command Editor

Approximately 500 Tethered Satellite System (TSS) payload commands required editing.

The ground control specialist uses menus to select commands for editing. Menu buttons

either display a submenu or a screen for editing commands. A sample of a menu and a

screen is shown in Figure 3.

Satellite RF

Autoreconfiguration

Override Telemetry

AMCS 32-bi1 Constants - I

AMCS 32-bi1 Constants - 11

AMCS 16-bit Constants

Gyro Constants

Memory Dump

D RBS

Time Tag Command

PREVIOUS

Satellite Hold/Spin Mode (RF)

HoldA_gle t J DEG

SpinRate [J RPM

MSG FLD:

Figure 3: The command editor provides a GUI for selecting and editing commands.

A sample menu and and a screen for editing two commands is shown.

Screens have varying requirements for grouping of commands; some screens process one

command, while others process 35 or more commands. Each command must be retrieved

fl'om a database and stored again after it has been modified. Five different command

formats must be processed, each with a unique checksum calculation. Some commands

required values to be converted to engineering units, and most commands require values

to be displayed both symbolic and in hexadecimal. A single group of commands can be

optionally loaded from an external file, rather than tile database.

Rather than assigning many programmers to build 140 or so screens--having each pro-

grannner code similar sorts of things, but each doing it differently--we invested in the

design of special specification language, in which each command and screen layout can be

described. A sample of this language is shown in Figure 4. Common capabilities such as the

need for certain buttons on each screen, the retrieval of data, and conversion and checksmu

calculation were built directly into the associated generation process. The specification had

SEW Proceedings 259 SEL-93-003

Command Format RF_32_bit_degrees is

Format : RF;

(7,0)[32] Degrees : Sat_Degrees;

end RF_32_bit_degrees;

Command format RF_16_bit_RPM is

Format : RF;

(7,0)[16] RPM : Sat_RPM;

end RF_I6_bit_RPM;

Satellite_Hold_Mode_0n_RF: PI3KI020L RF_32_bit_degrees;

Satellite_Spin_Mode_0n: PI3KI022L RF_I6_bit_RPM;

Form Hold_Spin_Mode_RF is

title : "Satellite Hold/Spin Mode (RF)";

"Hold Angle", Satellite_Hold_Mode_On_RF.Degrees,

"Spin Rate", Satellite_Spin_Mode_On.RPM,

end Hold_Spin_Mode_RF;

"DEG" ;

"RPM" ;

Menu RF_Menu is

title : "Satellite RF";

"Autoreconfigurat ion"

"Override Telemetry"

"AMCS 32-bit Constants - I"

"AMCS 32-bit Constants -II"

"AMCS 16-bit Constants"

"Gyro Constants"

"Memory Dump"

"DRBS"

"Time Tag Command"

"Hold/Spin Mode"

end RF_Menu ;

=> Auto_Reconfiguration_KF;

=> RF_Override_Telemetry_Form;

=> amcs_constants_32_RF_pagel;

=> amcs_constants_32_RF_page2;

=> AMCS_Constants_16_RF;

=> RF_Gyro_Constants;

=> RF_Memory_Dump_Form;

=> DRB_Menu;

=> RF_Time_Tag_Command;

=> Hold_Spin_Mode_RF;

Figure 4: This is the specification for the screens shown in Figure 3. Besides displaying

the menu, the code generated for this specification fetches two commands from the

database (P13K1020L and P13KlO22L), extracts the Degrees and RPM field from

each command respectively, and displays their values on the screen for editing by the

user. If the user presses the STORE button, the commands in the database will be

updated with the last value the user entered.

S

SEW Proceedings 260 SEL-93-003

all the implementation details for each command; the generator integrated all special process

requirements with common capabilities.

J Input I
ASL

Translator

Compilable
Program

Documentation

Test
Cases

Figure 5: The TSS ASL translator generates a command editor, a user's manual for
the command editor, and test program from a single specification.

The translator generates three significant products for this project as shown in Figure 5.

The main product consists of several thousand lines of high quality, maintainable C code.

In addition, a 200 page user's manual and test program are produced. The user's manual

describes how to use the editor and the screens that editor is capable of displaying. The test.

program validates that each TSS command exists in the database and is defined as specified.

Additionally, high and low value entry is simulated for each editable data value.

The ASL approach accommodated introducing new requirements in the unit testing phase

with no impact to schedule. During this phase, about 40 new screens were requested by the

customer to handle science commands. To accommodate this request, no actual C coding

was required, only descriptions of the new screens had to be added to the specification. Then

a new editor, user's manual, and test program were generated automatically.

The productivity for the command editor application was not tracked in detail. The

translator consists of 7K lines of code, 4K lines were hand written for this project and 3K

lines were reused or generated; the level of effort to produce the translator was 3 person

months, including the design of the templates for the generated code. The TSS Command

Editor is 12K lines of code, 7K lines are generated by the translator, and 5k lines are

hand written. The hand-written code is used by the generated code and is not changed

to accommodate new specifications. The generated test program for the TSS editor is 6K

lines of code, and the generated user's manual is 12K lines of troll and pie commands.

Additional productivity gains have been achieved, because the command editor generator

has been used for other payloads, e.g., SSBUV and Wake Shield.

3.2 Strip Manipulate and Merge Tool

The Strip Manipulate and Merge (STMM) tool was created by the Common Software task

as part of its overall goal to reduce maintenance cost by creating a common set of tools for

use by flight designers, since many of the existing tools duplicate functionality.

SEW Proceedings 261 SEL-93-003

STMM accepts a specification that describes operations to be performed on standard

flight design data files. There are several different types of data files used for flight design.

Each data file type has its own physical format; however, all of the data files are logically

similar--Each file consists of a collection of records; each record is the same type, consisting

of a set of named fields; and each file has a data dictionary which describes the structure

of the records, i.e., the names of the fields in the record, the number of bytes allocated to

the field, the type of data in the field (e.g. ASCII or binary), and the engineering units
represented by the data.

STMM replaces an existing set of forty or so tools that perform similar, but specific,

operations on flight design data files, such as converting from one file format to another;

creating a file from selected records of another file; or omitting, reordering, renaming, or

adding fields to the records of a file. In addition, some tools perform operations on multiple

data files, such as concatenating, merging or joining them. Each tool did some specific

combination of the above operations on a specific set of data files. With STMM, these forty
custom tools are replaced by forty small specifications and the STMM tool itself.

Originally, STMM was to be implemented using a COTS product that manipulates flat

files. After analysis, it was found that the COTS product could not adequately replace the
existing set of tools. The COTS product did not support the number fields that records in

some of the data files had. It did not support operations such as joining or merging files

based on a tolerance for the key fields. And finally, it could not convert from one file type to

another. The additional support code required to use the COTS solution made the COTS

implementation unfeasible, so a custom ASL was implemented.

merge "runl. cff" (cff) and "run2. cff" (cff) giving "out .merge" (fcff) ;

record selection for "runl.cff"(cff) is

range : Number in 1.0e6 .. 2.0e6;

end;

key is Pressure;

end;

run

Figure 6: This sample language specification merges two data files, runl.cffand run2.cff,

producing a the result file out.merge. The files are merged on the key field Pressure.
The only records selected from runl.cff are records where the value of the field Number

is in the range one million to two million.

One of goals of STMM, was to make the language easy to use by flight design engineers,

who are not necessarily computer programmers, so that new file manipulation programs

could easily be created by them. The language designed for STMM allows the user to

express operations on data files using an is English-like syntax, which is easy to read ar, d

write. A sample of the STMM language is shown in Figure 6. Also, extensive error checking

was built into the translator to make it easier for the user to debug specifications.

10

SEW Proceedings 262 SEL-93-003

The architecture of STMM is slightly different from the other ASLs that we have been

discussing. Instead of translating the user specification into an HOL program, which must

then be compiled, the translator generates an internal, intermediate language that represents

the user's program. A component called an interpreter" executes this intermediate language.

The interpreter for STMM makes use of a library that defines a class of objects called

filters. There are several types of filters; each type of filter can be connected to one or more

input streams of data and produces an output stream of data. In addition, each type of

filter is capable of doing some kind of transformation on its input streams to produce its

output stream. For example, there are filters which select records based on parameterizable

criteria, strip fields from records, or concatenate, merge, or join multiple streams of data.

The STMM translator translates the specification into the appropriate chain of filters. Once

the filter chain has been constructed, the translator turns to control over to the filters to

executed the operations.

Summary

The way in which software is produced has changed several times since the invention of

electronic computers. All of these changes consist of transferring an increasing amount of

work from human beings to the machine itself. Application-specific languages are a step

in this trend. They enable software engineers to leverage the tools and techniques from a

well-understood domain--compilers--against problems of developing new software.

Application-specific languages provide many important benefits to a project during imple-

mentation and maintenance phases. They increase productivity, increase reliability, provide

control of a large amount of software and related products from a single point, and enhance

the ability of a system to adapt changing requirements.

Because of the success of ASLs on these and other STSOC software development projects,

ASL training was given to a team of about twenty STSOC software engineers. These

engineers will assess new projects and existing maintenance efforts to find areas where ASLs

can reduce cost.

Biographical Sketch

David J. Campbell has over seventeen years experience in compiler, operating system, and

support tools development. In addition to his work at Unisys, he is a part-time instructor

for the Mathematical Sciences Department/Computer Science Division, Villanova University.

For the past seven years, the main focus of his work has been on automatic generation of

software, chiefly through the use of compiler development technology. His work includes

the implementation of many software generators and the creation of tools to build software

generators. IIe has also been involved with many tasks on the STARS program, including

porting a Sun Unix version of the Comnlon APSE Interface Set, revision A, to the MACtI

operating systeln, and serving as chief programmer on the rapid software modeling task.

ll

SEW Proceedings 263 SEL-93-003

Mr. Campbell is currently a Staff Engineer in the Research and Development Division of

Valley Forge Laboratories. He holds an B.S. degree in computer science from Wichita State

University.

Linda Barker has over seventeen years experience in the computer industry. She is

currently Supervisor of Software Engineering for the Mission Control Center, Data Systems

Software Section, which is responsible for maintaining several applications used in the ground

support operations for space shuttle flights. She is also a charter member of the Houston-SSO

Software Engineering Process Group (SEPG).

Deborah A. Mitchell has over fourteen years experience in programming and software

support on a variety of hardware systems. For the past six years, she has worked on the Space

Transportation System Operation Contract in the Flight Design and Dynamics Department.

Her work includes project management of Common Software applications, the development

of two ASL applications, the General Purpose Input Processor and the Strip Manipulate

and Merge, Generic Report Writer.

Deborah Mitchell is currently a project manager in the Reconfiguration Department of

the Unisys, Houston, division. She holds a Bachelor of Science in Electrical Engineering

(BSEE) from Prairie View A&M University.

Robert H. Pollack has over twenty years experience in programming and software

support, on a variety of hardware and operating systems. For the past nine years, the main

focus of his work has been on the automated creation of application software, chiefly through

the use of compiler development technology. His work includes the creation of a system to

generate Ada message validation code from abstract specifications of the message formats,

a system which is used for software development in several Unisys projects. He is also the

creator of a major subsystem of an interpreter for the Ada language developed under the

STARS program.

Mr. Po]lack is currently a Staff Engineer in the Research and Development Division of

Valley Forge Laboratories, where he is assigned to the Re-Engineering IR&D project. He

holds an M.S.E. (Computer and Information Science) from the University of Pennsylvania.

12

SEW Proceedings 264 SEL-93-003 i

Software Engineering With Application-Specific Languages

David J Campbell

Unisys Corporation

PO Box 517

Paoli. PA 19301

Campbell@VFL Paramax.COM

ApplicAtion+Spe_'iR¢ T,IIm_'a.$_{29 November _HI3) Fol] |

Application-Specific Languages (ASLs)

• Special-purpose languages targeted to solve a speci6c class of

problems

• Present programmers with a higher level of abstraction than

general-purpose languages, allowing a programmer to write less

code

• Used to automatically generate required software or other related

work products

, Inexpensive to produce (typically, from a few weeks to a few

months)

ApplicaTiol-Speciflc Lim|la4_¢s(_l November ! 993) F_] 2

SEW Proceedings 265 SEL-93-003

Automatic Software Generation With ASLs

Written in atz application _pe¢fi¢ Zatzguage

_'-- Application

t SPecification l

Automatic Software Generation With ASLs (Cont.)

• Specification and translator maintain a clean separation between

what software does, and how it does it

• Generic solution to problem is formulated as a set of reusable

code templates

• Translator executes an algorithm that instantiates templates

from a specification which describes the requirements for the

software

Appllcatlou-Spe¢illc LLagua_e.(_I'9 No_embcr 1_;)] F'o_l •

SEW Proceedings 266 SEL-93-003

Evaluationprocess

• Determine if a software component is a candidate for ASL

implementation

- Repetitive coding tasks

- Complex or error-prone coding tasks

- Requirements subject to change

- Recurring problem (i.e., ASL is reusable on other projects)

• Perform tradeoff analysis, ASL vs other approaches

Applicat,©n-Sp_ifi(LioPruu8_(29 _1o,_-mber]993) F©il $

Cost Tradeoff

Cost

T
One-time cost
to implement

ASL

I

T
cost
Savings

Number of similar requirements

Appllcit_oA-Speciflc [-LIgIIK_{29 No.tuber IH3) P_I 6

SEW Proceedings 267 S EL-93-003

ASLDevelopmentActivities

• Language Design

- Design a language for specifying requ!rements in terms
familiar to the application expert

• Translator Development

- Develop a translator that checks the input specification for

errors and generates code that satisfies the requirements

• Product Generation

- Write specification for the required work products and

generate the actual components

Appli,_ltion-Sp.ec;'_c L_IEI_Ir_C29 November Z99)3) Foll "_

Benefits

• Increased Productivity

- Less code to develop and maintain

• Increased Reliability

- All code based on same templates

- Computer accurately instantiates templates

• Increase Manageability

- Translator provides a single-place for controlling a large

amount of code and related work products

- Design decisions are encapsulate in the translator

- Less impact to evolve design or tune implementation

/'.pplicat_ou-Sl_ik Lnngn,NBu(29 No.eqlbeT I H3) Fo|| II

SEW Proceedings 268 SEL-93-003

Benefits (Cont.)

- Related work products are always consistent

- Less impact to handle anticipated requirements changes

• Increased Reusability

- Generated components are more tailorable than components

irnplemented in programming languages

Appllc,tio_.Sp_ilic Laag=alt_(2_ November 1993) Foil 9

Examples of ASLs

• Editor Generator (Egen)

• Strip Manipulate and Merge (STMM)

Aplflk&tios.Specifl ¢ LanllLl_{29 ,_o*,_flll_r |bcJl} Fo_l I0

SEW Proceedings 269 SEL-93-003

Egen (Editor Generator)

• Egen is an ASL that generates a payload command editor from

a high-level specification

• Initially developed for the TSS payload, subsequently used on

the SSBUV and Wake Shield payloads

AppI;c_tion 5i_ecillc L_11_8_(29 _lu_mh_t 1995j lro_l I]

Command Editor

• Fetches and stores commands from a data base

• Enables the user to display and change the variable fields of
commands

• Converts values to engineering units

• Handles different command formats and computes checksum

required by formats

• Provides a GUI for editing commands

Appl;_itiom-Spe¢ific LanGulses(_9 _;ovembe: 1993} Foll 12

SEW Proceedings 270 SEL-93-003

Example of User Interface

Ho_e,S;in uod_ _IIi¢. Hok_pln Mode (R_

i _°,_ T I _°
o". [1 _
_G FLO:

App1;cl_ioi-Spe: tic a=gu_¢_(_9 34oven,he* i_) FO_ 13

The Egen Specification

Command Format KF_32_bit_degrees is

Format : KF;

(7,0)[32] Degrees : Sat_Degrees;

end KF_32_bit_deErees ;

Command format KF_I6_bit_KPM is

Format : KF;

(7,0)[16] KPM : Sat_P_PM;
end KF_ 16_bit_P_DM;

Sat_Hold_Mode_0n_KF: PI3KI020L KF_32_bit_degrees;

Sat_Spin_Mode_0n: PI3KI022L RF_I6_bit_RPM;

Form Hold Spin Mode KF is
title ?" "Satellite Hold/Spin Mode (KF)";

"Hold Angle", Sat_Hold_Mode_0n_KF.Degrees, "DEG" ;
"Spin mate", Sat_Spin_Mode_0n.KPM, "RPM" ;

end Hold_Spin_Mode_KF ;

AppI;¢at_.._;pecil_(Lu_=_(2$.q_ember 1993)Fell 14

SEW Proceedings 271 SEL-93-003

The Egen Specification (Cont.)

Menu RF_Menu is
title : "Satellite RF";
"Aut orec onfiguration" =>
"0verride Telemetry" =>
"AMCS 32-bit Constants - I" =>
"AMCS 32-bit Constants -II" =>
"AMCS 16-bit Constants" =>

"Gyro Constants" =>
"Memory Dump" =>
"DRBS" =>
"Time Tag Command" =>
"Hold/Spin Mode" =>

end RF_Menu ;

Aut o_Re con_RF ;
RF_0verride_Telm ;
amcs_32_RF_page I ;
amcs_32_RF_page2,
AMCS_16_RF;
RF_Gyro_Constants ;
RF_Memory_Dump_Form,
DRB_Menu;
RF_Time_Tag_Command;
Hold_Spin_Mode_RF;

AppI,r_Z{o..'_p_I_r [_.g.mK_(29 Novemb¢_ 1993) Foi', 15

Egen Translator

• Egen produces multiple work products

: ASL
Translator

Compilabte IProgram

Documentation

Test
Cases

SEW Proceedings

Applicatiom-Specifi¢ LaulLu_es(29 N_,embel 'N$] Fog 16

272 SEL-93-003

STMM (Strip Merge and Manipulate)

, STMM programs describe operations to be performed on flight

design data files

- Create files from selected records of other files

- Omit, rename, reorder, or add additional fields to records

- join, concatenate, or merge files

- convert files from one format to another

• It replaces forty programs that perform specific operations on

given files

Appl c_[km.Speciic Langulqprs(29 November 1_$_ F_I 1:

Example of a STMM Specification

merge "runl.cff"(cff) and "run2.cff"(cff)
giving "out .merge" (fcff) ;

record selection for "runl.cff"(cff) is

range : Temperature in 1.0e4 .. 2.0e4;
end;

key is Pressure;
end ;
run

Applk:a¢io_.Specifl¢ La_llusgel_29 N'ovemb_r 19|3) Toil ! |

SEW Proceedings 273 SEL-93-003

N94- 36495

Applying Formal Methods and Object-Oriented Analysis

to Existing Flight Software

Betty H. C. Cheng*

Michigan State University

Department of Computer Science

A714 Wells Hall

East Lansing, MI 48824-1027

chengb@cps, msu. eda

Brent Auernheimer

California State University, Fresno

Department of Computer Science

Fresno, CA 93740-0109

brent_auernheimer_CSUFresno, edu

Abstract

Correctness is paramount for safety-critical soft-
ware control systems. Critical software failures in
medical radiation treatment, communications, and
defense are familiar to the public. The significant
quantity of software malfunctions regularly reported
to the software engineering community, the laws
concerning liability, and a recent NRC Aeronautics
and Space Engineering Board report additionally
motivate the use of error-reducing and defect detection
software development techniques.

The benefits of formal methods in requirements-
driven, software development ("forward en gl"neerin_')
is well documented. One advantage of rigorously engi-
neering software is that formal notations are precise,
verifiable, and facilitate automated processing. This
paper describes the application of formal methods to
reverse engineering, where formal specifications are
developed for a portion of the shuttle on-orbit digital
autopilot (DAP). Three objectives of the project were
to: demonstrate the use of formal methods on a
shuttle application, facilitate the incorporation and
validation of new requirements for the system, and
verify the safety-critical properties to be exhibited by
the software.

1 Introduction

Correctness is paramount for safety-critical soft-
ware control systems. Critical software failures in
medical radiation treatment [1], communications [2],
and defense [3] are familiar to the public. The
significant quantity of software malfunctions regularly
reported to the software engineering community [4],
the laws concerning liability [5], and a recent NRC
Aeronautics and Space Engineering Board report [6]
additionally motivate the use of error-reducing and
defect detection software development techniques.

The benefits of formal methods in requirements-
driven software development ("forward engineering"_
is well documented [7, 8, 9, 10]. One-advantage
to using rigorous approaches to software engineering

*This author is also supported in part by NSF grant CCR-
9209873.

is that formal notations are precise, verifiable, and
facilitate automated processing [11, 12, 13].

We claim that maintenance of critical existing
("legacy") code also benefits from formal methods.
For example, formal specifications can be reverse

engineered from existing code. The resulting
formal specifications can then be used as the
basis for change requests and the foundation for
subsequent verification and validation. Considering
re-implementation's high cost and, even worse, the
failure of critical software, reverse engineering of code
into formal specifications provides an alternative or a
supplement to traditional approaches for maintaining
safety-critical systems.

This paper describes a project that applies formal
methods to a portion of the shuttle on-orbit digital
autopilot (DAP). Three objectives of the project were
to: demonstrate the use of formal methods on a
shuttle application, facilitate the incorporation and
validation of new requirements for the system, and
verify the safety-critical properties to be exhibited by
the software.

In addition to developing formal specifications of a
critical module, a graphical depiction of the subsystem
was constructed using the Object Modeling Techniqwe
(OMT) [14] to provide an object-oriented view of the
_stem as it relates to the functional and dynamic
views. Lessons learned from this project are described,
including discussions of the benefits of constructing
specifications and the ability to generate proofs from
the formal specifications.

The remainder of the paper is organized as
follows. Section 2 gives a brief introduction to formal
methods and object-oriented development techniques.
Section 3 gives an overview of the entire project,
including a discussion of the object-oriented analysis
and the development of the OMT diagrams. A
summary of lessons learned from this project are
discussed in Section 4. Finally, concluding remarks
and future investigations are given in Section 5.

2 Background Material
This section briefly defines and motivates the use of

formal methods. Also, the benefits of object-oriented
analysis and design are presented.

SEW Proceedings 274 SEL-93-003

2.1 Formal Methods

Formal methods in software development provide
many benefits in the forward engineering aspect
of software development [7, 8, 9, 15]. For
any specification, there can be any number of
implementations that satisfy the specification [16].

Due to the criticality and the volume of much of the
software being developed by many agencies involved in
flight systems, there are several projects incorporating
formal methods into the software development process
[17]. In addition, there have been recent investigations
into reverse engineering that focus on the use of
rigorous mathematical methods for extracting formal
specifications from existing code [18, 19, 20].

A formal method consists of a formal specification
language and formally defined inference rules [15].
The specification language is used to describe the
intended system behavior and the inference rules
provide a sound method for reasoning about the
specifications. Using formal specifications for software
design serves several general purposes. First, it
forces the designer to be thorough in the development
and the documentation of a system design. Second,
the developer is able to obtain precise answers to
questions posed about the properties of the system,
and therefore be able to rigorously test (by developing
theorems) the design for the satisfaction of its
requirements. Unfortunately, since the requirements
are traditionally expressed informally, there remains
a (albeit decreased) potential for errors to remain
undetected. Third, the developer is able to reason
about the correctness of a system or a safety-
critical component of the system with respect to its
specification. The latter category of reasoning can
be divided into two approaches: program verification
and program synthesis. Program verification is the
process of checking the semantics of a program text
against its specification. A program whose semantics
satisfies its specification is said to be correct. Program
synthesis refers to formal techniques for systematically
developing a program from a specification such that
the correctness of the resulting program (with respect
to its specification) is inherent in the development
process itself [21, 22, 23, 13].

Formal methods are typically more difficult to
apply than informal approaches and require a great
deal more discipline. Furthermore, the state of the
current technology is such that verification and the
use of formal methods is largely done manually, thus
requiring a tremendous effort to perform tedious,
but necessary tasks. In general, the introduction
of formality in software development is a difficult
but valuable step in the construction of reliable and
maintainable computer systems. The difficulty is
largely due to the quantity of detail required by
formalization as well as the tedious process by which
the formalisms must be manipulated. However, the
detection and correction of design flaws, ability to
use automated tools for manipulation, elimination of
ambiguity, precise documentation for maintenance,
and improved reusability are a few examples of the
overwhelming value, and often necessary benefits, that
formal methods brings to the software development

process.

2.2 Object-Oriented Techniques
There are a wide variety of approaches to

requirements analysis, many of them in the broad
category known as object-oriented requirements
analysis (OOA) [14]. An object is a data abstraction,
and it is the goal of OOA to construct an abstract,
object-based model of the problem domain. The OOA
focus on objects isin contrast to the more traditional
approach to analysis that focuses on procedures [24].
That is, instead of modeling the problem domain as a
system of operations that process data objects, OOA
modeling centers on a description of data objects and
their interactions.

Most OOA techniques begin by a careful assessment
of the natural language problem description. A simple
first step in developing an OOA model is to extract the
nouns from the problem description. Many of these
nouns will share common properties and may be more
easily described as instances of types. For example,
Galileo, Voyager, and Magellan are all spacecrafts,
and Venus, Mars, and Mercury are all planets. In
this context, spacecraft and planet can be considered
as types, where the type of an object is called its
c/ass. Some classes, referred to as subclasses, may
be specializations of other classes. For example, an
interplanetary spacecraft is a specialization of the type
spacecraft. As such, OOA organizes types into a
class hierarchy based on a isa (as in "an X is a Y_)
relationship.

It may be natural to think of an object as
being composed of other objects. For example, an
interplanetary spacecraft may consist of numerous jets,
guidance and navigation control system, and a probe
to study a planet's atmosphere. This dependence
introduces an additional dimension of relations into
the class hierarchy, that is, a/_art of relation. The
paris of an object are often called its attributes.

The nouns of the problem description can be
used to identify candidate objects (and therefore,
classes), and accordingly, the verbs in the problem
description can provide information on interactions
between objects. Some verbs may describe a service
for a particular class of objects, such as fire in the
phrase "fire the jets". Other verbs may describe a
possible state of an object, such as coast in the phrase
"the spacecraft begins to coast." Therefore, verbs help
to define the services of a class of objects, usually
referred to as the operations or methods of a cla_,
and the computational processes of the system as a
whole (the dynamic behavior).

In the early stages of software development,
includig object-oriented approaches, diagrams are
frequently used to describe requirements and guide
development. For example, data flow diagrams
DFD) [25] have been widely used to visualize
nctional behavior of processes. Entity-relationship

(E-R) diagrams [26] have been used to pictorially
describe a wide variety of concepts, foremost among
them is the relational data base organization.

In general, a single diagramming notation is
not sufficient to capture the complex information

SEW Proceedings 275 SE.L-93-O03

needed to build software systems .[27]. The
Object Modeliny Technique (OMT) [14] uses DFDs,
hybrid E-R diagrams, and statecharts to model
software requirements using object-oriented concepts.
Collectively, these diagrams address properties that
should be modeled, including flow of control, flow
of data, patterns of dependency, time sequence,
and name-space relationships. The OMT approach
is appealing m its multiple views of software
requirements and is fairly comprehensive in its

beit informal) treatment of development issues.
rthermore, OMT is commonly used in industry and

in academic settings.

3 Project Overview
A portion of the shuttle software was chosen for

a formal methods demonstration project involving
NASA's Jet Propulsion Laboratory, Johnson Space
Center, and Langley Research Center [28]. This
multi-NASA site project was supported as a Research
and Technology Objectives and Plans (RTOP). A
related project of a smaller scale was performed
by the authors in conjunction with the larger
demonstration project. The Phase_PZane module, the
control system for automatic attitude control of the
shuttle, was the subsystem selected for the smaller
project. The criteria that led to the selection of
Phase..Plane included finding a module with difficult
to understand requirements and potential for critical
change requests. Although the Phase..Plane module
has worked correctly in thousands of hours of use in
simulation and flight, its specific properties remains
obscure (at lea.st to the requirements analyst and
software developers) [29].

Three tasks were performed in the development
of the formal specifications of the module's high-
level requirements. First, an understanding of the
original requirements was needed. This involved
consulting the Functional Subsystem Software Re-
quirements (FSSR) document [30] (also known as
Level C requirements, consisting largely of "wiring
diagrams"), Guidance and Control Systems Training
Manual [31], source code, informal design notes
[32], and discussions with shuttle software personnel.
An "as-built" formal specification capturing the
functionality depicted by the FSSR "wiring diagrams"
was then developed.

Second, when attempting to derive a more abstract
requirements-level formal specification, it was difficult
to eliminate the implementation bias present in the
as-built layer. A level of OMT diagrams was
developed to depict the information from the first
level of specifications. These diagrams facilitated the
abstraction process and lead to the next higher level
of specifications. This iterative process consisting of
developing a level of formal specifications, followed
by constructing the corresponding OMT diagrams
lead to the identification of the high level, critical
requirements of the Phase_PXane module. Example
specifications and OMT diagrams are described below.

The third task involved outlining proofs between
the levels of specifications developed. That is, each
specification must be shown to correctly implement

the more abstract specification above it. These proofs
provide traceability from the implementation details
as described by the "wiring diagrams" to the high level
requirements.

3.1 Phase Plane

The Reaction Control System (RCS) Digital
Autopilot system (DAP) achieves and maintains
attitude through an error correction method, involving
the control of jet firings. Figure 1 gtves a
high-level view of the DAP, where the State
Estimator gives the current attitude, while taking into
consideration spacecraft dynamics. This information
is then supplied to the Phase..PXans component that
calculates the attitude and rate errors with respect to
desired values specified by the crew.

_Qvr_J. _ttrrofc.OT _o)

_ I-""--1 i !

L
I !- '

Figure 1: High-hvel view of DAP, including the
Phase_Plane module [32]

A phase plane may be visualized as a graph plotting
spacecraft rate errors against attitude errors for one
rotational axis, with a "box" drawn around the center.
There is a separate phase plane for each of the vehicle
rotation axis (roll, pitch, and yaw). The "box"
(with parabolic sides), whose limits are defined by
the crew with attitude and rate deadbands, is used
to determine when, if, and in what direction rates
must be generated to null the errors [32]. If the
shuttle is within the specified deadband limits, the
rate and attitude errors are represented by a point
plotted inside the box. If the point travels outside
the box, then jets fire to return the point inside the
box, thereby reducing the errors and achieving the
maneuver request or maintaining the attitude hold as
requested by the crew. Figure 2 gives a simplified
graphical representation of the phase plane [30]. The
shaded regions depict the coast regions where the
Orbiter does not need any corrective action. The
remaining regions are known as hysteresis regions,
where external factors such as positive (negative)
acceleration drift, propellant usage, inertia, time lags
between firing commands, and sensor noise require
the calculation of corrective action to ensure that the
Orbiter remains within the deadband limits.

In an attitude hold situation, the error plot cycles
around the zero error point with jets turning off
and on again each time the limits of the "box" are
exceeded. This activity is known as 'qimit cycling" or
"deadbanding'. The phase plane generates positive
or negative rate commands on an axis by axis basis,
where the jet select component determines which

SEW Proceedings 276 SEL-93-003

Jdet(s) to fire (the topic of the RTOP project [281). The
ashed lines outline the deadbanding path in F:gure 2.

The requirements for the Phase_Plans module
are described in terms of a "wiring" diagram (see

Figure 3 [30]), indicating the input and output values,
and several tables describing the calculation for the
boundaries of the phase plane and its different regions.

+ mio Mror

+ mrs OG] ÷ sHmll

b

- rats D6

- ettilude

de4dl_l

Figure 2: Graphical depiction of the phase plane, with
coast and hysteresis regions [30]

wmb_

prsC, e_s hw_ _ _

_wror

mlltJds

I¢_ts

mN le_ts

Conl_

10¢

Ptw_ Plane

_ omlmsn_

Figure 3: Simplified wiring diagram for the
Phase_lane module [30]

3.2 Formal Specifications
One aspect of formal methods for critical software

development is the use of a particular rigorous
notation to precisely define the function of the system
and requirements that the system software must meet.
These formal specifications are syntax- and type-
checked using compiler-like parsers. This project
used the PVS (Prototype Verification Systems) formal
specification tools [33, 34] under development by SRI
International. PVS is written in Common Lisp but
runs on interpreters of other Lisp dialects. A P VS
user, however, interacts with a customized Emacs [35]
interface and needs no knowledge of Lisp.

Our goal was to specify Phase.Plane's functionality
and execution constraints at several levels of

abstraction. Specification of a system through
increasingly more detailed levels of abstraction is a
well-established strategy used by specifiers [15, 21].
Although these levels may appear almost disjoint, the
proof of correct refinement of a level of specification
by the level below assures the specifier the model
is correct in addition to providing requirements
traceability.

A general rule is that abstract, upper-level
specifications should establish system inputs, outputs,
and basic functionality of the system. Critical
correctness requirements that the system must satisfy
are stated at this level and become the criteria
by which the specification is judged to be correct.
Therefore, upper-level specifications tend to be black-
box models of the system.

Mid-level specifications introduce both data type
and functional detail that may constrain the eventual
implementation of the system. These levels are the
core of the specification since design decisions and
and execution environment issues can be introduced.
Change requests for modules will most likely be
addressed in these levels.

A low-level ("as-built") specification is a straight-
forward representation of a particular implementation.
It is from this detailed specification that source
code can be automatically generated, or verification
conditions for programmer-produced code derived.

The nature of Phase_P'l ane demanded a bottom-up
approach instead of the top-down strategy described
above. High-level English descriptions of this portion
of the shuttle DAP were readily available, as was
source code that had executed without error in
hundreds of hours of use. This project explored the use
of formal specifications to derive requirements that are
more detailed and precise than an English paragraph
and less obscure than tightly optimized source code.

A low-level formal specification was developed from
the existing source code, the Crew Training Manual
[31], and the low level "wiring diagrams" of data
flow and formula tables. This specification mirrored
the functionality of the existing system, but did not
offer an abstract view of the module's functional

requirements.
A high-level black-box specification was then

developed corresponding to the level zero DFD
(Figure 4). This formal specification did not
include implementation details. At this level it was
straightforward to state abstract properties that any
software implementing Phase_Plane must have.

Finally, a mid-level formal specification was
outlined to capture critical aspects of functionality
and requirements at a level useful to shuttle
"requirements analysts" when reviewing proposed
modifications to the module. Due to time constraints,
this level is still under development.

The challenge at the mid-level is to omit extraneous
implementation details, yet be precise enough to
capture necessary properties concerning minimization
of fuel usage, thruster firings, and movement about
the desired attitude. Included in this challenge i§ the
linkage of the three specification levels by proofs that
trace abstract, critical properties from the top-level

SEW Proceedings 277 SEL-93-003

specification through the mid-level, and to the low
"code-level" specification.

It should be noted that since the PVS environment
is interactive, it is possible for a user to make a %laim"
and attempt a proof of the claim immediately. This
feature can be particularly useful when attempting to
deduce requirements from a code-level specification.
This tactic can also be used to "test" a specification
interactively. A current NASA RTOP has documented
other advantages of formal methods in general and
PVS in particular [28].

3.3 Construction of OMT Diagrams
This section describes the OMT diagrams that

have been generated thus far for the Phase.Plane
module. Since we started the reverse engineering
process with the source code and implementation
specific wiring diagram of the Phase.Plane module,
we created two levels of data flow diagrams depicting
the flow of information into, from, and within
the Phase_Plane. These diagrams assisted in the
abstraction process to obtain an architectural view
of the phase plane as it related to the overall DAP
system, thus leading to the construction of the object
models. The object and the functional models
offered one level of abstraction, thus leading to the
development of the next layer of formal specifications
(mid-level specifications describing data structure and
operations on the data structures). Finally, using the
functional and object diagrams m conjunction with
the description of the deadbanding states, we created
the dynamic model for the Phase_Plane module. The
dynamic model depicts the states between jet firings as
the Orbiter deadbands. A high level of specifications
was generated based on the dynamic model.

The remainder of this section describes the OMT
diagrams constructed during the reverse engineering
and formal specification construction process.

3.3.1 Functional Models

Data flow diagrams (DFD) facilitate a high level
understanding of systems, both in terms of forward
and reverse enginering. Static analysis of program
code provides information that accurately describes
flow of data in a system. In general, process bubbles
denote procedures or functions of a given system.
Arrows represent data flowing from one process to
another. And rectangles represent external entities.

The simplest functional model (DFD) is a contezt
diagram or Level 0 diagram and is shown in Figure 4,
where the entire phase plane module is reduced to a

rOCeSSbubble, with the external input and output
beled. This diagram provides the context for the

process in question. Note that the Level 0 DFD closely
resembles the structure of the "wiring" diagram for
Phase.Plane given in Figure 3.

The child diagram for Figure 4 gives the next level
DFD, which shows the different processes making up
the Phase_Plane module and is shown in Figure 5. In
this figure, the input variables are used to calculate
boundaries for the phase plane. The boundaries and
the attitude and rate limits are supplied to the process

Figure 4:
Module

High Level (0) DFD for Phase_Plane

that calculates the thrust commands (jet firings).

Figure 5: Level 1 DFD for Phase_Plane Module

3.3.2 Object Models

Studying the "as-built" layer of specifications, the
different DFDs, and the requirements document for
Phase_Plans led to the development of an object
model for the Phase.Plane. As mentioned previously,
an object is a self-contained module that includes both
the data and procedures that act on that data. An
object can be considered to be an abstract data type
(ADT). A class is a collection of objects that have
common use [36].

The object diagram for the Phase_Plane is shown
in Figure 6. This diagram is a class entity with
attributes rate error, attitude error, and rotation
azis. The operation for this class is calculate thru3t
commands based on the rate and attitude errors.
Also included in the object diagram are Phase Plane
class instances (rounded rectangles) for each of the
rotational axes (roll, pitch, and yaw). Each of the class
instances will calculate different thrust commands
for each of the specific rotational axes. Notice
that there are two subclasses for the Phase Plane
class, Coast Region and Hysteresis Region. In the
coast region, the values of the attitude and rate

SEW Proceedings 278 SEL-93-003

errors are within acceptable bounds, thus there is
no need to calculate new thrust commands. In the
hysteresis region, however, the =Calculate new thrust
commands" operation is inherited from the Phase
Plane class.

Phmm
Plm_

Error
A_h,de Error
R_ltk_ Ax"

mnml

c_mmmnds

R.9_

I

Figure 6: Object Model for Phase Plane Module

Next, we performed more abstraction steps in order
to obtain a high-level object model for the DAP,
consisting of the State Estimator, Phase Plane, and
the Jet Select Module, corresponding to the diagram

iVen in Figure 1. Figure 7 gives the object model
r the DAP, where each class consists of three

parts corresponding to the name of the class, list
of attributes, and list of operations. The diamond
symbol denotes aggregation, where the class above the
diamond is said to consist of the three classes below
the diamond. If either attributes or operations are
not known (or do not exist) for a given class, then the
corresponding area is shaded.

3.3.3 Dynamic Models

This section gives the dynamic models for the phase
plane, which describes the states in which the DAP
can be with respect to the Phase.Plans component.
Also, included are the transitions that take the DAP
from one state to another. A pictorial diagram of
the envelope depicting the position of the Orbiter
is given in Figure 8. The "O" plots the current
vehicle attitude and rate errors with respect to the
phase plane. As long as the current position is
within the limits imposed by the deadbands (the
heavy lines), the deadband constraints are satisfied
and no jets will be commanded to fire. Once the
Orbiter exceeds the bounds of the "box", jets will
be commanded to fire in an effort to cancel the
errors, thereby reducing the errors and achieving the

I Turn

<>

Phla

Plane

Rate Error
AttUtude Enc¢
Rotation Axis

CllculaW thrust

¢oamamd=

Figure 7: High Level Object diagram for DAP

+ rate error

+ rate DB

-°

- attitude _ L
deadband

+ attitude

deadband

$--2®L

- rate DB

Figure 8: Graphical depiction of the phase plane, with
deadbanding cycles [31J

requested maneuver or maintaining the attitude hold,
whichever was requested by the crew. Once the
Orbiter returns to the deadband area, the jets will
stop firing.

Figure 9 gives an explanation of the different states
in which the Orbiter can be while it is deadbanding
[31]. Figure 10 gives a statechart depiction of the
states through which the Orbiter transitions while it is
deadbanding. The state transitions are in the form of
jets terminate (begin) firing and the Orbiter drifting
in (out) of the deadband region.

Note that Figure 8 depicts the clockwise traversal
of the states in which the Orbiter cycles through the
deadband limits. It is also possible for the Orbiter
to traverse the cycle in a counterclockwise fashion, in
which case, the arrows in Figure 10 would be reversed.

Finally, a very high-level view of the states in which
the Orbiter can be is given in Figure 11. Included

SEW Proceedings SEL-93-003

1. No jets fire. Since the rate error is
positive, the attitude error will grow in
a positive direction.

2. Jets fire to nullify the positive rotational
rate.

3. Jets stop firing when the desdband line
is crossed, but a little negative rate
errors is inevitable.

4. No jets fire. With a negative rate
error, the attitude error will also drift
negatively.

5. Jets fire to nullify negative rate error.

6. Jets stop firing, but residual positive
rate error causes attitude error to go
positive again and the cycle repeats.

Figure 9: Explanation of deadbanding states [31]

in the diagram are the actions or conditions that
cause the Orbiter to transition from one state to the
next. The rectangle containing "Phase Plane" and the
labeled arrows pointingto the states indicate that the
state transitions describe the Phase.Plane module.

4 Lessons Learned

The results from this reverse engineering project
have provided several lessons for the overall project
as well as for future reverse engineering projects.
First, in order to obtain high-level requirements
for existing software, it is not feasible to obtain
the specifications (formal or informal) in one step.
Instead, several layers of specifications must be
developed, starting with the "as-built" specification.
The %s-built _ specification closely mirrors the
programming structure of the existing software in
order to provide traceability through the different
levels of specifications. After creating the levels
of specifications, theorems need to be constructed
to demonstrate that critical properties are preserved
from one level of specification to the next.

Second, formal specification languages and their
corresponding reasoning systems provide a mechanism
for bringing together disparate sources of project
information into one integrated framework. In
particular, the project information may be in a variety
of formats, from different sources, and subjected to
varying levels of formal review. For this particular
project, information was obtained from the Functional
Subsystem Software Requirements (FSSR) document
30] (also known as Level C requiiements, consisting
argely of "wiring diagrams"), Guidance and Control

Systems Training Manual [31], source code, informal
design notes [32], and discussions with shuttle software
personnel. Accordingly, formal specifications were
constructed based on all of the information in order
to describe the phase plane operation. The PVS

Figure 10: States representing the clockwise
deadbanding of the Orbiter

Figure 11: High-level states for Orbiter with respect
to the Phase_Plane module

proof system provided a mechanism for checking the
completeness and consistency of the specifications,
while also supporting the proof construction of the
relevant theorems.

Third, the benefits of object-oriented analysis and
design can be exploited for reverse-engineering as
well as forward engineering projects. Specifically,
object-oriented analysis and design assists in the
understanding and the simplification of the complexity
of a large system. Furthermore, having an object-
oriented perspective facilitates future modifications by
providing the developer with a high-level, abstract
v_ew of system components, thus avoiding the
difficulties associated with attempting to understand
all of the details of a large, complex system at once.

Finally, an iterative process consisting of the
construction of a level of formal specifications,
followed by a set of corresponding diagrams is needed
to develop several layers of specifications for an
existing system. The diagrams introduce abstractions
that can be used to guide the construction of
the next level of specifications. Furthermore, the
complementary diagrams available in the OMT

SEW Proceedings 280 SEL-93-003

approach enable the specifier to consider different
perspectives of the system with notations best suited
for the respective perspective. The major advantage
to this diagramming approach is that one notation
does not consist of many different symbols in an
attempt to capture very different aspects of a system,
which would make it too complex to use effectively.

5 Conclusions and Future Investiga-
tions

Using formal specifications and object-oriented
analysis to describe the software that implements the
Phase_Plane module of the DAP has demonstrated
that this rigorous technology can be used for existing,
industrial applications. Constructing the different
levels of specifications, with increasing abstraction,
supplemented by the OMT diagrams provided a means
for integrating information regarding the Phase.Plane
module from disparate sources. Having access to
this information will facilitate the verification that
the original (critical) requirements or properties
are not violated by any future changes to the
software. In addition to facilitating verification tasks,
the formal specifications can be used as the basis
for any automated processing of the requirements,
including checks for consistency and completeness.
Interaction with the requirements analyst and other
members of the original development team for the
project strongly support the conclusion that the
specification construction process, in addition to the
actual specifications are useful to the overall software
development and maintenance processes of existing
(safety-critical) systems.

Future investigations will continue to refine the
mid-level and high-level specifications and develop
more theorems to relate the different levels of
specifications. We are also investigating the
formalization of the OMT diagramming notation,
which will provide a means for using automated
techniques for extracting formal specifications from
the OMT diagrams in order to facilitate the
specification process. Furthermore, extracting the
specifications directly from the diagrams will allow
us to reason about the completeness and consistency
of the diagrammed system, thus greatly facilitating
the requirements analysis, design, and maintenance
phases of software development.

6 Acknowledgements
Several people have provided valuable information

and assistance during the course of the project.
Specifically, we would like to thank David Hamilton,
John Kelly, Rick Covington, and John Rushby.

References

[1] Nancy G. Leveson and Clark S. Turner. An
Investigation of the Therac-25 Accidents. IEEE
Computer, pages 18-41, July 1993.

[2] Bey Littlewood and Lorenzo Strigini. The risks
of software. Scientific American, pages 62-75,
November 1992.

[3] Eric Schmitt. Armyis blaming patriot's computer
for failure to stop dharan scud. New York Times,
May 1991.

[4] P. G. Neumann and contributors. Risks to the
ublic. In Software Engineering Notes. ACM
pecial Interest Group on Software Engineering,

1993. Regular column publishedon a monthly
basis.

[5]VictoriaSlidFlor.Ruling'sDicta Causes Uproar.
The National Law Journal, July 1991.

[6] Aeronautics and Space Engineering Board
National Research Council. An Assessment
of Space Shuttle Flight Software Development
Practices. National Academy Press, 1993.

[7] Susan L. Gerhart. Applications of formal
methods: Developing virtuoso software. IEEE
Software, 7(5):7-10, September 1990.

[8] Nancy G. Leveson. Formal Methods in Software
Engineering. IEEE 2Vansactions on Software
Engineering, 16(9):929-930, September 1990.

[9] Richard A. Kemmerer. Integrating Formal
Methods into the Development Process. IEEE
Software, pages 37-50, September 1990.

[10] Susan Gerhart, Dan Craigen, and Ted Ralston.
An international study of industrial applications
of formal methods. Technical report, NIST,NRL,
and Atomic Energy Control, 1992.

[11] Betty H.C. Cheng. Synthesis of Procedural
Abstractions from Formal Specifications. In Proc.
of COMPSAC'91, pages 149-154, September
1991.

[12] Jun jang Jeng and Betty H.C. ChunK. Using
Automated Reasoning to Determine Software
Reuse. International Journal of Software En-
gineering and Knowledge Engineering, 2(4):523-
546, December 1992.

[13] Betty H.C. Cheng. Applying formal methods
in automated software development, accepted
to appear in Journal of Computer and Software
Engineering, 1993.

[14] James Rumbaugh, Michael Blaha, William Pre-
merlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice
Ball, Englewood Cliffs, New Jersey, 1991.

[15] Jeannette M. Wing. A Specifier's Introduction to
Formal Methods. IEEE Computer, 23(9):8-24,
September 1990.

[16] David Gries. The Science of Programming.
Springer-Verlag, 1981.

[17] John Rushby. Formal methods and the limits
of dependability. In Proceedings of Foundations
of Theoretical Computer Science (FTCS _8),
Tonlousse, France, June 1993. Position paper for
Panel.

SEW Proceedings 281 SEL-93-003

[18] Betty H.C. Cheng and Gerald C. Gannod.
Constructing formal specifications from program
code. In Proc. of Third International Conference
on Tools in Artificial Intelligence, pages 125-128,
November 199i.

[19] Gerald C. Gannod and Betty H.C. Cheng.
A two-phase approach to reverse engineering
using formal methods. In Lecture Notes in
Computer Science, Proc. of Formal Methods in
Programming and Their Applications Conference.
Springer-Verlag, June 1993.

[20] M. Ward, F.W. Calliss, and M. Munro. The
maintainer's assistant. In Proceedings Conference
on Software Maintenance, pages 307-315, Miami,
Florida, October 1989. IEEE.

[21] Cliff B. Jones. Systematic Software Development
Using VDM. Prentice Hall International Series
in Computer Science. Prentice Hall International
(UK) Ltd., second edition, 1990.

[22] Edsger W. Dijkstra. A Discipline of Program-
ming. Prentice Hall, Englewood Cliffs, New
Jersey, 1976.

[23] D. K. Smith. KIDS: A Semi-antomatic Program
Development System. IEEE Transactions on
Software Engineering, 16(9):1024-1043, Septem-
ber 1990.

[24] Roger S. Pressman. Software Engineering: A
Practitioner's Approach. McGraw Hill, third
edition, 1992.

[25] Alan M. Davis. Software Requirements, Analysis
and Specification. Prentice-Hall, Inc., 1990.

[26] P. Chen. The entity relationship model: Toward
a unifying view of data. ACM Transactions on
Database Systems 1, pages 9-36, March 1977.

[27] F.P. Brooks. No silver bullet: Essence
and accidents of software engineering. IEEE
Computer, April 1987.

[28] Jet Propulsion Laboratory and Johnson Space
Center and Langley Research Center. Formal
Methods Demonstration Project for Space
Applications: Phase I Case Study: STS Orbit
DAP Jet Select. Research and Technology
Objectivesand Plans (RTOP), December 1993.

[29]David Hamilton. Discussion of phase plane
requirements. PrivateCommunication, August
1993.Hamilton isa software/knowledgeengineer
in the Advanced Technology Department of the
FederalSectorDivisionforIBM-Houston working
inconjunctionwith Johnson Space Center on the
shuttleproject.

[30]Space Shuttle Orbiter Operational Level C
Functional Subsystem Software Requirements:
Guidance Navigationand Control- Part C Flight
Control Orbit DAP. Technical Report OI-21

[31]

132]

[33]

[34]

[3s]

[36]

edition,Rockwell International,Space Systems
Division,February 1991.

Sara Beck. G & C Systems Training Manual:
Guidance and FlightControl- Insertion,Onorbit
and Deorbit.TechnicalReport I/O/D G&C2102,
Mission Operations Directorate,Training Divi-
sion,FlightTrainingBranch, October 1985.

D. Johnson and R. Davison. Phase Plane Logic
Design. JSC Memorandum concerning details of
the design of the Phase Plane Logic., May 1986.

N. Shankar, S.Owre, and J.M. Rushby. The PVS
proofchecker.Referencemanual, March 1993.

N. Shankar,S.Owre, and J.M. Rushby. The PVS
specificationlanguage. Technicalreport,March
1993.

Richard Stallman. GNU Emacs Manual, fifth
edition, 1986.

Ann L. Winblad, Samuel D. Edwards, and
David R. King. Object-Oriented Software.
Addison-Wesley, Publishing Company Inc., 1990.

SEW Proceedings 282 SEL-93-003

Applying FormalMethods and0bject-Oriented
Analysisto ExistingFlightSoftware

Betty H.C. Cheng

Department of Computer 5de_ce

Michigan State University

East Lansing, Michigan 48824-1027

ph: (517) 355-8344: fax: (517)

336-1061

email: chengb¢cps .msu. ed_z

Brent Auernheimer

Department of Computer Science

California State University

Fresno, California 93740-0109

ph: (209) 278-2573; fax: (209)

278-4197

email:

brent _aue_mheimer@c suf resno, edu

181h Annual Software Engineering Workshop. Dec. 1-2, 1993

Backgroundfor Project

• Integrate formal methods to portion of shuttle software

• Construct an object-oriented view of system

• Demonstrate the numerous utilities of formal methods in

software development

• Facilitate current and future maintenance

"Due to careful review of changes, it takes an average of 2 years

for a new requirement to get implemented, tested,

and into the field."

• Facilitate verification of safety-critical properties

• Address one major issue encountered in industry:

reverse enginee_ng of existing (legacy) system.

Software E._i.eerinlc W_kshop {12/93_-6

SEW Proceedings 283 SEL-93-003

Formal Methods

• What is a formal method?

- Formal languages with well-defined syntax

- Well-defined semantics

- Proof systems

• Why use Formal Methods?

- Improve quality of software systems

- Reveal ambiguity, incompleteness, and

inconsistency in a system

• Important Characteristics:

- Abstraction

- Proof obligations

- Tool support

- Systematic Process

So{twa,e Ent;neerinx W_r_ (12/931-1

Object-OrientedSoftware

• Represent real-world problem domain and maps it
into software solution domain

O0 Design interconnects data objects and

processing operations

Modularizes information and processing, not just

processing

• Three Main concepts:

- Abstraction

- Information hiding

- Modularity

.%f_,_are Enltia_lrinl_ W_xkshoo f12/93}-2

SEW Proceedings 284 SEL-93-003

Object Modeling Technique

• Three diagramming notations give complementary

perspectives of system

- Object Model presents the architectural view

(traditional object-oriented diagramming

notation)

- Functional Model presents a functional view

(data flow diagrams)

- Dynamic Model presents the behavioral view

(state diagrams)

• More amenable to formalization than other O0

diagramming notations

• Widely used in industry and universities,

including IBM at JSC.

Software Enfineerin= Workshoo t12193_-3

"What would help me do RA forOrbit DAP"

It is highly unlikely that we'll find a product that will understand

shuttle requirements. Some degree of customization will need to

be performed in whatever tools we choose to support our formal

methods activities.

• From the beginning, shuttle requirements authors were given the

freedom to express requirements in whatever form they preferred.

• Consequently, the shuttle requirements are a combination of

many formats, styles, conventions, and perspectives.

• It has historically been very difficult to insert new technologies

into the shuttle program.

Any tool that takes steps to the existing shuttle requirements or

automatically convert the existing requirements into a format it

can understand will be much more likely to succeed.

Software Enlcine_in_ Worh.d_) ('z2/93_-5

SEW Proceedings 285 SEL-93-003

Project SelectionCriteria

• Current RTOP is demonstration project:

- Jet Select module for space shuttle

- Determine which jets should be fired to achieve

desired position(s)

-Select module that is accommodating Change

Requests

• Faculty Fellowship project complements RTOP

project

- Phase Plane module: control system for

monitoring angular rotation

- Determines amount of corrective action needed

Software EnEineeri._ Wo(ksEo_ (12/g3)-7

Phase Plane

• JSC expressed keen interest in Phase Plane module

- JSC had difficulty fully understanding module

- Difficulty in testing module

- Will need to make changes in future

- Results feed directly to Jet Select module

• Phase Plane applicable to other spacecraft

• Main component of control system

- Uses thrusters to control angular state of spacecraft

- Monitor state errors

- Determine when and how corrective control should be applied

,SoTtware Enl_ineerinK Work.rJ_ (12/93)-8

SEW Proceedings 286 SEL-93-003

PictorialView of DAP Control Loop

DIGITAL AUTOPILOT (DAP)

r"
Desired I
state I I

;_/_ Phase PLane

I Estimated

I- I
L_

Jet Selection

Logic

State I
Estimator i

I

I

Spacecraft
Dynamics

State

Software E.gineecing Workshop (12/93}-9

GraphicalRepresentationof Phase Plane
+ rate error

+ rate DB

N
L

- attitude
deadband

+ attitude

deadband

._.._.___ ;_

- rate DB

i ,--_ Deadbar_mg Palh

E C_s_ Region

---_ I-_/_eres_s Region

Sof'm_re Engi.eerinK Workshop (12/93)-10

SEW Proceedings 287 SEL-93-003

PreliminaryTasks

• Learn new specification language (PVS), including

support tools.

• Become familiar with Jet Select and Phase Plane

domain

- Functional Subsystem Software Requirements

(wiring diagrams)

- Crew Systems Training Manual

- Informal requirements discussions from JSC,

IBM, Draper Labs (software designers),

including site visit to IBM at JSC.

-Informal design notes

• Become familiar with commonly used

object-oriented diagramming technique and

support tools.

Software Enk, ineeri.g Workshop (12/93)-ll

Wiring Diagramfor Phase Plane

ixeviou$ _rz,_'_ commands

11_ error

altitude error

deadband limits

rite Imils

CorWo_ L._

for

Phase Pllme

ON thrust_ corr=mamds

_2:
OFF

Software En$i,eerir*g Workshop (12/93)-12

SEW Proceedings 288 SEL-93-003

ProjectOverview

• Apply reverse engineering techniques

• Develop levels of specifications

• Each level is more abstract than previous

• ObJective: obtain a high-level specification of requirements

• Identify and prove critical properties that link the levels.

• Develop an OMT hierarchical "roadmap" of module

• Establish linkage between specifications and OMT diagrams.

Software Engineering Workshop (12/93)-13

Iterative Process

• Construct low-level specifications correspond to wiring diagrams

• Use code for clarification

• Construct OMT diagrams for wiring diagrams

• Identify properties required for system.

• Construct high-level specifications for properties of Phase Plane

• Construct high-level OMT diagrams that apply to Phase Plane

• Integrate specifications with OMT diagrams.

SoTtware Encineering Workshop (L2/'93)-14

SEW Proceedings 289 SEL-93-003

FunctionalModel: Level 0 (context) DFD

External

Irlpu!

Vanat_es

p_ev_,US th_usto f conlrna, ncls

_e error
Jel _leC!

Modute

Software Engineerin[Wo,rk_op (12/93)-15

FunctionalModel: Level 1 DFD

lapUt

Varl_

So.are En_neerlng Workshop (12/93)-16

SEW Proceedings 290 SEL-93-003

Object Modelfor Phase Plane

!

I No new thrust

I commands

Phase
Plane

Rate Error
At!tit ude Error
Rotation Axis

Calculate thrust

commands

HysteresJs
Region

- (Phase Plane)_ F (Phase Plane) "_

.o,, j

Software Engineering Workshop (12t'93)-17

I
Slate

Position

Object Modelfor DAP

DAP

ITurn _ff

<>

Phase
Plane

Rate Error
Atttitude Error
Rolation Axis

Calculate thrust

commands

I
Select

Ust of Jets

Software Enginee,i.g Woekshop (12/93)-18

SEW Proceedings 291 SEL-93-003

DynamicModelfor Deadbanding

Software En&,ineerlsl_ Worksflop (12/93}-19

More AbstractDynamicModelfor Deadbanding

J PhaR _ Module fire _,_$

Software Enlineenng Workshop (12/g3)-20

SEW Proceedings 292 SEL-93-003

Lesson I

• More than one step from high-level requirements to existing code.

• Must create several layers of specifications

• "As-built" layer closely mirrors code (traceability)

• Need to construct theorems relating layers of specifications

S4_ware Enlineerin s Workshop (12/93)-21

Lessonll

• Formal methods provide mechanism for integrating

disparate sources of project information.

• Project information may be:

- in a variety of formats,

- subjected to varying levels of formal reviews

-located physically apart

• Examples include:

- Functional Subsystem Software Requirements

("wiring diagrams")

- Crew Training Manual

- Design notes

- Discussions with shuttle software personnel.

• Use formal specifications to integrate information

from different sources.

Software Ensinm'in[Work._op (12/g3)-22

SEW Proceedings 293 SEL-93-003

Lesson III

• Object-oriented analysis and design can be exploited for

reverse engineering tasks.

• O0 introduces abstraction to simplify complexity of system

• O0 perspective can facilitate future maintenance tasks

Software Engineering W_ra, ho9 (12/93)-23

Lesson IV

Reverse engineering process is iterative

• Constrdct level of formal specifications

• Create a set of diagrams (introduces abstraction)

• Repeat.

Software Eal_ineering Wo*k.d_op (12/93)-24

SEW Proceedings 294 SEL-93-003

Summary

• Incorporate formal methods into existing system

-Assist maintainers in understanding module

- Facilitate future changes

- Facilitate verification of critical properties

• Develop reverse engineering process using FM and O0

• Develop OMT models usable by RTOP project

• Identify obstacles (and solutions) in abstraction

(reverse engineering) process usable by RTOP project

• Demonstrate utility of FM and O0 on real project.

S,oT'tw_reEngineering Workshop (12/93}-25

CurrentandPotential Future Tasks

• Develop mid-level specifications

• Construct multi-level correctness proofs

• Demonstrate how FM can be used to gain

confidence in the correctness of software after

modification using critical correctness criteria and

proofs.

• Integrate more closely the formal specifications

with OMT diagrams.

Software Entineerlng Work.d_ (12/93)-26

SEW Proceedings 295 SEL-93-O03

Acknowledgements

• The work described in this paper was carried out at the Jet Propulsion

Laboratory, California Institute of Technology, and was sponsored by

the National Aeronautics and Space Administration. Additionally, the

authors' work on this project was supported by NASA/ASEE Summer
Faculty fellowships.

• Reference herein to any specific commercial product, process, or service

by trade name, trademark, manufacturer, or otherwise, does not

constitute or imply its endorsement by the United States Government

or the Jet Propulsion Laboratory, California Institute of Technology.

S_ware Engineering Workshop (12/93)-27

SEW Proceedings
296 SEL-93-003

N94- 36496

INTEGRATING END-TO-END THREADS OF CONTROL INTO

OBJECT-ORIENTED ANALYSIS AND DESIGN

Janet E. McCandlish

TRW

213 Wynn Drive

Huntsville, Ala 35805

Dr. James R. MacDonald

ALPHATECH, Inc.
50 Mall Road

Boston, Mass 01803

Dr. Sara J. Graves

University of Alabama
in Huntsville

Alumni House, Room 102

Huntsville, Ala 35899

{9.

J
!

|
!

1

E

:

=

ABSTRACT

Current object-oriented analysis and design methodologies fall short in their use of

mechanisms for identifying threads of control for the system being developed. The

scenarios which typically describe a system are more global than looking at the individual

objects and representing their behavior. Unlike conventional methodologies that use data

flow and process-dependency diagrams, object-oriented methodologies do not provide a

model for representing these global threads end-to-end.

Tracing through threads of control is key to ensuring that a system is complete and

timing constraints are addressed. The existence of multiple threads of control in a system

necessitates a partitioning of the system into processes. This paper describes the

application and representation of end-to-end threads of control to the object-oriented

analysis and design process using object-oriented constructs. The issue of representation

is viewed as a grouping problem, that is, how to group classes/objects at a higher level of

abstraction so that the system may be viewed as a whole with both classes/objects and

their associated dynamic behavior. Existing object-oriented development methodology

techniques are extended by adding design-level constructs termed logical composite

classes and process composite classes. Logical composite classes are design-level classes

which group classes/objects both logically and by thread of control information. Process

composite classes further refine the logical composite class groupings by using process

partitioning criteria to produce optimum concurrent execution results. The goal of these

design-level constructs is to ultimately provide the basis for a mechanism that can support

the creation of process composite classes in an automated way. Using an automated

mechanism makes it easier to partition a system into concurrently executing elements that

can be run in parallel on multiple processors.

INTRODUCTION

The philosophy upon which object-oriented analysis and design is based does not lend

itself well to the representation of how a system operates as a whole. The object-oriented

premise emphasizes the extraction of objects to be modeled from the problem domain in

contrast to traditional methods which rely on the functionality of the system. A review of

SEW Proceedings 297 SEL-93-003

some of the more current object-oriented analysis and design methodologies highlights this

shortcoming by these methodologies' inability to effectively represent the end-to-end

processing of a system. A global representation is key to understanding how the system

operates. As described in [Fichman], conventional methodologies use tools such as data

flow and process-dependency diagrams for representing global threads end-to-end, but

object-oriented methodologies have nothing comparable. Because conventional methods
stress functionality over object partitioning, showing the operation of the overall system

via functions is consistent with the methodology approach in general. In contrast, object-

orientation concentrates on objects as stand-alone reusable components instead of how

those components tie together. Object-oriented methodologies partition objects and their

relationships into several models which represent different views of the objects and their
interactions. These views are generally presented in the form of static architectures and

dynamic behavior. There are typically multiple instances of each view, with each instance

representing a fragment of the system. The observer must deal not only with these

multiple views of the system, but also with fragments of the system at a time. Much effort

is required to obtain a synergistic understanding of the system being modeled as a whole.

One of the key mechanisms for ensuring system completeness is to trace through

threads of control. A thread of control is a path through a sequence of operations

representing a particular scenario in the system being modeled. Threads of control

integrate the overall flow of data, control, events, and timing up to the system level. They

provide a means by which the system may be analyzed and understood as a whole. Thread
of control information is desirable in two ways: first, it ensures that all of the pertinent

objects exist to support the system as a whole; and secondly, if timing is critical in the

system, tracing through the threads of control may identify essential timing constraints and

potential bottlenecks. The presence of multiple threads of control is an indicator that the

system will need to be partitioned into processes, that is, separate executable entities.
Identification of these critical areas early on will drive decisions concerning process

allocation, and how data will be transferred, accessed, and shared. Because of their

significance, successfully representing threads of control for a system being modeled

greatly enhances understanding the operation of the system as a whole.

Viewing a system in terms of the processes which make it up adds additional

complications. On the one hand, large-scale real-time distributed systems reconcile

competing demands for resources by partitioning the system into multiple processes. On

the other hand, object-oriented technology strives to partition a system by objects where

all data and operations associated with an object are encapsulated within the object. The

partitionings for processes and objects appear to be orthogonal in this context when
threads of control are considered. Hence, the partitioning goals associated with object-

oriented and distributed systems are conflicting.

This paper introduces a means of representing threads of control and their associated

classes/objects to better illustrate how the system operates. Towards this end, an analysis

of five predominant object-oriented analysis and design methodologies was performed.

2

SEW Proceedings 298 SEL-93-003

The methodologies reviewed include Coad and Yourdon [Coad91a] [Coad91b], Shlaer

and Mellor [Shlaer88] [Shlaer91], Booch [Booch], Firesmith [Firesmith], and Rumbaugh

[Rumbaugh]. While some of the methodologies reviewed describe both analysis and

design (Coad and Yourdon, Firesmith and Rumbaugh), Shlaer and Mellor focus more on

analysis and Booth on design. The distinction between object-oriented analysis and

design is not precise. There are inconsistencies in the research about what comprises
each, and the lines between analysis and design in object-orientation are blurred [Berard],

[Korson]. It is not the goal of this paper to distinguish between object-oriented analysis

and design. Instead, the intent is to focus on the constructs necessary to support end-to-

end processing during object-oriented analysis and design as opposed to object-oriented

programming.

A review of methodologies indicates that both static (class/object architecture) and

dynamic (control and data flow) representations of systems exist; however, threads of

control are only minimally represented and are fragmented. This paper extends the static

and dynamic concepts by introducing a representation which overlays dynamic flow (via

thread of control information) onto a static structure. In order to combine dynamic and

static representations to show end-to-end processing, class/objects are grouped so that

they may be represented at a higher level of abstraction. Determining how the

class/objects were to be grouped resulted in a partitioning problem. To simplify the

partitioning problem, the proposed grouping approach is performed in two phases. The

first phase involves a logical grouping of class/objects. The logical groupings are further
refined with thread of control (state, control, and data flow) information, providing a

coarse-grained partitioning referred to as logical composite classes. The second phase

further extends the partitioning using process partitioning criteria based on other thread of

control information involving communication and timing constraints to develop process

composite classes. The introduction of these design-level constructs provides the basis for

a mechanism to automate different instances of composite process classes for timing and

concurrency comparisons.

ANALYSIS OF CURRENT OBJECT-ORIENTED ANALYSIS AND DESIGN

METHODOLOGIES

Each of the five methodologies reviewed provided some means of representing both

the static architecture and dynamic behavior of a system. The following is a brief

description of the techniques each methodology employs for representing static and

dynamic views of a system and an overall assessment of these techniques.

Static Architecture

The static architecture refers to a non-temporal representation of the system. A static

representation of the system is generally reflected by some variation of entity-relationship

diagram. Entities, in this context, are either classes or objects. The distinction between

classes and objects is that a class serves as a template for defining the characteristics of an

object. An object is a software abstraction that models a concept, abstraction, or thing

SEW Proceedings 299 SEL-93-003

which represents the application domain (analysis) or the solution space (design). To

further distinguish the two, an object is an instance of a class. Further, a concrete class is

a class for which object instances may be created, as opposed to an abstract class for

which objects may not exist.

The static models and diagrams associated with the methodologies reviewed are

summarized in Figure 1. The diagrams for each methodology which depict classes/objects

and their relationships are those listed first in the Class/Object Representation row of

Figure 1. These diagrams, when used in a general context, will be termed class/object

diagrams since they generally contain more information than what is usually associated

with an entity-relationship diagram as is described below.

Class/

Object

Model(s)

i Class/

Object
Represent-

ation(s)

Coad and

Yourdon

• Class-&-Object
Layer

• Structure Layer
• Attribute Layer
• Service Layer

• Class-&-Object
Diagram

• Gen-Spec
Structure

• Whole-Part
Structure

Shlaer and

Mellor

• Information
Model

• Information
Structure

Diagram
• Inheritance

Diagram

Booch

• Class
Structure

• Object
Structure

• Class
Diagram

• Object
Diagram

• Class
Template

Firesmith

• Class Model

• Object Model

• General
Semantic Net

• Interaction

Diagram
• Classification

Diagram
• Composition

Diagram
• Class

Specification

Rumbaugh

• Object Model

• Object
Diagram

• Generalization
Notation

• Aggregation
Notation

The above representations all include classes/objects, relationships, and attributes. All
Include operation specifications with the exception of Shlaer and Mellor.

Figure 1. Static Models and Diagrams

An object, or the class template for the object, is usually def'med in terms of its

attributes and operations. Attributes are fields which describe data values within a

class/object, and operations are functions performed by a class/object Two

methodologies, Coad and Yourdon and Firesmith, represent attributes and operation

specifications on their Class-&-Object Diagram and Object Diagram respectively. Shlaer
and Mellor include only attributes on their Information Structure Diagram. Both Booch

and Firesmith use a separate means for representing attributes and operation

specifications. Booch describes a Class Template, and Firesmith a Class Specification.

Relationships in a class/object diagram refer to associations between two or more

classes/objects indicating some type of structural or semantic link. In addition to simple

SEW Proceedings 300 SEL-93-003

association, two special types of relationships exist in most object-oriented methodologies:

is-a and has-a relationships.

Is-a relationships introduce the concepts of generalization, specialization, and

inheritance. A generalization is a higher level of abstraction of a class. For example, the

class animal is a generalization of the classes cat and dog. Because it is a generalization,

ardmal is a superclass of cat and dog. Animal might be described as furry and four-

legged. While both the cat and dog are furry and four-legged, the cat meows and the dog

barks. Because they are specializations of animal, cat and dog are subclasses of animal;

they inherit the characteristics of being furry and four-legged, but they extend the animal

class by adding special characteristics such as meowing or barking. Specifically, a

subclass inherits the attributes and operations of its superclass, and extends it further with

additional attributes or operations. Several of the methodologies contained special

diagrams to represent the is-a relationship: Coad and Yourdon/Gen-Spec Structure,

Shlaer and MeUor/Inheritance Diagram, Firesmith/Classification Diagram, and

Rumbaugb./Generalization Notation.

Has-a relationships depict an aggregation of class/objects. A class/object which

contains at least one other class/object is referred to in this paper as a composite

class�object. For example, the composite class/object car is made up of doors, wheels, an

engine, etc. Conversely, a class/object which does not contain other classes/objects is

termed an atomic class/object. Several methodologies represented aggregation

associations with special notation: Coad and Yourdon/Whole-Part Structure,

Firesmith/Composition Diagrams, and Rumbaugh/Aggregation Notation.

Dynamic Behavior

Dynamic behavior is behavior attributable to timing and the flow of information in the

system being modeled. The information typically represented in dynamic models includes

state, control and data flow, and timing information. The states, or modes, of a

class/object reflect the attribute values of a class/object at a given point in time. State

information contains the states of a specific class/object, and the operations or events that

effect transitions between the class/object's states. State transition diagrams (STDs) are

the most common representation of state information. STDs are generated for each

class/object which has interesting behavior. All of the STDs in the methodologies

reviewed contained states, events, transitions and operations with the exception of Coad

and Yourdon's Object State Diagram which contained only states and transitions. Control

flow information describes the control and sequencing of a message within or between

classes/objects. It is most often represented in a control flow diagram (CFD). A message

may be a request for service, event, or passing of data. Dataflow information describes

the flow of data among classes/objects via their operations. A data flow diagram (DFD) is

commonly used to show data flow among the class/objects. Timing information contains

the duration of operations within and between class/objects and is usually associated with
control flow information.

SEW Proceedings 301 SEL-93-003

Control flow information is only minimally repre_nted on the Coad and Yourdon

Class-&-Object diagram via arrows between the class/objects which represent message
connections. Booch shows control flow only in the context of a Timing Diagram which

displays objects and the invocations of their operations along a time axis. Rumbaugh's

primary mechanism forcontrolflow ishisStateDiagram; althoughcontrolmay alsobe

shown on a DFD but isconsideredredundant.Both Shlacrand Mellorand Firesmith

combine controland dataflow informationontoone diagram,theAction DFD and

Object-OrientedCFD respectively.NeitherCoad and Yourdon or Booch describe

representationsfordataflow. For timinginformation,only Booch (aspreviously

mentioned) and Firesmithprovidea timingdiagram. Coad and Yourdon allowthata time

requirementmay be annotatedwiththespecificationofa particularclass/object.Shlacr

and Mellordescribedineonlyinthecontextof threadsofcontrolwhich isaddressedlater

inthispaper.

The dynamic models and diagrams associated with the methodologies reviewed are

summarized in Figure 2. The f'n'st bullet in each cell lists the model used to address each

type of dynamic information, and the second bullet lists the diagram (or diagrams) the

methodologies use to represent information.

State
Information

Control Flow
Information

I Data Flow
Information

Timing
Information

Coad and Shlaer and

YQvrdon Mellor
• Services Layer • State Model
• Object Stats • STD

Diagram
• Services Layer • Process*

• Message Conn- Model
actions on • Action DFD

Class-&-Object
Diagram

-N/A • Process*
Model

• Action DFD

Booch Firesmith Rumbaugh

• Class • State Model • Dynamic
Structure • STD Model

• STD • State Diagram
• Object • Control • Dynamic/Func-

Structure Model tional Models
• Timing • Object- • State Diagram/

Diagram Oriented CFD DFD

• N/A • Control
Model

• Object-
Oriented CFD

• Functional
Model

• DFD

• Services Layer

• Timing Textual
Annotation in

Claas-&-Object
Spe_cification

-N/A • Object
Structure

• Timing
Diagram

• Timing Model
• Timing

Diagram

.N/A

STD: State Transition Diagram, DFD: Data Flow Diagram, CFD: Control Row Diagram

*Proc_,___t is a transform in this context.

Figure 2. Dynamic Models and Diagrams

Dynamic behavior is the basis of information upon which threads of control are built;

however, dynamic behavior models only fragments of the system. State information is

associated with a particular class/object. Control and data flows are usually represented

between a particular group of classes/objects. Timing diagrams depict time durations of

6

SEW Proceedings 302 SEL-93-003

operations associated with segments of the system. Threads of control track the

information provided in the dynamic behavior models along a particular path which is

representative of a system scenario. In that threads of control integrate the puzzle pieces

which make up the system, their representation is fundamental to understanding how a

system operates as a whole.

THREADS OF CONTROL

A thread of control is a path which traces a sequence of operations among or within

objects or classes. This path represents a scenario which may be used during analysis,

design, or testing to trace through the model. Threads of control are valuable for

analyzing the model for completeness to ensure that all aspects of the system being

modeled are represented. Additionally, for real-time systems, they are essential in

identifying real-time processing requirements for timing constraints and botdenecks.

Threads of control represent the integration, along a particular path, of the state, control

flow, data flow, and timing data contained in the dynamic behavior models. State

information is needed because the thread of control may vary depending on the state of the

class/object. Timing, data flow and control flow data provide the sequencing information,

data required along a particular sequence, and associated duration.

Coad and Yourdon presented thread of control information in a cursory fashion via

message connections on their Class-&-Object diagram; although descriptive information

about the threads of control as related to a particular class/object may be contained within

that class/objects specification_ In all of the methodologies reviewed, only Shlaer and

Mellor had a clear representation of the relation between the states of a class/object and

the threads of control associated with the states using a thread of control chart; however,

the tie back to the associated class/object was not apparent and none of the data

associated with the flow was represented. The Timing Diagram was the only mechanism

available in Booch's methodology which reflected thread of control related information.

While it tied operations, sequencing, and times to objects, it was deficient in representing

data and state information. Firesmith provided three different diagrams containing various

thread of control information: an object-oriented control flow diagram for each major

thread of control, a thread-level interaction diagram to show the interactions of

classes/objects for a given scenario, and a timing diagram for each thread of control.

Rumbaugh used event trace diagrams to show the sequencing of events in a system;

however the information provided in this diagram depicted only the event sequencing and

the class/objects impacted by the event. Thread of control representations associated with

the methodologies reviewed are summarized in Figure 3.

The review of methodologies for thread of control information indicated that none of

the methodologies covered all of the information associated with threads of control.

Firesmith's method appeared to provide the best and most comprehensive thread of

control information of the methodologies reviewed, but the information is spread over

several diagrams and is therefore difficult to assimilate.

SEW Proceedings 303 SEL-93-003

Thmed
of

Control

(TOe)

Coad and

l_ming
Information

Y0urdon

Message
Connections on
Cless-&-Object

Diagram.
TOC in Cies_&-

Object Specifi-
cation in bullet
list format or in
Service Chart.

Shlaer and

Mellor

Thread of
Control Chart
shows events
and states
occurring in
s thread and
associated
times.

Booch Firesmith

Timing Dia- TOC Object-
gram shows Oriented CFD,
objects and Threed-level
operations Interaction
sequence Diagrams,
and dur- TOC Timing
stion. Diagram

Rumbaugh

Event traces -
shows event

sequencing and
the associated

class/objects

State
Information no yes no no no

Control Flow
Information yes yes yes yes yes

Data Flow no no no yes yes
Information

yes yes yes noyes

Associated
yes no

Class/Object
yes yes yes

Figure 3. Thread of Control Representations

Because of the significant role that threads of control play in understanding the overall

operation of a system, an effective means of representing them in object-oriented analysis

and design is needed. Current methodologies tend to fragment this information showing

only segments of the system at a time, using multiple models for different views of these

segments. The approach to integrating threads of control in object-oriented analysis and

design described here begins by abstracting classes/objects at a higher level. The rationale

for this higher level of abstraction is two-fold: f'trst, end-to-end processing is easier to

show, as well as understand, at a higher level of abstraction; second, thread of control

information is attached at the higher level of abstraction which lessens the amount and

complexity of the information to be handled. Abstracting classes/objects at a higher level

implies that classes/objects are aggregated into larger groups based on some criteria, such

as being logically related to each other. These logically related groups make up a logical

view of the system.

LOGICAL COMPOSITE CLASSES

A logical view represents the groupings of classes/objects which are logically related

into higher levels of composition. Partitioning into groups is usually based on engineering

judgment, and minimizing the associations, aggregations and generalizations between

groups. Traditionally, the rationale for grouping classes/objects is for partitioning large

projects, and to provide a means of understanding the overall system and its interfaces. A

logical view which overlays a class/object diagram might look something like what is

shown in Figure 4.

SEW Proceedings 304 SEL-93-003

Logical View

/object 3

mlaticnlhlp

Figure 4. Groupings for a Logical View

Although no formal method for grouping classes/objects was presented in the

methodologies reviewed, each methodology touched on the concept in some fashion. Yet,

the terminology and approaches associated with the groupings of classes/objects varies

among the different methodologies. Coad and Yourdon use the term Subject. Subjects

are initially created by identifying the uppermost class, the parent, in each is-a or has-a

structure and calling it a subject. Subjects are further refined by minimizing the

relationships and message connections between the subjects. Shlaer and Mellor use a top-

down approach to grouping. They begin by identifying the different domains which make

up a system and partition large domains into subsystems. It is for each of these

subsystems that the class/object diagrams are constructed. Booch'combines

classes/objects into modules which are actually physical representations in that they are

intended to represent software modules. Modules may be further logically grouped into

subsystems. Firesmith groups classes/objects into subassemblies which ultimately make up

an assembly. He describes several approaches to identifying subassemblies depending on

the situation involved. Some of the approaches involve bottom-up development where

class/objects are identified and then grouped based on the criteria dictated by the

approach, such as coupling and cohesion criteria. Other approaches, such as recursion,

begin with top-down development by identifying parent subassemblies, and recursively

defining other subassemblies as needed. Rumbaugh introduces modules which are logical

groupings of the class/objects and associated relations defined in his object model.
Modules are the lowest level subsystems. The terminology, models and representations

associated with each of the methodologies for a logical view are shown in Figure 5.

SEW Proceedings 305 SEL-93-003

Coad and Shlaer and Booch Firesmith Rumbaugh
Yourdon Mellor

Terminology Subjects • Domain • Subsystem • Assembly • Subsystem
• Subsystem • Module • Subassembly • Module

Model Subject Layer N/A

Represent-
stion

Class-&-

Objects
Diagram

tt

• Domain Chad

• Subsystem
Relationship
Model

• Subsystem
Communi-
cation Model

i • Subsystem
Access
Model

Module
Architecture

• Subsystem
Diagram

• Module

Diagram

Assembly
Model

• Context

Diagram
• Assembly

Diagram

Object Dlagran
(modules only)

** No distinction between model and representation

Figure 5. Logical View Representations

While these methodologies all describe logical groupings, they do not use this

construct in conjunction with thread of control information to represent end-to-end

processing. It is in this context that the logical composite class construct is introduced.

A logical composite class is a grouping of classes/objects which are logically related and

further refined/extended by integrating thread of control information. The rationale for

logical composite classes is that they provide a mechanism for representing end-to-end

threads of control through class/object groupings combining both static architecture and

dynamic behavior. They are also a precursor to process composite classes which further

ref'me groupings using process partitioning criteria. Process composite classes are detailed

in a later section. These constructs should be viewed as design-level classes which can be

integrated into a design language. Instances of this class are the actual groupings and their
associated data.

The methodology used to generate logical composite classes is a bottom-up approach

which begins with the initial groupings formed from the logical view. Next, the pertinent

state, data and control flow information required for threads of control is aggregated for

each logical grouping. As previously described in the dynamic behavior models, this

information is already available in fragmented form at the class/object level. To aggregate

the information means to recompose the information at the class/object level to the level of

abstraction of the logical groupings in a summarized form. This aggregated information is

assessed at the boundaries of the logical groupings by focusing on the information

required between the boundary classes/objects. The boundary class/objects are those

class/objects in the logical view that play an interface role between the groups defined in

the logical view. The aggregated information is attached to the associated logical

grouping. Groupings are then refined to minimize connections among groups. Figure 6

1

10

SEW Proceedings 306 SEL-93-003

shows the logical composite classes which evolved from the logical view groupings of

Figure 4.

Logical Composite Classes

1 2

7 3
message opermion _ _ I

within [_. u I

class/object _ _

r-] boundary class/object
example thread of control

Figure 6. Logical Composite Class Representation

The philosophy of using composite classes as aggregations of class/objects is probably

most closely associated with how Coad and Yourdon identify and refine subjects, since

subjects evolve partially out of has-a relationships. Refining the groupings as development
continues is consistent with Firesmith's recursive approach to development. However, the

logical composite class extends these concepts further by introducing a design-level

construct which contains a grouping of classes/objects at a higher level of abstraction and

attaches aggregated data representing thread of control information to those constructs.

While all of the methodologies described logical groupings, none of them addressed

the refinement of these groupings for processes as is required in real-time and distributed

systems. In this paper, the concept of grouping is extended even further using the process

composite class construct as a mechanism for refining groupings along process lines.

PROCESS COMPOSITE CLASS

A process view represents the mapping of class/objects to processes. In this context,

processes are entities implemented in software that may execute concurrently and compete

for resources. The introduction of multiple threads of control necessitates partitioning

11

SEW Proceedings 307 SEL-93-003

systems into processes. The logical composite classes shown earlier might contain

multiple threads of control as shown in Figure 7.

Logical Composite Classes

r . I_

I¢..'

threads of control

Figure 7. Logical Composite Classes with Multiple Threads of Control

Of the methodologies reviewed, the only methodology that provided a model for

processes was the Process Architecture model presented in Booch. This model described

templates for processes and processors. These templates contained information

concerning the characteristics of the computer, processes associated with each processor,

priority for each process and the scheduling approach. However, the model lacked any
transition or correlation to Booch's previously described class structure, object structure

or module architecture models. Additionally, no criteria for how processes should be

allocated or identified was provided.

The need for process partitioning has long been recognized in the real-time

development community. The merging of this technology with object-orientation is still in

its infancy. The key criteria for process partitioning have to do with communication and

timing. In terms of communication, the ideal is to minimize communication between

processes by grouping classes/objects which interface extensively within a process, thereby

reducing the interaction between groups. The interface between groups is referred to as

coupling, and within a group, cohesion. An excellent discussion on the coupling and

cohesion of objects and modules is presented in [Berard].

12

SEW Proceedings 308 SEL-93-003

Timing criteria affect process partitioning in a number of ways. For example, those

classes/objects whose operations support services which must be performed within a

specified time should be grouped in an independent process. Classes/objects whose

operations support services which perform on different cycles, sporadically, or at a low

level of priority should be separated into different processes. As previously mentioned,

threads of control may be used to trace through critical paths in a system to determine

total execution criteria. While a determination may be made to add processes due to

timing constraints, the tradeoff between adding these processes versus the overhead to nm

them must be weighed. Additionally, the more processes that are added, the more

complex the system becomes. A representative listing of partitioning criteria for processes

is provided in [Neilsen].

The construct introduced in this paper to represent the partitioning of systems into

processes, is the process composite class. A process composite class is a grouping of

classes/objects originating from the logical composite class groupings and further refined

based on process partitioning criteria. The logical composite classes already represent an

initial partitioning based on the existence of interactions between groups. The

methodology for developing process composite classes begins by extending these logical

composite classes with timing information. The timing information associated with each

logical composite class is assessed. Class/objects or class/object groupings which have

distinguishing timing criteria such as being time critical or the other extreme, low priority,

are extracted from within the logical composite classes. Weights may then be assigned to

interfaces between modified groupings as a function of the number of data/control flows

among the groupings. These weights determine the need for further repartitioning based

on changed interactions between groups resulting from the previous repartitioning based

on timing. Weights reflect the magnitude of communications between the groups.

Repartitioning is performed as needed to achieve total execution time criteria. Figure 8

highlights how these sequences of repartitionings might look. Beginning with the

grouping of the logical composite classes from Figure 7, Figure 8 shows subsequent

groupings into process composite classes based on various process partitioning criteria.

Keeping track of these numerous classes/objects, the interrelationships among them, the

threads of control through them, and the partitioning criteria needed to determine the

potential groupings into composite structures, quickly becomes a complex problem which
is well suited for a database environment.

The formulation of groupings into process composite classes involves taking the

thread of control information attached to the logical composite class, and applying

process partitioning criteria with system constraints to result in process composite classes.

Classes and their associated attributes, operations and state data are contained in a

database. The relationships that tie operations to particular state values or changes in

attribute values are also maintained. In the context of a logical composite class, thread of

control information is extracted from the appropriate classes. That is, the class/objects

whose operations are invoked along that thread of control, and the attributes and data

impacted or used in conjunction with those operations, are linked to the thread of control.

Additional information associated with the particular thread of control such as operation

13

SEW Proceedings 309 SEL-93-003

precedence, identification of time critical operations (priorities and deadlines), priority and

timing constraints, and communication interface requirements is also included.

Process Composite Classes

Time
Cdtical

Service_

_ i 1 _ Different

Cycle

threads of control

Figure 8. Repartitionings of Process Composite Classes

After threads of control are enumerated, interrelationships may be identified and

assessed. For example, different threads of control may use different operations within a

class. Interrelationships may be involved if one thread of control alters attribute values by

invoking a particular operation in a class where these attribute values are also used by

another operation invoked by a separate thread of control. The intra-dependencies of

attributes affected by operations within a given class is maintained in the database. These

intra-dependencies must be considered among the various threads of control. The

interdependencies along various threads of control between logical composite class

groupings must also be considered. These dependencies and their magnitude provide

much of the data needed to make process partitioning decisions.

The process composite class definition can be augmented by algorithms which

provide optimal solutions to allocations. Given the proper criteria, these algorithms can

provide solutions using various methods such as graph-theoretic allocation or a heuristic
branch and bound allocation that minimizes or maximizes performance objectives

14

SEW Proceedings 310 SEL-93-003

[Horowitz], [Reeves]. Typical constraints minimize the cost of running the total system

by partitioning the process composite classes efficiently. The partitioning resulting from

the process partitioning criteria, combined with system constraints such as communication

bandwidth, processor speed or concurrency limitations, provide the information needed to

def'me the performance objectives. Figure 9 depicts the overall formulation of groupings

into process composite classes.

Thread of Control Information

tlttached to Logical Composite Class

Thread of Control x / r I v,._,.=_r;t;_ aI,

c_yc_re_timl e _ / e. int_'- Ji _!i:de_iPe,4 _l_de_c_i_eSrlr iilll /

duration \ _i;_i '_........ /
event a \ -, ,_I--- /

class/object 1: operation 1.3 ,,_ _ • J
statevalue=q I __ "

cla . ation 4.1 /

Cla""--sses J r Allocation _,ld_mm/ CYs_em.___°"='"+'""_ \

,attributes k Algorithms j -- ("llmLn.g ,,,.,,,;,.,. /

.operations J_ k ""Vb_¢l_idt'h'"'" J

• state data _ \ • concurrency /
- transitions _ I.v.n,. It, ' \ : /
,,tate .lue, III Process._I

-- J HI Composite I
I

Figure 9. Formulating Process Composite Classes

The results of this work are being used to develop a streamlined methodology for use

with distributed, real-time applications. Basic class/object static architectures and dyn,amic

behaviors will be drawn from the strengths of the methodologies reviewed and

consolidated. The logical and process composite class structures will provide a layer

above these other constructs and will be integrated in a design language. Integrating this

concept into a design language provides a means of representing the structure graphically,

building a database, and generating consistency checks. Additionally, it provides a basis

for an automated mechanism so that regrouping for logical and composite class structures,

and the application of algorithms to these structures, may be easily accomplished for

efficiency comparison purposes.

15

SEW Proceedings 311 SEL-93-003

FUTURE WORK

Several issues have arisen as a result of this research which require further

investigation. These issues focus on specific cases where object-oriented and distributed

system pardtionings are in conflicL One case concerns the fact that distributed systems

sometimes require that parts of the same object be in multiple locations. For example,
different operations may be required on the same object depending on where it is located

in the system. This requirement is contrary to all of the attributes and operations

associated with an object being encapsulated within the objecL Another case is one in

which the various operations contained in an object may have different timing constraints.

For example, one operation may be along a time critical thread of control while another

may not. The first inclination would be to group the object into a process in accordance

with the highest priority operation. The down side of this, however, is that all of the other

information related with that object, such as the secondary operations, and threads of

control and objects associated with those secondary operations, are then grouped into the

same time critical process. These cases and others like them require further exploration in
order to integrate solutions into the process partitioning approach.

SUMMARY

The results of this research indicate that current object-oriented analysis and design
methodologies' representations do not provide a clear understanding of the end-to-end

processing which defines system operation. This research has introduced logical and

process composite classes that act as structures for representing groupings of

class/objects. These structures reflect classes/objects and the threads of control through

those classes/objects. Further study is needed to extend these structures into a design

language, and refine the partitioning conflicts which arise between objects and processes.

REFERENCES

[Berard]

[Booth]

[Coad91a]

[Coad91b]

[Fichman]

[Firesmith]

Berard, Edward V., Essays on Object-Oriented Software Engineering,
Volume L Prentice Hall, Englewood Cliffs, NJ, 1993.

Booth, Grady, Object-Oriented Design with Applications,

Benjamin/Cummings Publishing, Redwood City, CA, 1991.

Coad, Peter and Yourdon, Edward, Object-Oriented Analysis, Second
Edition, Yourdon Press, Englewood Cliffs, NJ, 1991.

Coad, Peter and Yourdon, Edward, Object-Oriented Design, Yourdon
Press, Englewood Cliffs, NI, 1991.

Fichman, Robert G., and Kemerer, Chris, F., "Object-Oriented Analysis and

Design Methodologies Comparison and Critique," Computer, Vol. 25, No.
10, October 1992, pp. 22-39.

Firesmith, Donald G., Object-Oriented Requirements Analysis and Logical

Design - A Software Engineering Approach, John Wiley & Sons, New
York, NY, 1993.

16

SEW Proceedings
312 SEL-93-003

[Horowitz]

[Korson]

[Nielsen]

[Reeves]

[Rumbaugh]

[Shlaer88]

[Shlaer91]

Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms,

Computer Science Press, Inc., Rockville, Maryland, 1978.

Korson, T., and McGregor, J. D., "Understanding Object-Oriented: A

Unifying Paradigm," Communications of the ACM, Vol. 33, No. 9,

September 1990, pp. 40-60.

Nielsen, Kjell, Object-Oriented Design with Ada, Bantam Books, New

York, New York, 1992.

Reeves, Colin R., Modem Heuristic Techniques for Combinatorial

Problems, John Wiley & Sons, Inc., New York, NY, 1993.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.,

Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs,

NJ, 1991.

Shlaer, Sally, and Mellor, Stephen J., Object-Oriented Systems Analysis -

Modeling the World in Data, Yourdon Press, Englewood Cliffs, NJ, 1988.

Shlaer, Sally, and Mellor, Stephen, J., Object Lifecycles - Modeling the

World in States, Yourdon Press, Englewood Cliffs, NJ, 1992.

17

SEW Proceedings 313 SEL-93-003

Integrating End-to-End Threads of
Control into Object-Oriented

Analysis and Design

Eighteenth Annual Software Engineering Workshop
NASA/Goddard Space Right Center

December 1-2, 1993

Janet E. McCandlish

TRW System Development Division
Huntsville Operations

Dr. James R. MacDonald

ALPHATECH, Inc.

Dr. Sara J. Graves

University of Alabama
in Huntsville

Problems

• Current object-oriented analysis and design
methodologies fall short in their

representation of end-to-end processing
- system is represented with multiple views

- only pieces of the system are represented

- people have difficulty in seeing how system operates

• Goals associated with object-oriented and
distributed systems are conflicting

- large-scale real-time distributed systems reconcile
competing demands for resources by partitioning the
system into multiple processes

- object-oriented technology strives to partition a system
by objects where all data and operations associated with
an object are encapsulated within the object

- the partitionings for processes and objects appear to be
orthogonal in this context when threads of control are
considered

SEW Proceedings 314 SEL-93-003

Solution/Approach Overview
• Represent threads of control and their

associated class/objects to better illustrate

how the system operates
- Five current object-oriented analysis and design

methodologies assessed: Coad and Yourdon, Shlaer and
Mellor, Booch, Firesmith, and Rumbaugh

- Introduce a representation which overlays dynamic flow
(threads of control) onto a static structure

• Group class/objects at higher level of
abstraction for process partitioning

- Combining dynamic and static representation to show
end-to-end processes requires some grouping of
clasees/objects at higher levels

- To simplify partitioning problem, grouping is two-phased:
(1) logical groupings, further refined with thread of
control information (provides a coarse-grained

partitioning) (2) process groupings, extend logical
groupings with process partitioning cdteria

Background
• Static Architecture

- non-temporal representation of the system

- typically depicted as an enhanced entity-relationship

diagram

• Dynamic Behavior
- behavior attributable to timing and flow of information

- may include state, control flow, data flow and timing
information

• Thread of Control

- path which traces a sequence of operations among or
within objects or classes

- represents a scenario which may be used during
analysis, design, or testing to trace through the model for
completeness and real-time processing requirements

• Static and dynamic representations.exist, but
thread of control representation is limited

SEW Proceedings 315 SEL-93-003

Thread of Control Representations

Thread
of

Control
(TOC)

Coad and

Yourdon

Message
Connectlons on
Claes-&-Object
Diagram.
TOC In Class-&-
Object Specifi-
cation in bullet
list format or in
Service Chart.

Shlaer and

Me, or
Thread of
Control Chart
shows events
and states
occurring in
a Jhmad and
associated
times.

Booth

Timing Dia-
gram shows
objects and
ol_rations
sequence
and dur-
ation.

Firesmlth

TOC Object-
OrlenttKI CFD, i

Thresd.level
Intoractton
Diagrams,

TOO Timing
Diagram

Rumbaugh

Event traces -
shows event
sequencing and
the associated
cless/obJecta

State
Infonnatiorl no yes no no no

Control Flow
Information yes yes yes yes yes

Data Flow
no no no yes yesinformation

T;.g
information yes yes yes yes no

yes no yes yes yes

Logical View

• The Logical View represents groupings of
classes/objects which are logically related.
Partitioning into groups is based on:

- engineering judgement

- minimizing the associations, aggregations and

generalizations between groups

• Rationale for Logical Groupings
- Partitioning for large projects

- Means of understanding overall system and interfaces

• Terminology
- Subjects - Coad and Yourdon

- Domains/Subsystems - Shlaer and Mellor

- Subsystems/Modules - Booch, Rumbaugh

- Assemblies/Subassemblies - Firesmith

SEW Proceedings 316 SEL-93-003

Logical Composite Class
Representation

Logical View Logical Composite Classes

11] i1 1
3 message operation I_-1 _ I

class/object

i

[] boundaw cla_/oblect
group g relationship _ example thread of control

W-*lle opmlwls

Process View

• The Process View represents the mapping of
class/objects to processes (entities
implemented in software that may execute
concurrently and compete for resources).

° The introduction of multiple threads of
control is a major reason for partitioning the
systems into processes.

• The only methodology reviewed that provides
a model for processes is Booch's Process
Architecture.

- Describes templates for processes and processors
- Provides no transition from his other models (class

structure, object structure or module architecture) to the
process architecture

SEW Proceedings 317 SEL-93-003

Process Composite Class
• A process composite class is a grouping of

classes/objects originating from the logical
composite class groupings and further
refined based on process partitioning criteria

• Process Partitioning Criteria
- Communication

,, minimize communication between processes

- Timing

), class/objects whose operations support services
which must be performed within a specified time

,) class/objects whose operations support services
which perform on different cycles, sporadically, or at
a low level

adjust process groupings as needed to meet total
execution time criteria

_4me

Process Composite Class
Representation

Logical Composite Classes
I1=

1 2

mmaw

-,---- threads of control
===rob

Process Composite Classes

___ Different

Cycle

T'Av',_"_-_o,._=.'-
10

SEW Proceedings 318 SEL-93-003

Formulating Process Composite
Classes

Thread of Control Inlormation

Attached to Logical Composite Class

Thrssd of Control x

I priodty 1

I cycle time

I duration
/ event a

/class/object 1: operation 1.3
I state value = q

cl,_ I [
attributes I

operations I
state data I

. transitions I
- events I

- state values J

Hmm_piiIVS': s_ _ o_,b,_
11

Ongoing Work
• Represent the logical and process composite

class structure in a design language
- provides a means of representing the structure

graphically, building a database, and generating
consistency checks

- basis for automated mechanism so that regrouping for
logical and composite class structures may be easily
accomplished for efficiency comparison purposes

• Address specific cases where object-oriented
and distributed system partitionings are in
conflict and integrate solutions into process
partitioning approach. Examples include:

- distributed systems sometimes require that parts of the
same object be in multiple locations

- one operation in an object may be along a time critical
thread of control while another may not; requires that
entire object and all associated threads and objects be
grouped into time-critical process

_wWe _

12

SEW Proceedings 319 SEL-93-003

Summary
• Current object-oriented analysis and design

methodologies representations do not
provide the viewer with a clear understanding
of the end-to-end processing which defines
system operation

• This research has introduced logical and
process composite classes that act as
structures for representing groupings of
class/objects. These structures reflect
classes/objects and the threads of control
through those classes/objects.

• Further study is needed to:

- extend these structures into a design language
- refine the parititioning conflicts which arise between

objects and processes

13

SEW Proceedings 320 SEL-93-003

Session 5: Process _,_/-f-

Susan Main Hall, SofTech, Inc.

Jeffrey M. Voas, Reliable Software Technologies Corp.

Regina Palmer, Martin Marietta Astronautics

SEW Proceedings 321 SEL-93-003

SEW Proceedings 322 SEL-93-003

N94-36497

Fusing Modeling Techniques to Support Domain Analysis

for Reuse Opportunities Identification

Susan Main Hall

Eileen McGuire

SofTech, Inc.

1600 N. Beauregard St.

Alexandria, Virginia 22311

(703)824-4561 FAX: (703)931-6530
email: shall@softech.com

Functional modeling techniques or object-oriented graphical representations, which are

more useful to someone trying to understand the general design or high level

requirements of a system?

For a recent domain analysis effort, the answer was a fusion of popular modeling

techniques of both types. By using both functional and object-oriented techniques, the

analysts involved were able to lean on their experience in function oriented software
development, while taking advantage of the descriptive power available in object
oriented models. In addition, a base of familiar modeling methods permitted the group

of mostly new domain analysts to learn the details of the domain analysis process

while producing a quality product.

This paper describes the background of this project and then provides a high level
definition of domain analysis. The majority of this paper focuses on the modeling

method developed and utilized during this analysis effort.

Project Backqround

The analysis work described in this paper was performed in support of the Software
Development Center - Washington, Army Reuse Center (ARC). Using functional

descriptions and design documentation of four Army software systems under
development and the Department of Defense Technical Reference Model, the

application support layer services, such as database services, network
communications, and the human machine interface, were studied. In addition,

technical references were used to support the development of the description for the

User-Machine Interface (UMI). The primary goal of the effort was to develop a
complete, understandable model of a generic application support layer system. When

completed, this model was utilized to identify potential reuse opportunities between the
existing software and future system development efforts. The majority of the work

performed by the ARC and its supporting staff focuses on increasing software reuse in

the government sector.

SEW Proceeding_s_ _.- 323 SEL-93-003

Domain An_zlvsis

Domain Analysis is the process of identifying the commonalities in a class of similar

systems [Pdento-Diaz 90]. Domain analysis could be considered as requirements
analysis performed on more than one system. The activities performed during domain
analysis include collecting, organizing, analyzing and concisely capturing information

from systems which perform similar tasks. System specifications, requirements
documents, functional descriptions, design documents, and even users manuals can

provide the information needed for domain analysis. The key to successful domain
analysis is to have complete descriptions for at least three systems in the software

family being studied. At least three systems are needed in domain analysis in order to
obtain a non-system-specific view of the domain.

There are two ways to view a family of systems or domain: vertically or horizontally.
A vertical domain encompasses systems which perform the same system application.

For example, in Figure 1, Embedded Weapons Systems, Management Information

Embedded Management Command

Weapons Information and Control
Systems Systems Systems
Domain Domain Domain

Application Support Layer Software

Figure 1 The Application Support Layer Software is a horizontal

sub-domain of many software domains.

2

SEW Proceedings 324 SEL-93-003

Systems and Command and Control Systems represent three high-level vertical
domains. A horizontal domain is an area of activity or knowledge that spans the

vertical application oriented domains. The Application Support Layer Software domain
is used as the example domain in this paper to describe the modeling

technique/procedure that has been performed by this analysis team.

Unlike other domain analysis methods, the analysis procedure this SofTech team

employs incorporates the concept of domain-oriented high demand categories and a
knowledge base of domain and system information to support the identification of

areas predisposed to reuse. The identification of reuse opportunities is a priodty in
our domain analysis work. The analysis procedure utilized is also unique because of
the effective method of combining several modeling techniques that was developed

(see the section below for a detailed description of this fused modeling technique).
Note, although a thorough study of the application support layer services was

performed, the pictorial description captured was limited to include only a high level
illustration of the domain.

(_ombining Multiple Modeling Technioues

Domain modeling is the process of capturing, in graphical form, the conclusions

resulting from analysis of a functional family of systems. Specifically, the operations,
data and data attributes need to be recorded in a clear, concise format. In general,

since object-oriented system descriptions make reuse opportunities easier to locate

[Weesale 92], an object-oriented model was targeted to be the final product of the
analysis effort. Unfortunately, one of the greatest challenges our team faced was
striving to bridge the gap between systems that are still being functionally designed

and the advantages that object oriented technologies offer. Therefore, we also came
to the conclusion that a fusion of modeling methods was necessary due to the relative

immaturity of the available techniques [Weesale 92].

When comparing and contrasting the understandability of modeling techniques, we
have found that one modeling technique could not do the entire job well. Since the

development of an understandable generic Application Support Layer (ASL) model is
critical to its future use we decided to combine several very different modeling

techniques. Our new modeling process includes utilizing functionally oriented models,

moving into a functional hierarchical grouping model, and then transitioning into a set

of object oriented models. Specifically, we used data flow diagrams [DeMarco 78],
state transition diagrams, flow charts, hierarchical diagrams, and object models

[Coad/Yourdon 91, Rumbaugh 91].

Studying the ASL software began by creating sketches of and reviewing pre-existing
data flow diagrams, state transition diagrams, and flow charts from documentation
available on the completed Army systems. These functionally oriented diagrams were

SEW Proceedings 325 SEL-93-003

beneficial to our understanding the systems because of the analysis team's experience

in developing functionally oriented software. In addition, capture of the functionality of

an ASL in these types of diagrams was performed quickly, since the example systems
being studied had been developed using functionally-oriented methods. Both the

analysts' experience and the system development techniques supported the easy
understanding of the processes performed by typical ASL software.

High-level data flow diagrams provided the basis for the majority of the analysis work
on the processes of the ASL software. For example, Figure 2 is a data flow diagram
(DFD) of the primary functions performed by the ASL software, according to the

functional descriptions of one of the systems studied. Also, shown in the same DFD

are the general data flows between the functions. This type of diagram provided an
understanding of the basic activities performed by an actual ASL code module.

Perform

Utilities &
Request to Appln

Layer SW Response

wide

Appln Layer

Appln

Layer SW

User

System Translated
Response Response

,vide

User/Machine

Interface

Help

COTS
Infom_ ion

for COTS ific COTS

Help

COTS

Response Packages

Figure 2 High-level data flow diagram of the ASL functionality of

one of the systems studied.

4

SEW Proceedings 326 SEL-93-003

Further breakdown of the processes helped to define the specific functions performed,
the role of these functions, and the existence of hardware and system dependencies
in the ASL software. For instance, the process in Figure 2 called Perform ASL Utilities

and Services includes sub-functions such as: Manage Errors, Perform Execution

Management, Manage Report Requests, Perform Platform Services, and Handle
Interprocess Communication. Note, the last two sub-functions in the previous list are

examples of hardware and software dependent activities. Though complete DFDs
were not created for each of the processes described by each of the ASL systems

studied, select functions were analyzed in greater detail to clarify the data and specific

operations involved.

As with many analysis efforts, the most familiar functions proved to be the most
difficult to accurately model. State transition diagrams and flow charts were used

occasionally to focus the analysis team on actual processing activities and data

manipulation details, instead of letting the team rely on sweeping assumptions. In
some cases, functions were reviewed at a level of detail much finer than would be

captured in the final object-oriented model in order to avoid missing important

functionality.

Figure 3 shows an example flow chart of part of the analysis team's discussion on
how the ASL software provides the interface between the system user and the

Figure 3 A partial flow chart representing the level of detail
components of the Application Support

5

discussed for some of the

Layer domain.

SEW Proceedings 327 SEL-93-003

machine. Though details on keyboard use do not define software, they did provide
some insight as to the specific software objects involved such as text, lines and

shapes. The group reviewed the physical activities (i.e. pushing a function key) to
pinpoint the associated software (i.e. the ASL commands that perform the specific
data manipulation). By exploring the operations performed by the ASL software, the

data objects in this hidden layer of software were identified which assisted in providing

a more complete picture for the final object-oriented models.

Moving from a functional model to a object model can result in losing important

information. Therefore, in an effort to minimize the impact, a third technique called a
functional hierarchical grouping model was applied. This home-grown technique is the

fusion between a functional model and an object model. The technique consists of
putting the identified functions of the system in a hierarchical model and then grouping
the lowest level functions together based on the objects being manipulated. For

example, in Figure 4 below, all functions involving the human interaction with the
computer system were grouped together to form the basis of an object oriented user
machine model.

" I

...__.'. ! 't

,,.j
Application

Support
Layer

Accept
User

Input

Store

Output Data
Produce

Reports

User Machine Database

Interface Object

BB

FIGURE 4 Starting with functional modeling techniques and moving
toward object oriented techniques, a fusion of methods occurred.

6

SEW Proceedings 328 SEL-93-003

The first objective in producing the hierarchical model was to list all of the functions

potentially performed by an ASL. The word potential is used because the interfaces to
the ASL also, needed to be defined. Therefore, in this case, too much high-level
information is actually helpful. As the top-level processes were broken down into less

complex sub-processes, the specific functionality of an ASL became apparent.
Activities performed by the application layer or the hardware support layer were
removed from the hierarchical model. For instance, one of the analysis team's first
hierarchical models included all of the components shown in Figure 5 below, but

through a series of iterations several of the components were determined not to be a
required part by the typical ASL. Some of the components were hardware support

layer activities, like the network functions and some of the components were found to
be embedded in other components. The Help functions are an example of this; that

is, most of the time, software modules contain their own help files, since Help is so

application dependent. In addition, some components were raised in importance
based on further analysis. For instance, the Kernel Support sub-function Platform
Abstraction in the hierarchical model shown in Figure 5 became a primary area of

focus in the final object-oriented model.

I
1

Handle

Inputs

-Keyboard
"--Mm_se

-Pen

---Screen

--Voice

|
Interface

User&Machine

I
I

Handle

Outputs

Application

Support

Layer

ProviL

I InformationServices

, I
Data

Comm.

Services

-Comm. Blk

-Msg. Blk
-Network

Mgmt. Blk

-tnterprocess
Comm.

Data

Mgmt.
Services

-DB IN
-'DBMS

Svcs. Blk

-Report Mgr.
-String Udlifies

I
Provide
System Services [

I
I !

Help Language
Bindings

Kernel

Support

--O/S Blk.
-Worksm

Mgmt. Blk
--Network

Svcs.

--Execution

Server

Figure 5 A sample of a draft hierarchical model for the

Application Support Layer domain.

7

SEW Proceedings 329 SEL-93-003

One facet of understanding a system that the functional and hierarchical diagrams did
not illustrate very well was the commonalities across the different ASL subsystems.
This aspect of the system was depicted more accurately by using object-oriented

models. Object-oriented models pull all occurrences of the same data-type together,
grouping all attributes and operations. Details focus on the data instead of on the

functions. This permits code to be written with emphasis on the data being generic or

abstract. This data abstraction increases the reusability of the software components -
requirements architectures, design models, and code.

Three high-level object-oriented models created during this quick domain analysis
were the focus of reuse opportunities identification. These models were the Data

Base Management Systems model, the Platform Services model, and the User-

Machine Interface model. A simplified version of the Platform Services Object model
appears in Figure 6. Note, all data attribute and operation information has been

removed in this version of the figure to improve the readability of the model.

Message I
Se Queue

Applicati°n I Destination _n, to

Communicates via Print
QueueI eJ [l

Header

Cons(_tsof

Protocol I Spoo_ to

Directory I

Con_ins

I I

Format

I

t_ Body

Spo(

I
i
I

Isto
Typ_ of

Platform

Configuration

Defines

1 Platform I

I I

Input J l DisplayDevice Device

Gets input from

Comp_>sedof

A
Typ_ of

I Network_uration

.L

l Hardc°pylDevice
Network

1 1

Figure 6 This is a simplified version of the Platform Services

Object Model which was used to identify the software's basic

functionality.

8

SEW Proceedings .]30 SEL-93-003

Unlike traditional domain analysis efforts, the primary objective in developing these

domain models was not to explicitly define all the details of each of the primitive
functions in the domain. Instead, this effort tried to provide an overview of the data

relationships and basic interactions. By determining the general data manipulations of

a typical ASL, the categories of components which are critical to the functionality of
this domain were pinpointed. For example, as shown in Figure 6, specifics of the
network were not needed, but understanding the relationship of the network

configuration with the rest of the platform configuration proved very useful. The
interaction of the ASL and the hardware support layer provided the distinction between

potentially reusable software components and those hardware dependent components

which require code, for instance, to be system unique.

Full lists of the data attributes and operations were developed for each object in each

model. This permitted each object to be treated as a black box; that is, no further
breakdown into sub-objects was necessary to expose software functionality. One
case of this occurred with the object Platform. One of the operations associated with

the object Platform is Enable/Disable Security. This single operation highlighted the

importance current software development efforts place on security functions. Security
functions are embedded throughout many software products, at multiple software

layers. Though the Platform Services Object model does not provide further details of
security functions, the high demand that software developers have placed on this

category of software was not lost by this analysis team. Security functions were
considered as prime reusable component candidates.

Besides providing a visual representation of the domain to assist in reuse opportunity
identification, this process of integrating multiple modeling techniques offers an
additional benefit. Though the faceted domain analysis approach described by Prieto-
Diaz could have been performed to identify reuse opportunities, no product would
have been available for future reusable component development. Typically, domain

analysis is considered to be divided into two types:

O

O

Consumer-oriented associated with reuse opportunities identification, and
Producer-oriented associated with the creation of reusable components

[Moore-Bailin].

However, the object-oriented models and their supporting documentation produced by

the procedure described in this paper can be used as a basis for reusable

requirements models. All of the high-level information on the domain is available in
these models and many of the domain component details can gleaned from the

analysis process documentation. Therefore, the final object-oriented models produced

by this process not only meet current needs, but also some of those for future reuse

planning.

SEW Proceedings 331 SEL-93-003

Model and Reus_ ODDortunities Identification

The purpose of performing reuse opportunity identification is to facilitate reuse within

one or among several system development efforts. During reuse opportunity
identification, systems are evaluated and selected as candidates for reusing software

components in their development life-cycle (client systems) and/or for developing and
providing reusable software components to support the software development life-

cycle of other systems (donor systems). Each potential client and donor system's
schedule, language and functionaJity are studied. This information, along with data on

the organization's policies, reuse knowledge and experiences, reuse training, and any
other information that might facilitate or limit reuse is researched.

A system's schedule together with the high demand categories (HDCs) of components

included in a system are the most crucial pieces of information needed when trying to
coordinate reuse between compatible systems. HDCs are classifications of software

components that are defined as being a necessity or requirement of all the systems

that are in a particular domain. The HDCs are chosen by domain engineers using the
generic architectures and domain models resulting from domain analysis. HDCs may

be either functional or object-oriented in nature. For this reason, the study of the
system's functionality, as well as, the data or object-oriented aspects of the each
system involved in the reuse opportunities analysis is important.

This need of both functional and object-oriented views is where fusing modeling
techniques proved to be very beneficial. For example, the HDCs that evolved from

the domain analysis effort on the application support layer included process network
messages, manage data dictionary, user machine interface, and database
management system.

Once the analysis team had established the high demand categories from the domain

models, we had a basis from which to identify reuse opportunities. We then took the

potential client and donor system's schedules and identified which systems would be
the clients and which systems would be the donors. This schedule coordination is

critical to performing successful reuse opportunity analysis. The goal in this type of
analysis is to begin identifying the client-donor relationships as early as possible in the

client system's software development life-cycle (i.e. before requirements analysis, if
possible). This permits the software reuse to be planned into the client systems'
development schedule and thus, the largest cost benefits can be realized.

For systems which have similar software development schedules, if a client-donor

relationship is established early enough the systems can perform requirement analysis
or design development as a team. Then, one system could be chosen to write the

reusable code and donate it to the other. Or the systems could split the code

development effort and swap the highly reusable pieces before system integration
testing.

10

SEW Proceedings 332 SEL-93-003

After finding compatible systems according to schedule restrictions, the analysis team

took the products produced from the conceptual phase and/or the requirements from
the client system (depending on where the system was in the life cycle) and matched

them to the requirements and design of the donor system. The HDCs and the generic
models also guided this matching process by helping the analysts determine what was
reusable and what was application specific. Since the generic domain models

produced represent what is common (or reusable) among all systems in the ASL
domain the analysts using the models were able to quickly identify potential

opportunities for opportunistic and systematic reuse.

Summary

The initial use of this fusion of modeling techniques resulted in the development of a

complete, understandable high-level object-oriented ASL domain model. Since that
time, the technique has been applied successfully to the analysis efforts of other
vertical domains including the personnel and budget domains. In most of these
efforts, this fused modeling technique was employed to permit a very fast high-level

domain analysis for the purpose of reuse opportunities identification. Since traditional

domain analysis can take several person years per domain, this quick process
(measured in terms of person months, not years) proved to be substantially cost

effective.

However, our experience indicates that using multiple types of modeling techniques

closely linked together should enhance traditional domain and system analysis efforts

in general. Multiple views of a software modules functionality permits easier
identification of reuse opportunities, quickly locates inconsistencies in system design,

and encourages the development of more complete, reliable software products.

11

SEW Proceedings 333 SEL-93-003

Ms. Susan Main Hall is a Systems Consultant, Management, for Sof'l'ech,
Incorporated. She directs a technical group which supports the Army Reuse Center

through domain analysis, reuse requirements anslysis, reuse opportunities
identification, library donor component selection, and quality assurance of reusable

software components. Additionally, Ms. Hall has over eight years experience in
supporting DoD Ada technical development efforts. She has participated in

independent verification and validation, modeling, and development. Ms Hall holds a
Bachelors of Science degree in Computer Science and a Masters of Science degree

in Computer Science with Software Engineering concentration from George Mason
University.

Ms. Eileen M. McGuire is an Associate Software Engineer for SofTech, Incorporated.

She preforms domain analysis, reuse requirements analysis, reuse opportunities
identification, and library donor component selection. Ms. McGuire holds a Bachelors
of Science degree in Management Science (Computer Based Decision Support

Systems Option) from Virginia Polytechnic Institute and State University.

References

Blaha, Michael, "Models of Models," September 1991

Caldiera, G. and V. R. Basili, "Identifying and Qualifying Reusable Software

Components," IEEE Computer, Vol. 24, No. 2, Feb 1991, pp. 61-70

Coad, and ¥ourdon, Object-Oriented Analysis

Englewook Cliffs, NJ: Yourdon Press/Prentice Hail, 1991

Coleman, Derek, Fiona Hayes and Stephen Bear, "Introducing Objectcharts or How to

Use Statecharts in Object-Oriented Design," IEEE Transactions on Software

Engineering, Vol. 18, No. 1, January 1992

Domain Analysis Guidelines, Draft, SofTech, Inc., May 1992

DeMarco, T., Structured Analysis and System Specification. Englewook Cliffs, NJ:
Yourdon Press/Prentice Hall, 1978

Fiscal Year 1994 Reuse Opportunities Report, Final, SofTech, Inc., July, 30, 1993

Gomaa, H., L. Kerschberg, C. Bosch, V. Sugumara_ and I. Tavakoli, "A Prototype

Software Engineering Environment for Domain Mcd_ling and Reuse," 1991

Iscoe, Neil, "Reuse - A Knowledge Based Approach," NASA Software Engineering

12

SEW Proceedings 334 SEL-93-003

Workshop Proceedings, December 1992

Jacobson, Ivar and Frederik Lindstrom, "Re-engineering of Old Systems to an Object-

Oriented Architecture," OOPSLA'91

Lubars, Mitchell D., "Domain Analysis and Domain Engineering in IDEA," IEEE 1991

McGarry, Frank, "Lessons Learned", NASA Software Engineering Workshop

Proceedings, December 1992

Moore, John M. and Sidney C. Bailin, "Domain Analysis: Framework for Reuse
Technical Report", Computer Technology Associates, Rockville, MD, 193

Patel, Sukesh, William Chu, Rich Baxter, Brian Sayrs and Steve Sherman, "A Top-
Down Software Reuse Support Environment," 1992

Prieto-Diaz, Ruben, "Domain Analysis: An Introduction," Software Engineering Notes,

Voi. 15, No. 2, April 1990

Pdeto-Diaz, Ruben, "Domain Analysis for Reusability," Proceedings of COMPSAC

'87, pp. 23-29

Rumbaugh, James, Michael Blaha, Wiliam Premerlani, Frederick Eddy and William

Lorensen, Object-Oriented Modeling and Design, Prentice-Hall, Inc., 1991

Shumate, Ken, "BATCES Solution #1" an Object-Oriented Design from Functional

Requirements Analysis," ACM Ada Letters, Nov/Dec 1993, Vol. XlII, Number 6, pp.
133-161

Tracz, Will, "Domain Analysis Working Group Report - First International Workshop on

Software Reusability," Software Engineering Notes, Voi. 17 No. 3, July 1992

Wessale, Bill, "Large Project Experience with Object Oriented Methods and Reuse,"

NASA Software Engineering Workshop Proceedings, December 1992

13

SEW Proceedings 335 SEL-93-003

Fusing Modeling Techniques to

Support Domain Analysis for

Reuse Opportunities
Identification

by
Susan Main Hall
Eileen McGuire SOFTECH,

Project Background

(Army Reuse Center, Software Development Center-Washington)

Needed quick methodology to:

• Perform Domain Analysis
- Application Support Layer Services Domain

- Four Army systems currently under development

- Systems and analysts were functionally oriented

• Focus on Identification of Reuse Opportunities
- Object-oriented models make this process easier

SOFTECH, INC.

SEW Proceedings 336 SEL 93 003

Problem Statement

or

Which provide a clearer understanding of high
-level system requirements:

Functional Models

Object-Oriented Graphical Representations

_ ? ?_, ? ?? ?
! i

SOFTECH, INC.

Domain Analysis

Process of identifying commonalities in a class of
similar systems

Embedded Management Command
Weapons Information and Control

_ms

ion Support Layer

SOF'I'ECH, INC.

SEW Proceedings 337 SEL-93-003

Fusing Modeling Techniques

Since one modefing technique could not capture the
domain analysis completely, we:

• Started with FUNCTIONAL models

• Moved to a functional HIERARCHICAL GROUPING
model

• Transitioned into a set of OBJECT-ORIENTED
models

SOFTECH, INC.

Functional Models
II II I

• Began by reviewing existing and creating new:
- data flow diagrams

- state transition diagrams
- flow charts

• Captured basic activities performed by the
actual Application Support Layer code module
being studied

• Overlaid each system on top of one another to
highlight commonalities and differences

SOFTECH, INC.

SEW Proceedings 338 SEL-93-003

Functional Models (continued)

CORE ASL FUNCTIONS

Utilities &

User Rex

System

Servi

Rex

Provide

;er/Machim

Layer SW

Appln
Appln

Layer SW Response

Dam Response ta
' ata

Transla_L"t:rrs-----.._
_, Response

Requ
Request for COTS COTS

Help
COTS

INC.

Heirarchical Models

• Moving from a functional to an object model
can cause important information to be lost.

• So a home-grown technique was applied.

• This heirarchical technique consists of:

-listing the identified functions in a heirarchical tree

- grouping the lowest level .functions together based
on the objects manipulated

-dividing functions into those IN the domain and
those INTERFACING WITH the domain,

SOFTECH, INC.

SEW Proceedings 339 SEL-93-003

Heirarchical Models (continued)

SAMPLE OF HEIRARCHICAL
GROUPING TECHNIQUE

Application
Support

Layer

Accept Display
User Output

User Machine
nterface Ob

Store
Data

Produce
Reports

Database

SOFTECH, INC.

Object-Oriented Models

• Used to illustrate commonalities across
Application Support Layer sub-systems

• Grouped occurrences of same data-type
together

• Captured data attributes

• Assigned functions to data

• Provided level of data abstraction to

increase reusability SOFrECH,INC.

SEW Proceedings 340 SEL-93-003

Object Oriented Models (continued)

Stto I Queue

[----J Application I Destination _nt to

/ CommUnicates via i Print I

/ Messagei I QL_=u_ I

| Con_sts of Spc)Is to

Protocol] Spoolsto

[

I InputDevice I

Gets input from _

Directory

Contains

I File I
Typ_

°'/ _e
Platform I Network

Configuration I Configuration
De, nee

I Platform I Define

Com_osed of

I i ,L

IDevicelDisplay I lDevice/IHardc°p_'I Netw°rkt----Ii SOFT_

Reuse Opportunities Identification

Purpose: to facilitate reuse within one or
among several softare development efforts.

• During reuse opportunities identification,
systems are evaluated and selected as
candidates to:

- reuse software components in their software development
life-cycle (clients)

AND/OR

- provide reusable software components to support the
software development life-cycle of other systems

SOFTECH, INC.

SEW Proceedings 341 SEL-93-003

Models Assisted ROI

• Application Specific/System Unique components
were stripped away, using the functional and
heirarchical models.

• High Demand Categories were established, using
the domain models

- Functional

- Data-Oriented.

• Reusable software components were identified,
factoring in development schedules

- Requirements Architectu_,
- Design Models,
- Code Modules.

SOFTECH, INC.

Summary

• Multiple views illustrate a domain more clearly
than a single modeling approach

• This fusion of modeling techniques approach:
- identified more substantial reuse opportunity candidates,

- completed more quickly than traditional domain analysis, and

- provided a basis for future developement of a reusable domain
model.

SEW Proceedings 342 SEL-93-003

N94- 36498
/

y.
An Empirical Comparison of a Dynamic Software Testability

Metric to Static Cyclomatic Complexity*

Jeffrey M. Voas

RST Corp.
11150 Sunset Hills Road

Suite 250

Reston, VA 22090 USA

(703) 742-8873

jmvoas_isse.gmu.edu

Keith W. Miller

Dept. of Computer Science

Sangamou State University

Springfield, IL USA

(217) 786-6770

Jeffery E. Payne

RST Corp.
11150 Sunset Hills Road

Suite 250

Reston, VA 22090 USA

(703) 742-8873

Abstract

This paper compares the dynamic testability pre-
diction technique termed =sensitivity analysis" to the
static testability technique termed cyclomatic corn-

, plexity. The application that we chose in this em-

pirical study is a CASE generated version of a B-737
= autoland system. For the B-737 system we analyzed,

we isolated those functions that we predict are more

prone to hide errors during system/reliability testing.
We also analyzed the code with several other well-
known static metrics. This paper compares and con-
trasts the results of sensitivity analysis to the results

of the static metrics.

I. Introduction

The adage that non-exhaustive software testing
cannot reveal the absence of errors and only their
existence is as true today as it was when Dijkstra

wrote it [4, 1]. Unfortunately, between the time then
and now, we have begun to build orders-of-magnitude
more complex systems while our testing technologies
are no more advanced. Thus the same problems that

we had in past years when testing a 1000 line program

are compounded when we apply those techniques to a

10M line program today.
We must admit that we are building software sys-

tems that are destined to be inadequately tested.

Since we know this a pr/or/, it suggests that we should

look for techniques that aid the testing process where

the process is known to be weak. In this paper, we
discuss one such technique: a method that quantifies

the dynamic testability of a system that is undergoing

©1993 lIST Corporation, All Rights Reserved.

system/reliability testing. We will then compare the
results of this technique to other metrics that are in

wide-spread use today.
Software testing is performed for generally two rea-

sons: (1) detect faults so that they can be fixed, and

(2) reliability estimation. The goal of the dynamic
testability measurement technique presented in this

paper is to strengthen the software testing process as
it applies to reliability estimation. Dynamic testabil-
ity analysis is less concerned with fault detection, even

though it is plausible that a function that is more likely
to hide faults during system testing may also be more

likely to hide faults during unit testing. Instead, dy-
namic testability analysis is concerned with a lack of

fault detection.

II. Static Software Metrics

The study of software metrics has grown out of
a need to be able to express quantitative properties

about programs. The first software metric was simply
a count of the number of lines. This was acceptable

as a way of measuring program size, but was not ap-

plicable to other software characteristics.
Software complexity is another metric that tries to

relate how difficult a program is to understand. In

general, the more difficult, the more likely that errors
will be introduced, and hence the more testing that

will be required. Thus it is common for developers
to relate a software complexity measurement to the

allocation of testing resources. It is our experience,

however, that software complexity is still too coarse-

grained of a metric to relate to the testing of critical
software systems, those that must fail less than once
in 100 executions (or some other large number). Thus

SEW Proceedings 343 SEL-93-003

even though softwarecomplexity can be usefulas a

first-stabat how much testingto perform and where,

itis too coarsefor assessingreliabilityin the ultra-

reliableregionof the input space.

In thispaper, we have considered6 softwaremet-

ticsthat are availableinthe PC-METRIC 4.0 toolkit:

(1)Software ScienceLength (N) (2) Estimated Soft-

ware ScienceLength (N^), (3) Software ScienceVol-

ume (V), (4) Software Science Effort(E), (5) Cy-

clomatic Complexity (VG1), and (6) Extended Cy-

clomatic Complexity (VG2). We will briefly mention
what these metrics are; in general, any software engi-
neering text will go into more depth on these metrics
for the inquisitive reader.

HMstead [2] observed that all programs are com-
prised of operators and operands. He defined N1 to
be the number of total operators and N2 to be the

number of total operands. He defined length of a pro-
gram, N, to be:

N = Nl + N2.

Halstead also has a predicted length metric, N ^ , that
is given by:

N ^ = nl. log2(nl) q- n:. log2(n:),

where nl is the number of unique operators and n_ is
the number of unique operands. Halstead has another

metric that he terms volume, V, that is given by:

V = N. 1o92(nl + n2).

Halstead's Effort metric, E, is given by:

E = V/L,

however most researchers use [5]:

E = V/(2/.1. n2/g2)

McCabe's cyclomatic complexity metric is less

based on program size (as are Halstead's measures)

and more on information/control flow:

V(g) = e - n + 2

where n is the number of nodes in the graph and e is

the number of edges, or lines connecting each node. It

is the cyclomatic complexity metric that we are more
interested in for this paper, and most importantly how

cyclomatic complexity compares to the dynamic testa-

bility measure presented in Section 3.

III. Testability Analysis

Software testability analysis measures the benefit

provided by a software testing scheme to a particu-
lar program. There are different ways to define the

"benefit" of tests and testing schemes, and each differ-
ent definition requires a different perspective on what
testability analysis produces. For instance, software
testability has sometimes been referred to as the ease

with which inputs can be selected to satisfy structural

testing criteria (e.g., statement coverage) with a given
program. With this perspective, if it were extremely
difficult to find inputs that satisfied a structural cov-

erage criteria for a given source program, then that

program is said to have "low testability" with respect
to that coverage criteria. Another view of software

testability defines it as a prediction of the probabil-
ity that existing faults will be detected during testing
given some input selection criteria C. Here, software
testability is not regarded as an assessment of the dif-

ficulty to select inputs that cover software structure,
but more generally as a way of predicting whether a

program would reveal existing faults during testing
according to C.

In either definition, software testability analysis is

a function of a (program, input selection criteria) pair.
Different input selection criteria choose test eases dif-

ferently: inputs may be selected in a random black-
box manner, their selection may be dependent upon

the structure of the program, or their selection may
be based upon other data or they may be based on
the intuition of the tester. Testability analysis is more

than an assertion about a program, but rather is an
assertion about the ability of an input selection cri-

teria (in combination with the program) to satisfy a

particular testing goal. The same syntactic program
may have different testabilities when presented with
different input selection criteria.

In order for software to be assessed as having a
"greater" testability by the semantic-based definition,
it must be likely that failure occurs if a fault were to

exist. To understand this likelihood, it is necessary to
understand the sequence of events that lead to soft-

ware failure. (By software failure, we mean an incor-
rect output that was caused by a flaw in the program,
not an incorrect output caused by a problem with the

environment or input on which the program is execut-
ing.) Software failure only occurs when the following

three conditions occur in the following sequence:

1. A input must cause a fault to be ezecuted.

2. Once the fault is executed, the succeeding data
state must contain a data state error.

SEW Proceedings 344 SEL-93-003

3. After a data state error is created, the data state

error must propagate to an output state.

The semantic-based definition of testability pre-

dicts the probability that tests will uncover faults if
a fault exists. The software has high testability for a

set of tests if the tests are likely to detect any faults

that exist; the software has low testability for those
tests if the tests are unlikely to detect any faults that

exist. Since it is a probability, testability is bounded

in a closed interval [0,1]. In order to make a prediction

about the probability that existing faults will be de-
tected during testing, a testability analysis technique
should be able to quantify (meaning predict) whether
a fault will be executed, whether it will infect the suc-

ceeding data state creating a data state error, and
whether the data state error will propagate its incor-

rectness into an output variable. When all of the data
state errors that are created during an execution do

not propagate, the existence of the fault that trigged
the data state errors remains hidden, resulting in a

lower software testability.

Software sensitivity analysis is a code-based tech-

nique based on the semantic definition of testability;

it injects instrumentation that contains program mu-
tation, data state mutation, and repeated executions

to predict a minimum non-zero fault size [7, 13]. The
minimum non-zero fault size is the smallest probabil-

ity of failure likely to be induced by a programming
error based upon the results of the injected instru-
mentation. Sensitivity analysis is not a testing tech-

nique, and thus it does not use an oracle, and can
be completely automated (provided that the user ini-
tially tells the technique where in the code to apply

the analysis).
Software sensitivity analysis is based on approxi-

mating the three conditions that must occur before a

program can fail: (1) execution of a software fault, (2)
creation of an incorrect data state, and (3) propaga-
tion of this incorrect data state to a discernible out-

put. This three part model of software failure [9, 10]
has been explored by others, but not in the manner
in which sensitivity analysis explores it. In this paper
we examine how to apply sensitivity analysis to the

task of finding a realistic minimum probability of fail-
ure prediction when random testing has discovered no

errors.
In the rest of this section we give a brief outline of

the three processes of sensitivity analysis. To simplify

explanations, we will describe each process separately,
but in a production analysis system, execution of the

processes would overlap. As with the analysis of ran-
dom testing, the accuracy of the sensitivity analysis

depends in part on a good description of the input
distribution that will drive the software when opera-

tional (and when tested).

Before a fault can cause a program to failure, the

fault must be executed. In this methodology, we con-
centrate on faults that can be isolated to a single lo-

cation in a program. This is done because of the com-
binatorial explosion that would occur if we considered
distributed faults. A location is defined as a single

high level language statement. Our experiments to
date have defined a location as a piece of source code

that can change the data state (including input and

output files and the program counter). Thus an as-

signment statement, if, and while statement define a
location. The probability of execution for each loca-
tion is determined by repeated executions of the code

with inputs selected at random from the input dis-
tribution. An automated testability system, PISCES

[11], controls the instrumentation and bookkeeping.
If a location contains a fault, and if the location is

executed, the data state after the fault may or may not

be changed adversely by the fault. If the fault does
change the data state into an incorrect data state, we

say the data state is infected. To estimate the prob-
ability of infection, the second process of sensitivity

analysis performs a series of syntactic mutations on
each location. After each mutation, the program is

re-executed with random inputs; each time the loca-

tion is executed, the data state is immediately com-

pared with the data state of the original (unmutated)
program at that same point in the execution. If the
internal state differs, infection has taken place. And

this is recorded by PISCES and reported back to the

user.

The third process of the analysis estimates propaga-

tion. Again the location is monitored during random
tests. After the location is executed, the resulting data

state is forcefully changed by assigning a random value

to one data item using a predetermined internal state
distribution. After the internal data state is changed,

the program continues executing until an output re-
sults. The output that results from the changed data

state is compared to the output that would have re-
sulted without the change. If the outputs differ, prop-

agation has occurred and PISCES reports that back
to the user as a probability estimate.

For a test case to reveal a fault, execution, in-

fection, and propagation must occur; without tl_ese
three events occurring, the execution will not result

in failure. And for a specific fault, the product of

the probability of these events occurring is the actual

probability of failure for that fault. Each sensitiv-

SEW Proceedings 345 SEL-93-003

ity analysisprocess produces a probabilityestimate

based on the number oftrialsdividedby the number

ofevents(eitherexecution,infection,or propagation).

The product of theseestimatesyieldsan estimate of

the probabilityof failurethat would resultwhen this

locationcontainsa fault.Sincewc are approximating

the model ofhow faultsresultinfailures,we alsotake

thismultiplicationapproach when we predictthemin-

imum faultsizeand multiplythe minimum infection

estimate,minimum propagationestimate,and execu-

tionestimatefor a given location.This produces the

testabilityofthat location.We then takethe location

with the lowestnon-zerotestabilitytobe the testabil-

ityof the overallprogram.

IV. PISCES

Severalproof-of-conceptsensitivityanalysisproto-

types were builtin the early 1990s. PISCES isthe

commercial softwaretestabilitytoolthatevolvedfrom

theseprototypes.PISCES iswrittenin C++ and op-
erateson programs writtenin C. The recommended

platform for PISCES isa Sparc-2 with 16 mbytes of

memory, 32 mbytes ofswap space,and 20 mbytes of

hard diskspace.For largerC applications,the amount

ofmemory that PISCES needs increases,and thus we

currentlyare limitedto running around 3,000-4,000

linesof source code at a time through PISCES. For

largersystems, we perform analysison a part ofthe

code,and when that isdone,we perform analysison

anotherpartuntilallofthe code has receiveddynamic

testabilityanalysis.This "modular approach" ishow

we get resultsfor systemslarger'than 4,000 SLOC.

PISCES produces testabilitypredictionsby creat-

ingan "instrumented"copy ofyour program and then

compilingand executingthe instrumented copy. Al-

though itis hard to determine precisely,given the

defaultsettingsthat PISCES uses,the instrumented

versionofyour program isapproximately 10 timesas

largeas the originalsourcecode. The instrumented

copy isthen executed with inputsthat are eithersup-

pliedin a fileor PISCES uses random distributions

from which itgeneratesinputs.

V. Dynamic Testability Results

We were supplied with a C version of a B-737 au-
topilot/autoland that had been generated by a CASE

tool; the CASE tool has been under development by

NASA-Langley and one of their vendors for several

years. We were told that as far as NASA knew, this

version of the autopilot/antoland had never failed; it
appears to be a correct version of the specification.
The version consisted of 58 functions; parameters to
the system included information such as direction of

wind, wind speed, and speed of gusts. The version we
used is not embedded in any commercial aircraft. In-
stead, the version is based on the specification of the

system that is embedded on aircraft, and hence this

code should contain most (if not all) of the function-
ality of the production aircraft system.

We should mention that the B737 source code was

approximately 3000 SLOCs, and it represents the

largest program to receive sensitivity analysis in its
entirety to date. Our results here are based on 2000

randomly generated input cases that are correlated to

the following types of landing conditions:

1. no winds at all,

2. moderate winds, and

3. extremely strong winds with high gusts.

(We think it was important to exercise three major
classes of scenarios that the system would encounter in
operation.) We should mention that we found similar

results [12] when we used a different test suite with
1000 randomly generated inputs. The total amount of

clock time that it took for PISCES analysis to run and

produce the results was 55 hours on a Sparc-2 (there
were no other major jobs running on that platform
during this time).

According to the Squeeze-Play model for testing
sufficiency for the B-737 version, sensitivity analysis

recommends 11,982,927 system level tests [8]. This
is based on the conservative testability prediction of

< 2.5E- 07 for the entire program; a conserva-

tive testability translates into a liberal estimate of the
amount of needed testin 9. We use a conservative testa-

bility to ensure that we are not fooled into believing
that we have done enough testing when we really have

not. A testability written as an inequality indicates
that PISCES encountered at least one location that

did not execute or propagate during analysis. One

possible quantification of this situation is to assign a
testability of 0.0, but that creates problems for fur-
ther analysis. Instead, PISCES makes a reasonable

estimate on testability and signals the singularity with
the inequality. The process for doing this as well as
the mathematics are described in the PISCES Ver-

sion 1.0 User's Manual. (A 0.0 testability produces
an infinite amount of testing needed which is useless

to testers.) Since testing on approximately 12 mil-
lion inputs is impractical, there are other alternatives

SEW Proceedings 346 SEL-93-003

for increasing the testability; if these alternatives are

applied successfully, they will decrease the number of
tests required, but we will not explain here how that
is done.

We now show the results for the 58 individual func-
tions of the B737.c system in Figures 1 and 2. As

you can see, there are 15 functions out of the 58 that
have a testability of greater than 0.01. These are func-
tions that the developer/tester need not worry over;

they appear to have little fault hiding ability. This in-
formation also tells the developer which functions (the

other 43) are more worrisome (in terms of hiding faults
at the system level of testing); by immediately isolat-

ing those functions of low testability, we gain insight
as to where additional testing resources are needed.

Note that the degree to which we consider a function
to be "worrisome" is a function of how much testing

is considered feasible.

As you can see from the bar charts, there were many
functions of low testability. This does not say that

these functions are incorrect (recall that this program
has never failed for NASA), but rather that these func-
tions should receive special consideration during V&V.

In our tool, there are ways of decreasing the recom-

mended testing costs if the user knows that the regions
of the code where the low testahilities occur are not

hiding faults. Although such knowledge is difficult to
obtain, it does provide the user with a justifiable way

of performing code inspections and testing sumciency.

VI. Static Metric Results

This section provides several sets of data that we
collected from the B737 source code when we ran it

through a commercial metrics package with the de-
fault settings. Table 1 and Table 2 display the results
that were attained by running PC-METRJC 4.0 [5].

VII. Comparison of Results

Some software researchers and practitioners have

equated testability with McCabe's cyclomatic com-
plexity or some other static metric. We contend that
such static measures do not capture the dynamic, data

dependent nature that is fundamental to testing and
our analysis of the effectiveness of testing.

In 1990, we introduced both a new definition of
testability and a new method for measuring testability
based on our definition. Still, we are frequently asked

how our definition compares to cyclomatic complexity,

which we feel is a valid question. In this section, we

will try to show how these two measurement methods
differ, and what these differences mean for the typical

tester or QA manager.
As we have shown in Section 5, the B737 code had

functions of high testability and lower testability. If
the reader then considers Table 1, we immediately see

that the VG 1 values for the functions of B737 never

exceeded 7, and for VG2, the functions never exceeded
10. According to the cyclomatic complexity measures,
all of these functions are labeled as "not complex;"

however sensitivity analysis has found that many of
these functions are more likely to hide faults during

testing than McCabe's numbers might suggest.

Our interpretation for why this is true is simply
how the two metrics view a program; sensitivity anal-

ysis is based on the semantic meaning of the program,
whereas cyclomatic complexity is based on an abstract
and structural view of the program. It is true that

the structural view has some impact on the seman-

tics of the program, however during system level test-

ing, we argue that the information provided by cyclo-
matic complexity is essentially useless in terms of how
much testing to perform. Thus we conclude that for

unit testing, cyclomatic complexity is an easy means

of attaining a feeling for how good the structure of
the program is (essentially as a "spaghetti" code type

of measure), however for critical systems, we contend
that the semantic perspective on testability provided

by sensitivity analysis is far more valuable. Sensitiv-

ity analysis costs more, but the value added is also
increased.

VIII. Conclusions

We contend that the preliminary results of experi-
ments in software sensitivity are sufficient to motivate

additional research into quantifying sensitivity analy-

sis [13, 6]. Not only do we think that this technique
may hold promise in assessing critical systems, but in
Hamlet's award winning IEEE Software paper [3] and
The National Institute of Standards and Technology's

report on software error analysis [14], sensitivity anal-

ysis is acknowledged as a technique that should be
further explored for its potentially enormous impact

on assessing ultra-reliable software.

Although the subprocesses of sensitivity analysis
will in all likelihood require minor revisions as more is

learned about fault-based analysis, the ideas that mo-

tivate sensitivity analysis dispute the contention that
software testing is the only method of experimentally

SEW Proceedings 347 SEL-93-003

Procedure N N ^ V E VGI VG2

LIMITER 37 46 145 2186 3 3

LIM.180 59 72 259 4001 3 3

ONED 137 156 714 25760 3 7

INTEGRATE 45 57 188 1642 3 3

FOLAG 43 68 186 2243 2 2

WASHOUT 53 72 233 3215 2 2
STATE 17 24 56 329 I 1

EZSWITCH 62 113 301 4694 2 3

KOUNT 66 71 290 3508 4 4

MODLAG 130 185 701 16964 2 3

MODLAG_I 108 76 482 7706 7 7

MODLAG_2 35 64 149 1772 2 3
MODLAG_3 68 82 308 5263 3 3

DZONE 22 40 84 603 1 1

AUTOPILOT 276 610 1842 25716 2 2

MODE 172 323 1016 5168 1 1

MODES_2 178 351 1072 7309 1 1

MODEl 139 209 763 6940 1 10

MODE2 120 210 663 8948 1 8

CALC_GSTRK 120 134 605 9837 6 8

MODE3 109 168 576 7615 I 7

THROT 73 144 368 1432 1 1
ATHROT 180 310 1072 21174 5 7

PRE..FLARE 79 168 418 4840 2 2

VER_SINE 29 57 121 605 1 1

"vV"D_D_SHEAR 99 151 512 6763 I I
SPEEDC 18 36 67 320 1 1

AFTLIM 58 97 273 3926 3 6

EPR_GAIN 43 72 189 2302 2 2

LONG..x III 242 620 2391 1 1

LONGAP 226 399 1408 26817 3 3
CALC..HR 15 28 52 227 1 I

FLARE_CONTROL 135 185 728 12557 5 5

CALC.HDER 39 72 171 1485 2 2

PRE-FLARE_LONG 98 185 528 7332 2 2

IN_ON_BEAM 39 71 171 1225 2 2
GSE_ADJ 37 67 160 1270 1 1

BEFORE-GSE 51 96 240 2657 I 2
BANK.ADJ 17 33 61 457 I 1

PITCH-ADJ 39 81 176 1491 2 2
CAS..ADJ 25 53 102 657 1 1

LATERAL 115 270 656 2394 I 1
LATAP 192 362 1173 19388 2 2

LOC..EP_OR 78 128 390 4095 2 2

CI:tOSS_VEL 18 36 67 320 1 I

LOCCMD 76 128 380 5510 2 2

LOCINT 46 101 219 1884 1 2

LOCCF 78 117 383 4521 4 4

CROSSTKADJ 33 71 145 957 2 2

BANK 90 156 469 5894 3 4

PHICMDFB 83 145 426 5830 2 3

RtoA-XFD 103 191 559 7847 2 2

CALC.PSILIM 57 76 254 2898 3 3

SPOILER 51 81 231 2391 2 2

AIL_CMD 97 169 513 5287 4 4

RUDDEI_CMD 75 145 385 3751 3 3

OUTERLOOPS 39 69 169 650 1 I

AUTOOL 69 117 339 3386 3 4

Table 1: Software Science Length (N) Estimated Software Science Length (N^), Software Science Volume (V),
Software Science Effort (E), Cyclomatic Complexity (VG1), and Extended Cyclomatic Complexity (VG2) for
B737.c

SEW Proceedings 348 SEL-93-003

Metric Score

SoftwareScienceLength(N): 4707
EstimatedSoftwareScienceLength(N^): 4107
SoftwareScienceVolume(V): 42147
SoftwareScienceEffort(E): 7963.380
EstimatedErrorsusingSoftwareScle_ace(B^): 13
EstimatedTime toDevelop,inhours(T^): 123
CyclomaticComplexity(VG1): 70
ExtendedCyclomaticComplexity(VG2): 111
Average Cyclon_tic Complexity: 1
Average Extended Cyclom_tic Complexity: 1
Average of Nesting Depth: 1
Average of Average Nesting Depth: 0
Lines of Code (LOC):
Physical Source Struts (PSS):
Logical Source Struts (LSS):
Nonexecutable Statements:
Compiler Directives:
Number of Comment Lines:
Number of Comment Words:
Number of Blank Lines:
Number of Proced_/Ftmctlons:

3312
2683
569
861
9
1384
1985
629
58

Table 2:Summary ofStaticMetric Scores

quantifyingsoftwarereliability.We believethat dy-

namic testabilityanalysisisa new form of software

validation,because itisquantifyinga semantic char-

acteristicofprograms. We cannot guaranteethatsen-

sitivityanalysiswillassessreliabilityto the precisions

requiredfor life-criticalavionicssoftware,because as

we have pointedout,low testabilitycode can neverbe

testedto any thresholdthat would stronglysuggest

that faultsare not hiding. However, we do think it

ispremature to declaresuch an assessmentimpossible

for allsystems, and we feelthat thistopicdeserves
attentionboth from the avionicscommunity as well

as the softwareengineeringand testingcommunities.

This experiment demonstrates important differ-
ences between staticand dynamic analysisof how

much testingisrequired.Admittedly, dynamic infor-
mation isfar more expensive to attain;but for the

additionalcost,the precisionderivedwe feelisjusti-

fied.This expense comes mainly from the fact that

the input space and probabilitydensityfunctionare
also consideredwhen assessinghow much testingis

necessary,not only the structureof the code. And

thisexpense isin computer time,not human time.

We have felt that static software metrics are too

assumption-based to be useful for predicting how to
test critical systems. For this reason, we developed a

new perspective on testability, a new way of measuring
that definition, and commercialized a tool to perform

the measurement.

Acknowledgement

This experiment was funded through NASA-

Langley Grant NAG-I-884. The authors thank Carrie
Walker for supplying us with the B737 auto-generated
code from the ASTER tool.

Disclaimer

The code supplied to us was from NASA and not

Boeing, and as far as we know, this code and the testa-
bility results do not reflect the quality of the software

used in Boeing aircraft or produced by Boeing. Boeing
is in no way affiliated with this experiment nor RST

Corporation.

References

[1] E. DIJKSTRA. Structured Programming. In
Software Engineering, Concepts, and Techniques.
Van Nostrand Reinhold, 1976.

[2] M. H. HAL,STEAD. Elements of Software Science.
New York:Elsevier North-Holland, 1977.

[3] D. HAMLET. Are We Testing for True Reliability?
IEEE Software, pages 21-27, July 1992.

[4]O. J. DAHL, E. W. DIJSKTRA, AND C. A. R.
HOARE. Structured Programming. Academic

Press, 1972.

SEW Proceedings 349 SEL-93-003

[5]SET LABORATORIF..SINC. PC-METRIC User's
Manual.

[6]J.VOAS, J. PAYNE, C. MICHAEL AND K. MILLER.

Experimental Evidence of SensitivityAnalysis

PredictingMinimum FailureProbabilities.In

Proc. of COMPASS'93., NIST, Washington DC,
June 1993.

[7]J.VOAS, L. MOP,ELL, AND K. MILLER. Predict-

ing Where FaultsCan Hide From Testing.IEEE

Software,8(2):41-48,March 1991.

[8]J. VOAS AND K. MILLER. Improving the Soft-

ware Development ProcessUsing TestabilityRe-

search. In Proc. of the 3rd Int'L Symposium on
Software Reliability Engineering., pages 114-121,

Research Triangle Park, NC, October 1992. IEEE
Computer Society.

[9] L. J. MORELL. Theoretical Insights into Fault-

Based Testing. Second Workshop on Software
Testing, Validation, and Analysis, pages 45-62,
July 1988.

[10] L. J. MORELL. A Theory of Fault-Based Testing.

IEEE Transactions on Software Engineering, SF_,-
16,August 1990.

[11]J.VOAS, K. MILLER, AND J.PAYNE. PISCES: A

Tool forPredictingSoftwareTestability.In Proc.

of the Syrup. on Assessment of Quality Software

Development Tools, pages 297-309, New Orleans,
LA, May 1992. IEEE Computer Society TCSE.

[12] J. VOAS, K. MmLP.R, AND J. PAYNE. Software
Testability and Its Application to Avionics Soft-

ware. In Proc. of the 9th" AIAA Computers in

Aerospace, San Diego CA, October 19-21 1993.

[13] J. VOAS. PIE: A Dynamic Failure-Based Tech-
nique. IEEE Trans. on Software Engineering,

18(8):717-727, August 1992.

[14] W. PENG AND D. WALLACE. Software Error Anal-
ysis. Technical Report NIST Special Publica-
tion 500-209, National Institute of Standards and

Technology, Gaithersburg, MD, April 1993.

SEW Proceedings 350 S1=L-93-003

Figure 1: Testing needed given "raw _ testablltty score for autoland module.

SEW Proceedings 351 SEL-93-003

Figure 2: Function testabUltiesfor autoland.

I0

SEW Proceedings 352 SEL-93-003

Figure 3: More function testabilities for autoland.

11

SEW Proceedings 353 SEL-93-003

IJ
il
lilt

Nil
qbi

An Empirical Comparison of a
Dynamic Software Testability

Metric to Static Cyclomatic
Complexity

Jeffrey Voas

Reliable Software Technologies Corp.

11150 Sunset Hills Road, Suite 250

Reston, VA 22090

(703) 742-8873

jmvoas@isse.gmu.edu
it
/Q
bl
bl
bgi
,,,,Q

qi qg ID qg m_

Illill

Achieving vs. Assessing Quality

• Quality is a "buzzword" that everyone uses, but in
software quality there are two distinct issues that
must be addressed:

- Achieving quality is the role of life-cycle phases such as: design,
requirements, coding.

- Asse_ng quality is the role of testing and V&V.

• It may be more difficult to assess quality than it is
to achieve it, which is very counter-intuitive.

SEW Proceedings 354 SEL-93-003

Assessment if Our Business

• We then are interested in software assessment

techniques that will provide an extra confutence not

directly available from testing that the code is

reliable.

• Type of Software that we are concerned with:

- Critical

- Has not fated since its last modification, however we have not
exhaustively tested it, nor have we any proof that it is correct.
All that we do have is knowledge that it has not failed during

recent testing/usage.

- The testing that has been performed has been with a t/my
proportion of the potential input space that this system w_21
encounter in use.

Theoretical Barriers to Exhaustive
Testing

• from [Manna and Waldinger '781

- "We can never be sure that the specifications are correct"

- "No verification system can verify every correct program"

- "We can never be certain that a verification system is correct"

• Therefore we must shift from a "deduction" to a

"seduction" [Beizer '90].

SEW Proceedings 355 S EL-93-003

Difference between Testing and
Testability

• Testing is defined with respect to some "authority"
that asserts whether an output is correct.

• Testability says nothing about correctness, but
rather the likelihood of incorrect output occurring.

• This is a fundamental difference that needs to be
understood.

Balls and Urn

• Testing can be viewed as selecting different colored
balls from an urn where:

- Black bali = input on which program fails.

- Wh_ t.n -- ,-put on which programsueeeeds.

• Only when testing is exhaustive is there n

"empty" urn.

Um

h01s

QQQQD
QQmQQQ

0080808080808080800
QQ_Q_QQ

QQQ_QQQ

SEW Proceedings 356 SEL-93-003

Relating the PDF to Ball Density

ispm reims

Scenario 1 : A Program that

Always Fails

0000000000
O00QO0000

00000000
OO00000

• This urn represents a program that fails on every
possible input i.e., a probability of failure of 1.0.

SEW Proceedings 357 SEL-93-003

Scenario 2 : A Correct Program

XXOQOOQQOQQO
Q.O_QQQQQQ©
QQQQQQQ©
QQQQQQD oOoOoO

• This urn represents a program that succeeds on

every possible input i.e., a probability of failure of
0.0.

Scenario 3: A Typical Program

_XXOQ.O.QQQOO_QO
QQQOQQQQO
_GQQQQOQ
QQQ_QQ_Q

• This urn represents virtually all software in use

today.

SEW Proceedings 358 SEL-93-003

V(G] = # of reglons
or

V(G) = L- N + 2P
where:

L = # of links
N = # of nodes
P = disconnected parts

Traditional Definition of Software

Testability

• _: the ability of a system to be easily and
thoroughly tested, where thoroughly means that a
particular coverage metric is achieved (e.g. statement
coverage, branch coverage).

• Based on the weak assumption that covering code means

no faults remaining.

• Example: McCabe's Cyciomatic Complexity Metric
[IEEE Transactions on Software Engineering, 1976].

Cyclomatlc complexity R_ R2

)

V(G)= S

Our Definition of Software

Testability

• _: a prediction of the probability
that existing faults will be revealed during
testing according to some testing scheme D.
(D is some input representation)

• If there is a fault at a particular location,

how likely is it you will see the fault as a
failure Ouring testing according to D.

• If faults are unl_ely to cause faBures then
is obvious that the fault will be di_cult to

detect during testing.

SEW Proceedings 359 SEL-93-003

Why Our Testability Definition?

• Ideally, we wish to be in the state of the tester's
utopia.

• We need some way of measuring how close we are
to that situation.

• A metric such as McCabes does not allow us that
ability.

© c,,_,srillktc_t,_t2t,liSTCw]mrjai,m

How Testability Can Affect the
Balls and Urn: Ball Stringing

• Fault size represents the number of inputs that
cause failure for some specific fault.

• The following urn represents five faults in the
program, each of size one.

QQOOQQQQQO
QQQQQQQQO

Q_Q_QQQ

SEW Proceedings 360 SEL-93-003

Ball Stringing (cont.)

• This urn has five inputs that cause failure that are

all caused by one fault in the program.

• Thus, this fault is of sizef_,e.

14:_O_O_QO_Q Q O.

0 Cop_SM 1_, leST Cwpara_oa

Testability and Balls and Urn

• Testability can be viewed as an assessment of how
the black balls (ff any) are distributed throughout

the urn.

• With high testability, any string of black balls is

/orig.

• With/ow testability, any string of black balk is

short.

High: Shortest string is 4
Low: Longest slrlng is 2

Xoooooo oo/
X,¢°,ig y

SEW Proceedings 361 S1=L-93-003

Example of Hiding Fault

r

_-7 x=x-l(x=x+l)

7 x = x dlv 3ON@
!

mt wrlte(x)

How Will We Predict the "Coloring"

and "Stringing" Within the Urn?

• Use lower level of code abstraction than McCabe.

• Use mutation analysis techniques.

• Approximate all 3 conditiom of tlb¢ fanlt/fail_re
model

• Increase error classes considered beyond those
generally considered by fault-based/error-based
techniques.

• Use dynamic code analysis instead of static code
analysis.

SEW Proceedings 362 SEL-93-003

The Basis for True Testability: The
Fault/Failure Model

• Model published by Hamlet, MoreH, Richardson
(RELAY) at different times in the 80s.

• For a fault to result in failure the following three
conditions are necessary and sufficient:

- Faults must be exam•ted (reachability).

- Data state mud ba_ome hfected (m,_,,ea_lty).

- Infected data state mmmt propagate to am olCpm vwimbk

(sufficiency).

• If any one of these conditions does not occur for a

particular input and a particular fault, the fault
does not cause a failure.

There are Three Urns

• Actual (or Conceptual): can never fully see this urn
unless testing is exhaustive.

• Estimated: from testing; a poor approximation in

generaL

• Predicted: from sensitivity analysis; oily predicts
how any black balls are strung/dispersed.

• Note that aH three urns are based on the same

input distribution.

SEW Proceedings 363 S1=L'93-003

What is this Mess??

• For years, researchers in reliability/testing have
asked the question: "What/s the probability that this
program will fail?." Now for a program that hasn't
yet failed, this is a very difficult question. If the
program would at least fail x times, we could
roughly say that the probability of failure is x/N.

• This immediately suggests a problem with testing, in
the case where the program has not failed

So we decided to ask a different question: "What is

the probability that this program can't fail even if the
program is incorrect?" This is the purpose for the
predicted minimum failure probability.

©¢epyr_tm, RSy_

Illlll
IIIIII
II
II
II
II
II
II

B737.c Experiment

• Source code generated with a NASA-Langley
CASE tool, ASTER.

• 3,000-4,000 source lines, 58 functions.

• Auto-Pilot-Auto-Land system.

• Discrete-event simulation; no real-time.

• 2,000 randomly generated inputs
- no winds at all

- moderate winds

- extremely strong winds with high gusts

• 55 hours for dynamic analysis, Sparc-2.

lllIl

Ill
Ill
Ill
Ill
IiI
It

,II,II,II,IiI

IIIIII

SEW Proceedings 364 SEL-93-003

IUUUUI
II IIII
II
II
II
II
II
II

Results Comparing Dynamic
Testability to Cyclomatic

Complexi_
• 15 of 58 functions were of "high" testability.

• Several of the remaining functions, although
of quite low testability, were exhaustively
testable.

• All 58 functions had cyclomatic complexity
values in the <10 range.

• Since cyclomatic complexity only partially
estimates the 1st condition in the fault/failure

model (no pdf), it is unable to predict the
"chaining" within the urn.

II
Ilk
II
II
II
IIIi

'IIqI I -HI

IIIIII

SEW Proceedings 365 SEL-93-003

N94- 36499

/

SOFTWARE QUALITY: PROCESS OR PEOPLE

by

Regina Palmer
Martin Marietta Astronautics

P.O. Box 179, M/S S1008
Denver, CO 80201

(303)977-5748
&

Modenna LaBaugh
R&FC Group

3076 So. Hurley Circle
Denver, CO 80227

(303) 986-3729

i

! This paper will present data related to software development processes and personnel involvementt
! from the perspective of software quality assurance. We examine eight years of data collected from

six projects. Data collected varied by project but usually included defect and fault density with
limited use of code metrics, schedule adherence, and budget growth information. The data are a
blend of AFSCP 800-141 and suggested productivity measures in Software Metrics: A Practioner's

Guide to Improved Product Development. 2 A software quality assurance database tool, SQUID, s
was used to store and tabulate the data.

The projects represented varying degrees of programmer expertise, acquaintance with software

engineering techniques, and languages including Ada, C, FORTRAN, LISP, Pascal, and Prolog.
The programs evaluated were engaged in the production of simulation, R&D, mission operations,

flight, or ground support software. The size of the programs ranged from small, $500K to $2 million,
to large, in excess of $40 million.

Amongst the projects, we were able to track the responsiveness of different programmers to improv-
ing quality based on assessment and feedback. When quality goals and standards were established,

and stressed by management, the compliance of all could be obtained. Knowledge of management
expectation was especially important. This could be seen in how peers reviewed each other's work
according to the tone set by their lead.

At a company such as Martin Marietta which develops software for various agencies of the govern-
ment, each with its own concept of getting the job done and the related cost, flexibility of process is

often sought. Such flexibility usually translates into eliminating budget for independent assessment

1 AFSCP 800-14, Software Management Indicators, Management Quality Insights, Air Force Systems
Command, 20 Jan 1987.

2 Software Metrics: A Practioner's Guide to Improved Product Development, K. H. Moiler and
D. J. Paulish, Chapman and Hall, 1993.

3 Software Quality Assurance Interactive Database, produced by R&FC Group.

SEW Proceedings 366 SEL-93-003

of the quality of products and processes. It is easily argued that the engineers themselves are re-

sponsible for the quality of goods and will see to it. As soon as signs of engineering neglect appear,
this course is overturned and outside evaluators play catch up on project. Such action is not cost

effective, but can produce an accepted delivery. The most cost effective quality program, in our

experience, is one that assesses the output of individuals early in the process then concentrates on
those who show the least commitment or understanding of the quality of work expected.

In our case studies, deviation from expected output seems to occur amongst programmers who have

only produced software for internal use that does not need integration or coordination with other
software producers, those without a familiarization with programming standards and procedures,
and those who believe rules were made for someone else. The first two are helped by a well defined

process, the latter are a roadblock in any effort.

The success or problems of the process used on six programs is presented here. Each program is

characterized according to lines of code effort, number of programmers, experience level of program-

mers, criticality of software, degree to which contract requirements or budget guided the process
selected, and success of the process implementation as measured by the quality assurance effort.

The projects reported range from the best of all possible worlds to the worst.

The best world is one where all (most) parties agree on the process and are committed to adherence.
Next best has management in agreement with a restrained acceptance by the programming staff.

The worst world has a process imposed upon other habitual methods causing rework costs to soar

and pitched battles on a dally basis over budget and schedule.

Case study 1 was a model small program involving non critical ground support software written to

perform on a personal computer. Data from it is included to show nominal cost of quality when

the process produces the desired result with little rework.

Case study 2 involved a small project of four to seven programmers developing non critical software

in C and Prolog. Response of the programmers to metrics collection was examined and its influence

on their subsequent work analyzed.

Case study 3 was a large project involving a software engineering staff of 20 to 40 people using

Ada to develop software for a space experiment with human interaction and support software.

The performance of groups of programmers in the process defined for a full life cycle program is
examined and related to varying management expectation.

Case study 4 is our worst case model, where everything is wrong and the solution requires replace-

ment of staff. The programming languages were C and assembly.

Case study 5 was a medium sized project producing flight and ground software for a space exper-
iment written in Ada and C. It had a well defined process and the study documents how much

rework was involved related to programmers per their level of acceptance of the process imposed.

Case study 6 was a small project that was an engineering support task for one of the NASA centers.
It is used to show the difference in performance of the programmers involved based on their past

experience with software engineering discipline. No contract criterion was available but each was

totally responsible for code to work on a particular platform.

SEW Proceedings 367 SEL-93-003

DEFINITIONS

Productivity where reported was calculated from total software engineering hours, including support

from or for systems engineering, systems testing, program management, software quality assurance,
and direct support from areas like finance and planning. It represents the deliverable lines of code
divided by these hours times an eight hour day.

Fault Detection is reported in a form to show what activity was used to find defects and in what

phase they were found. It is also sometimes displayed to emphasize the quantity of defects found

in house versus at the customer's site. Types of defects are reported if needed to explain the

other data. The process of tracking discrepancies in software provides information to help improve
productivity and efficiency. When problems are discovered during integration and system test, the

priority of the error is examined in addition to what caused the error. Priority of errors can range
from errors that make the system inoperable to errors that do not disrupt the running of a test.
The following details the levels of priority used by this paper:

A - error in the code in which the software did not meet the requirements or design, an error which
was a documentation error which caused the code to not meet the requirements or a code error
which crashed the system making the system non operational until the error was fixed.

B - error which crashed the system but there was a work around and the system could be used.

C -errorfound in the code which did not interferewith theoperationofthe system.

D - a minor error in the code such as a typographical error in a help message.

The cause isexamined to identifythe reasonforthe error.The causecould be a requirements

error,designerror,codingerror,hardware interfaceerror,or a requirementschange directedby the
customer.

In the few examples where code metrics are used to emphasize the difference between programming
groups, items found of value were the size of modules, and adherence to coding standards.

Scheduleadherencewas based on planneddatesformajor milestonesversusactualsand slippagein

the finaldelivery.A major milestonewas usuallya formalreviewor delivery.In program 3,which

was cancelledbeforedeliveryand stretchedout twicebeforethen,adherenceto internalschedules

was used tocompare team performanceand responsiveness.

PROGRAM 1 was a model small program involving non critical ground support software written

to perform on a personal computer. Data from it is included to show nominal cost of quality when
the process produces the desired result with little rework. This program consisted of 7500 lines

of mission operations software. There was a software lead, six software engineers, one systems

engineer, and a test engineer. The 7500 lines of code were required to be developed and delivered

in six months. The entire team was experienced in developing and testing software. The program
philosophy was to use senior personnel to ensure that every task was completed on schedule.

The program began by producinga softwaredevelopmentplan to document the processto be

implemented. As the SDP was being developed,the program conducted tabletopreviewswith

the engineersthatwould implement theplan,SQA, test,systems,and thecustomerrepresentative.

3

SEW Proceedings 368 SEL-93-003

The tabletopswere used toensurethata processwas developedthatincorporatedgood engineering

practicesas wellasbeing streamlined.Once the SDP was approved and agreedupon by everyone,

the requirementswere finalized.The customer was veryinvolvedassuringthat the requirements

were finalizedina timelymanner becauseofthe tightschedule.A requirementsreviewwas held to

baselinethe requirementswith the customer.Designand code walkthroughswere held to ensure

thatthe designand code implemented the requirementsand thatthe designand code standards

were adheredto.At eachofthewalkthroughsthesoftwarelead,SQA, test,systems,and a customer

representativewere present.Thisensuredthateveryonewas awareofthe stateof the softwareand

agreedupon the resultsofthewalkthroughs.

FigureI shows the plannedversusactualscheduleadherenceby program I. One week ofslipinthe
scheduleoccurredduring the code phase but thatslipwas recoveredduringsystem testallowing

the program to stilldeliverthe softwareon time tothe customer.

Requirements Phase
Planned

Requirements Phase
Actual

Design Phase
Planned

Design Phase
Actual

Code Phase

Planned

Code Phase
Actual

System Test
Planned

System Test
Actual

Total PI_ L

Total Actual

Figure 1 - Program 1 Schedule Adherence

no slip

The resultsof the reviewsofthe requirementsdocument are shown in tableI. The requirements

document improved aftereachreviewexcludingthe preUminary designphase which had a review

cycletoo shortto allowincorporationofmeaningfulcorrections.

Table 1. SRS Document Completion Index

Phase

Requirements

Design (PDR)

Design(CDR)

Coding

DI Score

(1.ohigh)
.67
.67

.77
.83

Figure 2 shows the breakout of the types of errors found in each phase of the life cycle. Most of
the requirements errors were discovered during the requirements phase. The requirements errors

SEL-93-003
SEW Proceedings 369

£

found during the system test phase were due to the customer changing the requirements prior to

delivery. Overall the errors found during the life of the program resulted in a fault density score of

0.8 discrepancies per 1K line of code. There were no errors found after delivery of the software to

the customer site. 93% of the discrepancies were found before system test.

Error Requirements

Source: Errors
17%

I Requirements
Detected In: Reviews

iio i,nI cod,n,Errors Errors

51% 32%

Walkthroughs Walkthroughs
11% 33% 49%

Figure 2- Percentage of Errors Found by Software Phase

i I
This small program was very team oriented. At the start of the program, the lead, software

engineers,test,SQA, and the customer representativegot together and decided that everyone would

need to work together to meet the scheduled deliverydate. All engineering staffwere experienced

in theirfieldsand responded to action items from theirpeer reviews rapidly.The productivity was

below expected standards but adherence to schedule and accuracy of the code were the drivers.

Measured by those standards, the program was everything desired.

PROGRAM 2 was less than $2.5 million including defivery of commercial workstations used in

development. Requirements and most design had been accomplished under a previous contract. The

documentation produced under the previous contract included a system specification and functional

description document. Effort reported was a planned two year implementation and system test
with two deliverable prototypes and a final operating capability. New deliverable documentation

to be produced to Air Force standards included program and database specifications, and the

user's manual. Projected coding effort called for five to seven programmers, including three leads

with more than two years experience at the company and the remainder being college graduates.

Contract was bid with a 20 LOC per day goal for each engineer. 81KLOC were developed (70K

C, 11K Prolog/LISP) and 199KLOC delivered (included legacy code from previous contract). The
end product was software used in a lab environment.

The process involved informal walkthroughs involving the software lead, programmer, tester, and

quality. Unit Development Folders were maintained till delivery. Programming standards described

headers required for all code, commenting and self descriptive naming for variables. A guideline of

less than 100 LOC per module was not enforced. A tester who was not part of the software devel-

opment staff was used for Computer Software Component (CSC) integration into the prototypes

and final delivery. Only test results of the CSC integration were reviewed. Discrepancy tracking
was initiated at CSC integration.

Defects were measured only through the testing program. Software measures for code simplicity,

self-descriptiveness, and conciseness were obtained on the C code. This was accomplished with

a code reading tool that calculated the Halstead Measure, 4 branching complexity, lines of code,
=

4 Elements of Software Science, M. Halstead, Elsevier, 1977.

SEW Proceedings 370 SEL-93-003

commenting as a percentage of total non blank lines, and variable density. The numbers found for

the code were not used as acceptance criteria. They provided a background from which to evaluate

changes in the code resulting from error reports. Large changes in any score were viewed as cause
to reconsider acceptability of proposed changes. Such a screening was used due to limited resources

for people to review changes.

The programming standards on the project were dictated by two of the leads. They adhered

to them, the third lead did not and the junior programmers did only after they became aware
that lack of adherence was reported to management. Most programmers responded positively

when management made metrics goals visible to them. In the first audit of code compliance to

standards, two samples were taken representing code from senior programmers in sample A and

less experienced programmers in sample B. 81% of sample A was above average in score, but only

59% was above average in sample B. Sample B ratings tended to be either very good or very poor
with less than 20% of the modules falling in the middle. The results of the audit were distributed to

the programmers and a limited amount of time was authorized for rework. The group represented

in sample A reworked code that fell below the minimal acceptable level raising their mean score to
3.8 from 3.6. Sample B programmers reworked all code scoring average or below bringing up the

mean score for sample B to 4.4 from 2.9. The entire sample rose to 4.1 (excellent) from 3.2 (good).

Table 2. Code Compliance Audit

Sample Modules Score Rework

A 154 3.6 3.8

B 176 2.9 4.4

A + B 330 3.2 4.1

A major problem in the methodology used on this program was the lateness of finding the majority
of errors. 85% of the errors in the code were not found till integration of the final deliverable

though 60% existed in code baselined a year earlier. This occurred due to inexperience on the

part of the integration tester and a flaw in the test philosophy of the development personnel.
The tester assumed unit testing of low level functions had been performed by the developers.

The software leads were more involved in code development than anticipated and did not exercise

sufficient oversight of the unit test effort. Functional testing of the first baseline was not performed

because it was legacy from the previous contract and assumed working because of acceptance at

the customer's site.

Table 3. Discrepancies in the Baselines

Baseline Size Fault Density

IOC1 22KLOC 20

IOC2 33KLOC 3

FOC 70KLOC 3

After delivery of the second prototype, the test philosophy on the program changed. More unit

testing was demanded before integration. Upon being told that code discrepancies were being

tallied during integration testing, the programmers became very active in finding and documenting
errors in the baselined code while performing unit testing prior to integration of their own code

with that baseline.

SEW Proceedings 371 SEL-93-003

The following table is in order of programming experience.

Table 4. Code Fault Density by Programmer

Programmer Fault Density of Code

P1 - sw lead

P2 - sw lead

P3 - new graduate

P4 - new graduate

P5 - new graduate

8

18

10

8

17

P2 and P5 were reluctant to take time to test. P4 was used to do most correction of P2 code and

P3 was used to correct P5 code because of the low fault density of code they wrote.

Error [IOCI ISource: Errors
50%

Detected In:
System

Test
4%

Site
Test

2%

ioc2i iFocJErrors Errors

14% 36%

System
Test

6% System I
Test

77%

Site I [Site
Test Test

2% 9%

Figure 4 - Distribution of Errors in Base//nes

The perceived error rate (that seen by the customer) was 1 fault per 1000 LOC. This was low in

the customer's experience and the customer was pleased with the software and regularly used the
prototypes from the first two deliveries.

Table 5. Error Detection Activity

Phase

IOC1

IOC2

FOC1

FOC2

Engineering Test

Errors Found

4%

6%
21%

56%

Site Use

Errors Found

2%

2%
8%

1%

Schedule slippage appeared after planned enhancements to old code were completed and newly

developed code was nearing baseline. Up to three months before the planned delivery date for

the final operating capability, the program manager was reporting the program was on schedule.

Estimates made by the quality representative of test completeness projected that 90% of the errors

SEW Proceedings 372 SEL-93-003

in the code had been found. This was based on the completeness of scheduled testing by the

test department and the assumption that the error rate established in the first baseline testing

of 2 defects/KLOC would not grow to more than 4. Unfortunately, this estimate was in error as
became apparent when attempts to verify the completeness of unit testing for the final delivery

were initiated.

IOCl Phase

Pla_ned

IOCl Phase

Actual

IOC2 Phase

Planned

IOC2 Phase
Actual

FOC Phase

Planned

FOC Phase

Actual

Total Plan [

Total Actual

I I

I I

Figure 6 - Program 2 Schedule Adherence

30% slip

The goal of 20 LOC per day per engineer was not met though at 16 LOC per day they did exceed
the company expectation at that time for production of ground support software. General problems
surfaced in relation to additional resources required to bring into compliance the code of the third

senior programmer and to make functional legacy software that should have been working but was
not. This effort, undertaken at the end of the development program, contributed to a significant

cost overrun that ate all profit bid for the program plus additional company funds.

The planned quality assurance budget on the program was exceeded by 10% and engineering budget

by 36%.

PROGRAM 3 was valued at more than $500 million including majo_ space qualified hardware

development but less than $30 million for software. Software effort was projected to include from
14 to 40 developers over three years. There were five leads with experience in the range of 5 to 15

years. 60 KLOC Flight and 50 KLOC test bed software were to be developed by mostly experienced

programmers with subsequent updates for additional deliveries. 114 KLOC ground software were
to be developed or flight code would be reused and modified by programmers of varying skill level.

The programming language was Ada with less than 200 LOC of C used in the ground support
software. SSP30000 s was the required standard.

The process covered a full development life cycle, including formal reviews, massive documentation,
independent test, and software system engineering at the start of contract conducted by a group

separate from software development. A programming and procedures standard covered coding

practices, defined the walkthrough process, software development folder contents, baseline activities,
and unit and informal CSC integration testing. Independent tests at the top level CSC (TLCSC),

SSP30000, Space Station Program Definition and Requirements, Section 2 Program Management

Requirements.

SEW Proceedings 373
SEL-93-003

CSCI and system level were to be conducted. At the outset of the program, a methodology with

heavy involvement from groups separate from software development including system engineering,
test, quality assurance and system safety was instituted. The on site customer representative
became involved during the critical design phase.

Software documentation changes were controlled by the software manager after PDR through a

software review board (SRB). Modification to the requirements and design documents was through
redlines submitted to the SRB that were reviewed by the leads for all the CSCIs, software quality,
software test, and system engineering.

Defect density was measured using the numbers of software change requests processed by the SRB

and the action items generated by reviewers of walkthrough packages. An evaluation program run
by software quality furnished a rating on the documentation and code produced which yielded a
Document Completion Index value by phase.

The program was plagued by poor definition of requirements. It was a continuation of a previous
Phase B study that supposedly brought the product to a PDR level. On the subsequent Phase C/D
contract, more stringent requirements for process and products were imposed which necessitated

regeneration of documentation thought to have been completed in Phase B, and presentation of

a software requirements review (SRR). This had not been anticipated and directly impacted the
CDR schedule.

Requirements Phase
Planned*

Requirements Phase
Actual

Design Phase
Planned

Design Phase
Actual

Code Phase
Planned

Code Phase
Actual**

Total Plan

Total Actual

* none planned

** program cancellation

I J

! J
[! ! i i i !!i ii!iiiiiiii i iii!iii!i i ii!i! ! i !iiiii!i! i !i!i!ii i iiii!iiiiiiiiii iiiiiiiii i i i i ! iii j

I I
23% slip

Figure 7 - Program 3 Schedule Adherence

The increase in overall schedule included stretch out of the program. The slip due to requirements

definition accounted for all the slip in the design phase and a third of the overall slip in the program

through coding. The rest was a program replan dictated by funding constraints for the program.

Even with the three months of additional requirements definition, the requirements document did
not improve. The following table shows the progression of Document Completion Index for the

three major documents produced by the software group for the flight CSCI. The SRS went through
10 iterations before the coding phase but did not get 50% of the available points.

SEW Proceedings 374 SEL-93-003

Table 6. Document Completion Index

Phase SRS SDD STP Project

PDR .17 .55 .50 .40

CDR .36 .74 .61 .57

Coding .64 .74 .61 .66

The program was terminated due to loss of funding half way into the flight software development

cycle. The above table shows a steady progression but clearly indicates that the SRS did not meet
the standards required. Its improvement for CDR was obtained by diverting design personnel from

the software area to support system engineering in rewriting the specification. This still did not

overcome the reluctance of the document authors to specify testable requirements. The rise in its

rating shown in the last score it received in review was obtained through the cumulative effect of
SRB actions to remove implementation detail and replace with testable requirements.

The program was terminated before system test but the following chart shows the distribution of

known errors and what activities were used to find them.

A large number 6f requirement changes were generated by the customer and hardware designers
after the software design was baselined. Of the changes directed against requirements, 32% were

change summaries from the hardware subsystems. Software on this project responded to require-

ment change with software fixes, since it seldom could demonstrate that a hardware change for

a problem would be better than a software fix. Better on this project always meant cheaper or

quicker.

I Requirements
Error Errors
Source: 66%

Detected In:
I Requirements

Changes
12%

I ° i'nI I 'in'!Errors Errors

30% 4%

Reviews Walkthroughs
15% 42%

Design] Requirements

| Walkthroughs Changes
| 9% 21%

Code I
Reviews

1%

Figure 8 - Fault Detection

There was a noticeable difference in the attitude of the groups producing the four CSCIs. The

three ground CSCI teams were reluctant to respond to action items and were lead by personnel

who believed completion of code was the number one priority and if it worked all else would be

forgiven. This corresponds to a black box mentality, i.e., the user should be happy with the result

and not want to know what's inside. This is contrary to currently established specifications for

software development.

10

SEW Proceedings 375
SEL-93-003

Table 7. Action Item Response Time

CSCI Name Number of Items

FLIGHT 24

EGSE 13
TRAINER 5

SIMULATOR 10

Average Response Time (days)

33

46
60

83

The items in the table, while not of top priority, were still non compliances to the contract which
required correction.

The ground teams also were more reluctant to meet internally established dates for review of their
work by peer groups.

Table 8. Code Schedule Adherence

CSCI NAME

FLIGHT

EGSE

TRAINER

SIMULATOR

W/T Dates
Missed

10%

26%
14%

18%

Average

Slip (days)

19
28

7

28

B/L Dates
Missed

23%

43%
0%

18%

Average
Slip (days)

15
21

0
14

At termination of the contract the quality assurance budget for evaluations was 173% over plan.

The constant re-review of non compliant documentation had consumed 50% of total planned quality
budget before the majority of code evaluations and testing were approached.

PROGRAM 4 is our worst case model, where everything seems wrong and the solution required

replacement of staff. The programming languages were C and assembly. This program consisted
of 10K of flight (RAM) software, 0.TK of flight (PROM) software, and 20K of Ground Support
Equipment (GSE) software. There were four software engineers and one lead. The value of the
program was approximately $22 million.

The software had a Software Development Plan (SDP) that documented the process that the

engineers were to follow. This SDP was the model for programs at Martin Marietta and met the

minimum standards. It consisted of the requirement for informal walkthroughs for requirements,
design, and code. Unit Development Folders (UDF) were to be generated for both the flight and
ground software during the requirements phase and updated with design, code, test cases and
results, and problem reports. Design and coding standards were identified as well as standards for

testing the software (i.e., unit, CSC Integration, CSCI testing). The program had a goal of 100
lines of code per module as part of the coding standards. Formal reviews were held for the system

and software and consisted of a Preliminary Design Review (PDR) and Critical Design Review
(CDR). There was a separate Acceptance Review for the software.

The software lead that started this effort was not an experienced software engineer, had no previous
management position or training in software discipline. The lead was a hardware person that had
done some analysis/simulation software in a lab environment and had never worked a deliverable

software program. In an attempt to save money the SQA effort for this program was initiated

11

SEW Proceedings 376 SEL-93-003

after the beginning of the code and unit test phase though the original proposal had called for an
assurance effort from contract start. Although the SDP required that walkthroughs be held on the

software, none were conducted.

There were three builds of the flight software and then the delivery to the customer site. The testing

consisted of unit testing, CSC integration, and CSCI testing performed by the software engineers.

Discrepancy tracking was initiated just prior to system level test. A requirement for formal testing

with Quality was not levied until build 3 of the software. The ground software consisted of two
formal builds and delivery of the software to the customer. Parts of the ground software were

baselined as test software since the hardware needed software for test.

Figure 9 shows the schedule adherence for program 4. The program had a 14% slippage in schedule
that began in the requirements phase. One of the causes for the slippage in schedule was that the

program was placed on hiatus for two years in which no work was done. After those two years the

program restarted but the personnel that originally worked the program were no longer available
and the program had to use time to restaff and come up to speed. Anol_her problem that caused
the slippage was the unknown state of the requirements. The requirements were continually being

changed by the program and the customer. Since there were no firm requirements, the design was
not baselined before coding and the code continually changed.

Requirements Phase
Planned

Requirements Phase
Actual

Design Phase
Planned

Design Phase
Actual

Code Phase
Planned

Code Phase
Actual

System Test
Planned

System Test
Actual

Total Plan [

Total Actual

i I

[I

I 1

J

 i iiiiiii iiiii iiiiiiiiiil iiiiiiii iii i iiii

Figure 9 - Program 4 Schedule Adherence

14% slip

Table 9 shows the various builds of the flight RAM software with the total lines of code for each
build with the total number of modules and the average percent of comments for the CSCI. The

increase in the fault density score during build 2 was a result of replacement of one of the engineers

with a programmer who exercised greater test discipline.

12

SEL-93-003
SEW Proceedings 377

Table 9. Flight RAM Software

Build 1

Build 2
Build 3

Delivery

Total

LOC

4665

7835

9459

9538

Average
PercentComments

19.11%

16.22%

19.42%

19.43%

Average Size
Of Modules

52

61

66

67

TotalNumber

Of Modules

90

128
143

142

Fault

Density

1.70
6.15
2.42

0.84

Table 10 shows the various builds of the flight PROM software with the total lines of code for each

build with the total number of modules and the average percent of comments for the CSCI for the

C code. The large increase in the fault density score was directly related to the replacement of the
PROM software engineer with a programmer who exercised greater test discipline.

Table 10. Flight PROM Software

Build 1

Build 2

Build 3

Delivery

Total

LOC

740
742

692
752

Average
Percent Comments

12.08%

12.08%
12.04%
12.04%

Average Size
Of Modules

49
49

46
50

Total Number

Of Modules

15
15

15
15

Fault

Density

10.81

32.35
5.78

0

Table 11 shows the various builds of the GSE software with the total lines of code for each build

with the total number of modules and the average percent of comments for the CSCI. For build 1,
of the 380 modules 18% of the modules had no comments at all; for build 2, 17% of the modules

had no comments; and for the delivery, 18% of the modules had no comments. Only two of the
files with no comments were changed after the initial baseline

Table 11. GSE Software

Build 1

Build 2

Delivery

Total

LOC

18,624
19,317

19,002

Average
Percent Comments

8.1%

7.9%
7.8%

Average Size
Of Modules

49
49

48

Total Number

Of Modules

380

392
398

Fault

Density

1.23

0.10
0

After start of system test, there were 18% priority A discrepancies, 23% priority B discrepancies,
53% priority C discrepancies, and 6% priority D discrepancies. Since the testing prior to baseline
relied on the software engineers, a large number of high priority discrepancies show the lack of

rigor used in unit testing. The number of priority A and B discrepancies found during system test
could indicate insufficient time for the engineer to test the code in sufficient detail before turning
over modified code, or it could indicate insufficient testing of the software prior to software and
hardware integration.

Figure 10 shows the types of errors found throughout the program. There were several types of
errors found. There were Coding Errors, Design Errors, Requirements Errors, Hardware Errors that

13

SEW Proceedings 378 SI5L-93-003

resulted in the software being changed, and Requirements Changes. Coding Errors represented 69%

of all errors Even after the start of system test, 2% of the errors were in design or requirements.

Requirements _ 6%

Design [_ 1%

Codi.g 69%

Hardware Interface _ 6%

Requirements Changes [] 4%

Miscellaneous _ 14%

Figure 10- Percent Errors by Type of Discrepancy

The rapid rise in Figure 11 from build 2 to build 3 is directly related to the independent test program

instituted at this time. The original requirement for testing was that the software engineers perform

the testing to their own comfort level. During various reviews and evaluations it was discovered

by the new software lead that the level of testing was insufficient. Software had not been retested
after modifications. The new software lead recommended to the customer that a more rigorous test

program be implemented on the software under the cognizance of Quality. The customer agreed to
this and the large number of discrepancies after build 2 is shown in the following figure.

7 _...-----""_Deliver y

140

120 - 3

100

80

60

40

20 _ Build 2

0 10 15
0 5

Months from Baseline(Buildi)

Figure 11 - Cumulative Flight Software Discrepancies

After delivery of the Flight RAM software, eight errors were discovered in the software. Of these

errors one was a hardware error that resulted in the software being changed, one was a requirements

error, and the rest were coding errors. Nine of the errors in Build 3 were a result of enhancements
to the software requested by the customer. One of the causes for the errors in the flight software,

was that the breadboard hardware used to simulate the flight hardware and used for testing the

flight software had several differences between it and the flight hardware, which resulted in the
software behaving differently between the two. Once the breadboard was changed to match the

14

SEW Proceedings 379
SEL-93-003

flight hardware, the software was corrected to operate on the flight hardware. During the phase of
Build 3 to Delivery of the flight PROM software, 18 errors were found in the software. These were
coding errors with the exception of one requirements change from the customer. Four of the errors

were customer requested enhancements to the software. The fau]t density of the flight software
after delivery to the customer site was 0.78.

Table 12 shows the number of discrepancies for the GSE software by build. The lack of requirements
and design errors can be directly attributed to the fact that the requirements and design were

changed to match the software as a result of the software engineer not adhering to the requirements
or design documents. After delivery of the GSE software, no errors were found at the customer
site.

Table 12. Types of GSE Software Discrepancies by Build

Build Coding Errors H/W Interface Errors
Test Software 17

Build 1 20
Build 2 5

The software development effort resulted in an average of 12 fines of code being developed per day.
There was an increase of 53% of software engineering hours from the original proposal submittal

and an increase of 47% of SQA hours. The 53% increase in the software development effort was

directly related to the fact that several of the software engineers and the software lead were replaced
nine months prior to delivery of the software. The software did not meet schedule, the software
did not work with the hardware, and none of the documentation met the documentation standards

or matched the software. The problems with the engineers that were replaced entailed not testing
the software sufficiently or not testing the software at all. The software lead, not having worked a
deliverable software program, did not enforce the SDP and ensure that the requirements were met

or that the software was tested prior to integrating the software with the hardware. The software

lead was replaced as well as two of the engineers, one ground and one flight. There was an overall

attitude between these three that their software was perfect, therefore there could not possibly be
any errors in the software and so it did not need to be tested.

The ground software engineer exhibited a lack of regard for the established process. The ground
software that was developed did not meet requirements or design and the documentation was

changed to match what the engineer had done after the fact. This engineer was replaced when the

new software lead found out that the software written did not meet requirements or design and
that the software had not been tested because the engineer did not think the ground software was
important enough to take time to test. The lack of discrepancies in the GSE software is due to

the requirements and design being changed to match what the software engineer had done. The

customer was apprised of the situation and agreed to changing the documentation to match the
software, and waived the unit and CSC integration testing of the software to prevent a schedule
impact.

The PROM software engineer had the attitude that the software did not need to be retested even

if the software had been changed by more than 50%. This software engineer was replaced and the

change in the fault density shows the significance of the new test program. The fault density of

15

SEW Proceedings 380 SEL-93-003

the PROM software went from 10.81 to 32.35 and then back down to 5.78 with the new software

engineer.

PROGRAM 5 was a medium sized project producing flight and ground software for a space ex-

periment written in Ada and C. It had a well defined process and the study documents how much
rework was involved related to programmers per their level of acceptance of the process imposed.

This program consists of 13K of Flight software and 18K of GSE software. The value of the program

is approximately $20 million. The flight software is written in Ada and GSE in C. There are two

leads and five programmers. The software lead has 10 years experience of software development,

has not had a software lead position before but has developed deliverable software and knows the

process and the importance of defining requirements and testing the software sufficiently. The

software engineers that are used on the program have experience in software development but three

of those engineers were replaced on program 4.

The software lead has established the rules for developing the software on this program and is

ensuring that the software is developed and tested sufficiently. The software lead from program

4 has been given a position of testing the flight software on the breadboard unit and it has not

been determined if the testing is sufficient. The software was required to be developed to European

Space Agency (ESA) standard PSS-05-06 and ESA PSS-01-21.7

The program has an SDP which documents the process for developing the software and docu-
mentation. The SDP requires informal walkthrough for requirements, design, and code as well as

formal reviews, (i.e., SRR, PDR, CDR). Software Development Folders (SDF) were required and

initiated during the design phase. These contain the requirements, design, code and unit test cases.

SQA's involvement with this program started at Authority to Proceed (ATP) and has continued

throughout the program life cycle.

SQA participates in the various walkthroughs and reviews the requirements for traceability, testa-

bility, completeness, consistency, correctness, and understandability. SQA reviews the design for

traceability of requirements, conformance to contractual requirements, compliance with design stan-

dards, completeness, correctness , understandability, and consistency. SQA reviews the code for

compliance to coding standards, implementation of the design into the code, traceability of require-

ments, completeness, correctness, documentation of the code (i.e., comments), and consistency.

Figure 14 shows the breakout of the schedule for program 5 and the 17% slip in schedule. A

slip in the schedule started in the design phase as a result of customer changes and impacted the
Preliminary Design review date but was mostly made up in the Critical Design phase. The coding

effort has also experienced a slip due to changes in design and additional requirement changes. This

program will soon enter system test.

s ESA PSS-05-0 ESA Software Engineering Standards.

7 ESA PSS-01-21 Software Product Assurance Requirements for ESA Space Systems.

16

SEW Proceedings 381
SEL-93-003

Requirements Phase
Planned

Requirements Phase
Actual

Design Phase
Planned

Design Phase
Actual

Critical Design Phase
Planned

Critical Design Phase
Actual

Code Phase
Pla.nned

Code Phase
Actual

V-7

1]

I I

[

Total Actual [i i iiiiiiiiiiiii!i iiiiiii iiiiiiiiiiiii!iiiiii i iiii i ii iii i ii iiiiiii i ii i i iiiiii i i i iii iiiiiiii i i i i ii iiiiiii ii i i i ii i iiiii]

Figure 14 - Program 5 Schedule Adherence

17_ slip

As shown in Figure 15, the majority of the requirements errors to date were found during the
requirements phase.

! 'ui*emen JSource: Errors
40%

Detected In:

[ReqRu:i!:c/ow_nts I [[

Design 1
Errors
45%

I Design
Walkthroughs

3Z%

Figure 15 - Percentage of Errors Found by Phase

Coding I
Errors
15%

Code
Walkthroughs

28%

So far, this program seems to be on the right track. The only question mark is the fact that three

people who demonstrated problems in adherence to process on program 4 are on this program.
As shown in the following table, the average time to close action items of one of those inherited
programmers is doubletheothers.

Table 13. Programmer Responsiveness

Programmer W/T Action Items LOC Average Time To Close
P1

P2
P3

P4

P5

49

31
70

45

10

9325

1190
1449

3227

1120

4 days
2 days

2 days
2 days

2 days

17

SEW Proceedings 382 SEL-93-003

t
f_

I-

|

One flight programmer from program 4 seems to have learned the lesson from being replaced and
has exhibited a different attitude throughout this program. The engineer has placed a great deal of

emphasis on retesting software that has changed and when the customer brought up the issue if this

testing was necessary, this engineer emphasized the importance of testing changes to the software.

The ground support software engineer does not seem to have learned the lesson for implementing
the requirements and design and of testing the software. The software lead has had to intervene
more often to gain compliance to the process from this engineer. The other experienced engineers

-- ground and flight -- have been working to the process documented in the SDP. The process for

this program seems to be working in relation to the walkthroughs, implementation of requirements

and design, and testing of the software. The software is still a little behind schedule but that is

partially due to the hardware requirements changing.

The evaluation of the flight software requirements specification shows the evolution of the document

for the program. The requirements document is reviewed throughout the software development cy-
de. Table 14 shows the results of the document reviews performed by SQA during the requirements,

design (PDR and CDR), and code phases. The requirements document was first reviewed during
the requirements phase and was found to be unacceptable due to the lack of testability and trace-

ability of the requirements. The baseline of the document during the requirements phase was an

improvement. The document continued to evolve throughout the development cycle and improved
slightly with each new revision. This is due to the fact that the requirements were understood
better than in the requirements phase and the hardware requirements were more firm than in the

requirements phase of the software.

Table 14. SRS Document Completion Index

Phase

Requirements
Requirements (Baseline)

Design (PDR)

Design (CDR)
Coding

DI Score

(1.0 high)

.50

.60

.65

.73
.75

PROGRAM 6 was an engineering support task for one of the NASA centers. It is used to show the

difference in performance of the programmers involved based on their past experience with software

engineering discipline. No contract criterion was available but each was totally responsible for code
to work on a particular platform. This program was a small research program that developed

software for a power system. The program consisted of a program manager, a software lead that
also acted as the deputy program manager and a programmer, and two software engineers. The

software lead (P1) was fresh out of college with a masters degree and had never worked a program
before, one of the engineers (P2) was fresh out of college but had worked as a summer hire for

Martin Marietta, and the last engineer (P3) had several years experience in developing deliverable
software. The software was developed primarily in Lisp on a Unix based machine with some software

developed on a PC in Pascal. The software was divided into two CSCIs, application software which
totaled 116,000 lines of code and lower level processor (LLP) software which totaled 5800 lines of

code. The program had a series of change orders which documented the requirements changes to
the software and the hardware.

18

SEW Proceedings 383 SEL-93-003

Although this program was a small research program, Martin Marietta has minimum standards

that allsoftware programs are required to meet. This consistsof a software development plan,

documented requirements and design,testing,and configurationcontrol.The program generated a

SDP that reflectedhow the program was going to operate while stillmeeting the minimum Martin

Marietta requirements. A requirements document was generated for the software and maintained

through the llfeof the program. The design for the software was documented in monthly progress

reports to the customer. The software was testedat the system levelbut did not include lower level

functional testing.A formal software testwas run at the Martin Marietta facilityprior to delivery

and system testat the customer site.The levelof testingwas determined by the engineer. There

were no coding standards per se,thereforestylewas dependent on the individualsoftware engineer.

There were no slips in the schedule for program 6 due to the program's statement of work being
written such that whatever software was developed at the time of delivery was what the customer

accepted. As long as the software had the required functionality, the customer was satisfied.

Table 15 shows the two CSCIs with the total lines of code, the average size of a module and the fault

density of the software. The majority of the application software was developed by programmers

P 1 and P3. The LLP software was developed by P2. The difference in fault density of the two types

of software shows the level of unit testing that was performed by the engineers. Programmer P2's

software was not sufficiently tested prior to baselining. There is a significant difference between

the two engineers, P1 and P2, although they were both new graduates from college when they first
started on the program.

Table 15. Program 6 Software

Software Total Average Size Total Number Fault

LOC Of Modules Of Modules Density

Application 116,712 451 259 1.15

LLP 5,857 345 17 3.07

There were 152 discrepancies found in the software of which 12% were requirements changes by the
customer and 88% were coding errors.

Table 16 breaks out the errors by priority. The A priority can be requirements errors/changes or
crashes in the software.

Table 16. Program 6 Percent Discrepancies by Priority Level

Priority

A

B

C

D

Percent

13%

13%

70%

4%

Programmer P2 moved from the LLP software to the Application software when the development

was done. When the total number of crashes (A priority) are reviewed 53% of the crashes (software

that was not tested sufficiently after modification and incorporated into the system) were introduced
by programmer P2.

19

SEW Proceedings 384 8EL-93-003

As shown in Figure 16, the majority of the errors were found during engineering test. A large

portion of the discrepancies were requirements changes requested by the customer. This resulted

in a fault density of 0.05 after delivery of the software to the customer and 1.24 for the program

overall.

Requirements !
Error Errors

Source: 12%

Detected In:
Requirements I

Changes
1%

I Engineering]
Test

82%

Coding
Errors

88%

t T

i I "°merChanges Test
11% 4%I1

Acceptance
Test
2%

Figure 16- Program 6 Percentage of Errors

For program 6, there were 122,569 lines of code developed over a five year span. This software

changed drastically from the initial development effort because of change of platforms. The software

originally started with a Xerox computer, a VME-10, and a Symbolics. The Xerox software was
rehosted on a Solbourne, the VME-10 on a 386, and the Symbolics on the Solbourne. The lines

of code developed per day could not be computed since the software effort was redefined through

requirement changes including rehost efforts for developed software.

The difference in programmer discipline is shown on this program through the fault density measure.
The software written by programmers P1 and P3 had a fault density of 1.15 and code written by

programmer P2 had a fault density of 3.07. This difference is significant because of the large number
of lines of code in the application software that were rehosted compared to the other software. The

LLP software rehosted was 5.8K lines of code compared to l16K. Although the process defined

for this program was a minimum set of standards, the programmers implemented the process

differently. Programmers P1 and P3 were more conscientious in testing of their software than

programmer P2. This was reflected in the number of A and B priority discrepancies found in the

application software after programmer P2 moved to the application software. The majority of the

rehosting of the application software was complete before programmer P2 moved over. Programmer
P2 introduced double the number of A and B priority discrepancies as the other two programmers.

20

SEW Proceedings 385 SEL-93-003

CONCLUSIONS

Item

Involvement with

Process Definition

Stable Requirements

Adequate Unit Test

QuaLity Oversight
for Complete Program
Schedule Slip

Engineering Overrun
Quality Overrun

Planned Quality Budget
versus Engineering

Actual Quality Budget
versus Engineering
Productivity Planned

Productivity Actual

Table 17. Program Comparisons

1

YES

YES

YES

YES

NO

NO

NO

5%

5%

6

6

2 3

NO NO

YES NO

NO NO
NO YES

30% 23%*

36% *
10% *

13% 14%

10% *

20 9

16 *

4

NO

NO

NO

NO

14%

53%
47%

12%

14%

22
12

5 6

YES N/A

NO YES

YES NO

YES NO

17% NO

NO** NO
NO** NO

10% 2%

**% 2%

7 25
** 25

* Program cancelled, data unavailable

** Program in process of completing

1. Following the Process

In all these programs a development plan was required by company standards and, on some, by
contract requirement. Those programs that participated in defining the contents of the plan were
more likely to adhere to it. Participation certainly strengthens understanding the contents which

goes a long way toward following the process defined. Programmers accustomed to meeting stan-
dards adjust to new process definitions and respond to changes in their development environment
by getting on with the job,

It is helpful to establish early who follows the process, so that additional resources can be brought
to bear to gain adherence and reduce rework and action items.

Program 3 was, in the experience of the authors, a classic example of how direction from the
software leads can effect the adherence to process. The worst adherence to schedule was shown

by the group under the guidance of what we would describe as a whiner who wanted no rules, no
oversight, and no process. The best adherence and best response for time to fix was demonstrated

by the group directed by a person who expected adherence to schedule and expected the group to
follow the agreed upon methodology as a team.

Having the people involved in the work responsive to the process is superior to bringing in the
heavy artillery, i.e., upper management, to dictate compliance.

Program 6 is an example of what individuals bring to the job. This small program had little

structure, no documentation other than task descriptions of a very high level, and the individual

21

SEW Proceedings 386 SEL-93-O03

programmers chose their own method of test and evaluation of the results. One set of software

had a significantly higher fault density than the other, though neither rating was excessive. The

programmer who produced code with the higher fault density also had the most errors causing

system crashes. The programmer producing code with the lower fault density approached the

development of the application in a structured manner going from requirement to design to code
and test. The other sat at the terminal and wrote code till it appeared to work.

2. Changing Requirements

As discussed under programs 3, 4, and 5, changing and/or nebulous requirements handicap a

program. Program 3 overcame poor software requirement definition by establishing preliminary

design based on the system specification and continuing to work the software requirements through

the design and coding phase. This represented the design and development personnel overcoming

the process. The reluctance of the requirements group to meet their responsibilities because of an

overall program problem of requirements flux was a losing situation. The process dictated that

this group produce and it did in volumes of bad documentation. Eventually, the responsibility for

the product migrated to a more focused group under the control of the end users that allowed the

evolution of an acceptable product.

Program 4 requirement changes came mostly from the customer and usually involved functionality

in the ground support software. Such changes are more easily accommodated than hardware or

design change and had little impact on delivery of the flight unit. A problem on program 4 involved

not keeping the breadboard used to test the software current with flight hardware design changes.

This caused considerable consternation and finger pointing when system integration testing could

not start because the software would not run the hardware. The lack of communication and

understanding of need was corrected by replacing the software lead with someone experienced in

development of software for an embedded system.

Program 5 still has time to overcome the program slip introduced in its design and coding phase

caused by requirement changes.

Performing document evaluations and reporting the document completion index provides visibility

into progress toward meeting program goals. This is especially important with the requirements

document since inadequacy in it is felt through the following phases.

3. Discipline in Informal Testing

Informal test lacking objective goals accomplishes little but can give a false sense of security.

Programs 2 and 4 suffered from too little structured unit testing. This is shown in the large jump
in defects found when test philosophy and responsibility changed. Both programs experienced

considerable engineering overruns and schedule slip.

Program 2 personnel adjusted to the new test philosophy and informally competed with each other
for best time to fix and fixing it right the first time. Program 4 personnel were so burdened with

ego that to accomplish adequate unit test and institute correctness of fixes programmers had to be

replaced.

On Program 3, the considerable number of slips in scheduled code walkthroughs and baselines for

the ground CSCI were caused by additional coding effort needed to complete informal integration

22

SEW Proceedings 387 SEL-93-003

of the CSC into the CSCI. Except for the leads on the ground CSCIs, the programmers were used

to developing stand alone code and lacked an understanding of meeting interface requirements.

The unit test on program 6 was defined and executed by the individual programmers involved. As

reported previously, lack of rigor in unit testing surfaced in system test as more software crashes

were introduced by one of the programmers than the total for the other two.

4. Reviewing Early

Trying to save budget by avoiding the use of early objective reviews as shown in program 4 can be

self defeating. An inspection or review process that can point out errors early but not effect their

correction, as shown on program 3, is a poor process in terms of cost and quality. The thorough

review process used on program 1 was integral to keeping on a very tight schedule.

5. People

Pinpointing who is most likely to cause rework and frustration is an effective way to control rework.

It is a matter of tracking number of action items and response to action items. If a problem

with responsiveness or understanding of the importance of compliance to the process is identified,

management must accept the responsibility of replacing the problem, redefining standards, or strong
arming compliance.

6. Collecting Data

Using a database tool to pool data makes sense. However a project evolves, it will have re-

views/evaluations of some type, discrepancy reporting and status to schedule. Collecting the result

of objective reviews and other defect data should be a high priority for complete quality records.

Current status of development progress is needed to flag problem areas and replan work to make up

for known slips. The tool used to collect the information on these programs, SQUID, was designed

around the Air Force pamphlet, Software Management Indicators, Management Quality Insights,

Air Force Systems Command, 20 Jan 1987 and practical knowledge based on twelve years of per-

forming software quality on projects. Reporting from a database is superior to digging through

data retention boxes. Use of a tool can give structure to multiple quality programs and allow
meaningful comparisons between different types of projects.

Each program undertaken yields a better idea of what is a meaningful measure. Program 2 was

the first program that the authors had the opportunity to collect metrics on during the life of the

program. Defect density and coding complexity measures were used because involvement began

after coding start. After this experience the authors started looking more at early fault detection

via walkthroughs and reviews. This in turn lead us to look at responsiveness of individuals in

correcting deficiencies as a major driver in software quality.

In summary, we believe our observations support the conclusion that good programmers produce

good code. A good programmer in the context of this paper is a programmer who is committed to

project goals, highly disciplined, and responsive to constructive criticism that is based on meeting
those goals. Of itself, a process does not make a product. The best a process definition can

do is let producers know what is expected before they are evaluated for method and output.

Proper execution of a process requires the cooperation of the participants. The more readily this
cooperation is given the less the cost of rework.

23

SEW Proceedings 388 SEL-93-003

Software Quality: Process or People

Regina Palmer
Martin Marietta Astronautics

P. O. Box 179, M/S $1008
Denver, Colorado 80201

&

Modenna LaBaugh

R&FC Group

3076 So. Hurley Circle

Denver, Colorado 80227

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Agenda

- Introduction

- Background of Programs

- Process

- Success

- Problems

- Lessons Learned

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 389
SEL-93-003

Software Quality: Process or People

• Introduction

- The Paper Describes the Following for Each Study
- Involvement with process definition
- Stability of requirements

- Thoroughness of unit and system test

- Degree of"Quality oversight
- Schedule Adherence

Variance from planned completion dates

- Overruns - Engineering and Quality

- Planned Quality Budget as percent of Planned Engineering

- Actual Quality Budget as percent of Actual Engineering
- Planned Productivity

Lines of code per engineering day

Includes Program Management, Engineering, and Quality hours

Exdudes Business Operations and Property Management -- net readily
available to authors

- Actual Productivity

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 1

- Very involved with process definition.

- Very stable and well defined requirements. Clearly defined end of phase before
beginning of next. As shown by the high Document Completio_ Index scores.

Phase Di Score

(1.0 high)
.67
.77
.B3

Requirements

Design (CDR)
Coding

- Thorough unit and system test

- Quality oversight from beginning of contract
- Schedule Adherence - no slip
- Overruns - none

- Planned Quality Budget as percent of Planned Engineering - 5%

- Actual Quality Budget as percent of Actual Engineering - 5%
- Planned Productivity - 6 LOC

- Actual Productivity - 6 LOC

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 390 SEL-93-003

Software Quality: Process or People

• Program 2
- Little involvement with process definition. Programmers were unfamiliar with

testing rigor and programming standards. Table is in order of programming

experience.

Programmer
P1 - sw lead
P2 - sw lead

P3 - new graduate
P4 - new graduate
P5 - new graduate

Fault Density of Code Produced
8

18

10
8

17

- P2 and P5 were reluctant to take time to test. P4 was used to do most

correction of P2 code and P3 was used to correct P5 code because of the low

fault density of code they wrote.

- Disagreement late in program on requirements

• Quality oversight on program from beginning of cod'rag

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 2 (continued)
- Lack of discipline in unit test - 60% of errors found in final testing were in the

first baseline.
- Schedule Adherence - 30% slip in final delivery of software. Legacy code required

upgrades to meet customer expectation of usability that was not anticipated in

contract bid.

IOC1 Plan L_I
lOCI Actual

IOC2 Plan

IOC2 Actual

FOC Plan [I
FOC Actual

Total Plan [I
Total Actual 30% dip

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 391
SEL-93-003

Software Quality: Process or People

• Program2 (continued)

* OveJTuns

- Engineeringexceededplan by 36%

- Quality exceededplan by 10%

- PlannedQuality Budget as percentof PlannedEngineering- 13%

- Actual QualityBudget as percentof Actual Engineering- 10%

- PlannedProductivity- 20 LOC

- Actual Productivity- 16 LOC

12/2/93 GSFC SoftwareEngineeringWorkshop

Software Quality: Process or People

• Program3

- No involvementwith processdefinitionexcept for definingcodingstandards
- Very unstableand poodydefinedrequirements.Documentcompletenessscores

for documentshighlight this.

Phase SRS SDD STP Project
PDR .17 .55 .50 .40
CDR .36 .74 .61 .57
Coding .64 .74 .61 .66

- Unit test had only begunat contract close
- Quality oversightfrom beginningof project but no authorityfor action item

resolution

CSCI Name Number of Items Average ResponseTime (days)
FLIGHT 24 33
EGSE 13 46
TRAINER 5 60
SIMULATOR 10 83

12/2/93 GSFC SoftwareEngineering Workshop

SEW Proceedings 392 SEL-93-003

Software Quality: Process or People

• Program 3 (continued)
- Schedule Adherence - 23% slip due to requirement

- Attitude of software leads to maintain internal ¢hedules varied.

CSCI NAME

FLIGHT
EGSE
TRAINER
SIMULATOR

W/T Dates Average
Missed Slip (days)

10% 19
26% 28
14% 7
18% 28

- Overruns

lef'mition during design phase

B/L Dates Average
Missed Slip (days)

23% 15
43% 21
O% 0

18% 14

- Engineering - Program cancelled, unable to compute
- Quality - at beginning of code phase had exceeded evaluation budget by

113%.

- Planned Quality Budget as percent of Planned Engineering - 14%

- Actual Quality Budget - Program cancelled, unable to compute

- Planned Productivity - 9 LOC

- Actual Productivity - Program cancelled, unable to compute

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 4
- No involvement with process definition

- Unstable requirements - 33% of change traffic for the last buil_l before delivew

were enhancements requested by the customer.

- Lack of test discipline in unit test - Large number of errors found after build 1

when other programmers were brought in to validate software.
Number of Defects

Build 1 16
Build 2 72
Build 3 thru Delivery 35

- Quality oversight begun in coding phase

- Overruns

- Engineering - 53%
- Quality - 47%

- Planned Quality Budget as percent of Planned Engineering - 12%

- Actual Quality Budget as percent of Actual Engineering - 14%

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 393
SEL-93-003

Software Quality: Process or People

• Program 4 (continued)

- Schedule Adherence - 14% slip

Requirements Plan
Requirements Actual

Design Plan E J
Design Actual i _ii_!i!__:_i_:_;__iilz_l

Code Plan 1 I
Code Actual li_i_i:_-:_i;;_,ii _;i_!_:i:_!ii_i_:_i1

System Test Plan [_

System Test Actual

Total Plan I J

Total Actual

Planned Productivity - 22 LOC

Actual Productivity -]2 LOC

12/2/93 GSFC Software Engineering Workshop

]4% slip

Software Quality: Process or People

• Program 5 '

- Very involved with process definition. Reviews used in process very successful for
finding errors early.

Error
Source:

Detected In:

j Requirements J
Errors
40%

1

Requirements
Reviews

35%

O gn/ IErrors
45%

t
Design

Walkthroughs
37%

Coding
Errors

15%

Code I
Walkthronghs

28%

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 394 SEL-93-003

Software Quality: Process or People

• Program 5 (continued)
- Responsiveness of individual programmers to the corrective action process is

shown in the table.

Programmer W/T Action Items LOC Average Time To Close
P1 49 9325 4 days
P2 31 1190 2 days
P3 70 1449 2 days
P4 45 3227 2 days
P5 10 1120 2 days

- StabUity of requirements - requirement changes were imposed during the design

phase impacting Preliminary Design schedule but time was made up during

critical design. Hardware requirements changed after design baseline.

- Thoroughness of unit test due to stress of software lead

- Quality oversight from beginning of program
- Planned Quality budget as percent of planned Engineering - 10%

- Actual Quality Budget as percent of actual engineering (to date) - 10%

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 5 (continued)
- Overruns - Program has not completed code phase yet, not calculated to date

- Schedule Adherence - 17% slip appeared in code phase, to be made up in test

Requirements Plan

Requirements Actual

Design Plan

Design Actual I::i i::_z:ii:_:._i::_iii:_i_i;_!_iiJi_]

Critical Design Plan [

Critical Design Actual

Code Plan I

Code Actual

Total Plan [

Total Actual

]

I

17%slk_

- Planned Productivity - 7 LOC

- Actual Productivity - Program not due to complete till next year

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 395 SEL-93-003

SoftwareQuality: Processor People

• Program 6

- No process definition

- Requirements changes caused new work order

- Unit test performed at a level defined by the individual programmer. The

difference in testing thoroughness is shown in the fault density of the software
as measured by discrepancies found during system test.

Software Total Average Size Total Number Fault

LOC Of Modules Of Modules Density
Application 116,712 451 259 1.15
LLP 5,857 345 17 3.07

- Quality provided configuration control only for delivery to customer

- Schedule Adherence - as a level of effort contract the schedule is always met
- Overruns- N/A. level of effort

- Planned Quality Budget as percent of Planned Engineering - 2%

- Actual Quality Budget as percent of Actual Engineering - 2%
- Plarmed Productivity - 25 LOE

- Actual Productivity - 25 LOE

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Lessons Learned

- Process definition must involve the participants to assure acceptance.

- People who do not accept the process cause rework expense. Those likely to

cause rework or delay are identifiable by tracking action items and response times.

- Programmers must be made aware of objective goals for unit testing.
- Fault density by itself is a deceptive measure. Using it, program 2 was estimated

to be on schedule two months before the final delivery. Before end of test it

became obvious that the unit test program had been inadequate and a 7 month
slip occurred.

- Programs which only collect metrics during test miss opportunities for early
detection of problems.

- Program knowledge disappears soon after each milestone on a program uNess
someone collects it as it happens.

- Each program undertaken yields a better idea of what is a meaningful measure
within a company culture.

- Data for this paper were scattered amongst individuals involved on the programs
reported and not readily available till input into the database tool used.

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 396 SEL-93-003

SoftwareQuality: Processor People

Item

Involvement with
Process Definition

Stable Requirements
Adequate Unit Test
Quality Oversight
For Complete Program
Schedule Slip NO 30%

Engineering Overrun NO 36%
Quality Overrun NO 10%
Planned Quality Budget S% 13%

To Engineering
Actual Quality Budget 5% 10%

To Engineering
Productivity Planned 6 20
Productivity Actual 6 16

* Program cancdled, data unavailable

** Program in process of completing

12/2/93 GSFC Software Engineering Workshop

Program Comparisons

1 2 3

YES NO NO

YES YES NO
YES NO NO
YES NO YES

23%*

¢

14%

4

NO

NO
NO
NO

14%
53%
47%
12%

14%

22
12

5

YES

NO
YES
YES

17%
NO**
NO**
10%

**%

7

6

N/A

YES
NO
NO

NO
NO
NO

2%

2%

25

25

SEW Proceedings 397 SEL-93-003

SEW Proceedings 398 SEL-93-003

Session 6: Software Engineering Issues in NASA o7_/_

Dana Hall, Science Applications International Corporation

John Bailey, Software Metrics, Inc.

Marvin V. Zelkowitz, University of Maryland

SEW Proceedings 399

AGI-_._ INTE,NT.!ONALLYBLA_

SEL-93-003

SEW Proceedings 400 SEL-93-003

Profile of NASA Software Engineering:

Lessons Learned from Building the Baseline

N94-36500

Eighteenth Annual Software Engineering Workshop

2 December 1993

Goddard Space Flight Center

f

Dr. Dana Hall

Science Applications International Corporation

and

Frank McGarry

NASA Goddard Space Flight Center

It is critically important in any improvement activity to first understand the organization's

" current status, strengths, and weaknesses and, only after that understanding is achieved,
-2

! examine and implement promising improvements. This fundamental rule is certainly true

for an organization seeking to further its software viability and effectiveness. This paper

addresses the role of the organizational process baseline in a software improvement effort

and the lessons we learned assembling such an understanding for NASA overall and for the

" NASA Goddard Space Flight Center in particular. We discuss important, core data that

- must be captured and contrast that with our experience in actually finding such information.

Our baselining efforts have evolved into a set of data gathering, analysis, and cross-

: checking techniques and information presentation formats that may prove useful to others

seeking to establish similar baselines for their organization.

/

Role of the Baseline in Process Improvement

We use the term "baseline" to mean a relatively detailed understanding of the softwar_e_

engineering products, processes, and environment characteristic of an organization, large

or small, in a given period of time. It is a snapshot of current product attributes and of

present software engineering processes and the environment within which those processes

operate. The fundamental objective is to gain understanding and not to judge that the way

the organization performs its software development, maintenance, management, and

assurance is right or wrong. This understanding is then used in two principal ways; first,

r,_i_llOle_ P.kGE BLANK NOT RLML_D

SEW Proceedings
401 .,_,A .

SEL-93-003

to help identify and define potential improvements and, second, to serve as a reference

against which future comparisons are made as candidate improvements are prototyped and

implemented.

Establishing the baseline is the mandatory fast step of any process improvement program.

Determinm" g the organization's software and software engineering characteristics before

proposing and trying an improvement requires discipline. It is reasonably analogous to the

discipline required to first understand a software problem's requirements and design before

jumping in to write code. Although some random "improvements" might prove correct,

experience has repeatedly shown that most are off the mark and are almost always short

lived, fi-ustrating, and wasteful of people's interest and resources. Thus, it is very

important that the time and energy be taken to first gain insight and to understand the

what's, how's, and why's of an organization's way of doing software business.

The understanding step provides the foundation for all of the process improvement

program. The figure on page 4 illustrates the iterative and chronological relationship

between the three fundamental steps of the basic process improvement paradigm. The

Figure shows that gaining understanding precedes and then parallels the assessing and

packaging steps. Examples of the types of insight comprising the understanding step are

shown and will be further discussed below. Note that the understanding process is never

completed. It continues on through repeated cycles of upda_ as well as probing into lower

levels of detail when and as needed to facilitate focused assessing and packaging. The

assessing step uses the insight gained fi'om the understanding activities to identify and

define focused improvements that appear to be beneficial and cost-effective. The assessing

activity includes prototyping and experimentation. Examples of such experiments are

trying an improved inspections process or alternate testing technique. Those improvements

that do prove helpful are then packaged as policies, standards, or guidebooks for

promulgation back into the organization. Over time and with continued attention, the

modifications become a routine part of the organization's software culture and the

fundamental software engineering baseline of the organization thus will have advanced.

The figure on page 4 also helps to show that policies, standards, and guidebooks evolve

from hands-on experience and usage. As a result of actual implementation in the culture of

the organization, the policies, standards, and guidebooks serve as a means for

eornmunicating and helping to achieve greater uniformity. The people in the organization

own and recognize the "rules" as simply their way of doing business. Experience has

SEW Proceedings 402 SEL-93-003

shown that this bottoms-up process is much more effective and useful than is adopting or

tailoring a process from another organization or from some top-down mandate.

Core Data You Want to Ca_vane

The organization'ssoftwarecharacteristicsbaselineconsistsoffourcategoriesof

information.These categoriesare:

I. Insightabout theorganization'sapplicationdomain(s)

2. Characteristicsoftheend items;i.e.,theproductsand/orservicesthe

organization provides

3. Attributesoftheprocess(es)theorganizationuses

4. Insightabout theorganization'senvironment;i.e.,itssupportingtoolsand

computing and networkinginfrastructure.

The figure on page 6 presents the core data that comprise these four information categories.

This is the basic data you want to find in order to achieve a first order understanding of the

organization and its software practices. Most fundamentally, insight is required about what

the organization's application domain or domains are. In other words, what does the

organization do, what people and budget resources does it have, and where is the

organization trying to go (what are its goals?). Software development and maintenance

often are only a part of its purpose so insight must be gained about the organization's

overall roles and its software work as a subset of those roles. Further, since many

organizations perform work in more than one domain, understanding must be gained about

the allocation of resources across those domains.

Using the knowledge of the organization's application domain(s) as a foundation, insight is

thengatheredabout theitsproducts,processes,and computing environment.

Product insight is most readily quantifmblc. The amount of software under development

and the amount being maintained, languages in use, and error characteristics of the

operational software are examples of key product attributes. A_ illustrated on page 7, we

learned in our baselining activities at the NASA Gtxidard Space Flight Center (GSFC) that

of the total civil service and support contractor population (a community of some 12,000

people), roughly one third spend the majority of their time doing software engineering-

related work. By "software engineering-related", we mean performing one or more of the

SEW Proceedings 403 SEL-93-003

functions of software management, requixements definition and analysis, design, coding,

testing, configuration management, and quality assurance. That community is responsible

for the maintenance of at least 43 million source lines of presently operational code. We

have found that across NASA all software activity groups into one of six major application

domains: flight/embedded software, mission ground support software, general support

software, science processing software, administrative software, or simply (for lack of a

better title) research software. The distribution of existing operational software at the GSFC

into the major NASA software application domains is shown in the figure on page 8. By

way of definition, mission ground support software is the ground software necessary for

the preparation and conduct of a space flight mission. Examples are command management

software and software for determining vehicle orbital position. General support software

includes engineering models, simulations, tools, and similar operational software. While

pie charts are a useful analysis aid, other formats are also helpful. The graphic on page 9

uses a histogram format to show some of our baseline about software language preferences

at the GSFC. This particular figure compares the language characteristics of currently

operational software and the preferences of the developers of new software. (Neither the

GSFC overall nor any of the organizations that comprise the space center have mandated or

advocated a software language or set of languages. Each developer or project typically

selects the language they prefer.) It is interesting to note the sharp decrease in FORTRAN

use and the significant increase in the preference for C and C++. (Our baselining did not,

unfortunately, distinguish between C and C++. We may look more specifically into the use

of those two languages in the near future.) Ada use has grown at GSFC, but not to a

prominent amount.

An organization's process characteristics may prove more difficult to determine. The

availability of such insight in any reasonably quantified way is, in our experience, a good

indicator of the organization's software engineering maturity. The managers of an

organization with immature software engineering practices are not able to easily describe

and prove usage of their policies and standards, the usual allocation of resources by

software phase, tools used and the usefulness to the organization of those tools, or other

key process attributes such as frequency and characteristics of reviews, staff training

practices, and project software configuration control activities. An example of

understanding an organization's process characteristics is shown in the schematic of page

10. This graphic portrays the usual GSFC software project's consumption of resources by

each of the major phases that make up the software development process. This figure is

presented here simply as an example of process insight, but it is also an interesting figure to

4

sew Proceedings 404 SEL-93-003

briefly discuss. We found this allocation of resources to be roughly constant at GSFC

regardless of activity development approach or size. While we have, for simplicity of

presentation, mapped resource usage into a classical, one pass software development

model, many projects at GSFC (especially the smaller ones) develop their software through

an iterative, build-it and try-it approach. Almost invariably, these one person and small

team efforts claimed not be following any particular development model and certainly not to

be doing anything as formal as "requirements definition", but in reality, we observed that

their work processes do cycle through the basic four phases, albeit in an informal, less

structured way. So, our baselining indicates that the resource usage summarized by the

schematic on page 10 is fairly typical of most software work at the GSFC.

A fundamental rule associated with establishing an organization's software engineering

practices baseline is to not judge during the baselining process whether an observed

practice is good or weak. The objective is simply to observe and record. One of several

classical software engineering rules of thumb, for example, says that the front end

requirements and design processes should receive 40 percent of the development resource

budget while coding receives 20 percent, and testing the remaining 40 percent. GSFC

software work varies some from that guidance. We do not at this stage argue or even

examine whether some alternate resource pattern might be more effective for the typical

GSFC software effort. However, comparisons such as this help to highlight further

exploration to be done during the subsequent Assessing phase.

The fourth area of required insight concerns the organization's computing environment.

This part of the baselining focuses on attributes such as the types of computers available,

how networked the organization is, and how integrated are its software tools. An objective

is to measure the organization's computing environment relative to the current state of

practice generally in place across the software industry and to identify and characterize

constraints that limit the organization's ability to continually or periodically upgrade. Aside

from budgetary pressures, a constraint in the GSFC environment, for example, is the large

quantity of currently operational software that must be maintained. Taking care of that

installed base of some 43 million source lines of code inhibits the modernization of much of

the computing infrasu'ucture. We noted, as a consequence, continued reliance on

centralized processing and limited introduction of more recent advances such as client-

server architectures and powerful desktop computers. Understanding the organization's

constraints with respect to its computing environment helps to set the practical context

within which incremental improvements are possible.

5

SEW Proceedings 405 SEL-93-003

What Data Can Be Capmrexl?

While a core of data is critical as the foundation for an organization's software engineering

improvement baseline, the reality is that often much of even that core data is not available.

This is especially the case in an organization whose software engineering practices are

relatively immatul_. Immature is meant as a descriptor of organizations where software

engineering practices are largely driven by individual preferences, where little or no

organized measurement is performexi, and where there is little uniformity and sharing

across the organization. The Software Engineering Institute at Carnegie Mellon University

labels such organizations as "level 1" in its five level capability maturity model

Establishing a baseline is an incremental process in and of itself. As the figure on page 4

emphasized, understanding begins as the first step and then is a process that continues in

parallel as the organization experiments with and implements focused improvements. The

data gathering process is one of iteratively gaining sufficient insight to identify and define

promising improvements. Detailed accuracy and depth are not necessarily needed at least

initially for the organization-wide baseline. As candidate improvement areas arc identified,

however, more indepth probing will usually help to understand weaknesses and to shape

the nature of candidate changes. More will be said a little later in this paper about the

balance between resources put into the baselining process and the level of depth and

accuracy of the baseline.

In our GSFC and NASA-wide baselining work, we have been reasonably successful

gathering insight about software languages in use, budgets, and quantities of software (as

measured by lines of code and people involved). We estimate that our restflts for these

types of measures are accurate within 25 percent of the true amounts. Twenty five percent

is admittedly a wide margin, but it is adequate for our software process improvement needs

at this early stage in the NASA Software Engineering Program. We have not been as

successful identifying other less tangible core data. Examples of such data include effort

distribution by phase, the operational lifetime (longevity) of software, error statistics of any

kind, productivity measures, and the amount of resources typically invested in the key

"overhead" functions of software quality assurance, configuration management,

documentation, and project management. As discussed later in this paper, we believe that

we have directly or indirectly gathered data from about ten percent of the GSFC software

community. Very few of the managers and staff with whom we interacted had any

6

SEW Proceedings 406 SEL-93-003

quantified data pertaining to these less tangible measures. Most could offer only qualitative

guesses. While such insights are probably better than no insight at all, we put a wide

margin of error of 50 percent on that subset of our characteristics baseline. The point of

this discussion is to emphasize that although a core family of process attributes are

important to your understanding baseline, practical circumstances may dictate that you

settle, at least in the early stages of an improvement program, for approximations and

opinions for some of the desired data.

Techniques for Establishing the Baseline

We have found over the past year and six months that a combination of four methods

works best to gather, cross-check, and understand the software domains, products,

processes, and environment characteristic of a subject organization. The four techniques

that comprise our integrated data gathering mechanism consist of administered survey

vehicles, informal roundtables, review of selected project data and documentation, and one-

on-one interviews. These techniques reinforce each other. Our experience indicates that all

four are necessary in order to truly understand the what, how, and why of an

organization's software business.

Surveys are a key instrument. We developed, tested, and placed under configuration

control a comprehensive eight page survey and a single page, special subset. The single

page version was used in two ways. One application was to help introduce our purpose to

senior management, garner their support and approval, and elicit their insight about the

software engineering process in their organization. The other way we used the single page

version was as a verification mechanism with various individuals throughout the

organization that had not been interviewed using the longer survey.

The eight page, main survey was widely applied. We found the most effective

administration method to be a technique similar to that of a census-taker. At a pre-arranged

meeting time and location, our data gatherer met with the single or occasionally several

respondents. After introductions, a short explanation would be given of the NASA

Software Engineering Program and the role of the characteristics baselinlng activity within

that Program. The data gathering meeting would then proceed in the style of a question and

answer session using the survey as the central script. A simple "don't know" or "not

available" was entered as the response for those questions where the respondent could not

7

SEW Proceedings 407 SEL-93-003

easily answer. We had structured our questions so that a knowledgeable respondent would

not need to invest time researching and compiling answers. Typically, the dam gathering

session consumed about 1.5 hours, although related discussions would sometimes extend

the duration. This method of meeting with the respondent and walking down through the

survey not only used minimal time, but also assured us of data return and data

interpretation consistency. Since we usually used only one and occasionally two data

gathere_, we were able to maintain a relatively consistent int_'pretation and level of detail.

Earlyinour baselining,we triedand discardedeasiertechniquesthatreliedupon survey

mailoutsand telephonecalls.

Prototyping of the survey mechanisms proved very important. Such testing helped identify

confusing questions, inconsistent dcfmitions, and to polish our gathering techniques. We

found, for example, that entries for descriptive data introduced too much variability and

thus complicated our data reduction job. A more effective approach was to only use

questions with definitive answers such as yes/no or response ranges (for example, <35%,

35-70%, or >70%).

The roundtablesessionswere used tohelpcheck theinsightsgatheredfrom the

administeredsurveysand togathermore subjectiveopinionsand advice.The roundtables

were conductedusinga structuredsetoffivemajor questions;specifically:

1.Participantbackground and experience?

2.Businessgoalsand objectivesof theorganization?

3. What software process is used?

4. Major strengths and weaknesses in developing software?

5. What could be done to improve the software engineering process in the

organization?

Separate roundtables were conducted for managers and technical personnel and for civil

servants and support contractors so that each set of participants could speak more freely.

As with the survey and interview results, we have taken care to protect the privacy of the

responses. In no case have observations been attributed back to individual participants.

While our survey administration method was in reality a one-on-one or occasionally one-

on-two interview, we also used the interview technique principally as a means of pursuing

insight that appeared, after analysis and comparison, to be contradictory or in some way

particularly different from what we were learning was the norm in the organization.

SEW Proceedings 408 SEL-93-003

=

Resource practicalities obviously precluded talking with every member of the software

community so we tried to orient our data gathering energy to the major "pockets" of

software work. Senior management proved very helpful in pointing to those software

intensive groups within the overall organization, but our knowledge of NASA was also

key. This brings up another valuable lesson. It is our opinion that the software engineering

baselining process can only be done by individuals familiar with the target organization and

its culture. That insight has proven highly important to our efforts at interpreting

terminology, understanding roles and functions, and interpolating and extrapolating the

data samples to represent the overall GSFC and NASA software communities. We do not

believe that we would be very effective if we attempted to conduct this critical activity in

unfamiliar domains or, conversely, if someone not familiar with NASA tried to conduct a

NASA software baselining.

How Many People Should You Talk To?

No easy answer can be provided to this question. The amount of interaction depends upon

the variability within the organization of interest and on its software engineering process

maturity. The problem of sample size is probably amenable to statistical analysis. We have

relied upon our extensive NASA experience base as our primary guidance for determining

our sample size. As the graphic on page 13 shows, we sampled approximately ten percent

of the GSFC software community and from that sample size, believe we have extracted

insight sufficient to both guide our next round of focused improvement thrusts and to serve

as a yardstick for future comparison. We cannot judge that ten percent is a proper sample

size for improvement endeavors in other organizations, however.

_How Much Will the Baseline Cost?

We have invested approximately eighteen person-months in the baselining activities

focused on the GSFC software community. Our efforts first concentrated on the largest and

most software intensive Directorate at GSFC and then broadened to encompass all of the

GSFC, but at a lesser level of detail. As the data on page 14 shows, a cumulative six

person-months was used gathering insight using the integrated four method approach

previously discussed. This six months was preceded by two person-months of survey

development, testing, and refinement. We found the archiving investment to be extremely

important. This function helped to maintained order and organization amidst the inflow of

9

SEW Proceedings 409 SI5L-93-003

large quantities of data. We esdmate that about six person-months have been invested

extracting and deriving information and insight fi'om the survey, roundtable, and interview

data. This function includes recognizing and dealing with data overlaps and gaps as well as

performing analyses and comparisons. A total of two person-months has been expended

so far packaging our results into two profile reports (one for the major software _rectorate

and one for the GSFC overall) and into several briefings.

Page 14 concludes with a short synopsis of our next steps. We are now transitioning from

exclusive concentration on just gaining understanding to an effort balanced between

continued understanding activities and focused assessments and prototyped incremental

improvements. The software engineering baselining performed to date has highlighted

several process areas as promising candidates for improvement.

Training and standards are high on that attention list. Several comments in this regard may

be helpful. The GSFC training office has an excellent record of responding to managers'

requests for specific training classes. Our observations conclude, however, that a more

comprehensive software waining activity may be cost-effective. We are interested in

examining the advantages and problems surrounding an integrated software engineering

training _ a curriculum that routinely prepares personnel for upcoming software

roles. We also want to explore whether training effectiveness can be improved by

expanding the delivery of training from the traditional classroom to include reinforcement

mechanisms such as easy access to help and information from each person's office desktop

machine.

The standards area aplSarently requires a considerably different approach from that used

within the GSFC to date. (Since we haven't completed our NASA-wide baselining, we

can't fully conclude that the same issue applies across all of the Agency, but our insight so

far leads us to think that it does.) Several observations are particularly relevant. First, the

existence of advocated software engineering processes and supporting standards is very

inconsistent. Few organizations that do software work have any recomn'_nded approach at

all despite the impcmance of software engineering to their existence and to the credibility of

their products. Second, within those few organizations that do have a recommended

software process and supporting standards, managers and staff either claim not to know of

the recommended approach or freely take broad license to tailor and selectively apply

elements of it. Related to this issue is the tendency for civil service personnel to require the

contractor community to fonow a particular process and standards while they themselves

10

SEW Proceedings 410 SEL-93-003

know very little about it and exercise no similar discipline on their own software activities.

There is a distinct lack of ownership by the using community of processes and standards

imposed from outside their immediate organization. We think these interrelated issues sum

to the conclusion that most current approaches to developing, advocating, and using

software process and engineering standards simply do not help and instead actually hinder,

frustrate, and waste resources. Since current software standards methods largely don't

work, our next steps in this part of the improvement program will be dual thrusts of

continued detailed understanding and prototyping of alternate techniques. A very promising

overall approach is that represented by the three layer, iterative model previously shown on

page 4. This technique basically plays back into the organization the methods and practices

the organization itself or a subset of the organization such as a particular project, has found

helpful. These "packaged" methods and practices are the organization's processes and

standards and since they are based on actual experience within the organization, they are

owned and used with much greater effectiveness.

Lessons We Learned

In summary, the understanding activity is a mandatory and continuing element of any

organizational software engineering improvement program. We have now completed the

initial understanding baseline for software across the 12,000 person GSFC community.

Several lessons from that work may be beneficial to others seeking to establish similar

baselines for their organization.

A primary lessonistobe objective.The purposeof theunderstandingactivityistolearn

and nottojudge thatcurrentpracticesaregood or bad. As theunderstandingbuilds,a

change inperspectivecan occurtoidentifycandidateareasforimprovement,butthekey is

that shift in perspective be based on facts rather than speculation.

It is important that insight be gained from personnel at all levels and roles within the

organization. We found that interacting initially with upper management was especially

important. Not only could the upper manager orient us to the types of work and the

responsibilities of the organization, but we also gained the manager's approval of our

efforts which in turn helped gain time and attention from the staff within the organization.

Another benefit of starting with upper management was the important aspect of buy-in by

the upper manager to the concept of software engineering improvemenL This acceptance

becomes especially important downstream when the initial understanding is achieved and

11

SEW Proceedings 411 SEL-93-003

the task of defining and experimenting with promising improvements gets underway.

Gaining multiple perspectives from personnel throughout the organization does come with

some problems though. The chief difficulty is recognizing and resolving overlaps in data

and insights.

Lesson 3 on page 15 recommends layering the baselining effort. In other words, gather

insight that is truly representative of the way the organization does its software work, but

go only into as much depth as is needed for the current stage of the improvement effort. As

candidate improvement areas are identified, more indepth investigation can be done

concentrated on the aspects of that candidate area. As in any data gathering exercise, it is

very easy to becon_ overwhelmed with data and not be able to discern from all the data the

usefd information. Keeping a carefully organized archive helps, but the real key is to

maintain a perspective of "peeling away layers of insight" as is most useful to your stage of

improvement.

As the understanding builds, package the insight into some type of communicative

medium. We have used both briefings and reports (which we call "software engineering

profiles") as convenient repositories to store our insight and facilitate further discussion and

progress within the organization. To help these products mature, give members of the

organization opportunities to read and comment. This will likely be a challenging activity,

however, because your baselining work will have identified weaknesses and problems

which the organization may not want to hear or see on paper. Again, the support and

commitment of the upper managers to process improvement become important contributors

to the success of your efforts.

F'mally, we have evolved to a combination of four methods to gather and verify process

insight. Surveys work well ff administered in person, if thoroughly tested for completeness

and consistency, and if conducted by a single or at most very small team of personnel

knowledgeable about the kinds of work the organization performs. Roundtables are a

means of gathering in more subjective opinion and perspective. Reviewing selected

documentation and data and follow-up interviews serve as tools for verifying and clarifying

important items in your evolving understanding baseline.

I2

SEW Proceedings 412 SEL-93-003

Beferenccs

1. Software Enoneering and Assurance Plan, draft, July 23, 1993, NASA Headquarters

OfficeofSafetyand Mission Quality.

2. Profile of Software Within Code 500 at Goddard Space Flight Center. NASA Software

Engineering Program, December 1992.

3. Profile of Software at the NASA God_dard Space Flight Center, NASA Software

Engineering Program, draft, December 1993.

13

SEL-93-003
SEW Proceedings 413

=

Profile of NASA Software Engineering:
Lessons Learned from Building the Baseline

Dana Hall

Science Applications International Corporation

Frank McGarry
NASA/Goddard Space Flight Center

Eighteenth Annual
Software Engineering Workshop

December 2, 1993

Topics

• Role of the Baseline in Software Process Improvement

• Core Data You Want to Capture

• What can be Captured?

• Techniques for Establishing the Baseline

• Lessons We Learned Assembling the GSFC/NASA Baselines

(2)

SEW Proceedings 414 S EL-93-003

Role of the Baseline in Process Improvement

- Objectives -

1) Establish the Baseline
- Snapshot present attributes of the software itself (Software Product)
- Snapshot present software engineering practices (Software Process)

Basic objective is to understand; not to judge right or wrong

2) Baseline will be used to:

- Identify and define potential process improvements
- Make future comparisons to measure progress

Baselining Activity is Mandatory First Step of any Process
Improvement Program

(3)

Evolving to an Effective "Process Improvement" Environment

EXAMPLES

PACKAGING

_ ,,//_ - Improved Training

/ /] .Standards/policies

ITERAI"E r__..___ I -Guidebooks

/ IASSESSING -

/ _ • Cleanroom Technique
/ / I Inspections process

(/ [.ComPare test techniques (functional, reading, structural)

p [GOALS] • Impact of standards

"'''"

/[ouil!__!!_b__vel°pment arameters

Ill

TIME

Key Ongoing Step is to Understand

• (4)

SEW Proceedings 415 SEL-93-003

Most Significant Baseline Data

Core Data you Want to Capture

Insight about the Application Domain

Characteristics of the Problem Addressed'

• Product Data

End Item Characteristics'

Process Data

'How is the End Item Developed and Maintained'

• Environment Insight

Supporting Tools and Infrastructure

(5)

Product Data

Core Data you Want to Capture

• Amount of software

- Being maintained
- Under development

• Code Characteristics

Longevity
Languages
Reuse

Productivity

• Cost of software

Being maintained
Under development

- For support functions

• Error Characteristics
Rates
Classes

I • What an organization does
• Total vs software staffing

Process Data

• Policies and Standards

In place
Followed

• Effort by Life-Cycle Phase

• Technologies applied
Tools

Methodolgies
- Specification practice

- Management practices
- Reviews

- Training
Coafiguration Control

Enviroctment Data

• Scope ofcomputing
r_0qlrl_

• Processorenviroament

Application Domain

• % Budget speqnlon software

• Organization goals

(6)

v _

SEW Proceedings
416 SEL-93-003

66% of the staff

does not work software

400O

33% of staff

work software

Total Software Staffing - 12,000

(civil servants & support contractors)

Percentage of Staff Devoted to Software

(7)

Gctm'=I S_ 13.$MSLOCs

GSFC lX'cscntly has about 43 million sourc_ lines of code

('8')

SEW Proceedings 417 SEL-93-003

Fortran
62% 4GLs,

Cobol,
Assembler,

Jovial,
Pascal
26%

Presently Operational
GSFC Software

C/C ,H.

1 I% Ada

<I_

Fortran 4 GLs,
Cobol,

Assembler,
Jovial,
Pascal
10%

C/C .P6

4_

Software Under
Development at GSFC

Ada
10%

I

Language Preferences
(9)

Resource Consumption by Development Phase
Typically at GSFC

on (

(io)

SEW Proceedings 418 SEL-93-003

What can be Captured?

Conflicts will exist between data you want to capture and what is available/quantifiable

Data availability is indicator of relative process maturity
of the organization

Accuracy takes long time and many projects (large, overlapping sample size)

Data you probably can collect:

Languages
Budgets (cost)
Amounts of software

This data may be accurate + 25%

Less tangible data (depending upon organization's process maturity)

Effort distribution by phase
Software longevity
Error statistics
Productivity
Investment in "overhead" functions (QA, CM, documentation, management)

Our experience is accuracy _+50%
(11)

Techniques for Establishing the Baseline

Apply combination of four methods:

- Administered surveys
- Informal roundtables
- Data and documentation review
- One-on-one interviews

Survey advice

1) Must prototype/test the survey instrument
2) Avoid descriptive entries; Make all responses quantities or checkmarks
3) Use directed sampling

- Start with senior managers:
* organization overview
* awareness of your activities
* pointers to "software pockets"

-- Sample the pockets
-- Cross-verify

4) Only one data gatherer or small team (max of 3 people)

5) Data gatherer(s) must know the organization

(12)

SEW Proceedings 419 $EL-93-003

How Many People Should You Talk To?

Code 500
at

GSFC

5000 people
(civil servants

+ 1200
Support Software 120

Contractors) People People

10%

SampleSizedependsupon:

- OrganizationUniformity/Heterogeneity

- How many softwarepockets(Approximately20 "pockets"inCode 500)

(13)

How Much Will the Baseline Cost?

GSFC Baseline Experience

Survey Development/Testing:

Data Gathering (4 methods):

Archiving:

Data Analysis & Info Extraction:

Packaging:

2

6

2

6

2

lg person-months

Next Steps: Focus on Most Promising Improvement Areas
1. Training
2. Helpful Standards

Assess/Experiment and Package

(14)

SEW Proceedings 420 SEL-93-003

Lessons We Learned

]°

2.

.

4.

.

Be Objective _ Learn, Don't Qualify

Gather Perspective
(Cross verify)

Senior Management
Lower Management
Developers
Testers

Quality Assurance

Layer your Baselining------_ Only go as deep as you need

Give the Organization Review Opportunity
(but don't compromise your findings)

Use Combination of Methods: Administered Surveys
Roundtables
Data Review
Interviews

i
: SEW Proceedings 421 SEL-93-003

@7-;/

f_

N94- 36501

IMPACT OF ADA

IN THE FLIGHT DYNAMICS DIVISION:

EXCITEMENT AND FRUSTRATION

John Bailey
Software Metrics, Inc.
4345 High Ridge Rd.

Haymarket, VA 22069
703-385-8300

Sharon Waligora
Computer Sciences Corporation

10110 Aerospace Rd.
Lanham-Seabrook, MD 20706

301-794-1744

Mike Stark
NASAJGoddard

Software Engineering Branch
Greenbelt, MD 20771

301-286-5048

ABSTRACT

In 1985, NASA Goddard's Flight Dynamics Division (FDD) began

investigating how the Ada language might apply to their software development
projects. Although they began cautiously using Ada on only a few pilot

, projects, they expected that, if the Ada pilots showed promising results, they

would fully transition their entire development organization from FORTRAN to
Ada within 10 years. However, nearly 9 years later, the FDD still produces
80 percent of its software in FORTRAN, despite positive results on Ada

-' projects. This paper reports preliminary results of an ongoing study,
" commissioned by the FDD, to quantify the impact of Ada in the FDD, to

determine why Ada has not flourished, and to recommend future directions
regarding Ada. Project trends in both languages are examined as are external

factors and cultural issues that affected the infusion of this technology. This

-_ paper is the first public report on the Ada assessment study, which will
conclude with a comprehensive final report in mid 1994.

INTRODUCTION

The Flight Dynamics Division (FDD) of the National Aeronautics and Space Administration's

Goddard Space Flight Center (NASA Goddard) spends approximately $10M per year

developing attitude ground support system (AGSS) and simulator software for scientific

satellites. As the prime contractor in this area, Computer Sciences Corporation (CSC) develops
most of this software.

Nine years ago, the FDD began investigating Ada and object-oriented design as a means to

improve its products and reduce its development costs, with the intention of completely
transitioning to an Ada development shop within 10 years. The FDD pursued Ada for reasons

similar to those of other forward-looking software organizations in 1985. For example, Ada

was considered to be more than just another programming language. Since it embodied several

important software engineering principles and contained features to ensure good programming

practices, its proper use was expected to lead to advances in the entire software development

SEW Proceedings 422 8EL-93-003

process. Furthermore, through increased reuse, reliability, and visibility, using Ada was

expected to reduce costs, shorten development cycles (project durations), and lead to better and

more manageable software products. These goals of greater reuse, lower cost, shorter cycle

times, and higher quality became the expressed objectives for learning and using the Ada

language at the FDD.

The FDD piloted the use of Ada on its smaller, less risky projects (satellite simulators) that were

regularly developed on a VAX minicomputer where a reliable Ada compiler and tool set were
available. Early pilots showed promising results and led to a complete transition to Ada for

developing simulators in the VAX environment. The results of the early Ada studies and
successes have been presented at previous Software Engineering Workshops as well as at Ada-

and OOD-related conferences (Reference 1). Unlike those previous papers, which compare the

measures of Ada projects with the existing FDD baseline measures in 1985, this paper

compares the Ada projects with contemporary FORTRAN projects. The impact of Ada is
assessed in the context of the evolving FORTRAN process.

Table 1 presents the high-level characteristics of the Ada and FORTRAN projects included in

this study. Notice that all Ada projects were developed on the VAX minicomputers, whereas all

the FORTRAN projects were developed on IBM mainframes. Not only are the projects small

or, at most, medium-sized by industry standards, but they tend to be short-lived, with

operational lives ranging from just a few months to a few years. We have factored these

organization-specific software characteristics into the recommendations made in the last section
about the future use of Ada and FORTRAN at the FDD.

Table 1. Elements of the FDD Environment

Application Computing
Environment

Language Typical

System Size

Ground Support IBM mainframes FORTRAN 200 KSLOC*

Simulators DEC VAX Ada 60 KSLOC*

* Thousands of source lines of code

THE ADA EXPERIENCE

Over the past 9 years, the FDD has delivered approximately 1 million lines of Ada code.

Figure 1 illustrates the growth of Ada experience in this environment. The curve shows the
accumulated amount of code as each project was delivered (the time before the first project

delivery is foreshortened for clarity). The scale on this figure is in thousands of physical lines

of source code, or KSLOC (i.e., editor lines or carriage returns), and therefore includes

comments and blank lines.

Although SLOC is the traditional measure of software size in the FDD, we used statement
counts to measure software size for this study. We chose statement counts (i.e., the number of

logical statements and declarations) because they are not sensitive to formatting and because

SEW Proceedings 423 SEL-93-003

theyare a more uniform indicator across the two languages both of functionality delivered and

development effort expended (Reference 2). The average number of physical lines per

statement varied somewhat over the period studied because of changes in programming style.
By the last projects studied, the average number of lines per FORTRAN statement had risen

from about 2 to more than 3, whereas the number of lines per Ada statement had fallen from
over 6 to close to 4.

_. lOOO

|

 ,oo
J

2oo

o

GOESIM

GRODY

SAMPEXTS

EUVETELS

TONSVAX

POWITS

i:i:i:::i:i:i:i:i:?iil

I I

1987 1988 1989 1990 1991 1992 1993

FASTELS

TOMSTELS

i ii: iiii¢i¢i!iiiii !i?:!i!i !

Figure 1. FDD Ada Experience and Focus

The four regions under the curve in Figure 1 give a rough approximation of the evolution of

goals and objectives for the study and use of Ada in the FDD. Initially, the main concern was

familiarization with the language, although the initial projects also stressed reusability as a major
objective. Soon, the focus turned to the structured generalization of systems, and the success

of these generalizations led to an overall improvement in the efficiency of the Ada software

development process. Recentiy, there has been an additional focus on optimizing the

development process specifically for use with the Ada language. This optimized process has

been specified and documented in a recent supplement to the standard software development

process guidebook used by the FDD (References 3 and 4). These Ada study goals for reuse,
generalization, and process provided the framework for the evolution of the use of Ada in this

environment. We discuss them further in the following section when we compare the Ada
software with the FORTRAN software developed during the same 9-year period.

We examined the degree of usage of the many Ada language features on the various projects to

verify that Ada developers were, in fact, using the full capability of this technology. We found

evidence that the use of Ada has matured by looking at changes in the use of the language

features over time. Figure 2 shows four views of the evolving language usage. Notice that the

use of generics and strong typing increased, whereas the use of tasking decreased along with

the average package size. Also, this maturation of language use appears to be leveling off,

which suggests that sufficient thought has been given to using the language to enable a standard

approach to evolve. These patterns indicate that the FDD developers have become skilled with

Ada and have determined an appropriate style and usage for the language in this environment
and application domain.

SEW Proceedings 424 SEL-93-003

A•., 80

= eo-

,., 4o

eL o
m

•_ a) 20
• 01

n

2.5-

0

o

n
t,,.
Q)
Q.

0
0
.J
Or)

GENERICS

| |
i •

1985 1993

PACKAGE SIZE

2.0"

1.5"

1.0-

0.5-

0
1985

! I ' =• w

1993

.o6

_.04

_-0.0

lO

E

, 8

e

I-

o =

STRONG TYPING

|

1985

TASKING

I

1993

!

1)85

| i
1

1993

Figure 2. Maturing Use of Ada at the FDD

Comparing Ada and FORTRAN Baselines

The original FDD goals of increased reuse, lower cost (in terms of effort), shorter cycle times,

and higher quality can be measured by comparing data from the Ada and FORTRAN projects.

Previous papers (References 1 and 5) have documented improvement on Ada projects over the
1985 FORTRAN baseline. But, while the FDD was gradually maturing its use of Ada on the

satellite simulators, the FORTRAN process also continued to evolve on the larger, mainframe

projects. The following sections compare the evolving Ada and FORTRAN baselines between
1985 and 1993 in each of the initial four goal areas and in terms of the evolving software

process. In this way, the improvements seen on Ada projects can be assessed within the

context of the evolving FORTRAN baseline.

Reuse

During the 9 years that Ada has been used at the FDD, we have seen considerable improvement

in the ability to reuse previously developed software on new projects. Figures 3 and 4 show,
for Ada and FORTRAN projects respectively, the percentage of each project that was reused

SEW Proceedings 425 SEL-93-003

¢o

tr

o
2
o

rl

90"

80

70

60

50

40 ,

30"

20"

10

0

Figure 3. Verbatim Ada Reuse by Project

without change from previous projects. (The minimum unit of reuse is a single compilation

unit; no credit is given if only a portion of a compilation unit is reused. The percentages are

computed by dividing the total size of the reused compilation units by the total size of the

project.) The f'u'st breakthrough in high verbatim reuse of Ada occurred in 1989 when a set of

generics purposely designed for reuse were demonstrated to be sufficient to construct nearly

90 percent of a new project in the same domain.

The dip in the amount of reuse on the eighth Ada project was caused by a change in the domain

that required modification to the Ada generics and additional new code development.

Specifically, the original domain where high reuse was achieved was simulation software for

90

80

20

10

_< "estimates

Figure 4. Verbatim FORTRAN Reuse by Project

i

SEW Proceedings 426 SEL-93-003

three-axis stabilized spacecraft. When a spin-stabilized spacecraft was simulated for the first

time, a substantial drop occurred in the verbatim reusability of the library generics. This

incompatibility was rectified over time so that the generics can now accommodate either a three-

axis or a spin-stabilized spacecraft. The slight drop in the most recent examples of reuse to

around 80 percent, as compared with the earlier successes with high reuse that were closer to

90 percent, was caused by performance tuning on the latest projects. Performance issues are

discussed again in the next major section of this paper.

Figure 4 shows the corresponding picture of verbatim reuse on the FORTRAN projects during

the same 9-year period. At its peak, the amount of verbatim reuse achieved was nearly as great

as with the reusable Ada generics, and the fast successes occurred at nearly the same time as the

first highly successful Ada reuse. (The first high-reuse FORTRAN project was the

corresponding ground support system for the same satellite mission as the first high-reuse Ada
simulator.) Again, a change in domain to spin-stabilized missions caused a drop back to the

low levels of reuse observed on the earlier projects in the late 1980s.

The FORTRAN reuse approach differs from that used on the Ada projects, however. Instead

of populating a reuse library with a set of generics that can be instantiated with mission-specific

parameters, as was done in the Ada projects, the FORTRAN reuse library actually consists of

two separate program libraries, together comprising nearly 400,000 source lines of code. One
of these libraries is for three-axis stabilized spacecraft and the other is for spin-stabilized

spacecraft. Subsystems from the appropriate library must be used in an all-or-nothing fashion.

This style of reuse explains why there was a sharper drop in reuse when the change of domains
occurred in the FORTRAN projects as compared with the Ada projects. In the Ada projects, it

was still possible to reuse a sizable portion of the three-axis library without modification for the

first spin-stabilized mission, whereas none of the large FORTRAN library to handle three-axis
missions could be reused verbatim for a spinning satellite. The developers again achieved high

levels of reuse in their FORTRAN projects by developing a separate complete subsystem library

for spin-stabilized spacecraft that was analogous to the three-axis library. Since these two
FORTRAN libraries embody over 80 percent of the functionality for any new ground support

system, the FDD has since set up a special dedicated team to maintain them. This team is

charged with keeping the software up to date with new requirements, while retaining its
backward compatibility with previous systems. Estimates of the project-specific effort

expended by this team are added to each FORTRAN project that reuses subsystems from the

libraries.

An important distinction between the reuse styles adopted for the two languages is that the two
FORTRAN libraries must be augmented as needed to handle new missions in their respective

domains, whereas the Ada generics form a collective set of smaller components that requires

little or no further modification to handle missions in either domain. To avoid the risk of

introducing errors for existing clients, the maintainers augment the FORTRAN subsystems as

necessary by adding new code rather than by generalizing or modifying their existing code.

This causes the FORTRAN libraries to grow over time. In contrast, the Ada developers directly

handle the generics needed for each project and further generalize them if necessary. By

copying the generics into each project library that needs them, slight changes can also be made
to eliminate unnecessary dependencies. The maintenance and configuration control

disadvantages of having separate copies of the reusable components in each client project's

SEW Proceedings 427 SEL-93-003

library are less an issue with the simulators, which have short operational phases, than they
would be with the longer-lived AGSS projects.

Cost Reduction

Figures 3 and 4 clearly show the points when dramatic improvements in reuse were achieved in

both the Ada and the FORTRAN projects. The first Ada simulator and the first FORTRAN

ground system to exhibit high reuse were both written to support the Extreme Ultraviolet

Explorer (EUVE) satellite mission. Because of the nature of satellite mission support, the

simulator is typically completed first so that it can be used to test the ground system. (In the

case of EUVE, the Ada simulator was completed about 4 months ahead of the corresponding

FORTRAN ground system.) Since these first successes with reuse almost coincided, and since

they are associated with measurable changes in the development approach, we divided the Ada

and the FORTRAN project sets into two groups depending on whether or not they were
completed before the EUVE experience.

The left-hand side of Figure 5 shows the average costs in hours to deliver a statement of Ada,

both before the successes in reuse and since (EUVE and subsequent projects). The figure

shows that the productivity of delivering Ada software has doubled since high reuse has been
achieved.

0.9

0.8

0.5

_. 0.4

_ 0.3
0

-r 0.2

0.1

.85

_TkT55f55f555kTf:
_TSf55fSfS:Tffffff:
i??????????????????i
T55555:':':':T:T:T:_":':
T55555555555555555:
Tf(f:T:Tf:Tfffff:T:

:??!_?.'??!_'_?.'.-!-.-.-.
,:::: ,......: :.,: =-.

":':':-:':':':':':':':':-:2":':':-:':

.x._×.x.x.:.:<,:.:.x.>:

.....,,..-...,=-.-=.=,.,
x+:_.x+>>x.>x+x,:

7LTLT::LTLT:::.

,....,....................,.........,

':':T:'_:'_:y:T:'f:T:":':':

_ady
Ada

.42

Recent
Ada

Figure 5. Effort To Deliver One Statement: Ada vs. FORTRAN, Early vs. Recent

The right-hand side of the figure shows the average costs in hours to deliver a statement of

FORTRAN before and after the high-reuse procesL Again, there is a marked improvement,
though not as great a reduction as in the Ada projects. Although we have no hard data to

normalize statement counts in Ada with statement counts in FORTRAN, we suspect they are

roughly comparable measures of functionality (Reference 2). Assuming comparability, these

results lead us to believe that Ada is somewhat more expensive than FORTRAN for

conventional software development, but that reuse can lower the cost of an Ada delivery more
than it can lower the cost of a FORTRAN delivery. We could conclude that FORTRAN is more

cost effective for short-lived software but that Ada should be used for software that is likely to
have a longer life through future reuse. We revisit this observation in the final section of the

paper.

SEW Proceedings 428 SEL-93-003

Shorter Cycle Time

Ada was also expected to lead to shorter cycle times or project durations. Figure 6 shows that

this goal was met not only by the Ada projects but also by the FORTRAN projects. Again, the

first high-reuse project in each language is the first project of each of the recent sets represented

by the right-hand (darker) bars.

3O

25 22
t-

20

15
¢-

.o
10

D
5

0
Early
Ada

29

15

19

Recent Early Recent
Ada FORTRAN FORTRAN

Project Averages

Figure 6. Average Project Duration: Before and After Reuse Process Adoption

The software development process did not change as suddenly as the reuse results, however.

In fact, the schedule for the first high-reuse project in each language was more similar to earlier

projects than it was to the subsequent high-reuse projects, t This is because the overall

development process changed only after the EUVE project demonstrated that substantial savings
could be achieved through large-scale reuse. To minimize risk, the first high-reuse project in

each language was conducted using a more traditional schedule and staffing level. When

management was able to observe the potential savings from reuse, procedural and scheduling

changes were made to allow an expedited development process whenever high reuse was

possible. So, whereas reuse can permit shortened project schedules, it is also necessary to
accommodate this different behavior with an appropriately pared-down process. For example,

the FDD now specifies a single design review in place of the traditional preliminary and critical

design reviews whenever the majority of a new system can be constructed from existing code.

Reliability

The last explicit goal for the planned Ada transition was to increase the quality of the delivered

systems. The density of errors discovered during development, measured on all FDD projects,
is used to reflect system quality and reliability since quantitative operational data were not

1 Because they behaved more like traditional projects, one might argue that the first high-reuse project in each

language actually belongs to the early project set (represented by the left-hand bars of each pair). This would

furtheraccentuate the difference between early and recent projects.

SEW Proceedings 429 SEL-93-003

collected. 2 Development-time errors are a useful reflection of quality because they reveal the

potential for latent undetected errors and indicate spoilage and rework during development that,
in turn, impact productivity and schedule.

12
¢,0

_10

8

_. 2

0

10.5
w

::i:_3":?:i:.::_:?._:?-?-?_::.:?:_:

:.'_'_:_: _.::._._._

:::_::_."_:_:_:__'_:_:_:_:;_

Ii_?g".,is!_!_::

_ady
Ada

4.0

9.8
:!_::'!:_:;:i:_:i:!:i:!:."-i:i'-:':3

,_'__ :_;¢: :_:?-:::'_i'ii

-.:-:.:.:-:+:.::-:,: :.'::.:

::::::::::::::::::::::::::
:.:,:,:.-+:.:+:,:+:.:+:.:.:
::::::::::::::::::::::::::::::
:i:.::.::i:i:i:i:i:i:i:-:_:i_:_:;:!:
:::::::::::::::::::::::::::::::::::

Recent Early Recent
Ada FORTRAN FORTRAN

Project Averages

4.8

Figure 7. Reduction in Error Density in New or Modified Code: Ada and FORTRAN

The number of errors discovered per thousand statements of new and modified software before

delivery is shown in Figure 7. Since the densities shown are based on only the new and
modified code (verbatim reused code was not included in the denominator), we do not attribute

these reductions to reuse. Instead, we attribute the reduced error rate to improvements in the

development process that were instituted on all FDD projects during this period. These

improvements included the use of object-oriented or encapsulated designs and the use of

structured code reading and inspections. The fact that these process improvements were applied

to projects in both languages is reflected by the similarity in the error-density reductions
observed.

Process

An evolving development process was cited in the preceding discussion as being the reason for

improvements in schedule and quality. We characterized the process by examining the

distribution of effort across the various software development activities performed. The activity

distributions shown in Figure 8 provide evidence that the more recent projects were conducted

using a different process than the early projects. The figure shows the average number of staff-

hours per project consumed by each of the four defined activities for software projects at the

FDD. The dark bars for each activity show the averages for the first five Ada simulator

projects, and the light bars show the average effort per activity for the five subsequent Ada

simulators that achieved higher levels of reuse. (To fairly average the efforts for each activity

among projects of varying sizes, the activity data for each project were first normalized by

project size.) The savings exhibited for the later set of projects is due not simply to reuse alone

2 So far, operational reliability, in terms of mean time to failure, has been adequate and it has therefore never

become a measurement or improvement goal. The amount of maintenance effort expended on the operational

systems is now being tracked, however.

SEW Proceedings
430 SEL-93-003

but to the process change adopted to accommodate that reuse. The evidence for this is that the
EUVE simulator (the sixth Ada project, see Figure 3) was the first to achieve a high level of

reuse but, because it used a traditional process, its individual profile more closely resembled the

earlier low-reuse group than the later high-reuse group.

"1-

03

Q)

5000

4000

3000

2000

1000

0

3468

4709

1090

3961

1533

:!.!:_:!:!:_:!:!:!:!:_:!:|

iiiiii;iiiiiiiiiiiiil]

4500

Design Code Test
Activity

I " Early Ada D Recent Adal

2098

Other

Figure 8. Average Effort by Activity: Early vs. Recent Ada Projects

Figure 9 shows the average effort by activity for the FORTRAN projects that were completed

during the same period. Again, the effort magnitudes are normalized, and the projects are
divided into an earlier group of lower reuse projects and a more recent group of higher reuse

projects. As with Ada, a reduction in effort is shown for each activity when comparing low
reuse with high reuse, although the net reduction is less in FORTRAN. Unlike the Ada results,

however, most of the reduction occurs in the coding activity instead of being spread more

evenly across every activity.

10000

o 8000

_ 6000

4000

2000

6779

5230

8481

2302

7635

5448

9293

4646

o

Design Code Test Other

Activity

-R Early FORTRAN [] Recent FORTRAN !

Figure 9. Average Effort by Activity: Early vs. Recent FORTRAN Projects

SEW Proceedings 431 SEL-93-003

Notice that the shape of the activity distribution of the early projects in the FORTRAN set is

virtually identical to the activity distribution of the early projects in the Ada set (the dark bars in

Figures 8 and 9). However, as noted, the distributions for the recent, high-reuse projects differ
between the languages. This suggests that the Ada and FORTRAN processes have each

evolved in a different way even though they both had a common point of departure. The main

lessons from this illustration are that the software process matured and improved during the
time that Ada was used and that this evolution affected both the Ada work and the FORTRAN

work, although in different ways. This process change is responsible for the reduced schedules

shown in Figure 6. Also, the differing net reductions in effort reveal why Figure 5 showed a

greater drop in cost for the Ada projects than for the FORTRAN projects when the benefits of
reuse started to accrue.

Summary of the Comparisons

Quantitative data over the past 9 years show clear improvements attributable to the use of the

Ada language in all of the initially specified goal areas. Many of these improvements were

directly related to the increase in reuse. Interestingly, the FORTRAN systems showed

comparable results over the same period, which leads to two possible interpretations. We could

claim that because Ada did not provide a substantial improvement over FORTRAN, the FDD's

continued involvement in the new language is unnecessary. However, Ada quickly did at least

as well as the established language in the domain, and because it is a more modem language

than FORTRAN, we could claim that Ada should be adopted for all future FDD development.

Regardless of the interpretation chosen, it is safe to say that we found no quantitative evidence

to indicate that Ada could not be used successfully on all FDD projects. The next section

presents our additional findings beyond these quantitative results that affected the overall
acceptance of Ada at the FDD.

Unforeseen Factors Impeding the Adoption of Ada

Given the encouraging Ada project results and the motivations of the forward-thinking

managers who originally set out to transition to Ada, why hasn't the FDD successfully adopted
Ada? As stated earlier, only a fraction of all new software developed at the FDD is in the Ada

language. Our investigation discovered several unforeseen factors that have impeded the FDD's

transition to Ada. These factors were poor initial system performance, the lack of adequate tool

support, and developer bias. This section discusses these factors and their impact on the
transition to Ada.

Performance

System performance was not an explicitly stated goal for the programs developed in Ada, but it
turned out to be a major issue. By 1985, the programmers in the FDD had achieved such

proficiency with FORTRAN software design and implementation that even the most complex

flight dynamics systems performed adequately without paying any special attention to

performance. Thus, performance had become an implicit consideration and was not addressed
in software requirements, designs, or test plans.

Figure 10 depicts the relative response times of the delivered simulators between 1984 and

1993. A smaller response time indicates better performance. The figure reveals that the f'u'st

SEW Proceedings
432 SEL-93-003

i

E

|
|
|

Ada simulator performed very poorly compared with predecessor FORTRAN simulators.

Because Ada language benchmarks had shown that Ada executed as fast as equivalent

FORTRAN programs and because performance was not an explicit goal, developers of the first

Ada project paid little attention to performance. Instead they focused on learning the language

and developing reusable software. It should come as no surprise that novice users of this fairly

complex language did not produce an optimum design or implementation. But, because this

system was delivered for operational use, the FDD users' first encounter with an Ada system

was negative. This feeling was compounded by the fact that, because of scaled-down

processing requirements, the FORTRAN simulator delivered immediately before the first Ada

simulator was the fastest simulator ever delivered.

2.0

1.8

_o 1.6
-r
•"o 1.4

__ 1.2

._E 1.o

0.8
¢x

0.6
=
o 0.4"1-

0.2

C_ oo

[] FORTRAN • Ada

Figure 10. Relative Response Times for Ada and FORTRAN Simulators

In 1990, the FDD conducted a performance study (Reference 6) to determine why the Ada

systems executed so much more slowly than the fastest FORTRAN system. The study
discovered that some of the coding techniques practiced in FORTRAN to achieve high

efficiency actually worked against efficiency in Ada and that some of the data structures around

which the designs were built were handled very inefficiently by the DEC Ada compiler. The

study resulted in a set of Ada efficiency guidelines (Reference 7) for both design and code that

is now being followed for all new Ada systems. Interestingly, in order to follow those

guidelines, the last two Ada projects in Figure 10 had to forgo a certain amount of reuse. (The
slower POWITS simulator was completed before these guidelines were available and also had

considerably more complex processing requirements.) As shown in the figure, the typical Ada

simulator now performs better than most of the earlier FORTRAN simulators. However, first

impressions are very important, and the perception of many of the FDD programmers and users
is that Ada still has performance problems and that systems demanding high performance

should not be implemented in Ada.

SEW Proceedings 433 SEL-93"003

Ada Development Environments

Finding adequate vendor tools to support Ada development in the FDD was a major obstacle.

In 1985, when the FDD began its work with Ada, most computer vendors were actively
developing Ada compilers and development environments. The FDD believed that vendor tools

would be widely available within a few years. But, consistently usable Ada development

environments and reliable Ada compilers did not become available across the platforms used to
develop and execute FDD software systems.

All the Ada projects included in this study were developed using DEC Ada on VAX

minicomputers that were rated by FDD developers as having a good set of Ada development

tools to facilitate the development process. However, 80 percent of the software developed in
the FDD must execute on the standard operational environment, which is an IBM mainframe.

And traditionally, FDD systems have been developed on their target platforms. Unfortunately,
an adequate Ada development environment for the IBM mainframe was never found.

The FDD conducted several compiler evaluations and a portability study between 1989 and

1992, all of which declared the IBM mainframe environments unfit for FDD software

development. In 1989, the FDD evaluated three compilers (Reference 8) and selected one for

purchase and further study. Somewhat discouraged by this study which rated the best compiler

as having only marginal performance for flight dynamics computations and no development

tools, the FDD investigated an alternative approach. Since Ada was touted to be highly

portable, they conducted a portability study to determine whether FDD systems could be

developed in Ada on the VAX and then transported to the mainframe for operational use. This

study (Reference 9) ported one of the existing operational Ada simulators from the VAX to the

IBM mainframe using the Alsys IBM Ada compiler, version 3.6. The study found that

relatively few software changes were required and that the resulting system performed

adequately on the mainframe, but that rehosting was extremely difficult because of compiler

problems and the lack of diagnostic tools and library management tools. Although rehosting the
system required only a small amount of effort, it took nearly as much calendar time as was
needed to develop the system from scratch.

In the fall of 1992, the FDD again conducted a compiler evaluation on what were supposed to

be greatly improved products. This study (References 10 and 11) selected a different compiler

than the earlier study, using the ported simulator as one of its benchmarks. Although the

chosen compiler performed better than other candidates and was accompanied by a limited tool

set, the study warned against using it to develop real-time or large-scale FDD systems because

of its inefficient compiling and binding performance, immature error handling, and poor

performance of file input/output. Finally, late in 1993, the FDD achieved some limited success

developing a small utility in Ada (the FAST General Torquer Command Utility) on an IBM
RS-6000 workstation and porting the software to the mainframe.

Figure 11 (a simplification of Figure 2) shows a sharp decline in the amount of Ada

development late in 1990. It was at this point that the FDD had planned to begin developing

parts of the larger ground support systems in Ada on the mainframes. But results of the early

Ada compiler evaluation and the portability study made it clear that developing on, or even

developing elsewhere and porting to, the mainframes was not feasible. Thus, continued growth
in Ada stalled.

SEW Proceedings
434 SEL-93-003

..1000 -

800

eoo

g_400

i 20o
0')

o

Planned / FJ_._TELS
Delivered

growth/ TO.ST_S _._- fines
Turning point_ /

\ / ow,,s

EUvEDE_ -'=" -'°

GOADA/_'

UARSTEL_.

I I I I I I I

1987 1988 1989 1990 1991 1992 1993

Figure 11. Drop in Ada Growth Coincides With Trouble Migrating to Mainframes

At the same time, the FDD's simulation requirements changed, reducing the number of

simulators required to support each spacecraft mission from two to just one. 3 This change

resulted in a reduction in the amount of software targeted to be developed in Ada. The net result

was a significant reduction, instead of an increase, in the rate of Ada software delivery. The

drop in Ada development is even more dramatic when you eliminate the amount of reused
software and consider only the investment in new Ada code. The flatter dashed line below the

curve for cumulative delivered size in Figure 11 shows only the number of new and modified

lines being developed.

The unavailability of an adequate Ada development environment on the IBM mainframe was

clearly a significant stumbling block to the FDD in its transition to Ada. We feel that as long as
the mainframes remain the principal operational environment at the FDD and as long as

mainframe development or deployment of Ada systems remains awkward, there appears to be

no straightforward way to increase the use of Ada within the Division.

In addition to its disappointment with the mainframe development environments, the FDD also

experienced only limited success in using Ada to develop an embedded system. As part of a

separate research and development effort, the FDD developed an embedded application on a
Texas Instruments 1750A machine using the Tartan Ada compiler. Unfortunately, the two-

vendor situation led to interface problems between the hardware and software; the lack of

diagnostic tools contributed to insoluble problems that resulted in an end product with reduced

capability. This experience contributed to the general feeling among the FDD developers that

there was not yet a satisfactory level of vendor support for Ada development.

3 Before this point, both a telemetry simulator and a dynamics simulator were developed for each mission. Since

1990, only an enhanced telemetry simulator has been required.

SEW Proceedings 435 SEL-93-003

Developer Perspective

As with any technology infusion effort, developers' bias for or against a technology can

significantly facilitate or impede the transition. To get a reading on the current perspective of

the developer community, we identified and interviewed 35 FDD developers who have been

trained in or have developed systems in Ada. Each developer was asked which language they
would choose for the next simulator project and which language they would choose for the next

ground support system and why. Figure 12 shows their responses.

SIMULATORS (ADA)
GROUND SUPPORT

SYSTEMS (FORTRAN)

Figure 12. Developer Preferences for Programming Language

Most agreed that Ada should be used for the next simulator, whereas FORTRAN should be

used for the next ground support system, citing the availability of reusable components and

architectures as the deciding factors. But, also notice that 25 to 30 percent of the developers

seemed to have a language bias because they chose the language not customarily used for each
type of application. The 23 percent who preferred to use FORTRAN for simulators cited the

complexity of the Ada language and poor performance as reasons to abandon Ada, while the

30 percent who preferred to use Ada to build the next ground support system felt that Ada was

a better language for building larger systems.

Nearly all the developers pointed out that adequate tools are essential for efficient and accurate

development using Ada, whereas FORTRAN development can be accomplished with little or no

tool support. However, the two most enthusiastic Ada developers felt that they were
sufficiently proficient with the language to overcome the lack of tools on the mainframe

computers. Interestingly, at the other extreme, several the developers did not care one way or

the other about which language they used for software development; two developers specifically
commented that "Ada is just another language."

The two significant minority groups who were the most opinionated about language use, one in

favor of Ada and the other opposed, have been fairly vocal and forthcoming with their views

over the past several years. Thus, there may be an observable effect from these biases on the

remaining group of developers who have not yet been trained in or exposed to Ada. We plan to

investigate these possible effects through additional developer surveys before this study is
concluded.

SEW Proceedings
436 SEL-93-003

CONCLUSIONS AND RECOMMENDATIONS

In 1985 Ada was arguably more than just another programming language. However, by

exposing the organization to the concepts of information hiding, modularity, and packaging for

reuse, that which was "more than a language" was adopted, to the extent possible, by the

FORTRAN developers as well as by the Ada developers. We hypothesize, and in fact have

anecdotal evidence to support the theory, that Ada served to catalyze several language-

independent advances in the ways in which software is structured and developed across the

organization, and that these benefits have been institutionalized by process improvemen ts.4

Because many of the intended benefits of Ada have already accrued at the FDD and because the

mainframe obstacle continues to hamper the complete adoption of Ada, we recommend that the

FDD not mandate the use of Ada for all software developmertt at the FDD.

However, we also recommend that the FDD continue to use Ada wherever there is a clear or

anticipated advantage. This would include not only the continued use of Ada on satellite

simulators but also the use of Ada on portions of any other projects that are expected to be long-

lived and can be developed and deployed on an Ada-capable platform. As the FDD migrates

away from mainframes and toward workstations, this will be an increasingly large segment of
the software developed. Over the long term, Ada is likely to be a good candidate for future

versions of the large reusable software libraries that are currently written in FORTRAN and

maintained by a separate group of experts who are constantly augmenting the code's function in

order to keep up with the needs of the client projects. Ada can be used to implement those

subsystems, along with many other basic domain functions, as sets of separable and more
maintainable abstractions, which would eliminate the high coupling found in the FORTRAN

versions.

Finally, it is valuable to examine some of the original objectives behind the development of the

Ada language. One of the major motivations for the DoD to develop and adopt Ada was to

provide a common language across many projects, thus enabling the portability of programs,
tools, and personnel. However, such commonality is not as important at the FDD where most
of the software is already written in a single high-order language and is both developed and

operated on a single platform by a seasoned team with low turnover. Besides providing the

DoD with a common language, Ada was specifically designed to be beneficial for large system

development and to be cost effective for systems that must be maintained over long periods of
time. Neither of these situations describe the context in which Ada has been used at the I='DD.

If the FDD Ada projects had been large (closer to a million lines of code, for example) then we

suspect that the use of Ada would have been a more important factor. Also, if the systems were

long-lived, with maintenance cycles that were substantially longer than the development cycles,
or even if the longer-lived ground support systems had been able to use Ada, we suspect that

we would have observed more of the advantages of Ada that would not have been mimicked by

the FORTRAN projects.

4 These opinions were commonly held by the project managers of several of the Ada and FORTRAN projects

included in this study.

SEW Proceedings 437 SEL-93-O03

THE AUTHORS

John Bailey is an independent consultant in the areas of software measurement and the Ada

language. Sharon Waiigora is a member of the Software Engineering Laboratory at Computer
Sciences Corporation and has experience managing and working on the Flight Dynamics

Division's software projects. Mike Stark is an employee of the Flight Dynamics Division at

Goddard and also has experience leading and participating in many of the FDD Ada and
FORTRAN projects.

.

.

.

.

.

.

7.

.

.

I0.

11.

REFERENCES

NASAJGSFC Software Engineering Laboratory, SEL-82-1206, Annotated Bibliography
of Software Engineering Laboratory Literature, L. Morusiewicz and J. Valett,
November 1993.

Institute for Defense Analysis (IDA), IDA Paper P-2899, "Comparing Ada and FORTRAN

Lines of Code: Some Experimental Results," T. Frazier, J. Bailey, M. Young,
November 1993.

NASA/GSFC Software Engineering Laboratory, SEL-81-305, Recommended Approach to
Software Development, L. Landis, S. Waligora, F. McGarry, et aI., June 1992.

_, SEL-81-305SP1, Ada Developers" Supplement to the Recommended Approach,
L. Landis, R. Kester, June 1992.

_, SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,

"Experiments in Software Engineering Technology," F. McGarry and S. Waligora,
December 1991.

__, SEL-91-003, Ada Performance Study Report, E. Booth and M. Stark, July 1991.

Goddard Space Flight Center (GSFC), Flight Dynamics Division, 552-FDD-

91/068ROUD0, Ada Efficiency Guide, E. Booth (CSC), prepared by Computer Sciences
Corporation, August 1992.

_, "Ada Compilers on the IBM Mainframe (NAS8040) Evaluation Report, L. Jun,
January 1989.

NASA/GSFC Software Engineering Laboratory, SEL-90-003, A Study of the Portability
of an Ada System in the Software Engineering Laboratory, L. Jun and S. Valett, June
1990.

Goddard Space Flight Center (GSFC), Flight Dynamics Division, "IBM Ada/370 (Release
2.0) Compiler Evaluation Report," L. Jun, September 1992.

_, "lntermetrics MVS/Ada Version 8.0 Compiler Evaluation Report," L. Jun,
October 1992.

=_=

SEW Proceedings 438 SEL-93-003

Impact of Ada in the
Flight Dynamics Environment:

Excitement and Frustration

December 2, 1993

John Bailey, Software Metrics, Inc.

Mike Stark, NASAJGoddard

Sharon Waligora, Computer Sciences Corporation

SMi

Independent Assessment

• Flight Dynamics Division (FDD) began investigating Ada
in 1985

• Expected to transition completely to Ada within 10 years

• Why is only 15% of new code being written in Ada today?

• What is the future of Ada in the FDD?

- Mandate?

- Abandon?

- Change expectations?

- Study further?

1001 r,_4e-pm_

SEW Proceedings 439 SEL-93-003

Why Use Ada in FDD?

"Ada is more than just another language"

Would lead to a major cultural change

Would drive an integrated well-defined software engineering
process

Would help us build better products

- Reduce life-cycle cost

- Shorten project duration

- Reduce number of errors

- Increase manageability of software

sMi 1C_15848_fue 3

FDD Environment

Organization Staff Level > 250

_g

Characteristics

Computing Environment

Language

Typical System Size

Percent of Software

Applications

Mission Support

IBM mainframes

FORTRAN

200 KLOC

80%

Simulators

VAX

Ada

60 KLOC

15%

SEW Proceedings 440 $EL-93-003

Focus of Ada Study Evolved

FDD Ada Experience

pow]'rs

TONSVAX

SAMPEXTS

EUVEDSIM

EUVETELS

GOADA

UARSTELS

GOESiM

GRODY

FASTELS

TOMSTELS

1/67 1/88 1189 1/90 1/91 1/92 1/93

| (_1 ,_1_ 5

The Excitement: Data Show Promise

[] Process Improvement

[] Product Improvement

- Reuse

- Cost

- Project duration

- Reliability

l O01S_l_r_e

SEW Proceedings 441 SEL-93-003

Evidence of Process Change Over Time

3O

25-

Z 15-

=.
+o-

5-

ADA

r-
!

! I

r--

DESIGN CODE TEST

+1
OTHER

I_ EARLY [] RECENT

6O

I 50-
40-

c
o
:E 30-

_ 2o-

10-

FORTRAN

O-

DESIGN CODE

_ EARLY [] RECENT

TEST OTHER

SMi

Activity distribution shows process differences

10015848-prose

5Mi

SEW Proceedings

Maturing Use of Ada

B0%"

O_

GENERICS STRONG TYPE

PACKAGE SIZE TASKING

Use of new features stabilized after experience with domain

442 SEL-93-003 I

7

High Verbatim Reuse Achieved
in Both Languages

100

90t
E 0o.
_ 70-

.Q_ so.
_> 50.

¢o 40.

0. 20-

10-

0

ADA PROJECTS

H
1985

I

m

1
1994

Ada approach uses
generics parameterized
for mission-specific
functionality

FORTRAN PROJECTS

1985 1994

FORTRAN approach

uses separately
maintained utilities,

with mission-specific
functionality added as
needed

1001584_

Cost To Develop and Deliver

1,0i
0.9-
o.sd
0.7-

o_ 0.6-

0.5-

0.4-

0.3-

0.2-

0.1"

0.0

DEYELOPMENTCOST

0.Y

ADA FORTRAN

Cost to _ a statement

of Ada is _

DEUVERY COST

0.3-

0.2-0.1-

0.0
ADA FORTRAN

Cost to deliver a statement
of Ada is lower

sMi 1001SlMS_e 10

SEW Proceedings 443 SEL-93-003

Reuse Shortens Project Duration

smi

3o

25--

20 m

,,¢:

0
:S

10_

5--

ADA FORTRAN

0

21

13

28

16

EARLY RECENT EARLY RECENT

Both Ada and FORTRAN show 38% reduction due to reuse

I oo l sa4a-p_

Reliability of Systems Increased

e
.q

1
e-

b¢

II

14_

12--

10--

8--

6--

4--

2_

O_

ADA FORTRAN

10.4

EARLY RECENT EARLY RECENT

Lower error rates are observed for both languages

l o01sS4SlS_e 12

SEW Proceedings 444 SEL-93-003

Measurements Show Process and

Product Improvements

• Ada systems showed improvements in initial

goal areas

• Many achievements are tied to reuse

• Lower error rates in new code are attributed to

process changes

• FORTRAN systems showed comparable results

over same time period

5Mi I (_11584_I_Ise 13

The Frustration: Other Factors

Derail Progress

• Performance of early systems

• Ada development environments

• Technology transition

lO01S846pmse

SEW Proceedings 445 SEL-93"003

Performance: First Impressions Count

i
"o

&

E

m

o
l-

2.2

2"0 t

1.8

1.6

n []17
FORTRAN ADA

1964 1993

Weak performance of early simulato_ gave Ada a bad reputation

IO015MIF_

Ada Development Environments

I VAX Ada

- Adequate performance
- Good tools

• IBM mainframe

- Very poor usability
- Limited set of immature tools

• Tartan/1750A

- Separate vendors for hardware and software

- Major hardware/s0_are interface problems

- Required assembler-level debugging

Limited vendor support for Ada environments hampered efforts

sMi '_"_" 16

SEW Proceedings 446 SEL-93-003

Mainframe Environment Problems Deterred
Growth

Delivered
1o oo - lines

800--

,_ 600--

..E=

O, 400--

200--

Planned / FASTELS

growth / TOMSTELS

Turning point /

_ TONSV,,X

EUVED,IM/_

,°wLv/
GOAD_

,_ '. , , ; ' ,1/ 7 1/ 8 1/89 1190 1/ 1 1192 1/93

Even today, Ada cannot be used on the FDD
(mainframe) operational environment

New lines

1001584_ pm_

Technology Transition to Ada Has Slowed

SMi

E
o

!
o

J
1985 19e6 1967 1988 198_ 1990 1991 1992 1993

USe of Ada drops as a result of deterrents

1994

lO01SS4S-pme

SEW Proceedings 447 SEL-93-003

Developers' Preferences

ADA SIMULATORS
FORTRAN

MISSION SUPPORT
SYSTEMS

sMi

• Interviewed 35 developers with Ada exposure

• Reuse was main driver for language preference

• Ada has advantages but requires more tool support

• "Ada is just another language"

19

Process or Language?

• Data show few quantitative differences between Ada
and FORTRAN

• ProcessiSmore-S_-n_di¢,ant fact0r-than language

• Ada concepts (generalization, OOD, domain analysis,

information hiding) lay foundation for broad process
improvements

• Structured environment and strong process

management institutionalize improvement

1001_

SEW Proceedings 448 SEL-93-003

Future of Ada at FDD _J f

• Ada should not be mandated at the FDD

- No pressing need for common language

• Ada should be used as any other method or tool

5Mi t001r_=N_ 21

SEW Proceedings 449 SEL-93-003

N94- 36502

7o:J

Software Engineering Technology Transfer:
Understanding the Process

Marvin V. Zelkowitz

Institute for Advanced Computer Studies
and Department of Computer Science

University of Maryland

College Park, Maryland 20742

" Abstract

i Technology transfer is of crucial concern to both gov-
t eminent and industrytoday. Inthis report,the mecha-
; nismsdeveloped by NASA to transfertechnology are
--- explored and the actual mechanisms usedto transfer

software development technologies are investigated.
"rime,cost, and effectiveness of software engineering
technology transfer is reported.

1 Introduction

The transfer of technology from the developer to
the consumer of that technology is of crucial concern
to U. S. industry today as the need to remain eco-
nomically competitive in a global marketplace forces
all organizations to constantly improve their mecha-
nisms for doing business. Government is not immune
from these forces and needs to understand and par-
ticipate in such activities at all levels.

The National Aeronautics and Space Administra-
tion (NASA), as a large government agency, plays a
role as both a producer and consumer of such new
technologies:

As producer. As the premier space agency of the
United States, NASA has a mission to develop space
technologies. Transferringthese technologies to pri-
vate industry and aiding in the commercialization of
those technologies allows for government help inpro-
moting U.S. industryinternationally.

As consumer. However, with an annual budget of
over $15 billion, NASA is involved in a great many
activities, and using the best techniques - whether
developed internally or developed by those outsideof
NASA - enables NASA to wisely use its appropriated
funds in order to work on complex tasks as economi-
cally as is practical.

NASA understands its role in technologytransfer:

SEW Proceedings 45O

"Technology transfer is a fundamental
mission[of NASA]. It is as important as any
NASA missionand it must be pursued."1

Accordingly,NASA has set up several organiza-
tions withinNASA, or affiliatedwith NASA, to deal with
technologytransfer. NASA has a perceived model of
how technology transfer should operate. However,
how well do these mechanisms actually work? W_at
is the actual process used to transfer technology?.
What are the characteristicsof technologytransfer?

While NASA's main function is to develop space
technology by building and launching satellites and
manned missions,as a large technologicalorganiza-
tion, NASA must increasinglyrely on computertech-
nology to play an increasingly important role in all
of its operations. Therefore, technologytransfer of
computer technologyis also a major component of its
technologytransfer mission.

Therefore, given the existingmodel of technology
transfer within NASA, how well does it address soft-
ware technology?. More specifically, given that:

1.Industry must transfer technology from develop-
ers to users,

2.Technologytransfer is an integral part of NASA's
mandate,

3.Software technologyis an importantcomponent
of many NASA activities,

4.Mechanisms have already been established by
NASA to affectthat transfer,and

5.NASA has a perceived model of this transfer.

we wish to !earn:

1Daniet S. Goldin, NASA Administrator,December, 1992.

SEL-93-003

z

t_

ir

1.What is the real model used to affecttechnology
transfer?.

2.How well does this model work with software de-
velopment technologies?

3.What software development technologies have
actually been transferred successfully?,and

4.What characteristics can we learn about tech-
nologiesthat have been transferred?

This report is organized as follows: In Section 2
some existing notions about technologytransfer are
presented and in Section 3 the current NASA model
on technology transfer is given. Section 4 describes
one general survey of industrythat provides a rough
baseline of technologies that have been transferred
withinthe last 15 years, while inSection 5 NASA's role
in both importing and exportingsoftwareengineering
technologies are discussed. Conclusions from this
work are given in Section 6.

2 Background

2.1 Process improvement

Of great concern to all industry is the need to im-
prove productivity.Within the computerscience com-
munity, the ability to improve the process of devel-
oping software has been foundto be a major impetus
towards improvingproductivityand reliabilityof the re-
sulting systemssystems. Concepts like the Software
Engineering Institute's Capability Maturity Model [2]
have grown in importance as a means for modifying
the software development process. The Experience
Factory concept of the NASA/GSFC Software Engi-
neering Laboratory (SEL) [1] has shownthe value of
process improvement.

However, all process improvement involves
changes. Some of these may be relatively minor al-
terations to the current way of doing business (e.g.
replacing one compiler or editor by another). How-
ever, some may require major changes that affect the
entire development process (e.g., using cleanroom
software development).

In order for an organizationto continuallyimprove
its process, it must be aware of how it operates and
what other technologies are available that may be of
use. Understanding this process of technologytrans-
fer should enable NASA to better use its existing re-
sources and to better plan for the future.

2.2 Technology transfer

When we discuss technologytransferwe will mean
the insertionof one technology into a new organiza-
tion that previouslydid not use that technology. The
insertionmust be suchthat the new organizationregu-
larly uses that technology ifthe appropriateconditions
on its use should arise inthe future.

We will call the original creator of that technology
the producer of the technology and the organization
that accepts and uses the new technology the con-
sumerof that technology. The process of moving the
technology out of the producing organization will be
called exporting the technology while the process of
installingthe technology in the new organization will
be called infusingthe technology.

Implied by the above definitions is the notionthat
a successfully transferred technology becomes part
of the state-of-the-practice, or normal operating pro-
ceduras, of the infusing organization. For example,
an organization that experiments with Ada as a pro-
gramming language and then decides to use it for all
applicationsina specificdomain (e.g., for all flightsim-
ulators) can be said to have successfullytransferred
that technology. On the other hand, if a technology
is tried once or twice (e.g., the ML programminglan-
guage for expert system development) and is found
wanting and will notbe used again, then that technol-
ogy will not be considered to be transferred.

Not transferring a technology does not imply that
the technology is not effective; only that it does not
apply to the particularconsumer domain. For exam-
ple, there is still a demand for buggy whips among
horse enthusiasts and certain theme park operators,
but they have few applications among most urbanau-
tomobile repair shops.

What technology are we interested in?

='l'echnology" is a very imprecise concept. Forthis
reportwe are mainly concerned withtools,procedures
and mechanisms that aid in the development of soft-
ware products. We can divide this domain into two
categories:

Software development technology. This includes
the tools and procedures used by the software engi-
neering profession to build software. It includes, in
additionto the usual computer-based items like ma-
chines, editors, compilers, testingtoolsand configura-
tion management systems, items like electronic mail,
desktop publishing,spreadsheets and any other tool
or device useful for software production. This can
even include the telephone or fax machine if either
provides aid inthe development of software.

2

SEW Proceedings 451 SEL-93-003

NASA External
ConsumersConsumers

NASA Transferred Exported
Producers within from

NASA NASA
External Infused Not
Producers Into of

NASA interest

Table 1: Participantsin technologytransfer

Software engineering technology. This includes
those software development technology items cre-
ated specifically for software development. Thus,
while it will includecompilers and testing tools, it will
not include items like electronic mail or the fax ma-
chine which also have uses in other domains.

2..3 Technology transfer participants

Indescribing the transfer of technologyinto and out
of NASA, we have four potential groups of producers
and consumers to consider (Table 1). NASA may
be either a producerof a consumer of some technol-
ogy. Similarly,some other organization may be either
the producer or consumer of that technology. Of the
four potential cases, onlythree are considered inthis
report - those involving NASA as either a producer
or consumer. The case where an external producer
transfers a technologyto an external consumeris cer-
tainly of interest, but is outside of the scope of this
work on NASA's role in technology transfer.

2.4 Technology maturation

In 1985, Redwine and Riddle [3]publishedthe first
comprehensive study of software engineering tech-
nology maturation. Their goal was to understandthe
nature of technologymaturation-what was the length
of time required for a new concept to move from be-
ing a laboratory curiosity to general acceptance by
industry.They defined maturation of a technologyas
a 70% usage level across the industry.

Technology maturation involves5 stages - two by
the producer of the technology and three by con-
sumers of that technology(See Figure 1):

1.The original concept for the technology appears
as a published paper or initial prototype imple-
mentation. The initial time period is the devel-
opment of the concept by the originator of the
technology.

3

2.The imp/ementation of the technology involves
the further development of the concept by the
originatororsuccessor organizationuntila stable
useful version is created.

3.In the Initial experimenta/ (or understanding)
stage, other organizations experiment, tailor, ex-
pand, modify and tryto use the technology.

4.In the later exploration (or transition) stage, use
of the technologyis further modifiedand expands
penetration across the industry.

5.The final maturation stage is reached when 70%
of the industryuses the technology.

In their study, they looked at 17 software devel-
opment technologies that were developed from the
1960s through the early 1980s (e.g., UNIX, spread-
sheets, object oriented design, etc.). Their results,
most related to this current projectare:

,,They were unable to clearly define "maturation"
formosttechnologies, butwere ableto make rea-
sonableestimates astothe lengthof time needed
for new technologies to be widely available.

oTechnologies required an average of 17 years to
pass from an initialconcept to a mature product.

=Technologies, once developed, requiredan aver-
age of 7.5 years to become widely available.

In this current study, we are not interested in the
general issue of technology maturation, but instead
the infusion(or exporting) of a technology into or out
of a single organization (NASA). Therefore, we would
expect this 7.5 year average exploration stage to be
an upper bound. What would be a reasonable value
for NASA-infused or developed softwaretechnology?

3 NASA Model of Technology Transfer

Since technology transfer is part of NASA's man-
date, a model of technologytransfer has grownwithin
the agency. Several officesand related organizations
have been created for dealing with technology trans-
fer. These includethe following organizations:

oTechnology transfer organizationsat each NASA
center:

Technology Utilization Office. The Technology
Utilization Office (TUO - or Technology Transfer
Office (-Fro) as part of Code 700 (Engineering)
at GSFC) is the major proponent of technology

SEW Proceedings 452 SEL-93-003

PRODUCER I CONSUMER

(TRANSFER)

Figure 1: Technology Maturation Life Cycle

transfer between the engineer and industry. Its
focus is to aid the NASA engineer in moving an
idea into industry.

Office of Commercial Programs. The Off'_ceof
Commercial Programs (OCP) is the major inter-
face between each NASA center and industryas
an intermediaryin the commercializationof con-
cepts that arose in NASA research,

• National and regionaltechnologytransfer organi-
zations:

National Technology Transfer Network. The
National Technology Transfer Network and the
various regional technology transfer field cen-
ters act as intermediaries between the individ-
ual TUOs at each center and industry. Six Re-
gionalTechnologyTransferCenters (R'I-rC) work
directlywith industryto aid inthe commercializa-
tion of NASA products.

Technology Application Team. The Technol-
ogy Application Team (TAT) is located at Re-
search Triangle Institute and works with each
TUO in developingtechnologytransfer projects.

COSMIC. The Software Technology Transfer
Center is a repositoryof software developed by
NASA personnel. It is locatedat the Universityof
Georgia. Over 5,000 programs have been sub-
mitted to COSMIC for distributionsince 1966.

•Technology transfer publications and agree-
ments:

Space Act Agreements. Space Act Agreements
(SAA) are like memoranda of Understandings
(MOUs) or CRADAs (Cooperative Research and
Development Agreements in other federal agen-
cies) for joint industry-NASA cooperation on spe-
cific projects.

NASA Tech Briefs. "NASA Tech Briefs" is a
monthly publication for announcing new inven-
tions and innovations.

NASA
Producers

External
Producers

NASA
Consumers
COSMIC

Tech Briefs
Conferences

Papers

Conferences
Papers

External
Consumers

COSMIC
Tech Briefs

Conferences
Papers

TAT
NTTN
TUO
OCP
SAA

Spinoff
Not
of

Interest

Table 2: NASA Tech Transfer Model

Spinoff. "Spinoff' is an annual publication that
summarizes those technologies that have been
successfullycommercialized during the previous
year.

Conferences and publications. Conferences
and publications(both NASA sponsoredand non-
NASA sponsored) are a major source of informa-
tion on technology that has been produced both
within and outside of NASA.

Merging this list of technology transfer mechanisms
withour previous model of technology transfer partici-
pants (Table 1), we get a clearer picture of how NASA
addresses technology transfer (Table 2).

Two results become immediately apparent from
this table:

1 .There is no infusion mechanism for bringing new
technology into the agency.

2.The major goal is the transfer of products.

SEW Proceedings 453 SEL-93-003

Theformerresult,undertoday'seconomicclimate,
needsto bereevaluated.Previously,therewasade-
sireonthepartofCongressandthoseinchargeof
NASAto showthatsuchlargesumsofmoneyspent
on space applicationshad practicalbenefits for U.S.
industry. Therefore, technologytransfer to industry
gave concrete indicationsof the value of space ex-
ploration.

However, the situationtoday is an era of static or
shrinking budgets. The concept of "Faster, Better,
Cheaper" is heard more and more. NASA needs to
_/ork Smarter." One way to do that is to use bet-
ter technology and infuse better techniques into the
agency. However, the current model assumes that
engineers can simply learn about such technologies
from reading papers and going to conferences. There
is no explicit aid to help in this search for better ways
to do NASA's job.

The second result, transfer of products, also needs
to be reevaluated in the light of software engineering
technologies. In most engineering disciplines, pro-
cesses are centered in various products that imple-
ment that technology. Thus transferring a technology
is generally equivalent to transferring a product.

The same cannot be said of many software engi-
neering processes. For example, within the GSFC
Software Engineering Laboratory (SEL), the following
list of processes have been studied over the past few
years:

oObject OrientedTechnology,

oGoals/Questions#IVletrics paradigm of software
development,

oThe Experience Factory model of development,
and

oCleanroom softwaredevelopment.

None of these processes is embodied in a prod-
uct. One cannot buy a "Cleanroom" program. In-
stead one buys some books, a training course and
some guidance on using the technique. Although
NASA does not explicitly address the packaging of
such processes as assets to be transferred, NASA in
not unique in this regard. It is not clear that much of
industry understands the unique role that processes
play in software development compared to most en-
gineering processes. It is imperative for NASA to un-
derstand this distinction and to address the transfer
of processes as well as products.

SEW Proceedings

TotalReplies (44) NASAReplies(12)
Item No. Item No.
Workstations& PCs 27
,Objectoriented 21
GUIs 17
,Processmodels 16
Networks 16
*C andC++ 8
,CASE tools 8
Databasesystems 8
Desktoppublishing 8
,Inspections 7
Electronicmail 7

,Object oriented 12
Networks 10
Workstations& PCs 8
,Process models 7
,Measurement 5
GUls 4
,Structureddesign 3
Databasesystems 2
Desk'toppublishing 2
,Dev. methods 2
.Reuse 2
,Cost estimation 2
Comm.Software 2

• - Software engineering technologies

Table 3: Top 10 transferred technologies

4 Software Development Technology

In order to understand software engineeringtech-
nology transfer within NASA, it was first necessary
to understandif there was any consensusabout how
software development technology has evolved over
the past decade. Papers are often written about the
so-called "software crisis" with comments that soft-
ware development has notchanged at all in 30 years.
If so, then obviously no technology has been trans-
ferred lately.

In order to address this, a brief survey form was
prepared and widely distributed. The form asked for
the top five technologiesthat have changed software
development practices since 1980. A list of approx-
imately 100 items was included, and the respondent
could pick from that list or add any other items that
seemed relevant.

A total of 44 forms were returned. Of these, 12
were from NASAJGSFC personnel or NASA contrac-
tors. The top 10 (includingties) fromthe total listand
the NASA listare given in Table 3.

The level of consensus among the 44 returned
formswas quite surprising. The top 5 inthe listclearly
dominated the others. Of the top 5, only two of them
(objected oriented technology and process models)
were clearly software oriented technology. Two were
mostly hardware (_vorkstationsand networks)andthe
other (graphicaluser interfaces) was partially a soft-
ware engineering issue,but does notstrictlyfit intoour
definitionof software engineeringtechnologygiven its
use in many applicationprograms.

Among the NASA replies, there was likewise strong

454 SEL-93-003

|
=_=

NASA
Producers

External
Producers

NASA
Consumers

Reuse(Kaptur,CLIPS)
Environments(SSE)

GUI(TAE)
Measurement(SME, GQM)

AI tools
CASE Tools
Cost models

• Formal Inspections
• Object orientedtechnology

• Ada, C, C++
, Cleanroom

Rate monotonicscheduling
CASE tools

External
Consumers

Reuse(Kaptur, CLIPS)
Environments (SSE')

GUI(TAE)
Measurement(SME, GQM)

Not
of

Interest

, - technologiesdiscussedin moredetail

Table 4: Transferredtechnologiesat NASA

agreement with the total list. The top 5 on the total
list were 5 out of 6 among the NASA entries. Only
measurement, a strongcomponentof the SEL, raised
the recognition level among NASA personnel of its
importance.

Other technologies that have been claimed as ef-
fective that were mentioned in the survey include:
Measurement (in 12th place), Ada (in 14th), Formal
methods (in 17th) and UNIX (in 17th).

Clearly some software development technologies
have been transferred. The questionwas now: What
effect did NASA have on this transfer?

5 Software Engineering Technology

In order to understand technology transfer in
NASA, three or four software engineeringexpertsat
each NASA center were interviewed in order to de-
termine what software engineering techniqueswere
being used effectivelyinthe agency. In orderto keep
the scope of this problem reasonable, the following
two restrictions were imposed:

1.The technology had to clearly be software engi-
neering. For example, successfullytransferred
programs, such as the modelling system NAS-
TRAN available through COSMIC, were not in-
cluded.

2.The technology had to have a major impact on
several groups within NASA. W_h more than
4,000 software professionals affiliated with GSFC

alone (includinggovernment and contractors),al-
most every software product has probably been
used somewhere in the agency. While this was
somewhat subjective, a list of transferred tech-
nologieswas developed (Table 4).

Those technologies used (i.e., consumed) by
NASA and thosetechnologies produced by NASA will

be consideredseparately.

5.1 Technology Infusion

Within the SEL

Three technologies that were successfully trans-
ferred by the SEL (Ada, Object oriented technology,
and Cleanroom) will be discussed in greater detail.
The details of transferring those technologies are
summarized by Figure 2 and are explained in greater
detail in the following subsections.

SEL use of Ada

Understandingphase of Technology Transfer.

Use of Ada on SEL projects was first considered
in 1985. A trainingand sample program was the first
Ada activity. However. in order to truly evaluate the
appropriateness of Ada within the SEL environment_
a parallel development of an Ada and FORTRAN sim-
ulator (GRODY) was undertaken. The results was an
operational, but slow, product. Although the develop-
ment of this simulator continued until early 1988, by
early 1987 it was decided that the initial project was
sufficently successful to continue the investigation of

SEW Proceedings 455 SEL-93-003

OOT

ADA

CLEANROOM

- Uk'DIms'rANO() _I-_

J
I

wHa)

I
PILOTS

Ut

iqLOT 4 I

I
I

I USEINS_CIFIC OOMAINS

]L

UNDI_urrANDp0) "_4t_qltANSrnoN r_

IqLOT 1 L

FILOT e

--I FIRST U.IE

m aS 8Z 16 U W

USE m IPEGFIC DOMAINS

IN R W

Figure2: SEL technologytransfer experience

Ada. Elapsed time since start of Aria activitywas 30
months.

Transition phase of technology Transfer.

Because of the poor performance on the GRODY
simulator, a second Ada project (GOADA) was un-
dertaken where performancewas of greater concern.
in this case, the resulting product was comparable
to performance of previous FORTAN simulators. In
1988 a thirdsimulatorwas undertakenand developed
successfully.By the end of 1989, Ada became the lan-
guage of choice for simulators in the flight dynamics
branch. Transitiontime was another 30 months.

Comments on Technology Transfer.

Total transfer time for Ada was approximately 60
months. Ada is the language of choice for simulator
projects. Although Ada code costs more, line by line,
than FORTRAN code, the higher levelsof reuseresult
in lower overalldelivery costs for such projects.

Ariawas also usedasthe implementationlanguage
on larger missionground supportsoftware. This was
not as successful. However, the inhibitorsinthiscase
were outsideof the scope of the Ada language, itself.
The operational systemsat GSFC are IBM mainframe
compatible,and no effective Ada compilerexisted for
this environment during the 3 times Ada was evalu-
ated. All of the successful simulator projects were
implemented on DEC' VAX Computers,which had an

7

effective Ada system.

Presently, Aria is used on approximately 15% of
the SEL's software. Eleven Aria projects have been
completedto date.

SEL use of object oriented technology

Understandingphase of Technology Transfer.

Use of object oriented technology (oor) in the SEL
was seriously investigated at the same time as Ada
was considered. In developing the requirements for
GRODY, it became apparent that the standard GSFC
requirements document was oriented towards a FOR-
TRAN functional decomposition and the use of these
requirements on an Ada project would be very ineffi-
cient.

Therefore the requirements were redone to use a
more object oriented approach. Following this, an
OOT guidebook for GSFC was developed (GOOD -
General Object Oriented Software Development [4])
for use on future projects.

Elapsed time for these activities took from early
1985 until August, 1986, or a total of 20 months. Ex-
penses for understanding this technology were high
since this activity was wrapped up in the Ada evalua-
tion which required parallel system development.

Transition phase of technology Transfer.

On a second project (UARSAGSS), object oriented

SEW Proceedings 456 SEL-93-003

design was used implicitly. This was a FORTRAN
ground supportsystem, and experiences gained from
the earlier GRODY effortallowed the programmersto
better understandthe design and use OOT. Bythe end
of this project, it was sufficientlyclear that OOT was
an effective technique in some domains. Transition
time was on the order to 26 months.

Comments on TechnologyTransfer.

Total transfer time inthiscase was only 46 months.
Although almost 4 years, this was relatively short
since it did not require major changes in system de-
velopment. OOT could be usedwith Ada, FORTRAN,
or any other programming language. Since itfit within
the usual development paradigm,tailoringthe method
and inserting it intothe usual NASA development pro-
cess was relatively easy.

SEL use of cleanroom

Understanding phase of Technology Transfer.

In order to understandcleanroom, a series of train-
ing courses were given in 1988 by Dr. Harlan Mills,
original developer of the method. A pilot projectwas
undertaken and proved to be very successful. All par-
ticipants were converts to the method, even though
several had reservations about it before they began.
"timeto understand the method (traininguntilthe start
of the second cleanroom project) was 26 months.

Transitionphase of technology Transfer.

Two follow-on cleanroom projects were under-
taken. A smaller in-house development was very
successful, but a larger contracted projectwas not so
successful. It was not as apparent that problems on
the larger projectwere due to scaling up ofcleanroom
to larger tasks or to a lack of training and motivation
of the development team on this project.

Because of this, a fourth cleanroom project was
undertaken. This project is still under development,
but preliminary results lookvery promising.

Comments on Technology Transfer.

Cleanroom technology appears to be an effective
technology. Understand time was 26 months and
transition time is at least 46 months, with transition
still underway. Cleanroom cannot be saidto be a ma-
ture technology yet, although results look very good.

Technology infusion at other NASA centers

Use of Formal Inspections

Transfer of technology.

Work began by John Kelly on formal inspections
at JPL. The elapsed time for developing the method

was 30 months and involvedabout 6 staff months of
effort. Contactswith Mike Fagan of IBM, developer
of the technique, aided the transitionprocess, tt has
been successfullytransferredto JPL and between its
initial use in FeOruary, 1987 through 1990, over 200
inspectionswere carried out.

Based uponexperienceat JPL, formal inspections
were moved to Langley. This took only 16 months,
because of the previous experiences at JPL About
12 staff months of effort were required, but most of
thiseffortwas in"unpaidovertime."No NASA support
was available fordevelopingthe technology.

Once installed at Langley,it has been transferred
to severalcontractorsworkingat Langley.

Comments on TechnologyTransfer.

Formal inspectionswere successfully transferred
at Langley. Total time for transferring at both cen-
ters were 30 months and 16 months. These were
relativelyshort since formal inspectionscover only a
relativelynarrow and precise process in software de-
velopment and can be inserted relatively easily into
almost any mature developmentprocess.

5.2 Exporting Technology

This present version of this report is concerned
mainly withthe infusionof technologyfrom outsideof
the agency. A later versionwill address technology
exportingin more detail.

6 Conclusions

From this initial study, we can make several con-
clusionsand observations:

1.NASA mechanisms do not address software
engineering technologies well. Technology in-
fusionis generally ignored and left up to the in-
dividual engineer to discover on his own what
is needed and available. W'_h today's shrink-
ingbudgetsand the need to work "Better,Faster,
Cheaper,"NASA needsto addressthis issue and
help inthe search for new effectivetechnologyto
use.

In addition, software engineeringprocesses are
not addressed. These are not productcentered.
Howto package andtransferprocesses as a cor-
porate asset needs to be handled better.

2.Technology transfer Is more than simply un-
derstanding the new technology. Technology
transfer takes time. Understanding the tech-
nology has been shown to take upwards of 2.5

SEW Proceedings 457 SEL-93-003

years.Thetransitiontimewhentheorganization
isexploring,tailoringandmodifying the technol-
ogy for its own use often takes more than the
understandingtime, with a total transfer time on
the order of five years not being unusual.

3.Technology transfer is part of the total envi-
ronment of the consumer organization. Tech-
nologytransfer does not eccur in a vacuum. The
SEL experience with Ada demonstratesthiscon-

cept. Acla has proven to be successfulwithflight
simulators, and the effective Ada compiler on
the DEC VAX computer helped in this transfer.
However, the operational systems for flight dy-
namic software was the IBM mainframe, and no
effective Ada compiler was available during the
5 years (from 1985 to 1990) when Ada was un-
der evaluation. Because of this, FORTRAN is
still the language of choice for suchapplications.
Had an effective mainframe Aria compiler been
available, then the result of evaluating Ada for
large AGSS (Attitude Ground Support Software)
systems might have been different.

4.People contact is the main transfer agent of
change. As many others have observed, tech-
nology transfer occurs best when the developers
of a technology are involved in the technology
transfer process. In this report, that happened
in order for cleanroom to be effectively used at
GSFC and for inspectionsto be broughtto JPL
and then to Langley.

7 Acknowledgment

This research supportedinpart by grant NSG-5123
from NASA Goddard Space Flight Center to the Uni-
versity of Maryland, College Park, Maryland. Frank
McGarry of NASA/GS FC and KellyannJeleticof Com-
puter Sciences Corporation helped in collecting the
data described inthis report.

References

[1]BasiliV. R., The experience factory: Can it make
you a 5?, 17th NASA/GSFC Software Engineering
Workshop, Greenbelt, MD (December, 1992) 55-
64.

[2]Paulk M. C, B. Curtis, M. B. Chrissis,and C. V. We-
ber, CapabilityMatu rity Model for Software, Version
1.1, Technical Report SEI-93-TR-24, Software En-
gineering Institute, Pittsburgh, PA (1993).

[3]Redwine S. and W. Riddle, Software technology
maturation, 8th IEEE/ACM International Confer-

ence on Software Engineering, London, UK, Au-
gust, 1985, 189-200.

[4]Seidewitz E. and M. Stark, General Object
Oriented Software Development, SEL-86-002,
NASNGSFC, August, 1986.

SEW Proceedings

9

458 SEL-93-003

1993 Software Engineering Workshop

SoftwareEngineeringTechnologyTransfer:

Understandingthe Process

Marvin V. Zelkowitz

Institute for AdvancedComputerStudiesand

Department of ComputerScience

Universityof Maryland

CollegePark, Maryland

@ ITechnology Transfer Overview 1

• "Technology transfer is a fundamental miss!on. It is as important as
any NASA mission and it must be pursueo. - Daniel S. Goldin,
NASA Administrator, December, 1992

• It is critical to understand technology transfer as part of any process
improvement program.

• Technology maturation takes time: From Redwine - Riddle study
(1985) on software engineering technologies:

- Studied 17 software engineering technologies of the 1960s and
1970s.

- Required an average of 17 years from concept to maturation.

- Required an average of 7.5 years after initial development to
widespread availability in industry.

• Fundamental issues:

IHow does NASA think technology transfer takes place?J

IHow does technology transfer really take place? I

SEW Proceedings 459 SEL-93-003

@ ITechnology Transfer Goals I

• Issues:

- Must transfer technology from developers to users

-Technology transfer is an integral part of NASA's mandate

- Mechanisms have been established by NASA for transfer

- NASA has a perceived model of this transfer

• But:

-What is the real model of technology transfer?
-What processes were used to affect those transfers?

-What software development technologies have been transferred?

- What were the costs and effort for those transfers?

_ ITechnology Transfer Stages I

PRODUCER I CO_

(TRANSFER)

This initial study covers technology infusion only (e.g., Exploration
stage within NASA.)

SEW Proceedings 460 SEL-93-003

@ IDomain of Interest I

, What technologies are of interest?

_ ISoftware development technology I - Tools and procedures used
by software engineering profession to build software

_ ISoftware engineering technology I - Tools and procedures
developed specifically for software development

, What technologies do software engineers use?

-Software development technologies_ in.use,- Present broad-based
survey of software engineering I)rolesslonals on. wnat sottware
development technologies have been successful since l_ou.

- Software engineering technologies transferred, b_.NASA - Present
results of interviews and surveys with selected NA:>A personnel
and reading selected NASA documentation and reports.

Technology Transfer Participants j

NASA
Producers

External
Producers

NASA External
Consumers Consumers

Transferred Exported
within Trom
NASA NASA

Infused
into

NASA

Not
of

interest

Purpose of this analysis is to understand both
the exporting and importingof software
lengineering technology for NASA

SEW Proceedings 461 SEL-93-003

@ tTechnology Transfer Parameters 1

. From Producers:

- Motivation (need) for technology

- Cost of technology

-Time to develop technology

- Commercialization potential of technology

- Cost and time to transfer technology

• From Consumers:

- Motivation (need) of technology

- Methods to investigate technology

-Cost required to infuse technology

-Time required to infuse technology

Top 10 Recently Transferred Technologies I

Total Replies (44) NASA Replies (12)
Item No. I Item No.

'Workstations and PCs 27] *Object oriented 12
,Object oriented 21 JNetworks]O
GUIs 17 /Workstations and PCs -8-

_iPerocess models 16 l'Process models 7
etworks 16 l'Measurement 5

'*C and C-t-+ 8 /GUIs
*CASE tools 8 |,Structured design 34
Database systems 8 Database systems 2
Desktop publishing 8 Desktop publishing 2
,Inspections 7 ,Development methods 2
Electronic mail 7 ,Reuse 2

,Measurement (12)
,Ada (14) 46

,Formal methods (17)
UNIX (17) 33

,Cost estimation
Comm. Software

• Ada (14)
• Inspections (14)

* - Software engineering technologies

2
2

1
1
1

SEW Proceedings 462 SEL-93-003

_]NASA Transfer Mechanisms]

• NTTN - National Technology Transfer Network. Joint NASA.and
other Federal agency transfer centers. NASA field centers and
regional technology transfer centers for interacting with industry.

• COSMIC - NASA Software Technology Transfer Center. At
University of Georgia to make NASA software available.

• TAT - Technology Application Team. At Research Triangle
Institute, works _N.ith each Technology Utilization Office at each
NASA center for in developing technology transfer projects.

• Space Act Agreement - Joint NASA/industry project. (Similar to
MOUs, CRADAs)

•TUO - Technology Utilization Office - Office at each center for
interacting with outside agencies

• NASA Tech Briefs - Monthly publication for announcing new
inventions and innovations.

• Spinoff - Annual NASA publication describing successfully
transferred technologies.

1NASA _Transfer Model I

NASA
Producers

External
Producers

NASA
Consumers
COSMIC

Tech Briefs
Conferences

Papers

Conferences
Papers

External
Consumers
COSMIC

Tech Briefs
Conferences

Papers
TAT

NTTN
TUO

Space Act AIpEeements
Spinoff

Not
of

Interest

IGoal is transfer of products. I

]No infusion mechanism. I

SEW Proceedings 463 SEL-93-003

_ ISoftware Engineering Processes a

• 33echnology Transfer is generally product oriented - In most
engineering disciplines, the process is centered in the product.

, Software engineering does not yet fulfill that model - Processes
describing actions to take are as important as the tools that are
used.

• For example, manet of the technologies explored by the GSFC
Software Engineenng Laboratory are procedures only and not tools:

-Object oriented technology

- Goals/Question/Metrics model

- Measurement

- Cleanroom

- Inspections

IProcesses as opposed to products are dominant. I

_ INASA Emphasis on Technology Transfer I

• Summary of NASA Technology Transfer Model:

- Agents of technology transfer are people.

- Description of technology transfer are published papers.

- Objects of technology transfer are products.

• But:

- No mechanisms for transfer of processes.

' Seems to be true throughout industry, not just NASA.

- No mechanism for technology infusion.

SEW Proceedings 464 SEL-93-003

@ IWhat Has Been TransferredT, I

•Domain of interest- Software engineeringtechnologies(e.g.,Most

programs in COSMIC are applicationprograms and not of interest

for thistalk.)

•But NASA isbig ...

_Thousands of programmers nationwide. Probably every tool sold
has been used somewhere within NASA.

-Need to identifyonly those technologiesthat have made major
impact on development practices

•Preliminaryresultsof directedsurvey of software engineering

professionalswithin NASA.

@ [Transferred Software Development Technology I

NASA
Producers

External
Producers

NASA
Consumers

Reuse(Kaptur, CLIPS)
Environments (SSE)

Gm(TAE)
Measurement(SM E, GQM)

AI tools

External
Consumers

Reuse(Kaptur, L.LIV:_p
Environments (SSE)

GUI(TAE)
Measurement(SME, GQM)

CASE Tools
Cost models

• Formal Inspections
, Object oriented technology

, Ada, C. C-i-+ -,.
, Cleanroom

Rate monotonic scheduling
CASE tools

, - Technologies to be discussed

(Representative list based upon survey and interviews

Not
of

-._. Interest

1

SEW Proceedings 465 SEL-93-003

Replaces
Infusionmethod
Status
TechTransfer

Success

Comments

@ ICase study: SEL of Ada Iuse

Understand time 30 mo

Transition time 30 mo

Cost High, Parallel development

FORTRAN

Courses, 2 pilot projects

Mature use in specific domain

Used on some projects

Generally positive

. Increased costs for new projects

• 10%-25% savings on later projects due to 25% - 30% reuse

@ [Case study: SEL use of OOT I

Cost

Replaces

Infusion method

Tech Transfer

Status

Success

Comments

Understand time 20 mo

Transition time 26 mo

High (Part of Ada evaluation)

Functional decomposition

Courses, Training guide, 2 pilot projects

Used on most projects

Mature use in specific domains

Very positive

• Initial results - Decreased time and effort and improved error rates

. Needs training - Replaces design method that already worked well
and generates few errors

SEW Proceedings 466 SEL-93-003

Case study: SEL use of Cleanroom]

Transition time

Cost

Replaces

Infusion method

Status

Tech Transfer

Success

Comments

Understand time 26 mo

45+ mo

High

Traditional testing

External developers, training, pilot studies

Still in transition

Unclear

Appears very positive

• Contact with developer important for early success

. Large project not as successful - less training and motivation

• Productivity and error rates improved on all projects

. Still evaluating, training and undergoing transition

Summary of SEL Experiences I

OOT

ADA

CLF.ANROOM

I u, "l

• - UNOBUW_ Im --__ (m)

I [_,-m I

I line m II_¢lq¢ DOIMJk_

I

I U,l _.. "
IS II 17 El le

I
mm

I IIIPECF_I

I_ II Is

1

l

SEW Proceedings 467 SEL-93-003

Case study: Formal Inspections J

Site 1
Tra_er time 30 mo

Cost .5 FTE

Replaces Walkthroughs

Infusion method External developer

Status In use

Tech Transfer Used within NASA, site 2

Success High

Comments

• Technology transfer not well supported

• People contact main agent of change

Site 2
16 mo

1 FTE, unpaid overtime

New activity

External developer, site 1

In use

NASA government
contractors

High

@ IConclusions I

NASA mechanisms do not address software engineering tech-1
noloKies well. I

• Technology infusion is generally not addressed.

• Process technology is similarly not addressed.

Technology transfer is more than simply understanding the/new technology. /
• Time to understand technology is generally on the order of 2.5 years.

• Transition time pt least as long as understanding time.

People contact seems to be the main transfer agent of change.

Disc.laimer: Presentation based upon preliminary analysis of
avadable information. Will be refined over next few months.

SEW Proceedings 468 SEL-93-003

Appendix A: Workshop Attendees

f/9_/17 7D

Abd-EI-Hafiz, Salwa K.,

University of Maryland

Agresti, Bill W., MITRE
Corp.

Allen. Russell G., IRS

Anderson, Barbara, Jet

Propulsion Lab

Angier, Bruce, Institute for
Defense Analyses

Astill, Pat, GSC/SAIC

Aucoin, Ed, GenRad, Inc.

Ayers, Everett, Ayers
Associates

Bachman, Scott, DoD

Bacon. Beverly, Computer
Sciences Corp.

Bailey, John, Software
Metrics, Inc.

Baker, David, Computer
Sciences Corp.

Barnard, Julie, IBM Federal

Systems Company
Barski, Renata M.,

AlliedSignal Technical
Services Corp.

Basili, Vic, University of

Maryland
Bassman, Mitchell J.,

Computer Sciences

Corp.
Beifeid, David, UniSys Corp.
Belcher, Melody S.,

SYSCON

Bickford, Paul, USDA FNS

Bisignani, Margaret, MITRE

Corp.
Bissonette, Michele,

Computer Sciences
Corp.

Blackwelder, Jim, Naval
Surface Warfare Center

Blagmon, Lowell E., Naval
Center For Cost Analysis

Bhm, Bruce I., Applied

Physics Lab
Blumberg, Maurice H.,

IBM/FSC

Bohner, Shawn, MITRE

Corp.
Boland, Dillard, Computer

Sciences Corp.
Bond, Jack, DoD

Booth, Eric, Computer

Sciences Corp.
Bowen, Gregory M.,

Computer Sciences

Corp.
Bowers, Allan, Loral

AeroSys
Bowser, Jeff, Hughes/STX

Boycan, Steven T., HQ
AFC4A

Brackett, Edwin H.,

Computer Sciences

Corp.
Bradley, Stephen, MMS

Systems
Bredeson, Mimi, Space

Telescope Science
Institute

Brejcha, Albert G., Jet
Propulsion Lab

Briand, Lionel, University of

Maryland
Brill, Gary B., IRS
Britt, Joan J., MITRE Corp.

Brown, Kenneth L., Comptek

Federal Systems, Inc.
Bullock, Steve, IBM

Burd, Reg, Computer Data

Systems, Inc.
Burks, Catherine, FMS/QAD

Busby, Mary, !BMIFSC
Button, Janice. DoD

Calavaro, Giuseppe F.,
University of Maryland

Caldiera, Gianluigi,
University of Maryland

Cameron, Charlie, Computer

Data Systems, Inc.
Card, Dave, Computer

Sciences Corp.
Carlisle, Candace,

NASA/GSFC

Carlson, Randall,
NSWCDDCarson, Eric

T, Logicon, Inc.
Chen, Lily Y., AlliedSignal

Technical Services Corp.

Cheng, Betty, Michigan State
University

Chiverella, Ron, PA Blue
Shield

Christenson, Irene,

FMS/QAD
Chu, Richard, Loral AeroSys

Cicslak, Don, Hughes
Aircraft Co.

Clark, James D., Naval
Surface Warfare Center

Clark, John, COMPTEK

Federal Systems
Cochrane, Jr., J. T., PLanning

Systems, Ih_;.

Coger, George, UniSys Corp.
Cohen, Joel, GTE

Government Systems
Condom Steven E.,

Computer Sciences

Corp. -

Conley, Ronald B., NCCOSC
RDTE DIV DET

Cook, James E., Price
Waterhouse

Cook, John F., NASA/GSFC

COrnea, Lisa K., U.S. Air
Force

Cover, Donna, Computer
Sciences Corp.

Cowan, Marcia, Loral
AeroSys

Cuesta, Ernesto, Computer
Sciences Corp.

D'Agosfino, Jeff, The
Hammers Co.

D'Elia, Barbara, IRS

Daku, Walter, UniSys

Day, Nancy A., Naval
Surface Warfare Center

Decker, William, Computer

Sciences Corp.

SEW Proceedings
SEL-93-003

Dermey, Valerie P., Martin
Marietta

Deutsch, Michael S., Hughes
Applied Information

Systems, Inc.
Dilorio, Bob, IBM
DiLeo, Mike, Innovative

Technology &

Engineering

DiNunno, Donn, Computer
Sciences Corp.

Dikei, David, Applied
Expertise, Inc,

Diskin, David H., Defense

Information Systems
Agency

Do, Thang T., IBM
Doland, Jerry T., Computer

Sciences Corp.

Donnelly, Laurie M.,
AlliedSignal Technical

Services Corp.
Dorfman, Audrey, Vitro

Corp.
Dortenzo, Donald V.,

Fairchild Space &
Defense

Douglas, Frank J., Softran,
Inc.

Drake, Anthony M.,

Computer Sciences
Corp.

Dumas, Michel R., Fairchild

Space & Defense

Dunn, Joseph, Computer
Sciences Corp.

Dunn, Nepolia, Computer
Sciences Corp.

Duva, Larry, IBM
Duvall, Lorraine, Syracuse

University

Dyer, Michael, IBM Federal
Systems Company

El-I-lajj, Terry, Comptek

Federal Systems, Inc.
Ellis, Walter J., Software

Process & Metrics

Emery, Richard D., Vitro

Corp.
Engelmeyer, Bill, North

Arundle Hospital
Evans, Lawrence, IBM/FSC

SEW Proceedings

Fakhre-Zakeri, Issa,

.University of Maryland
Farr, William H., Naval

Surface Warefare Center

Farrell, William T., DSD
Laboratories, Inc.

Feerrar, Wallace, MITRE

Corp.
Felber, Henry D., Software

Productivity Consortium
Ferguson, Jay, DOD
Fernandes, Vernon,

Computer Sciences

Corp.

Fike, Sherri, Ball Aerospace
Finley, Doug, UniSys Corp.
Firer, Jacob, Hughes/STX
Flens, Leonard, Air Force

Rowers, Ed, U.S. Air Force

Forsythe, Ron,
NASA/Wallops Flight

Facility
Fuentes, Wilfredo, Logicon,

Inc.

Futcher, Joseph M., Naval
Surface Warfare Center

Gaeta, Richard A., GDE

Systems, Inc.
Gaffney, John E., Software

Productivity Consortium
Gallagher, Barbara, DoD
George, Leesa M., SYSCON

Glazer, Joel, Westinghouse

Godfrey, Sally, NASA/GSFC
Goel, Amrit L., Syracuse

University

Goldberg, Nancy, Computer
Sciences Corp.

Golden, John R., RLS, Inc.
Goldstein, Aaron G., TRW

Goodman, Nancy,
NASA/GSFC

Gosnell, Arthur B., U.S.

Army Missile Command
Gotterbam, Donald, East

Tennessee State

University

Gover, Gary, Dept. of
Veterans Affairs

Green, Scott, NASA/GSFC
Greenblatt, Alan, USDA

Griesel, Ann, Jet Propulsion
Lab

470

Guido, Tony, Naval Air
Systems Command

Hall, Dana L., SAIC

Hall, Susan M., Sofrech, Inc.
Halterman, Karen,

NASAfGSFC

Handrick, Bill, Systems

Research & Applications
Corp.

Haneef, N., IBM

Harman, Thomas L., BTG,
Inc.

Hart'is, Barbara A., USDA

Hauppa, Gary A., DoD

Heasty, Richard, Computer

Sciences Corp.
Heller, Gerard H., Computer

Sciences Corp.
Hendrick, Robert B.,

Computer Sciences

Corp.
Hendrzak, Gary, Booz, Alien

& Hamilton, Inc.

Henry, Joel, East Tennessee
State Univ.

Hermosilla, Manuel N.,
DISA//IEO/CIM

Higgins, Herman A., DOD
Hihn, Jairus M., Jet

Propulsion Lab/Caltech

Hill, Ken, UniSys Corp.
Hill, Paul E., Computer

Sciences Corp.
Hoffman, Gaff, Dept. of

Veterans Affairs

Hogan, Edward L., UniSys

Corp.
HoUingsworth, Susan W.,

Lockheed Aeronautical

Systems Co.
Holmes, Barbara, CRaM

Hopkins, Ronald E., Dept. of
the Air Force

Honnby, Tom W., Johns

Hopkins University
Houston, Rod, lIT Research

Institute

Howard, Scarlette, Computer
Sciences Corp.

Howard, William H., UniSys
Corp.

Howland, John C., GenRad,
Inc.

8EL-93-003

Huffman, Dorothy, Jet

Propulsion Lab

Huguley, Alan, Defense
Mapping Agency

Hummer, Carroll, Tidewater
Consultants, Inc.

Huza, Marilyn, IRS

Ippolito, Laura, NIST

Jackson, Lyn, Logicon, Inc.
Jai, Atal, Hughes STX
James, Jason S., DoD

Jay, Elizabeth M.,
NASAJGSFC

Jeffery, Ross, The University
of New South Wales

Jeletic, Jim, NASA/GSFC

Jeletic, Kellyann,
NASA/GSFC

Johannes, James D.,

University of Alabama at
Huntsville

Johnson, Arnold, National
Bureau of Standards

Johnson, Temp, Hughes-STX

Jones, Christopher C., fit
Research Institute

Jones, Howard L., USDA

Jones, John L., MITRE Corp.
Jones, Nick, Andrulis

Research Corp.

Jordano, Tony J., SAIC

Kalin, Jay, l.,oral AeroSys
Kapoor, Naveen, Innovative

Technology &
Engineering

Kassebaum, Rob, MCI

Kelley, Rich, Computer
Sciences Corp.

Kelly, John, Jet Propulsion
Lab

Kelly, John C., Jet Propulsion
Lab

Kemp, Kathryn M.,
NASA/HQ

Keshavarz-Nia, Hamid,

Innovative Technology

& Engineering
Keshavarz_Nia, Navid,

Innovative Technology

& Engineering

Kester, Rush, Computer

Sciences Corp.
Kierk, Isabella K., Jet

Propulsion Lab

Kleis, Karen, Computer
Sciences Corp.

Knoell, Roger, U.S. Air
Force

Koeser, Ken, Vitro Corp.

Kohl, Ron, IBM Federal

Systems Co.
Kotov, Alexei, Oregon

Graduate Institute

Kuo, Jerry H., Compex Corp.
Kurihara; Tom, Logicon, Inc.

LaPorte, Claude Y., Oerlikon

Aerospace
LaVallee, David, Loral

AeroSys
Landis, Linda, Computer

Sciences Corp.

Langston, James H.,
Computer Sciences

Corp.
Larman, Brian, SEI

Laubenthal, Nancy,

NASA/GSFC

Leaman, Mark, Systems
Research & Applications

Corp.
Leavitt, Karen, Computer

Sciences Corp.

Lehman, Meir, Imperial

CoUege of Science
Lemmon, Doug, University

of Maryland
Levine, Leonard F., Defense

Information Systems

Agency
Levitt, David S., Computer

Sciences Corp.
Li, Ned C., IBM

Li, Ningda Retry, University
of Maryland

Liebrecht, Paula, Computer

Sciences Corp.
Lien, Chin-He, Computer

Sciences Corp.
Lin, Chi Y., Jet Propulsion

Lab

Lindsay, Scott, GSI
Lindsey, Brad, IITRI/ECAC

Lippens, Gary A., U.S. Air
Force

Little, Linda C., Litton Data

Systems
Liu, Jean C., Computer

Sciences Corp.
Liu, Kuen-san, Computer

Sciences Corp.
Loesh, Bob E., Software

Engineering Sciences,
Inc.

Loy, Patrick H., Loy
Consulting, Inc.

Lucas, Janice P., FMS
Luczak, Ray, Computer

Sciences Corp.
Luk, William S., Rockwell

International

MacDonald, Kathy,
IITRI/ECAC

Maceannon, Cecil, FAA

Machtey, Barbara, Computer

Sciences Corp.
Mackness, Abby M., Booz,

Allen & Hamilton, Inc.

Madachy, Raymond J., Litton
Data Systems

Madden, Joseph A., U.S. Air

Force

Majane, John A., HSTX
Marciniak, John, CTA, Inc.

Marcoux, Darwin, DoD
Markel, Susan, TRW

Mattingly, Joe, HQ
AI:C4A/XPSP

Maury, Jesse, Omitron, Inc.
Mazzola, Ray, Loral AeroSys
McConnel, Pat, IRS

McCreary, Julia M., IRS
McGarry, Frank E.,

NASA/GSFC

McGarry, Mary Ann, lit
Research Institute

McGuire, Eileen, SofTech,

Inc.

Mclean, David R.,

AlliedSignal Technical
Services Corp.

McNeill, Justin F., Jet

Propulsion Lab

McShaxry, Maureen,
Computer Sciences

Corp.

SEW Proceedings 471 SEL-93-003

Meade Oallier,Julia,Naval

SurfaceWarfareCenter

Mecbels, Chris,Los Alamos

NationalLab

Mendonca, Manoel G.,

University of Maryland

Mersky, Jerry, Logicon, Inc.

Miller, Ronald W.,
NASA/GSFC

Moleski, Laura, CRM

Mokski, Walt, NASA/GSFC

Molloy, Michael,Martin
Marietta

Monteleone,RichardA.,

Lora]AeroSys

Montgomery, Jane,New

Technology,Inc.

Moore, Paul& NOAA/SPOx3

Morgan, Elizabeth,

AlliedSignal Technical

ServicesCorp.
Morusiewicz,Linda M.,

Computer Sciences

Co_p.
Moulds, Thomas, J.F. Taylor,

Inc.

Mrenak, Gary, Top Down
Software, Inc.

Murthy,Mohan V.,

AlliedSignalTechnical
ServicesCorp.

Myers,PhilipI.,Computer

Sciences Corp.

Narrow,Bernie, AlfiedSignal
Technical Services Corp.

Nassau,Dave,Applied

Expertise, Inc.
Nellea, Eric, Tandem

Computers

Nicholson,Dan, IITRI/ECAC

Noone, Estelle, Computer
Sciences Corp.

Norbedo, Robert, Texlron

Defense Systems
Norcio, Tony F., University

of Ma_land Baltimore
County

O'Brien, Robert L., Paramax

Aerospace Systems
O1)onnell,Charlie, ECA,

Inc.

O_lara, Audrey J.,
IMDT/FAA

O'Neill, Don, Softwm'e

Engineering Consultant
Offer, Marilyn, Jet

Propulsion Lab.
Ollove, Elizabeth, DoD

Olsen, Doug, Hughes STX

Padgett, Kathy G., DepL of
Commerce Census

Bureau

Page, Gerald, Computer
Sciences Corp.

Pajerski, Rose, NASA/GSFC

Palmer,Regina,Martin
Marietta

paniilio-Yap, N'ddd M., IBM

Parker, Bran, DepL of
Veterans Affairs

Parks, Mark, Computer
SciencesCorp.

Patton, Kay, Computer
Sciences Corp.

Pavnica, Paid,

Treasury/Fincen

Payne, Jeffe,4ryE., Reliable
Softwa_re Technologies

Corp.
Pecme, Joseph N., Vitro

Corp.
Peeples, Ron L., IBM

Pendley, Rex, Computer
Sciences Co¢p.

Perez, Frank, UniSys Corp.
Pedberg, Cindy,Alia

Systems
Peterman, David, Texas

Instruments

Pettengiil, Nathan,Martin
Marietta

Plett, Michael E., Computer

Sciences Corp.
Ponder, Melynda, Boeing
Potter, Adam A., University

of Maryland

Potter, Marshall R., Dept. of
the Navy

Powen, Jeffrey, CBSI
Proveaz& Clint, Booz, Allen

& Hamilton, Inc.

Patney, Barbara,
NASA/GSFC

Quann, Eileen S., Faslrak

Training, Inc.

Quinn, David, NSA

Rasmussen, Earl, U.S. Army
Rathbun, Bob, DISA

Ray, Julie, New Technology.
Inc.

Regardie, Myma L.,

Computer Sciences
Corp.

Reifer, Donald J.,

DISA/CIMfrXE

Reis, Richard, Computer
Sciences Corp.

Reitzel, Morris, DoD

Rhodes, Tom, NIST
Richard, Dan, Federal

Systems Company
Rinem'son,Lind& GTE -

Government Systems

Riss_, Gary E., DepL of
Veterans Affairs

Ritter, George, New
Technology, Inc.

Roberts, Becky L., CBIS
Federal, Inc.

Robertson, Laurie, Computer

Sciences Corp.
Robinson,BeRy L, USDA
Rockwell,Frank,

Intermelrics,Inc.

Rohr, John A., Jet Propulsion
Lab

Rohrer, Amos M., SYSCON

Rosenberg, Linda H., UniSys
Corp.

Rosenfeld, Scott R., MITRE

Corp.

Rodette, Gary, Fairchild
Space & Defense

Russ, Kevin M., USDA

Russell, Wayne M., GTE

Russo Waters, Olga.
Logicon, Inc.

Ryder, Regina, USDA
Rymer, John, IBM/FSC

Saisi, Robert O., DSD

I,abommcies, Inc.

Salmoa, Seth, Systems

Research & Applications
Coop.

SEW Proceedings 472 SEL-9;3-_i:

Sarnii-Mooney, Sousan,
DISA/JEIO/TFC

Samson, Don, IIT Research
Institute

Santiago, Richard, Jet

Propulsion Lab
Santo. Dave, TRW

Satyen, Urea D., MITRE
Corp.

Sauble, George, Omitron,
Inc.

Schappelle, Sam, IBM
Schilling, Mark, Project

Engineering, Inc.
SchotL Gary, Hughes Missile

Systems Co.
Schulmeyer, Gordon.

Westinghouse
Schwartz, Michael,

I1TRI/ECAC
Schwarz, Henry, NASA/KSC

Schweiss, Robert,
NASA/GSFC

Scott, Donna, Planning

Research Corp.
Scott, Rhonda M., IBM

Seaman, Carolyn B.,
University of Maryland

Seaton, Bonita, NASA/GSFC

Scarer, David P., Project

Engineering, Inc.
Seidewitz, Ed, NASA/GSFC

Senger, Paul J., Vitro Corp.
Shaffer, Edward S.,

AlliedSignal Technical
Services Corp.

Shavell, Zalman A., Vitro

Corp.
Sheckler, John D.,

AlliedSignal Technical
Services Corp.

Shim, Errol D., IFPUG

Shockey, Donna, IRS
Shugerman, Marvin, Systems

Research & Applications

Corp.
Siddalingalah, Vimala,

Computer Sciences

Corp.
Siegel, Karla, MITRE Corp.

Silberherg, David, DoD
Simmons, Barbara, DOD

Sinclair, Craig, SAIC

Singer, Carl A., BELLCORE

Singleton, Frank L., Jet
Propulsion Lab

Slade, Lucius, USDA
Slonim, Jacob, IBM Canada

Ltd.

Slud, Eric, University of

Maryland
Smidts, Carol, University of

Maryland
Smith, Arnold W., Martin

Marietta

Smith, Donald, NASA/GSFC

Smith, Donna, NAWC-AD

Smoller, Gary, Hughes
Information Technology
Co.

Smolyak, Mikhail, Computer
Sciences Corp.

Sohmer, Robert, RAM

Engineering Associates
Solomon, Carl A., Hughes

STX
Somerstein, Evan, IBM/FSC

Sova, Don, NASA/HQ

Spangler, Alan, IBM

Sponee, Bailey, Computer
Sciences Corp,

Splain, John M., Computer
Sciences Corp.

Spool, Peter R., Siemens
Corporate Research, Inc.

Sporn, Patricia A.,
NASA/HQ

Squires, Burton E., Orion
Scientific, Inc.

Srivastava, Alok., Computer
Sciences Corp.

Stark, Michael, NASA]GSFC
Staff, Ted,Booz, Allen &

Hamilton

Stevens, K. Todd, Virginia
Tech.

Sudman, William R.,
NAWCAD - Pax River

Sukri, Judin, Computer

Sciences Corp.

Suryani Jamin Tung, Angela,
AlliedSignal Technical
Services Corp.

Swain, Barbara, University of

Maryland
Szulewski, Paul A., C.S.

Draper Labs, Inc.

Taneja, Rajiv, Tandem
Computers Inc.

Tasaki, Keiji, NASA/GSFC
Theeke, Patrick A., ASSET

Thomas, George L., USDA
Thomas, William, MITRE

Corp.

Thompson, John T.,Loral

AeroSys

Thornton, Tammye, Naval
Surface Warfare Center

Thurston, Robert, NASA

Center for Aerospace
Information

Tiplitz, Lillian, Martin
Marietta

Truong, Son, NASA/GSFC
Turek, Margaret, BTG, Inc.

Turney, Brad, Systems
Research & Applications

Corp.

Ulcry, B. T., Mitre Corp.

Valett, Jon, NASAIGSFC
Van Verth, Patricia B.,

Canisius College

Vaughan, Frank g. RAM

Engineering Associates
Venkaresh, Via, .CTA, Inc.

Viehman, Ralph,
NASA/GSFC

Voas, Jeffrey, Reliable
Software Technologies

Corp.
Von Mayrhauser, Anneliese,

ColoradoState

University

Waligora, Sharon R.,

Computer Sciences

Corp.
Walker, Derek, IBM

Walker, John, Fairchild

Space & Defense
Wallace, Dolores, NIST

Walsh, Bob, IRS

Walsh, Chuck, NASA Center

for Aerospace
Information

Ward, Christopher B., .DoD
Waters, Olga, Logicon, Inc.
Weber, Paul A., Technology

Planning, Inc.

SEW Proceedings 473 SEL-93-003

Weiss, Sandy L., lIT
Research Institute

Weissler, Harold, Newlxrt
News Shipbuilding

Wenneson, Gregory J.,

Sterling Software, Inc.
Wentz, Brian, IBM
Weszka, Joan, IBM Federal

Systems Company
Wetzel, Paul E., Vitro Corp.
Wheeler, David A., Institute

for Defense Analyses
Wheeler, J. L., Computer

Sciences Corp.
White, Cora P., New

Technology, Inc.
Whitfield, Josette, I1T

Research Institute

Wilson, Jim, Applied

Expertise, Inc.
Wilson, Randy D., Naval

Center For Cost Analysis
Wilson, Robert K., Jet

Propulsion Lab

Winston, Audrey B., Hughes
Applied Information
Systems

Withers, Tim, Tidewater

Consultants, Inc.

Wohlwend, Harvey,

Schlumberger Lab. for
Computer Science

Wolf, Bryan, McDonnell

Douglas Aerospace

Wood, Dick J., Computer
Sciences Corp.

Wood, John W., Computer
Sciences Corp.

Wood, Terri, NASA/GSFC
Woodard, Fred, TRW

Woodyard, Charles E.,
NASA/GSFC

Wu, Sabina L., IITRJ/ECAC
WyskiCa, Dick M.,

University of Alabama at
Huntsville

Youman, Charles, SETA

Corp.
Young, Andy, Young

Engineering Services,
Inc.

Young, James M., Fairchild
Space & Defense

SEW Proceedings

Youngblood, Jim, Lockheed
O-_SC)

Zaveler, Saul, U.S. Air Force

Zelkowitz, Mary, University
of Mary_a

Zimet, Beth, Computer

Sciences Corp.
Zucconi, Lin, Lawrence

Livermore National

Laboratory

474 SEL-93-003

Appendix B: Standard Bibliography of SEL Literature

SEW Proceedings 475 SEL-93-003

SEW Proceedings 476 SEL-93-003

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-

ganized into two groups. The first group is composed of documents issued by the Soft-

ware Engineering Laboratory (SEL) during its research and development activities.

The second group includes materials that were published elsewhere but pertain to SEL

activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-78-005, Proceedings From the Third Summer Software En "gmeeringWorkshop,

September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,

R A. Scheffer and C. E. Velez, November 1978

SEL-78-OO7,Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,

December 1978

SEL-78-302, FORTRAN Static Source Code Analyzer Program (SAP) User's Guide

(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory: Relationship Equations,

K. Freburger and V. R. Basili, May 1979

SEL-79-004, Evaluation of the Caine, Farbeg, and Gordon Program Design language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-
ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,

November 1979

SEL-80-002, Multi-Level _pression Design language-Requirement Level (MEDL-R)

System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-005,A Study of the Musa Reliab'dity Model, A. M. Miller, November 1980

SEL-80-0(O, Proceedings From the Fifth Annual Software Engineering Workshop,

November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software

Systems, J. E Cook and E E. McGarry, December 1980

_gtt

SEW Proceedings

F'_I=II)tN4

BI-1

PAGE BLANK NOT FK.I_D

477 _ (.# SE_.-93-003?_ tt,lTE.%'7;_.._.-LY B_j,Nt"

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Ray/e/gh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Pieasso, December 1981

SEL-81-013, Proceedings of the Sixth Annual Software Engineering Workshop, Decem-
ber 1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-

neering Laboratory (SEL), A. L. Green, W. J. Decker, and E E. McGarry, September
1981

SEL-81-101, Guide to Data Collection, V. E. Church, D. N. Card, E E. McGarry, eta!.,
August 1982

SEL-81-104, The Software Engineering Laboratory, D.N. Card, E E. McGarry,
G. Page, et al., February 1982

SEL-81-110, Evaluation of an Independent Verification and Validation (1V& I0 Method-

ology for Flight Dynamics, G. Page, E E. McGarry, and D. N. Card, June 1985

SEL-81-305,RecommendedApproach to Software Development, L. Landis, S. Waligora,
E E. McGarry, et al., June 1992

SEL-81-305SP1,Ada Developers' Supplement to the Recommended Approach, R. Kes-
ter and L. Landis, November 1993

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and E E. McGarry, September 1982, vols. 1 and 2

!

SEL-82-004, Collected'Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From

the Software Engineenng Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102,FORTRANStatic Source Code Analyzer Program (SAP) System Description
(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T A. Babst,
M. G. Rohleder, and E E. McGarry, October 1983

SEL-82-1106, Annotated Bibliography of Software Engineering Laboratory Literature,
L. Morusiewicz and J. Valett, November 1992 ,

I000C_9
040711m4

BI-2

SEW Proceedings 478 SEL-93-003 '
==

SEL-82-1206, Annotated Bibliography of Software Engineering Laboratory Literature,

L. Morusiewicz and J. Valett, November 1993

SEL-83-001, An Approach to Software Cost Estimation, E E. McGarry, G. Page,

D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

E E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,

November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labo-

ratory (SEL), W. W. Agresti, V. E. Church, and E E. MeGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,

November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,

E E. MeGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,

R. W. Selby, Jr., E E. McGarry, et al., April 1985

SEL-85-002, Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and

Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, E MeGarry,

and C. Antic, December 1985

SEL-85-006, Proceedings of the Tenth Annual

December 1985

SEL-86-001, Programmer's Handbook for Flight

R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software

M. Stark, August 1986

Software Engineering Workshop,

Dynamics Software Development,

Development, E. Seidewitz and

1oo0¢_
o4o'?111_4

BI-3

SEW Proceedings 479 SEL-93-003

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)
Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume 1_, November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software
Development, S. Perry et al., March 1987

SEL-87-002, Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),
W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada ® Design Process and Its Implications: A Case Study,
S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume _ November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume I/I, November 1988

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase
Analysis, K. Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project." The GRODY Study,
S. Godfrey and C. Brophy, September 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/

Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and E McGarry,
November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/

Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

lOOOO_O
o4o711_4

BI-4 :

SEW Proceedings 480 SEL-93'003

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,

November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-103, Software Management Environment (SME) Concepts and Architecture

(Revision 1), R. Hendrick, D. Kisfler, and J. Valett, September 1992

SEL-89-301, Software Engineering Laborary (SEL) Database Organization and User's

Guide (Revision 3), L. Morusiewicz, December 1993

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description and Early Analysis, S. Green et al., March 1990

SEL-90-003,A Study of the Portability of an Ada System in the Software Engineering Lab-

oratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Erperi-

ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume VIII, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,

November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-

agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,

E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,

S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,

December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-

sion 1), E McGarry, August 1991

SEL-92-001, Software Management Environment (SME) Installation Guide, D. Kistler

and IC Jeletic, January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)

Database, G. Heller, J. Valett, and M. Wild, March 1992

040"//1804

BI-5

SEW Proceedings 481 SEL-93-003

SEL-92-003, Collected Software Engineering Papers: Volume X, November 1992

SEL-92-004, Proceedings of the Seventeenth Annual Software Engineering Workshop,
December 1992

SEL-93-001, Collected Software Engineering Papers: Volume.X/, November 1993

SEL-93-002, Cost and Schedule Estimation Study Report, S. Condon, M. Regardie,
M. Stark, et al., November 1993

SEL-93-003, Proceedings of the Eighteenth Annual Software Engineering Workshop,
December 1993

SEL-94-001, Software Management Environment (SME) Components and Algorithms,
R. Hendrick, D. Kistler, and J. Valett, February 1994

SEL-RELATED LITERATURE

l°Abd-EI-Hafiz, S. K., V. R. Basili, and G. Caldiera, "Towards Automated Support for

Extraction of Reusable Components," Proceedings of the IEEE Conference on Software
Maintenance-1991 (CSM 91), October 1991

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Sat-

ellite Simulation: A Case Study," Proceedings of the First International Symposium on
Ada for the NASA Space Station, June 1986

2Agresti, W. W., E E. McGarry, D. N. Card, et al., "Measuring Software Technology,"

Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

1Bailey, J. W., and V. R. Basili, '_A Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development

Reusability," Proceedings of the Eighth Annual National Conference onAda Technology,
March 1990

l°Bailey, J. W., and V. R. Basili, "The Software-Cycle Model for Re-Engineering and

Reuse," Proceedings of the ACM Tri-Ada 91 Conference, October 1991

1Basili, V. R., "Models and Metrics for Software Management and Engineering,"

ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.

New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the
First Pan-Pacific Computer Conference, September 1985

SEW Proceedings

BI-6

482 SEL-93-003

w

[

|

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of

Maryland, Technical Report TR-2244, May 1989

7Basili, V. R., Software Development: A Paradigrn for the Future, University of Maryland,

Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"

IEEE Software, January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution
and Resource Estimation Problems?," Journal of Systems and Software, February 1981,

vol. 2, no. 1

9Basili, V. R., G. Caldiera, and G. Cantone, '_, Reference Architecture for the Compo-

nent Factory,"ACM Transactions on Software Engineering and Methodology, January

1992

10Basili, V., G. Caldiera, E McGarry, et al., "The Software Engineering Laboratory--

An Operational Software Experience Factory," Proceedings of the Fourteenth Interna-

tional Conference on Software Engineering (ICSE 92), May 1992

1Basili, V. R., and K. Freburger, "Programming Measurement and Estimation in the

Software Engineering Laboratory," Journal of Systems and Software, February 1981,

vol. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and
Other Variables in the SEL," Proceedings of the International Computer Software and

Applications Conference, October 1985

4Basili, V. R., and D. Patnaik, A Study on Fault Prediction and Reliability Assessment in

the SEL Environment, University of Maryland, Technical Report TR-1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM, January 1984, vol. 27, no. 1

1Basili, V. R., and T. Phillips, "Evaluating and Comparing Software Metrics in the Soft-

ware Engineering Laboratory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, '9_RROWSMITH-PoA Prototype Expert System for

Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems

in Government Symposium, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of

Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-

ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,

Complexity, and Cost. New York: IEEE Computer Society Press, 1979

I000_29
0407/I 9e4

BI-7

SEW Proceedings 483 SEL-93-003

5Basili, V. R., and H. D. Rombach, "Tailoring the Software Process to Project Goals

and Environments," Proceedings of the 9th International Conference on Software Engi-
neering, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envi-

ronment," Proceedings of the loint Ada Conference, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Integrating Measurement Into Software

Environments," University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-

Oriented Software Environments," IEEE Transactions on Software Engineering, June
1988

7Basili, V. R., and H. D. Rombach, TowardsA Comprehensive Framework for Reuse: A

Reuse-Enabling Software Evolution Environment, University of Maryland, Technical

Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:

Model-Based Reuse Characterization Schemes, University of Maryland, Technical
Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, "Support for Comprehensive Reuse," SoftwareEn-
gineering Journal, September 1991

3Basili, V. R., and R. W. Selby, Jr., "Calculation and Use of an Environment's Charac-

teristic Software Metric Set," Proceedings of the Eighth International Conference on Soft-
ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, "Comparing the Effectiveness of Software Testing Strat-

egies," 1EEE Transactions on Software Engineering, December 1987

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection

and Analysis Methodology," Proceedings of the NATO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strate-

gies," IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies

in Software Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V. R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software

Engineering," IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss, A Methodology for Collecting Valid Software Engineering

Data, University of Maryland, Technical Report TR-1235, December 1982

1OOOO229
040"/tlg_l

BI-8

SEW Proceedings 484 SEL-93-003

3Basili, V. R., and D. M. Weiss, '_ Methodology for Collecting Valid Software Engi-

neering Data," 1EEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objec-

tives," Proceedings of the Fifteenth Annual Conference on Computer Personnel Research,

August 1977

Basili, V. R., and M. V. Zelkowitz, "Designing a Software Measurement Experiment,"

Proceedings of the Software Life Cycle Management Workshop, September 1977

1Basili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-

tory," Proceedings of the Second Software Life Cycle Management Workshop, August

1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics
in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "4,nalyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1978

9Booth, E. W., and M. E. Stark, "Designing Configurable Software: COMPASS Imple-

mentation Concepts," Proceedings of Tri-Ada 1991, October 1991

10Booth, E. W., and M. E. Stark, "Software Engineering Laboratory Ada Performance

Study--Results and Implications," Proceedings of the Fourth Annual NASA Ada User's

Symposium, April 1992

1°Briand, L. C., and V. R. Basili, '_ Classification Procedure for the Effective Manage-

ment of Changes During the Maintenance Process," Proceedings of the 1992 IEEE Con-

ference on Software Maintenance (CSM 92), November 1992

1°Briand, L. C., V. R. Basili, and C. J. Hetmanski, "Providing an Empirical Basis for

Optimizing the Verification and Testing Phases of Software Development," Proceed-

ings of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

11Briand, L. C., V. R. Basili, and C. J. Hetmanski, Developinglnterpretable Models with

Optimized Set Reduction for Identifying High Risk Software Components, TR-3048,

University of Maryland, Technical Report, March 1993

9Briand, L. C., V. R. Basili, and W. M. Thomas,A Pattern Recognition Approach for Soft-

ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,

May 1991

11Briand, L. C., S. Morasca, and V. R. Basili, "Measuring and Assessing Maintainability

at the End of High Level Design," Proceedings of the 1993 IEEE Conference on Software

Maintenance (CSM 93), November 1993

I00(X)_9
O4O711$104

BI-9

SEW Proceedings 485 SEL-93-003

llBriand, L. C., W. M. Thomas, and C. J. Hetmanski, "Modeling and Managing Risk

Early in Software Development," Proceedings of the Fifteenth International Conference
on Software Engineering (ICSE 93), May 1993

5Brophy, C.E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-

Oriented Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada
Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"

Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-

tion," Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N., '_ Software Technology Evaluation Program," Annais do XVIII

Congresso Nacional de Informatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," Journal
of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," Journal of
Systems and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, '_m Empirical Study of Software Design

Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. N., V.. E. Church, W. W. Agresti, and Q. L. Jordan, '_ Software Engineering

View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corpora-
tion, Technical Memorandum, February 1984

Card, D. N., Q. L. Jordan, and V..E. Church, "Characteristics of FORTRAN Modules,"

Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D.N., E E. McGarry, and G. T Page, "Evaluating Software Engineering

Technologies," IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T Page, and E E. McGarry, "Criteria for Software Modularization,"

Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-

neering Methodologies," Proceedings of the Fifth International Conference on Software
Engineering. New York: IEEE Computer Society Press, 1981

4Church, V.E., D.N. Card, W. W. Agresti, and Q. L. Jordan, '_An Approach for

Assessing Software Prototypes," ACM Software Engineering Notes, July 1986

1oo(x_m

040711N4

BI-10

SEW Proceedings 486 SEL-93-003

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through
Dynamic Variables," Proceedings of the Seventh International Computer Software and

Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Aria Static Source Code Analyzer Program, University of

Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godfrey, S., and C. Brophy, "Experiences in the Implementation of a Large Aria

Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical
Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Pro-

ceedings of the Tenth International Conference on Software Engineering, April 1988

nLi, N. R., and M. V. Zelkowitz, '_aa Information Model for Use in Software Manage-
ment Estimation and Prediction,"proceedings of the Second lntemational Conference on

Information Knowledge Management, November 1993

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,

University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering
Information Bases From Software Process and Product Specifications," Proceedings of

the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, E E., and W. W. Agresti, "Measuring Ada for Software Development in the
Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii
International Conference on System Sciences, January 1988

7McGarry, E, L. Esker, and K. Quimby,"Evolution of Ada Technology in a Production
Software Environment," Proceedings of the Sixth Washington Ada Symposium

(WADAS), June 1989

3McGarry, E E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource
Quality on the Software Development Process and Product," Proceedings of the
Hawaiian International Conference on System Sciences, January 1985

3page, G.,!E E. McGarry, and D. N. Card, 'A Practical Experience With Independent
Verification and Validation," Proceedings of the Eighth International Computer Software

and Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, 'gin Evaluation of Expert Systems for Software Engi-

neering Management," IEEE Transactions on Software Engineering, June 1989

3Ramsey, J., and V. R. Basili, '__nalyzing the Test Process Using Structural Coverage,"

Proceedings of the Eighth International Conference on Software Engineering. New York:
IEEE Computer Society Press, 1985

1000022g
0,_711 gg4

BI-11

SEW Proceedings 487 S!5L-93-003

5Rombach, H. D., '9, Controlled Experiment on the Impact of Software Structure on

Maintainability,, IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth

Journal of lnformation and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An

Industrial Case Study," Proceedings From the Conference on Software Maintenance,
September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis

for Generating Customized SE Information Bases," Proceedings of the 22ndAnnual

Hawaii International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical
Report TR-2252, May 1989

10Rombach, H. D., B. T. Ulery, and J. D. Valett, "Toward Full Life Cycle Control:

Adding Maintenance Measurement to the SEL," Journal of Systems and Software,
May 1992

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings

of the 1987 Conference on Object-Oriented Programming Systems, Languages, and
Applications, October 1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and

Experience," Proceedings of the 21st Hawaii International Conference on System
Sciences, January 1988

6Seidewitz, E., "General Object-Oriented Software Development with Ada: A Life

Cycle Approach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X,"

Ada Letters, March/April 1991

t°Seidewitz, E., "Object-Oriented Programming With Mixins in Ada," Ada Letters,

March/April 1992

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Develop-

ment Methodology," Proceedings of the First International Symposium on Ada for the
NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, '_a Object-Oriented Approach to Parameterized Soft-

ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991

11
A

BI-12

SEW Proceedings 488 SEL-93-003

8Stark, M., "On Designing Parametrized Systems Using Ada," Proceedings of the

Seventh Washington Ado Symposium, June 1990

11Stark, M., "Impacts of Object-Oriented Technologies: Seven Years of SEL Studies,"

Proceedings of the Conference on Object-Oriented Programming Systems, Languages, and

Applications, September 1993

"/Stark, M. E. and E. W. Booth, "Using Aria to Maximize Verbatim Software Reuse,"

Proceedings of TRI-Ada 1989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle,"

Proceedings of the Joint Ada Conference, March 1987

10Straub, E A., and M. V. Zclkowitz, "On the Nature of Bias and Defects in the Soft-

ware Specification Process," Proceedings of the Sixteenth International Computer Soft-

ware and Applications Conference (COMPSAC 92), September 1992

SStraub, E A., and M. V. Z_lkowitz, "PUC: A Functional Specification Language for

Ada," Proceedings of the Tenth International Conference of the Chilean Computer Science

Society, July 1990

7Sunazuka , T., and V. R. Basili, Integrating Automated Support for a Software Manage-

ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,

July 1989

10Tian, J., A. Porter, and M. V. Zdkowitz, '_m Improved Classification.Tree Analysis of

High Cost Modules Based Upon an Axiomatic Definition of Complexaty," Proceedings

of the Third IEEE International Symposium on Software Reliability Engineering

(ISSRE 92), October 1992

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-

ment Data, Data and Analysis Center for Software, Special Publication, May 1981

10Valett, J. D., 'gmtomated Support for Experience-Based Software Management,"

Proceedings of the Second Irvine Software Symposium (IS S '92), March 1992

5Valett, J. D., and E E. McGarry, '_ Summary of Software Measurement Experiences
in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

3Weiss, D.M., and V. R. Basili, "Evaluating Software Development by Analysis of

Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions

on Software Engineering, February 1985

5Wu, L., V. R. Basili, and IC Reed, '_ Structure Coverage Tool for Ada Software Sys-

tems," Proceedings of the Joint Ada Conference, March 1987

tZclkowitz, M. V., "Resource Estimation for Medium-Scale Software Projects," Pro-

ceedings of the Twelfth Conference on the Interface of Statistics and Computer Science.

New York: IEEE Computer Society Press, 1979

BI-13

1000_
0,10"Ill_

SEW Proceedings 489
SEL-93-003

lkowltz, M.V., Data Collection and Evaluation for Experimental Corn utSc' ,, p er
lence Research, Emplncal Foundattons for Computer and Information Science (Pro_

ceedings), November 1982

6Zelkowitz, M. V.., "The Effectiveness of Software Prototyping: A Case Study," Pro-

ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V.., "Resource Utilization During Software Development," Journal of
Systems and Software, 1988

. gg •

sZelkow,_, M. ,,V., Evolut,on Towards Specifications Environment: Experiences With
yntax _-xlltors, Information and Software Technology, April 1990

m

BI-14

SEW Proceedings 490 SEL-93-003

NOTES:

1This article also appears

Volume I, July 1982.

2This article also appears m

Volume II, November 1983.

3This article aJso appears m

Volume III, November 1985.

m SEL-82-004, Collected Software Engmeenng

SEL-83-003, Collected Software Engmeenng

SEL-85-003, Collected Software Engmeermg

Papers:

Papers:

Papers:

4This article also appears m SEL-86-004, Collected Software Engmeenng Papers:

Volume IV,, November 1986.

5This article also appears m SEL-87-009, Collected Software Engmeenng Papers:

Volume V, November 1987.

6This article also appears in SEL-88-002, Collected Software Engmeenng Papers:

Volume VI, November 1988.

7This article also appears m SEL-89-006, Collected Software Engmeenng Papers:

Volume VII, November 1989.

8This article also appears in SEL-90-005, Collected Software Engmeenng Papers:

Volume VIII, November 1990.

9This article also appears in SEL-91-005, Collected Software Engineering Papers:

Volume IX, November 1991.

10This article also appears in SEL-92-003, Collected Software Engineering Papers:

Volume X, November 1992.

llThis article also appears in SEL-93-001, Collected Software Engineering Papers:

Volume XI, November 1993.

0407/1 _4

BI-15

SEW Proceedings 491 SEL-93-003

SEW Proceedings 492 $EL-93-003 _z

=

if

___ __L_ B_v_

f

/"

_ocCea_ngs!

the _g_teentb gnnoal So_t,_are

Soft_are Engineering Labor atoVJ

ffe55_ngineedng Branch

dard Space Flight Center

dcenbC_t,MarN_and

aoucs and Space hd_inistrati°n

Iqat_ou"' _ 13 C. 2.uJ-"
_/ashingt°"' _"

552

0188

sEL_93.003

CR_lg934g

*l

1

i jr ,

Du' categOr_ 6_"
Subject

Ce_ater _a
torU_ tol

. .ksho '_ provides a aluaSOr_
TheV_°r_ ruse, a_d

'eC_ O

wer e

work reported are
6etailixag I:act°r3r"

to start an

s'lY-

,.6_ these

.. boratory (sEL),=• La S ac_

ara PedbY the p_trat_O_ (S/X')/G°8"6 on
artd space

the world to

oceSS, _reseotaS-°_ a_,_tt_o_d_e_'

,orkShop -

_5

i ,

_r

_ _v i_ _L

