Proceedings of the Eighteenth Annual
Software Engineering Workshop

December 1-2, 1993

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

"

il

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the
National Aeronautics and Space ‘Administration/Goddard Space Flight Center
(NASA/GSFC) and created to investigate the effectiveness of software engineering
technologies when applied to the development of applications software. The SEL was
created in 1976 and has three primary organizational members:

NASA/GSFC, Software Engineering Branch
The University of Maryland, Department of Computer Science
Computer Sciences Corporation, Software Engineering Operation

The goals of the SEL are (1) to understand the software development process in the
GSEC environment; (2) to measure the effects of various methodologies, tools, and
models on this process; and (3) to identify and then to apply successful development
practices. The activities, findings, and recommendations of the SEL are recorded in the
Software Engineering Laboratory Series, a continuing series of reports that includes this
document.

Single copies of this document may be obtained by writing to:

Software Engineering Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771

PABGEDING PAGE BLANK NOT FRLMED
SEW Proceedings iii SEL-93-003

SEW Proceedings

The views and findings expressed
herein are those of the authors and
presenters and do not necessarily
represent the views, estimates, or
policies of the SEL. All material
herein is reprinted as submitted by
authors and presenters, who are
solely responsible for compliance
with any relevant copyright, patent,
or other proprietary restrictions.

SEL-93-003

e om

!I‘! I

CONTENTS

Page

om 7 1

W-D,’(37
5/ 39

60

W

81

\}J\

o T

55 116
% 144
ogmi T 159

§7 161

s, 176
55199
cmi T 251

4
5 253

SEW Proceedings v

Materials for each session include a summary of the live
presentation and selected questions and answers, as well
as any viewgraphs, abstracts, or papers submitted for
inclusion in these Proceedings.

Summary of the Eighteenth Annual Software Engineering Workshop
Session 1: The Software Engineering Laboratory

The Maturing of the Quality Improvement Paradigm in the SEL
V. R. Basili, University of Maryland

Process Improvement as an Investment: Measuring Its Worth
F. E. McGarry and K. F. Jeletic, NASA/Goddard

Recent SEL Experiments and S tudies
R. Pajerski and D. Smith, NASA/Goddard

Session 2: Measurement
Discussant: G. Page, Computer Sciences Corporation

Specification Based Software Sizing: An Empirical Investigation of
Function Metrics
R. Jeffery and J. Stathis, University of New South Wales

Software Forecasting As It is Really Done: A Study of JPL Software Engineers
M. A. Griesel, J. M. Hihn, K. J. Bruno, T. J. Fouser, and R. C. Tausworthe,
Jet Propulsion Laboratory/California Institute of Technology

Assessing Efficiency of Software Production for NASA-SEL Data
A. von Mayrhauser and A. Roeseler, Colorado State University

Session 3: Technology Assessment

Discussant: G. Heller, Computer Sciences Corporation

The (Mis)use of Subjective Process Measures in Software Engineering

J. D. Valett, NASA/Goddard and S. E. Condon, Computer Sciences Corporation

Analysis of a Successful Inspection Program
R. Madachy, L. Little, and S. Fan, Litton Data Systems

Lessons Learned Applying CASE Methods/Tools to Ada Software
Development Projects
M. H. Blumberg and R. L. Randall, IBM Federal Systems Company

Session 4; Advanced Concepts
Discussant: A. Porter, University of Maryland

Software Engineering with Application-Specific Languages
D. J. Campbell, L. Barker, D. Mitchell, and R. H. Pollack, Unisys Corporation

SEL-93-003

.‘372(297

Ooeri 7 321

S5y 5 323

5/5/ 366

—_——

v /399

5/@ 401

5/7- 422

5}5 450

469
475

SEW Proceedings Vi

Applying Formal Methods and Object-Oriented Analysis to Existing

Flight Software

B. H. C. Cheng, Michigan State University and B. Auernheimer, Californja State
University, Fresno

Integrating End-to-End Threads of Control Into Object-Oriented Analysis

and Design
J. E. McCandlish, TRW, J. R. MacDonald, ALPHATECH, Inc., and S. J. Graves,

University of Alabama in Huntsville

Session 5: Process
Discussant: S. Waligora, Computer Sciences Corporation

Fusing Modeling Techniques to Support Domain Analysis for Reuse
Opportunities Identification
S. M. Hall and E. McGuire, SofTech, Inc.

An Empirical Comparison of a Dynamic Software Testability Metric to Static
Cyclomatic Complexity

J. M. Voas, Reliable Software Technologies Corp., K. W. Miller, Sangamon State
University, and J. E. Payne, Reliable Software Technologies Corp.

Software Quality: Process or People -
R. Palmer, Martin Marietta Astronautics and M. LaBaugh, RE&C Group

Session 6: Software Engineering Issues in NASA
Discussant: M, Stark, NASA/Goddard

Profile of NASA Software Engineering: Lessons Learned from Building
the Baseline]
D. Hall, Science Applications International Corporation and F. E. McGarry,

NASA/Goddard

Impact of Ada in the Flight Dynamics Division. Excitement and Frustration =~
J. Bailey, Software Metrics, Inc., S. Waligora, Computer Sciences Corporation,
and M. Stark, NASA/Goddard

Software Engineering Technology Transfer: Understanding the Process
M. V. Zelkowitz, University of Maryland

Appendix A — Workshop Attendees
Appendix B — Standard Bibliography of SEL Literature

SEL-93-003

n

|

1

Ly,

niir7 70

/37
SUMMARY OF THE EIGHTEENTH ANNUAL
SOFTWARE ENGINEERING WORKSHOP

The Eighteenth Annual Software Engineering Workshop, sponsored by the Software
Engineering Laboratory (SEL), was held on 1 and 2 December 1993 at the National
Aeronautics and Space Administration (NASA)/Goddard Space Flight Center in
Greenbelt, Maryland.

The Workshop provides a forum for software practitioners from around the world to
exchange information on the measurement, use, and evaluation of software methods,
models, and tools. This year, approximately 450 people attended the Workshop, which
consisted of six sessions on the following topics: The Software Engineering Laboratory,
Measurement, Technology Assessment, Advanced Concepts, Process, and Software
Engineering Issues in NASA. Three presentations were given in each of the topic areas.
The content of those presentations and the research papers detailing the work reported are
included in these Proceedings. The Workshop concluded with a tutorial session on how
to start an Experience Factory. (Copies of those slides were distributed at the
Workshop.)

In his introductory remarks, Frank McGarry of NASA/Goddard provided the audience
with a background of the SEL organization and set the stage for the Session 1 presenta-
tions on the SEL as well as for other presentations that were derived from SEL

experiences.

The SEL is a virtual organization that includes NASA/Goddard’s Software Engineering
Branch, the University of Maryland's Department of Computer Science, and the
Computer Sciences Corporation's Software Engineering Operation. The primary goals of
the SEL, as stated by McGarry, are to better understand software and to determine the
impact that changing technologies have on the way an organization goes about the
business of producing software. Every project that is developed in the SEL's parent
organization, the Flight, Dynamics Division (FDD) of NASA/Goddard, is a potential
experiment where the SEL can study some technology and measure the impact that this
technology has on some specific goals within the organization. In this way, the SEL can
determine the appropriate use of technologies in its environment.

McGarry pointed out that the concept of learning from experience in a production envi-
ronment has been modeled as the "Experience Factory” and has been written about exten-
sively by Dr. Victor Basili, a cofounder of the SEL. The experience factory is, in
essence, a well-defined model or paradigm of how one learns from one's own experi-
ences, sets goals, measures results, and then uses these results to continue to change,
evolve, and mature better ways of doing business.

One of the key insights that the experience factory has brought to light, McGarry
asserted, is that not all software is the same. You have to understand your own domain
and your own organization before making changes and expecting to make improvements.
You have to understand what your own goals, strengths, weaknesses, processes, products,
people, and problems are before you can conclude what particular technologies are most
appropriate to embrace to make measurable improvements in your organization.

McGarry then showed the audience some of the characteristics of the projects that the
SEL has studied since 1976. All of the projects were in the flight dynamics domain. He

SEW Proceedings 1 SEL-93-003

explained that the point of showing the characteristics of the FDD environment was

twofold: first, to explain that the results that the augilcnqe would hear during the SEL

ments. McGarry emphasized that the process—the experience factory concept (of con-
tinual process improvement)—was indeed applicable, but that the results, the specific
technologies they found to be appropriate, were domain specific. "You have to find those
[effective technologies] in your own particular domain," McGarry said.

Next, McGarry briefly described the basic improvement model or paradigm that the SEL
uses, which consists of three iterative phases: understanding, assessing, and packaging.
Understanding is where the SEL strives to better understand the environment, including
the domain, tools, products, and existing processes. In the assessment phase, the SEL
examines the impact that technologies have on the environment as measured against pre-
determined goals, such as decreased cost or increased reliability. McGarry stressed that

aging. In this phase, the SEL captures the favorable experiences (technologies and pro-
cesses) and infuses them back into the organization on a broader level, through standards,
policies, training, tools, and environments.

McGarry noted that over the course of the workshop the audience would hear several
speakers talk about data and information extracted from the SEL environment. He then
introduced Vic Basili, who expanded on the discussion of the SEL process improvement

model.

SEW Proceedings 2 SEL-93-003

i

[T

1y

Session 1: The Software Engineering Laboratory

THE MATURING OF THE QUALITY IMPROVEMENT
PARADIGM IN THE SEL

presented by Victor Basili, University of M aryland

Vic Basili presented an historical account of how the SEL quality improvement paradigm
(QIP) first came into being and how it has evolved through the years. He explained what
activities were performed and what lessons were learned during several 5-year intervals
from the SEL's inception in 1976 to the present, and then offered a glimpse of where SEL
research is headed in the near future.

Basili began by sharing some of the false starts the SEL has made (e.g., trying to assess
before understanding, collecting data before establishing goals); how the SEL has leamned
from these false starts; and how, when the SEL verified by experimentation that a partic-
ular technology or process was effective, the experience was packaged and infused into
the organization. Basili shared some of the philosophy of the SEL (discover what works
and then apply it) and explained the interdependent relationship between the SEL's
NASA, University of Maryland, and Computer Sciences Corporation partners.

Next, Basili presented the current QIP. This paradigm is a more detailed model of
McGarry's understand-assess-package paradigm. The expanded model consists of Six

steps: (1) characterize the current project and environment; (2) set quantifiable goals; (3)
choose the appropriate process model and supporting methods and tools; (4) execute the
processes and collect data; (5) analyze the data to evaluate current practices; and

package the experience. Basili then spoke briefly about how those particular steps have

evolved before he launched into his historical overview.

1976—1980. The SEL started out by looking at other people's models (e.g., the Raleigh
curve, TRW's 40/20/40 rule for designing, coding, and testing software) to determine
whether these models applied to the SEL environment. Data collection forms were de-
veloped, existing processes were combined, and the process was studied. The "goal-
question-metric" paradigm was created to enable the researchers to organize their data
around particular studies. Data collection was loosely monitored, baselines built, corre-
lations sought, and information was recorded.

The SEL learned that it needed to better understand the environment, projects, processes,
and products; it needed to build its own models based on its own environment and prod-
ucts; it needed to understand the factors that create similarities and differences among
projects so that it would know the appropriate model to apply; and the SEL needed to un-
derstand how to choose the right processes to create the desired product characteristics.
Basili emphasized that a big lesson learned was that data collection has to be goal driven;

you can't just collect data and then figure out what to do with them.

1981—1985. During this period, the SEL was building its own baselines and models of
cost, defects, and processes. It began to set specific goals in multiple areas and began to
incorporate subjective metrics into its measurement process. The SEL experimented with
well-defined technologies and began experiments with potentially high-impact technolo-
gies such as Ada and object-oriented design (OOD). The SEL collected fewer data

SEW Proceedings 3 SEL-93-003

(because collection was more goal driven) and stored these data in a relational database.
It shifted its emphasis to the relationship between process and product characteristics:
recorded lessons learned; and began formalizing process, product, knowledge, and
quality models. In other words, the SEL began to package its own experience. At this
time the SEL developed its first recommended QIP: characterize, set goals, choose the
process, execute, analyze, and record.

From these activities, the SEL learned many lessons. It discovered that software devel-
opment follows an experimental paradigm; i.e., designing experiments is an important
part of improving, and evaluation and feedback are necessary for learning. It discovered
a need to experiment with new technologies and to learn about the relationships between
process, product, and quality models. It learned that it could multiply its effectiveness by
reusing experience in the form of processes and other forms of knowledge. And it
learned that you can drown in too much data; data must be selectively collected to sup-
port well-defined goals.

1986-—1990. During the late 1980s, the SEL worked on capturing experience in models;
it built models that enabled it to differentiate between environments, Goals and models
became the driver for measurement The SEL built the Software Management
Environment (SME), an intelligent tool that can access the SEL database and produce
graphical models of various factors for dozens of projects. The SEL tailored and evolved
its use of Ada and OOD based on experience. Experience and feedback were recognized
as an integral part of the QIP. The SEL embedded data into the processes and began to
closely monitor study projects, and it demonstrated relationships between processes and
products, based on extensive analysis. The SEL made the transition from simply
recording information, to packaging information in the form of focused tailored pack-
ages. The SEL began to learn how to transfer technology better through organizational
structure, experimentation, and evolutionary culture change.

Lessons learned during this period include the following: experience needs to be evalu-
ated, tailored, and packaged for reuse; there is a tradeoff between reuse and improvement
(because introducing change causes a loss in experience and predictability); and software

followed by testing, as in Cleanroom methodology). As a result of these findings, the
QIP was reformulated as: characterize, set goals, choose process, execute, analyze, and
package. It was at this time that the SEL organization and activities became formalized
under the "Experience Factory" title.

1991—1995. In this period, the SEL is continuing to build relationship models between
processes and products. It is performing domain analysis studies to identify similar pro-
Jects using techniques appropriate for software engineering data. The SEL plans to
automate the model-based goal-question-metric as much as possible. The SEL is devel-
oping technologies tailorable to specific project needs (such as tailored reading tech-
niques). It is building a more powerful, flexible experience base by increasing and
improving the interaction between developers and experimenters to enable the capture of
more effective feedback., Today, the SEL is clearly focused on local needs and goals.
The SEL is learning how to run more efficient experiments and combine controlled
experiments with case studies. And, through an empirical modeling technique known as
optimized set reduction, the SEL is building better models for cost modeling and defec-
tive module prediction.

SEW Proceedings 4 SEL-93-003

"

i

W [} LTI O Il
i i

L) KR

"

Basili concluded by saying that the SEL has come a long way! A great deal has been
learned about software improvement, and the learning process has been continuous and
evolutionary. The SEL has packaged what it has learned into its process, product, and
organizational structure. This evolution is supported by a strong relationship between
research and practice. Finally, Basili noted, the relationship known as the SEL continues
to require patience and understanding on both sides of the research and practice
continuum, and when this relationship is nurtured and protected, it pays measurable
dividends.

PROCESS IMPROVEMENT AS AN INVESTMENT:
MEASURING ITS WORTH

presented by Frank McGarry, NASA/Goddard

In this presentation Frank McGarry compared the Software Engineering Institute (SEI)
Capability Maturity Model (CMM) to the SEL process improvement model. He looked
at steps required to compute return on investment (ROT), examined information needed to
determine ROI, and illustrated how investment in process improvement has affected pro-
cess and products in the SEL environment.

McGarry began his comparison of the CMM and the SEL process improvement model by
quickly explaining the concepts behind each and identifying what he sees as the funda-
mental difference between the two approaches. In the CMM, an organization evolves
through five levels of maturity that reflect its capability to produce complex software.
The levels are (1) ad hoc, (2) repeatable, (3) defined, (4) managed, and (5) optimizing. In
the SEL model, the process evolves from understanding the processes being used and the
products being developed, to assessing the impact of process changes, to packaging those
processes that have a positive impact on measurable product characteristics. Although
both models have the same goal of improving the product, the fundamental difference
between the two paradigms, McGarry asserted, was that the CMM primarily focuses on
the process level of an organization (such as the standards and techniques used), whereas
SEL focuses on attributes of the product, such as error rates, productivity, and
complexity.

To facilitate a consistent comparison of the two approaches, McGarry then outlined the
steps that he would examine for both models in determining the ROI from process
improvement: (1) defining goals, (2) producing baselines, (3) investing in change, (4)
assessing change, and (5) measuring ROL

Defining Goals. Both the CMM and SEL emphasize setting goals. The CMM approach
is to set a goal to get t0 a new level of maturity. This general goal is the same for all
organizations: t0 evolve to higher levels of maturity until reaching an optimizing state.
The SEL goal, on the other hand, is to improve the product in some particular way that is
appropriate to that product. In some organizations, for example, it may be most appro-
priate to decrease error rates; in another organization it may be more important to try to
increase the level of reuse.

Producing Baselines. The second step in determining ROI is to produce a baseline. That

is, you must determine where you are with respect to where you aspire to be. In the
CMM paradigm, the approach is to assess your process using a "common yardstick" to

rate how your organization performs certain key activities such as training, measurement,
and defining and following standards. CMM establishes a process baseline. The SEL is

also interested in standards, training, and measurement, but what sets the SEL paradigm

SEW Proceedings 5 SEL-93-003

apart from the CMM paradigm, McGarry asserted, is that the SEL emphasizes both pro-
cess and product understanding. Furthermore, the measures that the SEL focuses on are
specific to a particular project's goals with respect to their domain, people, and environ-
ment. For example, if your goal is to reduce error rates, then you baseline error rates; if
your goal is to increase reuse, then you baseline your current level of reuse.

To further illustrate measurements characterizing process baselines, McGarry showed pie
charts of effort distribution and classes of errors, and line plots of source code growth
rates. To exemplify product characteristic baselines, McGarry showed bar charts of error
rates, cost, and reuse. In all cases, the measurements were based on actual SEL data.
McGarry emphasized that these measurements would be used as qualifiers to determine
whether changing the process was having a positive change on the product.

Investing in Change. Using the CMM, the organization's assessed level drives the
change. If your organization is assessed as a level 1, then you work on activities that will
get you to level 2 before you work on activities to getyouto level 3, 4, or 5. In the SEL
paradigm, your process improvement activities are driven by your organization's unique
experiences and goals. If your experience tells you that programming in Ada does not
lead to improved productivity, then you don't mandate Ada. If there is evidence that
Cleanroom lowers error rates, and this is important to your organization, then you
develop a training program to teach Cleanroom techniques and you experiment with
Cleanroom. You invest in changes that you discern will make a positive impact on
process efficiency as well as product characteristics.

To exemplify how the SEL has invested in change, McGarry showed how the results of
experiments in design techniques, testing approaches, Ada, OOD, Cleanroom, and other
experiments have been packaged into training, software measurement guidebooks, and
recommended approaches to developing software and managing software development.
Again, McGarry emphasized that experience drives process change.

Assessing the Impact of Change. The fourth step in determining ROI is to assess the
impact that change has had on the organization. In the CMM paradigm, success is mea-
sured by process change: Did you achieve the maturity level you set out to achieve? In
the SEL paradigm, you reexamine not only the impact of the process, but also the impact
that process change has had on your product. Product and process change in the SEL are
very domain-dependent. As an example, McGarry offered evidence of the impact of
introducing the Cleanroom technique by showing graphs of the impact of Cleanroom on
effort distribution and source code growth rate with Cleanroom.

Measuring the Return on Investment. McGarry explained that the first piece of
information needed is the actual cost of investing in process improvement. He began by
showing a summary of the kinds of investments the SEL has made in process improve-
ment in four categories: project overhead, including filling out forms, collecting data,
and training; data processing, including quality assurance, maintaining a database, and
archiving data; analysis and application, including developing processes and standards,
defining experiments, and analyzing results; and developing and maintaining mission
support software. McGarry noted that the total cost of SEL process improvement activi-
ties (the investment) was approximately 11% of all expenditures.

Next, McGarry discussed the return on investment. McGarry noted that an investment in
product-driven goals enabled direct measurement of return. He illustrated his point by
providing measurement examples, based on changes from the mid 1980s to the early
1990s, that show an increase in product quality and a decrease in product cost: reliability
was improved 75%—measured as a reduction in errors per thousand source lines of code

SEW Proceedings 6 SEL-93-003

(Ihiid

LR I

m

(KSLOC) from 4.5 to 1; the average level of reuse was up from 20% to 79%; and the
average system cost was down 55%, from 490 to 210 staff-months (related, in part, to
reuse).

McGarry concluded that process improvement activities not only enabled the SEL to
produce more functionality, for more complex systems, with higher reliability, at signifi-
cantly lower costs, it also had the side benefits of focusing the SEL's research activities,
integrating standards and measurements with training and technology insertion, and con-
tributing to a culture change that recognizes developers as being valuable partners in the
process improvement paradigm, resulting in a synergistic approach to process improve-
ment and a positive return on investment.

Question: In your comparison of the CMM and the SEL approaches, it struck
me that they really didn't seem to be two independent approaches, in
that you could use the SEL approach to improve your CMM rating.

The SEL approach could be an implementation of a process to
improve your CMM, so that it wasn't a matter of comparing one
approach to another, because the SEL approach seemed to be more a
how to do it, and the CMM approach seems to be more what you are.
Do you see that difference as opposed to just saying these are two

alternatives?

McGarry: I think there is a marriage between the two approaches. There is a
reason that both exist. But your observation that there should be a
continuous improvement and refinement of either model—in this case

the CMM—driven by the product goals—I absolutely agree with that.

RECENT SEL EXPERIMENTS AND STUDIES
presented by Rose Pajerski, NASA/Goddard

Rose Pajerski began her discussion of recent SEL experiments with an overview of pro-
jects and studies conducted by the SEL since 1976. She emphasized that SEL studies
have been based on the actual development of operational flight dynamics systems in the
local environment, that each project represents a potential source of data for SEL studies,
and that many studies are ongoing.

Pajerski indicated that, due to a recent organizational change, the SEL now has responsi-
bility not only for software development, but also testing and maintenance. As a result,
many of the new studies being conducted by the SEL are in the areas of testing and
maintenance, thus allowing the SEL to study and report on activities that span the entire
software life cycle.

Pajerski then quickly presented a summary of current SEL studies both in terms of the
SEL improvement model and the software life-cycle phases. She reiterated that SEL
studies follow a three-step improvement paradigm of understanding, assessing, and pack-
aging. For this presentation, Pajerski chose to focus on three studies: (1) the cost and
schedule estimation study, (2) 2 comparison of testing approaches, and (3) the
maintenance study.

Cost and Schedule Estimation Study. The goals of this study were to rebaseline the SEL

environment in terms of cost (effort), schedule, and reuse—given the organizational and
technological changes—and to update the SEL's established baseline cost and schedule

SEW Proceedings 7 SEL-93-003

estimation models if necessary. The study included 39 projects ranging from 20 to 300
KSLOC and looked at the impacts of reuse, language, application types, and subjective
factors such as levels of experience and kinds of technologies.

The study revealed some interesting discriminators: while the level of reuse and lan-
guage drove cost, the application type drove schedule in the SEL. Key findings include:
it costs 50% more to reuse a line of Ada code than a line of FORTRAN code: software
size growth is 15% lower for high-reuse systems; it takes about 35% longer to develop a
simulator than it does to develop an attitude ground support system (due to the level of
uncertainty in the requirements); and subjective factors did not have a significant impact
on cost or schedule.

Experiments in Testing. The goals of this study were to assess the impact of organiza-
tional changes on the SEL Processes; to compare testing approaches with respect to their
impact on process measures and product measures; and to assess effort and error distri-
butions to determine testing effectiveness. The study examined four testing approaches,
covering 34 projects of various characteristics during the past 15 years.

Before presenting the results of the experiments, Pajerski explained similarities and dif-
ferences among the four testing approaches. In the SEL standard testing process, devel-
opers are responsible for implementing software and for system testing the software to
verify end-to-end data flow. The software is then passed to a separate acceptance organi-
zation that tests the software using a functional, requirements-based approach. The
Independent Verification and Validation (IV&YV) approach adds an independent team to

cal testing and functional, requirements-based testing. The independent testing approach
uses two teams: the development team, which implements the software and performs
unit and integration testing, and an independent test team, which performs the equivalent
of system and acceptance testing. ,

A comparison of test effort distribution by activity (design/code vs. test) revealed an
observable change in process characteristics. The SEL standard testing approach was
roughly comparable to the SEL Cleanroom approach, with both approaches splitting the
activity time roughly 50:50 between design/code and testing. In the independent testing
approach, however, 70% of the activity time was spent in design/code, and only 30% of
the activity time was spent in testing. This observable process change will be studied
more in the coming year by the SEL.

Pajerski then commented on what she called the bottom-line goal of the test experiments:
determining testing effectiveness by looking at product measures. In examining error
rates for the various approaches, Pajerski presented preliminary evidence showing that
projects using the independent test approach experience fewer errors per KSLOC during
development than those using the SEL standard test approach or the SEL Cleanroom
approach. Furthermore, high-reuse projects had much lower error rates than low-reuse
projects. Pajerski concluded that both the testing approach and the reuse leve] affect
error rates.

Maintenance Study. The short-term goal of this study is to build a baseline
understanding of the maintenance process in terms of software characteristics, effort
distribution, and error/change profiles. The long-term goal of the study is to build
estimation models for maintenance, There are 105 operational systems under

SEW Proceedings 8 SEL-93-003

e

|

o \HHU

e ey

maintenance totaling 3.5 million SLOC, ranging in size from 10 to 250 KSLOC. Eighty-
five percent of the code has been developed in _FORTRAN, and 80% of the work has

been done on the mainframe computer. All activities after the first operational use of the
system are being examined to build this baseline understanding.

Pajerski first discussed error rates and cost of maintenance. She pointed out that single-
mission systems had detectable error rates of 0.1 errors/KSLOC and that multimission
spacecraft have detectable error rates of 1.5 errors/KSLOC. She noted that the cost to
maintain a multimission system was about 10% of the total development cost, whereas
the cost to maintain a single-mission system was only 2% of the development cost.
Pajerski conjectured that the difference in error rates as well as cost was due to the fact

that the multimission systems are used, updated, enhanced, and maintained more often.

Pajerski then discussed effort and change type distribution. She noted that, in the SEL
environment, about 7% of the requests for change received were for software enhance-
ments and 72% of the requests for change received were due to error conditions. The
actual effort to implement these changes, however, broke down differently: about 67%
of the effort was spent enhancing the code, 22% of the effort was used to correct errors,

and 11% of the effort was spent adapting the code to such things as new operating sys-
tems and compilers.

Pajerski then compared the effort distribution of development projects with maintenance
projects as another way of characterizing the maintenance process. The most significant
difference between maintenance and development effort distributions was that in devel-
opment, 30% of the effort was devoted to testing, whereas in maintenance, only 5% was
spent on testing.

Pajerski concluded her presentation by showing these studies in the context of the SEL
process improvement model. She pointed out that the cost and schedule study had just
completed the packaging stage; testing approaches were in the assessing stage; and
maintenance was in the understanding phase. Pajerski maintained that none of these
studies would ever be really complete, in that each of them would repeatedly cycle
through the understanding-assessing-packaging phases as part of the SEL's ongoing pro-
cess improvement program. With the change in the organization of the SEL, much effort
will be spent studying and experimenting with testing and maintenance processes, and in
time, the insights gained from studying these processes will be packaged as models,
guidebooks, and tools.)

Question: I was interested in the slide that suggests that it's more expensive to
reuse Ada than it is to reuse EORTRAN, and I was wondering if there
was a difference in productivity that tends to compensate in terms of

the actual cost and also whether or not there are factors that are spe-
cial to the SEL that affect this difference.

Pajerski: The productivity numbers are not the same for FORTRAN and Ada,
and 1 did not have them up there on the chart. They do tend to bal-
ance one another out. John Bailey's Ada talk tomorrow is going to go

over FORTRAN and Ada comparisons like that in some detail.

SEW Proceedings 0 SEL-93-003

Session 2: Measurement

SPECIFICATION BASED SOFTWARE SIZING:
AN EMPIRICAL INVESTIGATION OF F UNCTION POINTS

presented by Ross Jeffery, University of New South Wales

Ross Jeffery started out by describing the goal of the study as an assessment of function
point metrics to evaluate the sources of variation in the metric. The organization that he
studied was looking for a language-independent software sizing metric that could be
applied early in the life cycle. The organization was the first to be certified to the
Australian quality standard (AS 3563) and thus was likely to have minimal variation in
its process.

The study is based on 17 recently developed systems in a variety of application domains
by one software organization. The systems are implemented in C, Powerhouse, COBOL,
Windows, and Excel macros.

The first part of the study compared function point metrics across the life cycle with the
goal of assessing the metric's stability. Jeffery compared function point counts taken
from specification products produced early in the life cycle with counts taken from final
specification products that document the completed systems. He showed scatter plots
that visually supported his statistics. The function point counts from the final specifica-
tions did well in predicting the effort even after removing some large projects that heav-
ily influenced the results. Counts based on the early specifications did not do as well.
His results using the post-completion counts were consistent with other studies in the lit-
erature. He pointed out that removing the outlier data from the post-completion correla-
tion did reduce the correlation as expected, but that the effort-predicting function did not
change substantially—evidence that the organization performed consistently across pro-
ject size.

The weighting factors used to compute the level-2 weighted function points seemed to be
neutral for the set of data Jeffery presented. Applying the weights did not significantly
change the ability of the metric to predict effort,

In the last part of Jeffery's presentation, he discussed an analysis of the possible causes of
error 1n the process of developing function point counts. He considered three sources of

SEW Proceedings 10 SEL-93-003

i

Ty

Uy

“'V!\ L 1 L1

Two raters were used to count function points for all the projects in the study. One was a
professional rater; the other was less experienced. (Function point counts used in the
earlier parts of the presentation were the average of the two raters' counts.) The results of
an analysis of the differences between the raters showed an average relative difference of
approximately 55% between the raters. About one-third of this difference could be
ascribed to rater error (the bulk of which came from the expert, ironically, Jeffery pointed
out). The remainder is attributable to the function point standard or the requirements
specification. ‘

Jeffery presented a version of the function point scatter plot that showed a distinct pattern
of separation of the counts by application domain (distributed systems VS. traditional
centralized mainframe systems).

In summary, Jeffery said that function points showed a strong relationship with effort
based on counts taken after the project was completed. However, some of the internal
counts correlate, and this amounts to counting the same thing twice. Because the count-
ing process is manual, it is subject to variations due to human error.

He summarized future directions for the organization that he had studied. More accurate
effort predictions would result from putting more effort into the early requirement speci-
fications. Developing the metric automatically within a CASE tool would reduce the
human error as a source of variation in the metric.

Question: Do CASE vendors offer function point metrics?

Jeffery: Yes. But what is that metric? Is it right for you? Generally speaking,
CASE users do not understand the metric generated for them. The
real risk is that it comes free with the software so people don't ques-

tion it.

SOFTWARE COST FORECASTING ASIT IS REALLY DONE:
A STUDY OF JPL SOFTWARE ENGINEERS

presented by M artha Ann Griesel, Jet Propulsion Laboratory

Martha Griesel began by describing the situation in which engineers make cost forecasts.
Cost estimation is done at the same time as the engineering. Engineers have integrated
forecasting into their development process. Thus it is important to integrate forecasting
tools into the environment. It is also very important to develop tools that assist with the
forecasting process that they use now; engineers will not use tools that use a different
forecasting process.

The goal of the study was to discover the fundamentals of cost forecasting as it is actually
practiced by engineers. Are there only a few processes? Are the individual methods
used by engineers SO unique that there is no hope of developing tools to help them? If
there are differences, where do they arise?

A search of the literature supported the idea that there is a small number of forecasting
activities but also showed that studies of the process do not produce repeatable data.

Because of the multidisciplinary nature of the study team, it was possible to borrow sev-

eral useful techniques. In this study cognitive psychology provided a technique that
allows verbal dialog to be scored in a consistent manner. This enabled the construction

SEW Proceedings 11 SEL-93-003

of a "costing vocabulary.” Stochastic processes provided transition probability matrices
as a tool for analyzing how people move from one activity to another.

The study used 28 verbal reports from software cost and size forecasters who had a great

deal of experience and who were also identified as personnel with good track records in

opment. Analysis of the verbal reports developed a high-level set of forecasting activities
such as requirements identification, size estimation, and cost estimation. Each individual
report was then reviewed to extract the sequence of the high-level activities.

Griesel presented the COCOMO model as an example of how the forecasting activities
might be connected in sequence. (No one in the study used a model that remotely resem-
bled this example.) In an attempt to find patterns, all 28 activity sequences were over-
laid, but the result was a complete blur.

After some study, three basic forecasting approaches were identified: new/old decompo-
sition, assessment, and size estimation. The technique used in new/old decomposition
was to partition the system into parts familiar to the forecaster and those not familiar.

ment approach involved obtaining a second estimate as a sanity check. Some forecasters
developed a size estimate before they developed an effort estimate. Some application
domains showed a preference for a particular basic approach.

Cost forecasting is roughly divided into three phases: problem definition and analysis,
cost determination, and cost assessment. Griesel presented and described composite
transition diagrams for each phase of each basic forecasting approach.

In summary, the study was able to identify some fairly well-defined paths through the
forecasting activities and to detect some dependence on the application domain. Most
forecasters used one approach to forecasting and very few performed detailed work in
more than one phase of forecasting. Forecasters use simple techniques and tend to keep
the number of attributes small.

Question: It's great to have a multidisciplinary study on real tasks. Were you
able to relate accuracy of estimate versus the method used?

Griesel: The described activities were based on those used most recently and
were not tied to specific tasks. We would very much like to collect
that sort of data.

ASSESSING EFFICIENCY OF SOFTWARE PRODUCTION
FOR NASA-SEL DATA

presented by Anneliese von Mayrhauser, Colorado State University

Anneliese von Mayrhauser began her presentation with the statement that it would be a
"success story of some failures." Her study used a technique prevalent in operations
research, production models. This presentation used data from the NASA SEL database.

Production models are attractive for this analysis because the efficiency of software de-
velopment has many drivers such as people, process, and product characteristics. An
analysis based on production models would use three steps. First, the measures used as
input and output to the models must be selected based on the goals of the study: what

SEW Proceedings 12 SEL-93-003

‘ ‘""W”Ul‘ .

(LUl

| m

Lo T

E

type of efficiency is to be evaluated? Second, the models are applied to projects and the

officient and inefficient projects are identified. Third, a root cause analysis is performed

based on other available project descriptors such as subjective measures.

In production model analysis empirical data are used to define a production function.
von Mayrhauser described a simple production model with one input and one output to
demonstrate the principle behind a production function. In the example, she demon-
strated the definition of efficiency as the best observed ratio of the selected input and
output measures. Other (non-best) observed ratios of input to output would be some
fraction of the best. The relative efficiency of a project is the ratio of its efficiency to the
best. She assured the listeners that the simple example could be extended to more
complex situations. (von Mayrhauser's coauthor has applied this technique to another

environment.)

As she began to describe the results of one production model (the study investigated 11
models), she described the trouble in identifying data to drive the production models and
her lack of faith in the rank-order nature of the subjective data she was using. She con-
trasted the enormous size of the SEL database to the sparse list of acceptable data to drive
the production models. Incomplete data and the small number of ratio-level metrics were
cited as disappointments. Specifically, she was unable to investigate quality metrics, per-
formance metrics, and effort data by phase as production model drivers.

The study looked at factors that impact overall efficiency, those that pertained to only ef-
ficient or inefficient projects, and factors that discriminate efficient from inefficient pro-
jects.

One study result, which she labeled curious, was that certain factors correlate with ineffi-
cient projects and not with efficient projects. She specifically cited development team
application experience as increasing the efficiency of inefficient projects but having no
effect on efficient projects. The audience was cautioned not to place much faith in this

result since the rank-order data were of unknown quality.

In conclusion von Mayrhauser stated that a consideration of how metrics are to be evalu-
ated must be included in developing metrics. Avoid collecting lots of rank-order data;
there is not much you can do with them. She assured the audience that a disciplined met-
rics development would bring many Successes.

Question: I'm concerned about isolating individual factors. Any individual fac-
tor may show strange behavior. Take the factor you found, experi-
ence, for example. If experienced people are put on a project because

negative things are happening on_that project, then that will affect
things. So you are not going to find a relationship between experi-
ence and efficiency because of the other factors. The problem is
multivariant with tremendous interaction of those factors.

von Mayrhauser: 1 agree with you. This is where you have to have a rich enough set of
factors for the production models and then, after efficiency is identi-
fied, other factors tell you if there is a reason for it. Then if you iden-

tify an unusual project you can just forget about it.

Follow-up: It's more complicated than that. One thing you can do is say: if the

system has a high complexity level, then experience becomes impor-
tant. But if it's not complex, the experience is not relevant.

SEW Proceedings 13 SEL-93-003

Experience in isolation is not an interesting variable. There are inter-
dependencies among the factors.

von Mayrhauser: [agree that we should not do one at a time.

"

[}

b

kimE AR

E

SEW Proceedings 14 SEL-93-003

Session 3: Technology Assessment

THE (MIS)USE OF SUBJECTIVE PROCESS MEASURES
IN SOFTWARE ENGINEERING

presented by Jon D. Valett, NASA/Goddard

Jon Valett began his remarks by defining three categories of measurement data: quanti-
tative, characteristic, and subjective. By subjective data Valett meant "those data that are
based on the opinion of individuals." He suggested three reasons why people have tried
in the past to capture subjective data: (1) to help quantify the software process; (2) to
improve models of software process and product; and (3) to define software domains. As
examples of subjective measures he listed team experience, management stability, quality

of tool set, and product complexity. Among the previous models to make use of subjec-
tive measures were Walston and Felix, COCOMO, and various domain analysis models.

After setting the stage in this way, Valett launched into a historical summary of what the
SEL has done with subjective data over the past 17 years. In 1977, the philosophy
behind the SEL's original foray into collecting subjective measures was to validate the
models of other researchers and, in so doing, to fully characterize the SEL environment.
For each SEL project, over 300 pieces of data were collected and rated on a 0-5 scale.
Upper level managers made these assessments, and the resulting data were entered into
the SEL database with no validation or clarification.

Valett then briefly described two SEL research efforts, Bailey and Basili's "Meta-Model
for Software Development Resource Expenditures” (1981), and Card, McGarry, and
Page's "Evaluating Software Engineering Technologies" (1987). The first study
attempted to develop a cost model that incorporated subjective process measures. The
second attempted to answer the question "Do modern programming practices affect pro-
ductivity and reliability?"

Valett drew two main lessons from these two early studies. First, having a lot of data
does not mean that one can generate a lot of results. Second, beware of false correla-
tions, because if you look hard enough, you are bound to find some correlations. To help
prevent such erroneous conclusions, he recommended that researchers confirm their
results over multiple similar data sets.

Following the Card study, the SEL revised its collection of subjective data. It reduced its
set of data to just 36 items. This smaller set contains most of Boehm's subjective mea-
sures from his Software Engineering Economics (leaving out a handful not thought
appropriate to the SEL environment) and includes a few additional measures thought
applicable based on SEL experience. The 36 measures were rated on a 1-5 scale, were
collected from the project leads (rather than upper management), and were again entered
into the SEL database with no validation or clarification.

Valett next summarized the analysis of subjective measures found in the recent SEL Cost
and Schedule Estimation Study Report, by Condon et al. (1993). Initial analysis here
seemed to find some relationships between effort and subjective measures, but further
analysis revealed no consistency across different subsets of SEL projects. Following this
discovery, the researchers replaced the SEL subjective data with random integers (1-5)

SEW Proceedings 15 SEL-93-003

for all projects and then repeated the analysis. With random data, about the same degree
and frequency of improvements were found in the accuracy of the resulting effort models
as had been found with the actual SEL data.

Valett's final research study was one that he himself performed shortly before the
Workshop. He tried to improve models for predicting effort, errors, and changes by
including subjective measures data. Valett converted the integer-based subjective mea-
sures to a binary scale (as did Bailey and Card in their studies). Valett also assumed
some dependency in the data. He found little or no consistency in his results across mul-
tiple SEL data sets and concluded that even conservative use of these data is
questionable.

In summarizing the lessons he had learned from the studies, Valett cautioned the audi-
ence not to collect too much subjective data, not to blindly search for correlations, not to
go beyond the validity and consistency of the data, and finally, not to rely on such data
€xcept to spot trends or to set experiment goals.

Despite Valett's negative assessments drawn from these four studies, he did not totally
discount the value of subjective information. In his concluding remarks, he drew a dis-
tinction between the valuable nature of some subjective information—such as that col-
lected in "lessons learned" documents and in project annotations—and the Very question-
able value of subjective measures data collected by survey forms. If there were to be any
hope that survey form data could serve some useful purpose, it would depend on more
rigorous local definitions of subjective measures and also on more consistent data collec-
tion methods than have been used previously by the SEL.

Question: In an experiment in which I was involved in the past year, we intro-
duced people to N-squared charts and data flow diagrams. We then
assessed them on their ability to learn, interpret, and use these tools.
We found that in many cases people’s subjective response at the end
of a test was different from their objective performance. For exam-
ple, we found that test subjects would actually perform better with
one technique, but would say that they performed better or preferred
the other technique. Do you have any thoughts on the kind of
research that might get to a deeper level on why this happens and why
in your research one person considers something a "3" and another
person considers it a "S.”

Valett: We have experienced similar things in the SEL. We did a comparison
of testing techniques: code reading, structural testing, and functional
testing. People in the experiment said that they found the most errors
in functional testing, but in reality most of the errors were found in
code reading. For subjective data our best hope is to come up with
templates for definitions of subjective data so that we do understand
across our environment what a given score means. But that is not an
easy task at all.

SEW Proceedings 16 SEL-93-003

‘ \?Y!\

My

I

| Wl LR TR TR TT Y TR

ANALYSIS OF A SUCCESSFUL INSPECTION PROGRAM
presented by Ray Madachy, Litton Data Systems

Ray Madachy's talk presented the results of a couple of years' experience in implement-

ing inspections at Litton. He pointed out that the metrics collection program was some-
what more recent than the peer review program.

Among the unique features of the Litton inspections program is the absence of a "reader”
role. As Madachy explained, his company follows the Gilb method, not the Fagan
method, of inspections, so they do no paraphrasing. The Software Engineering Process
Group (SEPG) Peer Review Coordinator serves as the inspection moderator. Litton's

method sets no time limit on causal analysis, and it allows no discussion of defect cate-
gory during the inspection.

The inspection statistics data sheet that Madachy displayed reported the preparation time
of each participant plus the number of major and minor problems asserted by each par-
ticipant. (A major defect was defined as anything that caused a software trouble report; 2
minor defect was anything else.) It also listed the total pages inspected, the duration of
the meeting, and the number of new defects found at the meeting but not caught during
the preparation time. These data all went into Litton's database. More recently Litton
has also collected and stored the number of rework hours spent, plus the number of major

and minor defects accepted by the author.

Madachy then presented slides demonstrating several relationships and conclusions from
the Litton experience. The first relationship showed a downward trend in average defects
per page as one progressed through the software life-cycle phases, backing up Madachy's
assertion that you "get more bang for your buck” from early inspections. A graph of
inspection effort over time showed, as might be expected, that effort peaks occurred
before each quarterly Technical Interface Meeting, when the customer evaluated
inspected documents. Using other graphs, Madachy showed that the optimum inspection
mode at Litton had the following characteristics: (1) 4 or 5 inspectors per meeting, (2)
40-50 pages inspected per hour, and (3) a ratio between 0.5 and 2.0 for preparation time
versus inspection time. The number of pages per hour includes all types of documents
except code. Litton recommends that 250 SLOC be inspected per hour. Inspections at
Litton were typically 2 hours long.

Madachy devoted two slides to addressing the return on investment for the inspection
process. To arrive at this figure, Madachy subtracted the inspection effort from the test
phase effort saved. This effort saved was estimated by multiplying the number of major
defects found at each inspection by the average effort to fix a defect during the test phase.
(For several years preceding this inspection experiment Litton had kept data on trouble
reports and the effort required to fix them; these data were used to provide the average
effort to fix.) The inspection effort included the preparation time, the time spent at the
actual inspection meeting, and also the time required after the meeting to fix the defects.
Using these formulas, Madachy showed that 139 out of 223 inspections saved time. The
average inspection savings for all inspections was 63.4 person-hours.

Madachy presented two slides showing the separate effects of preparation time (per page)
and inspection time (per page) on the number of new items found (per page) at an
inspection. He argued that both graphs showed that as the amount of time increased, so
did the number of items found. The effect of inspections on reducing the number of
trouble reports (TRs) written against a build was demonstrated by one graph which

SEW Proceedings 17 SEL-93-003

showed a 76% reduction in the TR density (TRs per KSLOC) following the introduction
of inspections.

In his concluding remarks, Madachy emphasized that inspections were a worthwhile
investment. In addition to the other points brought out earlier in his talk, he noted that
inspectors and authors had both improved since inspections began, and that the inspec-
tion analysis provided the impetus for improving Litton's metrics tracking procedures.

In response to two questions, Madachy pointed out that Litton had tried inspections both
with readers and without readers and found that, prior to coding, the reader did not add
much. In addition, the defect finding rate for documents was better without a reader.
Consequently Litton does not use a reader in its inspection process, although they are
looking into using a reader for code, where they think it might be valuable. In Litton's
process, the moderator takes over much of the reader's role, but Litton does not use
paraphrasing.

LESSONS LEARNED APPLYING CASE METHODS/TOOLS
TO ADA SOFTWARE DEVELOPMENT PROJECTS

presented by Maurice H. Blumberg, IBM Federal S ystems Company

Maurice Blumberg began his talk by defining megaprogramming. STARS sees this as an
emerging paradigm of software development that is process driven, relies on domain-
specific reuse, and is supported by technology. In brief, it is "a product-line approach to
building a family of systems." The STARS strategy is to demonstrate the benefits of
megaprogramming on some real-world projects, not just pilot projects.

Blumberg's talk, however, was not about megaprogramming and the STARS demonstra-
tion projects, but rather about the precursor to megaprogramming. These precursor alpha
test projects provided early experience and feedback in the use of the IBM STARS
Software Engineering Environment (SEE) and helped define what it takes to transfer
technology to a project.

The three alpha test projects were all based on a RISC System/6000 primary develop-
ment platform running various CASE, publishing, and testing tools. This platform was
connected via a LAN to a Rational (300C or 1000) design facility and also to Xstation
and PS/2 (DOS, Windows 3.0) remote access workstations. Blumberg summarized the
various tools used by each of the three projects in each of the software development life
cycles.

Blumberg next presented some lessons learned applicable to all three projects. (Slides
detailing lessons learned from individual projects are included in these Proceedings as
well, but due to time limitations only the last two slides of this latter set were presented at
the Workshop.)

The main impediment to change was inertia. To overcome this obstacle, Blumberg rec-
ommended enlisting early customer support, involving developers in the planning, and
ensuring strong support and vision from management and technical leads. In addition,
one must protect against overblown expectations arising from marketing hype and
overzealous advocates of particular tools. Emphasizing realistic hopes, developing a
phased implementation plan, and relying on strong management vision could help a pro-
ject get over the initial setbacks involved in inserting new technology.

SEW Proceedings 18 SEL-93-003

" ™o o ‘rmru oo 1
! I

!

Blumberg saw planning as a critical part of the success of a technology transfer. There
are many elements to the startup costs besides the mere purchase of software and some
hardware. One must plan for wiring, installation, and checkout. One must carefully
choose the number of licenses to support the planned uses, must factor in maintenance
costs, and must anticipate significant adaptation and integration eXpenses. All tools need
to be tailored, and each tool may require an administrator. Blumberg mentioned that all
of the alpha projects significantly underestimated the impact of introducing multiple

changes and technologies. Each project tried to do too much at once.

Despite the various difficulties encountered in each project in introducing new technolo-
gies, Blumberg noted that each project experienced a significant morale boost from the
new technology and that the upgraded technology resulted in upgraded skills. The new
process that evolved was more effective than the old process and involved better team
communication and coordination. Higher quality products resulted, and higher produc-
tivity is anticipated in subsequent phases, now that most of the learning is over, the team
is acclimated, and many of the problems encountered have been resolved.

Question: How do you discriminate between temporary hurdles and truly bad
(for you) technology?
Blumberg: You have to expect some loss in productivity the first time you adopt

a new tool. If the tool results in an unacceptably large drop in pro-
ductivity, however, you must fix the problem or consider dropping the
tool for that project.

SEW Proceedings 19 SEL-93-003

Session 4: Advanced Concepts

SOFTWARE ENGINEERING WITH
APPLICATION-SPECIFIC LANGUAGES

presented by David J. Campbell, Unisys Corporation

David Campbell began by observing that application-specific languages (ASLs) have the
potential to dramatically reduce cost and to increase software quality and reliability.
ASLs, he explained, are special-purpose languages designed to solve a specific class of
problems by automatically generating source code or other work products. Much less
code is required to write an application in an ASL than in a general-purpose program-
ming language such as C or Ada. ASLs are also inexpensive to produce; an experienced
team can usually implement an ASL in a few weeks or person-months.

The software generation process starts with a specification that the programmer writes in
the ASL describing the requirements for the software to be produced. The specification
is read by an ASL translator, which then generates source code or other work products,

a generic solution as a set of reusable code templates; the translator instantiates the tem-
plates and produces the required software from the specification.

Not all projects are candidates for implementation using an ASL, Campbell said,
although most large projects have some area that would benefit from ASL usage, such as
SCTEens, reports, or parsing input commands. ASLs should be considered for use on a
project when coding tasks are repetitive, complex, or error-prone; when requirements are
subject to change; or when the problem being addressed will recur on other projects.

ASL technology requires an expert in the application area to design the solution to the re-
curring problem, and an expert in language design/compilers to develop a language that
allows the requirements to be specified in terms familiar to those working in the applica-
tion area. The language expert will also develop the translator that checks the input
specification for semantic errors and generates the code that satisfies the requirements.

Campbell cited two examples of ASLs that have been applied on projects at NASA/JSC:
Editor Generator (Egen) and STMM (Strip Merge and Manipulate). Egen was developed

loads. STMM replaced 40 programs that performed specific operations on flight design
data files.

For the TSS, the customer wanted a graphical-user-interface-based system for editing a
database of 500 variable-field satellite commands. The typical approach to developing
the 140 screens (that were needed in 3 months) would have been to divide them up and
give them to five engineers to code. Since design decisions would have to be known
ahead of time for this approach to work, an ASL was used instead. With Egen, all 140
Screens were generated from a short input specification. In addition to the compilable

SEW Proceedings 20 SEL-93-003

|oma i3
1o :

I

%10
T

e Ty UMI I 'f‘ ‘WN

RIS

source code, Egen also generated the 200-page user manual and prepared a test program
that found specification errors automatically.

While ASLs are not a panacea, Campbell said, they do provide benefits when code is
recurring. Not only do ASLs increase productivity (because less code is needed to
develop and maintain software), they also increase reliability; once the templates are cor-
rect, the code will be correct and will conform to project standards. The main benefit of
an ASL, however, is increased manageability. Updates to all 140 TSS screens can be
performed in a single location in the translator. User manuals can be kept in sync with
code by simply rewriting the input specification and regenerating the documentation.
Requirements changes create less of an impact; the addition of 40 new TSS commands

had no effect on the project cost or schedule.

Question: Some of what you are describing can be done with object-oriented
programming languages. Where do you draw the line between using
object-oriented programming and an ASL, where you have to
maintain the translator, the inputs, and the high-order language
source?

Campbell: In general, you make a cost assessment. An object-oriented language
may take more lines of code to accomplish the same task. Also, in
some cases, you may need to maintain only the generated output.

When a tradeoff study shows that you can use an ASL because there
is enough repetition, you will actually have fewer lines of code to
maintain with the ASL. For example, the TSS translator [Egen] was 7
KLOC. Because it was based on compiler technology, only 4K of
those lines of code were custom-written for the application. The rest
were reusable components, code from parser generators, etc. Of that
4 KLOC, 1/3 were for the test program, 1/3 were for documentation,
and 1/3 were for the actual application. The total generated TSS edi-
tor was 12 KLOC, of which only 4K were written. In general, there is
a magnification between what you have to write and what you get
generated: we get 2-11to 10-1.

APPLYING FORMAL METHODS AND OBJECT-ORIENTED
ANALYSIS TO EXISTING FLIGHT SOFTWARE

presented by Betty H. C. Cheng, Michigan State University

This project, Betty Cheng said, was sponsored by a NASA faculty fellowship and was
performed at the jet Propulsion Laboratory. The purpose of the effort was: (1) to inte-
grate formal methods into a portion of shuttle software; (2) to construct an object-
oriented view of the system, even though it was not developed using object-oriented
technology; (3) to demonstrate the utility of formal methods in an industrial application;
and (4) to facilitate current and future maintenance of the software, ensuring that the
original functionality and safety-critical properties are preserved when features are
added.

A formal method, Cheng explained, consists of a formal language with a well-defined
syntax, a well-defined set of semantics, and a proof system that allows you to manipulate
symbols in the language. Formal methods are used to improve the quality of a software

system by uncovering incompleteness and inconsistencies, and for automatic reasoning
and verification. Her project used a language called PVS (Prototype Verification

SEW Proceedings 21 SEL-93-003

System) which was developed by SR International. Itis a predicate-logic-based language
with an interactive theorem proving capability.

Referring to the previous presentation, Cheng noted that object-oriented techniques, as
well as ASLs, can be used to develop software specific to an application. The benefits of
object-oriented techniques are abstraction, information hiding, and modularity, which
facilitate understandability, maintenance, and reuse.

In this project Cheng said, they were interested in the ability of formal methods to
support abstraction and to generate proof obligations. They chose the object modeling
technique (OMT) developed by Rombaugh because it offers three complementary per-
spectives: the object model gives the architectural view of the system, allowing informa-
tion to be organized pictorially and offering a view of how the whole system fits together
architecturally; the functional model provides data and control flow information: and the
dynamic model allows modeling of state transitions.

Although the shuttle has had an excellent record for software, computer scientists often
did not participate in early requirements analysis for shuttle software. Authors were free
to express requirements in the form they preferred, resulting in widely varying require-
ments formats, styles, conventions, and perspectives. To be able to insert new technol-
ogy and features, today's requirements analysts need to know what the requirements are
and whether the changes they propose will affect the original functionality of the
software.

The specific project Cheng's team tackled was the Phase Plane module within the Orbit
Digital Autopilot System (DAP). The Phase Plane module is a control system for moni-
toring the angular rotation of the shuttle. It sends information to a module that selects
which jets should be fired to attain a desired shuttle position. The wiring requirements
diagram for DAP that Cheng showed revealed a very complex system. Although the
module has worked successfully for thousands of hours, analysts have had difficulties in
understanding the requirements for the module and testing it, and they want to make
changes to it in the future.

The goals of the project were to obtain high-level requirements for the module by apply-
Ing reverse engineering techniques, to develop an OMT "roadmap” for the system, and to
establish a linkage between the specifications and the diagrams. The team used an itera-
tive process. First they constructed a low-level specification corresponding to the wiring
diagrams and the source code. To introduce abstraction, they used data flow diagrams to
model the as-built layer. They then worked upwards, preserving the critical information
from one level to the next as they developed data flow diagrams and an object model for
the Phase Plane.

The team learned a number of significant lessons during the project. The first was that
several layers of specifications were needed to go from existing code to high-level speci-
fications. Theorems must be constructed to describe the properties that a given layer
obeys and to provide traceability from one level to the next,

The second lesson was that formal methods provide a mechanism for integrating dis-
parate sources of project information—e.g., wiring diagrams, the crew training manual,
and design notes. The third lesson was that object-oriented analysis and design tech-
niques can be exploited for reverse engineering to help understand the original function-
ality of a system, its architecture, and its state transitions.

SEW Proceedings 22 SEL-93-003

oy

i)

WO

M m

I

Finally, the team learned that reverse engineering is an iterative process; oné level of
formal specifications is constructed, followed by a level of diagrams, and the process is
repeated for each higher level. The diagrams, Cheng noted, help introduce the abstrac-
tion necessary to produce the high-level requirements.

In summary, Cheng said, the project incorporated formal methods into an existing soft-
ware system to facilitate maintenance tasks, to aid verification of critical system propet-
ties, and to expedite future changes by using automatic reasoning to find requirements
violations. The project has also demonstrated that formal techniques are not merely aca-
demic. Currently, the team is developing mid-level specifications and constructing
proofs of correctness that will trace one level of the specification to the next. They hope
to integrate the formal specifications with the OMT diagrams more closely, and demon-

strate how formal methods can be used to assure that critical properties are satisfied.

Question: Are you aware of the work being done by Nancy Leveson at the
University of Washington? She is using a state-chart technique to
reverse engineer systems for the FAA. Could you talk about the dif-

ferences in the approaches?

Cheng: Again, we want to capture all aspects of the system. State charts only
capture state transition information. We also want to have an archi-
tectural view of the system. The multiple views led us to use OMT.

INTEGRATING END-TO-END THREADS OF CONTROL INTO
OBJECT-ORIENTED ANALYSIS AND DESIGN

presented by Janet E. McCandlish, TRW System Development Division

Janet McCandlish opened her presentation by observing that current object-oriented
methodologies fall short in their representation of end-to-end system processing. With a
functional decomposition approach, data flow or process dependency diagrams show how
the entire system works. The focus of object-oriented technology, however is on indi-
vidual objects as reusable components, not on how they tie together. With object-
oriented technology, a system is represented piecemeal with multiple views, making it
difficult to get a full picture of how the system operates.

In addition, the goals associated with object-oriented and distributed systems are con-
flicting. In real-time distributed systems, competing demands for resources are recon-
ciled by partitioning the system into multiple processes. Object-oriented technology, on
the other hand, strives to partition a system into objects, encapsulating all data and asso-
ciated operations within the object.

The approach taken in the current research, McCandlish explained, is to represent threads
of control and associated class/objects to better illustrate how a system operates. The
researchers began by examining five different object-oriented analysis and design meth-
odologies: Coad and Yourdon, Shlaer and Mellor, Booch, Firesmith, and Rombaugh.
They then introduced a representation that overlays dynamic flow onto the static
architecture. Because of the amount of information being handled, they grouped classes
and objects at a higher level of abstraction in two phases: (1) logical groupings to
provide a coarse-grained partitioning and (2) process groupings to extend logical

groupings with process partitioning criteria.

SEW Proceedings 23 SEL-93-003

McCandlish highlighted key aspects of object-oriented methodologies. Static architec-
ture, she said, refers to a nontemporal representation of a system, typically depicted with
entity relationship diagrams that have been enhanced to include attributes, operations
specifications, and relationships. Dynamic behavior is usually reflected in a different
view of the system, and contains state, data flow, and timing information. A thread of
control is a path that traces the sequence of operations for a particular execution of a
system. It represents a scenario for a particular test case, and can be used during analy-
sis, design, or testing to trace through the model for completeness, and to address real-
time processing requirements, timing constraints, bottlenecks, and the like.

The research team found that static and dynamic representation methods exist, but
thread-of-control representations are limited. Showing a chart that compared the five dif-
ferent object-oriented methodologies, McCandlish noted that each is incomplete in some
aspect. Firesmith's comes closest to satisfying end-to-end traceability, but information is
spread over three different diagram techniques, making it difficult to assimilate.

In the team's approackh, the logical view represents groupings of classes or objects that are
logically related. Partitioning into logical groups is accomplished based on engineering
Judgment, and is designed to minimize the associations, aggregations, and generalizations
between groups. This type of logical grouping helps one understand the system as a
whole. It is not new; such groupings are addressed (using different terminologies) in
each of the methodologies previously cited.

McCandlish showed an entity relationship diagram with two logical representations. The
first showed the traditional logical partitioning of a system. The second representation
showed a new, logical composite class representation, in which thread-of-control infor-
mation is aggregated up to the logical grouping level and overlaid onto the logical view.
Because the focus of this representation is on "boundary class/objects"—i.e., objects that
communicate across the boundary lines of the logical grouping, these logical groupings
may differ from those of the traditional representation. The rationale for this new repre-
sentation, McCandlish reiterated, is to be able to look at the system from end-to-end. It is
also the first phase of partitioning for process composite classes.

Because the object-oriented methodologies previously mentioned do not address how
logical groupings may transition into allocations for processes, McCandlish's team also
introduced a process view that maps the class/objects to processes (i.e., executable enti-
ties). To obtain this process view, the team took the logical composite classes and
applied process partitioning criteria keyed to communication and timing. To minimize
the communication among processes, classes and objects that communicate frequently
are grouped into separate processes, as are class/objects that occur along a particular
time-critical path or that access the database. Finally, the groupings are adjusted to
ensure that total execution-time criteria are met. The result, McCandlish showed, is a
process composite class representation,

To formulate these process composite classes, McCandlish said, the researchers store
representations of the classes, their attributes, and all of their interrelationships in a
database. They can then extract information and link it with threads of control to learn,
for example, that operation x impacts attribute y. From the database, they can determine
the number of dependencies amongst the threads-of-control and classes. They can then
take process partitioning criteria and system constraints and apply those through alloca-
tion algorithms, such as branch-and-bound, to determine the best grouping for the process
composite classes.

SEW Proceedings 24 SEL-93-003

m

[

rm oy

mr

Cini i

=

In summary, current object-oriented representations do not provide the viewer with a
clear understanding of the end-to-end processing that defines system operation.
Consequently, the research team has introduced logical and process composite classes
that act as structures for representing groupings of class/objects and the threads of control
through those class/objects. Further study is needed to extend these structures into a
design language and to address cases where the object-oriented and distributed system
partitionings are in conflict.

Question : Does the user actually see both the object view and the threads of
control so he can have an idea that the system will work or not work

at the design review?

McCandlish: That's the plan. You identify classes and objects and build it bottom
up. Ultimately, the idea is to graphically represent this information,
draw threads-of-control through it, and represent all the associated

information in the database. Then you can pull out a thread-of-
control and look at all the things that are impacted by it, and can
assign timing information as well.

SEW Proceedings 25 SEL-93-003

Session 5: Process

FUSING MODELING TECHNIQUES TO SUPPORT DOMAIN ANALYSIS
FOR REUSE OPPORTUNITIES IDENTIF ICATION

presented by Susan Main Hall, S oftech, Inc.

Susan Hall's presentation described her team's experience performing a high-level
domain analysis fusing functional analysis techniques with object-oriented analysis to
facilitate reuse among several software development efforts. As part of the Army Reuse
Center, Hall's team is chartered to identify reuse opportunities for clients who reuse the
software and donors who produce software to be reused. Her group’s specific assignment
was to perform domain analysis of four Army systems currently under development, in 6
person-months. Each of the systems was functionally oriented and developed in Ada.

Hall's team was experienced in software development but not in object orientation.
Because reuse is easier to achieve with object orientation, her group had to choose -
whether to use the functional models and then struggle to move to objects later or to
struggle with the objects right from the beginning. After assessing their purpose, time
limitation, and current skills, they decided to merge the functional and the object model-
ing techniques.

Hall began her discussion of the merged modeling techniques by first defining domain
analysis and the difference between vertical and horizontal domains. Hall's group was
tasked to examine a horizontal domain, application support layer (ASL) software. She
stated that just about all system types have an ASL.

LAY

y

In using the modeling techniques, they took advantage of everything a functional model
could offer (state transition diagrams, data flow diagrams, and flow charts) then moved to
a homegrown functional hierarchical grouping which helped in transitioning to
Rombaugh's object-oriented model.

Specifically, they began by reviewing the existing functional models and creating any

missing data flow diagrams, state transition diagrams, and flow charts. This enabled

them to capture the basic activities of the ASL. By noting commonalities and differ-

ences, they identified six components of the ASL domain:

* Perform utilities and services -
* Provide user/machine interface -
* Provide help information

* Provide application layer interface

* Manage ASL data

* Provide COTS interface

The homegrown hierarchical modeling technique was introduced to avoid losing impor-
tant information when moving from a functional to an object model. This was needed
because their first attempts to move from functional to object-oriented were unsuccessful;

SEW Proceedings 26 SEL-93-003

consisted of identifying functions in a hierarchical tree, grouping the lowest level func-
tions together based on objects manipulated, and dividing functions into those in the
domain and those interfacing with the domain.

Hall provided a sample of the hierarchical grouping technique they applied: ASL func-
tions "accept user input” and "display output” were grouped as the "user-machine inter-
face" object. The "store data" and "produce reports”" functions were grouped into
"database" object. The ndatabase" object was further broken down into what was actu-
ally being manipulated—files, records, and fields. At this point it was possible to attach
operations and attributes to the object-oriented model and to complete the transition from
the functional model to the object model.

Hall now returned to the main purpose of the domain analysis which, as stated previ-
ously, was to facilitate reuse within one or among several software development efforts.
Because they now had both functional models and object models resulting from their

analyses, they were able to identify reusable functions as well as reusable objects in high-
demand categories such as user-machine interface.

In summary, Hall stated that the multiple modeling approach enabled them to view the
domain more clearly and to identify more substantial reuse opportunities in the process.
She felt this approach was faster (completed in 6 person-months) than traditional domain
analysis would have been and that it provided an offective modeling technique to be used
in the future.

Question: Our group is starting t0 do object-oriented requirements development;
we have been totally functional up to this point. Do you have addi-
tional materials that show how to move from data flow diagrams to

some type of object-oriented, ~more detailed programming

instructions?

Hall: Yes, we have all the models. The in-between models don't look like
any particular modeling technique. When we started, we started with
things we knew like Demarco, DFD technique. We went back to data

flow charts to detail things like how the computer and user interfaced,
down to studying a key and getting information back. As we did each
iteration, at some point in time, the model started to look like a par-

ticular, popular technique. We ended up with a definite data set dia-
gram and a definite Rombaugh object-oriented model.

AN EMPIRICAL COMPARISON OF A DYNAMIC SOFTWARE
TESTABILITY METRIC TO STATIC
CYCLOMATIC COMPLEXITY

presented by Jeffrey M. Voas, Reliable Software Technologies Corporation

Jeffrey Voas began his comparison of dynamic testability and cyclomatic complexity by
first differentiating between what it means to achieve versus assess quality. He stated
that it is easier to achieve quality than it is to assess or measure it. He explained that
assessing software provides the extra confidence not directly available from testing.
Because we can never be certain that a verification system is correct, software testability

has been introduced to give us a level of confidence that the software is correct.

SEW Proceedings 27 SEL-93-003

Voas emphasized the difference between testing and testability. Testing defines with
some “authority" whether an output is correct. Testability says nothing about correct-
ness, but rather the likelihood that errors are being hidden in the software. It takes
exhaustive testing, which is generally not possible, to be certain there are no hidden
errors. Testability is, then, a prediction of the probability that existing faults will be
revealed during testing according to some testing scheme.,

Voas' testability model or metric is based on two premises:

1) What is the likelihood that a fault will cause a failure during testing according to
some testing scheme.

2) A fault that is unlikely to cause a failure will be more difficult to see during testing.

Voas explained his fault size metric using an image of urns containing black and white
balls. Each ball represented one possible input to the software, with black balls
representing inputs that produce failures and white balls representing inputs that do not
produce failures. The occurrences of black balls are then strung or chained together to
produce a "fault size." Fault size is a way of quantifying the likelihood of discovering a
fault/error in the software,

For example, if five different inputs produce a failure due to one fault in the program,
five black balls are strung together, giving a string length, or fault size, of 5. They are
connected because those five balls all go to the same fault. When executed they cause
the state to become infected and that infected state propagates to the output. With a fault
size of 5, there are five chances (when pulling balls out of the urn) to pull one of the
black balls in the string of five that will reveal that fault. The greater the string length,
the higher the testability of the software, because there are more opportunities to discover
that fault. Five faults of size 1, on the other hand, means that there is only one input in
the entire urn that will reveal any one of those five faults, so the odds are lower of finding
them.

Voas relayed that for years reliability/testing researchers have asked the question, "What
is the probability that this program will fail?" He has rephrased the question: "What is
the probability that this program can't fail even if the program is incorrect?"

Voas applied his model to source code generated by CASE tools at NASA/Langley. This
software consisted of 3 to 4 KSLOC including 58 functions. He used 2,000 randomly
generated inputs and ran the simulator for 55 hours, His results showed that 15 of the 58
functions were of "high testability." The functions in the low testability range could eas-
ily be exhaustively tested. He also evaluated these 58 functions using McCabe's
Cyclomatic Complexity Metric. All 58 functions had complexity values of less than 10,
indicating that they were not very complex. He concluded that "chaining” within the urn
cannot be predicted based on the complexity measure. That chaining, though, is the key
to answering his question: "What is the probability that this program can't fail even if the
program is incorrect?"

uestion: You mentioned doing a short study on a few thousand lines of code.
: : £ udy \
I'm interested in whether you did a comparison of what your model
predicts versus which modules were error prone?

Voas: We did this for NASA/Langley on software where they knew where
the errors were. We wanted to test whether this technique would tell
us where the errors were. Our analysis came back and told us, to the
exact order of magnitude, the likelihood that those faults would affect

SEW Proceedings 28 SEL-93-003

| I

B

“‘ “{lml‘\ “W‘!\“‘W!‘ \HW\ " \'H\Hl

S0P ORRE W | e

L ma

the output. There's no way that you could come up with the exact
number, but as long as you are in the ballpark, you can then convert
it, using the probable correctness model, back to the number of test
cases you would need to catch that fault. If NASA had tested to the
level we said, they would have found the fault. This is the sort of
analysis that has to be done to test the technique.

Follow-up: You said that it took 55 hours on a SPARC II to apply your technique
to 3 to 4 thousand lines of code. Is it something that scales up linearly
or is it a more difficult problem?

Voas: It does not scale up linearly; it is a more difficult problem. 1 would
never tell you to brutely apply it to 1 million lines of code. You
would apply this technique to the parts of your code that are most
critical; namely the parts where you want to make sure there are no
errors hiding.

SOFTWARE QUALITY: PROCESS OR PEOPLE
presented by Regina Palmer, Martin Marietta Astronautics

Palmer, a staff quality engineer, presented her perspective on software quality: "Is it due
to process Or people?" She claims that a defined process is necessary for quality, but
without the right people working with that process, there may be no benefit to having it at

all. She based this statement on her experience examining R years of data collected from
six software development projects.

Palmer described the involvement of the Quality Assurance (QA) organization through-
out the development life cycle in her environment: They start with the beginning of the
project during process definition and develop a quality plan. At requirements time, QA
reviews the requirements and ensures that they are traceable from the customer-level
document and that they are complete, understandable, testable, and traceable. They fol-
low through design, participate in design walkthroughs as an independent evaluator, and
check that the code follows the design.

The projects Palmer studied were compared on the basis of

« Involvement of the developers with the process definition
« Stability of the requirements

« Thoroughness of the unit and system test

« Degree of quality oversight

+ Variance from schedule

« Meeting budget and expected productivity

The first project, the only successful one of the six, was a critical software project
involving the safety of the astronauts. It had a well-defined process, very stable require-
ments, thorough testing, and met its schedule and planned productivity level. [t was
developed by experienced people.

The other five projects, which Palmer defined as ranging from "unsuccessful” to
vdisastrous," had varying difficulties. For example, on four of the five projects the

SEW Proceedings 29 SEL-93-003

process was imposed; there was little or no involvement from the developers in defining
the process. Other problem characteristics were that the requirements were only stable in
two out of five projects; adequate testing was performed in one out of five projects; and
quality assurance was only performed in two out of five. The impact to these projects
was that delivery dates were missed and planned productivity levels were not met.
Software did not meet requirements and software was delivered with known errors.
According to data collected on these projects, the quality of the software produced did
not correlate to the experience of the developer.

Palmer concluded with some lessons learned: Everyone has to be involved when the pro-
cess is defined. Everyone has to agree with and abide by it. Get rid of people who are
not cooperative. It is necessary to have the right people for the job. The right people
may be experienced engineers or recent graduates.

All the metrics collected from these six projects were collected at the end of the projects
using a tool called the "Software Quality Assurance Interactive Database," which was
developed by Palmer's coauthor, Modenna LaBaugh. Palmer felt the tool was very
effective but believes it would have been better to collect the data earlier in the projects'
life cycle when there would have been a chance to correct problems.

Question: In defining your process, do you have a standard process that you
tailor for use on each of the programs, or did you start from ground
zero each time?

Palmer: We have a standard process that we tailor. We have standards and
procedures that give you the minimum requirements. We have one
for programs that are small, medium, and large. We pick the one
based on size and tailor it for that program.

Follow-up: And, how do you get everyone involved in the process?

Palmer: To get everyone involved in the process we have a "tabletop” to dis-
cuss and write the first draft of the process document and pass it out
to be reviewed by all program members. That document is done by a
few people, Software Lead, Quality, Configuration Management, and
Test. They do the initial draft and include the generic things that have
to be there. Then we have another tabletop, attended by all members
of the group, to discuss the process and get agreement on the process.

SEW Proceedings 30 SEL-93-003

™

m

TERE I I om0 vy

Session 6: Software Engineering Issues in NASA

PROFILE OF NASA SOFTWARE ENGINEERING: LESSONS LEARNED
FROM BUILDING THE BASELINE

presented by Dana Hall, Science Applications International Corporation

Dana Hall presented his experiences and highlights of the data he gathered while building
the baseline of software engineering within NASA. This work is being sponsored by the
NASA Software Engineering Program as the first essential step in establishing a long-
term evolutionary improvement program for software engineering organizations within
NASA.

Hall explained that obtaining a baseline understanding of the current software products
and software engineering practices is a mandatory first step of any process improvement
program. The goal is to understand; not to judge right or wrong. This measured under-
standing is then used to identify and define potential process improvements and to later
measure improvement progress. Although his presentation mainly focused on the initial
baselining effort, he pointed out that the understanding part of the process improvement
paradigm is ongoing; in a continuously improving organization, baselining should be
done periodically to measure change.

He cited four categories of data of interest: Product data that provide end item charac-
teristics; process data that describe how the end item is developed and maintained; envi-
ronment information that describes how the process is supported by tools and infrastruc-
ture; and application domain information that describes the type of work being done,
providing an essential context for interpreting the other data. He then presented several
examples from the baseline of NASA/Goddard. For example, a surprisingly large
amount, 33%, of the 12,000 people who work at Goddard work on software. He esti-
mates that Goddard presently has about 43 million SLOC in operational use. He also
presented information regarding language usage and effort distribution across software
engineering activities.

Hall pointed out that data availability is often an indicator of process maturity of an orga-
nization. It is often very difficult to capture the data that you want. His experience indi-
cates that you can capture information on languages, budgets, and amounts of software
with an accuracy of +/-25%, but that less tangible data such as effort distribution by
phase, error statistics, productivity, investment in overhead functions, and software
longevity can be captured with an accuracy of only +/-50%.

Hall used a combination of four methods to gather the information: administered sur-
veys, informal roundtable discussions, data and documentation review, and one-on-one
interviews. He shared several key insights that he gained from this experience. He
stressed the need to prototype the survey instrument and to make the responses quantities
or checkmarks. He also stressed the importance of using a small team to gather the data
(1 or 2 people who are familiar with the organization, e.g., NASA). One team member
met with each respondent, listened to their responses and indicated the proper response
on the survey form. This ensured consistency in the data and reduced misinterpretations
of the questions or answers. Directed sampling produced the best results, starting with

SEW Proceedings 31 SEL-93-003

key senior managers and then sampling the "software pockets" within the organization to
cross-verify the results. Hall typically samples 10% of the software people.

Hall pointed out that baselining is not free, but that it is not terribly expensive either; 18
staff-months were spent over a 12-month period to produce the Goddard baseline.
Activities included survey development and testing, data gathering, data archiving, data
analysis and information extraction, and reporting the results.

In summary, Hall reviewed several lessons learned. It's important to be objective at all
times; learn, don't qualify. Be sure to gather the perspectives of those in different roles
within the organization, such as managers, developers, testers; this provides cross-verifi-
cation of the data. Layer the baselining, starting at the top and working down through the
organization; only go as deep as you need. When you are finished, give the organization
the opportunity to review your findings, but don't compromise them. Organizations don't
like to be surprised, and the review will provide one last check for oversights. Finally,
use a combination of methods to gather the information and data; it's the only way to suc-
cessfully gather relatively accurate baseline data and information.

IMPACT OF ADA IN THE FLIGHT DYNAMICS DIVISION:
EXCITEMENT AND FRUSTRATION

presented by John Bailey, Software Metrics, Inc.

John Bailey reported the results of an independent assessment that he has conducted over
the past year to determine the future of Ada in the Flight Dynamics Division (FDD) at
NASA/Goddard. The FDD began investigating Ada in 1985 with the expectation that
they would fully transition to Ada within 10 years. But today, 9 years later, only 15% of
the new code is being written in Ada. Bailey was to determine why and whether the
FDD should abandon or continue to pursue Ada.

Bailey reflected that the FDD originally pursued Ada because it was expected to be
“more that just another language:" it was expected to drive an integrated well-defined
software engineering process and lead to a major culture change; it would help build
better products, specifically by reducing life-cycle cost and schedule and by reducing
errors.

Over the past 9 years, the FDD has delivered approximately 1 million SLOC in Ada; they
delivered 11 systems, all satellite data simulation systems developed and operated on
VAX computers. The organization's goals with regard to Ada gradually changed over
this time period, beginning with familiarization and moving on to reuse, cost, generalized
systems, and process.

Bailey reported that measurements taken on the projects show promise. Process mea-
surements show a maturing use of Ada language features and evidence that a true process
change has occurred. Product measures indicate significantly increased reuse, lower
error rates, shorter project durations, and lower delivery cost when comparing recent Ada
projects to the 1985 FDD FORTRAN baseline. However, FORTRAN systems show
nearly the same degree of improvement over this same time period. The data also show
that it costs more to develop a new statement in Ada than in FORTRAN, but that the cost
to deliver a statement of Ada is lower due to high reuse.

Bailey was quick to point out, however, that although both Ada and FORTRAN systems
were reaping similar benefits from high reuse which is rooted in object orientation, the

SEW Proceedings 32 SEL-93-003

1

™ot

e mn s vpo

!Fﬂ‘ M II’H vRrrpp

implementation approaches were distinctly different. In the Ada systems, generalized
reusable components were implemented as Ada generics facilitating reuse through
parameterized instantiation within the reusing system. Conversely, in the FORTRAN
systems, generalized components were written to handle all foreseen cases and isolated in
large independent modules that are linked with system-specific code to form the reusing
system. Although both approaches have led to faster, better, and cheaper development of

new systems, the FORTRAN reusable components have required more maintenance.

With such promising results, why didn't Ada flourish in the Division? Bailey explained
that other unanticipated factors had derailed progress. System performance of the Ada
systems turned out to be a major issue. Little attention was paid to performance while
building the early Ada simulators, because performance had never before been an issue
for the FDD. But the early Ada simulators ran much slower than their FORTRAN coun-
terparts, giving users a very bad first impression of Ada. Ada still suffers from this bad
reputation today, even though the problems have been corrected and current simulators
outperform most previous FORTRAN simulators.

In addition, limited vendor support for Ada development environments hampered efforts
to expand use of Ada. The FDD began developing systems using a DEC Ada envi-
ronment in 1985 with the hopes of expanding within 5 years to the IBM mainframe
environment (where most of the large FDD systems are built and operated). DEC Ada
provided good tools and adequate performance; but several in-house evaluations of com-
pilers and tools for the mainframe proved them to have a very limited set of immature
tools that were hard to use. Thus, it was impossible to begin to transition Ada to the
mainframes as planned in 1990, and even today, Ada cannot be used in the FDD (main-
frame) operational environment.

With VAX Ada systems reaping the benefits of high reuse and with the inability to
expand to the mainframe environment, the amount of new code written in Ada declined
dramatically, leveling off at 15% with about 25-30% of the staff having had exposure to
Ada. When asked about their language of choice, developers cited existing reusable code
as the main driver for language choice in general; some regarded Ada as just another lan-
guage, while others declared Ada to have clear advantages, but noting that Ada requires
more tool support than other languages.

Looking at all of the evidence, Bailey concluded that Ada had a major impact on the
EDD. Even though the language itself had not been widely adopted, Ada concepts (e.g.,
generalization, object-oriented design, domain analysis, information hiding) laid the
foundation for broad process improvements. A healthy competition between FORTRAN
and Ada developers stimulated the infusion of Ada concepts into the FORTRAN projects
resulting in across-the-board improvements. Bailey attributed this phenomenon (o the
strong emphasis on process and continuous improvement in the organization's culture.

In conclusion, Bailey recommended that Ada should not be mandated in the FDD,
because there is no pressing need for a common language as there is in DoD, for
example. Also, the FDD builds systems that are fairly small (200 KSLOC) compared to
the 1 million-line systems that Ada was designed to support. But Ada should not be
abandoned either; it should be used as any other method or tool when appropriate. Over
the coming year, Bailey will be developing guidelines for when Ada should be used
within the FDD. He concluded by pointing out that one of the expected major benefits of
Ada, lower maintenance COSts OVer the long-term, has not been tested in the FDD
because, due to the mainframe situation, Ada is used primarily for the throwaway

simulators rather than the longer-lived ground support systems.

SEW Proceedings a3 SEL-93-003

Question: How were the FORTRAN projects able to apply Ada concepts, since
FORTRAN doesn't support them?

Bailey: FORTRAN doesn't enforce good software engineering practices as
Ada does, but FORTRAN does allow them—_there is nothing in the
language that prevents the use of information hiding, for example.
Parnas was doing information hiding in FORTRAN in the 1970s.
Process was the key to this. The evidence here seems to indicate that
when an organization has a strong process, it can afford a wider
choice of languages.

SOFTWARE ENGINEERING TECHNOLOGY TRANSFER:
UNDERSTANDING THE PROCESS

presented by Marvin V. Zelkowitz, University of Maryland

Marv Zelkowitz summarized his findings thus far from a study of technology transfer
practices and policies within NASA. This work is being sponsored by the NASA
Software Engineering Program in an effort to characterize how software engineering
technology is transferred within the Agency.

His study addressed two fundamental issues. First, to determine how NASA technology
transfer is intended to occur, i.e., what are the official mechanisms and organizations that
have been established to facilitate technology transfer. Second, to determine how tech-
nology transfer actually occurs, by examining instances of successful technology transfer
within NASA. The study considered all technologies that are used to build software, but
its primary focus was on tools and processes developed specifically to support software
engineering activities. :

Zelkowitz surveyed a broad-based group of software engineering professionals to iden-
tify software engineering technologies of interest. When asked to list the top five tech-
nologies that have had the greatest impact on their Jobs since 1980, they most often cited
workstations and PCs, object-oriented methods, GUIs, process models, and networks.
NASA software engineers identified the same set, but also included measurement.
Zelkowitz noted that of this group of responses only object-oriented methods, process
models, and software measurement are limited to the software engineering field.

Zelkowitz reported that NASA views technology transfer as a critical part of its mis-
sion—to transfer to industry useful technologies that are developed through space
research. Thus, NASA's official technology transfer mechanisms focus on the transfer of
aerospace and engineering technologies out of the Agency. Little attention is paid to the
infusion of technology into the Agency; it's left up to the individual project personnel to
stay aware of and use the best processes and technologies available to do their jobs.
However, with shrinking budgets and NASA's current “faster, better, cheaper" emphasis,
technology infusion will become a critical element of the improvement programs that
will achieve these goals.

In addition, he pointed out that most technologies transferred in the engineering disci-
plines are product oriented, meaning that the process is packaged as part of the product.
But in software engineering, processes that describe the actions to take are as important
as the tools that are used; for example, inspections, object-oriented design, or Cleanroom
methodology. Thus, a successful technology transfer model for software engineering
technologies must address a process as well as a product.

SEW Proceedings 34 SEL-93-003

Com

I

I

1 'm I I‘I\WIWI‘ [In 'r‘yl‘W'l H\l rl\w ' ey

To understand the process of transferring software engineering technologies, he used a
directed study within NASA to identify instances of successful technology transfer
within, into, or out of NASA. He reported on the first stage of this work, where he
focused on studying technology infusion into NASA. His preliminary results, based on
four example software engineering technologies (Ada, object-oriented design, Cleanroom
methodology, and formal inspections) that have been successfully transferred into spe-

cific NASA organizations, indicate that there are two distinct stages in the infusion pro-

cess: understanding and transition.

The understanding stage is when the consumer organization is learning about the tech-
nology, by experimenting and conducting pilot projects; this stage usually takes about 2.5
years. The transition stage involves phasing the new technology into full use in the orga-
nization for suitable projects; this stage lasts at least as long as the understanding stage,
but can last much longer depending on the degree of change to the software development
process in practice in the organization. In all cases, people-contact seemed to be the
main transfer agent of change. Forward-thinking individuals within the organizations
became aware of the technologies through professional papers, journals, or conferences
and introduced the technology to their organization. In cases where personal contact was
made with the technology developer and they were involved in the transfer process, the
understanding time was shorter.

Zelkowitz closed by cautioning that his results are still preliminary and that he expects 10
Jearn much more as he continues this study during the coming year.

SEW Proceedings 35 SEL-93-003

Session 1: The Software Engineering Laboratory

Victor Basili, University of Maryland
Frank McGarry, NASA/Goddard

Rose Pajerski, NASA/Goddard

PRBCENG PAGE BLANK NOT FILMYO
 PAGE 30 mienioALLY BLAK

SEW Proceedings 37 SEL-93-003

SEW Proceedings

38

SEL-93-003

il

s, ERNE

WM\ |‘l ! ‘ (L \IIM wepm

RV I AT

il

NO4- 36485
The Maturing of the

2~/
Quality Improvement Paradigm |
| in the SEL /2 &’é_,

Victor R. Basili
Institute for Advanced Computer Studies

Department of Computer Science
University of Maryland

_ The Software Engineering laboratory uses a paradigm for improving the software process and
m * product, called the Quality Improvement Paradigm [Ba85, BaRo88]. But this paradigm has
- evolved over the past 18 years, along with our software development processes and product. Since
' 1976, when we first began the SEL, we have learned a great deal about improving the software '
* process and product, making a great many mistakes along the way. For example, we tried to assess
the quality of our processes and products before we understood what they were. When trying to
understand, we were data driven rather than goal and model driven. We tried to use other people’s
models to explain our environment rather than recognizing we had to build models of our own

environment before we could compare it with others.

"

The learning process has been more evolutionary than revolutionary. We have generated lessons
learned that have been packaged into our processes, products and organizational structure over the
years. We have used the SEL as a laboratory to build models, test hypotheses. We have used the
University to test high risk ideas and develop technologies, methods and theories when necessary.
We have learned what worked and didn’t work, applied ideas when applicable and kept the
business going with an aim at continually improving and leamning.

This paper offers a personal perspective on how our approach to quality improvement has evolved
over time and where I think we are evolving. I will try to carry you through various phases of our
evolutionary learning process, arbitrarily breaking the learning into five year periods. showing you
some of the things we did wrong and what caused us to change our ideas. I will use the Quality
Improvement Paradigm steps themselves, as it presently stands, as a guidelines to how our
thinking evolved based upon experiences in the SEL.

But first, let me give you the Quality Improvement Paradigm, as it is currently defined. In its full
\ version, it can be broken up into six steps:

\

b]

1. Characterize the current project and its environment with respect to the
appropriate models and metrics.

2. Set the quantifiable goals for successful project performance and improvement.

3. Choose the appropriate process model and supporting methods and tools for
this project.

4. Execute the processes, construct the products, collect, validate and analyze
the data to provide real-time feedback for corrective action.

5. Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.

3%

(PAGE N ENTHUNALLY BLANK
PRREENNG PAGE BLANK NOT LW

SEW Proceedings 39 SEL-93-003

6. Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it in an
experience base to be reused on future projects.

We often use a shortened version of the paradigm which is defined as three steps: understand,
assess, and package. These steps can be mapped onto the six steps by noting that understand is
step 1, assess is steps 2 through 5 and package is step 6.

Each of these steps changed over time, either in how we defined them or how we implemented
them. Characterization went from collecting metrics to defining baselines to building models. Goal
setting started out as simply data collection, evolved to being goal driven and finally goal and
model driven, i.e., data collected based upon goals and quantifiable models. The processes,
methods and technologies available in the process selection step evolved from combinations of
heuristic methods, to well-defined technologies, to high impact, combinations of integrated
technologies, methods, and life cycle models, to the evolving and tailoring processes to the
situation. During process execution, we moved from loosely monitored projects to closely
monitored projects with well defined feedback loops. In the beginning we collected too much data,
independent of the process. Later data became embedded in the process. The types of analysis we
performed in the beginning were correlations and regressions, and we have evolved to other forms
of model building, based upon the nature of the software engineering data, and to the use of
qualitative analysis. Packaging began as recording and generating lessons leamed but evolved to
focused tailored packages that were integrated into the development processes. We started by
packaging defect and resource baselines and product characteristics and have been evolving to
seeking the relationship between process and product characteristics.

1976 - 1980

What we did _

We began the SEL in 1976. At that time, the paradigm looked like:

1. ChareeterizefUnderstand Apply Models -

2. SetGesals Measure

3. SeleetProeess Study Process

. 4. Execute Process

5. Analyze Data Only

6. Peekage Record
We tried to characterize and understand by using other people’s models. For example we spent a
great deal of time trying to apply such models as the Rayleigh curve model of resource allocation,
reliability growth models, etc. without asking ourselves if they were appropriate for our particular
environment.

We decided on measurement as an abstraction mechanism and developed data collection forms and
measurement tools. We collected data from half a dozen projects for a simple data base and we
defined the GQM as in informal mechanism to help us organize the data around the study of defects

[BaWe84].
It had not really occurred to us to select process as we did not yet understand that process was a

variable that needed to be selected and tailored to the environment. This was because we had not
yet understood our environment sufficiently. So we started to study process, applied heuristically

SEW Proceedings 40 SEL-93-003

o

"

S T

Py

[I n '!!I I !’H”wu IWWWH"”H\IUU L \1” |

defined combinations of existing processes and began to run controlled experiments at the
university with students.

During development, data collection was an add-on activity and was loosely monitored. We
analyzed data only and began to build baselines and looked for correlations. We recorded what we

.

found, built defect baselines and resource models and measured project characteristics.

What we Learned

During this period we learned that we needed to better understand the environment, projects,
processes, products, etc. We needed to build our own models to understand and characterize our
environment, we could not just use other people’s models. Those models were built for their
environments and could not be generalized easily.

We learned that we needed to understand what factors create similarities and differences among
projects so we know the appropriate model to apply. This included the need to understand how to
choose the right processes in order to create the desired product characteristics.

We realized that evaluation and feedback are necessary for project control and that data collection
has to be goal driven; we could not just collect data and then figure out what to do with it.

From our perspective, the major improvement technology that emerged from this period was the
Goal/Question/Metric Paradigm, even though it was still quite primitive.

An Example

As an example of what we learned, we tried to apply the 40/20/40 rule in SEL. It had been reported
by Boehm [Bo73] that approximately 40% of project resources were expended in analysis and
design, 20% in code, and 40% in checkout and test. Shortly thereafter, Walston and Felix reported
that in IBM/FSD, 35% of the resources were expended in analysis and design, 30% in code, 25%
in checkout and test and 10% in other, which clearly violated the 40/20/40 rule [WaFe77]. Butin
the SEL, we were collecting two types of resource data, phase data and activity data. The phase
data represented milestone data. That is, analysis and design data represented the resources
expended up to the design review milestone (CDR). The activity data represented what a developer
did each week, e.g., 20 hours designing, 10 hours coding, 5 hours in training, 5 hours in travel.
Using the phase data, we found that 20% of the resources were expended in analysis and design,
45% in code, 28% in checkout and test and 5% in other, while using the activity data, we found
that 21% of the resources were expended in analysis and design, 28% in code, 23% in checkout
and test and 27% in other.

TRW IBM SEL
Phase Activity
Analysis/Design 40% 35% 20% 21%
Code 20 30 45 28
Checkout/Test 40 25 28 23
Other 10 5 27

SEW Proceedings 41 SEL-93-003

Table 1. Resource Allocation Data

It became clear that the data from the other environments represented phase data rather than activity
data since they did not collect activity data. It also was clear that each of the organizations defined
their milestones and phases differently, so each organization has a different model for resource
allocation and it is hard to compare them. Phase data is highly dependent on how an organization
defines its milestones. Since phase data and activity data represent two entirely different things, it
is not clear what the activity data look like in these other organizations. It should be noted that this
example represents an argument why it would be very difficult to build a national data base across
environments and share and compare data.

1981 - 1985 !
What we did

In the early eighties, the paradigm had evolved to look more like:
1. Characterize/Understand
2. Set Goals
3. Select Process
4. Execute Process
5. Analyze

6. Package Record

To characterize and understand the environment we built our own baselines/models of cost,
defects, process, etc. We began to set goals for all data collected and expanded our definition of the
GQM to perform studies across multiple areas and projects. We began to incorporate subjective
metrics into our measurement process. To help us select process we experimented with well
defined technologies and began experiments with high impact technology sets, e.g., Ada & OOD.
During project execution, we collected less data than we had before and moved the data from a file
system to a commercial, relational data base. We began to understand how to combine some of our
off-line controlled experiments with the case studies in the SEL. We shifted the analysis emphasis
to the process and its relation to product characteristics. We recorded lessons learned, and began

formalizing processes, products, knowledge and quality models.

What we Learned

During this period we learned that software development follows an experimental paradi gm,ie.,
you need to set your goals up front and check that you are achieving those goals. The design of
experiments is an important part of improvement and evaluation and feedback are necessary for
learning. We also learned that we needed to better understand relationships between various kinds
of experiences, e.g., the relationship between processes and the set of product characteristics it
evokes or the resources required to perform it, the relationship between component size and
complexity and defect rate. To do this process, product, and quality models need to be better
defined, experimentally tested, and improved.

We learned that reusing experience in the form of processes, products, and other forms of
knowledge is essential for improvement. We need to leam what works and what does not work

and what needs to be modified and what needs to be thrown out. At the same time we need to
experiment with new technologies, motivated by our experiences.

By this time, we had more data than we knew what to do with them, but we did not have the data

SEW Proceedings 42 SEL-93-003

"oy

e

CUIUELT p e mr—

we needed to help us interpret what was happening. We learned that you can drown in too much
data, especially if you don’t have goals. Besides having a good data base, you need to store your
models as well as your data

An Example

As an example of demonstrating that we need to understand the relationship between variables,
consider the study in the SEL where we compared fault rate with component size and complexity.
In a study in the early eighties, we found that the simple minded view that defect rate increases
with size did not hold in the SEL environment. In fact, we found the opposite for the actual data
we had available for study [BaPe84]. We believe this relationship is due to the fact that interface
defects dominate the problem of the complexity of the individual component, when components are
small.

On the other hand, we have hypothesized that as the size grows beyond the developer’s ability to
cope with its size and complexity, the complexity of the individual component will dominate the
complexity of the interface and fault rate will again grow.

Believed ...

Actual /

------- / Hypothesized

Fault
Rate

Size/Complexity

Figure 1. Relationship between Fault Rate and Size or Complexity
We have since found support for the first statement, i.e., fault rate decrease with size and
complexity in data from several companies. This result was a surprise at the time since most people
believed that smaller components were better. However. the relationship between size and fault rate
appears not to be that simple.
1986 - 1990
What we did

It was in this period that the QIP took its current form, recording being changed to packaging.
1. Characterize/Understand

SEW Proceedings 43 SEL-93-003

2. Set Goals

3. Select/Tailor Process
4. Execute Process

5. Analyze

6. Package

To characterize and understand we worked on capturing experience through models. Goals and
models became the commonplace driver of measurement and we built SME [Va87], a model-based
experience base with dozens of projects. We began to tailor and evolve high impact technologies
based on experience, e.g., Cleanroom, and experimentation and feedback became an integral part
of the QIP. During process execution, we embedded the data collection process into the
development processes and more closely monitored projects, especially those where we were
experimenting with new approaches.We began to demonstrate various (process, product)
relationships, e.g., the effect of a particular method on defect reduction. We developed focused
tailored packages, e.g., generic code components, and leamed to transfer technology better
through organizational structure, experimentation, and evolutionary culture change.

What we Learned

We leamned that experience needs to be evaluated, tailored, and packaged for reuse. That is, you
just cannot write lessons learned documents, you have to analyze and synthesize what has been
learned and integrate it into the existing knowledge so that it is usable by future projects. This
requires organizational support and resources. ' '

A variety of experiences can be reused, e.g., process, product, resource, defect and quality
models. But processes must be put in place to support the reuse of experience and the development
process must be modified to take advantage of reusable experiences. Experiences can be packaged
in a variety of ways, e.g., equations, histograms, algorithms.

Packaged experiences need to be integrated. When introducing a new process, an organization
needs to make sure it fits and is supported by the other processes being used, that is, it needs to
understand the relationship between various changes in the parameters in one model and the effect
on another model. If I modify my reading technology, what will be the effect on the class of
defects I find, the resources allocated for rework,etc.

There is a tradeoff between reuse and impro?érﬁéjlt.,livolution is slow as I cannot introduce t0o
much change at one time. When I do introduce change, I loose experience and predictability. On
the other hand, processes have to be changed to cope with the continuously growing need for
quality.

During this period we evolved the GQM to include templates and models [BaRo88] and formalized
the organization via the Experience Factory Organization [Ba89).

An Example

To demonstrate that how a technology is packaged and integrated has a strong effect on its
effectiveness, consider our experiences with evaluating and integrating reading technology.

We ran a controlled experiment comparing equivalence partitioning testing, structural testing, and
reading by step-wise abstraction[BaSe87]. Reading was found to be more effective and efficient
than testing in uncovering defects. Based upon these results, we put reading into practice as a
technology in the SEL. But we found that reading had little effect on defects. This appeared to be
because the readers did not read well because they knew they were going to test and believed that,

SEW Proceedings 44 SEL-93-003

i

il (U U EY IR TICYR

AR T L AT

in spite of the experimental results, testing was better. Our belief that reading is more effective
when not followed by developer testing motivated our use of the Cleanroom approach
(SeBaBa87]. When embedded in the Cleanroom approach, reading did demonstrate a substantial
lowering of defect rates.

1991 - 1995

What we are doing

This bring us up to the current time. The current evolution of the QIP appears to be aimed at
instantiating the steps, making them more specific, providing details, and developing support
technologies.

To characterize and understand the project and environment, we are building a repository of
(process,product) relationship models that characterize the SEL environment. We are working on
automating the GQM in order to support the setting of goals. We are studying what experience is
exportable to other environments in help other organizations take advantage of our process
experience We are working on building models to measure process conformance and domain
understanding.

During execution of the processes, we are working to capture the details of experience by
providing more interaction between developers and experimenters and more effective feedback
mechanism. This will help us to evolve processes that are more focused and detailed for our local
needs and goals.

We are building qualitative analysis approaches to extract our experiences and provide input to the
data models. We continue to evolve SME and we continue the evolution and packaging of the
Experience Factory Organization.

Many of the current, specific SEL activities are covered in this workshop proceedings. However,
there are more global SEL activities aimed at evolving the application of the QIP to other
organizations. These activities concern packaging the SEL organizational experience for other
groups in NASA, understanding whether and how to move activities to common use, and better
integrating reuse into the development process

The research activities are based upon instantiating the steps of the Quality Improvement Paradigm

by providing support technologies and automation, and integrating the various activities.
Where the research is going

The table below shows some of our current research interests aimed at instantiating the Quality
Improvement Paradigm.

Step Studies / Research Projects
Characterize Perform domain analysis to identify similar projects using techniques
appropriate for SE data
Set goals Automate the model-based GQM as much as possible

SEW Proceedings 45 SEL-93-003

Choose process Develop technologies tailorable to the specific project needs
Execute processes Build a more powerful, flexible experience base

Analyze data Leamn how to run more efficient experiments and combine controlled
experiments with case studies

Package experience Build better models and modeling notations

Table 2: Instantiating the Quality Improvement Paradigm

Example research projects

To give some specific examples of research projects, let us consider three: the work on domain
analysis, reading technologies, and empirical modeling.

Domain Analysis

How do you recognize which projects are most like yours in order to use the experiences from
these projects to allow you to build models, choose similar process, etc.?

We have established procedures to identify and analyze software domains within and across
organizations so that opportunities for reuse of experiences may be identified [Lionel Briand]. This
has entailed defining both an experience-based procedure taking advantage of intuition and expert
knowledge as well as a data-based procedure for when data is available.

Validation S :
We are using both procedures to identify domains within NASA, and have analyzed data within the
SEL data base to determine whether or not our assumptions are supported locally.

Focused Tailored Reading Techniques
How do you tailor a.prooess to the project goals and local organizational characteristics?

Have developed scenario-based technologies for reading various documents that are tailorable and
can be focused for the particular environment. As an example, we have developed several model-
based scenarios that take advantage of local knowledge and technical models to define a technology
for reading. For example, defect-based reading is based upon the different defect classes, e.g.,
missing functionality, data type inconsistencies, in a requirements document that have been found
in requirements [BaWe81].

We have run a couple of controlled experiments that show that defect-Based reading is significantly
more effective that ad hoc reading or checklists [PoVo94].

SEW Proceedings 46 SEL-93-003

toormy

(ALl m

{1)

Empirical Modeling: Optimized Set Reduction

Problem Addressed:

How do you build empirical models that allow you to define interpretable, accurate, easy to use
and automate modeling procedures that take into account the specific constraints of software
engineering data?

Current Status:

OSR has been developed based on pattern matching; searching for similar experiences in the data
set and the use of non-parametric statistics. There are no functional assumptions made; the
approach handles interactions and inter dependencies among variables, and no “learning”
parameters need to be tuned before hand.

Validation:

We have shown OSR to be easier to interpret and more accurate than regression and tree-based
approaches for cost modeling and defective module prediction [BrBaTh92, BrBaHe93]. A
prototype tool exists and a commercial tool is under development.

Conclusion

Over the past 18 years we have learned a great deal about software improvement. Our learning
process has been continuous and evolutionary like the evolution of the software development
process itself. We have packaged what we have learned into our process, product and
organizational structure. This evolution is supported by the symbiotic relationship between
research and practice. It is based upon a belief that software engineering is a laboratory science. As
such it involves the interaction of research and application, experimentation and development. Itis
a relationship that requires patience and understanding on both sides, but when nurtured, really
pays dividends!

References

[Ba835]

V R. Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. of the First
Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also available as
Technical Report, TR-1519, Dept. of Computer Science, University of Maryland, College Park,
July 1985].

[Bag9]

V. R. Basili, “Software Development: A Paradigm for the Future”, Proceedings, 13th Annual
International Computer Software & Applications Conference (COMPSAC), Keynote Address,
Orlando, FL, September 1989

[Ba90]
V. R. Basili, “Software Modeling and Measurement: The Goal/Question/Metric Paradigm,”
University of Maryland Technical Report, CS-TR-2956, UMIACS-TR-92-96, September 1992.

[BaRo88]
V. R. Basili H- D. Rombach "The TAME Project: Towards Improvement-Oriented

SEW Proceedings 47 SEL-93-003

Software Environments,” IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June
1988, pp. 758-773.

[BaPe84]
V. R. Basili, B. Perricone, "Software Errors and Complexity: An Empirical Investigation,” ACM

Communications, vol. 27, no. 1, January 1984, pp. 45-52.

[BaSe87]
Victor R. Basili, R. W. Selby, "Comparing the Effectiveness of Software Testing Strategies,”

IEEE Transactions on Software Engmeenng, Vol. SE-13, No. 12, December 1987, pp.
1278-1296.

[BaWe84]
V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,"
IEEE Transactions on Software Engineering, vol. SE-10, no.6, November 1984, pp. 728-738.

[BaWe8l]
V. R. Basili, D. M. Weiss, "Evaluation of a Software Requlremems Document by Analysis of
Change Data,” Proceedings of the Fifth International Conference on Software Engineering, San

Diego, USA, March 1981, pp. 314-323.

[Bo73]
B. W. Boehm, “Software and its Impact: A Quantitative Assessment,” Datamation 19, No.5 48-

59 (My 1973).

[BrBaTh92] '
Lionel C. Briand, Victor R. Basxh and William M. Thomas, “A Patiern Recognition Approach for

Software Engineering Data Analysis,” IEEE Transactions of Software Engineering, Vol. 18, No.
11, pp. 931-942, November 1992.

[BrBaHe93]
Lionel C. Briand, Victor R. Basili, and Christopher J. Hetmanski, “Developing Interpretable
Models for Identifying High Risk Software Components,” IEEE Transactions on Software

Engineering, November 1993.

[PoVo94]
Adam Porter, Larry Votta, “An Experiment to Assess different Defect Methods for Software

Requirements Inspections,” Proceedings of the 16th ICSE, Sorrento, Italy, May 1994.

[SeBaBa87])
R. W. Selby, Jr, V. R. Basili, and T. Baker, "CLEANROOM Software Development: An

Empirical Evaluation,” IEEE Transactions on Software Engineering, Vol. 13 no. 9, September,
1987, pp. 1027-1037.

[Va87]
J. D. Valett, "The Dynamic Management Information Tool (DYNAMITE): Analysis of the

Prototype, Requirements and Operational Scenarios,” M.Sc. Thesis, University of Maryland,
1987.

[WaFe77] .
C. E. Walston and C. P. Felix, “A Method of Programming Measurement and Estimation,” IBM

Systems Journal, Vol. 16, No. 1, 1977, pp.54-73.

SEW Proceedings 48 SEL-93-003

Iy ey

T EI0T MMM 0O N D Ny e

The Maturing of the
Quality Improvement Paradigm
in the SEL

Victor R. Basili
Institute for Advanced Computer Studies
Department of Computer Science
University of Maryland

December 1-2, 1993

Maturing the Improvement Paradigm
Since 1976

in 18 years have learned a great deal, e.g.,

tried to assess, before understanding

were data driven rather than goal and model driven

tried to use other people’s models to explain our environment
Learning process has been more evolutionary than revolutionary
Generated lessons learned that have been packaged into our

process, product and organizational structure

Used the SEL as a laboratory to build models, test hypotheses,

Used the University to test high risk ideas

Developed technologies, methods and theories when necessary
Learned what worked and didn't work, applied ideas when applicable
Kept the business going with an aim at improvement, learning

Talk offers my perspective on
how we have evolved
and where we are going

SEW Proceedings 49 SEL-93-003

Maturing the Improvement Paradigm
Quality Improvement Paradigm

Characterize the current project and its environment with respect to the
appropriate models and metrics.

Set the quantifiable goals for successful project performance and
improvement.

Choose the appropriate process mode! and supporting methods and tools
for this project.

Execute the processes, construct the products, collect, validate and
analyze the data to provide real-time feedback for corrective action.

Analyze the data to evaluate the current practices, determine probiems,
record findings, and make recommendations for future project
improvements.

Package the experience in the form of updated and refined models and
other forms of structured knowledge gained from this and prior projects and
save it in an experience base to be reused on future projects.

Maturing the Improvement Paradigm
Major Activity Evolution

Characterize
metrics ----> baselines ----> models

Set Goals
data driven ----> goal driven ----> goal/model driven

Select Process
heuristic ----> defined ----> high impact ----> evolving
combinations technologies combinations processes

Execute Process
add-on data collection ----> less data ----> data embedded in process

foosely monitored ----> closely monitored/feedback

Analyze
correlations ----> regressions ----> model ----> qualitative analysis
Package 7
recording ---->lessons leamed ----> focussed tailored packages
defect ---->resources ----> product ----» process x product
baselines modeis characteristics relationships

SEW Proceedings 50 SEL-93-003

temmeor o

IRERETTE

AN AN R RRL T

Maturing the improvement Paradigm
1976 - 1980

Apply Models
Looked at other people's models, e.g., Raleigh curve, MTTF models

Set-Goals Measurement
Decided on measurement as an abstraction mechanism
Developed data collection forms and measurement tool
Collected data from half a dozen projects for a simple data base
Defined the GOM to help us organize the data around a particular study

Study Process
Used heuristically defined combinations of existing processes
Ran controlled experiments at the University

Execute Process
Data collection was an add-on activity and was loosely monitored

Analyze Data Only
Mostly build baselines and looked for correlations

Record
Recorded what we found, build defect baselines and resource models

Maturing the Improvement Paradigm
1976 - 1980

Learned
Need to better understand environment, projects, processes, products, etc.

Need to build our own models to understand and characterize
- can't just use other people’s models

Need to understand the factors that create similarities and differences
among projects so we know the appropriate model to apply

Need to understand how to choose the right processes to create the desired
product characteristics

Evaluation and feedback are necessary for project control

Data collection has to be goal driven o
- can't just collect data and then figure out what to do with it

Developed the Goal/Question/Metric Paradigm

SEW Proceedings 51 SEL-93-003

Maturing the Improvement Paradigm
1976 - 1980

Trying to Apply the 40/20/40 Rule in SEL

TRW IBM SEL
Phase Activity
Design 40% 35% 20% 21%
Code 20 30 45 28
Checkout/Test 40 25 28 23
Other 10 5 27

The 40/20/40 rule does not apply to us
The rule does not imply what you may think

Effort

_

Maturing the Improvement Paradigm
198%-19

Applying a resoute AlfbRation Model

Actual Data

Time

Need to understand the local context
Local context makes a big difference

j

SEW Proceedings

52

SEL-93-003

| mpe

[rnn wmmn |

L L TR]

LALLI]

Maturing the Improvement Paradigm
1981 - 1985

Charaeterize/Understand
Built our own baselines/models of cost, defects, process, eic.

Set Goals
Began to set goals and defined the GQM to study multiple areas
Began to incorporate subjective metrics into our measurement process

Select Process
Experimented with well defined technologies
Began experiments with high impact technology sets, e.g., Ada & OOD

Execute Process]
Be?an 1o understand how to combine experiments and case studies
Collected less data and stored it in a relational data base

Analyze
hitted emphasis to process and its relation 1o product characteristics

Record
Recorded lessons learned ,
Began formalizing process, product, knowledge and quality models

Maturing the Improvement Paradigm
1981 - 1985

Learned
Software development follows an experimental Paradigm, ie.,
Design of experiments is an important part of improvement
Evaluation and feedback are necessary for leaming
Need to experiment with new technologies

Need to learn about relationships
- process, product, and quality models need to be better defined

Reusing experience in the form of processes, products, and other forms of
knowledge is essential for improvement

Can drown in too much data, especially if you don't have goals

Need a data base and you need to store your models as well as your data

Developed the QIP as:
Characterize, Set goals, Choose process, Execute, Analyze, and Record

SEW Proceedings 53 SEL-93-003

Maturing the Improvement Paradigm \
1981-1985

Measuring Fault Rate against Size and Complexity

Believed
Fault
Rate Actual
Hypothesized
Size/Complexity
We need to understand the relationship among variables
The relationship between fault rate and size is non-linear

Maturing the Improvement Paradigm
1986 - 1990

Characterize/Understand
Worked on capturing experience in models

Set Goals '
Goals and Models became the commonplace driver of measurement
Built SME, a model-based experience base with dozens of projects

Select Process
Tailored and evolved the high impact technologies based on experience
Experimentation and feedback became and integral part of the QIP

Execute Process
Embedded data into the processes and closely monitored study projects

Analyze
. Demonstrated various (process, product) relationships

Package
Developed focussed tailored packages, e.g., generic code components
Learned to transfer technology better through organizational structure,
experimentation, and evolutionary culture change

SEW Proceedings 54 SEL-93-003

e

Lo

N TRENT X

e

L3

Maturing the Improvement Paradigm
1986 - 1990

Learned
Experience needs to be evaluated, tailored, and packaged for reuse
There is a tradeoff between reuse and improvement
Software processes must be put in place to support the reuse of experience

A variety of experiences can be reused, e.g., process, product, resource,
defect and quality models

Experiences can be packaged in a variety of ways, e.g., equations,
histograms, algorithms

Packaged experiences need to be integrated

Reformulated QIP as:
Characterize, Set goals, Choose process, Execute, Analyze, and Package

Evolved GOM to include templates and models
Formalized the organization via the Experience Factory Organization

Maturing the Improvement Paradigm
1986 - 1990

Evaluating and Integrating Reading

Testing vs. Reading experiment
Reading more effective and efficient than testing

Reading in Practice
Reading had little effect

Reading as part of Cleanroom at the University
Reading had a high impact

Reading as part of Cleanroom in the SEL
Reading had a high impact

How a technology Is packaged and integrated has a strong effect
Reading more effective when not followed by testing

SEW Proceedings 55 SEL-93-003

Maturing the Improvement Paradigm

1990 - 1995
Characterize
Building (process product) relationship models
Set Goals
Automating the GQM

Select Process
Study what expenence is exportable :)
Study process conformance and domain understanding

Execute Process)))
Capture the details of experience - more interaction between developers

and experimenters - more effective feedback
More focused and detailed on our local needs and goals

Analyz
ualltatwe analysis to extract experiences

Package
Continuing to evolve SME ~
Evolving and packaging the Expenence Factory Organization

Maturing the Improvement Paradigm
1991 - 1995

Many specific actlvmes in the SEL will be covered in thls workshop

SEL activities aimed al evolvmg the apphcatlon of the QIP concern
packaging the SEL organizational experience for NASA
understanding whether and how to move activities to common use
better integrating reuse into the development process

Research activities aimed at evolving the QIP are mostly based upon
instantiating the steps of the Quality Improvement Paradigm
providing support technologies and automation, and
integrating the various activities.

SEW Proceedings 56 SEL-93-003

Lt I

1 i

LARI ol CRR IR TANOE 0

T R R AT

Maturing the Improvement Paradigm
1991 - 1995

Instantiating the Quality improvement Paradigm

Step Studies / Ressarch Projests

Characterize Perform domain analysis to identify similar projects
using techniques appropriate for SE data

Set goals Automate the model-based GQM as much as
possible

Choose process Develop technologies tailorable to the specific
project needs

Execute processes Build a more powerful, flexible experience base

Analyze data Learn how to run more efficient experiments and
combine controlied experiments with case studies

Package experience Build better models and modeling notations

Maturing the Improvement Paradigm
Domain Analysis

Problem Addressed:

How do you recognize which projects are most like yours to build models,
choose process, efc.?

Current Status:
Establishing procedures to

identify and analyze software domains within and across organizations
so that opportunities for reuse of experiences may be identified.

We have defined
- a data-based procedure
- an experience-based procedure

Validation Strategy:

Identify domains within NASA, analyze data to determine whether or not our
assumptions are supported.

Lionel Briand

SEW Proceedings 57 SEL-93-003

Maturing the Improvement Paradigm
Focused Tailored Reading Techniques

Problem Addressed:

How do you tailor a process to the project goals and local organizational
characteristics?

Current Status:

Have developed scenario-based technologies for reading various documents
that are tailorable and can be focused for the particular environment

Example: Defect-based reading is based upon the different defect classes,
e.g., missing functionality, data fype inconsistencies, in a requirements
document

Validation:

Defect-Based reading has been shown to be significantly much more
effective that ad hoc reading or checklists

Adam Porter, Larry Votta

Maturing the Improvement Paradigm
Empirical Modeling: Optimized Set Reduction

Problem Addressed:

How do you build empirical models that allow you to define interpretable,
accurate, easy to use and automate modeling procedures that take into
account the specific constraints of software engineering data?

Current Status:
OSR has been developed based on o
- pattern matching; searching for similar experiences in the data set
- non-parametric statistics
- no functional assumptions, handles interactions and interdependencies
- No “learning” parameters to be tuned before hand

Validation:

Shown easier to interpret and more accurate than
regression and tree-based approaches
for cost modeling and defective module prediction
Prototype tool exists; commercial tool under development

Lionel Briand, Chet Hetmanski, Bill Thomas

SEW Proceedings 58 SEL-93-003

Yrwm

(R

WEETT e e

Maturing the Improvement Paradigm
Conclusion

Over 18 years we have learned a great deal about software improvement

Our learning process has been continuous and evolutionary like the
evolution of the software development process itself

We have packaged what we have learned into our process, product and
organizational structure

The evolution is supported by the symbiotic relationship between
research and practice

It is a relationship that requires patience and understanding on both sides,
but when nurtured, really pays dividends!

SEW Proceedings 59 SEL-93-003

N94- 36486

PROCESS IMPROVEMENT AS AN INVESTMENT:
MEASURING ITS WORTH

S2-6/
orrsd
A o\

Frank McGarry
Kellyann Jeletic

SOFTWARE ENGINEERING BRANCH
Code 552 - o
Goddard Space Flight Center
Greenbelt, Maryland 20771
(301) 286-6347
(301) 286-7698

ABSTRACT

This paper discusses return on investment (ROI) generated from software
process improvement programs. It details the steps needed to compute ROI and
compares these steps from the perspective of two process improvement
approaches: the widely known Software Engineering Institute’s Capability
Maturity Model and the approach employed by the National Aeronautics and
Space Administration’s (NASA’s) Software Engineering Laboratory (SEL). -
The paper then describes the specific investments made in the SEL over the past
18 years and discusses the improvements gained from this investment by the

production organization in the SEL.

INTRODUCTION

For many years, various organizations have
put forth significant efforts toward the im-
provement of software process and product.
In recent years, the development of the
Software Engineering Institute’s (SEI)
Capability Maturity Model (CMM) has sig-
nificantly accelerated interest in the overall
improvement process for software. With the
development of this model, software devel-
opment organizations have a relatively clear
definition of recommended approaches for
attaining better and better levels of software
process that, in turn, is expected to result in
better and better software products. After six
years of experience with the application of the

SEW Proceedings

60

CMM concept, there still is a shortage of
empirical evidence quantifying the impact of
investments in software process improvement.
In general, there has been significant
uncertainty in the return on investment
stemming from process improvement
activities. As organizations invest resources
in software process improvement efforts, they
need to understand what they are getting for
their money and determine whether there has
been any benefit from this investment.

This paper details the steps needed to com-
pute return on investment (ROI) and com-
pares these steps from the perspective of two
process improvement approaches: the widely
known Software Engineering Institute’s

SEL-93-003

IIE 0 Bt 1 aowe m—

(IR T

I)0 1

S R T

Capability Maturity Model and the approach
employed by the National Aeronautics and
Space Administration’s (NASA) Software
Engineering Laboratory (SEL). It then
describes the specific investments made by
the SEL over the past 18 years and discusses
the benefits gained from this investment by
this production organization.

SEL. OVERVIEW

The SEL is an organization sponsored by
NASA's Goddard Space Flight Center
(GSFC) which was created to investigate the
effectiveness of software engineering
technologies when applied to the development
of applications software. The SEL was
established in 1976 and has three primary
organizational members: NASA/GSFC’s
Software Engineering Branch, the University
of Maryland’s Department of Computer
Science, and the Computer Sciences
Corporation’s (CSC’s) Software Engineering
Operation. The goals of the SEL are () to
understand the software development process
in the GSFC environment; (2) to measure the
effect of various methodologies, tools, and
models on this process; and (3) to identify
and then apply successful development
practices.

Within the SEL, over 100 production projects
have been monitored and studied over an 18
year period to assess the impact that process
change has on the developed software
products. These production projects result in
software that is used for ground support for
GSEC missions and is typically used to carry
out all Flight Dynamics functions at the
GSFC. These software projects range in size
from 4 or 5 thousand (K) source lines of
code (SLOC) to over 1 million SLOC, with a
typical size of 100-300 KSLOC.

In carrying out these 100 ‘experiments’ with
software process, the SEL has accumulated
detailed information on specific processes
used for each project as well as the resultant
product characteristics such as cost, error
rates, cycle time, rework required, etc. With
this information, some insight can be gained
into the ROI that is attained with the usage of

SEW Proceedings

61

particular process changes within the
environment.

CHARACTERISTICS OF TWO SOFT-
WARE PROCESS IMPROVEMENT
PARADIGMS (CMM AND SEL)

Although the paradigm used by the SEL
differs from the SEI's Capability Maturity
Model (CMM), both approaches share the
underlying principle of continuous, sustained
software process improvement. The CMM
focuses on improving an organization’s
software process by evolving through a series
of maturity levels to attain the ultimate goal,
becoming a continuously improving
organization (‘level 57). At each level, the
organization must meet a set of well-defined
criteria to advance to the next level or beyond.

Within the CMM, an organization strives 0
mature to a continuously improving process.
To do so. the organization must advance
through the following maturity levels
[Reference 1] where the organization’s software
process is defined as:

Level 1 - an ad hoc process

Level 2 - arepeatable and more
disciplined process

Level 3 - a standard, consistent, and
defined process

Level 4 - a predictable and
manageable process

Level 5- an optimizing and continu-

ously improving process

The SEL's process improvement paradigm
consists of a three step iterative process
driven by the specific goals of an organization
(e.g., to decrease average error rates) and the
experience gained from earlier development
efforts (e.g., most errors are interface errors).
These three steps include:

1) Understanding - a baseline of an
organization’s software process and
product is developed. How is the
organization’s software business
done? What is the lifecycle process?
What standards are used? What are
the characteristics of its software

SEL-93-003

product (e.g., cost, error rates,
productivity)?

2) Assessing - based on the goals of an
organization (e.g., reduce error rates),
some change is introduced to the
process and the subsequent result of
that change is assessed.

3) Packaging - once improvements have
been identified and verified, they are
packaged in some tangible form (e.g.,
training, standards) and infused back
into the organization’s process.

These three steps are performed
iteratively and continuously over time.

The two process improvement paradigms, the
CMM and SEL, are depicted in Figures 1 and
2, respectively.

HOW IS ROI COMPUTED?

With any process improvement approach, an
organization is eager to determine what it has
gained from its investment. There are five
steps necessary to determine the benefits
gained from investing in software process
improvement. These are:

(1) Define goals. The organization
must set goals for what is to be
improved.

(2) Produce a baseline. The organi-
zation must establish a basic
understanding of its current
software process and product.

(3) Invest in change. To improve
anything, change must first be
made. An investment in this change
must be made.

(4) Assess change. Once a change has
been made, its effects must be
measured to determine if any
improvement has been achieved.

(5) Measure ROI. Has the investment
in process improvement been a

SEW Proceedings

62

success? What has the investment
been and what has been gained from
this investment? The ROI must be
measured by (a) determining what
resources have been expended for
software process improvement, (b)
establishing what improvements,
both quantitative and qualitative,
have been achieved, and (c)
determining the difference between
the investment made and the
benefits obtained. Has the
investment been worthwhile?

How are these steps achieved within the
framework of the CMM and SEL process
improvement approaches? Each step is
addressed below from the perspective of both
approaches.

Throughout this paper, ‘process’ refers to the
characteristics of how an organization
develops and maintains software. ‘Process’
includes the organization’s tools, standards,
policies, life cycle, management approaches,
etc. It also includes all measures reflecting
these items such as effort distribution, error
distribution, profile of software change and
growth rate, etc. ‘Product’ refers to the
characteristics of the resultant software
including productivity, reuse levels, error
rates, cycle time to produce, etc.

1 - DEFINING GOALS:

Each organization must set goals for what is
to be improved. With the CMM, the goal is
generalized, i.e., to improve the software pro-
cess. With the SEL, goals are product-driven
and vary from organization to organization.

CMM: There is a generalized, domain-
independent goal that focuses on process.
Every organization strives to improve the
software process and, ultimately, evolve to a
continuously improving, optimizing process
(maturity level 5). Organizations A and B
both try to improve their processes and
become level 5 organizations, thereby
minimizing any risk incurred because of
software development.

SEL-93-003

RE RN

Y
S 5 - OPTIMIZING
& '« Change management
ooé\q@ Defect prevention
N

%[4-MANAGED

&
0&0 Measurement
Qk
O«
Qb'?.@“ 3 - DEFINED
a? Qe“’ Documented
&f Training

Sl 2- REPEATABLEJ

C}Q\\ Project management
1 - INITIAL
Ad hoc

Figure 1. CMM Process Improvement Paradigm

PACKAGE

infuse improved

(verified) process
N (Aefpséglﬁgm) « Standards and training

i ggélggr ' 1os) | DetErmine improvements to your business
915 1« What impact does change have?
UNDERSTAND

Know your software business (process and product)
«How do | do business today? (e.g., standards and
techniques used, % time in testing, module size)
«What are my product characteristics? (e.g., error
rates, productivity, complexity)

Figure 2. SEL Process Improvement Paradigm

SEW Proceedings 63 SEL-93-003

SEL: The emphasis of the SEL approach is
to improve the organization’s software
product. Goals vary from organization to
organization and are driven by product, not
process characteristics. Organization A may
attempt to improve reliability by decreasing
error rates. Organization B may strive to
decrease development cycle time. Goals are
domain-dependent.

2 - PRODUCE BASELINE

Each organization must establish a basic
understanding (baseline) of its current
software process and product. The CMM
baseline is process-based and established
against a ‘common yardstick.” The SEL
baseline is domain-dependent and is both
process- and product-based.

CMM: Baselining within the CMM is
achieved by performing an assessment of the
organization’s process. This assessment is
made against well-established criteria defined
by the SEI [Reference 1] and the organization is
baselined at some maturity level. These
criteria enable comparisons across domains
since every organization is assessed against
the same criteria, a ‘common yardstick.” The
same elements are examined for every
organization: does it have good standards,
what is its training program like, how is its
measurement program, etc. Based on the
examination of these criteria, the organization
is baselined at some maturity level.

SEL: Baselining involves understanding the
process and product of each individual
organization. This baseline is organization-
dependent (or domain-dependent). Unlike
the CMM, there is no common yardstick
enabling comparison across organizations.
Some factors need to be characterized
(baselined) by all organizations, e.g., how
much software exists, what process is
followed, what standards are used, what is the
distribution of effort across lifecycle phases,
etc. Other factors of interest depend on the
goals of the organization. Organization A, for
example, would want to baseline its error rate,
while Organization B needs to determine its
development cycle time.

SEW Proceedings

64

The SEL process improvement approach
emphasizes introducing change to attain
process improvement. The effects of changes
to process can only be measured by
comparing them to the existing baseline.
Understanding is a critical and continually
needed element of the SEL approach.

Figures 3 and 4 are examples of the SEL’s
baseline measures. They represent data from
Flight Dynamics projects as specified on the
individual figures. Figure 3 depicts baseline
values pertaining to process. It shows the
SEL’s typical effort distribution and classes
of error. Figure 4 depicts baseline values
associated with product. It shows the SEL’s
typical error rates, cost, and level of code
reuse.

These examples represent some elements that
may be characterized by an organization
baselining its process and product.

3 - INVEST IN CHANGE

Organizations striving for software process
improvement must invest in change. Within
the CMM, the common yardstick drives
change. Within the SEL, organizational goals
and experiences drive change.

CMM: The CMM’s common yardstick
drives change. That is, the elements by which
the CMM assesses maturity levels drive
change. If an organization is baselined at
some level, it will change elements necessary
to get to the next maturity level. If an
improved measurement program is needed to
advance to another maturity level, the
organization will focus on changing its
measurement program to meet the CMM
criteria. This common yardstick enables a
common roadmap to success -- continuous
improvement.

SEL: The goals and experiences of individual
organizations drive changes. Changes to the
process are made in an attempt to improve the
product. An organization interested in
increasing its level of reuse will invest in
changes that focus on that improvement goal.
For instance, they might decide to experiment

SEL-93-003

Effort Distribution*

85% code
writing

15% code
reading

Classes of Errors*

INITIALIZA-
TION
16%

COMPUTAA
TIONAL
15%

LOGIC/
CONTROL
20%

INTERFACE
22%

*Data from 11 Flight Dynamics
projects (1985-1990)

Figure 3. Sample SEL Process Baseline
Error Rates Cost
(1985-1989) (1985-1989)
10 800
—
8 600 A
2%, P NLCC T N B
<8 || pverage=-45| 400 -
58] 5
i~ 73 |
o H H 200
07 s g 2 z 2 o 0
z 8 23 3 ¢ GO COBE QOES UARS
< 5 < o)}
x 8 [} & &
S & § 8 2 1 Reuse
(1965-1989)
40
32
@ 30
g 20._Av_ergge_:;2_*o_°@__________
f-'E 13
< 107
0 FORTRAN Ada
(6 similar systems) (2 similar systems)
Figure 4. Sample SEL Product Baseline
SEL-93-003

SEW Proceedings 65

with object-oriented design (OOD) to
improve reuse. The organization interested in
reducing error rates might decide to
experiment with the Cleanroom methodology
[Reference 2]. Each organization (or domain)
must identify the most appropriate process
changes to achieve its product goals.

The CMM is an excellent model of potential
process changes that could be selected.
Various elements of the model (e.g., key pro-
cess areas (KPAs)) have emphasis on specific
product improvements that can help in
selecting potential changes in the SEL model.

4 - ASSESS CHANGE

Each organization must introduce change to
make some improvement. An assessment of
the changes must be made to determine if
there has been improvement. The CMM
assesses change by reassessing the process.
The SEL assessment of change is domain-
dependent and focuses on both process and
product.

CMM: With the CMM, assessment of
change is accomplished by reassessing the
process. An organization is baselined at one
level, makes changes to try to attain a higher
level, and is then reassessed to determine if it
has progressed to another level. Success is
measured by process change. The ultimate
success is changing the process until it is a
continuously improving process. The
organization achieves the highest maturity
level rating, that is, advancing to level 5. The
measure of success is domain-independent,
since all organizations are measured against
the same criteria, a common yardstick.

SEL: Assessment of change is domain-
dependent. An improvement goal is set,
change to the process made, change to the
process and product examined and verified,
and the effect of change evaluated against the
original goal. Success is measured by
product change and is determined based on
the goals of the individual organization. The
organization attempting to improve its
reliability would institute a change, e.g., the
Cleanroom methodology, to try to reduce its

SEW Proceedings

66

error rates. It would then assess the result of
the Cleanroom experiment based on its
original goals. What were the baseline error
rates? What were the error rates resulting
from the Cleanroom experiment? Did
Cleanroom reduce error rates? The
organization attempting to attain higher levels
of reuse would make a change, e.g., OOD.
Similarly, it needs to determine the level of
reuse achieved using OOD and compare
these reuse levels with the original baseline.
The SEL examines both changes to process
data and changes to product data.

Figures 5 and 6 show some sample
assessments from the SEL representing
process and product data. They represent
data from actual Flight Dynamics projects as
specified on the individual figures. Figure 5
depicts a process assessment showing the
impact of a technology (Cleanroom) on the
SEL’s baseline effort distribution. Figure 6
shows an assessment of SEL products for the
period 1990-1993. The error rates, cost, and
level of reuse are reexamined to determine if
there was any change from the early baseline
(1985-1989) shown previously in Figure 4.

These examples also reemphasize the need
for baselining of both process and product.
Without the basic understanding provided
by the baseline, no change can be assessed.

5 - MEASURE ROI

Goals have been set. Baselines have been
established. Investment in change has been
made. Changes have been introduced and
their effect assessed based on the original
goals and the baseline values. Organizations
must now determine if the results of change
have been successful. Once ‘success’ has
been determined, then they can attempt to
answer the question, “Has the investment
been worth it?”

CMM: The CMM measure of success is
domain-independent and is the same as its
generalized goal. An organization is
successful if its process becomes mature and
it becomes a continuously improving,

SEL-83-003

IMPACT ON EFFORT DISTRIBUTION
Baseline Cleanroom

85% code

writing 48% code

writing
15% code 52% code

reading reading
Figure 5. Sample SEL Process Assessment
Error Rates Cost
10 800

o High= 8.9 High =755

o= » 800]
6 =

9 8° £ Avg = ~490
) _ £ 4007
224 Avg = -4.5 = Low =357
e3 (.,‘!; . High = 277
i~ . - - A = ~210

5 Low =1.7 High=24 200 vg

Avg = ~1
0 Low=_2 Low =98
Early Baseline Current 0 Early Baseline Current
8 similar systems 7 similar systems 8 similar systems 6 similar systems

supporling 4 missions supporing 4 missions

Reuse
100 50 Avg ~79%
vg ~79%
80 T C———FE =
2 i 61
3 60 Ada
T 40 (5 similar
* A FORTRAN| systems)
20 - Vg (3 similar
| ~20% | systems)
Early Baseline _ Current Early baseline 1985-1989
8 similar systems 8 similar systems Current 1990-1993
Figure 6. Sample SEL Product Assessment

SEW Proceedings 67 SEL-93-003

optimizing process, a maturity level 5.
Organizations progress to higher levels and,
in doing so, expect to reduce risk and
generate better products. Success can easily
be determined, but how is ROI determined?
After six years of experience with the
application of the CMM, there is still no clear,
accepted mechanism for determining the value
of return for the investment required to
implement software process improvement
programs.

SEL: The SEL measure of success will vary
from organization to organization. Success
depends on the goals set by the individual or-
ganization. Success for Organization A is
decreased error rates; success for
Organization B is decreased cycle time. How
is ROI determined? The baseline of both
process and product and the assessment of
change to the baseline result in quantified
measures that can be examined to determine
the ROI in process improvement. The re-
mainder of this section discusses the ROI for
the SEL’s process improvement paradigm.

THE ROI FOR THE SEL

GSFC’s Flight Dynamics Division (FDD) is
the production organization with which the
SEL is associated. FDD software develop-
ment is driven and guided by the SEL process
improvement paradigm. Over the past 18
years, the FDD has invested approximately
210 million dollars ($M) in software devel-
opment activities. Of this amount, the FDD
has invested approximately 11%, roughly
$24M, in software process improvement.
Figure 7 shows the breakdown of this
investment. About 1.5% of the total invest-
ment (<$3M) is attributed to project overhead
including form completion and collection,
training, and other similar activities. Another
3% ($6M) was spent processing data:
archiving data, maintaining the data base,
quality assuring the data, etc. The largest part
of this investment has been in analyzing the
data. About 7% ($15M) has been spent
defining experiments, analyzing results of
SEL experiments, developing the SEL models
and processes, producing software policies
and standards (e.g., References 3 and 4), devel-

SEW Proceedings

68

oping training material, carrying out training
in changing processes, and other activities
associated with improving the FDD’s
software products and process.

Has the FDD’s 11% investment in software
process improvement been worth it? In com-
paring projects developed in the mid 1980s to
those developed in the early 1990s, several
significant benefits have been achieved.
Figure 6 depicted some of these results. The
average level of reuse has increased by 300%,
from ~20% to nearly 79% for similar classes
of software. Reliability (errors/KSLOC) has
improved significantly as the error rate has
decreased by 75% from 4.5 to 1
error/KSLOC. The cost of developing Flight
Dynamics software has also decreased
significantly. The average cost of software
per mission has decreased by 55% from
~490 staff months (SM) to ~210 SM.

These quantifiable improvements are
complemented by more subjective ones. The
SEL’s process improvement activities have
resulted in many impacts to the software
production organization. First, the SEL
integrates and focuses activities that were
previously disparate. Training, standards,
policies, technology insertion, and
measurement have gradually become
integrated as a result of the SEL’s process
improvement approach. Figure 8 depicts
these items with respect to the three steps of
the SEL improvement approach.

Second, there has been a cultural change
within the production organization. The
developers have become an integral part of
process change. In fact, their experiences are
the basis for process change. Developers
have become more intimately involved with
the SEL process improvement approach. For
instance, developers on early Cleanroom
experiments drove the development of a
Cleanroom process handbook for use on later
Cleanroom projects. By doing so, they
packaged their experiences for future use.
Another cultural change lies with the software
being produced. Software development
within the FDD is now process-driven and
much less people-driven. The process is so

SEL-93-003

100
$210M
10 7 NWW v u
0w 87 $15M
£ 7.1%
=
&
6
i
s
R « Develop « Develop
2 47 $6M models and maintain
2 9% (processes) mission
=22 » Develop support
<$3M * Archive all standards software
27 1.4% results * Analyze results
~Eill out forms «Maintain data | |e Train staff
«Collect data base * Define
« Attend training *QA experiment
° . Production
Project Data Analysis/ Software
Overhead Processing Application Developed

Figure 7. FDD Investment in the SEL and Software Process Improvement

PACKAGE

¢ Training
¢ Standards

ASSESS

Technology insertion >
UNDERSTAND nologyinseten /&

Figure 8. Integration of Software Activities via the SEL Process Improvement Paradigm

SEW Proceedings 69 SEL-93-003

well-defined that ‘heroes’ are not necessary
for the well being of a software project.

Finally, there is now a focused role of soft-
ware engineering research. This research has
become goal and product-driven rather than
being performed in an ad hoc fashion. There
is also a well-established mechanism by
which experimentation, assessment, and
adoption of technologies are performed.
Within the SEL, process improvement has
driven organizational evolution and optimized
the allocation of software-related resources.
While not quantifiable, these have been
significant benefits achieved from the 11%
investment in software process improvement.

Although there has been significant improve-
ment in the software products in the SEL,
there is no way of determining how much of
this improvement is attributable to software
process improvements and how much is at-
tributable to normal improvements in technol-
ogy. There have been significant changes to
technology such as available tools, support
environments, better operating systems, better
trained personnel, work environments, faster
machines, etc., but there has been no attempt
by the SEL to distinguish between
improvements driven by the technology
maturation vs. software process maturation.

SUMMARY

As already discussed, there have been
substantial benefits gained from the
investment made in the SEL process
improvement activities in the areas of level of
reuse, reliability, and cost. While these
benefits were being attained, the software
being produced was also increasing in
complexity (Figure 9). As a result of the
SEL, the FDD was able to produce more
complex software with more functionality
while improving reliability and reducing cost.

The FDD’s $24M investment over the past
two decades has resulted in substantial
benefits for the Division itself and many other
organizations. As NASA focuses more on
technology transfer, the latter may become a
more significant factor in evaluating the ROI

SEW Proceedings

70

for the SEL. Not only has the SEL improved
the software process and products of its own
production organization, GSFC’s Flight
Dynamics Division, but it has shared these
experiences with many other software
organizations both within and outside the
Agency. The impact on other organizations
cannot be measured, but it certainly is a factor
to be considered when determining the value
added by the SEL and its process
improvement paradigm.

REFERENCES

1. Paulk, M., B. Curtis, M. Chrissis, and
C. Weber. Capability Maturity Model
for Software, Version 1.1, Software
Engineering Institute, Carnegie
Mellon University, CMU/SEI-93-TR-
24, February 1993,

2. Software Engineering Laboratory
(SEL) Cleanroom Process Model, S.
Green, NASA Goddard Space Flight
Center, Software Engineering
Laboratory, SEL-91-004, November
1991.

3. Manager’'s Handbook for Software
Development (Revision 1), L. Landis,
F. McQGarry, R. Pajerski, S. Waligora,
et al. NASA Goddard Space Flight
Center, Software Engineering
Laboratory, SEL-84-101, November
1990.

4. Recommended Approach to Software
Development (Revision 3), L. Landis,
F. McGarry, R. Pajerski, S. Waligora,
et al. NASA Goddard Space Flight
Center, Software Engineering
Laboratory, SEL-81-305, June 1992.

5. Boland, D., A Study on Size and
Reuse Trends in Attitude Ground
Support Systems (AGSSs) Developed
for the Flight Dynamics Division
(FDD) (1976-1988), Computer
Sciences Corporation, CSC/TM-
89/6031, February 1989.

SEL-93-003

Complexity of systems has increased appreciably®

30
25
201
15]
10]

Complexity rating

5

0,976 1978 1980 1982 1984 1986 1988 1990 1992

Late '70s-Early '80s | Late '80s-Early '90s

ontrol Spin stabilized 3-axis stabilized
Sensors 1 8to 11
Torquers |1 2to3
0BC Analog simple cortrol| Digital autonomous control
Telemetry 15 12t0 15
Data Rates| 2.2 kb/s 32 kb/s
Accuracy | 1degree 0.02 degree

*[Relerence 5]

Figure 9. FDD Software Complexity

SEW Proceedings 71 SEL-93-003

PROCESS IMPROVEMENT AS AN
INVESTMENT:

MEASURING ITS WORTH

Frank E. McGarry NNSN/GSFC
Kellyann F. Jeletic NNASN/GSFC

MEASURING ROI* FOR PROCESS
IMPROVEMENT

TOPICS OF DISCUSSION

1. CHARACTERISTICS OF TWO PROCESS IMPROVEMENT PARADIGMS
2. INFORMATION NEEDED TO DETERMINE ROI

3. MEASURING ROI IN NASA/SEL

*RO! = RETURN ON INVESTMENT

SEW Proceedings 72 SEL-93-003

TWO PARADIGMS FOR PROCESS IMPROVEMENT

Capability Maturity Model (CMM)

NASA/SEL

Continuously

improving Change

Pradictable
Measurement

3 - DEFINED
Documanted

Traiming
2 - REPEATABLE
Project management

Standard,
consistent

Disciplined

5 - OPTIMIZING

Defect prevention

4 - MANAGED

management

ASSESS

PACKAGE

Intuse improved (verfied) process

« Standards and training

EXPERIMENT)

i
GOALS

9.g . 19duUCe 0170¢ 13188},

UNDERSTAND

Determine improvements to your business

«What impact does change have?

Know your software business (Process and product)’
sHow do | do business today?

*What are my product characteristics?

* Process.

« How do you do business (
« Associated measurements {e.g.,

Product:

e.g., standards and techniques used)
% time in testing, module size)

« End item attributes (e.g., error rates, productivity, complexity)

SAM11U1.003

TWO PARADIGM FOR
PROCESS IMPROVEMENT

STEPS

CMM EMPHASIS

NASA/SEL EMPHASIS

j. DEFINE GOALS -

IMPROVE PROCESS
(GET TO HIGHER LEVEL)

IMPROVE PRODUCT

2. PRODUCE BASELINE

PROCESS "ASSESSMENT”
(AGAINST ONE YARDSTICK)

PROCESS AND PRODUCT
UNDERSTANDING

3. INVEST IN CHANGE

COMMON YARDSTICK
DRIVES CHANGE

EXPERIENCES AND
GOALS DRIVE CHANGE

4. ASSESS CHANGE

REASSESS PROCESS
SUCCESS - HIGHER LEVEL

REEXAMINE PROCESS AND

PRODUCT
SUCCESS - BETTER PRODUCT

TODAY'S TOPIC

SEW Proceedings

73

SEL-93-003

SOFTWARE PROCESS
IMPROVEMENT

STEP 1 - DEFINE GOALS

CMM PARADIGM

NASA/SEL PARADIGM

EMPHASIS --
IMPROVE PROCESS

EMPHASIS --
IMPROVE PRODUCT

ORGANIZATION 1 { “GET TO LEVEL 5"

INCREASE LEVEL OF REUSE

ORGANIZATION 2 | “GET TO LEVEL &~

DECREASE ERROR RATES

AB4E 007

SEL: IMPROVEMENT GOALS MAY VARY ACROSS DOMAINS

SOFTWARE PROCESS
IMPROVEMENT

STEP 2 - PRODUCE BASELINE

CMM PARADIGM

NASA/SEL PARADIGM

EMPHASIS --
PROCESS ASSESSMENT

EMPHASIS --
PROCESS AND PRODUCT
UNDERSTANDING

ORG 1

STANDARDS - GOOD
TRAINING - WEAK ’ LEVEL 1
MEASUREMENT - WEAK

WHAT IS YOUR DOMAIN?

WHAT STANDARDS DO YOU USE?
WHAT IS YOUR LEVEL OF REUSE?

ORG 2

TRAINING - GOOD

STANDARDS - WEAK
‘ LEVEL 3
MEASUREMENT - GOOD

WHAT IS YOUR DOMAIN?

WHAT STANDARDS DO YOU USE?
WHAT IS YOUR ERROR RATE?

AR4G 000

SEW Proceedings

SEL: MEASURES ARE DOMAIN-DEPENDENT
NO COMPARATIVE MEASURE ACROSS DOMAINS

CMM: HAS COMMON *YARDSTICK", CAN COMPARE ACROSS DOMAINS

74

SEL-93-003

NASA/SEL PROGESS

Etfort Distribution®

BASELINE EXAMPLE

Classes of Errors®

OTHER
26%

£5% code wnbng

W

15% code reading

COMPUTA
TIONAL

LOGYKC/
CONTROL

Source Code Growth Rate*

g

[

'

®
=3
L

2

»
<o
1

N
=3
M

/‘

Percent source code growth (LOC)

DESIGN CODE SYSTEM ACCEPTANCE
TEST TEST
PROJECT PHASE

*Data from 11 Fight Dynamics progects (mid ' 9B0s) SIM1U1.007
NASA/SEL PROIOUTCT BASELINE EXAMPLE
Error Rates Cast
(1985-1989) (1985-1989)
10 800
—
8
]
5 6 § | Mg I
o H-1 N Wil S 5 400
g . L
3
E) ﬂ ¥ 200
& 24
1 i D i}
A NN B GRC CoBE GOES s
& & & &c& & o Reuse
¢ & & © ¥ 9 (1985-1989)
R
30
é 20 Average = -20%
® T T TTT TR T 7
10
0
FORTRAN Ada
{6 similar systems) (2 samilar syslems) S3IM11LH 008
SEW Proceedings 75 SEL-93-003

SOFTWARE PROCESS
IMPROVEMENT

STEP 3 - INVEST IN CHANGE

CMM PARADIGM NASA/SEL PARADIGM
EMPHASIS - EMPHASIS -

COMMON YARDSTICK EXPERIENCES AND GOALS
DRIVES CHANGE DRIVE CHANGE

ORGANIZATION 1

MAINTAIN GOOD STANDARDS
IMPROVE TRAINING
IMPROVE MEASUREMENT

EXPERIMENT WITH OOD TO
IMPROVE REUSE

- TRAIN IN OOD

ORGANIZATION 2

WRITE BETTER STANDARDS
MAINTAIN GOOD TRAINING

MAINTAIN GOOD MEASUREMENT

EXPERIMENT WITH CLEANROOM

FOR LOWER ERROR RATES

- DEVELOP CLEANRQOM
PROCESS HANDBOOK

SEL: EACH DOMAIN MUST IDENTIFY MOST APPROPRIATE PROCESS CHANGE

AB45 D11

SOFTWARE PROCESS IMPROVEMENT
NAS{}O/SEL INVESTMENT IN CHANGE

INSPECTIONS '~ 108 PRODUCTION
PROJECTS DEVELOPED
o case
® 80 — e\é cLewoon /f g
z % o\
e | o
c g V¥ Y ’*
w v A &% 3".'_;,1!_. TRAINKG PROGRAM [0)
> ‘8"%"1{‘7,""’ * YECHNOLOGY ADCFTON (D
w TESTING ARPPROACHES h‘% L JEER LS
w €330 8 R . MEASUREMENT PROCESS ()
g ap DESIGN TECHMIOUES - DEVELOPMENT STANDARDS ()
% STAUCTURED TECHNIOUES e@ MAUGEMENT POUCIES B
g DEFECT ANALYSIS (3\
Z 2 [erroRT maLYsis *}
Ke
R
0 l I l |
1976 1980 1984 1988 1992 1994
D seL TAMRRNG GUOE APPAOACH YO DEVELDRUENT

AB4§012

SEW Proceedings

000, INBPECTIONS
SOFTWARE MEASUREMINT QUIDEBOOK

HAMDBOOK FOR BOFTWARE DEVELOPMENT

[EXPERIENCE DRIVES PROCESS CHANGE |

76

SEL-93-003

SOFTWARE PROCESS
IMPROVEMENT

STEP 4 - ASSESS CHANGE

CMM PARADIGM NASA/SEL PARADIGM
EMPHASIS -- EMPHASIS --
REASSESS PROCESS REEXAMINE PROCESS

AND PRODUCT
MAINTAINED GOOD STANDARDS VERIFY OOD IS USED
’LEVEL 5*

ORG 1 IMPROVED TRAINING VERIFY REUSE IS HIGHER**
IMPROVED MEASUREMENT

IMPROVED STANDARDS VERIFY CLEANROOM 1S USED
ORG 2 | MAINTAINED GOOD TRAINING .LEVEL 5* [VERIFY ERROR RATES LOWER**
MAINTAINED GOOD MEASUREMENT

*HOPEFULLY LEADS TO LOWER RISK **POSSIBLY LEADS TO LEVEL 5

SEL: SUCCESS 15 MEASURED BY PRODUCT CHANGE (DOMAIN-DEPENDENT)
CMM: SUCCESS IS MEASURED BY PROCESS CHANGE (DOMAIN INDEPENDENT)

AB46 01D

ASSESSMENT OF CHANGES
HAS PROGESS CHANGED?

ftect of Ci m

IMPACT ON EFFORT DISTRIBUTION IMPACT ON SOURCE CODE (LOC) GROWTH RATE
Cleanroom vs. baseling -

g

2

IS
o
A

-4

Pearcenl soufce code growth {LOC)
@
2

) SYSTEM ACCEPTANCE
DESIGN CODE Toar TEsT

Code reading
52%vs 15%

PROJECT PHASE

(impact of changes are verified with process data vs. baseline)

SIMITUL012

SEW Proceedings 7 77 SEL-93-003

ASSESSMENT OF CHANGES
HAS PRODUCT IMPROVED?

Error Rates Cost
10 800
High=89 High = 755
8
§ 600
€ ¢+
& H Avg = ~480
é‘ . Avg = ~45 § 4007
- =357
] Low High = 277
2}
High =24 4 Avg = -210
> owa17 igh = 2 200 vg
Avg = -1
Low= 2 Low = 98
Early Basaline Current 0 Early Baseine Current
8 similar systems 7 similar systems 8 simitar systems € similar systams
supporling 4 missions supporting 4 missions
Reuse
100
0
Avg ~79%
80 4 —— o ——
& 61
H]] Ada
& (5 similar
40 systoms)
- FORTRAN|
{3 similar
20 Avg systoms)
I -20%
o — Early basofine 1985- 1889
Esriy Basofine Current Current 1990-1993
B similar systems 8 similsr systems

Qmprovement is measured against the goals of an organizatiorD

IMItU.C13
STEP 5 - MEASURE ROI
100% INVESTMENT IN THE NASA/SEL
$210M
a
5
g 10% "~
rd
| i
Wi
2 6%
5
= anf zo% |-oomer
1 <sam ki
L A byl 1 2
o B - -2
0% PROJECT DATA ANALYSIS/ PRODUCTION
OVERHEAD PROCESSING APPLICATION I?OEV?L%%
COST OF SEL PROCESS IMPROVEMENT ACTIVITIES TOTAL ~11% OF ALL EXPENDITURES]

AB46 016

SEW Proceedings 78 SEL-93-003

MEASURING BETURM ON INVESTMENT IN THE SEL
(BASED ON CHANGES FROM MID 80s TO EARLY 90s)

«RELIABILITY Errors/KSLOC down by 75% (from 4.5 to 1}
*REUSE Average level of code reuse increased by 300% (from ~20% to ~80%)
«DEVELOPMENT CQST Average mission cost" down ~55% (from 490 to 210 staff mos)

Investment in product-driven goals
enables direct measurement of return

*Reflects reuse change

93M11U.015

MEASURING ROI FOR PROCESS IMPROVEMENT
OBSERVED ORGANIZATIONAL IMPACTS

PACKAGE

o DRIVES INTEGRATION OF PREVIOUSLY DISPARATE ACTIVITIES:
» TRAINING

- TRANING ASSESS | * STANDARDS
- STANDARDS, POLICIES TECHNOLOGY INSERTION

4
- TECHNOLOGY INSERTION UNDERSTAND 6’0\

&
. MEASUREMENT %"’

(NASA/SEL PROCESS IMPROVEMENT)

o ENHANCES ROLE OF ORGANIZATIONAL ELEMENTS (CULTURAL CHANGE)
- DEVELOPERS - BECOME AN INTEGRAL PART OF PROCESS CHANGE
- SOFTWARE - PROCESS DRIVEN (LESS PEOPLE DRIVEN)

e FOCUSES ROLE OF SOFTWARE ENGINEERING RESEARCH
. BECOMES GOAL/PROBLEM DRIVEN
. EXISTS MEANS TO EXPERIMENT, ASSESS, ADOPT

PROCESS IMPROVEMENT WILL DRIVE ORGANIZATIONAL EVOLUTION
AND OPTIMIZE ALLOCATION OF SOFTWARE-RELATED RESOURCES

ABAG 1TA

SEW Proceedings 79 SEL-93-003

MEASURING ROI FOR PROCESS IMPROVEMENT

COMPLEXITY OF SYSTEMS HAS tHCREASED APPRECIABLY*

COMPLEXITY RATING

1 1 I 1 i H 1
1976 1978 1960 1982 1984 1986 1988 1990 1092
LATE 70s-EARLY '80s LATE 80s-EARLY '50%
CONTROL SPAIN STABILZED 3 AXIS STABILIZED
SENSORS 1 BY0 11
TORQUERS * 2702
OBC ANALOG SMPLE CONTROL | DIGITAL AUTONOMCUS CONTROL
TELEMETRY |5 1270115
DATA RATES | 2.2 Wb’s 32 %bis
ACCURACY 1 degrae 0.02 depree

YSTEMS, WITH HIGHER RELIABILITY. AT SIGNIFICANTLY LOWER COST.

*D. BOLAND, *A STUDY ON SIZE AND REUSE TRENDS IN ATTITUDE GROUND SUPPORY SYSTEMS (AGSSs)
AB46 018 DEVELOPED FOR THE FUGHT DYNAMICS DIVISION (FDD) (1976 1988)", CSC/TM-89/6031, CSC FEBRUARY 1983

lTHE NASA/SEL 1S PRODUCING MORE FUNCTIONALITY, FOR MORE COMPLEX
S

SEW Proceedings 80 SEL-93-003

oo

ey

N94- 36487

RECENT SEL EXPERIMENTS AND STUDIES

Rose Pajerski
Donald Smith

SOFTWARE ENGINEERING BRANCH
Code 552

SERA
p
285

P

NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

INTRODUCTION

Since 1976, the Software Engineering
Laboratory (SEL) has been dedicated to
understanding and improving the way in
which its organization, the Flight Dynamics
Division (FDD) of NASA/Goddard Space
Flight Center, develops, maintains, and man-
ages complex flight dynamics software sys-
tems. During the past 17 years, the SEL has
collected and archived data from over 100
software development projects in the organi-
zation. From these data, the SEL has derived
models of the development process and prod-
uct, and conducted studies on the impact of
new technologies.

One of the SEL's overall goals is to treat each
development effort as a SEL experiment that
examines a specific technology or builds a
model of interest. The SEL has undertaken
many technology studies while developing
operational support systems for numerous
NASA spacecraft missions. Viewgraph 2 is a
rough mapping of spacecraft missions and
support software systems (on the top) to SEL
studies (on the bottomn) over the past 17 years.
Measures and experiences from these devel-
opment projects have been saved and used to
understand, characterize, and improve the
development environment.

The SEL's basic approach to software process
improvement is first to understand and char-
acterize the process and product as they exist
to establish a local baseline. Only then can
new technologies be introduced and assessed
(phase two) with regard to both process

SEW Proceedings

81

changes and product impacts. The third phase
synthesizes the results of the first two phases
into various packages such as process and
product models, training materials, and tools
and guidebooks. These products are then fed
back into the development environment for
subsequent projects to use and benefit from.
Viewgraph 4 illustrates the SEL three-phase
process improvement model.

The SEL organization consists of three func-
tional areas: software project personnel,
database support personnel, and software
engineering analysts. The largest part of the
SEL is the 250-plus software personnel who
are responsible for the development and
maintenance of over 4 million source lines of
code (SLOC) that provide orbit and attitude
ground support for all GSFC missions. Since
the SEL was founded, software project per-
sonnel have provided software measurement
data on over 100 projects. These data have
been collected by the database support per-
sonnel to be stored in the SEL database for
use by both the software project personnel
and the software engineering analysts. The
database support staff enter measurement data
into the SEL database, quality assure the data,
and maintain the database and its reports.
The software engineering analysts define the
experiments and studies, analyze the data, and
produce reports which now number over 300.
These reports affect such things as project
standards, development procedures, and pro-
ject management guidelines.

The SEL has been a fairly stable organization;
however one significant change has occurred

SEL-93-003

recently. About a year ago, the FDD reorga-
nized and the SEL became responsible for the
maintenance of all operational software in the
environment. Along with consolidating
development and maintenance into one organ-
ization, all acceptance testing was added.
Now one organization, the SEL, is respon-
sible for a significant portion of the develop-
ment life cycle, from requirements analysis
through maintenance.

The SEL's new areas of responsibility, main-
tenance and testing, have become focal points
for current studies which correspond to the
three phases of the SEL improvement model:
(1) understanding maintenance processes and
products, (2) assessing the effectiveness of
different testing approaches, and (3) analyz-
ing our locally derived cost and schedule
estimation models to determine if they need
updating. These studies will be discussed in
reverse sequence, however, going from the
most complete data to the most preliminary
findings.

SEL COST AND SCHEDULE
ESTIMATION MODELS

Over the past several years, organizational
and technology changes have occurred in the
FDD software development environment that
may have affected many of the SEL's baseline
models that characterize some of the products
and processes of the FDD. The purpose of
the cost and schedule estimation studyl!was

to update the SEL cost and schedule estima-
tion models. Thirty-nine FDD development
projects measured over 15 years were exam-
ined. Specific factors which may have an
impact on cost and schedule were analyzed.
These factors included code reuse, language,
application type, and subjective data such as
team experience level and technology usage.

Cost Estimation Factors
The SEL baseline cost model is based on soft-

ware size, productivity, and a weighting term,
the growth factor:

Effort = size / productivity x
growth factor

SEW Proceedings

In this environment, managers compare cur-

* rent system requirements with historical expe-

82

rience on earlier systems to estimate initial
software size in terms of both new SLOC and
reused SLOC. Productivity values are also
based on data from previous representative
development efforts. While size and produc-
tivity are commonly used terms, the definition
and usage of the growth factor in the above
expression is unique to our environment.
Previous experience had shown that the size
of a software system will grow by 40% from
the time the requirements are baselined at the
Software Requirements Review to when the
system becomes operational. This growth is
due to early uncertainties in operational sup-
port scenarios as well as changes in the
spacecraft hardware which result in software
requirements changes.

The current study results (viewgraph 7) indi-
cate that the basic effort model is still vahd
but that accuracy can be improved by includ-
ing new weighting factors based on language
and reuse levels. The language selected,
FORTRAN or Ada, has an impact on both the
cost of reusing code and the productivity val-
ues to be applied. For FORTRAN reuse, a
20% cost multiplier is used while the Ada
reuse multiplier is 30%. The productivity
values for FORTRAN and Ada are 3.5 and
5.0, respectively. The software growth factor
is also affected by the level of reuse. The
40% value still holds for low-reuse systems
but decreases by 15% for high-reuse systems.

Schedule Estimation Factors

The study concluded that the only quantifi-
able factor affecting schedule estimates was
the application type. There are two applica-
tion types in the FDD environment, opera-
tional ground systems and simulators. The
simulators, which usually begin development
with significant requirements undefined, take
about 35% longer to develop than the opera-
tional ground systems. Neither the cost nor
schedule models contain any subjective fac-
tors, although the study did look at the effects
of subjective data on these models. (Jon
Valett's report in Session 3 discusses the
results of that part of the study.)

SEL-93-003

[T

SEL TESTING STUDIES

Over the years, several testing methods have
been used in the FDD environment. The goal
of the ongoing SEL testing study is to deter-
mine the relative effectiveness of each
method by examining key product and pro-
cess measures such as effort and error rates.
The testing approaches include:

« SEL Standard Test Process

« Independent Verification and Validation
(TV&V)

« SEL Cleanroom
+ Independent Test Team

The organizational boundaries and key pro-
cess elements of each approach are described
below and are tabulated in viewgraph 10.

« The SEL standard test process involves
two separate organizations, the develop-
ment group and an acceptance test (AT)
group. The developers implement and
system test the software by integrating
and verifying the end-to-end system flow.
Then the final build of the software is
turned over to a separate AT group that
performs functional acceptance testing
based on the requirements.

« The IV&YV approach added an indepen-
dent test group to the standard process.
That group worked in parallel with the
development and AT groups to com-
pletely test the software as well as to
verify the requirements and operational
scenarios for the system.

« The SEL Cleanroom methodology has
separate development and test teams that
develop and test, respectively, in builds.
The test team generates the test cases
using a statistical method based on the
frequency of activities of various oper-
ational scenarios. The final build of the
software is then passed to a different
organization for acceptance testing.

« The most recent approach to be applied
uses an independent test team and is a
direct consequence of the organizational
changes within the FDD. This approach
has separate development and test teams

SEW Proceedings

83

under the same organization. The test
team handles all the build testing of the
software using functional test case
selection.

The IV&V approach will be discussed briefly
because of its relevance to NASA programs
today. The other three approaches will be
contrasted and compared with one another in
terms of some key process and product mea-
sures. The process measure that will be used
is effort distribution by activity and the prod-
uct measure is the error rate through devel-
opment and testing.

IV&V Test Study

A recent National Research Council (NRC)
report? recommends that TV&V be part of the
standard NASA testing process. This recom-
mendation may be appropriate for the Space
Shuttle software that was studied in the NRC
report; however it is certainly not appropriate
for all NASA software. Results of SEL
V&V experimems3 conducted in the early
1980s in the FDD environment were not pos-
itive. Although one of the expectations for
IV&V within the environment had been
increased software reliability, the study found
that the error rates were not favorably
impacted and that total development cost of
the software increased significantly (between
30% and 60%). Consequently, it was deter-
mined that IV&V was not appropriate for
adoption in the FDD.

Process Measures Comparison

Using effort distributions to compare test
approaches is an effective way 10 identify
process differences. The point of interest is to
see if there is any apparent impact Or
observable change when compared to the SEL
standard process. Viewgraph 12 shows the
distribution of effort involved in design and
code versus test for the three test methods.
There is little difference between the SEL
Standard and Cleanroom effort distributions;
however, the independent test team approach
does display a very different effort distribu-
tion. Simply using process measures will not
determine which of these approaches is "best”
but it does highlight process differences.

SEL-93-003

Product Measures Comparison

Examining the average error rates as recorded
from the design phase through the acceptance
test phase is a good way to determine the
effectiveness of testing methods. The exam-
ple in viewgraph 13 shows two ways of
viewing error rate data on the same set of
project data.

The chart on the left is the average error
detection rates grouped by testing approach.
Two points of interest are noted:

1) Cleanroom stands out as having a higher
error rate than the other two methods.
However, this is somewhat misleading
because the Cleanroom process includes
different types of errors in the error statis-
tics. Previous studies? have shown that
the Cleanroom process actually produces
error rates that are lower than the FDD
baseline for certain classes of projects.

2) The independent test team approach
shows lower error rates, indicating that
this approach shows some promise and
deserves further study.

The chart on the right groups the data by low-
and high-reuse projects. There is indication
that factors such as the level of reuse may
affect error rates.

The testing effectiveness study is not yet
complete because other process and product
measures need to be assessed, including an
evaluation of data collected during the
maintenance phase.

SEL MAINTENANCE STUDIES

The first area of focus by the SEL in the
maintenance arena is to build a baseline
understanding of maintenance products and
processes such as software characteristics,
effort distributions, and change and error pro-
files. Understanding these elements will
enable cost and schedule estimation models to
be built, which is one of the future goals of
studying maintenance. The number of sys-
tems and the size of the software being main-
tained varies: 105 systems ranging in size

SEW Proceedings

84

from 10,000 SLOC to 250,000 SLOC totaling
3.5 M lines of code. A high percentage cf
these systems are FORTRAN mainframe
systems so they are the first ones to be ana-
lyzed in the study. Information learned so far
is based on data from a handful of these sys-
tems, so the maintenance baseline presented
(in viewgraphs 14-16) is considered a pre-
liminary characterization of the maintenance
process and products.

FDD is currently maintaining two types of
systems: multimission systems, which sup-
port many spacecraft and have a software
lifetime of 10-30 years, and single-mission
support systems, which run as long as the
spacecraft is operational (typically 2-7 years).

Error and Change Characteristics

Preliminary studies reveal that although the
software sizes are similar, these two types of
systems show very different error characteris-
tics after 5 years of operations (viewgraph
15). For multimission systems, the error rate
is an order of magnitude higher than the rate
for single-mission systems. There are many
possible explanations for this. The multimis-
sion systems are used more and they are also
updated with more frequent enhancements. If
the difference in error rates shown here is
confirmed by further analysis, the reasons for
it will need to be examined and evaluated.

Also shown in the viewgraph are two pie
charts depicting two types of change distribu-
tions:

» Change type (right chart) as determined
by the requestor on the change request
forms: about 25% of the changes are en-
hancements and 75% are error corrections
with less than 1% being adaptations
(changes due to operating system or com-
piler upgrades).

» Effort distribution (left chart) as deter-
mined by the maintainers in satisfying the
change requests: about 66% of the main-
tainers' time is spent on implementing
enhancements and the remainder is spent
correcting errors and adapting software.

SEL-93-003

LAEAR LN [N I

Effort Characteristics

Cost (effort) is another important element for
understanding software maintenance. View-
graph 16 displays several cost characteristics,
again divided into multimission and single-
mission systems.

Y
1

I

‘.‘ [l "‘I

s

¥ assessing efforts. Finally, the derivation of
i cost and schedule estimation models from

" locally driven factors such as reuse level,

The cost to initially develop these systems is '

about the same for both types of system;
however, the cost of maintenance varies.
Maintenance costs on the multimission sys-
tems are running about 3 staff years per year,
or about 10% of the development cost per
year. (The 10% figure has been used as arule
of thumb in the FDD for many years in cal-
culating maintenance costs, so 1t is interesting
to see it confirmed with some recent data).
The yearly maintenance cost for single-
mission systems is currently running at about
2% of development cost, which is probably
due to these systems being enhanced less
often.

Another way of understanding an unfamiliar
process such as maintenance is to compare it
with an established process that has been
baselined. The pie charts on viewgraph 15
compare the maintenance and development
processes in terms of effort distribution. The
biggest difference is the relative effort spent
in testing activities: 30% for development
and 5% for maintenance. This difference
certainly must be probed further in defining a
baseline understanding of maintenance pro-
cesses and products in the FDD environment.

SUMMARY

" The studies. discussed in this paper are all
: examples of activities that are performed as
. part of the SEL's process improvement model.
. Using this model, the SEL starts by under-
i standing the product and process, then
assesses the impact of new technologies, and
finally packages what was learned. The pre-
liminary examination of maintenance effort,
error, and change profiles to establish a
maintenance baseline exemplifies under-
standing-phase activities. The ongoing test-
ing study that is examining the effects of
various testing approaches on process and
product measures is an example of typical

e ‘I-
RV

SEW Proceedings

85

application type, and language is an example
of experience packaging.

In the SEL, no study is ever really completed.
Studies will be repeated and iterated upon in
the future as part of the ongoing software
improvement process.

- REFERENCES

1. Condon, S., et al., Cost and Schedule
Estimation Study Report, SEL-93-002,
November 1993

2. An Assessment of Space Shuttle Flight
Software Development Process, National
Research Council, 1993

Page J., "Methodology Evaluation:
Effects of Independent Verification and
Integration On One Class of Application,”
Proceedings of the Sixth Annual Software
Engineering Workshop, SEL-81-013,
December 1981

Green, S. E., and R. Pajerski, Cleanroom
Process Evolution in the SEL,"
Proceedings of the Sixteenth Annual
Software Engineering Workshop,
SEL-91-006, December 1991

SEL-93-003

B643.001

‘SEL EXPERIMENTS

AND STUDIES

18TH ANNUAL

SOFTWARE ENGINEERING

WORKSHOP

ROSE PAJERSKI
DONALD SMITH

NASA/GSFC

STUDIES ON OVER 100 PRODUCTION PROJECTS

OF EXPERIMENTS

SEW Proceedings

100
MISSIONS/PROJECTS

SUPPORTED

80 +
ISTP Reuse analysis (3]
CASE (2}
SAMPEX Design measures [3)
60 F EUVE
UARS Cleanroom 4]
QQD (10}
GOES
40 + Design technigues {5}
GRO / 1 Ada [9)
COBE Testing approaches {4}
ERBS Structured techniques

20 + |_Suttective Meayures [4)

DE [Erfert anaiysismodets

STUDIES/EXPERIMENTS
Defec anaysis 1 {x) # expepments
0
1976 1980 1984 1988 1992 1994

EVERY DEVELOPMENT PROJECT CONTRIBUTES TO SEL RESULTS

86

SEL-93-003

SEL ORGANIZATIONAL STRUCTURE

SOFTWARE PROJECT PERSONNEL SOFTWARE ENGINEERING ANALYSTS
[DEVELOP/MAINTAIN FLIGHT DYNAMICS S/AW) {ANALYZE PROCESS)
STAFF SIZE 175 - 250
DEVELOPMENT | STAFF 5 - 10 RESEARCHERS
TYPICAL PROJECT SIZE 100 - 300 KSLOC | FOREAGHPROIECT | o\ emon @ SET GOALS/QUESTIONS/METRICS
DEVELOPMENT PROJECTS 6 - 10 JAT ANY :> - DESIGN STUDIES/EXPERIMENTS
GIVEN TIME © ANALYSIS/RESEARCH
MAINTENANCE PROJECTS >100 SYSTEMS | ™N—————— « REFINE AW PROCESS
PROJECT STAFF SIZE 5 - 25 PEOPLE DEVELOPMENT - PRODUCE REPORTS/FINDINGS
1976.1993: 105 PROJECTS PROCCESS 1976-1992: 300 REPORTS/DOCUMENTS
DATA BASE SUPPORT
[MAINTAIN/QA SEL DATA)
|
STAFF SIZE 2-5 1 SEL DATA BASE @ 160MB
FUNCTION PROCESS FORMS/DATA |
e or l FORMS LIBRARY 220.000
® RECORD/ARCHIVE DATA |
o MAINTAIN SEL DATA BASE |
REPORTS LIBRARY
o OPERPTE SELUBRARY | EPORTS 5,000 10 10.000

B649.003

SEL IMPROVEMENT MODEL - CURRENT ACTIVITIES

PACKAGING CURRENT ACTIVITIES

 MODELS o “COST AND SCHEDULE
ESTIMATION"
_.'T»ERATE o GUIDEBOOKS = o
® TOOL o TRAINING MATERIALS,
ASSESSING SERL e
o CLEANROOM
o IMPACT OF NEW TECHNOLOGIES |
AND APPROACHES ON PROCESS | ® TESTING APPROACHES
- AND PRODUCT ca o
UNDERSTANDING | _ _ _ _ _ - S 5 -
o MAINTENANCE
 PRODUCT CHARACTERISTICS 2 GARACTERIZATION -
? o PROCESS CHARACTERISTICS

TIME
B649.004

SEW Proceedings 87 SEL-93-003

SUMMARY OF RECENT SEL STUDIES

PLAN ® COST AND SCHEDULE ESTIMATION STUDY .~~~ @

® SUBJECTIVE FACTORS EVALUATION
® NASA DOMAIN PROFILES
® TECHNOLOGY TRANSFER

TRAINING ® RECOMMENDED APPROACH TO SOFTWARE DEVELOPMENT
® GOVERNMENT/CONTRACTOR TASK MANAGEMENT
® FLIGHT DYNAMICS APPLICATIONS

IMPLEMENT @ DESIGN MEASURES
e CASE
| ® Ada
e OOD]
TEST :

. COMPARISON OF APPROCHES =
ON

INDEPENDENT TEST TEAM
MAINTENANCE [& PROCESS UNDERSTANDING® - i)
& PRODUCT CHARACTERIZATION - s
B6435.005
(1) COST AND SCHEDULE STUDY*
GOAL UPDATE SEL BASELINE ~ EFFORT ESTIMATION MODEL

SCHEDULE ESTIMATION MODEL

DETERMINE IMPACTS OF REUSE (CODE}
LANGUAGE
APPLICATION TYPE
SUBJECTIVE FACTORS
{EXPERIENCE, TECHNOLOGY|

STUDY PARAMETERS 39 PROJECTS {1977-1992)
2 LANGUAGES [FORTRAN, Ada}

2 APPLICATION TYPES
20K-300K SOURCE LINES OF CODE

* “SOFTWARE ENGINEERING LABORATORY COST AND SCHEDULE ESTIMATION STUDY REPORT,”
S. CONDON, M. REGARDIE, S.WALIGORA, SEPTEMBER 1993

B8649.006

SEW Proceedings 88 SEL-93-003

(R 15

(1) WHAT IMPACTS COST?

EFFORT = SIZE/PRODUCTIVITY x GROWTH FACTOR

EFFORT [Ada) = [NEW SLOC + 30% REUSED SLOC] 1.4 [REUSE <70%)
PRODUCTIVITY [Ada) 1.2 (REUSE =70%)

EFFORT [FORTRAN] = (NEW SLOC + 20% REUSED SLOC] 1.4 [REUSE <70%]}
PRODUCTIMTY {FORTRAN) 1.2 [REUSE 270%)

COSTS 50% MORE TO REUSE A LINE OF Ada CODE
THAN A LINE OF FORTRAN
SOFTWARE SIZE GROWTH IS 15% LOWER FOR
HIGH REUSE SYSTEMS

B649.007

(1) WHAT IMPACTS SCHEDULE?

SCHEDULE = COEFF x (EFFORT) %
SCHEDULE (GROUND SYSTEMS] = 5.0 x [EFFORT) 33

SCHEDULE [SIMULATORS) = 6.7 x (EFFORT) %

SCHEDULE IMPACTED BY APPLICATION
TYPE, NOT BY LANGUAGE OR REUSE LEVEL

B549.008

SEW Proceedings 89 SEL-93-003

(2 EXPERIMENTS IN TESTING

GOAL | @ ASSESS THE IMPACT OF ORGANIZATIONAL CHANGES
"ON SEL PROCESSES :

® COMPARE TEST APPROACHES

- INDEPENDENT VERIFICATION 1982 STUDY
AND VALIDATION

- SEL STANDARD TEST PROCESS 1978 - CURRENT

- SEL CLEANROOM 1986 - CURRENT

- INDEPENDENT TEST TEAM 1992 - CURRENT

B645.009

2 OVERVIEW OF FOUR TEST APPROACHES

SEL STANDARD PROCESS {24 PROJECTS)

REQUIREMENTS | DEVELOPMENT VSYSTEM TEST | . ACCEPTANCE TEST

| CODE RE/“\DINGl END-TO-END | FUNCTIONAL, -
S | Flow REQUIREMENTS BASED

IV & V {3 PROJECTS)
REQUIREMENTS | DEVELOPMENT | SYSTEM TEST | ACCEPTANCE TEST

IV & V TEST TEAM
SEL CLEANROOM (4 PROJECTS] '
REQUIREMENTS | DEVELOPMENT/TEST -~ |- ACCEPTANCE TEST
T STATISTICAL CASES, = —— FUNCTONAL,
- | CODEREADING iz . |.REQUIREMENTS BASED
INDEPENDENT TEST TEAM (3 PROJECTS)
REQUIREMENTS | DEVELOPMENT/TEST ACCEPTANCE TEST
FUNCTIONAL CASES BY BUILD
REQUIREMENTS BASED
B649.010
SEW Proceedings 90 SEL-93-003

@ IV &V TEST APPROACH

O
o]
Z Y
b4
537 V&V S 3f
: 76 v VeV
- ul -
% AVG 22 = 2 AVG 23
i
E L 1.6 % b 1.4
u w
=<
COST INCREASED RELIABILITY DIDN'T
BY 30-60% INCREASE

DOMAIN AND PRODUCT GOALS ARE KEY DRIVERS
FOR PROCESS CHANGES

B649.011

DESIGN/CODE

TEST EFFORT DISTRIBUTION
(BY ACTIVITY)

DESIGN/CODE
70%

DESIGN/CODE
49%

54%

SEL STANDARD SEL CLEANROOM IND. TEST TEAM

INDEPENDENT TEST TEAM APPROACH
IMPACTING TEST PROCESS

B649.012

SEW Proceedings

91 SEL-93-003

@ ERROR DETECTION RATES - TWO VIEWS
(DESIGN THROUGH ACCEPTANCE TEST)

SEL
5 CLEANROOM

it

LOW
REUSE

SEL
STANDARD

IND.

HIGH
1+ REUSE

=

0
PROJECTS: 1986 - 1992 PROJECTS: 1986 - 1992

TEAM

OF ERRORS PER KSLOC
w
T
OF ERRORS PER KSLOC
w
T

TEST APPROACH AND REUSE LEVEL
IMPACT ERROR RATES

B8649.013

3 MAINTENANCE STUDY

CURRENT BUILD BASELINE SOFTWARE CHARACTERISTICS

FOCUS UNDERSTANDING EFFORT DISTRIBUTIONS
ERROR/CHANGE PROFILES
ESTIMATION MODELS

OPERATIONAL SYSTEMS UNDER MAINTENANCE*

105 SYSTEMS RANGE FROM 10 KSLOC TO 250 KSLOC
TOTALS 3.5 MILLION SLOC

LANGUAGES 85% FORTRAN 10% Ada 5% OTHER
PROCESSORS 80% MAINFRAME 5% OTHER 10% PC/WKSTN

MAINTENANCE ACTIVITY PRIMARILY SUPPORTS
FORTRAN MAINFRAME OPERATIONAL ENVIRONMENT

* MAINTENANCE INCLUDES ALL ACTIVITY AFTER OPERATIONAL START
B643.0H

SEW Proceedings 92 SEL-93-003

3 MAINTENANCE CHANGE/ERROR PROFILES

SYSTEM TYPE ERRORS DETECTED
[SIZE IN KSLOC) 15 YEARS OF OPERATIONS) # DAILY USES
MULTI-MISSION 1.5 ERRORS/KSLOC 20-40
{~200 KSLOC)
SINGLE MISSION 0.1 ERRORS/KSLOC 1-5
[~ 150 KSLOC)

EFFORT DISTRIBUTION CHANGE TYPE

{BY CHANGE TYPE) DISTRIBUTION

ENHANCEMENT
67%

ENHANCEMENT
ADAPTATION

<Oy ——p——

ADAPTATION
11%

CHANGE EFFORT DISTRIBUTION NOT
PROPORTIONAL TO NUMBER OF CHANGES

B649.016

® MAINTENANCE EFFORT

SYSTEM TYPE COST TO DEVELOP COST TO MAINTAIN
(SIZE IN KSLOC] {STAFF YEARS(SY)} [SY/YEAR)
MULTI-MISSION 30-40 30

{~200 KSLOC}

SINGLE MISSION 25-35 05

[~150 KSLOC)

DEVELOPMENT EFFORT
DISTRIBUTION @

MAINTENANCE COST SIGNIFICANTLY
DRIVEN BY SYSTEM TYPE

MAINTENANCE EFFORT
DISTRIBUTION
CODE
35%

OTHER
28%

B649.015

SEW Proceedings 93 SEL-93-003

SEL IMPROVEMENT -- AN ONGOING PROCESS

PACKAGING CURRENT ACTIVITIES

IT RATE/////' ® MODELS) ' o
‘ E! ® GUIDEBOCKS | (]) "COST AND SCHEDULE
* TOOLS ESTIMATION

ASSESSING
® IMPACT OF NEW TECHNOLOGIES - .
AND APPROACHES ON PROCESS | (D TESTING APPROACHES
% AND PRODUCT -
UNDERSTANDING ‘

® PRODUCT CHARACTERISTICS e
(DMAINTENANCE ™~ =,

CHARACTERIZATION -
® PROCESS CRARACTERISTICS Ll e T

EXAMPLES

TIME
B649.04A

SEW Proceedings 94 SEL-93-003

Session 2: Measurement

—
gyt !
Ross Jeffery, University of New South Wales
Martha Ann Griesel, Jet Propulsion Laboratory/
California Institute of Technology
Anneliese von Mayrhauser, Colorado State University
SEL-93-003

SEW Proceedings 95

SEW Proceedings 96 SEL-93-003

N94- 36488

Specification-Based Software Sizing:
An Empirical Investigation of Function Metrics

Ross Jeffery & John Stathis Sy-6/
School of Information Systems 4
University of New South Wales / 52 o PL 6

P.O. Box 1, Kensington, NSW, 2033

AUSTRALIA

o 1!

1. Introduction:

For some time the software industry has espoused the need for improved specification-

~ based software size metrics (see Evanco et. al. 1992). During the 1980's significant
resources have been applied to the development and use of metrics such as function points
[Albrecht79], function weights [DeMarco82], feature points [Jones 1988] and other
metrics. Earlier research [Jeffery&Low93] has established the similarity of these metrics.
These metrics are used as one of the bases for cost estimation, software development
management, software maintenance management, software value measurement, and so on.
The proliferation of the use of the metrics and the tools now developed to support the
measurement process to provide these measures, suggests that they fill an established need
within the software industry. However the empirical research into these metrics has been
sparse and generally not particularly favourable. Once again we see industry seeking
problem solutions in the absence of experimental findings which support the solutions on
offer.

This paper reports on a study of nineteen recently developed systems in a variety of

- - application domains. The systems were developed by a single software services

- corporation using a variety of languages. The study investigated the following metric
characteristics and questionsy o TR

Using both early and late lifecycle system documents as input to the counting process,
what variation occurs in counts produced for the same system, and what gives rise to that
variation? The research methodology adopted was to perform multiple independent
counts of the system function size for the systems using the IFPUG Standard version 3.4.
For each system this resulted in two measured function counts. The difference between
these counts was analyzed both for its magnitude and the reasons for the variation. The
internal validity of the function point metric was also studied and the appropriateness of
the metric to the application portfolio of the organization.

This paper presents the results of this study. It is shown that:

Pﬁm PAGE BLANK
W Proceedings 97 SEL-93-003

eace ﬂ(f,, INTENTIORALL'Y BLANK

b

NOT FILMED

1. Earlier research [Kitchenham 93] into inter-item correlation within the overall
function count is partially supported
2. A priori function counts, in themself, do not explain the majority of the effort variation
in software development in the organization studied.
3. Documentation quality is critical to accurate function identification
" 4. Rater error is substantial in manual function counting.

‘ The implication of these findings for organizations using function based metrics are
explored.

2. The Data Set:

The source of data for this project was an Australian software development organisation,
MEGATEC Proprietary Limited, a company with approximately 50 employees that
develop and distribute a range of computer software products in Australia and overseas.
This organisation was selected as a test site for this work because it was one of the first
software companies in Australia to gain certification to Australian Standard AS3563 for
Software Quality Management. The commitment to quality in this organisation meant that
managers were highly motivated to provide good quality data and there was a well
established research ethic within the organisation. The 19 projects in the data set are
drawn from a varety of applications. In total 17 recently completed projects were
eventually included in the project database as two of the nineteen projects were not
completed at the time of data analysis. A summary of the data is given in Table 1. The
projects were developed during the period August 1990 to May 1993 and a high
consistency in the quality staff in the use of methodology was expected in the database.
The systems were written in a variety of languages including COBOL, Powerhouse, C and
MS Windows, Excel Macro, SQL windows and combinations of these. It was decided
that for the initial study tests would be carried out using the Albrecht Function Point
counting technique as embodied in the International Function Point User Group standards
as the basis for research.

TABLEI
PROJECT SIZE AND DEVELOPMENT EFFORT DATA
Project Size (UFP) Development Effort (Hours)
No. Projects Mean StdDev Range Mean Std Dev Rahgc
17 551 923 38-3656 2093 3266 262-13905

Function Point were counted from documentation provided by the corporation. Each
system was counted by two independent raters with experience in the IFPUG standard.
One of the counters was an external consultant and the other was one of the researchers in
the current study. Where we are studying the relationship between FP and other project
phenomena we use the mean FP value. Data was available to derive the unadjusted

SEW Proceedings 98 SEL-93-003

function point count and also the fourteen complexity factors. In order to validate the
data, structured interviews were held with all of the project managers. These interviews
were used to validate the function point count, the effort data and to search for any reason
behind abnormal results. There were three basic research questions which were being
explored.

Firstly, we were interested in exploring in this organisational setting the relationship
between development effort and function points. This question has had some considerable
research over recent years, generally showing a consistent and significant relationship
between the size measure and effort.

The second research question concerned replicating some of the work carried out by
Kitchenham and Kansala (1993) concerning the relationships between constituent elements
of the function point metric.

Thirdly, we were concerned with investigating the consistency of function point counting.
There had been no study in which multiple systems were counted by multiple raters and
yet it seemed that this is one of the critical elements given the current manual basis of
function counting.

3. Results:

3.1 Effort Relationships

An initial Kolmogorov-Smirmov test indicated that the unadjusted and unweighted
function count(UUEC), as well as the unadjusted function point (UFP) and effort data

belonged to normal distributions. The results are shown in Table 2. That allowed us to
proceed with a range of parametric statistical tests.

TABLE 2
KOLMOGOROV-SMIRNOV TEST
No of Projects UUFC UFP Effort
p p. D
17 0.012 0.015 0.05

Figure 1 shows an initial plot of project size against effort for the full data set. The
Project Sizing Figure 1 was unadjusted function points counted from early life-cycle
documentation of a systems requirements. In this plot we can see that two of the projects
are significant outliers in terms of effort and the other in terms of project size. We also
note the scatter of points which has been typical in prior data when comparing size against
function points. The R2 for this data set is relatively poor showing a value of 0.228 (p <
0.05) for a linear regression of size against function points.

SEW Proceedings 99 SEL-93-003

16000 ¢
14000 ¢ c
12000 ¢

~ o Q o~

10000 ¢+
8000 ¢+

4000 ¢ °
2000 ¢ e 4°
r' []
(IPEEL 5 -
0 1000 2000
Project Size (Unadjusted Function Points)

Figure 1. Scatter plot of A priori UFP against Effort

In the project manager interviews it became apparent that for some of the measured
systems in the database, the project data which we show in Figure 1 was not a fair
representation of the systems implemented. Taking this into account, the function point
count and effort count was carried out again in order to correct any identified errors in the
effort recorded or in the function point count. For example, it was found that for some of
these systems the functionality had changed significantly during development and that it
would be expected that a better relationship between size and effort would be found using
the implemented function point count. Figure 2 shows a scatter plot for the seventeen
data points after the validation of the data. The R2 for this data set was 0.95 (p <0.001).
Itis interesting to note the enormous difference between the data set derived at systems
requirements specification stage versus the data set at implementation. This suggests that
in this corporation considerable work will need to be invested to ensure requirements
stability in the future if they are to gain control over predicted effort distribution.

16000
14000+ o
120007
10000

8000+

- - O T

6000

40001 .

1000 2000 3000 4000
Unadjusted Function Points
Figure 2. Scatter plot of A posteriori UFP against effort

SEW Proceedings 100 SEL-93-003

Further analysis of the data revealed that three of the projects could be considered outliers
and in line with conservative statistical analysis. Table 3 shows the regression results for
the complete and the reduced data set where the outliers have been removed. Notice the
reduction in the RZ and that the effort-size relationship as expressed through the
regression equation has not changed significantly suggesting that the outliers were in fact
normal for this organisation.

TABLE 3
COMPARISON OF REDUCED AND FULL DATASET

Full Dataset Reduced Dataset
No. Projects 17 14
Eaualion Effort = 192.31 + 3.45 * UFP Effort = 187 + 4.03 * UFP
R 0.95 (p<0.001) 0.58 (p<0.01)

3.2 Internal Consistency of Function Points:

Table 3 shows the Pearson correlation coefficient between all pairs of function point
elements using the reduced data set for conservatism. The results shows that three of the
five function elements are significantly correlated. These are external inputs, external
enquires and logical internal files.

TABLE 4
PEARSON CORRELATION COEFFICIENTS BETWEEN UFP ELEMENTS

Fn Point Element Total El EO Ext Extnl
Unadjusted Inquiry Int File
Function Point

External Input 0.90
(p<0.001)

External Output 0.14 -0.07
(ns.) (n.s.)

External Inquiry 0.93 0.91 -0.17
(p<0.001) (p<0.001) | (n.s)

External Interface -0.33 -0.46 0.22 -0.45

File (n.s.) (n.s.) (n.s.) (n.s.)

Logical Internal File 0.92 0.74 -0.06 0.90 -0.33
{p<0.001) (p<0.01) {n.s.) (p<0.001) | (ns.)

Kitchenham and Kansala's study used Kendall's z as a robust measure of correlation. In
their study they found significant correlations between three pairs of function elements not
reported as significant in our study. These were outputs and inputs, outputs and enquiries
and outputs and internal logical files.

SEW Proceedings 101 SEL-93-003

The results of both of these studies shows that the function elements are not independent
and therefore it is possible that there may be a better effort relationship between
constituent elements an effort than there is between function points. The Pearson
correlation between each function point element and actual development produced the
results in Table 6. These show that internal logical files and external enquiries had a
higher correlation with effort than the total unadjusted function point count. This suggests
that an effort estimation model derived on the internal logical file count may in fact
perform better than function point for this organization.

TABLE 6
PEARSON CORRELATION RESULTS
FUNCTION ELEMENTS AGAINST EFFORT

Function Element R? P
Logical Internal File 0.73 < 0.001
External Inquiry 0.63 < 0.001
External Input 0.37 < 0.001
External Output 0.03 n.s.
External Interface File 0.005 ns.
Sum of Function Elements (UFP) 0.58 <0.01

These results are somewhat different to Kitchenham and Kansala who found that a
combination of external inputs and outputs provided a better effort predictor than
unadjusted function points.

A further analysis was carried out was to compare the extent to which the complexity
adjustments in the function point model add to the value of the model in explaining effort.
Table 7 shows the regression results for the unadjusted and unweighted function count
versus the unadjusted function point count. It can be seen from this table that once again
the function point metric as a measure of size when used in its relationship with effort,
appears to be performing less well than some of the constituent elements of that count.

SEW Proceedings 102 SEL-93-003

TABLE 7

PEARSON CORRELATION RESULTS

FUNCTION ELEMENTS (UUFC & UFP) AGAINST EFFORT

Level 1 Level 2

UUFC UFP
Function Element R2 p RZ P
Logical Internal File 0.75 < 0.001 0.73 < 0.001
External Inquiry 0.65 < 0.001 0.63 < 0.001
External Input 0.37 < 0.001 0.37 < 0.001
External Output 0.04 n.s. 0.03 n.s.
External Interface File 0.002 n.s. 0.005 n.s.
Sum of Function Elements 0.56 <0.01 0.58 < 0.01

3.3 Rater Consistency:

The model used in this study to investigate rater consistency is shown in Figure 3 in which
we see that three elements which can contribute to inconsistency. These have been
identified as the system specification, the function point counting method and the rater.
For example, inconsistency can be derived from the fact that the raters themselves may

simply introduce errors into the function point process. It can also be that the

specification can be ambiguous or at an inappropriate level of granularity such that the
function point is difficult to determine, or else it could be that the function point method
could be ambiguous or incomplete with respect to the function counting process that is at

hand.

SEW Proceedings

103

SEL-93-003

—— FExperience
Rater — Orgarisatioml
Differences
Rater Interpretation of Rater interpretation of
SystenvSpecification rules in counting method
Applicability of
method for System

System Function Point
Specification - > Method

Stage in life cyele & Different Methods
Granularity level Ambiguous or

Ambiguity in specification Incomplete standards

Figure 3 - A Model of the Factors Affecting Function Point Reliability

In our research we had two raters count the same systems and used variations on absolute
relative difference between counts as the measure for analysis. We define the magnitude
of the difference in counts between rater A and rater B as shown in equation 1 where the
absolute relative is a normalised difference between the two raters normalised by average
system size. We further refined this metric to the weighted absolute relative difference
WARD, where we separate out the effect of each of the internal components of the
function count so that errors in inputs for example, are not washed away by errors in
outputs which happens if they move in opposite directions.

|Rater A - Rater B |
(Rater A, + RaterB,) / 2
UFP UFP

ARDUFP(RnaA;Raxs B) =

ﬁ(lbta A, Rater B) EIF(RM« A, Rater B)
.EO. .UF H; . |54 i wes EF
¢ Q “ TBD UFP(Rater A, Rater B) UFP(Rater A, Rater B)

Table 8 shows the analysis results for this and in this we see that the mean WARD for
these two raters is 55%. This suggests that the counting practice is relatively unstable
when looked from this perspective.

Hours Per
Project Rater A RaterB ARD WARD Effort Function Point
Number _ UFP UFP (A, B)
Mean 302.8 3371 0.31 0.55 1947 (7.50, 6.52)

SEW Proceedings 104 SEL-83-003

Further analysis of this data revealed that 68% of the variation between the two counters
could be attributed to rater interpretation of the specification or the application of the
counting standard to that specification. Some 32% of the difference could be attributed to
a simple error on the part of the rater.

4. Conclusions:

The following can be concluded from this study:

1. In apragmatic sense the relationship between a posteriori function points and a
posteriori effort is very strong for this organisation with an R2 of .95 for the full data
set or .58 for the reduced data set. This suggests that function points could be used
effectively as a basis for software management in this organization.

2. From a scientific perspective it appears clear that the function point metric has some
significant limitations. There is reason for concern about the function point metric.
The structure of the metric is such that the components are not orthogonal which
introduces issues concerning the structure of the metric. It is also of concern that the
addition of the function component complexity ratings does not add to the effort
relationship or the power of the effort explanation of the model. As this is counter-
intuitive it warrants further investigation.

3. Inconsistency which has been observed in this study between the raters’ function point
counts (58%) and the high component of that difference (68%) which can be ascribed
to either the function points standard or the requirements specification, suggests that
the function point counting or at least the base function counting needs to be
automated.

4. Given the results concerning the strong relationships between the number of internal
logical files or data entities and effort, may well be possible that given further research,
that if a consistent relationship holds between data entities and effort than automated
size counting from data models may well be a fruitful area for further investigation.

5. References:

Albrecht,A.J. "Measuring Application Development Productivity", Share/Guide
Application Development Symposium, Oct, 1979.83-92.

DeMarco, T. (1982) Controlling Software Projects: Management, Measurement, and
Estimation, Yourdon Press, New York.

Evanco, W.M., Thomas, W.M. & Agresti W.W. "Estimating Ada System Size During

Development", Rome Laboratory Technical Report, RL-TR-92-318, New York,
December,1992.

SEW Proceedings 105 SEL-93-003

Jeffery,D.R Low, G.& Barnes,M. "A Comparison of Function Point Counting
Techniques”, IEEE Trans. on S'ware Eng., May 1993.

Jones,T.C. "A Short History of Function Points and Feature Points", Software
Productivity Research, 1988.

Kitchenham, B & Kansala, K. "Inter Item Correlations Among Function Points", Proc
First International Software Metrics Symposium, IEEE computer Society, Baltimore,
May, 1993. 11-15.

10

SEW Proceedings 106 SEL-93-003

Specification Based Software Sizing:

An Empirical Investigation of Function Metrics

Ross Jeffery & John Stathis
University of New South Wales

Australia

P.OBox 1, Kensington, NSW 2033

NASA SEL Workshop 1993

Tu
Level-3 - -covrnrmormmeonnnns , | A
Polnts Procesing
Complexiy
L Adjusuent
14 General Applcation &
Eavironmenial Atiributes -
Weighted Weighied wqm Weighted ;
Level-2..»| Euena Euernal Ospuu| + Logal + m __ Total Unsdjusted
lnpen scrmal Fles Interface Fis =~ Funaction Pelats

L AH

Y

\ /TN]m

\}/ N

Level-1-->| ‘e

SEW Proceedings

’E ’E » Log Exscrnal Total Unadjusted
Outpuss + Inquiries + w’ri. + hl'ufuu Fla | = 0 Usweghiod
Fuactioa Count
2 Ross Jeffery NASA SEL Workshop 1993
107 SEL-93-003

TABLE1
PROJECT SIZE AND DEVELOPMENT EFFORT DATA

Project Size (UFP) Development Effort (Hours)

No. of Projects Mean Std. Range Mean Std. Range
Dev. Dev.
17 551 923 38-3656 2093 3266 262 - 13905

3 Ross Jeflery NASA SEL Workshop 1993

16000 y
14000 1 o
12000 ¢+

- Q +yen T

8000 1

0 1000 2000
Project Size (Unadjusted Function Points)

4 Ross Jeffery NASA SEL Workshop 1993

SEW Proceedings 108 SEL-93-003

160007

14000+ °

120001
E 10000+
f
f -
o 80004
r
t 60007

40004 0 °
20001, =&
(-]
o m* id Ad L4 Ll
0 1000 2000 3000 4000
Unadjusted Function Points
S RossJeffery NASA SEL Workshop 1993
TABLE NI
COMPARISON OF PRE AND POST IMPLEMENTATION DATASET
Pre Implementation FP Post Implementation FP

No. Projects 17 17
Regression Equation effort = 914.6 + 3.7 * UFP
(UFP against effort)
R2 (p) 0.228 (0.05) 0.95

6 Ross Jeffery NASA SEL Workshop 1993

SEW Proceedings 109 SEL-93-003

TABLE II1
COMPARISON OF REDUCED AND FULL DATASET

Full Dataset Reduced Dataset
No. Projects 17 14
Regression Equation effort = 192.31 + 3.45 * UFP effort = 185.37 + 4.03 * UFP
(UFP against effort)
R2 (p) 0.95 (p < 0.001) 0.58 (p < 0.01)

T Ross Jeffery NASA SEL Workshop 1993

TABLE IV
PREVIOUS STUDIES - UFP AGAINST EFFORT
Study No. of Unadjusted Function
Projects Points
R2 (p)
Albrecht and Gaffney, 1983 24 0.90 < 0.001
Kemerer, 1987 15 0.54 < 0.001
Kitchenham and Kansala, 1993 40 041 < 0.01
Jeffery et. al,, 1993 64 036 < 0.001
Jeffery & Stathis, Current Study 14 0.58 < 0.001

8 Ross Jeffery NASA SEL Workshop 1993

SEW Proceedings 110 SEL-93-003

TABLE V
PEARSON CORRELATION COEFFICIENTS BETWEEN UFP ELEMENTS

Function Total External Input | External External External
Point Element | Unadjusted Output Inquiry Interface File
Function
Point
External 0.90
Input {p<0.001)
External 0.14 -0.07
Output (ns.) (n.s.)
External 0.93 0.91 -0.17
Inquiry (p<0.001) {p<0.001) {n.s.)
External -0.33 -0.46 0.22 -0.45
Interface File | (n.s.) (ns.) (n.s.) (n.s.)
Logical 0.92 0.74 -0.06 0.90 -0.33
Internal File | (p<0.001) (p<0.01) (n.s.) {p<0.001) (n.s.)
9 Ross Jeffery NASA SEL Warkshop 1993
TABLE V1
PEARSON CORRELATION RESULTS
FUNCTION ELEMENTS AGAINST EFFORT

Function Element R2 p

Logical Internal File 0.73 < 0.001

External Inquiry 0.63 <0.001

External Input 0.37 < 0.001

External Output 0.03 ns.

External Interface File 0.005 n.s.

Sum of Function Elements (UFP) 0.58 < 0.01

10 Ross Jeffery NASA SEL Workshop 1993
SEW Proceedings SEL-93-003

1M

TABLE VII
PEARSON CORRELATION RESULTS
FUNCTION ELEMENTS (UUFC & UFP) AGAINST EFFORT

Level 1 Level 2
UUFC UFP
Function Element R2 p R2 P
Logical Internal File 0.75 < 0.001 0.73 < 0.001
External Inquiry 0.65 < 0.001 0.63 < 0.001
Extermal Input 0.37 < 0.001 0.37 < 0.001
External Output 0.04 ns. 0.03 n.s.
External Interface File 0.002 n.s. 0.005 n.s.
Sum of Function Elements 0.56 < 0.01 0.58 < 0.01
11 Ross Jeffery NASA SEL Workshop 1993
TABLE VIII
EFFORT ESTIMATE ARE t-TESTS FOR
UUFC AND UFP
Unweighted and Unadjusted Function
Unadjusted Function Point (UFP)
Count (UUFC)
No. of Projects Mean Std. Mean Std. ¢ P
ARE Dev. ARE
17 0.53 0.64 0.51 0.60 0.70 0.492
12 Ross Jeffery NASA SEL Workshop 1993
SEW Proceedings 112 SEL-93-003

Rater A

Set of functions in a

mapping e
system (differring
levels of granulan
Rater B &)
mapping
Objective
mapping Set of function points
according to indentified by raters
method
vt ! f
SRR ion Do}
YR ll | R Function point
Vel b + W units
111 f i
34567 10 15
Figure Il - Mapping a Set of Functions to Fi unction Point Units
I3 Ross Jeffery NASA SEL Workshop 1993
—— Expericnce
Rater —— Organisational
Differences
Rater Interpretation of Rater interpretation of
System/Specification rules in counting method
Applicability of
method for System
System < Function Point
Specification) Method
} —— Stage in life cycle | Different Methods
: Granularity level -—— Ambiguous or
Ambiguity in specification incomplete standards
Figure N1l - A Model of the Factors Alfecting Function Poisi Reliability
14 Ross Jeffery NASA SEL Workshop 1993

SEW Proceedings

113

SEL-93-003

Rater A

19 System
Specifications

Rater B

Figure VI - Research Design for Current Study

15 Ross Jeffery NASA SEL Workshop 1993

[Rater Aygp - Rater By
(Rater Aypp + Rater Bygp) / 2

ARDUFP (Rater A; RaterB) =

31%

WARD (1 £0 INQ.LIF.ETF; Rater A, Rater B))

= ARDg x El(Rater A, Rater B)

UFP(Rater A, Rater B)

+ ARDEIF x W(Raler A, Rater B)
UFP(Rater A, Rater B)

=55%

16 Ross Jeffery NASA SEL Workshop 1993

SEW Proceedings 114

SEL-93-003

MEAN ABSOLUTE RELATIVE DIFFERENCE (MARD)
UNWEIGHTED AND WEIGHTED FUNCTION POINTS

Total External External External External Logical
Function Input Output Inquiry Interface File Internal File
Point Count
(UUFC)
(UFP)
Unweighted 0.33 0.76 0.69 0.65 0.54 0.45
Function Points
Weighted 0.31 0.67 0.70 0.62 0.54 0.43

Function Points

17 Ross Jeffery NASA SEL Workshop 1993

1.Strong a posteriori function points and a posteriori effort relationship for this
organisation - R2 of 0.95 for the full data set or 0.58 for the reduced data set.

2.The function point metric has some significant limitations.
Components are not orthogonal

Function component complexity ratings does not add to the effort explanation
of the model.

3.Inconsistency has been observed between the raters' function point counts
(58%)

A high component of that difference (68%) can be ascribed to either the
function points standard or the requirements specification

4. Automated size counting from data models may well be a fruitful area for
further investigation.

18 Ross Jeffery NASA SEL Workshop 1993

SEW Proceedings 115 SEL-93-003

N94- 36489
Software Forecasting As It Is Really Done:
A Study of JPL Software Engineers

55:@ / Ma.rgha Ann ijesel
f 2657 Kriotn 1. Boams

? Thomas J. Fouser
/0 - 9‘ Robert C. Tausworthe
Jet Propulsion Laboratory/California Institute of Technology
4800 Oak Grove Avenue
Pasadena, Ca. 91109

Abstract

This paper presents a summary of the results to date of a Jet Propulsion Laboratory internally
funded research task to study the costing process and parameters used by internally recognized
software cost estimating experts. Protocol Analysis and Markov process modeling were used to
capture software engineer’s forecasting mental models. While there is significant variation between
;: the mental models that were studied, it was nevertheless possible to identify a core set of cost
. forecasting activities, and it was also found that the mental models cluster around three forecasting
- techniques. Further partitioning of the mental models revealed clusterin g of activities, that is very
- suggestive of a forecasting lifecyle. The different forecasting methods identified were based on the
- use of multiple-decomposition steps or multiple forecasting steps. The multiple forecasting steps
. involved either forecasting software size or an additional effort forecast. Virtually no subject used
. misk reduction steps in combination. The results of the analysis include: the identification of a core
- set of well defined costing activities, a proposed software forecasting life cycle, and the
. identification of several basic software forecasting mental models. The paper concludes with a
_ discussion of the implications of the results for current individual and institutional practices.

1.0 Introduction

In today’s cost constrained environment, cost estimation is becoming an integral part of the
engineer’s job. Therefore, tools and databases are needed that are consistent with engineering
based costing methods. Previous surveys have shown that engineers in general do not use tools
and databases, finding them inconsistent with their intuitive engineering-based costing methods, in
particular analogy-related techniques. (Hihn and Habib-agahi, 1991) This lack of correspondence
between software forecasting practices and available computer-based tools prompted the current
research.

To be able to design and develop tools and databases that are more consistent with engineering-
based costing methods requires that there exist a relatively small number of costing activities and
that these activities are primarily used in a few well defined sequences. A sequence of activities is
what makes up a costing method or, in cognitive psychology terminology, the cost forecaster’s
mental model. The existence of a small number of basic forecasting mental models requires that the
mental models depend on high-level domain and environment conditions, rather than personal
style and low-level domain details.

To the best of the authors’ knowledge, there have been only three attempts to develop such mental
models of the forecasting process that are documented in the literature: Vicinanza et. al. (1991),
Howard (1992), and Hihn et. al. (1993).

SEW Proceedings 116 SEL-93-003

Vicinanza et. al. completed an exploratory study of the methods used by experts. In Vicinanza et
al. five respondents who ranked a series of cost drivers and then estimated the development effort
that would be required for 10 projects. The forecasters’ methods were categorized into four
groups: algorithmic initial condition, algorithmic effort estimate, analogical initial condition, and
analogical effort estimate. For a method to be algorithmic the forecaster had to mention and use
productivity figures. For a method to be analogical the forecaster had to mention a reference
project. Four of the estimators used an algorithmic approach and only one used analogy. Vicinanza
et. al. propose a logic flow (mental model) for algorithmic and analogical forecasting (see Figure 1
for the analogy model). Given their simple categorization scheme it is unclear how they derived
their mental model. Also, the experimental design required that the engineers use COCOMO cost
drivers (Boehm, 1981) and function point descriptors (Albrecht and Gaffney, 1983), neither of
which may have been natural to them; and the terms used in the proposed mental models are neither
goals nor the vocabulary that are commonly used by software engineers.

Determine Referent Project
Examine Problem Features | READ USERS DEMANDS
FILTER USERS
DEMANDS
Yes
Adras Refcrent A 4
Project Valucs L ORGANTZE SYSTEM
Activate Past Project TO OBTAIN WORKING ${ GENERATE THE RESIDUAL
as Referent Project SYSTEM MODH/
‘_..lilixlmine Current Project Features I‘___
y %@&Nﬁg@oﬂ ~— | FACTOR THE RESIDUAL
Is Feature Value /
at Variance with
Referent Projoct Value,
ASSIGNING EFFORT FOR A
Adjust Estimate based SPECIFIC COMPONENT —— | FACTOR THE RESDUAL
on Results of "Running”
the Referent Project with l
Feature Value
*
[seioct Feature o Review [— MAKE A RISK ANALYSIS
Figure 1 : Abstraction of .
Analogical-Estimation Strategy Figure 2: A Bottom Up Approach to
from Vicinanza et. al. (1991) Estimation from Howard (1992)

Howard (1992) reports the results of two surveys on software cost estimation practices for
standard information systems such as a banking transaction system. Approximately 50

SEW Proceedings 117 SEL-93-003

observations were collected using a survey form. Twelve observations were collected using semi-
structured face-to-face, interviews based on a case description, given to the subjects before the
interview. The main objective of the research is to study how cost estimates are developed in
group settings. The objective of the reported portion of the research task was to develop a mental
model of the processing steps that estimators follow that could be used to support the study of
group cost forecasting. A very high level model with about 20 possible steps based upon cognitive
processing theories was proposed. Figure 2 illustrates the mental model of individuals applying the
“bottom up” process. Interestingly, aggregation was never mentioned, even though “functional
breakdown into components” is explicitly shown. The model proposed is intuitively appealing.
However, the respondents provided quite generic responses in describing how they normally do
cost estimating. Howard reports this is because the case example was found to be too poorly
defined. Verbal reports of this type are well known to lead to biased, and very likely, inconsistent
results [see Ericson and Simon, (1984)].

In both of the papers described above, the bases by which the proposed software forecasting
mental models were derived is not explained. Howard followed some basic cognitive psychology
techniques, but it was not clear that they were derived by a repeatable analysis. A significant
problem, from the perspective of identifying a more detailed picture of the underlying mental
model, was that most of what distinguishes an expert from a novice is in how they generate and
“factor residuals” or, in other words, incorporate their cost drivers and adjustment factors.

Hihn et. al.(1993) attempt to address these problems by using a more precise data capture and
analysis technique. In Hihn et. al.(1993) a combination of Protocol Analysis Ericson and Simon
(1984) and Markov process modeling Papoulis (1991) is shown to be a viable technique for
capturing the engineers’ cost forecasting mental models in a repeatable manner. With this
technique, Protocol Analysis was used to extract a common forecasting vocabulary across
engineers and application domains by translating the engineers’ self reports into verbal protocols,
and Markov analysis was used to identify the common transitions, or steps, in the engineers’
mental models. Seven primary cost forecasting activities were identified that clustered into 6
different, but not mutually exclusive, sequences (mental models) using this analysis technique.
The 7 activities that were identified are requirements identification, attribute identification, attribute
application, decomposition, estimation, aggregation, and adjustments. The definition of these
terms are reviewed in Section 3.0. The original clusters of sequences were derived based upon
purely data descriptive criteria. For example, a sequence that contains a single decomposition and
single estimation activity is in a different sequence cluster then a sequence with multiple
decomposition and multiple estimation activities. A very simplified example of the type of mental
model this approach produces is displayed in Figure 3.

In this paper we are reporting an extension of these results that incorporates an increased number
of cost forecasting activities and the identification of activity sequences (mental models) that
correspond to software domain and development environment criteria. In addition, as part of
identifying a number of basic mental models, it was possible to derive the components of a
software cost forecasting life cycle based upon actual costing behavior.

2.0 Sample Definition and Institutional Background Information
Jet Propulsion Laboratory (JPL) is a Federally Funded Research and Development Center run by
the California Institute of Technology under a government contract with National Aeronautics and

Space Administration. As a national laboratory, it performs research and development activities in
the national interest, primarily the development of robotic spacecraft for interplanetary studies. In

SEW Proceedings 118 SEL-93-003

addition, a portion of JPL's budget is supplied by non-NASA organizations such as the
Department of Defense.

I Attribute Identification J<_ LRequhemcn@s Idcntiﬁcatiord"-'—

Decomposition

| Effort Estimate [SizeEstimate |

Attribute Application |

Stop

Figure 3 : Example of a CER-Based Forecasting Mental Model

A survey was conducted of the technical staff that had experience forecasting software
development costs during the summer and fall of 1989. Over 185 software engineers were
contacted for participation in the original survey. Of the 185 contacted, over 100 were identified
who estimate effort, size and/or cost for software tasks. Of these, 83 were willing to complete a
questionnaire on current software cost estimation practices. Of these, 28 responses provided
sufficient information for use with the current analysis. For a detailed discussion of how the
original data was collected see Hihn and Habib-agahi (1991).

The original purpose of the survey was to study the ability of software engineers to estimate effort
and size given an architectural design document. In addition, the survey included a brief
description of the typical approach each estimate used. The verbal protocols describing the cost
forecasts used in the study were made during the system functional design and software
requirements analysis phases (see Figure 4). Since data collected in this manner is not strictly
appropriate for Protocol Analysis, conclusions drawn from this secondary analysis of the data may
be questionable.

System
Requireme{ts Analysis
System
Functional DesiEn
- ortware
Requirements Analysis
‘ Software | Design
Soltware
Implementation
S oftware
Integration & Test
System
v v Integraton & Test
(Cost Forecast)

Figure 4: Timing of Cost Forecasting Verbal Protocol Collection
Relative to the Software System Development Lifecyle

SEW Proceedings 119 SEL-93-003

Table 1: Hypothetical Software Cost Forecasting Activities

Activity Definition
Requirements The obtaining or retrieval of information.
Identification
Key vocabulary words are: read requirements, talk to experts, review requirements, and obtain
requirements.
Attribute Attributes are key aspects of a task that are used in forming the system mental model and are
Identification also used as analogy discriminators and cost drivers. This is one of the main products of the

analysis of the requirements. Attribute identification is generally described by the basic
activity that was undertaken with the result that precise attributes are rarely specified at this
point. These consist of both product and process attributes.

Key vocabulary words are: identify, understand, analyze, and include.

Decomposition

The breaking down of a software entity (system, subsystem, etc.) into smaller and simpler
pieces. The types of decomposition that have so far been identified are:

functional,

work breakdown structure (WBS),

new vs old system components

requirements.

Key vocabulary words are: breakdown (functions), identify sub-tasks, develop WBS,

Estimation

The prediction of future cost and other key project management dimensions. Three types of
forecasts were reported: size, effort, and cost.

Estimation was further divided by type of technique used:
analogical
expert judgement
explicit analogy
algorithmic
rules of thumb
cost estimating relationships

Key vocabulary words are: use (analogy, rule of thumb), estimate (SLOC, effort), and cost.

Attribute
Application

The explicit use of the system attributes to discriminate between systems for purposes of
analogical comparison or as cost drivers when using an algorithmic approach. Identification
primarily depends upon specific mention of attribute.

While there is less homogeneity in the vocabulary some common phrases are: adjust, use
(f_og factor), add (change, foggctor, etc.), multiply.

Aggregation

The combination of forecasted values associated with the system pieces produced by
decomposition.

Key vocabulary words are: add-up, and run SRM (JPL resource management tool)

Adjustments

Muitipliers used independently of the system being estimated. Usually applied at a higher
level then attributes. Consist of adjustments for purposes of risk, scaling, and bias(error).

Key vocabulary word is: add percent.

Evaluation

Any activity performed as part of checking that a forecast meets certain criteria. Most often
this is the comparison of effort or cost estimate and is the last activity completed. Can also
be a design-to-cost activity.

Key vocabulary word is: compare to (cost of last task, budget).

SEW Proceedings

120 SEL-93-003

3.0 Cost Forecasting Activity Definitions

Table 1 contains a list of the software forecasting activities and sub-activities that were identified in
the process of converting the verbal protocols into data. These activities constitute an abstract
vocabulary that was used to describe the forecasting process. The activities and their definitions
were derived from the literature, JPL experiences documented in Lessons Learned, and the
personal costing experiences of the authors, then modified by the data available in the verbal
protocols to maximize the scoring of the linguistic units into one and only one scoring category.
The level of granularity of the activities determined the information obtainable from analysis of the
forecasters’ activity sequences. An activity set defined at too coarse a granularity can not
distinguish between sequences and all protocols will appear identical. An activity set defined with
to much detail, at too fine a granularity, makes every protocol appear unique. Hence identifying
the right granularity, or level of abstraction, is crucial. For a detailed description of the mapping
of the vocabulary used in the verbal protocols to these activities see Appendix A in Hihn et. al.

(1993).

The activities that have been added or changed since the analysis documented in Hihn et. al. (1993)
are Evaluation and a re-grouping of the estimation sub-activities. The Estimation activity has been
disaggregated into Size Estimation, Effort Estimation and Cost (dollar) Estimation. A distinction
has also been made between Formal and Informal Effort Estimation. Formal Effort Estimation
corresponds to the use of a CER or an analogical reference to a specific task or cost or size
database, and Informal Effort Estimation corresponds to the use of a rule-of-thumb or any form of
expert (engineering) judgment. When Effort Estimation is referred to as part of a specific mental
model, it always should be understood to mean Informal Effort Estimation. The addition of the
Evaluation activity to the activity list is the most fundamental change because it is a completely new
activity. The specific activities that are used for describing forecasters mental models in the current
analysis are Requirements Identification, Attribute Identification, Attribute Application,
Decomposition, WBS Decomposition, New/Old Decomposition, Size Estimation, Cost Estimation,
Informal Effort Estimation, Formal Effort Estimation, Aggregation, Adjustments, and Evaluation.

4.0 Software Forecasting Activity Analysis

The cost forecasting activities were analyzed several different ways in order to discern if there were
any well defined patterns in the data. The purpose in this part of the analysis was to see if the
frequency of use of an activity could be explained by some aspect of the system, environment, or
an overail method that was being used. The most significant relationship we found is displayed in
Table 2. For additional analysis of the activities see Hihn et. al. (1992). Some activities such as
requirements identification and attribute identification were used by all the engineers interviewed.
Some activities were used infrequently, e.g. adjustments and evaluation. There were three
activities that were found to define relatively distinct sub-populations and correlated with the type
of system being developed. These were the use of New/Old decomposition, size estimation, and
the execution of a second effort estimate, which we shall call an assessment 1. The other category
consisted of cases where no pattern of activity use could be discerned. If a protocol used both a
size estimate and an assessment it was counted twice. As will be seen in Section 6, the occurrence
of these activities drives the whole sequence of activities.

The different types of software systems identified were rapid prototyping, formal military, research
and development (R&D), evolving ground systems, and flight software. At JPL, rapid protoyping
is used primarily to support military systems that automate support activities and also have vague
requirements. There is a delivery at least once per year, with extensive user evaluation.

1. As will be seen in section 6 the use of multiple effort estimation activities was used to
identify a Cost Assessment life cycle phase.

SEW Proceedings 121 SEL-93-003

Documentation is kept to a minimum. The requirements are revisited with every delivery and a
new rank ordering of the requirements is produced. Formal military systems follow DOD-STD-
2167A. The R&D tasks cover a wide range of types of software from artificial intelligence to
human-computer interface to network protocols. The evolving ground systems consist of
software that supports the Deep Space Network and Space Flight Operations Center. Flight
software consists of on-board or flight support software, such as software that helps to develop the
navigation commands. Both ground and flight systems follow the JPL Software Management
Standard. Our analysis indicates that forecasters working with Rapid Prototyping systems use
assessment more extensively, Flight and Formal Military systems use size estimates more
extensively, Evolving Ground Systems use New/Old Decomposition more extensively, and the
R&D systems are uniform across the different key activities. The implications of these results are
that, while there is diversity in engineering-based costing approaches, there is also a clustering
around a few basic techniques.

Table 2: Sample Breakdown by Type of System and Forecasting Technique

System New/Old Assessment Size Estimate | Other System Type
Decomposi- Percentage
aon

Rapid 20 % 60 % 20% 13 %

Prototype

Formal 20 % 30 % 13 %

Military

Research ~ 18% 18 % 27 % 37 % 28 %

Evolving

Ground 43 % 21 % 14 % 21 % 36 %

System

Flight 25 % 75 % 10 %

Technique 23 % 26 % 3% 18 % 100 %

Percentage

5.0 Software Forecasting Life Cycle

As the focus of the analysis shifted from a static, or snapshot, view of what activities were
verbalized to a dynamic viéw of the data, or time sequencing of the activities, the variation in the
mental models due to personal style became even more apparent. The result is that most summaries
of the mental models basically produced a blur. This is shown very well by the graph in Figure 5,
which maps the sequence of activities to the order that they were verbalized.

Thus, we needed objective criteria by which to partition the set of verbal protocols to determine if
there was any clustering. The criteria could either partition the cases or partition time. As
discussed above (see Section 1), a number of approaches were tried . These were refined as
described in Section 4 to actually correlate the types of software systems with use of specific
decomposition and estimation activities. However, this was not enough, as analysis of the
probability transition networks revealed the existence of cyclic behavior. Breaking up these cycles
required that the mental models be partitioned over time as well. One systematic way to define a
partitioning over time is to specify a forecasting life cycle. Four phases were initially identified;
Problem Definition, Problem Analysis, Cost Determination and Cost Assessment. Due to the
nature of the verbal reports, it was not possible to distinguish between the first two phases, so for
purposes of analysis they were combined into a single Problem Definition and Analysis phase.

SEW Proceedings 122 SEL-93-003

Activity

LN -
rd ’ -
4 VS S0 M T N
Adjustnents ..l A Y L4 -~
7 ~ /, P et N
/. /4 4 ~ . e
] + NI N N
Aggregation VARG 4 y -
W QNG V B I R, AN
: < 4(~, P+ 7 < - s\
Agxibute - ; - f7. - P -
Application S /_" g ZR0N 2 s — e _ 5 \
T /7 l,'.? y) 3 -" . F4
Estimation K ., 71 § i r',' {,' A .7 / £
+.7 ¥ o aly WS £
Decomposition - N\ - ‘)' . / 'I__'
. ¥ AT it sl W T, £
Aribute -2 Y2 P \ \ ./ A Y 5~
Identification RN N T 'I % y . NS :
+*K 7 PR (N .
Requiraments SN \\‘_ / " .
Identification Lt N " ~
4 L4 —+ + —+ 1 + + + —
1 2 3 a S (-3 7 8 ° 10 11

Time Sequonce

Figure 5 : Graphical Summary of Time Sequence of Activities
(Hihn et. al., 1993)

Table 2: List of Activities by Cost Forecasting Phase

Problem Definition Cost Determination Cost Assessment
and Analysis :
Attribute Identification Attribute Identification Attribute Application
Attribute Application Attribute Application Estimation
Requirements Identification Estimation Informal Effort
Decomposition Size Formal Effort
WBS Effort Evaluation
New/Old Cost
Aggregation
Adjustment

The assignment of activities, in the sample, to the phases is displayed in Table 2. The assignment
is based on the protocols that were available. It is expected that the number of activities, with
further studies, could increase in each phase due to access to more detailed protocols. Some
activities, such as attribute Identification and Application, are ubiquitous, appearing in every phase.
Other activities appeared only once, for example, Requirements Identification and Decomposition
appeared only as part of the Problem Definition and Analysis phase. Some care had to be taken in
determining when a verbal report transitioned between phases. The transition between Cost
Determination and Cost Assessment was signalled by phrases such as “and then we did a backup
estimate” or “compared our estimated cost to what it cost last time.” The transition between the
Problem Definition and Analysis phase and the Cost Determination phase was signalled when any
type of estimate was mentioned. The one problem that arose in the verbal reports related to
Attribute Identification that supported both Decomposition and Estimation activities. When
Attribute Identification supported Decomposition, it was recorded in the Problem Definition and
Analysis phase; when it supported estimation, it was recorded in the Cost Determination phase.
When Attribute Identification occurred on the boundary between the phases, it was recorded as
part of the Problem Definition and Analysis phase. In only one case was there compelling evidence
to do otherwise.

Figure 6 displays how this costing life cycle relates to the software development life cycle for the
verbal protocols used for this analysis is displayed in Figure 6. Cost estimates were made
throughout the life of a software development task. Clearly, the amount of effort put into the
different cost forecasting phases changes over the development life cycle. It is believed that, in the

SEW Proceedings 123 SEL-93-003

early stages of the development life cycle, more time tends to be spent in Assessment due to a lack
of information required to do a comprehensive detailed cost estimate. The main changes in our
model with respect to the Problem Definition and Analysis phase should be in the level of detail in
the decomposition. The overall result should show a decrease in time spent in the first phase
because each re-estimate builds on the previous one. The current data does not provide sufficient
information to test these hypothesis.

Sysem
Requirements Analysis
) System
Functional Design

wae
Implement ation
Software
Integration & Test
System
Integration & Test

Problem Definition
& Analysis Fhase _

Cost Determination Phascl

Cost Assesment Phase

Figure 6 : Forecasting Life cycle Compared to the Software
Development Life cycle

6.0 Software Forecasting Mental Models

The forecasters’ mental models can be represented, using Markov process modeling, by activity
flow diagrams. It was possible to identify four mental models that partitioned the data. The
activities and their transitions for each mental model are shown in Figures 7 through 11. Figure 7
shows the mental mode! of those who always used a New/Old Decomposition to support their cost
estimate. Figure 8 shows the mental model of those who always used a size forecast to support
their cost estimate. Figure 9 shows the mental model of those who always used an assessment
effort estimate to support their cost estimate. Figure 11 shows the mental model of those who used
both size and assessment. Figure 10 shows the activities and sequences for everyone in the sample
who had a cost assessment phase. The thickness of the line indicates the number of transitions
between activities, making it easier to visually discemn where the major activity transitions occur .
The thickness of the line is 2 pixels for each observation.

SEW Proceedings 124 SEL-93-003

LR LA IR SRR AT .

Jamsalpy

uoreaddy ainquny i N uonedhuddy

75

‘I L

HORPIVLSR(10

POMaN |

Lopsodiozaq

UOTRaIU3p] nqUIy

D L

WONROLJTap] Stowzanbay

WOUEDAD] NG

AN

aseyq UONBUIULIAR(I1S0D)

asey SISA[RUY pUR UONIUIJo(] WA[q0i]

ATUQ PIQ/MIN

5 SEL-83-003

12

SEW Proceedings

iousnipy

IeUIRSg K0

uoneyddy ainquiy

IS 90 S DOy

HOMBLILLN(] 1507)

noneonddy anquy

nonisodwonaq

UORROLASp] SInqumy

SARUY O] %&

uoneayRuapy Siuamanabay | LOHEOLNU3D] QY

aseyJ UONBUIULIN(150D

aseyq SISA[euy pue UONIUIJa(] WS[qOi]

KJuQ $1SBI1I0,] 9ZIS

126 SEL-93-003

SEW Proceedings

uoneanddy ainquny

UONISSaSSY

Juamsnipy
pUmS 150 ‘
R uone3algay
AewnS poiid
UORLIUap] AINQLIY

@gééés LN

uoryisaduooaq

A

HORaTuap] SyEauainbay

_ UL §_

| WIS

WONBOLFHOap] LIY

aseyq UONBUIIR(1S0D
ATUQ $158I910 JUSUWISSISSY

aseyd SISA[euy PuB UOHIULI(WIqoid

7 SEL-93-003

12

SEW Proceedings

uonen[eAy

WU i |

SJBWNSH HOJJH [BULIOY |feeeep uonedrddy synquyy

SJewl}SH HOJJH [ewIojuy

@omaﬁ&%ﬁﬂ Hmomvu

ISBY JUIUWISSISSY 180D

128 SEL-93-003

SEW Proceedings

LomeoRddy aquy

@

YRS 1S

e —
sy uonedaisy
TS MO
LORRIRLEP] ALY
sy ponLAq g_a@

vonisodwooaq

BoneoYuap] Sieawanmbay uoneaLIuapy aiquiy

aseyq UONRBUIULIANI(150D

aseyq SISA[RUY puUR UOTIIUTJO(] WA[qOI]

SISBI10,] JUSWISSISSY PUB IZIS

129 SEL-93-003

SEW Proceedings

Note that in Figures 7-9 and 11 the Effort Estimate, Aggregation, and Cost Estimate activities are
shaded in grey because there was some difficulty in discerning the actual sequence of these
activities. This was primarily due to the way in which the System Resource Management (SRM)
Tool, a cost accounting tool, was used. In many cases the respondent simply said and then “run
an SRM”. This tool can be used in a variety of ways, however, because it aggregates effort levels,
adds planned procurement expenditures, and calculates overhead rates. It was frequently not clear
how detailed the work was in determining the effort levels and procurements. Therefore, one level
of interpretation of these activities in the mental models was simply into and out of the box that
represents the combination of Effort Estimate, Aggregation and Cost Estimate.

It can be seen that, while there is a variety of activity sequences for each cost life cycle phase, there
is also a clear dominant route. In Figure 7, the New/Old Decomposition Mental Model, the route
was Requirements Identification, Attribute Identification, Decomposition (usually functional),
New/Old Decomposition, a branch between exiting to the Cost Determination Phase or repeating
Attribute Identification, finally exiting to the next phase. The Cost Determination Phase is less
clear but the most likely route appears to have been: Effort Estimate, Attribute Application,
Aggregation, Cost Estimate, Stop.

The dominant routes for the other mental models,while having similarities, do differ. Table 4
presents a summary of the sequence of activities for the main paths of the four mental models.
Two interesting behavior patterns appear: the increased use of attributes among those using
New/Old Decomposition and the lack of a Decomposition activity on the dominant path for those
using only Assessment. The latter most likely occurs because those who reported only using
Assessment did not have sufficient access to information: either because these were done as early,
“high level estimates or cost estimates for R&D tasks. In the New/Old mental model, the increased
use of Attribute Identification reflects the impact of grouping functions by degree of inheritance.
This is important because how the effort estimate was made depends upon the degree of experience
of those developing the functions.

Table 4: Activity Sequence Summary of Major Activity Transitions
for Forecasting Mental Models

Activity - New/Old Size Assessment Size and
Assessment

) A B

Requirements 1 1 1 1 I

Identification

Attnbute 2,5 2 2 2

Identification _

Decomposition 3 2 3

New/Old 4

Decomposition

Size Estimation 13 4 4

Etfort and Cost 6,8 4 3 5 6

Estimate

Attnbute 7 5

Application _

Assessment ' 4 6 7

Stop 9 5 , S5 7 8

A cursory review of the different mental models revealed to us that there exist substantial personal
style variations because there seems to be no one way to get a job done. However, there were
dominant pathways, and the mental models are clearly different. We interpret the primary

SEW Proceedings 130 SEL-93-003

differences in the mental models as representing the different ways that forecasters attempted to
reduce risk in their cost forecasts. The risk reduction techniques were based upon the use of either
multiple-decomposition steps, in this case additional New/Old Decompositions or multiple
forecasting steps. The multiple forecasting steps involve either forecasting software size or an
additional effort forecast (Assessment) . Very few used these risk reduction steps in

combination.

7.0 Summary and Conclusions

A viable process for capturing and analyzing the mental models software engineers use for cost and
size forecasting has been demonstrated. Our analysis demonstrates the existence of three
interdependent cost forecasting life cycle phases. The data analysis of the last few sections
provides a basis for us to begin to identify where software engineers can best use supporting
methods, tools, and data. Unfortunately, the currently available costing methods and tools only
support the Cost Determination phase. Methods, tools and data are needed that will:

support sequential estimation steps

support different techniques, save and assist in comparing results
store design information and supporting estimates

provide assistance in identifying task analogies

In addition the idiosyncratic nature of the individual protocols indicates that supporting methods
and tools need to capture and record the steps followed and information used by the forecaster.This

will provide a record of the assumptions and context within which the estimate was made, and
should improve the quality of updated estimates.

Finally, previously published analysis of this data showed that for experienced forecasters, those
who forecast frequently (at least every 6 months) on the average forecast effort 12% high, whereas
those who forecast less frequently (at greater than 6 month intervals) on the average forecast effort
44% low. This suggests examining the mental models of those activities and transitions most
dependent on memory and determining corrective support methods, tools and data.

SEW Proceedings 131 - SEL-93-003

forecasts. The risk reduction techniques were based upon the use of either multiple-decomposition

steps, in this case additional New/Old Decompositions or multiple forecasting steps. The multiple

forecasting steps involve either forecasting software size or an additional effort forecast (Assessment)
Very few used these risk reduction steps in combination.

7.0 Summary and Conclusions

A viable process for capturing and analyzing the mental models software engineers use for cost and
size forecasting has been demonstrated. Our analysis demonstrates the existence of three
interdependent cost forecasting life cycle phases. The data analysis of the last few sections provides a
basis for us to begin to identify where software engineers can best use supporting methods, tools, and
data. Unfortunately, the currently available costing methods and tools only support the Cost
Determination phase. Methods, tools and data are needed that will:

support sequential estimation steps

support different techniques, save and assist in comparin g results

store design information and supporting estimates

provide assistance in identifying task analogies

In addition the idiosyncratic nature of the individual protocols indicates that supporting methods and
tools need to capture and record the steps followed and information used by the forecaster.This will
provide a record of the assumptions and context within which the estimate was made, and should

improve the quality of updated estimates.

Finally, previously published analysis of this data showed that for experienced forecasters, those who
forecast frequently (at least every 6 months) on the average forecast effort 12% high, whereas those
who forecast less frequently (at greater than 6 month intervals) on the average forecast effort 44% low.
This suggests examining the mental models of those activities and transitions most dependent on
memory and determining corrective support methods, tools and data.

References

Albrecht, A. and J. Gaffney, **Software Function, Source
LOC and Development Effort Prediction, A Software
Science Validation,” Transactions of Software
Engineering, Vol. SE-9, No. 6, November, 1983,

p. 639-648.

Boehm, B., Software Engineering Economics,
Prentice Hall, 1981.

Ericson, K. and Simon, H., Protocol Analysis, MIT
press, 1984

Hihn, J, Griesel, A., Bruno, K, Fowser, T., and
Tausworthe, R., Mental Models of Software Forecasting,
Proceedings of the 15th Annual Conference of
the International Society of Parametric
Analysts, San Francisco, Ca, June 14, 1993,

pp- K2-K28.

SEW Proceedings 132

Hihn, J. and Habib-agahi, H., Cost Estimation of
Software Intensive Projects: A Survey of Current
Practices, Proceedings of the 13th International
Conference on Software Engineering, May 17-19,
1991, pp. 276-287.

Howard, M., “The Creation of a Research Model for
Estimation”, Proceedings of the European
Software Cost Modelling meeting 1992
(ESCOM), Munich, germany, May 27-29, 1992.

Papoulis, A., Probability, Random Variables and
Stochastic Processes, Mcgraw-Hill Inc, 1991,
Vicinanza, S., Mukhopadhyay and Prietula, M., Software-
Effort Estimation: An Exploratory Study of Expert
Performance, Information Systems Research, vol
2, December 1991, pp. 243-262.

SEL-93-003

Software Cost Forecasting As It Is Really Done:
A Study of JPL Software Engineers

NASA Goddard Space Flight Center
SEL Software Engineering Workshop
December 1-2, 1993

Martha Ann Griesel
Jairus M. Hihn
Kristin J. Bruno

Thomas J. Fouser
Robert C. Tausworthe

JPL
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 91109

Why Should We Care
How Experts Forecast Software Costs?

In today’s cost-constrained environment, cost estimation is an integral
part of the engineer’s job

Therefore, tools and databases are needed to support integrating cost
analyses with traditional engineering practices

Previous surveys have shown that engineers in general do not use
tools and databases they perceive to be inconsistent with their
software cost forecasting mental models

The purpose of this study was to determine the requirements for
methods, tools and databases that are consistent with engineers’
software cost forecasting mental models

MAG/TMH/ JPL /November 29, 1993

SEW Proceedings 133 SEL-93-003

Questions That Needed to be Answered

Is there a set of well-defined software cost forecasting activities?

Do these activities combine into a small number of well-defined
mental models?

To what degree are differences in the mental models dependent upon
personal style, problem domain, and environment?

Do the different mental models fit within a single software forecasting
lifecycle?

How can a better understanding of existing software cost forecasting
practices improve the implementation of those practices?

MAG/IMH/ L /November 29, 1993

Background
Literature on mental models of forecasting is sparse:

results are not repeatable

previous studies support the assumption that there are a small
number of basic activities

Previous work by the authors identified more rigorous methods of
data capture and analysis

Cognitive Psychology provides a method of data capture
(Protocol Analysis)

Stochastic processes provide a method of analysis
(Transition Probability Matrices)

MAGTMH/ JPL/November 29, 1993

SEW Proceedings 134 SEL-93-003

Background (Cont.)

The current analysis uses data that existed from a previous study

We have been able to identify 28 observations that provide sufficient
detail for analysis

Respondents types and number of years of software experience varied

Protocols reflect forecasts made during either System Architectural
Design or Software Requirements Analysis

MAG/IMH/ Pt November 29, 1993 4

Forecasting Activities
Requirements Identification
Attribute Identification - People, Product, Process
Attribute Application - People, Product, Process
Decomposition - WBS, New/Old, Functional, Requirements
Aggregation
Size Estimation - Expert Judgement, Analogy, Rules of Thumb, CER
Effort Estimation - Expert Judgement, Analogy, Rules of Thumb, CER
Cost Estimation - Generic, SRM
Adjustment - Risk, Scaling, Bias

Evaluation

MAG/TME/ JP../November 29, 1993 5

SEW Proceedings 135 SEL-93-003

An Example of a COCOMO Software Cost Forecasting Mental Model

4——{ Identify Requirements
[Decomposiion 1y

Identify Attributes

| Effort Estimate

Aggregate

MAG/TMH/ 3L /November 29, 1993

LOC Estimate

| Apply Attributes |

Stop

Activity Clustering and Differences

Sample Breakdown by Type of System and Forecasting Technique

System New/Old | Assessment Size Other System
Decomposi- Estimate Type
tion Percentage
Rapid 20% 60 % 20% 13%
Prototype
Formal 20 % 80 % 13%
Military
Research 18 % 18 % 27 % 37 % 28%
Evolving
Ground 43 % 21 % 14 % 21 % 36 %
System
Flight 25 % 75 % 10 %
Technique 23 % 26 % 33% 18 % 100 %
Percentage
Sample Size equals 28, Due to use of multiple techniques total count is 39.
MAG/TMH/ Pt /November 29, 1993 7
SEL-93-003

SEW Proceedings

136

Scope of the Current Software Cost Forecasting Lifecycle
Relative to the Software Lifecycle

System

Requirements Analysis
System
Functional Design

oftware
Requirements Analysis
l Software\Dcsign

Software
Implementation

Software

Integration & Test
System
| Integration & Test

Problem Definition ’
& Analysis Phase

(Cost Determination Phase)
(Cost Assesment Phase]

MAG/IMH/ JPAL/Novembes 29, 1993 8
Problem Definition and Analysis Phase
New/Old Only
Start
Attribute Identification Requirements Identification :
m Decomposition
New/Old
@)st Detcmlinaxiora
SEL-93-003

SEW Proceedings 137

Problem Definition and Analysis Phase
Size Forecasts Only

LAmibute Identification [*————"\=1 Requirements Identification

Decomposition

Attribute Application 1

[Cost Determinatioxa

Problem Definition and Analysis Phase
Size and Assessment Forecasts

L Attribute Identification | €=

Requirements Identification

Decomposition

@ost Detenninatioa

SEW Proceedings 138 SEL-93-003

Problem Definition and Analysis Phase
Assessment Forecasts Only

Attribute Identification [* Requirements Identification

Decomposition

 NowlOW

Cost Determination

Cost Determination Phase
New/Old Only

Problem Definition/Analysis)

A
Attribute Identification

Effort Estimate

4
Aggregation Attribute Application

\ Cost Estimate

Adjustment

Stop

SEW Proceedings 139 SEL-93-003

Cost Determination Phase

Size Forecasts Only
(Problem Definition/Analysis
Attribute Identification
Effort Estimate ~ Size Estimate
Aggre; aﬁon Attribute Application
£eres -» Cost Estimate PP
Adjustment
Stop
Cost Determination Phase
Assessment Forecasts Only
Problem Deﬁm’tion/Analysisj
Attribute Identification
Effort Estimate

'

Aggregation |

Adjustment

Attribute Application

Cost Estimate

SEW Proceedings

Assessment

140 SEL-93-003

Cost Determination Phase
Size and Assessment Forecasts

(?roblcm Definition/Analysis

Attribute Identification
Effort Estimate Size Estimate
! l { \J
Aggregation Attribute Application
geree - Cost Estimate PP

Adjustment

Assessment

Cost Assessment Phase

@ Determination

Informal Effort Estimate

Evaluation

Attribute Application |- Formal Effort Estimate

SEW Proceedings 141 SEL-93-003

Conclusions

Expert forecasters use simplification in the face of complexity
86 % only use one technique to reduce cost forecast risk
more detailed decompositions
more detailed forecasts
they keep cost techniques simple and use only a few cost drivers
Personnel Quality, Complexity, Language
Consistent with Cognitive Psychology findings in other fields

MAG/IMH/ JPL /November 29, 1993

Conclusions

Experts tend to use techniques based on domain knowledge
and rules of thumb

single domain experts generally get into
detailed forecasting quickly

multiple domain experts do
more abstract or generic forecasting

Design-To-Cost differs in that
Attribute Identification is more likely to be used as a first step

forecasts are iterated based upon cost-budget comparison

MAGIMH I, /November 29, 1993 10

SEW Proceedings 142 SEL-93-003

Summary
Spanning the Mental Model Problem Space

50 Mo T)

Cost Drivers

MAG/IMH/ JPL. /November 29, 1993 11

SEW Proceedings 143 SEL-93-003

Je-&/ ' N94- 36490
oes ¥

/ﬂ -)? Assessing Efficiency of Software Production for NASA-SEL Data

Anneliese von Mayrhauser Armin Roeseler

Computer Science Department
Colorado State University
Fort Collins, CO 80523

Abstract

: This paper uses production models to identify and quantify efficient allocation of resources and key
drivers of software productivity for project data in the NASA-SEL database. While to analysis
_ allows identification of efficient projects, many of the meirics that could have provided a more

detailed analysis are not at a level of measurement to allow production model analysis. Production
models must be used with proper parameterization to be successful. This may mean a new look at
which metrics are helpful for efficiency assessment.

1 Introduction

Many organizations collect a plethora of metrics to help them analyze efficiency of software devel-
opment and maintenance. Just how helpful are they? We used production models and associated
metrics to assessment efficiency of NASA-SEL projects.

While production models have been used in Operations Research for quite a while, their use in
the computing field has been limited [1], [10], [13]. One reason for this is that successful develop-
ment of such models for the software development and maintenance process requires appropriate
parameterization (i. e. metrics that are able to help with root cause analysis for process inefficien-
cies). We can consider software development and maintenance as a production process and model
it accordingly. Inputs to the production model are various indicators of resources (effort, tools,
capital, expertise, etc.). Outputs reflect the characteristics of software produced (size, quality,
etc.). The production model then identifies which development activities were efficient and which
factors are related how much to inefficiencies found. This targets specific production activities for
improvement. At this point we need to look at more detailed metrics to identify further cause and
possible improvement actions. Except for [10, 9] all other applications in the computing field have
not provided metrics with the production model that make process improvement possible. Further,
(1] only models maintenance requests. To make production models useful for quantitative assess-
ment (and improvement) we must provide a hierarchy of metrics for further analysis of production
model results. Both metrics and production model are then bound into a process improvement
program.

Section 2 gives a short synopsis of how production models work and how they analyze parame-
ters. A more complete description can be found in {13]. Section 3 reports on the efficiency analysis
of NASA-SEL project data. Section 4 gives recommendations for using a production model for
efficiency assessment.

SEW Proceedings 144 SEL-93-003

2

‘
Qoo

Figure 2: Production Function and Efficiency Frontier

2 Production Models

Production models are causal models that integrate technical and economical analysis perspectives
to assess the efficiency of resources used to achieve software development goals. The motivating
idea of the production system model is the notion that the software development process transforms
resources (e.g., Programmer time, CPU time) into software products. The production function f
relates the inputs to the outputs and describes the resource transformation process. We say a
software development process is optimized if maximal levels of outputs are attained, given a set of
production input quantities.

Figure 1 depicts a production system model that describes how (possibly multiple) input factors
(resources) are transformed into (possibly multiple) output factors (e.g., deliverables, quality as-
pects) using a software development process. Feedback in the production system model is provided
through managerial decision making (e.g., deciding on process, pro ject plan and resources).

Because of the complex interactions of software development components, the analytic spec-
ification of the production function fis rarely feasible. In the absence of quantitative means to
determine the interactions and causalities of components in the production process directly, we
take an empirical approach to identify optimal production conditions based on historical data on
the software development process.

Via linear programming techniques, a convex set of production component data is constructed,
and a piecewise linear description of the efficient production frontier is obtained. The efficient
production frontier consists of observations that maximize software development goals, given re-
sources consumed, and sets the standard against which other projects or development periods are
evaluated. In the process, input efficiencies (slack values), and desired output targets are obtained.
Figure 3 shows a production function (A,B,C,D, E) and an efficient production frontier (00"
for a model with one input and one output.

Knowledge of a project’s relative (in)efficiency, amount of excess input, and desired output goals

2

SEW Proceedings 145 SEL-93-003

can then be used to

e evaluate the efficiency of a SW process,
e decide on strategies to improve efficiency, and

e develop improved SW processes.

3 Production Model Analysis of Project Data in the NASA-SEL
Database

We are evaluating project data in the NASA-SEL database with regards to the following:
o does the production model identify efficient and inefficient periods of production?

® are the metrics pinpointing the proper cause?

3.1 Production Model Analysis

We selected 49 projects for analysis. The selection criteria was completeness of project data
recorded. We wanted to start our analysis with a rich set of project descriptors. The following
Projects qualified:

2,6,8,10,19,26,34,35,36,37,38,39,40,46,47,48,49,50,51,52,53,54,55,56, 65,68,70,73,74,80,81,90,
101,102,103,104,105,106,108,110,114,115,116, 117,126,131,132,134,135

Production model analysis must identify inputs and outputs to the production process. These
must be at a ratio level of measurement. Rightaway, we face a severe restriction in possible inputs
and outputs to the model, since many of the data items are really ranks (e. g. Stability of
Requirements). Pretending such data is ratio level is inappropriate, much as we would like to
include such key productivity drivers. We decided on a two phase analysis, the first phase uses
the (small) set of production inputs and outputs that are at the proper level of measurement. The
second phase analyzes rank data, how they appear to influence efficent and inefficient projects.

Input Factors
P132 Total technical and management hours expended on project
P135 CPU hours used

Output Factors
P139 Number of changes made to system components
P141 Total SLOC for all components in the system

The production model clearly identified efficient and inefficient projects. The efficient projects
were: 53,54,55,74,110,134. We also included Project 48 with an Efficiency Score of 0.98. The
production model clearly identified the periods of inefficiency and the magnitude of inefficient
resource usage.

3.2 Metrics Analysis

Next lower level analysis uses the remaining metrics to identify:

* major factors that impact overall project efficiency

SEW Proceedings 146 SEL-93-003

IRURE

e factors that pertain to efficient or inefficient projects only
e Identify factors that most sharply divide efficient from inefficient projects

A properly defined set of metrics is indispensable for successful use of the production model.
We found the following results:

1. Factors that correlate with both efficient and inefficient pro jects.

e Pos. Correlation (i.e., ‘more’ is beneficial)
— P90 Stability of Requirements
— P100 Stability of Management Team
While this confirms other analyses (e. g. those underlying the COCOMO model), this
correlation by itself does not tell us whether a lack of stability in requirements and
management team caused the inefficiency. Had this data been collected at a ratio level
of measurement, we could have identified cause.
o Neg. Correlation (i.e., ‘less’ is beneficial)
— P93 Rigor of Requirements Review
— P115 System Response Time
Again, this data is ordinal, and gives rise to possible interpretations. One might venture
to say that this result indicates that rigor can go overboard and thus causes inefficiencies,
but this might also be due to inconsistent data collection, specifically lack of inter-rater
reliability for P93. This would point to a need for metrics validation before collecting
them on a large scale.

9. Factors that correlate with inefficient projects, but do not correlate with efficient projects.
That is, efficient projects are immune to the factors listed below, while inefficient projects are
influenced by them.

e Pos. Correlation (i.e., ‘more’ is beneficial)
— P95 Development Team Application Experience

This is a very interesting result as it appears to say that ”if you’re not as efficient as you
could be, the experts bail you out”.

s Neg. Correlation (i.e., ‘less’ is beneficial)
— P88 Problem Complexity
— P105 Discipline in Requirements Methodology
— P112 Access to Development System
— P113 Ratio of Developers to Terminals

Again, much of this is ordinal data, some might be dependent, so if anything we should
investigate this further. What is quite interesting is that the efficient projects don’t seem
to be affected by this.

3. Factors that most sharply discriminated efficient and inefficient projects (statistics probably
not significant)

e Pos. Correlation (i.e., ‘more’ is beneficial)

— P106 Discipline in Design Methodology

SEW Proceedings 147 SEL-93-003

— P119 Quality of SW
® Neg. Correlation (i.e., ‘less’ is beneficial)

— P91 Quality of Requirements
4. All Other Factors:

e No significant correlations to efficient and inefficient projects detected.
e Incomplete data for factors P104 and P117.

While we could identify efficent and inefficient production outcomes for these 50 projects, many
of the State-of-the-art metrics in the NASA-SEL database do not have enough power to assess
the efficiency of software production in enough detail to suggest improvements. Two problems,
subjective ranking and questions about inter-rate reliability are key to the situation. Unfortunately,
this is a very common problem.

4 Conclusion

We clearly need methods to assess efficiency of software production. Reliable quantitative methods
paired with engineering judgement appear most promising. This paper described production models
and how to use them for efficiency assessment. We applied the approach to data from 49 projects
in the NASA-SEL database to show its benefits and the needs for better, more relevant metrics to
drive any quantitative evaluation.

References

{1] R. Banker, S. Datar, Ch. Kemmerer; ”A Model to Evaluate Variables Impacting the produc-
tivity of Software Maintenance Projects”, Management Science 27, 1(Jan. 1991), pp. 1-18.

(2] A. Roeseler; A Production-Based Approach to Performance Evaluation of Computing Technol-
ogy, PhD Thesis, Dlinois Institute of Technology, 1991.

(3] A. Roeseler, A. von Mayrhauser, ”A Production-Based Approach to Performance Evaluation
of Computing Technology”, Journal of Systems and Software, to appear 1993.

[4] von Mayrhausr, A., Roeseler, A.; "Software Process Assessment and Improvement using Pro-
duction Models”, Procs. COMPSAC 93, Nov. 1993, Phoenix, AZ.

SEW Proceedings 148 SEL-93-003

Assessing Efficiency of Software
Production
for NASA-SEL Data

Slide 1
Anneliese von Mayrhauser Armin Roeseler
Computer Science Department AT&T Bell Laboratories
Colorado State University Warrenville Road
Fort Collins, CO 80523 Naperville, IL
avm@cs.colostate.edu doit@ihlpa.att. com
Outline
1. Production models in software engineering
9. Production model analysis
Slide 2

3. Analyzing NASA-SEL Data
e Productivity Analysis

e Metrics Analysis

4. Conclusion

SEW Proceedings 149 SEL-83-003

1. Production Models in Software Engineering
e Productivity is multi-faceted
® Analyze software development & maintenance as a
Slide 3 microeconomic production process
— resource transformation (empirically-based)
— mathematical approach to efficiency measurement

— incremental process of achieving/maintaining successively
higher levels of efficiency

2. Production Model Analysis

Inputs

Slide 4

f(Qo;Qn) = f(Qb,.--.QE;Q},....QF) =0
* QF level of m-th output, m=1,.... M
e Q7 level of n-thinput, n=1,... | N

o f: Rf — Rf production function giving maximal output for
given input

SEW Proceedings 150 SEL-93-003

Production Function

e complex interactions

Slide 5 .] . .
» analytic specification rarely feasible
e use empirical approach based on historic production
observations
Estimation of Production Function
Qo
Qb
Slide 6 r@»
0 : [}
(178

SEW Proceedings 151 SEL-93-003

Measure of Efficiency of i-th Production Period

1
Slide 7 0< JOL)
T Qo, | @,

Ratio of observed versus desired

Production Mode] Use
Slide 8 e evaluate productivity (efficiency) of software production
e decide on strategies to improve overall efficiency

¢ develop improved process/plans

SEW Proceedings 152 SEL-93-003

Efficiency rating
Ratio 00, =, to OO = I; is efficiency rating

I 1 k=1
Effe = &=
le <1 k#1

Implications

most efficient periods set standards

no measure of absolute efficiency provided

new periods added may change standard and efficiency rating
poor periods don’t lower standard

best rating is one

observations remain in original, possibly non-commensurate

units

Slide 9
[]
L4
Slide 10 .
L}
L4
L]
SEW Proceedings

153

SEL-93-003

3. Analyzing NASA-SEL Data

Objectives:

Slide 11
1de e does the production model identify efficient and inefficient

periods of production?

e are the metrics pinpointing the proper cause?

3.1. Production Model Analysis
49 projects with complete project data.
Slide 12 project metrics must have at least ratio level.
use 2 phase analysis:

o identify efficient projects based on ratio-level data

o analyze effect of rank data

SEW Proceedings 154 SEL-93-003

Factor Selection
Input Factors

P132 | Total technical and management hours expended on project
P135 | CPU hours used
Output Factors

Slide 13

P139 | Number of changes made to system components
P141 | Total SLOC for all system components
Efficient Projects: 53, 54, 55, 74, 110, 134, and 48.

3.2, Metrics Analysis

e major factors that impact overall project efficiency

Slide 14
e factors that pertain to efficient or inefficient projects only

e factors that most sharply divide efficient from inefficient

projects

SEW Proceedings 155 SEL-93-003

Factors that correlate with both project types

e more is better:
— P90 Stability of Requirements

Slide 15 — P100 Stability of Management Team

o less is beneficial
— P93 Rigor of Requirements Review
— P115 System Response Time

Factors that correlate with inefficient projects
e more is better:

— P95 Development team application experience

Slide 16 e less is beneficial
— P88 Problem Complexity
— P105 Discipline in Requirements Methodology

P112 Access to Development System

P113 Ratio of Developers to Terminals

SEW Proceedings 156 SEL-93-003

Factors that sharply discriminate efficent vs. inefficient projects
e more Is better:
— P106 Discipline in design Methodology
— P119 Quality of Software

Slide 17

o less is beneficial

— P91 Quality of Requirements

Disciplined Metrics Development
e evaluate quality of current metrics
- validity
— reliability

Slide 18 develop hierarchy of production relevant factors to measure

identify for all metrics: what/why/meaning

e parameterize the software development process

determine goal oriented selection process

bind into general metrics program

SEW Proceedings 157 SEL-93-003

4. Conclusions

Production Model Approach

¢ analytically identifies most efficient software development

Slide 19
® derives a single measure of relative efficiency

* handles non-commensurate multiple output measures, multiple
production factors

e provides insights into how factors contribute to relative
efficiency ratings

SEW Proceedings 158 SEL-93-003

Session 3: Technology Assessment T

Jon D. Valett, NASA/Goddard

Ray Madachy, Litton Data Systems

Maurice H. Blumberg, IBM Federal Systems Company

SEW Proceedings 159 SEL-93-003

SEW Proceedings

160

SEL-93-003

P

v e

 N94- 36491

THE (MIS)USE OF SUBJECTIVE PROCESS
MEASURES IN SOFTWARE ENGINEERING

Jon D. Valett

SOFTWARE ENGINEERING BRANCH
Code 552
NASA/Goddard Space Flight Center /=

S57-6/

Greenbelt, Maryland 20771

Steven E. Condon

COMPUTER SCIENCES CORPORATION
GreenTec II—10110 Aerospace Road
Lanham-Seabrook, Maryland 20706

WHAT ARE SUBJECTIVE
PROCESS MEASURES?

A variety of measures are used in software
engineering research to develop an under-
standing of the software process and product.
These measures fall into three broad cate-
gories: quantitative, characteristics, and sub-
jective. Quantitative measures are those to
which a numerical value can be assigned, for
example effort or lines of code (LOC). Char-
acteristics describe the software process or
product; they might include programming
language or the type of application. While
such factors do not provide a quantitative
measurement of a process or product, they do
help characterize them. Subjective measures
(as defined in this study) are those that are
based on the opinion or opinions of individ-
uals; they are somewhat unique and difficult
to quantify.

Capturing of subjective measure data typi- -
cally involves development of some type of .
scale. For example, "team experience” is one
of the subjective measures that were collected .
and studied by the Software Engineering -
Certainly, team experi-
ence could have an impact on the software -
process or product; actually measuring a °
team's experience, however, is not a strictly .
mathematical .exercise. Simply adding up .

Laboratory (SEL).

SEW Proceedings
_ 51
0| INTENTIONALLY BLANK

T I D e B

each team member's years of experience

appears inadequate. In fact, most researchers
would agree that "years" do not directly
translate into "experience.” Team experience
must be defined subjectively and then a scale
must be developed—e.g., high experience
versus low experience; or high, medium, low
experience; or a different or more granular
scale. Using this type of scale, a particular
team's overall experience can be compared
with that of other teams in the development
environment.

Defining, collecting, and scaling subjective
measures is difficult. First, precise definitions
of the measures must be established. Next,
choices must be made about whose opinions
will be solicited to constitute the data.
Finally, care must be given to defining the
right scale and level of granularity for
measurement.

WHY DO SOFTWARE ENGINEERS
NEED SUBJECTIVE MEASURES?

Despite the difficulties inherent in working
with subjective measures, many researchers
propose that the software process and product
can not be characterized fully without them.
Early work by Walston and Felix! used sub-
jective data for characterizing software.
Intermediate COCOMO? uses 16 subjective

SEL-93-003

: PRBOUDING PAGE B ANK NCT FILMID

cost drivers for estimating software cost.
These subjective measures range from
"amount of experience with the development
programming language" to "product complex-
ity." For a given project, each of the 16 fac-
tors is rated and used to develop the basic cost
estimate. The expectation is that inclusion of
these factors will yield a more pre-
cise/accurate cost estimate. In fact, almost all
cost models use some subjective factors.

In addition to cost modeling, software engi-
neering researchers use subjective measures
to help quantify other aspects of the software
process. For example, they might try to deter-
mine if the team experience factor has any
impact on productivity or reliability. In
developing a reliability model, they might
look at the quality of the team's code reading.
Subjective measures can also be used in
defining software domains. In this applica-
tion, a subjective measure might be consid-
ered a defining factor in placing particular
software in one domain versus another.
Projects that use formal structured analysis,
for example, may be in a different domain
from those that use other methods.

This research examines the use of subjective
measures in software engineering experi-
mentation. In the sections that follow, this
paper discusses the early experiences of the
SEL collecting and applying subjective mea-
sure data, looks at refinements the SEL made
to their collection and analysis process, and
then reports on more recent SEL studies using
subjective data. Some general recommenda-
tions are made for the collection and use of
subjective data based on lessons learned in
the SEL.

THE SEL AND SUBJECTIVE
MEASURES

The SEL is a research organization that sup-
ports the Flight Dynamics Division of
NASA/Goddard Space Flight Center. Its pur-
pose is to investigate the effectiveness of
software engineering technologies applied to
the development of flight dynamics software.

The SEL collects a variety of data from appli-
cation software projects for use in its research

SEW Proceedings

and experiments. These data include infor-
mation on effort, size, computer resources,
project characteristics, and a number of sub-
Jjective measures. (For a complete description
of the data collected see Reference 3.) The
SEL began collecting subjective measures
data in 1977. The primary goals for these
data were to validate the models of other
software engineering researchers and to fully
characterize the SEL environment. As with
many early SEL data collection efforts, an
attempt was made in this case to collect every
possible piece of data. On each project, over
300 individual subjective measures were
collected.

For each measure, managers gave an opinion
expressed as a rating based on a 0-5 scale.
The data were not validated/cross-checked in
any way before being stored in the SEL
database. No one else examined the ratings
given or tried to provide consistency across
projects. Furthermore, the 0-5 ratings were
not defined. Thus, for the same measure on
the same project, two different individuals
might have given different ratings. While this
was somewhat minimized because there were
very few people providing the data, the data
were still inconsistent. Also, due to the lack
of precise definitions for ratings, inconsis-
tency was possible not only amongst data
providers but also from project to project and
from year to year. That is, because of
changing perceptions, similar projects may
have been given different ratings. Neverthe-
less, these data were used by the SEL in a
variety of experiments, two of which are
detailed below.

Early Uses of Subjective Measures

One early experiment using subjective mea-
sures was the development of a meta-model
for software development resource expendi-
tures.* The goal of the experiment was to
develop a cost model that included subjective
process measures. First, the subjective data
from the SEL database were converted from
the 0-5 scale to a binary (high/low) scale for
use in the experiment. Second, the re-
searchers selected one manager who was
familiar with all the projects as a source for
establishing consistency across the projects.

162 SEL-93-003

Using data from 17 projects, the researchers
developed a baseline cost model that related
effort to LOC. They examined the impact on
cost of 71 different subjective measures to
determine if any of them showed a significant
relationship to the cost of the project. No sig-
nificant correlation was found. The data
proved to be too detailed to really determine
if there was any impact. While the
researchers were able to find some correlation
between certain measures and cost, it was not
consistent. The researchers then applied a
grouping technique to the measures, convert-
ing the 71 measures into three groups. This
allowed them to build new, broader-based
subjective measures. Using these three mea-
sures they built a new cost model which they
later confirmed against new projects that were
similar to those in the data set.

Two main points emerge from reviewing this
experiment:

« Be wary of "looking for correlations.”
While these researchers found some cor-
relations when using the detailed data,
they proved to be inconsistent. In almost
any experiment using subjective data
some correlations may exist, but they
must be repeatable to be significant.

Collecting lots of data does not guarantee
lots of results. In this experiment the vast
amount of data collected had to be con-
verted to a much less detailed set.

In a second experiment using subjective mea-
sures, SEL researchers sought to determine
the effect of modern programming practices
(MPPs) on productivity and reliability.’
Again, the subjective measures data in the
SEL database were used after being converted
to a binary scale and combined into groups.
However, the grouping method used in this
experiment differed from the method used in
the previous experiment. Various subjective
measures were combined with quantitative
data to predefine MPPs such as structured
coding and tool use. Then, analyzing data
from 22 projects, the researchers tested the
effects of MPPs on productivity and relia-
bility. No correlation was shown on produc-
tivity, while quality of documentation,
amount of quality assurance, and quality of
code reading did have an impact on error rate.

SEW Proceedings

163

Unfortunately, these results were never con-
firmed over other data sets.

Major lessons on subjective measures from
this study are:

« Detailed subjective data probably are not
useful. Having over 300 different subjec-
tive measures actually proved to be less
useful than having fewer, more general
categories of subjective information.

To validate results using subjective data,
confirm the results across multiple data
sets.

Refining SEL Subjective
Data Collection

In 1987, the SEL (recognizing the difficulty
with collecting and using over 300 detailed
subjective measures) set out to significantly
reduce the data set. Based on the experience
of other researchers and the specific experi-
ence of the SEL, a new set of 36 measures
was defined. These data continue to be col-
lected today.

Subjective measure data are now provided by
project leads. At the end of each project, the
project lead completes a questionnaire that
uses a -5 scale. (The questionnaire is
included as an appendix.) The opinions of the
project lead are presumed to be accurate; no
other validation or cross-checking of the data
is done. This data collection policy still
allows bias and potential inconsistency within
the data as people with different perspectives
and experiences might give the same project
different scores. Two experiments using the
newer subjective data are discussed below.

Recent Experiences with
Subjective Measures

Recently, a study was conducted in which the
36 subjective measures were applied to a
basic cost model. This was done as part of a
larger effort to build a specific cost model for
the SEL environment. In this study the
researchers used the measures as they were
recorded in the SEL database. They devel-
oped a basic cost model and then attempted to
improve that model by adding various

SEL-93-003

subjective measures. On the initial data sets
used, some of the measures did appear to
improve the cost models, but when the
researchers tried to validate the models using
different data sets (from similar projects) they
were unable to duplicate the results. In fact,
they found similar improvements in the mod-
els when they substituted random data for the
actual subjective measures data. Given these
results, the researchers concluded that the cur-
rent subjective data should not be used as a
factor in projecting cost.

Two lessons learned from this experience:

» Collecting data on a 1-5 scale is probably
not optimal. Distinguishing each rating,
for example a "2" versus a "3," is difficult.
In the past, when these data have been
used in analysis they have been converted
to a binary scale. The scale should be

" reduced either when the data are collected
or when they are used.

* Results should be confirmed over multiple
data sets. This has been pointed out
before, but it bears repeating. In too many
instances researchers have come to con-
clusions based on one set of projects
without checking out the results on other
similar projects.

Another study was conducted (specifically for
this report) with the goal of determining the
impact of subjective measures on effort,
errors, and changes. Data were converted to a
binary scale. Also, the analytic method used
assumed that the 36 measures were not inde-
pendent. (The previous study did not address
the dependency of the data.) For any set of
projects, a linear model was built relating the
size of a project to a particular measure, such
as changes. Then a set of subjective measures
that may have had an impact on the chosen
measure was identified. From that set, the
factors that were most likely to have had an
impact and those that best represented the
dependent set of measures were added to an
enhanced linear model. Attempts to validate
these models against multiple similar data sets
showed little or no consistency.

Based on this study and the others discussed,

it appears that even the conservative use (i.e.,
using a binary scale and incorporating data

SEW Proceedings

dependency) of the subjective measures data
collected by the SEL is of questionable value.
While previous analyses of the data showed
some promise, recent experiences have been
less successful.

MISUSES AND USES OF
SUBJECTIVE MEASURES

Based on these findings, SEL researchers
have questioned the value of collecting these
data. Although the data may not be viable for
rigid statistical analyses, they can be impor-
tant tools for environment characterization
and research planning purposes. When work-
ing with subjective measures, the following
guidelines should be considered:

» Be cognizant of the data collection mech-
anism and the extent to which the data are
validated. Make no assumptions con-
cerning the accuracy and validity of the
data.

» When defining subjective measures for
collection, less is usually better. Collect-
ing a wide variety of data without a plan
for their use is pointless.

» Use subjective measures to spot trends
and set goals for more detailed experi-
ments. General subjective measures can
be a good place to start when setting goals
for research. This is probably the best
way to use loosely defined, nonvalidated
subjective measures such as those col-
lected by the SEL.

Given the somewhat limited usefulness of the
SEL's subjective measure data, the SEL might
be expected to abandon collection of subjec-
tive data. Subjective information, however, is
important for understanding an environment
and it provides a context for data analysis.
When designing experiments or studies, a
researcher needs to examine subjective infor-
mation about a project to decide if that project
is appropriate for inclusion in a particular
study. That information might, however, be
more likely found in project documents (e.g.,
lessons learned reports) than in ranked ques-
tionnaire responses.

Rather than abandon subjective measure data
collection, the SEL needs to define a set of

164 SEL-93-003

ot e s T

subjective measures that accurately captures
the critical elements of the local environment.
From there, a set of goals for the subjective
measures must be identified and a set of
questions generated that precisely defines the
measures for the local environment. The last
step would be to develop a methodology for
collecting and validating the data. If such
steps are taken, the validity of the subjective
measures data could be improved and their
usefulness in the SEL's ongoing process
improvement program could be reexamined.

REFERENCES

1. Walston, C., and C. Felix, "A Method of
Programming Measurement and Estima-
tion,” IBM Systems Journal 16, Number 1,
1977

2. Boehm, B. W., Software Engineering
Economics, Prentice-Hall, Englewood
Cliffs, New Jersey, 1981

3. Heller, G., J. Valett, and M. Wild, Dara
Collection Procedures for the Software
Engineering Laboratory (SEL) Database,
SEL-92-002, Software Engineering Labo-
ratory, Greenbelt, Maryland, 1992

4. Basili, V. R., and J. W. Bailey, "A Meta-
Model for Software Development
Resource Expenditures,” Proceedings of
the Fifth International Conference on
Software Engineering, IEEE Computer
Society Press, New York, New York,
1981

5. Card, D. N., F. E. McGarry, and G. T.
Page, "Evaluating Software Engineering
Technologies," IEEE Transactions on
Software Engineering, July 1987

6. Condon, S., et al., Cost and Schedule
Estimation Study Report, SEL-93-002,
Software Engineering Laboratory,
Greenbelt, Maryland, 1993

SEW Proceedings

165

SEL-83-003

APPENDIX—SEL SUBJECTIVE DATA COLLECTION QUESTIONNAIRE

CTIVE EVALUATION FORM

Project: Date:

w

Indicate response by circling the corresponding numeric ranking.

L. PROBLEM CHARACTERISTICS
1. Assess the intrinsic difficulty or complexity of the problem that was addressed by the software development.

1 2 3 4 5
Easy Average Difficut

2. How tight were schedule constraints on project?
1 2 3 4 5
Loose Average Tight

3. How stable were requirements over development period?
1 2 3 4 5
Looss Average High
4. Assess the overall quality of the requirements specification documents, including their clarity, accuracy,
consistency, and completeness.

1 2 3 4 5
Low Average High

5. How axtensive were documentation requirements?

1 2 3 4 5
Low Average High

6. How rigorous were formal review requirements?

1 2 3 4 5
Low Average High

fl. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF
7. Assess overall quality and abikity of development team.

1 2 3 4 5
Low Average High
8. How would you characterize the development team's experiance and familiarity with the application area of
the project?
1 2 3 4 5
Low Average High
9. Assess the development team's sxperience and familiarity with the development environment (hardware
and support software).
1 2 3 4 5
Low Average High
10. How stable was the composition of the development team over the duration of the project?
1 2 3 4 S
Loose Average High
FOR LIBRARIAN'S USE ONLY
Number: Entered by: g
Date: Checked by: g
NOVEMBER 1991

SEW Proceedings 166 SEL-93-003

APPENDIX—SEL SUBJECTIVE DATA COLLECTION QUESTIONNAIRE

CTIVE EVALUATION FORM

Hl. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11. Assess the overall performance of project management.
1 2 3 4

Low Average High
12. Assess project management's experience and familiarity with the application.
1 2 3 4 5
Low Average High
13. How stable was project management during the project?
1 2 3 4 5
Low Average High
14. What degree of disciplined project planning was used?
1 2 3 4 5
Low Average High
15. To what degree were project plans followed?
1 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS

16. To what extent did the developrment team usa modern programming practices (PDL, top-down
development, structured programming, and code reading)?
1 2 3 4 S
Low Average High

17. To what extent did the development team use well-defined or disciplined proceduraes to record
specification modffications, requirements questions and answers, and interface agreemants?
1 2 3 4 5

Low Average High
18. To what extent did the development team use a well-defined or discipiined requirements analysis
mathodology?
1 2 3 4 5
Low Average High
19. To what extent did the development team use a well-defined or discipiined design methodology?
1 2 3 4 5
Low Average High
20. To what extent did the development team use a well-defined or disciplined testing methodology?
1 2 3 4 5
Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools wers used by the developmant team? Check all that apply from the list that follows
and identity any other tools that were used but are not listed.

0 Compiler Ocar

[Linker {J PANVALET

O editor {0 Test coverage tool

O Graphic display builder [Interface checker (RXVP8O, etc.)

] Requirements language processor [Language-sensitive editor

[Structured analysis support tool] symbolic debugger

T PDL processor O Configuration Management Tool (CMS, etc.)

O IsPF [J Orhers {identity by name and function)

(] sAP 5
22. To what extent did the development team prepare and follow test plans? &

1 2 3 4 5 g
Low Average High g

SEW Proceedings 167 SEL-93-003

_ SUBJECTIVE EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONTD)

23. To what extent did the development team use well-defined and discipiined quality assurance procedures
{reviews, inspections, and walkthroughs)?

1 2 3 4 5
Low Average High
24. To what extent did development team use well-defined or disciplined configuration management
procedures?-
1 2 3 4 5
Low Average High

V. ENVIRONMENT CHARACTERISTICS
25. How would you ehargctoﬁzo the dgvelopmont team’s degree of %ccess to the development system?
1 4

Low Average High
26. What was the ratio of programmers to terminals?
1 2 3 4 5
8:1 4:1 21 11 12

27. To what degree was the development team constrained by the size of main memory or direct-access
storage available on the development system?
1 2 3 4 5
Low Average High

28. Assess the system r@sponse time: were the turnaround times experienced by the team satisfactory in
light of the size and nature of the jobs?
1 2 3 4 5

Poor Average Very Good

29. How stable was the hardware and system support software (including language processors) during the
Pf°i°¢1*’-’

2 3 4 5
Low Average High
30. Assess the effactiveness of the software tools.
1 2 3 4 5
Low Average High

Vi. PAODUCT CHARACTERISTICS
31. To what degree does the delivered software provide the capabilities specified in the requirements?

1 2 3 4 5
Low Average High
32. Assess the quality of the delivered software product.
1 2 3 4 5
Low Average High
33. Assess the quality of the design that Is present in the software product.
1 2 3 4 5
Low Average High
34. Assess the quality and completeness of the delivered system documentation.
1 2 3 4 5
Low Average High
35. To what degree were software products delivered on time?
1 2 3 4 5
Low Average High
36. Assesi'. smoothnaess 2or relative aa.rae of aceeptanie testing.
Low Average High

APPENDIX—SEL SUBJECTIVE DATA COLLECTION QUESTIONNAIRE

6201G(13)- 11

SEW Proceedings 168 SEL-93-003

The (Mis)use of Subjective Process
Measures in Software Engineering

Jon. D. Valett
NASA/GSFC

Steve Condon
CSC

G218.001

Categories of Measurement Data

Quantitative Characteristics Subjective
- Effort - Programming Language | - Team experience
- LOC - Platform - Requirements stability
- Computer use - Appilication - Degree of MPP
. . :
® [®

Subjective Measures -
those that are based on the opinion of individuals

How Should Subjective Measures be Used in Software Engineering?

G218.002

SEW Proceedings 169 SEL-93-003

Need for Subjective Measures

¢ Help to Quantify the Software Process
- Does team experience impact productivity?

- Do Modern Programming Practices (MPPs) impact the development
process and product?

¢ Improve Models of Software Process and Product
- Error Rate = X * Developed LOC - Y * Quality of Code Reading
- Intermediate COCOMO

¢ Define Software Domains
- Are projects that use structured analysis different from those that don't?

G218.003

Subjective Measures

® There are many subjective measures
e.g.
- Team experience
- Management stability
- Machine availability
- Quality of tool set -
- Schedule constraint
- Product complexity
etc.

® There have been many proposed uses -
- Walston and Felix
- COCOMO
- Other Cost Models
- Domain Analysis

G218.004

SEW Proceedings 170 SEL-93-003

The SEL and Subjective Measures

Beginning in 1977 the Software Engineering Laboratory (SEL) began
collecting subjective measures

Philosphy -
Validate models of other researchers

Fully characterize the environment

Sumary
What Data? Coliect Everything {over 300 individual measures)
Who Provides? Managers rate
How Collected? After project completion

Use 0-5 scale

How Clarified/Validated None

G212.005

Use of Subjective Measures
“The Meta-Mode! for Software Development Resource Expenditures*”

Goal: Subjective Measures:
Develop a cost model that - Converted to binary scale
incorporates subjective . -
process measures - Validated measyres usmg 1 manager as source
- Converted detailed data into three groups

Procoss)]
‘Atiempt 1o incorporate - -
Develop basehne model 1. 17 71 sulgyectwe measures Conver!ed 71 Created naw model’
Effort = .72 Devl.OC + 34 : » measures to effort = initial model +
using 17 projects. - - Yielded "‘““'“9 K 3 groups effort multipliers
R TR T CEN NSI.I"S g 3 . -
Result:
Mode! confirmed using new projects similar 1o those in data sel
Lessons:
- If you look hard enough you may find some correlations . "
Bailey and Basili
- A lot of data does not generate a lot of results 1981

3218.006

SEW Proceedings 171 SEL-93-003

SEW Proceedings 172

Use of Subjective Measures
“Evaluating Software Engineering Technologies*”

Goal: Subjective Measures:
ng/lPl:s_ affec; sliabilin? - Converted to binary scale
roductivity and reliability? . .
P ty vy - Combined data into groups
Process:
Tested affects of MPPs such as
Quality assurance No findings on cost
Combined s.ubiective] TOOII\?’SE 9
measures with quantitative » Structured Code » Error Rate affected by -
data on 22 projects to Code reading Documentation
define MPPs . Quality assurance
[Code reading
¥ []
Result:
Not confirmed over other data sets (within the same domain) - conclusions questionable
Lessons:
- Confirm results over multiple similar data sets - Carc. McGa
- A lot of data does not generate a iot of resuits Page 1987 el

G218.007

Reducing the Measure Set
Boehm’s Software Engineering Economics -

120} Language experience
23] Schedule constraini
123| Data base size SEL Experience
3 7 Temaround ime - Requirements Stability
£ | Vinual machine experience - Management Experience
§ Virlual machine volatiity + . Use of test plans = 36 measures
3 8..7] Sotware 1o0is - Configuration management
§ 4] Modem programming practices .
§ ;=1 Siorage contraint °
£ .
&
[Retevant 1o the SEL
1.00 150 200 25 IW 350 4.00
G218.008 Software productivity range -

SEL-93-003

Current Subjective Measures (1987 - Present)

Philosphy -
Determine the impact of key measures on the software process and product
Characterize the environment

Sumary
What Data? 36 General subjective measures
Who Provides? Project leads
How Collected? After project completion
Use 1-5 scale
Survey form

How Clarified/Validated None

The SEL continues to collect high level subjective measures J

G218.009
Use of Subjective Measures
“Cost Estimation Study”

Goal: Subjective Measures:
Improve a basic cost model - Used the 1-5 ratings
using subjective measures - Used multiple data sets

Process: o]
. o Use subjective data to find gL validale
Start with basic cost model new models” ~ "~ - » Some measures - using multiple
Effort = DevLOC/3.2 ~ effort = DevLOC improve:modal data sets -
32 - (weight*subj.measure)] . -w random numbers
Results:

- Enhanced models inconsistent over multiple dala sets
. Random numbers improved models as wel as the real dala

Lessons:
- Tend toward conservative use of measures

(1-5 scale too detailed) « Candon
- Carefully evaluate all resuits Regardie 1993

G218.010

SEW Proceedings 173 SEL-93-003

Use of Subjective Measures
“Impact of Subjective Measures on Effort, Errors, and Changes”

Goal: Subjective Measures:

Are there subjective - Converted to binary scale
measures that impact As dd in th
effort, errors, and - Assume _ependency in the data
changes? - Used multiple data sets

Process: Find subjective measures that N

e e may impact . Develop enhanced
Develop a iinear madel CBG linear model " Validate

G - Qu . . " .
FILIND R o * J e » E - I ‘ - Using multiple
Ct = X.* DevlOC . .- Qualily of documentation changes = X *'DevlOC - dala sets -

: PR .. Y * Subjective measure :

Result:
Littie or no consistency found among data sets

Lessons:
- Even conservative use of data is questionable
- The 36 measures are not independent

G218.011

Misuses of Subjective Measures

e Don't search for correlations, because you will find at least one
e Don't collect too much data without understanding how to use it
e Don't go beyond the validity and consistency of your data

e Don't rely on on-line data - except to spot trends/set goals

The measures contain no miracle answers. They are only one tool.

G218.012

SEW Proceedings 174 SEL-93-003

Subjective Measures # Subjective Information

e Subjective Information Provides Context for Analysis
- Lessons learned documents

- Project annotations

e Set Goals for Subjective Information
e Subjective Information Transformed into Subjective Measures by
- Local definitions

- Using consistent data collection methods

Subjective information is critical to understanding an environment,
but don’t think it is easy

G218.013

SEW Proceedings 175 SEL-93-003

UL LR TA—

ANALYSIS OF A SUCCESSFUL INSPECTION PROGRAM

Ray Madachy N94- 36492

Se-6 / Linda Little

Sylvia Fan

n Software Engineering Process Group
, g Litton Data Systems
Agoura Hills, CA

ABSTRACT
Litton Data Systems has institutionalized the inspection process, and achieved

dramatic results in terms of defect prevention and cost savings thus far. Additionally,
several findings have been gleaned from an analysis to optimize the process. Over 300
inspections have been performed over the last two years on many types of documents, and
this paper describes some quantitative results to-date from the initial "champion” project.

BACKGROUND
Litton was first trained in inspections by Tom Gilb in 1989. His method differs from

Fagan's [Gilb 88], and Litton has subsequently modified Gilb's method for in-house. The
success of our program owes much to strong executive support. Inspections are now the
cornerstone of our peer review process.

Over 400 software personnel have been trained in inspections, and inspections are
now being used on four major development programs. Our software director set project
goals to save at least 50% of integration effort by spending more effort during design and
coding for inspections. Thus far, we appear to be achieving this goal.

Unique properties of the Litton inspection process include no "reader" role, no
discussion on defect category during inspection, a routing process for inspection results, no
time limit on causal analysis and the use of a Software Engineering Process Group (SEPG)
Peer Review Coordinator. A standard reporting form, as shown in Table 1, has been

devised for collecting the inspection data.
Though project management has collected some high-level inspection statistics, the

SEPG instituted an inspection database as part of its metrics program to evaluate process
improvement. Data from the form in Table 1 goes into the database, and is regularly entered
at the end of each week. The database was used for this analysis, and validated against high-
level project management data. The provision on the form for defect categories supporting
causal analysis is a recent addition, so little data has been collected for defect category
analysis up to this point. The following sections describe some results-to-date of our analysis

of the inspection data.

SEW Proceedings 176 SEL-93-003

Table 1: Typical Data Sheet

INSPECTION STATISTICS

HODERATOR: DATE: _16 November 1993
SUBJECT: _DP 18.14 CHUNK : 1 SUBJECT TYPE: Detai] Design

PRE INSPECTION MEETING DATA

INSPECTOR PREPARATION HAJORS MINORS TOTAL

TIME (minutes) ITEMS
A
42 1 1 2
B
) 2 6. (]
c
1] 2 1 i
D
30 2 S S
E
F
TOTALS 190 1 13 14

INSPECTION MEETING DATA

Estimated SLOCs (from FDB): N/A

Changed Pages/Changed Lines Inaspected:_ 558 Stert Time:_9:09

Total MAJORS Asserted: Q Stop Time: _9:40

Total MINORS Asserted: 22 Inspection Time (win):__3]

Total Defects Asserted: 22 Defects Asserted Per Minute:_.70

Chesnged Pages/Changed Lines Inspected Per Hour:

Nev Defects Found During Meeting: S

POST INSPECTION MEETING DATA

Total HAJORS Accepted: "] Total Minors Accepted: 19

Revork Kours: _4 _ Hours Working Causal Analysis Items:__N/A

Number of Causal Analysis JItems Requiring Action:_MNone

Category Totale: 1:_2 2:_1 _ 3: 0 4:_1 _ 5: 4 6: 9 7: 3 8:_]
9: @ 10:_0 11: @ 12: @ 13: 7

ANALYSIS
This analysis concerns both optimization of the inspection process, as well as

performing a cost/benefit analysis to determine how much extra effort is used during design
and coding for inspections and how much is saved during testing and integration. This effect
on project effort is shown in Figure 1 from [Fagan 86].

SEW Proceedings 177 SEL-93-003

WITHOUT
INSPECTIONS

- / WiTH

o }_._.L INSPECTIONS

|1 1 i - ~

2|1 &l o/ A

8 | z: 17 / N

W I UJ'

&1 2

3|z =t

& |1Z O

g% 8l

o g i - \
#a* ,’ / \
/ 4 /I ,/ \
— Z /i |

0 DESIGN+{CODINGl————— TESTING ————-‘-smp

SCHEDULE =

Figure 1: Effect of Inspections on Project Effort (from [Fagan 86])
The following formulations are used in this analysis:
defects found = items from preparation + new items
inspection effort = preparation effort + meeting effort + rework effort
defect removal effectiveness = defects found / inspection effort
finding rate = defects / meeting time

inspection rate = inspected pages / meeting time

meeting effort = (meeting time) * (# personnel involved).

Preparation effort is the total effort for all inspectors. A major defect is defined as an error
that would lead to a trouble report during testing and integration. A new item is one found
during the inspection meeting that was not identified by any inspectors during pre-inspection
preparation. We decided to separate new items discovered at the inspection meeting from
defects noted during preparation, as we have observed that certain practices increase the new
item finding rate and wish to investigate further.

Several types of documents are inspected: requirements (both requirements
description and requirements analysis); design (top-level and detailed design); code; and
change requests. Summary statistics are shown in Table 2. The total inspection effort was
distributed as follows: preparation effort - 27 %, inspection meeting effort - 39% and rework
effort - 34%. The last column in Table 2 represents the defect removal effectiveness. As

seen, the effectiveness decreases for later documents.

SEW Proceedings 178 SEL-93-003

Table 2: Summary Statistics

Inspection LOC Major Defects/
Subject Type Total Defects Total Majors Effort # Pages Inspected Inspection Effort
REQUIREMENT DESCRIPTION 460 72 78 179 o .923
REQUIREMENT ANALYSIS 2165 177 483 1065 0 .366
HIGH LEVEL DESIGN 2198 188 655 1592 (o] .287
DETAILED DESIGN 1550 127 610 1387 19007_ .208
Subtotal 6374 564 1826 4223 19007 .309
CODE 4272 432 1742 5047 149361 .248
CHANGE REQUEST 814 27 309 1579 0 .087
Grand total 11460 1023 3877 10849 168368 .264

When the defect density for these document types are ordered by activity, the results
show that the defects steadily decrease since the predecessor artifacts were previously
inspected. This is shown in Figure 2, overlayed with similar results from JPL [Kelly-Sherif
90]. The trend seems to corroborate the previous results. Code is not shown because of
inconsistencies in reporting the document size. These results strongly support the practice of
inspecting documents early as possible in the life cycle.

35 T

—*— Litton

se-e-- JPL [Kclly-Shcnf 90]

®

-7]

]

5

R =)

k:

®

a

@

Y]

«

o

@

> 4

< ‘"o.‘

05 + e :
0 1 : 1 f .
Requirements Requirements High Level Low Level Code Change
Description Analysis Design Design Request
Inspection Type

Figure 2: Defect Density per Subject Type

SEW Proceedings 179 SEL-93-003

Project Effort for Inspections

We tracked the inspection effort as a portion of the total software development effort
over the last year. The effects of schedule pressure were seen on inspection data, much as it
is observed for staff coding and integration efforts before a "drop dead” date. This trend is
shown in Figure 3, where the percent of project effort dedicated to inspections is plotted.
The monthly inspection effort profile shows extreme peaks right before two Technical
Interface Meetings where the customer evaluates the inspected documents, and right before a
Preliminary Design Review with the customer. For this time period of regular inspections,
an average of 2.9% of effort was spent on inspections. ~ Both preparation time and
inspection time increased during the peaks, but preparation time increased much more
severely. The relatively small increase in actual inspection time indicates that the meeting
process remained under control, instead of moderators drastically slowing the pace to find
more defects. These dynamic effects on effort due to schedule pressure affect the long term
averages and short-term project behavior, and should be kept in mind when planning effort
or evaluating project trends since process stability is affected.

6 -+

verage=2.9%

£
8
§3
(-9
2
1
0 + + —
asgsaai&‘QSSaa
s > ¥ & 2 "
& & & 5 ¢ & & § 5 = % 3 &

Month

Figure 3: Percent of Project Effort for Inspections

Based on statistics on the inspection effort and knowledge about the process, a
bottoms-up inspection costing algorithm has been devised. It identifies effort for pre-
inspection, inspection and post-inspection activities based on the type and length of the
inspected document(s). The algorithm is being included in a cost model used in the
Division.

Return on Investment
The following return on investment (ROI) method of tracking inspection success
calculates the difference of testing time saved and inspection effort for each meeting [Grady
92], [Rodriguez 91]. It uses the formulation
ROI= (found defects) * (average effort to fix defect in test) - inspection effort

5

SEW Proceedings 180 SEL-93-003

for each inspection meeting, using major defects only. The rationale for equating test defects
with design defects follows from the previous definition of a major defect. At Litton, our
historical data on the product line shows an average of 17.6 person-hours is spent to fix
defects during testing. Using this value, the ROI for each inspection is shown in Figure 4.
Overall, the total return from these inspections has been 14,210 person-hours of effort, with
an average return of 63.4 person-hours per inspection. Out of 223 inspections, 139 have

provided savings.

Person-hours Saved
g

0 L0l | ol

-
@

101 =
201
221

-
o~
ey

141
161

—
o
p=t

g
e
21 L
41
&1

Inspection Number

Figure 4: Return on Investment per Inspection

Statistics have been kept for several years on the number of trouble reports
encountered during integration and the associated costs to fix them for this particular product
line. When comparing trouble report data before and after inspections were introduced,
there is a 76% reduction in trouble report density. This appears to be on the high end of
reported results for defect reduction. Using the historical data on average efforts to fix
inspection defects and trouble reports, about 573 labor-hours per KSLOC have been saved.

Process Control
Figures 5-7 show control charts for defect finding rate, design document inspection

rate and code inspection rate. The bands shown on them represent the average values plus or
minus a standard deviation for the upper and lower control limits. The overall items/minute
for this project is apparently on the low end of the industry standard. The variances of
inspection rates are higher relative to the variances of defect finding efficiency due to
aforementioned dynamic schedule effects and other phenomena such as "process tweaking”
and new personnel.

In Figure 5, it appears that the defect finding rate seems to have come down since
the beginning of the program. This trend of project evolution could be due to the earlier
documents having higher defect densities per Figure 2. In Figure 6, note that there
seems to be a relatively sudden ending to the activity near 5/93. This corresponds to the
date when coding started in earnest, and much design documentation was completed at

that time.

SEW Proceedings 181 SEL-93-003

2.8
g o '
- - - L]
£ 1.5 " | N N .' e e ["
E [U— " R . > B !‘ e
— g o TE wme g . -
E ! : " " s =B, S L . '- e | '
-] ~ 4 ..' = l-"" .: " " .= '.; :
> 05 ‘5."5.';.' " -
[+] 4
2 2 2 8 2 2 2
6 B ™ - - o ~
¥ < I [< 4 o
~) -] @ <
Date
Figure 5: Defect Finding Rate Control Chart
350
-
300
‘5]
3 =0
L 200
[//] []
g’ 150]
& 100 . =
e PO . I L] .
o 50 - - - " .-?' & 3 oy l-. "
o e . = ‘ —-a -.,_.. '.‘_- oW F "gd — -
™~ ~N o~ m ™ ™ (]
® -3 @ -4 -4 - k4
g < & g 3 < 8
Date
Figure 6: Document Inspection Rate Control Chart
7000 ¢ .
6000
5 so00 . .
2 4000 . . . -
5 3000 . LA
o (] Y . T uWa g . L .
- 2000 . a ™ g " . " . L 2
. S T —
1000 . b B - » . iy -
o .' = " . -, o M _._'...'___ e M f-". .
™~ o o~ [2d (] o™ [2ed [< 2]
: ¢ & & g &8 g & g8 g
& S z pd o < 2 i S o
'O_ 'f: - (] L] © @ - =
Date

Figure 7: Code Inspection Rate Control Chart

When analyzing the data for adherence to process control limits for inspection rate

and item finding rate, several outlying data points were identified.

Upon further

investigation, it was seen that there was a single moderator who was not particularly well-

SEW Proceedings

182

SEL-93-003

suited to the task. This moderator had been previously identified as one who rushed through
the documents too fast, and the analysis confirmed that perception.

Along these same lines of inquiry, we wanted to see if outlying moderators could be
detected by looking at individual performance. Figure 8 shows the average items found per
minute for all moderators, and they all are in the same approximate range. This depiction
showed some disparate ranges between moderators earlier in the program, thus we feel that
the process has stabilized among moderators over time. This provides confidence that the
process is relatively independent of individual moderators used and shows the benefits of
good training.

1.2

| Average items/minute

(] std Deviation of
items/minute

Items/Minute

Moderator #

Figure 8: Moderator Finding Efficiency

The inspection rate is an important parameter to optimize. Going too slow may waste
time, but going too fast will miss defects. Figure 9 shows the average defect density for
different ranges of inspection rate. Note that we have normalized the defects found by the
document size. As seen, going faster than about 50 pages per hour seems to substantially
decrease the defects found. The overall average is 48 pages per hour, though we are
currently trying to slow down the rate at meetings to be closer to 30-40 pages per hour.

a 3

7]

2 25

@ o

T >

- ® 2

© Q

'5%1.5

-

22

Y

i 0.5

S

< o '
1 & g 2 2 4 8 8 8
e 8 8 g 2 g S 8 S

Inspection Rate (pages/hour)

Figure 9: Effect of Inspection Rate on Defects Found
8

SEW Proceedings 183 SEL-93-003

We also wish to know the optimal number of inspectors to maximize the defect
removal effectiveness. Other studies have shown that 4-5 inspectors is the optimal number
[Grady 92], [Gilb 88], and our data also supports this number. Figure 10 shows the average
defect removal effectiveness for the number of inspectors. From our data, the optimum does
not appear quite as clear-cut for major defects alone.

0.14 T
‘g -g 012 +
E [o]
So£ o1y
- 28§
O § @ 0087] Minor defects
220
35 %‘ 0.06 | B Major defects
° e =
m\.- Q
g o0 oot
s 3 !
2 = o002+

. hw

Number of Inspectors

Figure 10: Average Defect Removal Effectiveness vs. Number of Inspectors

Yet another process parameter to optimize is the ratio of preparation time to
inspection time. Grady and others [Grady 92] indicate an optimum value greater than 1.75,
with some sites averaging about 1.5. Figure 11 shows our results. The optimum ratio
appears to be somewhere between .5 and 2.0, with our average ratio being 1.4.

M

? ? <
]

2.5

2
1.6
1
0.5
o —.

Items/Page

v >
(=]
©

A

1.5-20
25-3.0

20-25

"
-
.
e
-

Preparation time/Inspection time

0.5-1.0

Figure 11: Defects Found vs. Preparation/Inspection Time

One counter intuitive result not previously reported in the literature is a high
correlation (.8) between the preparation time (averaged over the inspectors) and new
items/page or new items/KSLOC found during the inspection. Instead of catching less new

9

SEW Proceedings 184 SEL-93-003

Q-3

defects during inspection after more thorough preparation to identify defects before the
meeting, the inspectors are more familiar with the subject matter and thus able to find even
more new items during the inspection meeting. A scatterplot of this data for all non-code

documents is shown in Figure 12.

1.2 7 [}
o .
(o))
[+
o o8
=
£
o 0.6 1
=
g 04 -] [] -
q’ a
< 0.2 1 " . . .

[§
»® = . = -
0 = L P - N N L
o) 2 4 6 8 10 12 14

Preparation time/Page

Figure 12: Effect of Preparation Time on New Items Found

As expected, there were also high correlations between preparation time and total
items found (pre-inspection and new items) and inspection time versus both total items and
new items. These relationships are more stable for design documents as opposed to code
documents, due to the reduced clarity and understanding of program code.

Resulting Defect Density During Integration
Inspections are expected to severely reduce the number of problems encountered

during testing and integration activities. Though this project is not 100% complete, data
from the first couple of builds supports this hypothesis. Figure 13 shows the resulting defect
density during integration, as the trouble report density running average by build. The first
10 builds were before inspections started, and the last two are for the current project within
the same product line after inspections were mandated. Other project environmental factors
are virtually identical except for the use of inspections. We are confident that something is
helping to reduce the trouble report density.

Attempts were also made to perform a t-test on individual modules to determine if
there are significant differences in defect density during testing due to inspection. The
metrics tracking procedures did not lend themselves to such analysis due to intractable
mappings between design documents and implemented code functions, actual code sizes
could not be mapped at a low level to what was being inspected, and the inability to
distinguish new development from modified code.

This experience was a lesson learned. In order to evaluate new techniques in the
future for process improvement, the metrics procedures have to be restructured on the
program, so that individual modules can be tracked throughout the lifecycle.
Recommendations for the changes are being documented.

10

SEW Proceedings 185 SEL-93-003

8 8

&

pre-inspection running average

8

post-inspection running average

Trouble Report Density
(TRs/KSLOC)
5 8

[~4

—
~
w
'S
L%

6 7 8 9 10 1 2

Build #

Figure 13: Defect Density During Integration

CONCLUSIONS AND FUTURE WORK

Though this initial major project using an inspection-based process is not complete,
the preliminary results indicate a large return on investment. Since inspections began,
inspectors have increased their effort and authors are producing higher quality documents,
indicating buy-in to the new process.

Some process stabilization occurred during the first year of practice, and the teaching
method and the process itself has been modified based on the statistical results. Inspections
are being used on more ongoing projects, and the results appear to be repeatable within the
company. The process is now mandated on all new projects.

This analysis has helped to identify areas of improvement for software metrics
collection. This impetus will lead to revised procedures to enable more thorough analysis of
process improvement activities.

Analysis of inspection data will continue in order to understand and account for the
confounding factors of inspectors and authors, to continue identifying optimal practices, to
perform more detailed cost/benefit analysis and to investigate other related process issues.
Analysis of variance will be performed to determine the contribution of different process
parameters to overall defect removal effectiveness.

With the recent enhancement to the data form for defect category information, defect
metrics will be collected to support causal analysis activities. Additionally, a system
dynamics model of an inspection-based process is under development, and will be calibrated
to Litton data to assist in process improvement activities.

11

SEW Proceedings 186 SEL-93-003

BIBLIOGRAPHY AND SELECTED NOTES

[Ackerman et al. 84] Ackerman AF, Fowler P, Ebenau R, Software inspections and the
industrial production of software, in "Software Validation,
Inspections-Testing-Verification-Alternatives” (H. Hausen, ed.),
New York, NY, Elsevier Science Publishers, 1984, pp. 13-40

Describes inspections as performed at Bell Laboratories and discusses use of inspections in
conjunction with other verification and validation techniques.

[Boehm 81] Boehm BW, Software Engineering Economics. Englewood Cliffs,
NJ, Prentice-Hall, 1981, pp. 383-386

Discusses error removal production functions for inspection, unit test and other error
removal techniques. Points out difficulty of overlap between methods for removing different
classes of errors.

[Buck-Dobbins 84] Buck R, Dobbins J, Application of software inspection methodology
in design and code, in "Software Validation, Inspections-Testing-
Verification-Alternatives” (H. Hausen, ed.), New York, NY,
Elsevier Science Publishers, 1984, pp. 41-56

[Fagan 76] Fagan ME, Design and code inspections to reduce errors in
program development, IBM Systems Journal, V. 15, no. 3, 1976,
pp. 182-210

The original article by Mike Fagan that introduced the IBM inspection experience.

[Fagan 86] Fagan ME, Advances in software inspections, IEEE Transactions
on Software Engineering, V. SE-12, no. 7, July 1986, pp. 744-751

A more recent article by Fagan provides additional evidence of inspection benefits over the
years, indicating slight front-end loading of the development effort and significant reduction
in testing and rework effort.

[Freedman-Weinberg 82] Freedman D, Weinberg G, Handbook of Walkthroughs,
Inspections, and Technical Reviews: Evaluating Prgoram, Projects
and Products, Little Brown, 1982

Good material on the human and organization aspects of inspections.

[Gilb 88] Gilb T, Principles of Software Engineering Management. Addison-
Wesley, Wokingham, England, 1988, pp. 205-226, 403-422

Gilb originally taught the inspection method in-house, which was attended by high-level
engineering management. Their strong support of the method led to our inspection-based
process. This book provides ample detail to start an inspection progam.

12

SEW Proceedings 187 SEL-93-003

[Grady 92] Grady R, Caswell D, Practical Software Metrics for Project
Management and Process Improvement Prentice-Hall, Englewood
Cliffs, NJ, 1992

Good current book on process improvement metrics with relatively brief but worthwhile
treatment of inspections. Has an illustrative complete example of calculating inspection
savings and cost/benefit on page 180.

[Kelly-Sherif 90] Kelly J, Sherif I, An analysis of defect densities found during
software inspections, Proceedings of the Fifteenth Annual Software
Engineering Workshop, Goddard Space Flight Center, 1990

[Radice-Phillips 88] Radice RA, Phillips RW, Software Engineering - An Industrial
Approach, Englewood Cliffs, NJ, Prentice-Hall, 1988, pp. 242-
261

A good overall treatment and summary of how to do inspections, by someone who helped
pioneer inspections at IBM.

[Remus 84] Remus H, Integrated software validation in the view of inspections
/reviews, in "Software Validation, Inspections-Testing-Verification-

Alternatives” (H. Hausen, ed.), New York, NY, Elsevier Science
Publishers, 1984, pp. 57-64

[Rodriguez 91] Rodriguez S, SESD inspection results, April 1991

The ROI tracking method was used at Hewlett-Packard.

[Scott-Decot 85] Scott B, Decot D, Inspections at DSD - automating data input and
data analysis, HP Software Productivity Conference Proceedings,

1985, pp. 1-79 - 1-80

[Weller 93] Weller E, Three years worth of inspection data, IEEE Software,
September 1993, pp. 38 - 45

Weller published a previous article in Crosstalk on the first two years of data at Bull HN
Information Systems, and this article improves upon it.

13

SEW Proceedings 188 SEL-93-003

ANALYSIS OF A SUCCESSFUL
INSPECTION PROGRAM

Ray Madachy
Linda Little
Sylvia Fan

Litton Data Systems
Agoura Hilis, CA

Presented at the Eighteenth Annual Software Engineering Workshop
NASA Goddard Space Flight Center
December 1, 1993

Litton
Data Systems

Outline

o Introduction and background

e Defect density versus inspection subject
e Inspection effort

e Return on investment

e Process control

e Defect density during integration

e Conclusions and future work

o References

Litton
Data Systems

SEW Proceedings 189 SEL-93-003

Unique Properties of Litton Inspection Process

e No "reader” role (Fagan).
® No discussion on defect category during inspection.

o Routing process.
¢ No time limit on causal analysis.

o SEPG Peer Review Coordinator serves as moderator.

Litton

Data Systems

Typical Data Sheet

INSPECTION SYATISTICS

NODERATOR, DAYE: _{§ W 1231
SURIECY: DP iR, 14 CHINK) A SUBJCCT TYPL: Detail Desios
PRE INSPECTION ALETING DATa

T¥srECTOR PRCPARAT [ON WAJTRS WIS TOTAL

. TIRL (minuten) ITERS

—_—— - PR —r - S

—_— s — R —h I S

—_— —.a —h — R —

—_— —an_ - J- -

—_— —_— — — —

—_—_— —_— —_— —_—

ToTaLs i3 — -1 —is

INEPECTION BESTING DATA
Extinsted SLOCa (free FOB}: | 77
Changed Pages/Choaged Linoe Inepocteds _XIE__ Stert Tine: 1,89
Total RAJONS acssrtes) '] Step Tiwe: 2149
Totel NINCES Asworted: _ _ X2 Inspection Tiee (wials D)
Total Defocte stmwried: 22 _ Defeete dsserted Por Riowter _ 79|
Chunged Pagea/Chonged Linew I Por Beur:
Bou Defosts Found During Bewtings ___3
POET 1NSPECTION NEXTING DAY

Tetsl NAJORS scoepted: ___9 Tetel Hinere Accestedi . 19

Rovork News: _4 Newrs Working Covael inslysia ITtewes_N/4

Nuaber of Covsal Ansiyeie Iteew Requirisg Aetion: Jope

Category Totale: i 2 11l T8 il %4 68723 %l
TR0 g LR g ih 2

Litton

Data Systems

SEW Proceedings 190

SEL-93-003

Summary Statistics

Inspection Loc Maijor Defects/
Subject Type Total Defects Total Majors Effort # Pages inspected Inspection Effort
REQUIREMENT DESCRIPTION 460 72 78 179 o} 923
REQUIREMENT ANALYSIS 2165 177 483 1065 v} .366
HIGH LEVEL DESIGN 2199 188 655 1592 (o} .287
DETAILED DESIGN 1550 127 610 1387 19007 .208
Subtotal 6374 564 1826 4223 19007 .309
CODE 4272 432 1742 5047 149361 .248
CHANGE REQUEST 814 27 309 1579 0 .087
Grand total 11460 1023 3877 10849 168368 .264
Litton
Data Systems
Defect Density per Subject Type
35
[
L
3+ .
, —=—- Litton
$ sl |-+ TPL [Kelly-Sherif 0]
&
a
g 2 +
S
=
& 1.5 -
a
-
[
- 1+
< "o
05 + SO a
......... .
0 4 1 \
4 T - -4
Requirements Requirements High Level Low Level Code Change
.
Description Analysis Design Design Request
Inspection Type
Litton
Data Systems
SEL-93-003

SEW Proceedings

191

Inspection Effort

//\ / verage=2.9% //\
4 i / \ /) / \

Percent of Profect Effort for Inspections
-+
\
—
\\
~.

1] { — + —
g 8 8 2] S g g 2 2 2 g 2
& 3§ ¢+ § ¢t ¢ & § 5 = % 5 G
Month
Litton

Data Systems

Return on Investment

e For each inspection, ROl = (test effort saved) - {(inspection effort)
where
test effort saved =
(# major defects found)*(average effort to fix defect during test)
inspection effort = preparation effort + meeting effort + rework effort
= total preparation effort

+ (meeting time) * (# personnel involved in meeting)
+ rework effort

Litton
Data Systems

SEW Proceedings 192 SEL-93-003

Return on Investment

total return = 14210 person-hours
average inspection savings = 63.4 person-hours
139/223 inspections saved time

Person-hours Saved
g

300
200
100 1
]
~ < © o =]

Inspection Number

141
161
181
201
2

-
~
-

Litton
Data Systems

Effect of Inspection Rate on Defects Found

wdl

8
Q

~

w

ol
«n

~

-

o
o

Average total defects
found/page

8 8 g 8 8
g g 8 8 :

>4 N3 ~ g

Inspection Rate (pages/hour)

10- 20

e
8

Litton
Data Systems

SEW Proceedings 193 SEL-93-003

Defect Removal Effectiveness vs.
Number of Inspectors

0.14 -’-
= on i
<] g i —
g w £ 01 i
@ !
5e8 | '
L 4
8§ @ 008 ' O3 Minor defects
28 i
H]
S90L oosi ! : B Major defects
o 2 H :
>% & 0.04 | | i
g°8 "]
S = |
g Z ooz ;
i
I RS ——
3 ‘ 5 [7

Number of Inspectors

Litton
Data Systems

Moderator Finding Efficiency

2

EEL B Average items/minute
e :

s] std Deviation of

0.4 items/minute

- e - e e

Moderator #

Litton
Data Systems

SEW Proceedings 194 SEL-93-003

Effect of Preparation/Inspection Time Ratio on

Defects Found

Items/Page

b
o~

n -] L) [~] Q
& - - ~ L]
© bid < w < w

= - - ~ ~

Preparation time/inspection time

Litton
Data Systems

Effect of Preparation and Inspection Time on
New Items Found

1.2

1
0B
X)

0.4 . . -

New ltems/Page

0.2

New Items/Page
E-J

Litton Inspection time/Page

Data Systems

SEW Proceedings 195 ~ SEL-93-003

Defect Finding Rate Control Chart

25 ;
2 -
g L] .. .] =
= 15 L] » - .
[} L
g - - : - . . au ., - -,’..5:‘!.,..._ L. .1\ [T
g ! hd * P -:- *a -ﬂ-.a. '-r "" .' :,ﬁ"
[} -4 .7 gomgdey s L3 W S
- 08 4. . . . - . e W2 K g8 gy g " fe "o .
- ‘.. I~: - . ..~ 4 .‘ :J '.=
[v] —
8 g g g g g g
$ £ g 5 = g g
~ e - w & E
Date
Litton

Data Systems

Document Inspection Rate Control Chart

350
-
300
o -
3
3 0
L 200
“ -
% 150 -
00
o ' et
50
° . N R 2
™ ~ o~ ™] m
: : : g g
v £ 3 2 3 3 2
Date
Litton
Data Systems

SEW Proceedings 196 SEL-93-003

Code Inspection Rate Control Chart

7000 - .
6000
5 5000 . *
o - L]
T 4000 . . .
=
O %00 i . -
o [] " '. — - ®s ay .' TTe T
> 2000 . ™ = T T, ’
]
w s L aadhadl] . + -
1000 e . . " . l::y " . -'.‘ a®
° e - I e | [I | T —
o~ o™~ ™ [}
g § § &g g & g # & &
=1 o~ - - -
® 3 s 2 e 5 8 S g £
Date
Litton

Data Systems

Resulting Defect Density During Integration

+ 1

8

s

/\\v’/

A

pre-inspection running average

8

post-inspection running average

Trouble Report Density
(TRs/KSLOC)
= 8

<

5 6 7 B 9 10 1 2

Build #

~
w
-~

Litton
Data Systems

SEW Proceedings 197 SEL-93-003

Conclusions and Future Work

® Inspections are a worthwhile investment.

® Peer review coordinator essential to keeping process under control,

® Strong correlation between pre-inspection effort and new items found.

¢ Inspections appear to affect downstream artifacts and eventual system integration.
® Inspectors and authors have improved since inspections began.

® Some stabilization observed during first year of practice.

® Improved teaching method and changed process based on statistical results.

® Inspection analysis has provided impetus for improved metrics tracking procedures.

® Further analysis desired.
- understand and account for confounding factors
- defect category metrics and causal analysis
- process control and optimization
- ANOVA, other
Litton
Data Systems

References

Fagan ME, Design and code inspections to reduce errors in program development, IBM
Systems Joumnal, V. 15, no. 3, 1976, pp. 182-210

Gilb T, Principles of Software Engineering Management, Addison-Wesley, Reading MA,
1988, pp. 205-226, 403-422

Grady R, Caswell D, Practical Software Metrics for Project Management and Process
improvement Prentice-Hall, Englewood Clitfs, NJ, 1992

Remus H, integrated software validation in the view of inspections /reviews, in "Software
Validation, Inspections-Testing-Verification-Alternatives™ (H. Hausen, ed.}, New York,
NY, Hsevier Science Publishers, 1984, pp. 57-64

Weller EF, Three years worth of inspection data, |EEE Software, September 1993, pp. 38-
45

Litton
Data Systems

SEW Proceedings 198 SEL-93-003

N94- 36493

18th Annual Software Enginnering Workshop
Lessons Learned Applying CASE Methods/Tools
To Ada Software Development Projects

55-61
J2e9/

po>

December 1, 1993

Maurice H. Blumberg
(301)240-6018
blumberm@wmavm?.vnet.ibm.com
Dr. Richard L. Randall
(719)554-6597
randallr@wmavm?7.vnet.ibm.com

STARS Project
IBM Federal Systems Company
800 N. Frederick Ave.
Gaithersburg, Md. 20879

SEW Proceedings 199 SEL-93-003

Abstract

Thxs paper describes the lessons leamed from introducing CASE methods/tools into organizations
and applying them to actual Ada software dcvelopmcnt projects. This paper will be useful to any
organization planning to introduce a software engineering environment (SEE) or evolving an ex-
isting one. It contains management level lessons learned, as well as lessons learned in using specxﬁc
SEE tools/methods. The experiences presented are from Alpha Test projects established under the
the STARS (Software Technology for Adaptable and Reliable Systems) project. They reflect the
frontend efforts by those projects to understand the tools/methods, initial experiences in their in-
troduction and use, and later experences in the use of specific tools/methods and the introduction
of new ones.

Abstract il

SEW Proceedings 200 SEL-93-003

Preface

This paper was prepared by the Maurice H. Blumberg and Dr. Richard L. L. Randall of the IBM
Federal Systems Company, located at 800 North Frederick Avenue, Gaithersburg, MD 20879.
Many thanks to fellow IBMers, Terry Snyder and Ron Backus of the GPS project and Frank

Hyson and Neal Walters of the ACE project, for their inputs on lessons learned from their projects.

The following trademarks are used in this paper.

AIX, RISC System/6000, PS/2, and IBM are trademarks of the International Business Ma-
chines Corporation.

Rational, R1000, R300C, and Rational Environment are trademarks of Rational Corporation.
AdaMAT is a trademark of Dynamics Research Corporation.
Interleaf is a trademark of Interleaf, Inc.
Teamwork is a trademarks of Cadre Technologies Inc.
DocEXPRESS, DoDEXPRESS, and Methods_Help are trademarks of ATA Inc.
ObjectMaker (Adagen) is a trademark of Mark V Lid.
STATEMATE is a trademark of i-Logix, Inc.
RTrace is a trademark of Protocol Company.
PVCS is a trademark of INTERSOLY, Inc.
CCC is a trademark of Softool, Inc.
LOGISCOPE is a trademark of Verlog, Inc.
Windows is a trademark of Microsoft Corporation.
Vax is a trademark of Digital Equipment Corporation.
Keywords: Software Engineering Environment, CASE, STARS, Methods, and Lessons Learned.

Preface iv

SEW Proceedings 201 SEL-93-003

Table of Contents

Introductiono 1
IBM STARS Alpha SEE Solution 2
IBM STARS Alpha Test Projectsoouuiuuuninnnon o 3
Lessons Learned Introducing and Using CASE Tools 4
Global Positioning System (GPS) llTTTTiiirreees 4
Description R R R 4
GPS Hardware/Software Configuration [/ ittt 4
GPSSEE Tool Usageommeee 5
Teamwork L Lol 5
ObjectMaker (Adagen) Tt 6
Rationall 6
GPS Lessons Learned from Introducing CASE Tools " 6
GPS Ada Lessons Learned from Using CASETools 7
Teamwork Lessons Learned [Tttt 7
Adagen Lessons Learned 0Tttt 8
Rational Lessons Learned et 8
Integration Lessons Learned 0ttttrreee 9
Ada CASE Engineering (ACE) 0 9
Description oL Ll 9
ACE Hardware/Software Configuration /77"t cciteee 9
ACE Tool Usage ot 10
STATEMATEo 10
RTrace T 11
Rational o0 oIl 11
ObjectMaker il 11
LOGISCOPE i 12
AdaMAT ..o 12
ACE Lessons Learned from Introducing CASE Tools 77" 12
ACE Lessons Learned from Using CASE Tools 777" " 13
STATEMATE oo 13
RTrace Ll 13
Miscellaneous Lessons Learned o7ttt 14
FAADS 15
Descriptiono .. L LIl 15
FAADS Hardware/Software Configuration 15
FAADS Tool Usageo 16
Teamwork o oL ol 16
ObjectMaker (Adagen) otttttteene 17
DocEXPRESSl 17
Interleal L 17
PVCS 18
FAADS Lessons Learned from Introducing CASE Tools "7 18
FAADS Lessons Learned from Using CASE Tools77""" 18
Teamwork Lessons Leamed 0ttt 19
Object Maker (Adagen) Lessons Leamed """ 22
DocEXPRESS Lessons Learned 22
Table of Contents v

SEW Proceedings 202 SEL-93-003

Interleaf Lessons Leamned it i inin it et 23

PVCS Lessons Learnedot i i ittt 23

Miscellaneous Lessons Leamedot e 24
Summary of Combined Lessons Learned on STARS Alpha Test Projects 25
Impediments to Change/Remedial Strategiescovienn 25
Combined Lessons Leamned: Planningo i 26
Combined Lessons Learned: Maintain a Healthy Respect for Murphy’'s Law 27
Combined Lessons Learned: Technical Tidbitso i 28

Combined Lessons Learned: Potential Rewards

Table of Contents vi

SEW Proceedings 203 SEL-93-003

Introduction

The objective of the Software Technology for Adaptable, Reliable Systems (STARS) Program is
to develop, engineer, and integrate technologies that, when employed in the development of DoD
software systems, will improve quality and predictability, and reduce the cost of development.
STARS believes these improvements will primarily result from applying the "megaprogramming”
paradigm which involves designing and building systems based upon tailorable reusable compo-
nents, improvements in the software process, and through technology support for the development
process. The STARS solution will embody these concepts with megaprogramming processes sup-
ported by software engineering environments (SEE).

STARS will accelerate a transition to a megaprogramming paradigm by demonstrating the benefits
of megaprogramming on real DoD projects. This is being accomplished by a STARS Demon-
stration Activity, which was initiated in the 3Q92 and involves multiple “demonstration projects”
in different application domains. The demonstration projects will formally begin their performance
phase in 4Q93.

The STARS program is evolving and instantiating SEE solutions to support the demonstration
projects. Prior to 4Q93, the STARS SEE solutions will evolve from the 1991-1992 “alpha versions”
to mtegrated versions in 4Q93, running on various hardware platforms. In 1991 the IBM STARS
team defined an initial generic instantiation of a SEE solution, designated as the IBM STARS
Alpha SEE.

During 1Q91, IBM created the organization and structure to support “Alpha Test” projects, devel-
oping Ada software. The purpose of Alpha Test projects is to:

¢ Gain early experience and feedback in the use of the IBM STARS Alpha SEE Solutions
® Provide vehicle for early technology transfer of IBM STARS capabilities
® Be a precursor for STARS Demonstration Projects in defining:

= A technology transfer process

= How to support projects using a SEE

= How to capture lessons learned information

Introduction I

SEW Proceedings 204 SEL-93-003

IBM STARS Alpha SEE Solution

The IBM STARS Software Engineering Environment (SEE) is a combination of hardware plat-
forms and software tools which support Ada software development from requirements analysis
through code generation, testing and maintenance. The SEE is adaptable, i.e., it is tailorable to a
“SEE Solution” which meets the specific needs of a project.

The IBM STARS Alpha SEE is based on IBM’s AIX CASE Solutions. These solutions consist
of IBM and IBM Business Partner products that support the software development process
through software engineering methodologies, distributed workstation-based environment, and open
system applications. The AIX CASE Solutions provide an open framework and a set of solutions
and products supported across the range of the RISC System/6000 family. The IBM STARS team
incorporated value add efforts from STARS into solutions where applicable.

The initial IBM STARS Alpha SEE solution was assembled from IBM AIX CASE Business
Partners and other AIX CASE vendors. The figure below depicts the major hardware and software
components.

-------- o AIX
| RISC | o AIX CASE Tools (e.g.,Teamwork)
| System/| o Publishing Tools (e.g., Interleaf)
| 6000 |
|
|
----------------------------------- o Design Facility
o AIX | Xstation | | Local] | Rational | o Ada Language
| 120 |---- 1 Area | ==--] 300C or] Development
| 130 | | Network | | 1000 -] Environment
----------------------------------- o AdaMAT
|
|
] o AIX

|
| PS/2 | o AdaMAT Metrics Display Tool

The software tools are integrated at varying levels within the initial solutions, e.g., there is a
Rational/Teamwork interface which allows Teamwork analysis diagrams and text to be imported
into Rational and a Teamwork/Interleaf interface for generating specifications and design docu-
ments.

The IBM STARS Team supported the Alpha Test projects in modifying the solution and adapting
it to fit the project’s process and methods.

IBM STARS Alpha SEE Solution 2

SEW Proceedings 205 SEL-93-003

IBM STARS Alpha Test Projects

The IBM STARS team has established three Alpha Test projects which are using the capabilities
of the IBM STARS Alpha SEE to develop Ada software. The IBM STARS team has provided
support to these Alpha Test projects and has collected feedback from them on their experiences
with their SEE solutions.

The current IBM STARS Alpha Test projects are as follows:
¢ Gilobal Positioning System (GPS)
® Ada CASE Engineering (ACE)

¢ Forward Area Air Defense (FAAD) Electronic Support Measure (ESM) Non-cooperative
Target Recognition (NCTR) System (FAADS)

The table below provides a summary of the major tools used by the Alpha Test projects, categor-
ized by system life cycle activities (see Appendix A for a description of these tools).

Life Cycle Activity GPS ACE FAADS
Analysis Teamwork Teamwork N/A
STATEMATE
Design Adagen Ra- Adagen Ra- Teamwork/Ada
tional tional & DSE
Implementation Rational Rational TLD Ada
Compiler
Document Generation Teamwork Rational Teamwork
DocEXPRESS DocEXPRESS
Interleaf Ra- Interleaf
tional
Reverse Engineering Adagen Adagen Adagen
Requirements Traceability Rational Rqt RTrace Manual
RTM Rational

Table 1. Alpha Test Projects SEE Tool Usage

The Alpha Test projects are using a wide range of SEE tools and methods covering the entire sys-
tem life cycle. However, to provide some focus to the Alpha Test efforts, each project was asked
to concentrate on a specific aspect of the lifecycle. GPS is focusing primarily on system engineering
and software design, ACE on requirements traceability and software design, and FAADS on soft-
ware design and reusability.

Each of the Alpha Test projects are described in the sections that follow. The descriptions include
their hardware software configuration, tool usage, and lessons learned from introducing and using
CASE tools/methods. The “introduction” lessons learned reflect, for the most part, the frontend
efforts to understand the tools/methods and some early experiences in the use of them. The “using”
lessons learned reflect, for the most part, later experiences in the use of the specific tools/methods
and the introduction of new ones.

IBM STARS Alpha Test Projects 3

SEW Proceedings 206 SEL-93-003

Lessons Learned Introducing and Using CASE
Tools

Global Positioning System (GPS)

Description

The Global Positioning System is a space based navigation system consisting of a constellation of
Space Vehicles (SVs) and a ground support system. The GPS project is responsible for the hard-
ware and software development of the ground support system. This includes software to generate
the navigation data, upload the SVs, process telemetry data, and in general, provide commanding
and control of the SVs. Project responsibilities also include the maintenance and upgrade of hard-
ware at the remote tracking stations and master control station. The GPS project is in its 13th year
of development and follow-on contracts. The system consists of approximately 1 milion SLOC,
mostly in JOVIAL.

The current GPS effort includes the development of two new Computer Software Configuration
Items (CSCIs), requiring approximately 32 KSLOC of Ada. These CSClIs are being developed on
RISC Systern /6000 and workstations; they will also be run operationally on RISC System/6000 and
Rational hardware.

Initially, the IBM STARS Alpha SEE was used to support the Ada software design, Software De-
sign Document (SDD) generation, and Ada code development for the CSClIs. Subsequently, the
SEE was also used to develop a Software Requirements Specification (SRS) using OOA and the
SEE Tools, Teamwork and Interleaf. Future plans include use of Teamwork/Ada for high-level
software design.

GPS Hardware/Software Configuration

The GPS hardware/software configuration is depicted in the figure below.

Lessons Learned Introducing and Using CASE Tools 4

SEW Proceedings 207 SEL-93-003

- -

- -

o

GPS Hardware/Software Configuration

RISC

] System/]

6000

] | Local Area
Network

]] (Token Ring)

DOS

o Windows 3.0 |

[o]
(o]

Adagen
FTP (TCP/IP)

GPS SEE Tool Usage

The IBM STARS Alpha SEE tools cumrently being used by GPS are Teamwork (and
DocEXPRESS), ObjectMaker (formerly known as Adagen), and Rational. The use of these tools
is described below.

Teamwork

PS/2

o AIX
o Teamwork

o]
o

ObjectMaker (Adagen)
Interleaf

------------ o Design Facility
| Rational | o Ada Language
] 300C | Development
| | Environment
------------ o Remote Compile
] Integrator
| |Ethernet

[RISC | o DASD for Rational
| System |
| 6000 |

GPS initiated an effort to use OOA methods and Teamwork to generate an SRS for the Onboard
Processor CSCI (Computer Software Configuration Item). Because of funding and scheduling is-
sues, the system engineer (SE) responsible for the SRS could not take any formal classes on OOA
or Teamwork. This provided an opportunity to determine the effectiveness of learning a CASE tool
and the methods it supports without formal classroom training. The training approach developed
by STARS for the GPS system engineer was as follows:

Go thru on-line Teamwork/SA tutonial - 1 day

Go thru “Strategies for Real Time Systems Specification” book by Derek Hatley - 3 days

Go thru "Object-Oriented Analysis: Modeling the World in Data” and “Object Lifecycles:
Modeling the World in States” books by Sally Shlaer and Steve Mellor - 3 days

Go thru on-line training tools, DODEXPRESS and Methods_Help - 1 1/2 days

Experiment with Teamwork - 2 days

Bring in Cadre system engineer (no charge) fora Q & A

session - | day

GPS also used the DocEXPRESS tool which generates a DoD-STD-2167A compliant SRS from
the Teamwork developed OOA model. The DocEXPRESS vendor, ATA Inc., was funded to en-
hance the tool to generate requirements traceability matrices as part of the SRS.

Lessons Learned Introducing and Using CASE Tools

SEW Proceedings

208

SEL-93-003

Teamwork is also being considered by the GPS software engineering team to support an object
based Ada software engineering methodology. This includes use of Teamwork/Ada for creating
Ada Structure Graphs as well as compilation dependency and Buhr diagrams. The interface be-
tween Teamwork and Rational is also being studied to determine how far to go with Teamwork
before migrating to the Rational.

ObjectMaker (Adagen)

ObjectMaker (Adagen) was originally used by GPS for early conception of design, preparation of
high level architecture and design overview material. Later on, it was used for reverse engineering
of Ada code to diagrams for inclusion in the SDD (Software Design Document). Specifically, for
conceptual design, Adagen was used to draw bubble charts which showed relationships between
objects and message flow. In addition, Booch class category charts were used for CSC (Computer
Software Component) evolution, and Buhr diagrams were used for CSU (Computer Software Unit)
evolution and interaction. Reverse engineering of Ada code, using Adagen, was employed to ensure
that the Ada graphical diagrams in the SDD were consistent with the Ada source code. The dia-
grams generated by Adagen were compilation dependency diagrams, which showed the “withing”
relationship between Ada packages and Buhr diagrams, which graphically depicted the contents of
each Ada package.

Rational

The Rational design facility and environment was originally used by GPS for development of PDL
for preliminary and detailed design, generation of SDDs, code development, some unit testing, and
requirements traceability to code. The Rational Design Facility was further customized to provide
the capability to include Ada package specifications in-line in the Software Design Document.
Additionally it provided for Appendices to address what Non-Developed Software (NDS) is being
used in the system. In addition, the newly available Remote Compilation Integrator (RCI) was
used to allow source code on the Rational to be compiled on the RISC System/6000. The RCI
was used in conjunction with Rational’s Configuration Management Version Control.

GPS Lessons Learned from Introducing CASE Tools

The lessons learned by the GPS project from introducing the IBM STARS Alpha SEE are de-
scribed below:

e Significant start up preparation and cost for a new Ada project

For GPS, an existing project transitioning to Ada, many new things needed to be leamed by
the software developers, including a new language, a new set of tools and methods, and a new
process (i.e., DoD-STD-2167A). " This required considerable training costs and a significant
leaming curve for the project team.

e Customization of SEE tools requires significant resources

Several of the tools used by GPS required customization, ¢.g., Rational needed customization
to produce an SDD which conformed to the customers requirements, provide requirements
traceability, and imbed diagrams from Adagen. Additional customization of Rational was re-
quired to extract PDL for the SDD. This customization required several labor months of ef-
fort, with additional customization still required.

e Choose a project methodology and train developers early

The decision to use Ada as the programmming language was made well after the start of the
current GPS effort. Thus, choice of a method and tools, and all the startup costs mentioned
above, were not part of the initial project planning and required significant adjustments to the
onginal plans and schedules.

e Have engineers use object oriented analysis for specifications

Lessons Learned Introducing and Using CASE Tools 6

SEW Proceedings 200 SEL-93-003

The GPS system engineers used functional decomposition methods to generate their SRS,
while the software engineers used object-based design methods for the Ada software design.
The use of an object oriented approach to defining requirements would reduce the effort re-
quired to transition between the specification and design phases.

¢ Use Ada as the design language

Using Ada as the design language provides a compilable design which can be checked for
completeness/consistency of interfaces, data definitions, etc.

® Preserve ability to extract PDL after code completion

The ability to extract PDL from the code (e.g., for inclusion in an SDD) allows design and
code to be maintained in a single place and decreases configuration management requirements.

® Agree with customer on diagramming and PDL techniques early into a project

As mentioned above, choice of Ada and associated design methods and tools were made after
the start of the current GPS effort. As a result, several iterations with the customer were re-
quired to gain agreement on issues regarding the formats and styles of Ada diagrams (e.g., Buhr
diagrams) and PDL.

® Plan for a target code version and unit tests on target

The GPS Ada source code was developed, compiled, and partially unit tested on the Rational
hardware. Since the target machine is the RISC Systern/6000, provision was made for com-
prehensive unit testing on the target machine, even though the Ada code is “compatible”. In
addition, configuration management of source and target software needed to be provided for.

¢ Need additional personnel roles

New project roles are required as a result of introducing SEE methods and tools into a project.
In addition to a methods/tools “guru(s)” for consultation, GPS required the following addi-
tional personnel roles:

= Rational System Administrator

= Rational CMVC/RCF Administrator

= Rational Design Facility Customizer

= Adagen Support Expert

Note: Multiple roles can be played by one person.

GPS Ada Lessons Learned from Using CASE Tools

The lessons learned on the GPS project from using the IBM STARS Alpha SEE tools;methods
are described below:

Teamwork Lessons Learned

* An understanding of the basic capabilities of Teamwork was gained without formal classroom
training.

The Teamwork tutonial which provides hands-on training is adequate for new users to leamn
the basic capabilities of Teamwork. Building data flow diagrams, entity relationship diagrams,
and defining entities, data flows, processes, stores, their corresponding attributes is relatively
straight-forward. Teamwork;Ada was also fairly easy to use without formal training. The
various user’s guides, provided for each of the editors, are also well-written and provide detailed
information on the use of the editors.

¢ Fommal classroom training is required for understanding object-orented methods.

Lessons Learned Intreducing and Using CASE Tools 7

SEW Proceedings 210 SEL-93-003

Learning any new methodology is a challenge. However, object-oriented methods require a
totally different approach and way of thinking that is quite different from traditional structured
analysis (SA) and design methods. For example, most system engineers are so ingrained in
using some form of SA for requirements analysis that without formal training, they will have
a difficult time understanding OOA and transitioning from SA to OOA methods.

e Generating an SRS which satisfies the customer’s DoD-STD-2167A DIDs (Data Item De-
scriptions) requires considerable tailoring of the Teamwork provided templates.

The Teamwork document generation capability is powerful, but fairly complex. Tailoring the
SRS and extracting the specific data requires significant time and effort. Also, the lack of a
table building capability contributes to the difficulty in generating documents. The use of
DocEXPRESS simplified generation of 2167A compliant documentation from Teamwork, but
it required considerable enhancements (by the DocEXPRESS vendor) to generate an SRS
which satisfied the customer’s DoD-STD-2167A DIDs (c.g., provide requirements traceability
matrices).

Adagen Lessons Learned

e An understanding of the capabilities of Adagen was gained without formal classroom training.

Adagen was fairly easy to learn and has a well-designed user interface. The Adagen tutonal
provides hands-on training and is adequate for new users to learn the basic capabilities.

e Reverse engineering of Ada code to create design diagrams for documentation and communi-
cation of design is very effective.

The reverse engineering of Ada code ensured that the Ada graphical diagrams in the SDD were
consistent with the Ada source code. However, some manual editing of the diagrams generated
by Adagen was required.

Rational Lessons Learned

e Expense and overhead of supporting the Rational development environment is high.

The Rational development environment has served the GPS project well in developing and
testing of Ada code. However, Rational is somewhat inflexible in its ability to increase the
number of users. Tokens are also fairly expensive and cannot be leased. Upgrading the Ra-
tional hardware to support additional users can also become an issue.

e A significant effort was required to customize the Rational Design Facility (RDF).

The customization of the RDF to include Ada package specifications in-line in the Software
Design Document and provide appendices for NDS required several labor-months to com-
plete.

e Extensive training was required to fully utilize Remote Compilation Integrator.

Extensive training was required to fully understand the implications of using the Remote
Compilation Integrator, in conjunction with Rational’s Configuration Management Version
Control.

e Unit testing within Rational of Ada code using multiple COTS tools requires a significant ef-
fort.

The Rational debugger works well for code which is machine independent and does not call
the operating system or other COTS software. Unfortunately, the GPS application is de-
pendent on the operating system and on a COTS GUI package. The Remote Procedure Call
(RPC) capability of Rational would enable GPS to use the debugger through more of the unit
testing cycle. However, a significant amount of resources is required to implement and support
RPC.

Lessons Learned Introducing and Using CASE Tools 8

SEW Proceedings 211 SEL-93-003

Integration Lessons Learned

® Integrating tools to build an environment to support the entire life cycle is difficult.

Although each of the GPS CASE tools performed well in its intended phase of the life cycle,
their underlying data representations are not easily shared across other tools or products. In-
corporating changes in one phase into the products of a previous or future phase is difficult if
another tool is required to produce those products.

® No CASE tool currently addresses the need for page integrity.

As software is modified to incorporate enhancements, the supporting document’s page num-
bers cannot change. Add pages are used to accomplish this. Many CASE tools can generate a
document but they are not good publishing tools. As a result, none support page integrity. It
is hoped that Interleaf, which is a publishing tool, will address this issue. Unfortunately, using
another tool adds to the problem of configuration management across tools.

Ada CASE Engineering (ACE)

Description

The Ada CASE Engineering (ACE) project was established at the end of 1988 to perform ongoing
evaluations of tools and methods that can improve the process of developing Ada software, from
proposal activity through maintenance. To accomplish this, a CASE tool environment laboratory
was set up at FSC Manassas and investigations of various methods which could be successfully used
with these tools were performed (this included conducting pilot projects).

Since 1988, the ACE project has played a lead role in infusing new tools and methods into FSC
systems engineering and software development, with the goal of improving the productivity and
quality of Ada software. This has included providing a variety of training classes for both tools and
methods. ACE has also supported new Ada projects that use CASE tools and the Rational Ada
development environment.

In 1992 the ACE project has continued to investigate the application of CASE tools and methods
for Ada systems development. Early this year the project supported the IBM Manassas’ efforts to
evaluate the Integrated CASE (I-CASE) RFP from the U. S. Air Force. The I-CASE RFP was
reviewed and found to contain more than 900 requiremnents. The large number of requirements
gave ACE an opportunity to put the draft RFP under the RTrace requirements tool so that they
could better manage the total scope of the requirements.

The ACE project continues to strongly focus on CASE tools hosted on the IBM RISC
System/6000. A major emphasis has been on the requirements definition and modeling tool,
STATEMATE, from i-Logix, the requirements traceability tool, RTrace, from Protocol as well as
other tools. Efforts are on-going for investigating reuse techniques including the formulation of an
object-oriented domain model for an existing project. ACE is using STATEMATE, RTrace,
ObjectMaker, Rational and other tools to develop a SEE.

ACE Hardware/Software Configuration

The ACE hardware/software configuration is depicted in the figure below.

Lessons Learned Introducing and Using CASE Tools 9

SEW Proceedings 212 SEL-93-003

ACE Hardware/Software Configuration

-------- o AIX
| RISC | o STATEMATE
| System/| o IBM Ada Compiler
| 6000 | o Interleaf
-------- o ObjectMaker
| o Teamwork
| o LOGISCOPE
| o RTrace
----------------------------------- o Design Facility
| Xstation |] Local Area |Ethernet| Rational | o Ada Language
| 120 J=-=--- | Network [===-==-- | R1000] Development
] | | (Token Ring)|] | Environment
----------------------------------- o AdaMAT
o AIX] o Custom Tools
I
| o DOS

| PS/2 | o Windows 3.0
| | o Rational Interface
-------- o AdaMAT Metrics Display Tool
o FTP (TCP/IP)

The specific components of configuration are as follows:
e RISC System/6000 Model 530

e Rational R1000, Senes 400

e Token Ring and Ethernet LAN

e Xstation terminals for LAN access

e PostScript Prnter (IBM 4216)

e STATEMATE, ObjectMaker, Teamwork, RTrace, Ada Compiler, LOGISCOPE, and Inter-
leaf on RISC System,/6000

e Rational Design Facility (RDF) on Rational R1000
e Rational interface, AdaMAT Metrics Display Tool (MDT) on P§;2

ACE Tool Usage

The IBM STARS Alpha SEE tools currently being used by ACE are STATEMATE, RTrace,
Rational, and ObjectMaker. Other tools used include LOGISCOPE, AdaMAT and the AdaMAT
Metrics Display Tool (MDT), text editors, and text postprocessors. The use of these tools are de-
scribed below.

STATEMATE

STATEMATE, from i-Logix Company, is a graphic modeling tool. It ties together three types of
diagrams which can be used to model systems. The Statechart is very much like a state transition
diagram. The Activity chart is like a data flow diagram and Module charts show the structural view
of a system. The “languages” of the Statechart and the Activity chart are very sophisticated, in-
cluding time based functions, yet simple to draw and manipulate. STATEMATE includes exten-
sive model checking, DoD documentation generation, model simulation and prototype code

Lessons Learned Introducing and Using CASE Tools 10

SEW Proceedings 213 SEL-93-003

generation. The prototype code generated by STATEMATE can be used to drive screen panels,
and take panel actions as inputs.

STATEMATE is used by ACE to perform requirements analysis and modeling of the problem
domain. This methodology uses a technique for characterizing requirements as objects and accu-
rately models system behavior. STATEMATE performs completeness/consistency checking and
captures all definitions of external and internal data. STATEMATE produces the SRS and IRS
(Interface Requirements Specification) documents according to DoD-STD-2167A standards. The
ACE project customized this documentation facility to better match the object-oniented method-
ology that it is defining as part of its SEE development effort.

Modeling

The ACE group used STATEMATE to build an object-oriented analysis/design model. The
model is built using Module Charts to represent the objects, Statecharts to represent the behavior
of each object and the interaction between objects, and an Activity Chart to show the context of
the problem. The Statecharts were executed to illustrate performance modeling (run-time overhead
and processing times), event-response scenarios and error recovery scenarios. The STATEMATE
model and timing chart outputs will be documented in Version 2.1 of the model software specifi-
cation that the project is writing.

Rapid Prototyping in Ada

There was a two week effort to evaluate the Ada prototyping capabilities of STATEMATE. A
Traffic Light Model and Panel were successfully built and executed. The last obstacle regarding the
prototype code driving the display panel was solved, by using the “hooks” option. STATEMATE
code generation does not normally generate hooks for states, activities, etc. unless specifically asked
for.

The Ada code for the system (] Statechart, | Activity chart, 8 states and one panel) amounted to
about 1500 SLOC of Ada. The Ada code gencrated models the states and events defined in the
system, and drives a simple panel.

RTrace

The RTrace requirements traceability tool currently is used by ACE as a stand-alone package to
identify requirements from a customer A-Spec and to build a requirements data base. These re-
quirements are then allocated to various system objects and components. This allocation may be
used to do impact analysis if, for example, a requirement should change. This tool has extensive
reporting capabilities, and some report formats were customized to better support technical and
project management activity,

RTRACE is currently hosted on a SUN or DEC platform. Protocol has recently ported RTRACE
to the RISC System;6000.

Rational

The Rational design facility and environment is used by ACE to produce various DoD-STD-2167A
documents including preliminary SDDs and IDDs from the preliminary design activity, and final
SDDs and IDDs (Interface Design Document) from the detailed design activity. Rational’s auto-
mated document generation facility allows documents to be produced from one common evolving
source. An interface from Rational to ObjectMaker is also used to allow diagrams generated by
ObjectMaker to be included in the appropriate documents. Rational is used for design, code de-
velopment, unit testing, and requirements traceability to code.

ObjectMaker
ObjectMaker is used by ACE to support the development of high level graphical Ada design con-
structs that result from the STATEMATE model. ObjectMaker is then used to develop Ada code

design diagrams (Buhr diagrams), and from these diagrams, generate Ada skeletal code. After code
completion, ObjectMaker is used to perform reverse engineering to create accurate Ada graphical

Lessons Learned Introducing and Using CASE Tools 11

SEW Proceedings 214 SEL-93-003

diagrams from the Ada code, for reviews and incorporation into the SDD. The diagrams generated
by ObjectMaker are compilation dependency diagrams, which show the “withing” relationship be-
tween Ada packages and Buhr diagrams, which graphically depict the contents of each Ada package.

LOGISCOPE

LOGISCOPE is used to perform metrics analysis of Ada code to enhance reliability, maintainabil-
ity, and portability. By quantifying the Ada software quality, LOGISCOPE identifies potential
problems in the Ada code, provides test coverage and complexity metrics, and addresses perform-
ance issues. LOGISCOPE is also used to provide graphical reports of the metrics.

AdaMAT

AdaMAT is an Ada metrdcs tool that runs on the Rational. Like LOGISCOPE, it checks on the
conformance of Ada code to a wide variety of quality indicators. AdaMAT provides a number of
reports and generates data that may be further analyzed off-line with a PS;2 based tool.

ACE Lessons Learned from Introducing CASE Tools

The lessons learned by the ACE project from introducing the IBM STARS Alpha SEE are de-
scribed below:

e The single most important key to the success of a project is still to understand the problem
thoroughly.

There is still no substitute for sound systems and software engineering. SEE tools and methods
only provide support to this process by providing a structured approach to recording and
checking the results of sound engineering, and a means for communicating the results more
clearly to others.

e Adequate training in tools/methods must be provided.

SEE tools/methods require significant training to learn. Lack of adequate training can lead to
misuse of tools, causing a negative impact on a project, and resulting in tools becoming ex-
pensive “shelfware”.

e New methods and tools require considerable time to learn and this time must be allocated to
a project schedule.

In addition to proper training, SEE tools/methods require considerable hands on use before
developers are proficient in their application to real problems. This learning curve must be
accounted for, especially in the front end costs of a project.

e Tools require considerable lead time before they are operational.

Significant customization of tools to a project’s specific needs and documentation of detailed
project standards and procedures are required to make SEE tools “operational”. In addition,
bridges between tools, e.g., Adagen and Rational need to be developed.

e New methods/tools need to have a strong project advocate.

Because of the significant startup costs mentioned above, and the the long lead times required
before new methods;tools begin to make an impact, a strong project advocate is needed to
maintain the project cornmitment until the benefits of the tools;methods are realized.

e A project should have a ‘toolsmith” who can customize tools to the project when necessary.

In addition to the initial customization of tools, there is an ongoing requirement for
customization to tailor tools to the changing needs of a project.

e Consider whether a tool/method might not “scale up” to a large project.

Lessons Learned Introducing and Using CASE Tools 12

SEW Proceedings 215 SEL-93-003

Many tools/methods/notations look very good when applied to relatively simple problems, but
yield very complex and difficult to understand results when applied to large, fairly complex
problems. In evaluating tools/methods, system developers need to look beyond the simple
examples that are used to demonstrate the application of those tools/methods and determine
if they will scale up to their specific problem domain.

¢ Having tools available in the office via networking is a productivity enhancer.

Having access to SEE tools from office desktop computers, provides convenient access to these
tools, while taking advantage of existing computing resources.

¢ New tools and methods should not be seen as a panacea.

This is another way of emphasizing that there is still no substitute for sound systems and
software engineering.

ACE Lessons Learned from Using CASE Tools

The ACE project has recently been developing a software engineering environment to be used by
an upcoming Ada project at Manassas. This tool’s environment will provide life-cycle support
from requirements tracing and capture through software design and development, testing and
maintenance activities. The lessons learned are from the experience in developing this SEE and
from other activities.

STATEMATE

¢ The STATEMATE panel generator and Ada Prototyper provide an interesting and inform-
ative view into a model.

These tools have great potential for modeling network and processor performance, timing,
concurrent processing, error paths and event-response. They are also good for demonstrating
user interfaces, but the generated code models STATEMATE states/events/etc, and is not
likely to be useful for real code design/development.

® The language and semantics of STATEMATE require a steep learning curve.

STATEMATE is a powerful tool that requires a fair amount of time to fully understand. For
example, it was very time consuming to figure out the best way to model the first object under
STATEMATE; however, once this was understood it becamne fairly mechanical to add new
objects.

The ACE estimate for training is a minimum of one week of hands-on training, followed by
three weeks of hands-on prototyping with available expert consulting. The training and con-
sulting could be provided internally as sufficient skills are developed and a course/prototyping
exercise is developed.

® Definition of STATEMATE naming conventions is very important.

Good naming conventions are important not only for STATEMATE modeling and proto-
typing activities, but for all CASE tool efforts. 'In the STATEMATE object model, each ob-
ject service needs two conditions and two events associated with it as well as data-items to
define simulated processing times. All these items require names. Some of these items need
to be global in scope, some are of local scope - they can be defined either way. (In this sense
STATEMATE is somewhat like Ada - you can overload a name in the proper context).

RTrace

¢ RTrace supports 2167A requirements traceability.
Based on the testing done, the review of the documentation and the support received from
Protocol Company, ACE recommended using RTRACE for projects requiring 2167A

Lessons Learned Introducing and Using CASE Tools I3

SEW Proceedings 216 SEL-93-003

traceability. RTrace can also be used for proposal requirements management, €.g., tracing
RFP requirements to proposal sections and responsible authors.

e RTrace is easy to use and should not require formal education.

The current version of RTRACE has a fairly straight-forward and menu onented, key-
intensive user interface. Protocol is planning to have a future Motif user interface. Protocol
should help set up the first project’s database. It will save a lot of time later if all the “objects”
and their relationships are defined completely and correctly before the requirements are loaded.
Examples of RTRACE objects are: Configuration Items, Functions and Sub-Functions, re-
sponsible engineer, test drop, build number, test procedures, etc.

¢ RTRACE is not integrated with any other CASE tool.

Because RTrace is a standalone tool, this means all updates must be done manually. Updating
data from tool to tool will be easier in the future windows environment.

e Projects using RTRACE will need a “guru” to support users.

Projects using RTRACE can use co-ops or junior level people to parse existing documents to
enter into the RTRACE database. After that, knowledgeable engineers, programmers, and
testers must assign characteristics and link objects 1o each requirement being traced. A tools
“guru” is needed to customize reports and do some tool administration functions.

e The current release of RTRACE does not support any automated configuration management
or version control.

Some form of version control is planned for future releases. This should provide the potential
for integration with configuration management tools.

Miscellaneous Lessons Learned

e Many tools nced to be customized before they can be used on a project.

Most CASE tools, such as STATEMATE and Rational, require customizing in order to sup-
port the desired methodology and unique requirements of a project (including the customer’s
requirements). Thus, for most projects a toolsmith is a necessity.

e Many new tools have a significant leaming curve.

If the users do not have adequate learning time and motivation, this will likely kill the tool’s
chance of acceptance with users and management. If possible, new tools should be chosen to
operate in the same manner as earlier tools they replace. This will give the user the sense that
their previous skill with the older tool has not been wasted.

e Educating the user group is an important part of introducing a new toolset.

Once a toolset and methodology are selected, an educational plan (schedules, preparation,
funding) needs to be addressed as early as possible that will support this methodology. In the
beginning, tools environments may succeed by virtue of attracting enthusiastic individuals.
Ultimately a good teaching method is needed to extend tool use to those who would rather
keep the status quo.

e Anticipated users of a toolset should have training and access to the toolset prior to its needed
use on a project.

If possible, users should gain familiarity with a toolset before the demands of the project are
felt. There should be some opportunity to experiment with the tool on a prototype or small
pilot project before using it on the actual project.

e Bringing users onto a technology transition oriented project such as the ACE project, before
their real use of the tool is required, eases the learning process and makes the user more re-

ceptive.

Lessons Learned Introducing and Using CASE Tools 14

SEW Proceedings 217 SEL-93-003

The ACE project found that training new users by participating in the ACE project was a very
effective way of producing enthusiastic users, but is limited in terms of how many users can
be trained this way. Another approach is to seek out receptive individuals who express an
interest and enthusiasm for working with new tools and methods. Obviously lead positions
need 1o be filled with such persons.

& A course in how to write a good specification can improve the quality of specifications.

The ACE project developed a 2-hour model SRS writing course that teaches the fundamentals
of “good” SRS writing techniques. This course is taught just before the students are to begin
developing real SRSs and the techniques are fresh in mind. A class needs to be timed for op-
timal effectiveness. If it’s given too soon, the motivation may not be there, and retention may
be a problem. Waiting too late may overload users with too much last minute information.
The lesson 1s to have material on the shelf ready to go at the optimum time. A good teaching
technique is to use illustrated examples of the principles being taught. Continuous process
improvement and defect analysis techniques should be applied to a course, after student cri-
tiques are received, to improve the course for next time.

FAADS

Description

The FAADS contract, which was started on Apnl 1, 1991, is responsible for the development of
hardware and software for a passive ESM system to support tactical forward area defensive weapons
platforms in detecting airborne threats and cueing weapons operators. Magnavox is the prime
contractor and the IBM Federal Sector Company in San Diego is the software developer.

Although this program is informally known as FAADS, it is actually only a portion of a much
larger program, the Forward Area Air Defense System. The specific portion under contract 1s the
AN/VSX-2 program, also known as the Non-Cooperative Target Recognition program, or
NCTR-1. IBM is under contract with Magnavox Electronic Systems Company to develop a por-
tion of AN/VSX-2.

The FAADS Software will be developed in two phases, with a Model I consisting of one CSCI
developed in the first phase’ and a Model I consisting of three CSCIs developed in the second
phase. There is planned heavy reuse of Ada code from model I to Model II. The Model I software
architecture is based on an existing Ada system consisting of approximately 15 KSLOC of Ada
code. Model I software will consist of approximately 12 KSLOC of Ada code. The software will
run on 1750A processors; Ada compilations, which were originally being done on a uVax II, are
now being performed on the RISC System/6000.

FAADS Hardware/Software Configuration

The FAADS hardware/software configuration is depicted in the figure below.

Lessons Learned Introducing and Using CASE Tools 13

SEW Proceedings 218 SEL-93-003

FAADS Hardware/Software Configuration

--------------- o AIX
[PostScr| ==------ | o Teamwork
|Printer|---|] RISC || o DocEXPRESS
-------------- | System || o Interleaf
|Printer| | 6000 | o ObjectMaker (Adagen)
--------------- o TLD Ada Compiler
l I
| mmmmemmee mmmmmees
""""" | LAN I l | mm-om--
[Vax [=m===-mmmmme-- |(Token |------ | Psy2 |----] 1750 |
---------- | Ring) | l | | Target |
T e e T DE L L it
""" |
|Tape | I
""" |
--------- | | o DCS
| IBM Jemmmmmr e | PS/2 | o MS Windows&0S/2
] WAN] | o FTP (TCP/IP)
----------------- o XVision (XServer)

The specific components of configuration are as follows:

o Two RISC System,6000 Model 320s

o Token Ring LAN

e PS/2 Workstations for LAN access

e PostScnpt Printer

e Teamwork, DocEXPRESS, Interleaf, and Adagen on RISC SYSTEM/6000
s Ada TLD Compiler on RISC SYSTEM/6000 and Vax

FAADS Tool Usage

The STARS Alpha SEE tools curmently being used by FAADS are Teamwork, ObjectMaker
(Adagen), DocEXPRESS, Interleaf, and PVCS. A member of the FAADS team, who had some
prior background in tools and methods, served as a SEE tools/methods consultant.

Teamwork

Originally, IBM planned to use Teamwork,SA for software requirements analysis, but since the
prime contractor retained this responsibility, this was not possible. IBM did use Teamwork,SA
on a very limited basis to analyze the SSDD (System Segment Design Specification) and the SRS
early in the program. This effort yielded some useful feedback to the prime contractor as to omis-
sions and inconsistencies.

In another change to the original plans, IBM elected to use Teamwork/Ada rather than Adagen to
support software design, for these reasons:

e Teamwork had built-in multi-user support

e Teamwork had built-in document production support

Lessons Learned Introducing and Using CASE Tools 16

SEW Froceedings 219 SEL-93-003

¢ Cadre delivered a new Teamwork module called the Ada Design Sensitive Editor (DSE) which
was integrated with the Teamwork/Ada graphical design tool and which supported code gen-
eration.

The FAADS software engineers are actually doing their development (i.e., the Ada design and Ada
code generation) from within Teamwork/Ada. They are doing the design by creating Buhr dia-
grams and automatically generating the Ada skeleton code from the diagrams. They are using the
DSE to create the detalled Ada code. The DSE does not allow code generated from the diagrams
to be changed, without first changing the associated diagram and regenerating the Ada code. This
assures that the code and the design documentation are always in synch.

The SDD documentation generation is being done with DocEXPRESS, a third party tool which
is mtegrated within Teamwork. DocEXPRESS uses Teamwork’s Documentation Production
Interface (DPI) to generate 2167A-compliant documents.

Budgetary constraints prevented formal tool training. To partially offset this deficiency, the fol-
lowing measures were taken:

®* Some team members attended the two week Paul Ward Real-time CASE cumiculum. Al-
though this class concentrated on method, it did utilize the diagrammatic conventions sup-
ported by Teamwork.

¢ The SEE Consultant (SC) provided a two-day informal hands-on training class, which in-
cluded an introduction to the Teamwork environment.

® Team members referred to the Teamwork users manuals, including the limited amount of tu-
torial material.

® The SC circulated among the team and provided case-by-case suggestions.

® On two occasions, Cadre made one-day site visits, which included question and answer ses-
sions and hands-on demonstration sessions.

ObjectMaker (Adagen)

Onginally, IBM intended to use Adagen for software design. The reasons for shifting to Teamwork
are discussed above.

Since FAADS future phases involved reuse of existing Ada code modules, some experimentation
was conducted to evaluate Adagen’s reverse engineering capability. The diagrams produced were
of limited value by themselves, and since Teamwork had been chosen to support design, no attempt
was made to modify them to make them usable. Future experimentation is planned with both
Adagen’s and Teamwork/Ada’s reverse engineering capabilities.

DocEXPRESS

The FAADS documentation strategy called for producing documentation from the Teamwork de-
sign model, with minimal additiona] text publication work. DocEXPRESS supports this strategy
by smoothing the interface between the Teamwork Document Production Interface (DPI) and the
chosen text publishing software (Interleaf or Frame Maker).

The SC attended a three-day course offered by ATA (the vendor for DocEXPRESS) on 2167A
software analysis and design. This course included an introduction to using DocEXPRESS, and
was sufficient for the SC to set up tailored support for FAADS. Users required very little under-
standing of DocEXPRESS, since it was designed to be relatively transparent.

Interleaf

FAADS users had very little need to work within Interleaf, since most of the work was done by
Teamwork and DocEXPRESS. None of the team received any relevant training.

Lessons Learned Introducing and Using CASE Tools 17

SEW Proceedings 220 SEL-93-003

The SDD is the only document produced with Interleaf (other project deliverables have been
produced using Bookmaster, Word for Windows, and other tools). Interleaf was chosen for the
SDD because it was one of two publication systems supported by Teamwork;/DPIL.

PVCS

PVCS was chosen to support configuration management aspects of the project. PVCS includes
support for version management and configuration building. To date, only the latter capability is
in use. None of the team received any PVCS training.

FAADS Lessons Learned from Introducing CASE Tools

The lessons learned by the FAADS project from using the IBM STARS Alpha SEE during the
S-Increment are described below:

e Significant frontend budget allocation required for traning and tools procurement and for in-
stallation and maintenance of SEE tools and network.

Introduction of a new operating system (AIX), tools, and methods required considerable
training costs and a significant learning curve for the project team, which are often underesti-
mated in the original budget allocations.

s Strong management commitment and vision essential.

Management must provide leadership and vision, as new (and often immature) SEE tools and
methods are introduced into a project, to ensure that any initial negative (often valid) reactions
are overcome and the necessary adaptations are made.

e New project roles required, e.g., system admunistrator for LAN and AIX, toolsmith for cus-
tomizing and supporting use of tools.

This is an especially difficult problem for a small site with limited access to support personnel.

e Single, integrated desktop access to SEE tools important for productivity and use of existing
assets.

A single virtual desktop access to all heterogeneous software/platforms preserves access to fa-
miliar tools, while taking advantage of existing site assets (rather than buying additional
workstations or X terminals).

e Immaturity of methods (e.g., Buhr notation) and tools in design of large scale systems.

Many of the notations currently being used for Ada design are relatively immature and evolv-
ing. As a result, problems occur when trying to scale up these notations to large systems, €.g.,
Ada design diagrams become very complex and difficult to understand. '

e Immaturity of methods and tools in reverse engineering and reuse.

Because of its immaturity, reverse engineering is an art, requiring careful tailoring of directives
and manual post-processing. In addition, very little training is available on reverse engineering
tools.

FAADS Lessons Learned from Using CASE Tools

The lessons learned on the FAADS project from using the IBM STARS Alpha SEE tools;methods
are described below:

Lessons Learned Introducing and Using CASE Tools 18

SEW Proceedings 221 SEL-93-003

Tearmmwork Lessons Learned

® Some Teamwork tools/methods training would have been beneficial.

Although the training described in the prior section was useful, users failed to pick up numer-
ous time-saving techniques that would have been covered in Cadre’s tool training classes.
Although it is difficult to quantify, the training might have ended up paying for itself in the long
un.

Even more important than tools training, however, is methods training. Only a few team
members received any methods training, and even that training concentrated on the analysis
phase -- which was wasted to some extent since IBM ended up not being responsible for the
SRS.

The best possible course would a hybrid method/tool course, in which a specific method is
taught using the tool as a hands-on vehicle. A one week Ada Design method course coupled
with Teamwork/Ada would have been ideal.

e The value of prior experience.

As echoed throughout the industry, there is no substitute for prior experience. This holds true
with respect to methods, tools, and environments.

Based on the reports of other projects, IBM had a basic understanding of the impact that
would result from the number of changes being introduced for FAADS. These changes in-
cluded:

= Migration from a centralized, Vax-based environment to a networked AIX-based envi-
ronment; '

= Use of several significant new tools;
= Adaptation of the existing software methods and process to the above.

The project felt that it would break even, at best, during the incorporation of these changes,
but that the investment during the first phase of the contract (FAADS Model 1) would result
in higher quality for the Model I (which it has) and higher productivity during the subsequent
phase (Model II). In retrospect, the impact was underestimated: the number of changes may
have been too ambitious for a relatively small project. Unfortunately, it is impossible to
quantify the productivity impact, since there have been too many other variables.

Although the project is not yet complete, it does seem likely that the next phase will realize the
improved productivity that was assumed when it was bid. This is due to several factors:

= Most of the learning curve is over, and the team is acclimated to the adapted software
process using the new environment and tools;

= Many of the problems encountered during the first phase have either been solved or
workarounds have been devised;

= A Teamwork reuse base has been established for the next phase, providing a head-start
in developing the three Model II CSClIs;

= The performance of the Ada compilation system is so much better on the new RISC
System/6000 than it was on the previous Vax system that much less time is lost waiting
for compilations, simulation runs, and builds.

® Immaturity of Teamwork/Ada and DSE impacted their use.

Teamwork,;Ada, and particularly the DSE, are very new products. In addition, because of their
enhanced functionality, the FAADS project opted to introduce these tools during their beta
test phases. Both of these facts resulted in significant impacts due to bugs and problems in the
use of the tools (e.g., crashes and loss of data).

e Availability of needed resources on configured hardware.

Lessons Learned Introducing and Using CASE Tools 19

SEW Proceedings 222 SEL-93-003

The FAADS project encountered some stability problems because the RISC System,; 6000
hardware was configured with marginal memory and disk space. Orders placed to remedy this
problem could not be filled until late in the program because of high demand for RISC
System/6000 hardware. For most of the program, Teamwork was running on machines with
only 16 MB memory; experience has shown that a minimum of 64 MB is needed for a Team-
work server machine, and that a minimum of 24 MB is needed for a user on a remotely con-
nected RISC System;6000. Currently, the project is using a RISC System/6000 Model 550 for
the server machine; this comfortably supports our average of three to four user sessions.

The architecture of the Teamwork product calls for a single model database on a host machine.
There are then two methods of using Teamwork from another machine on the network:
mounting the Teamwork directories using NFS (and running Teamwork locally), and remotely
logging on to the server machine (and using the local machine as an X Server). Using the
Model 550 as a host, users have found that the latter method is the most stable; and they pay
no response time penalty to use it.

¢ TeamworkjAda functionality

The Teamwork/Ada graphical editor is responsive and robust. The Ada Structure Graph
(ASG) notation implemented by the editor (based on the Buhr notation), however, while good
at reflecting Ada code structure, has proven insufficient by itself to communicate the software
design, and the customer was unhappy with it. The problems were that its notation was un-
familiar and that it does not adequately reflect the following aspects:

= Data flow

The notation shows packaging and invocation well, but falls short in showing accesses to
data structures, and the functional interfaces among high-level software components.

= Operational flow

Using standard ASGs, there is no good way to show how the software components
combine to respond to external stimuli (such as an operator action, or the arrival of a
signal event).

To supplement the design documentation, the team added high-level data flows (using
Teamwork,;SA), and a set of hybrid operational flow diagrams (using Teamwork/Ada).

® Teamwork;DSE functionality

The users found that the DSE provides significant value added when compared with an ordi-
nary text editor, since it understands Ada syntax. Among other benefits, it automates much
of the formatting (reducing keystrokes), identifies syntax errors during text entry, and enhances
on-screen readability of the code.

Teamwork,DSE is integrated with the Teamwork/Ada model and enforces adherence to the
design diagrams. Since the SDD documentation is also driven from the same model, this
paradigm assures a level of agreement among the documentation, the design model, and the
code. Most importantly, using Teamwork, DSE for Ada code development provides the ca-
pability to generate both the design documentation and the code from the same design (model)
database, helping to assure agreement between them. This is a major strength of using
Teamwork,; Ada and DSE.

While problems with the DSE product (bugs and limitations) have hampered full realization
of the benefits of the approach, the team generally regards its use as a significant improvement
10 the Ada development process.

As of this writing, Cadre has initiated an effort to improve the product. The major problems
are:

« The editor is prone to crashing, causing some loss of data. Users have adopted a practice
of saving frequently.

= Transitioning from the ASG editor to the DSE editor sometimes results in truncation of
the Ada source code.

Lessons Learned Introducing and Using CASE Tools 20

SEW Proceedings 223 SEL-93-003

= The "pretty-print” rules adopted by the editor sometimes renders the code much less
readable: users want the ability to selectively inhibit the reformatting, or to have more
ability to modify the formatting rules.

® Teamwork/DPI Functionality

Teamwork’s Document Production Interface (DPI) is intended to make it possible to generate
a document from the Teamwork model database. Most projects suffer from the "multiple,
inconsistent databases” problem, and one of Teamwork’s central appeals 1s the advertised
ability to produce both documentation and code from a single database. The FAADS team
has realized this goal to some extent, but several major problems remain. Some of these
problems are addressed by the new Teamwork/DocGEN module, and the team plans to take
advantage of its new features when producing the final version of the SDD.

The following lists the major DPI problem areas:
» Text Formatting

DPI offers little capability to affect the formatting of the published text. Ideally, one
would like the ability to enter text using the publication software (Interleaf in this case),
since this would allow direct entry of lists, tables, etc., and since it would allow complete
control over readability techniques such as italics and underscoring. Instead, the user must
use Teamwork's rudimentary text editor and resort to a very limited set of DPI formatting
commands.

= Hierarchical Descent of the Software Structure

DPI provides a powerful “parse_model” command that allows most of the SDD to be
constructed automatically from the model. Parse_model starts from a specified node in
the software component hierarchy (in this case a specific Ada Structure Graph diagram)
and descends the subtree below this point -- embedding text and other pictures that are
attached as notes to the ASG diagrams. The user controls the manner in which these
notes are embedded using a format specification file. Unfortunately, there are several
notable limitations:

4 At each level of the hierarchy, the diagrams are introduced in alphabetical order, ac-
cording to the ASG diagram names; this is almost never the best order in which to
introduce them from an understandability standpoint.

4 Once a parse_model descent is started, it continues to the bottom-most points in the
hierarchy. This fact makes it very difficult to adhere to the 2167A DID for the SDD,
which calls for a top-level depiction of the software in Section 3 and an intermediate-
to low-level depiction in Section 4. This would seem to dictate two different design
models, one for the high-level design and one for low-level design. The team decided
to stick with the one-database philosophy, but this decision carried with it the need
to develop some workarounds to the DPI limitations.

Unfortunately, the decision also affected the CSC/CSU design structure. In Section
3, the SDD should decompose the software down to the CSC level, but DPI provides
no way to cut the parse_model descent short. As a result, Section 3 descends down
to the CSU level.

Ao There is no provision for parsing the model multiple times in a single documnent with
different formatting rules. The team was able to develop a work-around for this
limitation, but it should be a part of the product.

Unfortunately, none of the parse_model imitations are addressed in the new DocGEN
product component.

As of this writing the new DocGEN facility is available, and the team plans to take advantage
of several of its features to improve the final version of the document:

= New formatting features are now available, including the ability to construct Lists and ta-
bles.

Lessons Learned Introducing and Using CASE Tools 2

SEW Proceedings 224 SEL-83-003

= It is now possible to compare earlier versions of documents with newer ones and generate
a new document with change bars.

e Model Configuration Management (MCM) functionality

Teamwork includes some basic CM features, retention of the past 16 versions of each model
object, multi-user checkin/checkout of model objects, and the ability to baseline models (and
to construct “derivative” models where modifications are separately maintained). These fea-
tures have proved useful as far as they go: users have been able to work effectively as a team
without worrying about losing data due to conflicts.

Some improvements are needed, however, to fully enable the “single database” strategy (pro-
duction of documents and code from a single Teamwork model). A standard software CM
practice is to control software products in a hicrarchical library structure, with higher levels
containing previously released software and lower levels containing incremental changes
awaiting testing so that they can move to higher levels of control. With this strategy, a method
is needed to “promote” components from lower library levels into the higher ones. With
conventional files, this can be accomplished by file moves from one directory to another (with
suitable controls, of course). Similar functionality is provided with commercial CM tools such
as PVCS and CCC.

Ideally, the project should be able to manage the Teamwork model in the same way so that
the Ada code levels can be kept in perfect sync with the corresponding model levels. Unfor-

tunately, MCM offers no way to implement the “promote” function.

Cadre has been receptive to this problem and is considering ways to address it. Another ven-
dor, Softool, is currently working to tailor its product to Teamwork to provide this
functionality in its commercial CM product, CCC.

ObjectMaker (Adagen) Lessons Learned

As mentioned earlier, the project originally intended to use Adagen to support the design process.
As Cadre added Teamwork/Ada, and later DSE, the strategy changed to use Teamwork instead of
Adagen. As a result, FAADS gained little experience in using Adagen, other than some initial ex-
perimentation with its capability to reverse engineer Ada code. It should be noted that Adagen has
gone through significant improvements since FAADS early use of it.

DocEXPRESS Lessons Learned
e DocEXPRESS Functionality

DocEXPRESS simplifics the transition between Teamwork/;DPI and publication software

(Interleaf or FrameMaker) -- with specific support for producing 2167A documentation. It

provides:

« Additional Teamwork menus for building documents (by itself, DPI must be invoked
outside of Teamwork);

= Predefined templates including boilerplate, to give a headstart for the standard 2167A
documents;

« Consistent formatting among documents, conforming to DID standards as to headings,
section and page numbering, etc.

Unfortunately, DocEXPRESS executes on top of Teamwork;DPI and inherits underlying
limitations of that tool. It should be noted that substantial improvements in both
DocEXPRESS and Teamwork document generation have been made since the time of this
experience. Even with these improvements, however, generation of deliverable-quality doc-
umentation remains a significant challenge. i

fap

e Doc EXPRESS Documentation and Support

The users manual is very clear and provides specific, detailed usage instructions.

Lessons Learned Introducing and Using CASE Tools 22

SEW Proceedings 225 SEL-93-003

One of the biggest advantages of using the product is the excellent support offered by the
vendor, ATA. ATA personnel have a significant experience base in systems, and specifically
in 2167 and 2167A systems. They are also intimately familiar with both Teamwork and the
text publication software.

Armed with this experience, they were very responsive in providing product shpport, including
advice on methodology.

Interleaf Lessons Learned

¢ Publishability of Documents

In accordance with the “single database” strategy, the team spent minimal time using Interleaf.
As discussed elsewhere, however, due to limitations of DPI, the resulting SDD was marginally
publishable. It would have been possible to greatly enhance the appearance of the document
by using the considerable power of Interleaf, but to do so would have meant introducing
multiple databases.

¢ Tool Integration

Ideally, tools for modeling (e.g., Teamwork) and documenting (e.g., Interleaf) should be more
closely integrated. Several vendors are pursuing this concept. One possible approach would
be to allow the Teamwork user to use the publication software while entering text. Another
approach would be to give the user transparent navigation between the publication software
and the modeling tool.

* Licensing

There are two means of licensing Interleaf: networked and node-locked. With the networked
method, Interleaf can run anywhere on the network, but only a maximum number of users can
run it at one time. With the node-locked method, Interleaf only runs on one machine, but any
number of users can use it at one time. The cost of the node-locked license is the same as a
one-user networked license.

Because Interleaf is only used for the SDD, and because one user is assigned the task of
building the document, it is rare that more than one user 1s accessing Interleaf at once. Hence,
the node-locked method has proven more economical for FAADS.

Interleaf is installed on the server machine. Users on remote nodes can connect to the product
via remote logon, using their local machines as X Servers. Given the limited need for inter-
active use, response time using this approach has proven adequate.

PVCS Lessons Learned

® Version Manager

As of this report, the project has not yet incorporated the Version Manager. The site has an
established practice of using a2 multi-level library scheme for controlling incremental software
releases. With this scheme, all files are separately maintained, and promotions to higher library
levels are accomplished by moving integral files.

In contrast, the PVCS Version Manager uses monolithic files to store multiple versions of each
software component. This method represents a significant departure for the organization, and
its incorporation is still under study. Advantages of using the Version Manager would include:

= More concise storage of multiple versions of source files by using “delta” techniques; and
= Opportunity to store all archived: versions on-line (because of the reduced storage re-
quirements) and to readily reconstruct past archived configurations.

* Configuration Builder

Lessons Learned Introducing and Using CASE Tools 23

SEW Proceedings 226 SEL-93-003

The PVCS Configuration Builder is based on the Unix make, with additional enhancements.
PVCS has enabled straightforward automation of the software compilation and build process,
including the handling of multi-level libranes.

If the project elects to move to the Version Manager (see above), PVCS includes provisions
for integrating the Configuration Builder capabilities with minimal effort.

¢ Integration

PVCS by itself provides no capability for integrating Teamwork model artifacts with the code
artifacts (the need for doing this has been discussed earlier, in the topic of Teamwork’s Model
Configuration Management facilities).

Another vendor, Softool, is developing integrated support for Teamwork and code for its CM
tool, CCC.

e Multi-Platforrn Considerations

One of the FAADS software CSCs is being implemented in the C language, and it is being
developed on an IBM PS/2 since there is no appropriate RISC System/6000 compiler for the
processor on which the CSC executes. Although it is desirable to have a single CM database
for the entire project, this separation of platforms poses problems.

At present, the PS/2 software construction process is segregated from the RISC System/6000
process for Ada code. The project is assessing the possibility of integrating the two processes,
using NFS on the PS/2 to mount the RISC System;6000 code libraries.

Should the project also adopt the PVCS Version Manager, Intersolv markets a networked
version of PVCS for the PS/2 which would allow common usage of the PVCS database from
both platform types.

Miscellaneous Lessons Learned

e The impact of introducing multiple changes/technologies was underestimated (the number of
changes may have been too ambitious for a relatively small project). These changes included:

= Migration from a centralized, Vax-based environment to a networked AIX-based envi-

ronment.
= Use of several significant new tools, e.g., Ada, Teamwork, Interleaf.
= Adaptation of the existing software methods and process to the above.

e One of the greatest performance improvements accrued from upgrading the SEE CPU
“horsepower”:

» Ada compilations
= System builds
= Test runs using the target computer emulator

e Higher quality was realized in the first phase of the contract (FAADS Model I) and higher
productivity is expected for subsequent phase (Model II), due to:

= Most of the learning curve is over, and the team is acclimated to the adapted software
process using the new environment and tools

= Many of the problems encountered during the first phase have either been solved or
workarounds have been devised

» A Teamwork reuse base has been established for the next phase, providing a head-start
in developing the three Model II CSClIs

Lessons Learned Introducing and Using CASE Tools ' 24

SEW Proceedings 227 SEL-93-003

Summary of Combined Lessons Learned on STARS
Alpha Test Projects

In this concluding section, we reflect on all three projects and attempt to distill some of the com-
mon lessons leamned.

Impediments to Change|Remedial Strategies

All of the projects were groundbreakers, and (to push the metaphor a bit) they all encountered
boulders as they were getting underway. The following impediments are representative of the type
that may be encountered on any similar project attempting to inject new SEE approaches. For
each category, we include some constructive ideas on how a project might attempt to prepare for
and offset these impediments.

® Problem: Inertia
= People are comfortable with the existing process
= There is a tendency to subvert new methods to old ways of thinking
= Attitude is all-important
Strategies:
= Insure strong support, vision from management and tech leads
= Enbhst early support, involvement from customer
= Involve people in planning, preparations
= Develop phased implementation plan, tailored to group
» Consider formal Technology Transition training
¢ Problem: Overblown Expectations
= Marketing hype, overzealous advocates are common
= Unrealistic hopes lead to disillusionment
= Unanticipated costs can blossom
Strategies:
= Interview teams with real-project experience
* Try out SEE, tools, methods, process on pilot project
» Carefully weigh degree of change against cost uncertainties
= Explicitly plan for each cost category (see checklists, below)

= Expect no productivity increase on first system

Summary of Combined Lessons Learned on STARS Alpha Test Projects 25

SEW Proceedings 228 SEL-93-003

Avoid “panacea mentality™:
a New methods and tools are no substitute for domain expertise

a Poorly thought-out SEE strategy can degrade effectiveness

e Key: Match Resources to Ambitions

Small projects should focus on incremental change

Large projects can handle more change, but only with careful planning

Combined Lessons Learned: Planning

Because of the potential risks in introducing new approaches, and because it’s vital to get off to as
sound a start as possible, planning is especially important. Here are some of the considerations to
take into account when planning the project.

e Anticipate Essential Startup Activities

Clear identification of methods

Methods training

Tool evaluation, selection

Tool adaptation/integration design & implementation

Tool training

e Assess Cost of SEE Realistically, including:

H,W components and networking
Ao Consider wiring, installation, checkout, support, maintenance

Ao Insure necessary computing resources & seats to deliver tool capability to users with
adequate response time

a If possible, install trial configuration before final planning
S/W

Ao Be sure number of licenses will support planned roles

a Don't forget software maintenance (typically 15%;yr)
Adaptation and Integration Expenses

Note: This can turmn out to be extensive:

Ao Each tool typically requires tailoring to fit process

Ao Varying degrees of integration required for tools to work together
Ao Databases typically stretch across heterogeneous platforms
A Requirements will continue to emerge throughout project
Administration: H/W, Networking, and Tools

Plan for Ongoing Roles, such as:

4 SEE and tool administrators

A Adaptation & integration evolution and support

Summary of Combincd Lessons Learned on STARS Alpha Test Projects 26

SEW Proceedings 229 SEL-93-003

4 Methodology consultants (motivated, knowledgeable, proactive)
» Involve the Customer Early

A Agree on approach and required mutual investment

4 Consider including customers in training sessions

A Tailor documentation/deliverable plan (e.g., 2167A)
= Plan for Balanced Leaming Approach

4 Classes (methods, tools, SEE)

(Note: “Just-in-time” Training is most effective)
4 Domain-specific workshops, with expert consulting
4 Pilot project

4 Hands-on Experience

Combined Lessons Learned: Maintain a Healthy Respect
Sfor Murphy’s Law

When introducing a significant amount of new technology into a project, 1t is definitely not the time
to utter the phrase “...now, if everything goes well...”. The more opportunities for the unexpected
to arise, the more opportunities for things to go wrong. Each of the three Alpha projects found
ample proof of this principle, and the following examples are cited to provide a flavor.

® Be Wary of Beta Test Versions and Initial Releases

When you find out the limitations of a tool you've decided to use, you may be anxious to get
the next version, perhaps even a Beta (or even an Alpha?). Bear in mind, however, that the
inevitable bugs will compound the group’s problems of assimilation. If things are bad enough,
it might kill the initiative before it gets a real start. Before yielding to the temptation to get the
latest and greatest, consider the vendor’s past quality record.

® “You only know what you're in for when you're in it”

This point cannot be overemphasized. Students of calculus often find out the hard way that
you don't really learn the subject until you do the problems, and the same principle applies to
learning to apply new SEE approaches. All three of the projects rediscovered this as they
found that what seemed so smooth in the visionary’s pitch (or the vendor’s sales [iterature) had
lots of bumps in practice. Experiences from FAAD;NCTR] are offered as illustrations. These
are given without elaboration; interested readers are invited to contact the authors for specifics.

» Bugs & Kinks

(e.g., Transition from Teamwork! graphical editor to DSE editor sometimes resulted in
truncated Ada code files)

= QGaps

(e.g., Buhr notation not sufficient for representing the design. This point is discussed in
more depth in the next subsection.)

= Misapprehension of function

! Please note: these problems are not meant as criticisms of Teamwork; rather, they are meant to illustrate
the problems that can be expected from any set of tools.

Summary of Combined Lessons Learned on STARS Alpha Test Projects 27

SEW Proceedings 230 SEL-93-003

(e.g., Built-in Teamwork CM did not mesh with the organization’s hierarchical Library
process)

« Integration with other parts of the SEE

(e.g., Project legacy documents in Bookmaster, new documents in Interleaf)

Combined Lessons Learned: Technical Tidbits

This subsection lists some of the more interesting and salient technical points that might turn out
to be of practical value to new projects.

e Key Objective: Retain Currency of Design as Code Evolves

» GPS/ACE strategy: PDL maintained in Rational code; diagrams produced from code via
reverse engineering

« FAADS strategy: Tcamwork/Ada & DSE: models & code kept in lockstep
e Key Objective: Provide User with Single Desktop Access to SEE Assets
» GPS, ACE used RISC System/6000 workstations and PS/2s
= FAADS supplemented workstations with PS/2 with MS-Windows X Server
e Methods Lessons Learned
« Buhr notation (as per Teamwork/Ada) not sufficient for design
ao Describes static Ada structure
Ao Additional diagrams needed for
o Interfaces and dynamic behavior
A Operational flows in response to usage scenarios
= Reverse Engineering Requires Manual Assistance
= Making diagrams readable
= Discovering and reflecting interfaces and dynamic behavior

e Documentation Consistently Proved Harder to Produce than Expected

Combined Lessons Learned: Potential Rewards

This section has thus far emphasized caution, and the reader may have begun to conclude that the
authors are against the introduction of change. On the contrary, we believe that despite growing
pains, the Alpha Projects have shown that the future of automated support of the software process
is very promising.

To help make this point, this final subsection is devoted to one of the key positive lessons learned:
that there are substantial potential rewards for an organization that manages to weave its way
through the obstacle course without crashing.

¢ Significant Morale Boost
« Upgraded technology = = > upgraded skills
« Willingness of management to invest in improving workplace

o More Effective New Process

Summary of Combined Lessons Learned on STARS Alpha Test Projects 28

SEW Proceedings 231 SEL-93-003

» Better team communication/coordination
* Higher individual and team productivity

= Better quality work products

Summary of Combined Lessons Learned on STARS Alpha Test Projects 29

SEW Proceedings 232 - SEL-93-003

18th Annual Software Enginnering Workshop
Lessons Learned Applying CASE Methods/Tools
To Ada Software Development Projects

December 1, 1993

Maurice H. Blumberg
(301)240-6018
blumberm@wmavm?.vnet.ibm.com
Dr. Richard L. Randall
(719)554-6597
randalir@wmavm?7.vnet.ibm.com

STARS Project
IBM Federal Systems Company
800 N. Frederick Ave.
Gaithersburg, Md. 20878

EEH December t, 1993

Qutline of Talk

e QOverall Context Setting - STARS Program
— STARS Vision/Mission
— STARS Strategy
» Lessons Learned Context - Alpha Test Projects Selected
— GPS
- ACE
— FAADS
e Summary of Combined Lessons Learned from Alpha Test Projects

® Project-by-Project Lessons Learned

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 1

SEW Proceedings 233 SEL-93-003

IBM

December 1, 1883

MEGAPROGRAMMING -

STARS Program Overview
AN EMERGING
PARADIGM

Accelerate Megaprogramming

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects H

IBM December 1, 1993
STARS Program Overview ‘4N—x -
MEGAPROGRAMMING SUPPORT RPE)
ELEMENTS
Process Driven : Domain-Specific Reuse
« Guided by a defined process. . Guided by reuse process.

- Developad from reusable process building biocks. - Basad on applicaion domain architecture.
- Adaptable to mee! project/product goals.

- Promotes collaboration and tearm work,
¢ Supporied by tools.
+ Supponts continuous improvement in process
and product.

« Sysiems composed lrom reusable assets.

« Assets include any/al life—cycle artifacts.

« Supports continuous improvements in reuse
process/products.

“=MEGAPROGRAMMING —=
Technology Supported
Process/Reuse Packaged in » SEE
1 - Based upon open architecture kamework.
i Adaptable approach for incorporating new
technologies.

+ Continuous improvement in portability, adaptabi-
ity, reliabllity, end scalability.

SEW Proceedings

Lessons Leamed Applying CASE Methods/Tools To Ada Softwars Developmaent Projects 3

234 SEL-93-003

IEM

December 1, 1993

STARS Update
STARS STRATEGY AND PRODUCTS

Resulls Towulla
Demoustration Projects

V77777 = STARS dirve lnfimsecs 0TS - Conmertl
GERR - STARS prosucu OF—te—shell

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 3

IEM

December 1, 1393

Purpose of Alpha Test Projects

Gain early experience and feedback in the use of the IBM STARS Alpha
SEE Solutions

Provide vehicle for early technology transfer of IBM STARS capabilities
e Be a precursor for STARS Demonstration Projects in defining:

— A technology transfer process

— How to support projects using a SEE

— How to capture lessons learned information

Lessons Leamed Applying CASE Methods/Tools To Ada Software Development Projects

SEW Proceedings 235 SEL-93-003

IBM December 1, 1993
IBM STARS Alpha SEE Solution

-------- o AIX
RISC o AIX CASE Tools (e.g.,Teamwork)
System/| o Publishing Tools (e.g. Tnterleaf)
6000
----------------------------------- 0 Design Facility
0 AIX | Xstation Local Rational o Ada Language
120 -———- Area -===] 300C or Development
130 Network 1000 Environment
----------------------------------- 0 AdaMAT
o AIX
PS/2 0 AdaMAT Metrics Display Tool
Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 3
iBM December 1, 1993

Current Alpha Test Projects

* Global Positioning System (GPS)
®* Ada CASE Engineering (ACE)

* Forward Area Air Defense (FAAD) Electronic Support Measure {ESM)
Non-cooperative Target Recognition (NCTR) System (FAADS)

L L d Applying CASE Methods/Tools To Ada Software Development Projects 7

SEW Proceedings 236 SEL-93-003

IEM

December 1, 1993

Alpha Test Projects SEE Tool Usage

Life Cycle Activity GPS ACE FAADS
Analysis Teamwork Teamwork N/A |
STATEMATE
Design Adagen Adagen | Teamwork/
Rational Rational Ada & DSE |
Implementation | Rational Rational TLD Ada l
' Compiler
Document Generation Teamwork Rational Teamwork
DocEXPRESS DocEXPRESS
Interleaf Rat. Interleaf
;! Reverse Engineering Adagen Adagen Adagen
: Requirements Traceability Rational Rgt RTrace | Manual
‘ RTM Rat.
Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 8
IBH December 1, 1993
GPS Hardware/Software Configuration
-------- o AIX
RISC o Teamwork
System/| o ObjectMaker (Adagen)
6000 o Interleaf
----------------------------------- o Design Facility
o AIX Local Area Rational o Ada Language
PS/2 —.-- Network 300C Development
(Token Ring) Environment
----------------------------------- o Remote Compile
I Integrator
toersmmene - +
| Ethernet
o DOS RISC o DASD for Rational
o Windows 3.0 PS/2 System
o Adagen 6000
o FTP (TCP/IP) --=-ee=-= ====eos==s
Lessons Learmed Applying CASE Methods/Tools To Ada Software Development Projecls 9
SEW Proceedings 237

SEL-93-003

IBM

December 1, 1993

GPS Ada Design | Development Environment

Teamwork SRS/IRS

¢ (Object-Oriented
Analysis

¢ SRS Development

ObjectMaker
(Adagen)
e High Level Design
(Object Based)
® Reverse Engineer
of Ada Code

¢SRS

Diagrams »
% Ada Packapes

Rational
Ada Design
Code/Unit Test
Ramis Traceability

SDD/IDD »

Interleafl

¢ Document
Production

* & ¢ o »

Reuse

Confip. Mgmi

Ada Code

S/W Qualit
lndiglors Y

AdaMAT or STATS

® Ada Soltware
Quality Evaluation

2167A
Documents

—

Lessons Leamed Applying CASE Methods/Tools To Ads Software Development Projects

0

IEM December 1, 1993
ACE SEE
-------- o AIX
RISC o STATEMATE
System/! o IBM Ada Compiler
6000 o Interieaf
-------- o ObjectMaker
o Teamwork
o LOGISCOPE
0 RTrace
----------------------------------- o Design Facility
| Xstation Local Area |Ethernet| Rational o Ada Language
I 120 [----- Network [-=-ee--- R1000 Development
(Token Ring) Environment
----------------------------------- 0 AdaMAT
0 AIX o Custom Tools
o DOS
PS/2 o Windows 3.0
¢ Rational Interface
-------- 0 AdaMAT Metrics Display Tool
o FTP (TCP/IP)
Lessons Leamed Applying CASE Methods/Tools To Ada Software Development Projects 1
SEW Proceedings 238

SEL-93-003

CCTT SOFTWARE DEVELOPMENT ENVIRONMENT
5 December 1, 1993

IEM

Enviconment
Services

UFE-CYCLE
Requirsments
Analysis

Prekminary
Design

Unit Test

IBM December 1, 1993
FAADS SEE
--------------- o AIX
PostScr -=-e=<-- | 0 Teamwork
Printer|---| RISC o DocEXPRESS
.............. System || o Interleaf
IPrinter| 6000 o ObjectMaker (Adagen)
--------------- o TLD Ada Compiler
|
.......... LAN c—em————
| Vax |-cmeeemmmmaaes (Token j------ PS/2 ----| 1750
.......... Ring) Target
| ———— - cemm————
|Tape |
_________ o DOS
I8 |eeemmmmemere-- ---1 PS/2 o MS Windowsd05/2
WAN o FTP (TCP/IP)
---------------- - 0 XVision (XServer)
Lessons Leamned Applying CASE Methods/Tools To Ada Software Development Projects 13

SEW Proceedings 239 SEL-93-003

IBH December 1, 1983

Summary of Combined Lessons Learned on Alpha Test
Projects

Impediments to Change/Remedial Strategies

o Problem: Inertia
- People are comfortable with the existing process
- There is a tendency to subvert new methods to oid ways of thinking
- Attitude is all-important

Strategies:

- Insure strong support, vision from management and tech leads
- Enlist early support, involvement from customer

Involve people in planning, preparations

Develop phased implementation plan, tailored to group
Consider formal Tech Transition training

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 14

L 4
iBM December 1, 1993

0 Problem: Overblown Expectations
- Marketing hype, overzealous advocates are common
- Unrealistic hopes lead to disillusionment
- Unanticipated costs can blossom

Strategies:

- Interview teams with real-project experience

- Try out SEE, tools, methods, process on pilot project

- Carefully weigh degree of change against cost uncertainties

- Explicitly plan for each cost category (see checklists, below)

- Expect no productivity increase on first system

- Avoid "panacea mentality":
-- New methods and tools are no substitute for domain expertise
-- Poorly thought-out SEE strategy can degrade effectiveness

0 Key: Match resources to ambitions
- Small projects should focus on incremental change
- Large projects can handle more change, but only with careful planning

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 13

SEW Proceedings 240 SEL-93-003

ZE}V{ December 1, 1993

Combined Lessons Learned: Planning

o Significant Startup required, including
- Clear identification of methods
- Methods training
- Tool evaluation, selection
- Tool adaptation/integration design & implementation
- Tool training

o Assess cost of SEE realistically
- H/W components and networking
-- Consider wiring, installation, checkout, support, maintenance
-- Insure necessary computing resources & seats to deliver tocl
capability to users with adequate response time
-- If possible, install trial configuraticn before final planning
- S/W
-- Be sure number of licenses will support planned roles
-~ Dor't forget software maintenance (typically 15%/yr)

Lessons Learmned Applying CASE Methods/Tools To Ada Software Development Projects 16

EBE December 1, 1993

- Adaptation and integration expenses - note: can be extensive
-- Fach tool typically requires tailoring to fit process
-- Varying degrees of integration required for tools to work together
-- Databases typically stretch across heterogeneous platforms
-- Requirements will continue to emerge throughout-project
- Administration: H/W, networking, and tools

o Plan for ongoing roles, such as:
- SEE and tool administrators
- Adaptation & integration evolution and support
- Methodology consultants (motivated, knowledgable, proactive)

o Involve the Customer early
- Agree on approach and required mutual investment
- Consider including customers in training sessions
- Tailor documentation/deliverable plan (e.g., 2167A)

o Plan for balanced learning approach
- Classes {methods, tools, SEE)
(Note: "Just-in-time" Training is most effective)
- Domain-specific workshops, with expert consulting
- Pilot project

Lessons Leamed Applying CASE Methods/Tools To Ada Software Development Projects 17

SEW Proceedings 241 SEL-93-003

IBM Decsmber 1, 1983

Combined Lessons Learned: Maintain a Healthy Respect for Murphy’s Law
o Be wary of Beta test versions and initial releases

o "You only know what you're in for when you're in it"

Examples from FAAD/NCTRI:
- Bugs & Kinks
(e.g., Transition from Teamwork* graphical editor to DSE editor
sometimes resulted in truncated Ada code files)
- Gaps
(e.g., Buhr notation not sufficient for representing the design)
- Misapprehension of function
(e.g., Built-in Teamwork (M did not mesh with the organization’s
hierarchical Tibrary process)
- Integration with other parts of the SEE
(e.g., Project legacy documents in Bookmaster, new documents in
Interleaf)
* Please note: these problems are not meant as criticisms of Teamwork;
rather, they are meant to illustrate the problems that can be
expected from any set of tools.

Lessons Leamned Applying CASE Methods/Tools To Ada Software Deveiopmenl Projects "

IBM December 1, 1993

Combined Lessons Learmed: Technical Tidbits

o0 Key objective: retain currency of design as code evolves
- GPS/ACE strategy: PDL maintained in Rational code; diagrams produced
from code ,via reverse engineering
- FAADS strategy: Teamwork/Ada & DSE: models & code kept in lockstep

0 Key objective: provide user with single desktop access to SEE assets
- GPS, ACE used RISC System/6000 werkstations and PS/2s
- FAADS supplemented workstations with PS/2 with MS-Windows X Server

0 Methods Lessons Learned
- Bubr notation (as per Teamwork/Ada) not sufficient for design
-- Describes static Ada structure
-- Additional diagrams needed for
--- Interfaces and dynamic behavior
-~- Operational flows in response to usage scenarios
- Reverse engineering requires manual assistance
-- Making diagrams readable
-- Discovering and reflecting interfaces and dynamic behavior

o Documentation consistently proved harder to produce than expected

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 1%

SEW Proceedings 242 SEL-93-003

IBM December 1, 1993

Combined Lessons Learmned: Potential Rewards

o Significant morale boost possible
- Upgraded technology ==> upgraded skills
- Willingness of management to invest in improving workplace

o More effective new process
- Better team communication/coordination
- Higher individual and team productivity
- Better quality work products

Ltssoﬁs Learned Applying CASE Methods/Tools To Ada Software Development Projects 20

IBM December 1, 1993

Project-by-Project Lessons Learned

Global Positioning System (GPS)

Description

e GPS project is in its 13th year of development and follow-on contracts.

» The current system consists of approximately 1 million SLOC, mostly in
JOVIAL.

e Current development effort is for hardware and software to enhance
GPS ground support system, including:

— Development of Software Requirements Specifications (SRS)

— Development of Software Design Documents (SDD) and associated
Ada code

— Development of future Computer Software Configuration Items
(CSCls) on RISC System/6000 work stations, using Ada (planned but
canceled)

Lessons Leamed Applying CASE Methods/Tools To Ada Software Development Projects 2

SEW Proceedings 243 SEL-93-003

IBH December 1, 1993

GPS Ada Lessons Learned from Introducing CASE Tools

Significant start up preparation and cost for a new Ada project
Customization of tools (e.g., Rational) requires significant resources
Choose a project methodology and train developers early

Have engineers use object oriented analysis for specifications

Use Ada as the design language {design compiles)

® Preserve ability to extract PDL after code completion

* Agree with customer on diagramming and PDL techniques early

® Plan for a target code version and redoing unit tests on target

* Need additiona! personnel roles:

— Rational System Administrator
— Rational CMVC/RCF Administrator
— Rational Design Facility Customizer

— Adagen Support Expert

Lessons Leamed Applying CASE Methods/Tools To Ada Software Development Projects 22

EB?'-‘E December 1, 1993

GPS Ada Lessons Learned from Using CASE Tools

Teamwork Lessons Learned

* An understanding of the basic capabilities of Teamwork was gained
without formal classroom training {one person).

* Formal classroom training is required for understanding object-oriented
method (Shiaer/Mellor) used by Teamwork.

* Generating an SRS which satisfies the customer’s 2167A DiDs (Data Item
Descriptions) requires considerable tailoring of the Teamwork templates.

DocEXPRESS Lessons Learned

* DocEXPRESS simplified generation of 2167A compliant documentation

* DocEXPRESS required considerable enhancements (by the DocEXPRESS
vendor) to generate an SRS which satisfied the customer’s
DoD-STD-2167A DIDs (e.g., provide requirements traceability matrices).

* DocEXPRESS documentation and support are of high quality.

Lessons Learned Appiying CASE Methods/Tools To Ada Software Development Projects 2

SEW Proceedings 244 SEL-93-003

Decamber 4, 1993

H

wiliy

ObjectMaker (Adagen) Lessons Learned

e For its limited use on GPS (primarily conceptual design and reverse
engineering), an understanding of the capabilities of Adagen was gained
without formal classroom training.

e Reverse engineering of Ada code to create design diagrams for software
design documents (SDD) ensured that the Ada graphical diagrams in the
SDD were consistent with the Ada source code.

— Education of the customer was required to gain their acceptance of
Ada Structure Diagrams in the SDD.

— Some manual editing of the reverse engineered diagrams generated
by Adagen was required (to simplify and improve readability and
satisfy the customer).

Lessons Learned Appiylng CASE Methods/Tools To Ada Software Development Projects 22

:3}‘!{ December 1, 1993

Rational Lessons Learned

» The Rational development environment was very effective in developing
and testing of Ada code.

® Significant training is required to become proficient in the use of the
Rational development environment.

e Expense and overhead of supporting the Rational development environ-
ment is high.

s A significant effort was required to customize the Rational Design Facility
(RDF) to generate the GPS 2167A Software Design Documents.

Integration Lessons Learned

» Integrating tools to build an environment to support the entire life cycle
is difficult.

s Generating documents automatically from CASE tools does not satisfy
the requirement for page integrity.

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 25

SEW Proceedings 245 SEL-93-003

IBM December 1, 1993

Ada CASE Engineering (ACE)

Description
* |Internal FSD project
* Setup CASE Tool Environment Laboratory in Manassas

* Performs ongoing evaluations of tools and methods that can improve
Ada software development (including maintenance)

* Provides education for tools and methods

* Supports new Ada projects that use CASE tools and Rational Ada devel-
opment environment

— Fixed Distributed System (FDS)
— Advanced Training System (ATS)
— Global Positioning System (GPS)

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects %

IBM December 1, 1993

ACE Lessons Learned from introducing CASE Tools

* The single most important key to the success of a project is still to
understand the problem thoroughly.

» Adequate training in tools/methods must be provided.

* New methods and tools require considerable time to learn and this time
must be allocated to a project schedule.

* Tools require considerable lead time before they are operational.
* New methods/tools need to have a strong project advocate.

* A project should have a ‘toolsmith’ who can customize tools to the
project when necessary.

* Consider whether a tool/method might not ‘scale up’ to a large project.

* Having tools available in the office via networking is a productivity
enhancer.

* New tools and methods should not be seen as a panacea.

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 7

SEW Proceedings 246 SEL-93-003

—
IBEM December 1, 1993

ACE Lessons Learned from Using CASE Tools

STATEMATE Lessons Learned

s STATEMATE pane! generator and Ada Prototyper provide very useful
and informative modeling views (e.g., for specification execution (ani-
mation), network and processor performance, and user |/F prototyping).

e lLanguage and semantics of STATEMATE require a steep learning curve.

e Definition of STATEMATE naming conventions is very important.

RTrace Lessons Learned

e RTrace supports 2167A requirements traceability.

» RTrace is easy to use and should not require formal education.

e RTRACE is a standalone too! and is not integrated with any CASE tool.

* Projects using RTRACE will need a "guru” to customize reports and
perform tool administration functions.

* The current release of RTRACE does not support any automatec config-
uration management or version control.

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 28

F 3
EB%”% December 1, 1393

Miscellaneous Lessons Learned

» Many tools need to be customized before they can be used on a project.
This will require a project “toolsmith”.

s Most CASE tools have a significant learning curve. Adequate training
and learning time are required before users will become proficient in
using CASE tools/methods.

» Bringing users onto a technology transition oriented project or a pilot
project, before their real use of the tool is required, eases the learning
process and makes the user more receptive.

e A course in how to write a good specification improved the quality of
specifications produced by the developers.

Lessons Learned Appiying CASE Methods/Tools To Ada Software Development Projects 29

SEW Proceedings 247 SEL-93-003

!BM December 1, 1993

FAADS

Description

* Development of hardware and software for a passive ESM system to
support tactical forward area defensive weapons platforms in detecting
airborne threats and cueing weapons operators.

* Magnavox is the prime contractor.
¢ IBM is the software developer.

— Software to be developed on RISC System/6000 workstations, but
will run on 1750A processors.

— Software to be developed in two phases with planned reuse of Ada
code in the second phase.

Lessons Learmmed Applying CASE Methods/Tools To Ada Software Deveiopment Projects 30

IEE December 1, 1993

FAADS Ada Lessons from Introducing CASE Tools

* Significant frontend budget allocation required for training and tools pro-
curement and for installation and maintenance of SEE tools and network.

* Strong management commitment and vision essential.

* New project roles required, e.g., system administrator for LAN and AlX,
toolsmith for customizing and supporting use of tools.

* Desktop access to SEE tools important for productivity and use of
existing assets.

* Methods and automated support are still immature, e.g.,

— Graphical design depictions for large Ada systems (Buhr diagrams
are not sufficient).

— Reverse engineering (significant amount of manual work needed to
supplement automatically generated diagrams).

Lessons Learnad Applying CASE Methods/Tools To Ada Software Development Projects 31

SEW Proceedings 248 SEL-93-003

k% =3
IEM December 1, 1993

FAADS Lessons Learmned from Using CASE Tools

Teamwork Lessons Learned
e Combined Teamwork tools/methods training would have been beneficial
e [mmaturity of Teamwork/Ada and Teamwork/DSE impacted their use

e |t is important to ensure that needed resources on configured hardware
are available for adequate tool stability and performance

e Teamwork functionality had both strengths and weaknesses:

— Teamwork/Ada
— Teamwork/DSE
— Teamwork/DPI
— Teamwork/MCM
Lessons Leamned Applying CASE Methods/Tools To Ada Software Development Projects 12
IE?‘F% December 1, 15393

DocEXPRESS Lessons Learned

» DocEXPRESS simplified the transition between Teamwork/DPI and publi-
cation software (Interleaf) and provided specific support for producing
DoD-STD-2167A compliant documentation.

s DocEXPRESS executes on top of Teamwork/DPI and inherits underlying
limitations of that tool.*

e DocEXPRESS documentation and support are of high quality.

* Substantial improvements in both DocEXPRESS and Teamwork document
generation have been made since the time of this experience. Even with
these improvements, however, generation of deliverable-quality
documentation remains a significant challenge.

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 13

SEW Proceedings 249 SEL-93-003

IBM December 1, 1983

Miscellaneous Lessons Learned

® The impact of introducing multiple changes/technologies was underesti-
mated (the number of changes may have been too ambitious for a rela-
tively small project). These changes included:

— Migration from a centralized, Vax-based environment to a networked
AlX-based environment.

— Use of several significant new tools, e.g., Ada, Teamwork, Interleaf.

— Adaptation of the existing software methods and process to the
above.

* One of the greatest performance improvements accrued from upgrading
the SEE CPU "horsepower”:

— Ada compilations
— System builds
— Test runs using the target computer emulator

Lessons Learned Applying CASE Methods/Tools To Ada Software Development Projects 34

iEM December 1, 1393

* Higher quality was realized in the first phase of the contract (FAADS
Model 1) and higher productivity is expected for subsequent phase
(Model Hl), due to:

— Most of the learning curve is over, and the team is acclimated to the
adapted software process using the new environment and tools

— Many of the problems encountered during the first phase have
either been solved or workarounds have been devised

— A Teamwork reuse base has been established for the next phase,
providing a head-start in developing the three Mode! I} CSCls

Lessons Leamned Applying CASE Methods/Tools To Ada Software Development Projects 35

SEW Proceedings 250 ' SEL-93-003

Session 4: Advanced Concepts

David J. Campbell, Unisys Corporation

Betty H. C. Cheng, Michigan State University

Janet E. McCandlish, TRW

SEW Proceedings 251

Carit !

SEL-93-003

SEW Proceedings 252 SEL-93-003

N94- 36494

Software Engineering With Application-Specific Languages

David J. Campbell
Unisys Corporation
Valley Forge Engineering Center
P.O. Box 517, Paoli, PA 19301-0517

Linda Barker
Deborah Mitchell
Unisys Corporation
Space Systems Division
Mail Stop U04D
600 Gemini Ave, Houston, TX 770538

Robert H. Pollack
Unisys Corporation
Valley Forge Engineering Center
P.O. Box 517, Paoli, PA 19301-0517

Abstract

" iy,
I —

application-area experts.

S6-6/
2672

pa 2 (

Application-Specific Languages (ASLs) are small, special-purpose lan-
guages that are targeted to solve a specific class of problems. Using
ASLs on software development projects can provide considerable cost
savings, reduce risk, and enhance quality and reliability. ASLs pro-
vide a platform for reuse within a project or across many projects
and enable less-experienced programmers to tap into the expertise of

ASLs have been used on several software development projects for the
Space Shuttle Program. On these projects, the use of ASLs resulted

Two of these projects are described.

1 Introduction

in considerable cost savings over conventional development techniques.

An application-specific language is a special purpose language that is oriented towards
writing programs for a specific class of problems. An ASL presents the programmer with a
higher level of abstraction than a general-purpose programming language, and, as a result.
the programmer needs to write much less code to implement a software system.

The ASL code written by a programmer is called a specification: it describes the require-
ments for a software system. A translator reads a specification, as shown in Figure 1, and
automatically generates software and perhaps other related products, such as accompanying

PRRGENMNG PAGE BLANK NOT FILMPD

SEW Proceedings 253

Ponce 5.2 renviona L B

SEL-93-003

Written in an application specfic language

Application
Specification
ASL Application
Translator Inputs
Application HOL Application
Work [Program
Products Compiler

Work products could include program C
source code, documentation, data files, Application
testing material, or even another ASL. Outputs

Figure 1: The ASL translator generates software and other related products based on
a specification written in a high level language.

design documentation, that satisfy the specification. Usually, the generated software is in a
high-order language such as C or Ada.

Today, there are many ASL based commercial off-the-shelf products (sometimes called
4GLs), that address such diverse application areas as data base applications, spread sheets,
and graphical user interfaces. If a COTS ASL can be found which meets the needs of a
software development project, it will often produce seemingly miraculous results. If such a
tool cannot be found, however, an ASL approach is usually abandoned.

This is unfortunate because custom ASLs can be created rather inexpensively, and thev
can provide considerable advantages to projects that are developing software with certain
characteristics. ASLs can increase productivity and reliability by shifting more of the tedious
work and mechanical details to the computer, freeing programmers to spend more time
addressing the decisions that require creative thinking. ASLs also provide a single point of
control for a large amount of software. This enables requirements and design decisions to
change with minimal impact on cost and schedule.

2 An Overview of ASL-Based Software Engineering

ASL-based software engineering is a software engineering technique for creating software
through automatic code generation. It is not suited to all projects, but there is a large

oo

SEW Proceedings 254 SEL-93-003

class of applications where its use can dramatically reduce cost and schedule. For any given
project, many different techniques may be applicable, and the best approach may be a
combination of techniques. Since software engineers are relied upon to identify the most
cost-effective approach, they should be knowledgeable of this technique.

An ASL approach is indicated for a software system when it has recurring similar
requirements, especially if there is a large number of them. For example, the requirements
might define a series of screens that a system uses to interact with its user. While each
screen is different, they are also similar, e.g., each screen contains editable fields for data
entry and data validation must be done on each field. If these similar requirements can be
implemented with similar code, and an algorithm to transform the requirements into the
code can be found, then an ASL can be used.

)

J
& & T

) Cost
‘»Qf’:\g J Savings
0&\«@\ with ASL
[C%s
&P ASH

Cost

T

One-time cost
to implement
ASL

1

Number of similar requirements

Figure 2: This graph compares the cost of using an ASL versus the cost of using a
general-purpose programming language, based on the number of similar requirements.
Initially, the ASL is more expensive, because of the one-time only cost to develop the
translator. With sufficient repetition in the requirements, however, the cost to develop
translator pays for itself.

With ASLs, there is a one-time cost to implement the translator. After the translator
is implemented, a specification still must be written to obtain any application code. How-
ever, compared with a general-purpose programming language, fewer lines of ASL code are
required to implement a corresponding amount of the system’s functionality. Moreover, a
programmer can typically write more lines of ASL code per day, because, with ASLs, the
programmer is transcribing already written requirements into the syntax of the ASL, whereas
with a general-purpose programming language, the programmer must write code which
describes how to implement the requirements. Consequently, as the amount of repetition
in the requirements increases, the cost of implementation with an ASL falls below the cost
of implementing software with general-purpose programming language. This relationship is
shown in Figure 2

Even if there is not enough repetition to produce a dramatic cost difference, other factors
may warrant the use of an ASL. For example, can the ASL be reused on other projects?

3

SEW Proceedings 255 SEL-93-003

Is the algorithm to transform requirements into implementation so complex, that it is best
handled by a computer? Are the requirements volatile? Are there risk factors that might
cause a possible re-design of the software, e.g., performance issues? If there is significant risk
that the requirements or the design may change, then using an ASL will make the software
more manageable, because the code is controlled from a single point.

Implementation of an ASL requires a team of engineers with collective expertise both in
the application area being addressed and in language implementation. This team must design
a generic solution to the problem, which is expressed as a set of reusable code templates and
an algorithm to instantiate these templates based on requirements. This design, i.e., the
templates and the translation algorithm can be reviewed just like any other form of design.

The language expert designs a language for expressing the information required to instan-
tiate the templates. This language will typically incorporate terminology and notations used
by the application experts so that they can easily write or review the specifications. The
language enables the variances in the similar requirements to be expressed. For example,
while each screen consists of a set of unique fields and control buttons, they may also contain a
set of standard controls, e.g., controls that return to the previous screen or quit the program.
Since the standard controls appear on all screens, they do not need to be specified in the

ASL; instead, the translator can automatically supply them.

The language expert also builds the translator. The translator reads an input specifica-
tion, extracts the information needed by the translation algorithm, and generates the output
products by instantiating the templates. The translator may perform semantic checks on
the input specification to check that it describes a valid application.

In order to produce other related products from the same specification, such as design
documents, test plans, or test data, templates for these products must be designed and logic
must be added to the translator to instantiate these templates. The ASL may be enhanced
to include additional information that is necessary to instantiate these templates.

Based on our experiences at Valley Forge Engineering Center implementing many dif-
ferent ASLs over the past decades, implementing an ASL, i.e., designing the language and
implementing the translator, typically takes from a few weeks to several months, depending
on the complexity of the specification language. This cost includes designing the language
and implementing the translator only; it does not include the cost of writing any required
support software which the generated code may call upon. Since the support software (or
software with similar functionality) is usually required whether or not an ASL is used, it is
not be figured into the cost of implementing the translator.

There are two reasons why ASLs are relatively inexpensive to implement. First, the un-
derlying technology and theory used to build ASL translators comes from the well-understood
software domain of compilers. Many automated tools exist for this domain, e.g., code gencr-
ators for building lexical analyzers and parsers. Besides automated tools, there are standard
architectural designs for translator programs and libraries of commonly used components.

Second, ASLs are much easier to implement than compilers. The generated code is a
high-level language, instead of a machine language. The generated code can interface with
other software components to implement its functionality. Also, ASLs are much simpler

4

SEW Proceedings 256 SEL-93-003

languages than general-purpose programming languages. Since the design of the language
is under the control of the implementer, language constructs which are hard to implement
can be avoided. It, therefore, is possible to design and implement a translator for a small,
special-purpose language, at lower cost and risk than most other types of software.

The Benefits of ASL-Based Software Engineering

ASL-based software engineering provides a number of benefits, including:

e Increased Productivity
e Increased Reliability

o Better Control

e Lower Maintenance Cost

o Increased Reusability

Increased Productivity

First, there is less code to write, because a software description written in an ASL is
much shorter than that same software written in a general-purpose programming language.
Second, more lines of ASL code can be written per day than lines of a general-purpose
programming language, because, when an ASL is used, the programmer writes a description
of what the application does, instead of writing a description of how it does it.

Moreover, ASLs can be use to capture the expertise of an experienced programmer and
transfer it to less experienced programmers. For example, an ASL that allows programmer
to build screens for X-windows by just describing their appearance, enables the coding of
the screens to be done by a programmer that does not know X-windows. The translator
contains the knowledge of an X-windows expert on how to transform the descriptions into
the appropriate X-windows code.

Increased Reliability

Generated code is more reliable than hand-written code. Since all of the code is based on
the same set of templates, once the templates are correct, all of the code will be correct. The
computer can be counted on to perform the repetitive task of instantiating the templates
accurately.

Better Control

The form and content of the generated code is controlled from a single-point, the trans-
lator; consequently, all of the generated code can easily be changed. A single point of
control reduces risk by allowing many design decisions to be deferred. For example, if-a
generated system interfaces with another complex system, e.g., X-Windows, the design of
the generated system can be fine-tuned later, after more experience is gained, by simply

5

SEW Proceedings 257 SEL-93-003

changing the generator. On the other hand, when there is large amount of hand-written
code, it is desirable to completely decide on the design before the code is written, because
of the cost of retrofitting a change in all of the code.

Also, if the translator generates multiple products, then the products are kept in syn-
chronization automatically. For example, if a translator generates a program and a structure
chart which describes the design of the program, then the design documentation and program
always parallel each other.

Lower Maintenance Cost

Perhaps the biggest benefit of using an ASL approach is realized in the maintenance
phase of the life cycle. There is less code to maintain. Moreover, the capability evolve the
system to accommodate new requirements is built into the system; features can be added or
modified by making changes to the specification.

Sometimes, over the lifetime of a program, fundamental changes must be made to its
overall design, e.g., porting the program to a different hardware platform, operating system,
windowing system, database, or even programming language. ASLs facilitate this, because
the specification and translator maintain a clean separation between what a program does
and how a program does it. In order to retarget a program, only the translator must change.
All of the code invested in the specification is still valid because it is independent of the
implementation.

Increased Reusability

ASLs extend the scope of reuse beyond what is possible with conventional development
techniques and general-purpose programming languages. When an software component is
implemented in a general-purpose programming language, the amount of customization that
can be done is limited by the parameterization methods available in the language. When
a component is generated, however, more possibilities for customization exist, because the
generator can add, modify or omit code.

3 Examples of ASLs

ASL technology has been applied on several software development project at NASA /Johnson
Space Center. The work was performed under the Space Transportation System Operations
Contract (STSOC) on which Unisys Space Systems Division is a subcontractor to Rockwell
Space Operations Company.

In this section, we present the work done on two projects to give examples of two ASLs
that address completely different kinds of problems. On one project, done for the Payload
Operations branch, a command editor for the Tethered Satellite was implemented using
ASLs. On the other project, done for the Shuttle Flight Design and Dynamics branch, an
ASL was implemented to serve as a general-purpose tool for analyzing data files used during
flight design.

SEW Proceedings 258 SEL-93-003

3.1 Tethered Satellite Command Editor

Approximately 500 Tethered Satellite System (TSS) payload commands required editing.
The ground control specialist uses menus to select commands for editing. Menu buttons
either display a submenu or a screen for editing commands. A sample of 2 menu and a
screen is shown in Figure 3.

Satellite RF

Autoreconfiguration

Override Telemetry

AMCS 32-bit Constants - |

AMCS 32-bit Constants - 1

AMCS 16-bit Constants

Gyro Constants

Memory Dump

DRES

Time Tag Command

Hold/Spin Mode Satellite Hold/Spin Mode (RF)
PREVIOUS Hold Angle r J DEG
Spin Rate r J RPM
MSG FLD:

| Quit | [PREVIOUS | [REFHESHJ [STOHil

Figure 3: The command editor provides a GUI for selecting and editing commands.
A sample menu and and a screen for editing two commands is shown.

Screens have varying requirements for grouping of commands; some screens process one
command, while others process 35 or more commands. Each command must be retrieved
from a database and stored again after it has been modified. Five different command
formats must be processed, each with a unique checksum calculation. Some commands
required values to be converted to engineering units, and most commands require values
to be displayed both symbolic and in hexadecimal. A single group of commands can be
optionally loaded from an external file, rather than the database.

Rather than assigning many programmers to build 140 or so screens—having each pro-
grammer code similar sorts of things, but each doing it differently—we invested in the
design of special specification language, in which each command and screen layout can be
described. A sample of this language is shown in Figure 4. Common capabilities such as the
need for certain buttons on each screen, the retrieval of data, and conversion and checksum
calculation were built directly into the associated generation process. The specification had

-1

SEW Proceedings 259 SEL-93-003

Command Format RF_32_bit_degrees is
Format : RF;
(7,0) [32] Degrees : Sat_Degrees;
end RF_32_bit_degrees;

Command format RF_16_bit_RPM is
Format : RF;
(7,0)[16] RPM : Sat_RPM;
end RF_16_bit_RPM;

Satellite_Hold_Mode_On_RF: P13K1020L RF_32_bit_degrees;
Satellite_Spin_Mode_On: P13K1022L RF_16_bit_RPM;

Form Hold_Spin_Mode_RF is
title : “"Satellite Hold/Spin Mode (RF)";
"Hold Angle", Satellite_Hold_Mode_On_RF.Degrees, '"DEG";
"Spin Rate", Satellite_Spin_Mode_On.RPM, "RPM";
end Hold_Spin_Mode_RF;

Menu RF_Menu is
title : "Satellite RFY;
"Autoreconfiguration" => Auto_Reconfiguration_RF;
"Override Telemetry" => RF_Override_Telemetry_Form;
"AMCS 32-bit Constants - I" => amcs_constants_32_RF_pagel;
"AMCS 32-bit Constants -II" => amcs_constants_32_RF_page2;

"AMCS 16-bit Constants" => AMCS_Constants_16_RF;
"Gyro Constants" => RF_Gyro_Constants;
"Memory Dump" => RF_Memory_Dump_Form;
""DRBS" => DRB_Menu;

"Time Tag Command" => RF_Time_Tag_Command;
"Hold/Spin Mode" => Hold_Spin_Mode_RF;

end RF_Menu;

Figure 4: This is the specification for the screens shown in Figure 3. Besides displaying
the menu, the code generated for this specification fetches two commands from the
database (P13K1020L and P13K1022L), extracts the Degrees and RPM field from
each command respectively, and displays their values on the screen for editing by the
user. If the user presses the STORE button, the commands in the database will be

updated with the last value the user entered.

SEW Proceedings 260

SEL-93-003

all the implementation details for each command; the generator integrated all special process
requirements with common capabilities.

Compilable
Program
Input .
Specification ASL Documentation
Translator
Test
Cases

Figure 5: The TSS ASL translator generates a command editor, a user’s manual for
the command editor, and test program from a single specification.

The translator generates three significant products for this project as shown in Figure 5.
The main product consists of several thousand lines of high quality, maintainable C code.
In addition, a 200 page user’s manual and test program are produced. The user’s manual
describes how to use the editor and the screens that editor is capable of displaying. The test
program validates that each TSS command exists in the database and is defined as specified.
Additionally, high and low value entry is simulated for each editable data value.

The ASL approach accommodated introducing new requirements in the unit testing phase
with no impact to schedule. During this phase, about 40 new screens were requested by the
customer to handle science commands. To accommodate this request, no actual C coding
was required, only descriptions of the new screens had to be added to the specification. Then
a new editor, user’s manual, and test program were generated automatically.

The productivity for the command editor application was not tracked in detail. The
translator consists of 7TI lines of code, 4K lines were hand written for this project and 3K
lines were reused or generated; the level of effort to produce the translator was 3 person
months, including the design of the templates for the generated code. The TSS Command
Editor is 12K lines of code, 7K lines are generated by the translator, and 5k lines are
hand written. The hand-written code is used by the generated code and is not changed
to accommodate new specifications. The generated test program for the TSS editor is 6Kk
lines of code, and the generated user’s manual is 12K lines of troff and pic commands.
Additional productivity gains have been achieved, because the command editor generator

has been used for other payloads, e.g., SSBUV and Wake Shield.

3.2 Strip Manipulate and Merge Tool
The Strip Manipulate and Merge (STMM) tool was created by the Common Software task

as part of its overall goal to reduce maintenance cost by creating a common set of tools for
use by flight designers, since many of the existing tools duplicate functionality.

9

SEW Proceedings 261 SEL-93-003

STMM accepts a specification that describes operations to be performed on standard
flight design data files. There are several different types of data files used for flight design.
Each data file type has its own physical format; however, all of the data files are logically
similar—Each file consists of a collection of records; each record is the same type, consisting
of a set of named fields; and each file has a data dictionary which describes the structure
of the records, i.e., the names of the fields in the record, the number of bytes allocated to
the field, the type of data in the field (e.g. ASCII or binary), and the engineering units
represented by the data.

STMM replaces an existing set of forty or so tools that perform similar, but specific,
operations on flight design data files, such as converting from one file format to another;
creating a file from selected records of another file; or omitting, reordering, renaming, or
adding fields to the records of a file. In addition, some tools perform operations on multiple
data files, such as concatenating, merging or joining them. Each tool did some specific
combination of the above operations on a specific set of data files. With STMM, these forty
custom tools are replaced by forty small specifications and the STMM tool itself.

Originally, STMM was to be implemented using a COTS product that manipulates flat
files. After analysis, it was found that the COTS product could not adequately replace the
existing set of tools. The COTS product did not support the number fields that records in
some of the data files had. It did not support operations such as joining or merging files
based on a tolerance for the key fields. And finally, it could not convert from one file type to
another. The additional support code required to use the COTS solution made the COTS
implementation unfeasible, so a custom ASL was implemented.

merge "runl.cff"(cff) and "run2.cff"(cff) giving "out.merge" (fcff);

record selection for "runl.cff"(cff) is
range : Number in 1.0ef .. 2.0e6;
end;

key is Pressure;
end;
run

Figure 6: This sample language specification merges two data files, runi.cfand run2.cf,
producing a the result file out.merge. The files are merged on the key field Pressure.
The only records selected from runi.cff are records where the value of the field Number
is in the range one million to two million.

One of goals of STMM, was to make the language easy to use by flight design engineers,
who are not necessarily computer programmers, so that new file manipulation programs
could easily be created by them. The language designed for STMM allows the user to
express operations on data files using an is English-like syntax, which is easy to read and
write. A sample of the STMM language is shown in Figure 6. Also, extensive error checking
was built into the translator to make it easier for the user to debug specifications.

10

SEW Proceedings 262 SEL-93-003

The architecture of STMM is slightly different from the other ASLs that we have bcen
discussing. Instead of translating the user specification into an HOL program, which must
then be compiled, the translator generates an internal, intermediate language that represents
the user’s program. A component called an interpreter executes this intermediate language.

The interpreter for STMM makes use of a library that defines a class of objects called
filters. There are several types of filters; each type of filter can be connected to one or more
input streams of data and produces an output stream of data. In addition, each type of
filter is capable of doing some kind of transformation on its input streams to produce its
output stream. For example, there are filters which select records based on parameterizable
criteria, strip fields from records, or concatenate, merge, or join multiple streams of data.
The STMM translator translates the specification into the appropriate chain of filters. Once
the filter chain has been constructed, the translator turns to control over to the filters to
executed the operations.

Summary

The way in which software is produced has changed several times since the invention of
electronic computers. All of these changes consist of transferring an increasing amount of
work from human beings to the machine itself. Application-specific languages are a step
in this trend. They enable software engineers to leverage the tools and techniques from a
well-understood domain—compilers—against problems of developing new software.

Application-specific languages provide many important benefits to a project during imple-
mentation and maintenance phases. They increase productivity, increase reliability, provide
control of a large amount of software and related products from a single point, and enhance
the ability of a system to adapt changing requirements.

Because of the success of ASLs on these and other STSOC software development projects,
ASL training was given to a team of about twenty STSOC software engineers. These
engineers will assess new projects and existing maintenance efforts to find areas where ASLs
can reduce cost.

Biographical Sketch

David J. Campbell has over seventeen years experience in compiler, operating system, and
support tools development. In addition to his work at Unisys, he is a part-time instructor
for the Mathematical Sciences Department /Computer Science Division, Villanova University.
For the past seven years, the main focus of his work has been on automatic generation of
software, chiefly through the use of compiler development technology. His work includes
the implementation of many software generators and the creation of tools to build software
generators. He has also been involved with many tasks on the STARS program, including
porting a Sun Unix version of the Common APSE Interface Set, revision A, to the MACH
operating system, and serving as chief programmer on the rapid software modeling task.

11

SEW Proceedings 263 SEL-93-003

Mr. Campbell is currently a Staff Engineer in the Research and Development Division of
Valley Forge Laboratories. He holds an B.S. degree in computer science from Wichita State
University.

Linda Barker has over seventeen years experience in the computer industry. She is
currently Supervisor of Software Engineering for the Mission Control Center, Data Systems
Software Section, which is responsible for maintaining several applications used in the ground
support operations for space shuttle flights. She is also a charter member of the Houston-SS0
Software Engineering Process Group (SEPG).

Deborah A. Mitchell has over fourteen years experience in programming and software
support on a variety of hardware systems. For the past six years, she has worked on the Space
Transportation System Operation Contract in the Flight Design and Dynamics Department.
Her work includes project management of Common Software applications, the development
of two ASL applications, the General Purpose Input Processor and the Strip Manipulate
and Merge, Generic Report Writer.

Deborah Mitchell is currently a project manager in the Reconfiguration Department of
the Unisys, Houston, division. She holds a Bachelor of Science in Electrical Engineering

(BSEE) from Prairie View A&M University.

Robert H. Pollack has over twenty years experience in programming and software
support, on a variety of hardware and operating systems. For the past nine years, the main
focus of his work has been on the automated creation of application software, chiefly through
the use of compiler development technology. His work includes the creation of a system to
generate Ada message validation code from abstract specifications of the message formats,
a system which is used for software development in several Unisys projects. He is also the
creator of a major subsystem of an interpreter for the Ada language developed under the

STARS program.

Mr. Pollack is currently a Staff Engineer in the Research and Development Division of
Valley Forge Laboratories, where he is assigned to the Re-Engineering IR&D project. He
holds an M.S.E. (Computer and Information Science) from the University of Pennsylvania.

SEW Proceedings 264 SEL-93-003

Software Engineering With Application-Specific Languages

David J. Campbell
Unisys Corporation
PO Box 517
Pack, PA 19301
Campbell@VFL. Paramax.COM

Appli Specific T {29 N. ber 1993) Foil 1

Application-Specific Languages (ASLs)

« Special-purpose languages targeted to solve a specific class of
problems

« Present programmers with a higher level of abstraction than
general-purpose languages, allowing a programmer to write less
code

« Used to automatically generate required software or other related
work products

« Inexpensive to produce (typically, from a few weeks to a few
months)

Application-Specific Languages{29 November 1993) Foll 2

SEW Proceedings 265 SEL-93-003

Automatic Software Generation With ASLs

Wrirten in an application specfic language

Application
Specification
ASL Application
Translator Inputs
ication HOL Application
Application | HOL /" Applicatio
Products Compiler

Work products could inciude program —
source code, documentation, data files, ASP"CI“OH
testing marerial, or even another ASL utputs

Application-Specific Languages(29 November 1993) Foil 3

Automatic Software Generation With ASLs (Cont.)

+ Specification and translator maintain a clean separation between
what software does, and how it does it

« Generic solution to problem is formulated as a set of reusable
code templates

» Translator executes an algorithm that instantiates templates
from a specification which describes the requirements for the

software

iou-Specific L (29 Ne 1993) Foil ¢

SEW Proceedings 266 SEL-93-003

Evaluation process

. Determine if a software component is a candidate for ASL
implementation

~ Repetitive coding tasks

Complex or error-prone coding tasks
Requirements subject to change

Recurring problem (i.e., ASL is reusable on other projects)

« Perform tradeoff analysis, ASL vs other approaches

Application-Specific Languages(29 November 1993) Foil

Cost Tradeoff

Cost

T

Cne-time cost
to implement
ASL

1

SEW Proceedings

2
& eé‘q Cost
AV Savings
> .\QQ ?
(\e}&é\ with ASL
s
S pS\

Number of similar requirements

Application-Specific Languages(29 November 1981) Foil 8

267 SEL-93-003

ASL Development Activities

» Language Design

— Design a language for specifying requirements in terms
familiar to the application expert]

«+ Translator Development

— Develop a translator that checks the input specification for
errors and generates code that satisfies the requirements

» Product Generation

- Write specification for the required work products and
generate the actual components

Application-Specific Languages{29 November 1993) Foil

Benefits

« Increased Productivity

— Less code to develop and maintain
o Increased Reliability

— All code based on same templates

- Computer accurately instantiates templates
« Increase Manageability

— Translator provides a single-place for controlling a large
amount of code and related work products

— Design decisions are encapsulate in the translator

~ Less impact to evolve design or tune implementation

Application-Specific L ages(29 N ber 1993) Foil §

SEW Proceedings 268 SEL-93-003

Benefits (Cont.)

— Related work products are always consistent
— Less impact to handle anticipated requirements changes
« Increased Reusability

— Generated components are more tailorable than components
implemented in programming languages

Application-Specific Langaages(29 November 1993) Foil 9

Examples of ASLs

« Editor Generator (Egen)
« Strip Manipulate and Merge (STMM)

ion-Specific | {29 N ber 1993) Foil 10

SEW Proceedings 269 SEL-93-003

SEW Proceedings

Egen (Editor Generator)

» Egen is an ASL that generates a payload command editor from
a high-level specification

o Initially developed for the TSS payload, subsequently used on
the SSBUV and Wake Shield payloads

Application Specific Languages{29 ° 1993} Foil 13

Command Editor

« Fetches and stores commands from a data base

« Enables the user to display and change the variable fields of
commands

«» Converts values to engineering units

« Handles different command formats and computes checksum
required by formats

o Provides a GUI for editing commands

Application-Specific Languages(29 November 1993} Foil 12

270

SEL-93-003

Example of User Interface

Satellite RF

Autoreconhgquaation

Overrde Telemetry

AMCS 32-bit Constants - !

AMCS 32-bit Constants - If

ANICS 18-bit Constanis

Gyro Constants

(T
s [[J

-] =

WSG FLD:

[ourr j [msvwcxﬂ [REFRESH l[srﬁ_l

Application-Specific I.anguages{29 November 1993) Foil 13

The Egen Specification

Command Format RF_32_bit_degrees is
Format : RF;
(7,0)[32] Degrees : Sat_Degrees;
end RF_32_bit_degrees;

Command format RF_16_bit_RPM is
Format : RF;
(7,0)[16] RPM : Sat_RPNM;

end RF_16_bit_RPM;

Sat_Hold_Mode_On_RF: P13K1020L RF_32_bit_degrees;
Sat_Spin_Mode_On: P13K1022L RF_16_bit_RPM;

Form Hold_Spin_Mode_RF is
title : "Satellite Hold/Spin Mode (RF)";
"Hold Angle", Sat_Hold_Mode_On_RF .Degrees, "DEG";
"Spin Rate", Sat_Spin_Mode_On.RPM, "RPM";
end Hold_Spin_Mode_RF;

Application-Specific Laagaages(29 November 1993) Foil 14

SEW Proceedings 271 SEL-93-003

The Egen Specification (Cont.)

Menu RF_Menu is
title : "Satellite RF";

"Autoreconfiguration" => Auto_Recon_RF;
"Override Telemetry" => RF_0verride_Telm;
"AMCS 32-bit Comstants - I" => amcs_32_RF_pagel;
"AMCS 32-bit Constants -II" => amcs_32_RF_page?2;
"AMCS 16-bit Constants” => AMCS_16_RF;
"Gyro Constants" => RF_Gyro_Constants;
"Memory Dump" => RF_Memory_Dump_Form;
"DRBS" => DRB_Menu;
"Time Tag Command" = RF_Time_Taﬁ_Command;
"Hold/Spin Mode" => Hold_Spin_Mode_RF;
end RF_Menu;

Application-Specific Languages(29 November 1993} Fail 15

Egen Translator

« Egen produces multiple work products

Compilable
Program
input
ification ASL Documentation
Specificatio T ator
Test
Cases

Application-Specific Languages{29 November 1993) Foil 18

SEW Proceedings 272 SEL-93-003

STMM (Strip Merge and Manipulate)

+ STMM programs describe operations to be performed on flight
design data files

— Create files from selected records of other files

— Omit, rename, reorder, or add additional fields to records
- join, concatenate, or merge files

— convert files from one format to another

« It replaces forty programs that perform specific operations on
given files

Applcation. Specific Languages{29 November 1993} Foil 17

Example of a STMM Specification

merge "runi.cff"(cff) and "run2.cff"(cff)
giving "out.merge"(fcff);

record selection for "runl.cff"(cff) is
range : Temperature in 1.0e4 .. 2.0e4;
end;

key is Pressure;

end;
run

_ Appli Specific Langunges(29 November 1993) Foil 18

SEW Proceedings 273 SEL-93-003

Sl /
/ol 6723
=

R T R R AL LT IR S T

N94- 36495

Applying Formal Methods and Object-Oriented Analysis

Betty H. C. Cheng"
Michigan State University
Department of Computer Science
AT14 Wells Hall
East Lansing, MI 48824-1027
chengb@cps.msu.edu

~Abstract

Correctness is paramount for safety-critical soft-
ware control systems. Critical software failures in
medical radiation treatment, communications, and
defense are familiar to the public. The significant
quantity of software malfunctions regularly reported
to the software engineering community, the laws
concerning liability, and a recent NRC Aeronautics
and Space Engineering Board report additionally
motivate the use of error-reducing and defect detection
software development techniques.

The benefits of formal methods in requirements-
driven software development (“forward engineering”)
is well documented. One advantage of rigorously engi-
neering software is that formal notations are precise,
verifiable, and facilitate automated processing. This
paper describes the application of formal metiods to
reverse engineering, where formal specifications are
developed for a portion of the shuttle on-orbit digital
autopilot (DAP). Three objectives of the project were
to: demonstrate the use of formal methods on a
shuttle application, facilitate the incorporation and
validation of new requirements for the system, and
verify the safety-critical properties to be exhibited by
the software.

1 Introduction

Correctness is paramount for safety-critical soft-
ware control systems. Critical software failures in
medical radiation treatment [1], communications’1[2],
and defense [3] are familiar to the public. he
significant quantity of software malfunctions regularl
reported to the software engineering community [4g
the laws concerning liability [5], and a recent NR
Aeronautics and Space Engineering Board report [(ﬂ
additionally motivate the use of error-reducing an
defect detection software development techniques.

The benefits of formal methods in requirements-
driven software development (“forward engineering”)
is well documented [7, 8, 9, 10]. One advantage
to using rigorous approaches to software engineering

*This author is also supported in part by NSF grant CCR-
9209873.

SEW Proceedings

274

to Existing Flight Software

Brent Auernheimer
California State University, Fresno
Department of Computer Science

Fresno, CA 93740-0109
brent_auernheimer@CSUFresno . edu

is that formal notations are precise, verifiable, and
facilitate automated processing [11, 12, 13].

We claim that maintenance of critical existing

g‘legacy”) code also benefits from formal methods.

or example, formal specifications can be reverse
engineered from existing code. The resulting
formal specifications can then be used as the
basis for change requests and the foundation for
subsequent verification and validation. Considering
re-implementation’s high cost and, even worse, the
failure of critical software, reverse engineering of code
into formal specifications provides an alternative or a
supplement to traditional approaches for maintaining
safety-critical systems.

This paper describes a project that applies formal
methods to a portion of the shuttle on-orbit digital
autopilot (DAP). Three objectives of the project were
to: demonstrate the use of formal methods on a
shuttle application, facilitate the incorporation and
validation of new requirements for the system, and
verify the safety-critical properties to be exhibited by
the software.

In addition to developing formal specifications of a
critical module, a graphical depiction of the subsystem
was constructed using the Object Modeling Technique
(OMT) [14] to provide an object-oriented view of the
system as it relates to the functional and dynamic
views. Lessons learned from this project are described,
including discussions of the benefits of constructing
specifications and the ability to generate proofs from
the formal specifications.

The remainder of the paper is organized as
follows. Section 2 gives a brief introduction to formal
methods and object-oriented development techniques.
Section 3 gives an overview of the entire project,
including a discussion of the object-oriented analysis
and the development of the OMT diagrams. A
summary of lessons learned from this project are
discussed in Section 4. Finally, concluding remarks
and future investigations are given in Section 5.

2 Background Material

This section briefly defines and motivates the use of
formal methods. Also, the benefits of object-oriented
analysis and design are presented.

SEL-93-003

2.1 Formal Methods

Formal methods in software development provide
many benefits in the forward engineering aspect
of software development [7, 8, 9, 15]. For
any specification, there can be any number of
implementations that satisfy the specification [16}.

Due to the criticality and the vorume of much of the
software being developed by many agencies involved in
flight systems, there are several projects incorporating
formal methods into the software development process
[17]. In addition, there have been recent investigations
into reverse engineering that focus on the use of
rigorous mathematical methods for extracting formal
specifications from existing code [18, 19, 20].

A formal method consists of a formal specification
language and formally defined inference rules [15)].
The specification language is used to describe the
intended system behavior and the inference rules
provide a sound method for reasoning about the
specifications. Using formal specifications for software
design serves several gemeral purposes. First, 1t
forces the designer to be thorough in the development
and the documentation of a system design. Second,
the developer is able to obtain precise answers to
questions posed about the properties of the system,
and therefore be able to rigorously test (by developing
theorems) the design for the satisfaction of its
requirements. Unfortunately, since the requirements
are traditionally expressed informally, there remains
a (albeit decreased) potential for errors to remain
undetected. Third, the developer is able to reason
about the correctness of a system or a safety-
critical component of the system with respect to its
specification. The latter category of reasoning can
be divided into two approaches: program verification
and program synihesis. Program verification is the
process of checking the semantics of a program text
against its specification. A program whose semantics
satisfies its specification is said to be correct. Program
synthesis refers to formal techniques for systematically
developing a program from a specification such that
the correctness of the resulting program (with respect
to its specification) is inherent in the development
process itself [21, 22, 23, 13].

Formal methods are typically more difficult to
apply than informal approaches and require a great
deal more discipline. Furthermore, the state of the
current technology is such that verification and the
use of formal methods is largely done manually, thus
requiring a tremendous effort to perform tedious,
but necessary tasks. In general, the introduction
of formality in software development is a difficult
but valuable step in the construction of reliable and
maintainable computer systems. The difficulty is
largely due to the quantity of detail required by
formalization as well as the tedious process by which
the formalisms must be manipulated. However, the
detection and correction of design flaws, ability to
use automated tools for manipulation, elimination of
ambiguity, precise documentation for maintenance,
and improved reusability are a few examples of the
overwhelming value, and often necessary benefits, that
formal methods brings to the software development

SEW Proceedings

275

process.

2.2 Object-Oriented Techniques

There are a wide variety of approaches to
requirements analysis, many of them in the broad
category known as object-oriented requirements
analysis (OOA) [14]. An object is a data abstraction,
and it is the goal of OOA to construct an abstract,
object-based model of the problem domain. The OOA
focus on objects is in contrast to the more traditional
approach to analysis that focuses on procedures [24].
That is, instead of modeling the problem domain as a
system of operations that process data objects, OOA
modeling centers on a description of data objects and
their interactions.

Most OOA techniques begin by a careful assessment
of the natural language problem description. A simple
first step in developing an OOA model is to extract the
nouns from the problem description. Many of these
nouns will share common properties and may be more
easily described as instances of types. For example,
Galileo, Voyager, and Magellan are all spacecrafts,
and Venus, Mars, and Mercury are all planets. In
this context, spacecraft and planet can be considered
as types, where the type of an object is called its
class. Some classes, referred to as subclasses, may
be specializations of other classes. For example, an
interplanetary spacecraft is a specialization of the type
spacecraft. As such, OOA organizes types into a
class hierarchy based on a isa (as in “an X is a Y”)
relationship.

It may be natural to think of an object as
being composed of other objects. For example, an
interplanetary spacecraft may consist of numerous Jets,
guidance and navigation control system, and a probe
to study a planet’s atmosphere. This dependence
introduces an additional dimension of relations into
the class hierarchy, that is, a part of relation. The
paris of an object are often called its atiributes.

The nouns of the problem description can be
used to identify candidate objects (and therefore,
classes), and accordingly, the verbs in the problem
description can provide information on interactions
between objects. Some verbs may describe a service
for a particular class of objects, such as fire in the
phrase “fire the jets”. Other verbs may describe a
possible state of an object, such as coast in the phrase
“the spacecraft begins to coast.” Therefore, verbs help
to define the services of a class of objects, usually
referred to as the operations or methods of a class,
and the computational processes of the system as a
whole (the dynamic behavior).

In the early stages of software development,
includig object-oriented approaches, diagrams are
frequently used to describe requirements and guide
development. For example, data flow diagrams
gDFD) [25] have been widely used to visualize
unctional behavior of processes. Entity-relationship
SE-R) diagrams [26] have been used to pictorially

‘describe a wide variety of concepts, foremost among

them is the relational data base organization.
In general, a single diagramming notation is
not sufficient to capture the complex information

SEL-93-003

needed to build software systems [27]. The
Object Modeling Techniqgue (OMT) [14] uses DFDs,
hybrid E-R diagrams, and statecharts to model
software requirements using object-oriented concepts.
Collectively, these diagrams address properties that
should be modeled, including flow of control, flow
of data, patterns of dependency, time sequence,
and name-space relationships. The OMT approach
is appealing in its multiple views of software
requirements and is fairly comprehensive in its
g‘llbeit informal) treatment of development issues.

rthermore, OMT is commonly used in industry and
in academic settings.

3 Project Overview

A portion of the shuttle software was chosen for
a formal methods demonstration project involving
NASA’s Jet Propulsion Laboratory, Johnson Space
Center, and Langiey Research Center [28]. This
multi-NASA site project was supported as a Research
and Technology Objectives and Plans (RTOP). A
related project of a smaller scale was performed
by the authors in conjunction with the larger
demonstration project. The Phase_Plane module, the
control system for automatic attitude control of the
shuttle, was the subsystem selected for the smaller
project. The criteria that led to the selection of
Phase_Plane included finding a module with difficult
to understand requirements and potential for critical
change requests. Although the Phase_ Plane module
has worked correctly in thousands of hours of use in
simulation and flight, its specific properties remains
obscure gat least to the requirements analyst and
software developers) [29].

Three tasks were performed in the development
of the formal specifications of the module’s high-
level requirements. First, an understanding of the
original requirements was needed. This involved
consulting the Functional Subsystem Software Re-
quirements (FSSR) document [30) (also known as
Level C requirements, consisting largely of “wiring
diagrams”), Guidance and Conirol Systems Training
Manual [31], source code, informal design notes
[32], and discussions with shuttle software personnel.
An “as-built” formal specification capturing the
functionality depicted by the FSSR “wiring diagrams”
was then developed.

Second, when attempting to derive a more abstract
requirements-level formal specification, it was difficult
to eliminate the implementation bias present in the
as-built layer. A level of OMT diagrams was
developed to depict the information from the first
level of specifications. These diagrams facilitated the
abstraction process and lead to the next higher level
of specifications. This iterative process consisting of
developing a level of formal specifications, followed
by constructing the corresponding OMT diagrams
lead to the identification of the high level, critical
requirements of the Phase Plane module. Example
specifications and OMT diagrams are described below.

The third task involved outlining proofs between
the levels of specifications developed. That is, each
specification must be shown to correctly implement

SEW Proceedings

276

the more abstract specification above it. These proofs
provide traceability from the implementation details
as described by the “wiring diagrams” to the high level
requirements.

3.1 Phase Plane

The Reaction Control System (RCS) Digital
Autopilot system (DAP) achieves and maintains
attitude through an error correction method, involving
the control of jet firings. Figure 1 gives a
high-level view of the DAP, where the Stiate
Estimator gives the current attitude, while taking into
consideration spacecraft dynamics. This information
is then supplied to the Phase_Plane component that
calculates tge attitude and rate errors with respect to
desired values specified by the crew.

DIGITAL AUTOPR.OT (DAP)
- e
—HRD— e | e He e
Estimaind
s
Swie
Figure 1: High-level view of DAP, including the

Phase Plane module [32]

A phase plane may be visualized as a graph plotting
spacecraft rate errors against attitude errors for one
rotational axis, with a “box” drawn around the center.
There is a separate phase plane for each of the vehicle
rotation axis (roll, pitch, and yaw). The “box”
(with parabolic sides), whose limits are defined by
the crew with attitude and rate deadbands, is used
to determine when, if, and in what direction rates
must be generated to null the errors [32]. If the
shuttle is within the specified deadband limits, the
rate and attitude errors are represented by a point
plotted inside the box. If the point travels outside
the box, then jets fire to return the point inside the
box, thereby reducing the errors and achieving the
maneuver request or maintaining the attitude hold as
requested by the crew. Figure 2 gives a simplified
graphical representation of the phase plane [30]. The
shaded regions depict the coast regions where the
Orbiter does not need any corrective action. The
remaining regions are known as hysleresis regions,
where external factors such as positive (negative)
acceleration drift, propellant usage, inertia, time lags
between firing commands, and sensor noise require
the calculation of corrective action to ensure that the
Orbiter remains within the deadband limits.

In an attitude hold situation, the error plot cycles
around the zero error point with jets turning off
and on again each time the limits of the “box” are
exceeded. This activity is known as “limit cycling” or
“deadbanding”. The phase plane generates positive
or negative rate commands on an axis by axis basis,
where the jet select component determines which

SEL-93-003

jetgi) to fire (the topic of the RTOP project [28]). The
dashed lines outline the deadbanding path in Figure 2.
The requirements for the PhasePlane module
are described in terms of a “wiring” diagram (see
Figure 3 [30]), indicating the input and output values,
and several tables describing the calculation for the
boundaries of the phase plane and its different regions.

+ rate efvor
+rw DB
+ attitude
deadband
+ attitude
-~ oTor

-
=g Deadianding Psth
— attitude
deadband §J Cosst Flegion
_ raw DB D Hysherseis Pegion

Figure 2: Graphical depiction of the phase plane, with
coast and hysteresis regions [30]

enable

mum-rm

rede oTOr

ativde TOr Control Logic O:l Thrusler corrmands
m _4

deadband Imits Phase Plane OFF

rats Smits

Figure 3: Simplified wiring diagram for the

Phase_Plane module [30]

3.2 Formal Specifications

One aspect of formal methods for critical software
development is the use of a particular rigorous
notation to precisely define the function of the system
and requirements that the system software must meet.
These formal specifications are syntax- and type-
checked using compiler-like parsers. This project
used the PV5 (Prototype Verification Systems) formal
specification tools [33, 34] under development by SRI
International. PVS is written in Common Lisp but
runs on interpreters of other Lisp dialects. A PVS
user, however, interacts with a customized Emacs [35]
interface and needs no knowledge of Lisp.

Our goal was to specify Phase_Plane’s functionality
and execution constraints at several levels of

SEW Proceedings

277

abstraction. Specification of a system through
increasingly more detailed levels of abstraction is a
well-established strategy used by specifiers [15, 21].
Although these levels may appear almost disjoint, the
proof of correct refinement of a level of specification
by the level below assures the specifier the model
is correct in addition to providing requirements
traceability.

A general rule is that abstract, upper-level
specifications should establish system inputs, outputs,
and basic functionality of the system. Critical
correctness requirements that the system must satisfy
are stated at this level and become the criteria
by which the specification is judged to be correct.
Therefore, upper-level specifications tend to be black-
box models of the system.

Mid-level specifications introduce both data type
and functional detail that may constrain the eventual
implementation of the system. These levels are the
core of the specification since design decisions and
and execution environment issues can be introduced.
Change requests for modules will most likely be
addressed in these levels.

A low-level (“as-built”) specification is a straight-
forward representation of a particular implementation.
It is from this detailed specification that source
code can be automatically generated, or verification
conditions for programmer-produced code derived.

The nature of Phase_Plane demanded a bottom-up
approach instead of the top-down strategy described
above. High-level English descriptions of this portion
of the shuttle DAP were readily available, as was
source code that had executed without error in
hundreds of hours of use. This project explored the use
of formal specifications to derive requirements that are
more detailed and precise than an English paragraph
and less obscure than tightly optimized source code.

A low-level formal specification was developed from
the existing source code, the Crew Training Manual
531], and the low level “wiring diagrams” of data

ow and formula tables. This specification mirrored
the functionality of the existing system, but did not
offer an abstract view of the module’s functional
requirements.

A high-level black-box specification was then
developed corresponding to the level zero DFD
(Figure 4). This formal specification did not
include implementation details. At this level it was
straightforward to state abstract properties that any
software implementing Phase Plane must have.

Finally, a mid-level formal specification was
outlined to capture critical aspects of functionality
and requirements at a level useful to shuttle
“requirements analysts” when reviewing proposed
modifications to the module. Due to time constraints,
this level is still under development.

The challenge at the mid-level is to omit extraneous
implementation details, yet be precise enough to
capture necessary properties concerning minimization
of fuel usage, thruster firings, and movement about
the desired attitude. Included in this challenge ig the
linkage of the three specification levels by proofs that
trace abstract, critical properties from the top-level

SEL-93-003

specification through the mid-level, and to the low
“code-level” specification.

It should be noted that since the PVS environment
is interactive, it is possible for a user to make a “claim”
and attempt a proof of the claim immediately. This
feature can be particularly useful when attempting to
deduce requirements from a code-level specification.
This tactic can also be used to “test” a specification
interactively. A current NASA RTOP has documented
other advantages of formal methods in general and
PVS in particular [28].

3.3 Construction of OMT Diagrams

This section describes the OMT diagrams that
have been generated thus far for the Phase Plane
module. Since we started the reverse engineering
process with the source code and implementation
specific wiring diagram of the Phase_Plane module,
we created two levels of data flow diagrams depicting
the flow of information into, from, and within
the Phase Plane. These diagrams assisted in the
abstraction process to obtain an architectural view
of the phase plane as it related to the overall DAP
system, thus leading to the construction of the object
models. The object and the functional models
offered one level of abstraction, thus leading to the
development of the next layer of formal specifications
(mid-level specifications describing data structure and
operations on the data structures). Finally, using the
functional and object diagrams in conjunction with
the description of the deadbanding states, we created
the dynamic model for the Phase_Plane module. The
dynamic model depicts the states between jet firings as
the Orbiter deadbands. A high level of specifications
was generated based on the dynamic model.

The remainder of this section describes the OMT
diagrams constructed during the reverse engineering
and formal specification construction process.

3.3.1 Functional Models

Data flow diagrams (DFD) facilitate a high level
understanding of systems, both in terms of forward
and reverse enginering. Static analysis of program
code provides information that accurately describes
flow of data in a system. In general, process bubbles
denote procedures or functions of a given system.
Arrows represent data flowing from one process to
another. And rectangles represent external entities.

The simplest functional model (DFD) is a contezt
diagram or Level 0 diagram and is shown in Figure 4,
where the entire phase plane module is reduced to a

rocess bubble, with the external input and output
abeled. This diagram provides the context for the
process in question. Note that the Level 0 DFD closely
resembles the structure of the “wiring” diagram for
Phase Plane given in Figure 3.

The child dgilagram for Figure 4 gives the next level
DFD, which shows the different processes making up
the Phase_Plane module and is shown in Figure 5. In
this figure, the input variables are used to calculate
boundaries for the phase plane. The boundaries and
the attitude and rate limits are supplied to the process

SEW Proceedings

278

previous fvuster commands
Exvomal roio orror
sliude arror Tuster Jot Subect
input
Sradend hmite commands Modde
Yadakies e iy
Figure 4: High Level (0) DFD for Phase Plane
Module

that calculates the thrust commands (jet firings).

Extarnel
put

Varlablse

Figure 5: Level 1 DFD for Phase Plane Module

3.3.2 Object Models

Studying the “as-built” layer of specifications, the
different DFDs, and the requirements document for
Phase Plane led to the development of an object
model for the Phase P1ane. As mentioned previously,
an object is a self-contained module that includes both
the data and procedures that act on that data. An
object can be considered to be an abstract data type
(ADT). A class is a collection of objects that have
common use [36)].

The object diagram for the Phase_Plane is shown
in Figure 6. This diagram is a class entity with
attributes rate error, attitude error, and rotation
aris. The operation for this class is caleulate thrust
commands based on the rate and attitude errors.
Also included in the object diagram are Phase Plane
class instances (rounded rectangles) for each of the
rotational axes (roll, pitch, and yaw). Each of the class
instances will calculate different thrust commands
for each of the specific rotational axes. Notice
that there are two subclasses for the Phase Plane
class, Coast Region and Hysteresis Region. In the
coast region, the values of the attitude and rate

SEL-83-003

errors are within acceptable bounds, thus there is
no need to calculate new thrust commands. In the
hysteresis region, however, the “Calculate new thrust
commands” operation is inherited from the Phase
Plane class.

{Phase Plane) {Phase Plane} {Phase Plane)
Rot Pitch Yawi

Figure 6: Object Model for Phase Plane Module

Next, we performed more abstraction steps in order
to obtain a high-level object model for the DAP,
consisting of the State Estimaior, Phase Plane, and
the Jet Select Module, corresponding to the diagram
given in Figure 1. Figure 7 gives the object model
or the DAP, where each class consists of three
parts corresponding to the name of the class, list
of attributes, and %ist of operations. The diamond
symbo! denotes aggregation, where the class above the
diamond is said to consist of the three classes below
the diamond. If either attributes or operations are
not known (or do not exist) for a given c{)ass, then the
corresponding area is shaded.

3.3.3 Dynamic Models

This section gives the dynamic models for the phase
plane, which describes the states in which the DAP
can be with respect to the Phase Plane component.
Also, included are the transitions that take the DAP
from one state to another. A pictorial diagram of
the envelope depicting the position of the Orbiter
is given in Figure 8. The “(0” plots the current
vehicle attitude and rate errors with respect to the
phase plane. As long as the current position is
within the limits imposed by the deadbands (the
heavy lines), the deadband constraints are satisfied
and no jets will be commanded to fire. Once the
Orbiter exceeds the bounds of the “box”, jets will
be commanded to fire in an effort to cancel the
errors, thereby reducing the errors and achieving the

SEW Proceedings

Tum on
Tum off

Phass
Plane
Rate Erroc

Rotation Axis
Caiculate thrust

Figure 7: High Level Object diagram for DAP

+ rate error

+rate DB
ﬂ + attitude

“\ 0] \ @ + attitude
WICHME B S
L

ofTor
1 Jo

® ®

- attitude
deadband

- rate DB

Figure 8: Graphical depiction of the phase plane, with
deadbanding cycles [31%

requested maneuver or maintaining the attitude hold,
whichever was requested by the crew. Once the
Orbiter returns to the deadband area, the jets will
stop firing.

Figure 9 gives an explanation of the different states
in which the Orbiter can be while it is deadbanding
[31]. Figure 10 gives a statechart depiction of the
states through which the Orbiter transitions while it is
deadbanding. The state transitions are in the form of
jets terminate gbegin) firing and the Orbiter drifting
in (out) of the deadband region.

Note that Figure 8 depicts the clockwise traversal
of the states in which the Orbiter cycles through the
deadband limits. It is also possible for the Orbiter
to traverse the cycle in a counterclockwise fashion, in
which case, the arrows in Figure 10 would be reversed.

Finally, a very high-level view of the states in which
the Orbiter can be is given in Figure 11. Included

SEL-93-003

. No jets fire. Since the rate error is
positive, the attitude error will grow in
a positive direction.

. Jets fire to nullify the positive rotational
rate.

Jets stop firing when the deadband line
is crossed, but a little negative rate
errors is inevitable.

. No jets fire. With a negative rate
error, the attitude error will also drift
negatively.

. Jets fire to nullify negative rate error.

. Jets stop firing, but residual positive

rate error causes attitude error to go
positive again and the cycle repeats.

Figure 9: Explanation of deadbanding states [31]

in the diagram are the actions or conditions that
cause the Orbiter to transition from one state to the
next. The rectangle containing “Phase Plane” and the
labeled arrows pointing to the states indicate that the
state transitions describe the Phase_Plane module.

4 Lessons Learned

The results from this reverse engineering project
have provided several lessons for the overall project
as well as for future reverse engineering projects.
First, in order to obtain high-level requirements
for existing software, it is not feasible to obtain
the specifications (formal or informal) in one step.
Instead, several layers of specifications must be
developed, starting with the “as-built” specification.
The “as-built” specification closely mirrors the
programming structure of the existing software in
order to provide traceability through the different
levels of specifications. After creating the levels
of specifications, theorems need to be constructed
to demonstrate that critical properties are preserved
from one level of specification to the next.

Second, formal specification languages and their
corresponding reasoning systems provide a mechanism
for bringing together disparate sources of project
information into one integrated framework. In
particular, the project information may be in a variety
of formats, from different sources, and subjected to
varying levels of formal review. For this particular
project, information was obtained from the Functional
Subsystem Software Requirements (FSSR) document
[30] galso known as Level C requirements, consisting
argely of “wiring diagrams”), Guidance and Control
Systems Training Manual [31], source code, informal
design notes [32], and discussions with shuttle software
personnel. Accordingly, formal specifications were
constructed based on all of the information in order
to describe the phase plane operation. The PVS

SEW Proceedings

280

Figure 10: States representing the clockwise

deadbanding of the Orbiter

"o jon

Figure 11: High-level states for Orbiter with respect
to the Phase_Plane module

proof system provided a mechanism for checking the
completeness and consistency of the specifications,
while also supporting the proof construction of the
relevant theorems.

Third, the benefits of object-oriented analysis and
design can be exploited for reverse-engineering as
well as forward engineering projects. Specifically,
object-oriented analysis and design assists in the
understanding and the simplification of the complexity
of a large system. Furthermore, having an object-
oriented perspective facilitates future modifications by
providing the developer with a high-level, abstract
view of system components, thus avoiding the
difficulties associated with attempting to understand
all of the details of a large, complex system at once.

Finally, an iterative process consisting of the
construction of a level of formal specifications,
followed by a set of corresponding diagrams is needed
to develop several layers of specifications for an
existing system. The diagrams introduce abstractions
that can be used to guide the construction of
the next level of specifications. Furthermore, the
complementary diagrams available in the OMT

SEL-93-003

approach enable the specifier to consider different
perspectives of the system with notations best suited
for the respective perspective. The major advantage
to this diagramming approach is that one notation
does not consist of many different symbols in an
attempt to capture very different aspects of a system,
which would make it too complex to use effectively.

5 Conclusions and Future Investiga-

tions

Using formal specifications and object-oriented
analysis to describe the software that implements the
Phase_Plane module of the DAP has demonstrated
that this rigorous technology can be used for existing,
industrial applications. Constructing the different
levels of specifications, with increasing abstraction,
supplemented by the OMT diagrams provided a means
for integrating information regarding the Phase Plane
module from disparate sources. Having access to
this information will facilitate the verification that
the original (critical) requirements or properties
are not violated by any future changes to the
software. In addition to facilitating verification tasks,
the formal specifications can be used as the basis
for any automated processing of the requirements,
including checks for consistency and completeness.
Interaction with the requirements analyst and other
members of the original development team for the
project strongly support the conclusion that the
specification construction process, in addition to the
actual specifications are useful to the overall software
development and maintenance processes of existing
(safety-critical) systems.

Future investigations will continue to refine the
mid-level and high-level specifications and develop
more theorems to relate the different levels of
specifications. We are also investigating the
formalization of the OMT diagramming notation,
which will provide a means for using automated
techniques for extracting formal specifications from
the OMT diagrams in order to facilitate the
specification process. Furthermore, extracting the
specifications directly from the diagrams will allow
us to reason about the completeness and consistency
of the diagrammed system, thus greatly facilitating
the requirements analysis, design, and maintenance
phases of software development.

6 Acknowledgements

Several people have provided valuable information
and assistance during the course of the project.
Specifically, we would like to thank David Hamilton,
John Kelly, Rick Covington, and John Rushby.

References
[1] Nancy G. Leveson and Clark S. Turner. An
Investigation of the Therac-25 Accidents. JEEE
Compuler, pages 18-41, July 1993.

[2] Bev Littlewood and Lorenzo Strigini. The risks
of software. Scientific American, pages 62-75,
November 1992.

SEW Proceedings

281

[3] Eric Schmitt. Army is blaming patriot’s computer
for failure to stop dharan scud. New York Times,
May 1991.

[4] P. G. Neumann and contributors. Risks to the
ublic. In Software Engineering Notes. ACM
gpecial Interest Group on Software Engineering,
l1)99_3. Regular column published on a monthfy
asis.

[5] Victoria Slid Flor. Ruling’s Dicta Causes Uproar.
The National Law Journal, July 1991.

[6] Aeronautics and Space Engineering Board
National Research Council. An Assessment
of Space Shuttle Flight Software Development
Practices. National Academy Press, 1993.

[7] Susan L. Gerhart. Applications of formal
methods: Developing virtuoso software. JEEE
Software, 7(5):7-10, geptember 1990.

[8] Nancy G. Leveson. Formal Methods in Software
Engineering. JEEE Transactions on Software
Engineering, 16(9):929-930, September 1990.

[9] Richard A. Kemmerer. Integrating Formal
Methods into the Development Process. IEEE
Software, pages 37-50, September 1990.

[10] Susan Gerhart, Dan Craigen, and Ted Ralston.
An international study of industrial applications
of formal methods. Technical report, NIST,NRL,
and Atomic Energy Control, 1992.

Betty H.C. Cheng. Synthesis of Procedural
Abstractions from Formal Specifications. In Proc.
of COMPSAC’91, pages 149-154, September
1991.

Jun jang Jeng and Betty H.C. Cheng. Using
Automated Reasoning to Determine Software
Reuse. International Jowrnal of Software En-
gineering and Knowledge Engineering, 2(4):523-
546, December 1992.

Betty H.C. Cheng. Applying formal methods
in automated software development. accepted
1o appear in Journal of Computer and Software
Engineering, 1993.

James Rumbaugh, Michael Blaha, William Pre-
merlani, Frederick Eddy, and William Lorensen.
Object-Oriented Modeling and Design. Prentice
Hall, Englewood Cliffs, New Jersey, 1991.

[15] Jeannette M. Wing. A Specifier’s Introduction to
Formal Methods. IEEE Computer, 23(9):8-24,
September 1990.

[16] David Gries. The Science of Programming.
Springer-Verlag, 1981.

[17] John Rushby. Formal methods and the limits
of dependability. In Proceedings of Foundations
of Theoretical Computer Science (FTCS 23),
Toulousse, France, June 1993. Position paper for
Panel.

(11]

[12]

(13]

[14]

SEL-93-003

[18] Betty H.C. Cheng and Gerald C. Gannod.
Constructing formal specifications from program
code. In Proc. of Third Inlernational Conference
on Tools tn Artificial Intelligence, pages 125-128,
November 1991.

[19]) Gerald C. Gannod and Betty H.C. Cheng.
A two-phase approach to reverse engineering
using formal methods. In Lecture Notes in
Computer Science, Proc. of Formal Methods in
Programming and Their Applications Conference.
Springer-Verlag, June 1993.

[20] M. Ward, F.W. Calliss, and M. Munro. The
maintainer’s assistant. In Proceedings Conference
on Software Maintenance, pages 307-315, Miami,
Florida, October 1989. IEEE.

[21] CLff B. Jones. Systematic Software Development
Using VDM. Prentice Hall International Series
in Computer Science. Prentice Hall International
(UK) Ltd., second edition, 1990.

[22] Edsger W. Dijkstra. A Discipline of Program-
ming. Prentice Hall, Englewood Cliffs, New
Jersey, 1976.

[23] D. R. Smith. KIDS: A Semi-automatic Program
Development Systemn. IEEE Transactions on
l.f'oﬂware Engineering, 16(9):1024-1043, Septem-

er 1990.

[24] Roger S. Pressman. Sofiware Engineering: A
Practitioner’s Approach. McGraw Hill, third
edition, 1992.

[25] Alan M. Davis. Software Requirements, Analysis
and Specification. Prentice-Hall, Inc., 1990.

[26] P. Chen. The entity relationship model: Toward
a unifying view of data. ACM Transactions on
Database Systems 1, pages 9-36, March 1977.

F.P. Brooks. No silver bullet: Essence
and accidents of software engineering. IEEE
Computer, April 1987.

Jet Propulsion Laboratory and Johnson Space
Center and Langley Research Center. Formal
Methods Demonstration Project for Space
Applications: Phase I Case Study: STS Orbit
DAP Jet Select. Research and Technology
Objectives and Plans (RTOP), December 1993.

David Hamilton. Discussion of phase plane
requirements. Private Communication, August
1993. Hamilton is a software/knowledge engineer
in the Advanced Technology Department of the
Federal Sector Division for IBM-Houston working
in conjunction with Johnson Space Center on the
shuttle project.

[30] Space Shuttle Orbiter Operational Level C
Functional Subsystem Software Requirements:
Guidance Navigation and Control — Part C Flight
Control Orbit DAP. Technical Report QI-21

[27]

(28]

(29)

SEW Proceedings

282

edition, Rockwell International, Space Systems
Division, February 1991.

[31] Sara Beck. G & C Systems Training Manual:
Guidance and Flight Control — Insertion, Onorbit
and Deorbit. Technical Report I/0/D G&C2102,
Mission Operations Directorate, Training Divi-
sion, Flight Training Branch, October 1985.

[32] D. Johnson and R. Davison. Phase Plane Logic
Design. JSC Memorandum concerning details of
the design of the Phase Plane Logic., May 1986.

[33] N. Shankar, S. Owre, and J.M. Rushby. The PVS
proof checker. Reference manual, March 1993.

[34] N. Shankar, S. Owre, and J.M. Rushby. The PVS
specification language. Technical report, March
1993.

[35] Richard Stallman.
edition, 1986.

[36] Ann L. Winblad, Samuel D. Edwards, and
David R. King. Object-Oriented Software.
Addison-Wesley, Publishing Company Inc., 1990.

GNU Emacs Manual, fifth

SEL-93-003

Applying Formal Methods and Object-Oriented
Analysis to Existing Flight Software

Betty H.C. Cheng Brent Auernheimer
Department of Computer Science Department of Computer Science
Michigan State University California State University
East Lansing, Michigan 48824-1027 Fresno, California 93740-0109
ph: (517) 355-8344; fax: (517) ph: (209) 278-2573; fax: (209)
336-1061 278-4197
email: chengb@cps.m3u.edu email:

brent_avernheimer®csufresno.edu

18th Annual Software Engineering Workshop, Dec. 1-2, 1993

Background for Project

e Integrate formal methods to portion of shuttle software
o Construct an object-oriented view of system

e Demonstrate the numerous utilities of formal methods in
software development

o Facilitate current and future maintenance
“Due to careful review of changes, it takes an average of 2 years
for a new requirement to get implemented, tested,
and into the field.”

e Facilitate verification of safety-critical properties

o Address one major issue encountered in industry:
reverse engineering of existing (legacy) system.

Software Engineering Workshop (12/93)-6

SEW Proceedings 283 SEL-93-003

Formal Methods

e What is a formal method?
— Formal languages with well-defined syntax
— Well-defined semantics
— Proof systems

e Why use Formal Methods?

— Improve quality of software systems

— Reveal ambiguity, incompleteness, and
inconsistency in a system

e Important Characteristics:

— Abstraction

— Proof obligations
— Tool support

— Systematic Process

it Engineering Workshop {12/63)-1

SEW Proceedings

Object-Oriented Software

® Represent real-world problem domain and maps it
into software solution domain

e OO Design interconnects data objects and
processing operations

¢ Modularizes information and processing, not just
processing

e Three Main concepts:

— Abstraction
— Information hiding
— Modularity

Software Engineering Workshop (12/93)-2

284

SEL-93-003

Object Modeling Technique

e Three diagramming notations give complementary
perspectives of system

— Object Model presents the architectural view
(traditional object-oriented diagramming
notation)

— Functional Model presents a functional view
(data flow diagrams)

— Dynamic Model presents the behavioral view

(state diagrams)

e More amenable to formalization than other OO
diagramming notations

e Widely used in industry and universities,
including IBM at JSC.

Software Engineerine Workshoo (12/93)-3

“What would help me do RA for Orbit DAP”

It is highly unlikely that we'll find a product that will understand
shuttle requirements. Some degree of customization will need to
be performed in whatever tools we choose to support our formal
methods activities.

e From the beginning, shuttle requirements authors were given the
freedom to express requirements in whatever form they preferred.

e Consequently, the shuttle requirements are a combination of
many formats, styles, conventions, and perspectives.

e It has historically been very difficult to insert new technologies
into the shuttle program.

e Any tool that takes steps to the existing shuttle requirements or
automatically convert the existing requirements into a format it
can understand will be much more likely to succeed.

Software Engineering Workshop (12/93)-5

SEW Proceedings 285 SEL-93-003

Project Selection Criteria

e Current RTOP is demonstration project:
— Jet Select module for space shuttle

— Determine which jets should be fired to achieve
desired position(s)

— Select module that is accommodating Change
Requests
e Faculty Fellowship project complements RTOP
project

— Phase Plane module: control system for
monitoring angular rotation

— Determines amount of corrective action needed

Software Engineering Workshop (12/93)-7

Phase Plane

o JSC expressed keen interest in Phase Plane module

— JSC had difficulty fully understanding module
— Difficulty in testing module

— Will need to make changes in future

— Results feed directly to Jet Select module

e Phase Plane applicable to other spacecraft

o Main component of control system

— Uses thrusters to control angular state of spacecraft
— Monitor state errors
— Determine when and how corrective control should be applied

Scftware Engineering Workshop (12/93)-8

SEW Proceedings 286 SEL-93-003

Pictorial View of DAP Control Loop

DIGITAL AUTOPILOT (DAP)

| Phase Plane Jet Selection

Logic Logic

Spacecraft
Dynamics

State

Estimator

Software Engineering Workshop (12/93)-9

Graphical Representation of Phase Plane

+ rate error

+ rate DB

- attitude
deadband

- rate DB

Software Engineering Workshop (12/93)-10

SEW Proceedings 287

= —pe Deadbanding Path
m Coast Region
D Hysteresis Region

State

SEL-93-003

Preliminary Tasks

e Learn new specification language (PVS), including
support tools.

e Become familiar with Jet Select and Phase Plane
domain

— Functional Subsystem Software Requirements
(wiring diagrams)
— Crew Systems Training Manual

— Informal requirements discussions from JSC,
IBM, Draper Labs (software designers),
including site visit to IBM at JSC.

— Informal design notes

e Become familiar with commonly used
object-oriented diagramming technique and
support tools.

Software Engineering Workshop (12/93)-11

Wiring Diagram for phase Plane

enable
1
1
|
previous thruster commanis {
|
1
ram ervor !
I
|
ON
aftitude atmor Control Logic o ! thruster commands
for ./
deadband limits Phase Plane OFF
rate lmits

Software Engineering Workshop (12/93)-12

7 SEW‘Proceedings 288

SEL-93-003

Project Overview

o Apply reverse engineering techniques

e Develop levels of specifications

e Each level is more abstract than previous

® Objective: obtain a high-level specification of requirements
e identify and prove critical properties that link the levels.

e Develop an OMT hierarchical “roadmap” of module

e Establish linkage between specifications and OMT diagrams.

Software Engineering Workshop {12/93)-13

lterative Process
e Construct low-level specifications correspond to wiring diagrams
¢ Use code for clarification
e Construct OMT diagrams for wiring diagrams
e ldentify properties required for system.
e Construct high-level specifications for properties of Phase Plane
e Construct high-level OMT diagrams that apply to Phase Plane

e Integrate specifications with OMT diagrams.

Software Engineering Workshop (12/93)-14

SEW Proceedings 289 SEL-93-003

Functional Model: Level 0 (context) DFD

Externai

nput

Variables

previous thruster commands

Phase Plane
Moduie

deadband kmis

Software Engineering Workshop (12/93)-15

Variables

Functional Model: Level 1 DFD

previous thruster conwnands

Software Engineering Workshop (12/93)-16

SEW Proceedings

290

Jot Select
Module

SEL-93-003

Object Model for Phase Plane

Phase

Plane

Rate Error
Atttitude Error
Rotation Axis

Calculate thrust

”.:,:w,.s \\\\\

(Phase Plane) (Phase Plane) (Phase Plane)
Rol! Pitch Yaw!

Software Engineering Workshop (12/93)-17

Object Model for DAP

Tum on

Tum off
| |]
State Phase Jet
Estimat Plane Select

List of Jets

Software Engineering Workshop (12/93)-18

SEW Proceedings 291 : SEL-93-003

Dynamic Model for Deadbanding

Firing Jets to
correct negative
acceleration

positive attitude drifi

stop firing stop firing

Negative
Accelerating rate

Constant
Positive Rate

Firing Jets to
correct positive
acceleration

negative altitude drift fire jols

Scftware Engineering Workshop (12/93)-19

More Abstract Dynamic Model for Deadbanding

fire jots

Software Engineering Workshop (12/93)-20

SEW Proceedings 292 SEL-93-003

Lesson|
e More than one step from high-level requirements to existing code.
e Must create several layers of specifications
e "As-built” layer closely mirrors code (traceability)

e Need to construct theorems relating layers of specifications

Software Engineering Workshop (12/93)-21

Lesson i

» Formal methods provide mechanism for integrating
disparate sources of project information.

e Project information may be:
—in a variety of formats,
— subjected to varying levels of formal reviews
— located physically apart

¢ Examples include:
— Functional Subsystem Software Requirements
(“wiring diagrams”)
— Crew Training Manual
— Design notes
— Discussions with shuttle software personnel.

o Use formal specifications to integrate information
from different sources.

Software Engineering Warkshop (12/93)-22

SEW Proceedings 293 | SEL-93-003

m

Lesson il

e Object-oriented analysis and design can be exploited for
reverse engineering tasks.

e 00 introduces abstraction to simplify complexity of system

e 00 perspective can facilitate future maintenance tasks

Software Engineering Workshop (12/93)-23

LessonlV

Reverse engineering process is iterative

o Construct level of formal specifications
e Create a set of diagrams (introduces abstraction)

¢ Repeat.

Software Engineering Wockshop (12/93)-24

SEW Proceedings 294

SEL-93-003

Summary

o Incorporate formal methods into existing system

_ Assist maintainers in understanding module
— Facilitate future changes

_ Facilitate verification of critical properties
o Develop reverse engineering process using FM and OO
o Develop OMT models usable by RTOP project

o Identify obstacles (and solutions) in abstraction
(reverse engineering) process usable by RTOP project

« Demonstrate utility of FM and OO on real project.

Saftware Engineering Workshop (12/93)-25

Current and Potential Future Tasks

o Develop mid-level specifications
e Construct multi-level correctness proofs

o Demonstrate how FM can be used to gain
confidence in the correctness of software after
modification using critical correctness criteria and
proofs.

e Integrate more closely the formal specifications
with OMT diagrams.

Software Engineering Workshap (12/93)-26

SEW Proceedings 295 SEL-93-003

Acknowledgements

e The work described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, and was sponsored by
the National Aeronautics and Space Administration. Additionally, the
authors’ work on this project was supported by NASA/ASEE Summer
Faculty fellowships.

* Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United States Government
or the Jet Propulsion Laboratory, California Institute of Technology.

Software Engineering Workshop (12/93)-27

SEW Proceedings 296 SEL-93-003

N94- 36496

INTEGRATING END-TO-END THREADS OF CONTROL INTO

OBJECT-ORIENTED ANALYSIS AND DESIGN Si2~G/
ReTS
Janet E. McCandlish Dr. James R. MacDonald Dr. Sara J. Graves /) . a2Y
TRW ALPHATECH, Inc. University of Alabama
213 Wynn Drive 50 Mall Road in Huntsville
Huntsville, Ala 35805 Boston, Mass 01803 Alumni House, Room 102

Huntsville, Ala 35899

ABSTRACT

Current object-oriented analysis and design methodologies fall short in their use of
mechanisms for identifying threads of control for the system being developed. The
scenarios which typically describe a system are more global than looking at the individual
objects and representing their behavior. Unlike conventional methodologies that use data
flow and process-dependency diagrams, object-oriented methodologies do not provide a
model for representing these global threads end-to-end.

Tracing through threads of control is key to ensuring that a system is complete and
timing constraints are addressed. The existence of multiple threads of control in a system
necessitates a partitioning of the system into processes. This paper describes the
application and representation of end-to-end threads of control to the object-oriented
analysis and design process using object-oriented constructs. The issue of representation
is viewed as a grouping problem, that is, how to group classes/objects at a higher level of
abstraction so that the system may be viewed as a whole with both classes/objects and
their associated dynamic behavior. Existing object-oriented development methodology
techniques are extended by adding design-level constructs termed logical composite
classes and process composite classes. Logical composite classes are design-level classes
which group classes/objects both logically and by thread of control information. Process
composite classes further refine the logical composite class groupings by using process
partitioning criteria to produce optimum concurrent execution results. The goal of these
design-level constructs is to ultimately provide the basis for a mechanism that can support
the creation of process composite classes in an automated way. Using an automated
mechanism makes it easier to partition a system into concurrently executing elements that
can be run in parallel on multiple processors.

INTRODUCTION

The philosophy upon which object-oriented analysis and design is based does not lend
itself well to the representation of how a system operates as a whole. The object-oriented
premise emphasizes the extraction of objects to be modeled from the problem domain in
contrast to traditional methods which rely on the functionality of the system. A review of

SEW Proceedings 297 SEL-83-003

some of the more current object-oriented analysis and design methodologies highlights this
shortcoming by these methodologies' inability to effectively represent the end-to-end
processing of a system. A global representation is key to understanding how the system
operates. As described in [Fichman], conventional methodologies use tools such as data
flow and process-dependency diagrams for representing global threads end-to-end, but
object-oriented methodologies have nothing comparable. Because conventional methods
stress functionality over object partitioning, showing the operation of the overall system
via functions is consistent with the methodology approach in general. In contrast, object-
orientation concentrates on objects as stand-alone reusable components instead of how
those components tie together. Object-oriented methodologies partition objects and their
relationships into several models which represent different views of the objects and their
interactions. These views are generally presented in the form of static architectures and
dynamic behavior. There are typically multiple instances of each view, with each instance
representing a fragment of the system. The observer must deal not only with these
multiple views of the system, but also with fragments of the system at 2 time. Much effort
is required to obtain a synergistic understanding of the system being modeled as a whole.

One of the key mechanisms for ensuring system completeness is to trace through
threads of control. A thread of control is a path through a sequence of operations
representing a particular scenario in the system being modeled. Threads of control
integrate the overall flow of data, control, events, and timing up to the system level. They
provide a means by which the system may be analyzed and understood as a whole. Thread
of control information is desirable in two ways: first, it ensures that all of the pertinent
objects exist to support the system as a whole; and secondly, if timing is critical in the
system, tracing through the threads of control may identify essential timing constraints and
potential bottlenecks. The presence of multiple threads of control is an indicator that the
system will need to be partitioned into processes, that is, separate executable entities.
Identification of these critical areas early on will drive decisions concerning process
allocation, and how data will be transferred, accessed, and shared. Because of their
significance, successfully representing threads of control for a system being modeled
greatly enhances understanding the operation of the system as a whole.

Viewing a system in terms of the processes which make it up adds additional
complications. On the one hand, large-scale real-time distributed systems reconcile
competing demands for resources by partitioning the system into multiple processes. On
the other hand, object-oriented technology strives to partition a system by objects where
all data and operations associated with an object are encapsulated within the object. The
partitionings for processes and objects appear to be orthogonal in this context when
threads of control are considered. Hence, the partitioning goals associated with object-
oriented and distributed systems are conflicting.

This paper introduces a means of representing threads of control and their associated

classes/objects to better illustrate how the system operates. Towards this end, an analysis
of five predominant object-oriented analysis and design methodologies was performed.

SEW Proceedings 298 SEL-93-003

The methodologies reviewed include Coad and Yourdon [Coad91a] [Coad91b], Shlaer
and Mellor [Shlaer88] [Shlaer91], Booch [Booch], Firesmith [Firesmith], and Rumbaugh
[Rumbaugh]. While some of the methodologies reviewed describe both analysis and
design (Coad and Yourdon, Firesmith and Rumbaugh), Shlaer and Mellor focus more on
analysis and Booch on design. The distinction between object-oriented analysis and
design is not precise. There are inconsistencies in the research about what comprises
each, and the lines between analysis and design in object-orientation are blurred [Berard],
[Korson]. Itis not the goal of this paper to distinguish between object-oriented analysis
and design. Instead, the intent is to focus on the constructs necessary to support end-to-
end processing during object-oriented analysis and design as opposed to object-oriented
programming.

A review of methodologies indicates that both static (class/object architecture) and
dynamic (control and data flow) representations of systems exist; however, threads of
control are only minimally represented and are fragmented. This paper extends the static
and dynamic concepts by introducing a representation which overlays dynamic flow (via
thread of control information) onto a static structure. In order to combine dynamic and
static representations to show end-to-end processing, class/objects are grouped so that
they may be represented at a higher level of abstraction. Determining how the
class/objects were to be grouped resulted in a partitioning problem. To simplify the
partitioning problem, the proposed grouping approach is performed in two phases. The
first phase involves a logical grouping of class/objects. The logical groupings are further
refined with thread of control (state, control, and data flow) information, providing a
coarse-grained partitioning referred to as logical composite classes. The second phase
further extends the partitioning using process partitioning criteria based on other thread of
control information involving communication and timing constraints to develop process
composite classes. The introduction of these design-level constructs provides the basis for
a mechanism to automate different instances of composite process classes for timing and
CONCUITENCY COMPparisons.

ANALYSIS OF CURRENT OBJECT-ORIENTED ANALYSIS AND DESIGN
METHODOLOGIES

Each of the five methodologies reviewed provided some means of representing both
the static architecture and dynamic behavior of a system. The following is a brief
description of the techniques each methodology employs for representing static and
dynamic views of a system and an overall assessment of these techniques.

Static Architecture

The static architecture refers to a non-temporal representation of the system. A static
representation of the system is generally reflected by some variation of entity-relationship
diagram. Entities, in this context, are either classes or objects. The distinction between
classes and objects is that a class serves as a template for defining the characteristics of an
object. An object is a software abstraction that models a concept, abstraction, or thing

SEW Proceedings 299 SEL-93-003

SEW Proceedings 300

which represents the application domain (analysis) or the solution space (design). To
further distinguish the two, an object is an instance of a class. Further, a concrete class is
a class for which object instances may be created, as opposed to an abstract class for
which objects may not exist.

The static models and diagrams associated with the methodologies reviewed are
summarized in Figure 1. The diagrams for each methodology which depict classes/objects
and their relationships are those listed first in the Class/Object Representation row of
Figure 1. These diagrams, when used in a general context, will be termed class/object
diagrams since they generally contain more information than what is usually associated
with an entity-relationship diagram as is described below.

Coad and |Shlaer and| Booch Firesmith | Rumbaugh
Yourdon Mellor
Class/ « Class-&-Object | « Information | Class « Class Model |« Object Model
Object Layer Model Structure |« Object Model
» Structure Layer, * Object
Model(s) » Attribute Layer Structure
* Service Layer
s Class-&-Object | = Information |+ Class * General * Object
Class/ Diagram Structure Diagram Semantic Net | Diagram
Object * Gen-Spec Diagram « Object o Interaction | * Generalization
Represent- Structure e Inheritance | Diagram Diagram Notation
tion () s Whole-Part Diagram * Class » Classification| « Aggregation
a s Structure Template Diagram Notation
+» Composition
Diagram
* Class
Specification
The above representations all include classes/objects, relationships, and attributes. All
include operation specifications with the exception of Shlaer and Mellor.

Figure 1. Static Models and Diagrams

An object, or the class template for the object, is usually defined in terms of its
attributes and operations. Antributes are fields which describe data values within a
class/object, and operations are functions performed by a class/object. Two
methodologies, Coad and Yourdon and Firesmith, represent attributes and operation
specifications on their Class-&-Object Diagram and Object Diagram respectively. Shlaer
and Mellor include only attributes on their Information Structure Diagram. Both Booch
and Firesmith use a separate means for representing attributes and operation
specifications. Booch describes a Class Template, and Firesmith a Class Specification.

Relationships in a class/object diagram refer to associations between two or more
classes/objects indicating some type of structural or semantic link. In addition to simple

SEL-93-003

association, two special types of relationships exist in most object-oriented methodologies:
is-a and has-a relationships.

Is-a relationships introduce the concepts of generalization, specialization, and
inheritance. A generalization is a higher level of abstraction of a class. For example, the
class animal is a generalization of the classes cat and dog. Because it is a generalization,
animal is a superclass of cat and dog. Animal might be described as furry and four-
legged. While both the cat and dog are furry and four-legged, the cat meows and the dog
barks. Because they are specializations of animal, cat and dog are subclasses of animal;
they inherit the characteristics of being furry and four-legged, but they extend the animal
class by adding special characteristics such as meowing or barking. Specifically, a
subclass inherits the attributes and operations of its superclass, and extends it further with
additional attributes or operations. Several of the methodologies contained special
diagrams to represent the is-a relationship: Coad and Yourdon/Gen-Spec Structure,
Shlaer and Mellor/Inheritance Diagram, Firesmith/Classification Diagram, and
Rumbaugh/Generalization Notation.

Has-a relationships depict an aggregation of class/objects. A class/object which
contains at least one other class/object is referred to in this paper as a composite
class/object. For example, the composite class/object car is made up of doors, wheels, an
engine, etc. Conversely, a class/object which does not contain other classes/objects is
termed an atomic class/object. Several methodologies represented aggregation
associations with special notation: Coad and Yourdon/Whole-Part Structure,
Firesmith/Composition Diagrams, and Rumbaugh/Aggregation Notation.

D ic Behavi

Dynamic behavior is behavior attributable to timing and the flow of information in the
system being modeled. The information typically represented in dynamic models includes
state, control and data flow, and timing information. The states, or modes, of a
class/object reflect the attribute values of a class/object at a given point in time. State
information contains the states of a specific class/object, and the operations or events that
effect transitions between the class/object’s states. State transition diagrams (STDs) are
the most common representation of state information. STDs are generated for each
class/object which has interesting behavior. All of the STDs in the methodologies
reviewed contained states, events, transitions and operations with the exception of Coad
and Yourdon's Object State Diagram which contained only states and transitions. Control
flow information describes the control and sequencing of a message within or between
classes/objects. It is most often represented in a control flow diagram (CFD). A message
may be a request for service, event, or passing of data. Data flow information describes
the flow of data among classes/objects via their operations. A data flow diagram (DFD) is
commonly used to show data flow among the class/objects. Timing information contains
the duration of operations within and between class/objects and is usually associated with
control flow information.

SEW Proceedings 301 SEL-93-003

Control flow information is only minimally represented on the Coad and Yourdon
Class-&-Object diagram via arrows between the class/objects which represent message
connections. Booch shows control flow only in the context of a Timing Diagram which
displays objects and the invocations of their operations along a time axis. Rumbaugh's
primary mechanism for control flow is his State Diagram; although control may also be
shown on a DFD but is considered redundant. Both Shlaer and Mellor and Firesmith
combine control and data flow information onto one diagram, the Action DFD and
Object-Oriented CFD respectively. Neither Coad and Yourdon or Booch describe
representations for data flow. For timing information, only Booch (as previously
mentioned) and Firesmith provide a timing diagram. Coad and Yourdon allow that a time
requirement may be annotated with the specification of a particular class/object. Shiaer
and Mellor describe time only in the context of threads of control which is addressed later
in this paper.

The dynamic models and diagrams associated with the methodologies reviewed are
summarized in Figure 2. The first bullet in each cell lists the model used to address each
type of dynamic information, and the second bullet lists the diagram (or diagrams) the
methodologies use to represent information.

Coad and |Shlaer and| Booch Firesmith | Rumbaugh
Yourdon Mellor
State » Services Layer | » State Model |« Class * State Model |+ Dynamic
Information | ° Object State +STD Structure |+ STD Model
Diagram * STD » State Diagram
» Services Layer | » Process’ * Object » Control . namia'i-'unc-
Control Flow | * Message Conn-| Model Structure Model tional Models
Information ections on e Action DFD |« Timing * Object- « State Diagram/
Class-&-Object Diagram Oriented CFD| DFD
Diagram
* N/A * Process" * N/A » Control * Functional
Flow
D P ton Model Model Model
 Action DFD * Object- +*DFD
_ Oriented CFD
Timing * Services Layer | « N/A * Object « Timing Model| « N/A
Information |« Timing Textual Structure | Timing
Annotation in « Timing Diagram
Class-&-Object Diagram
Specification
STD: State Transition Diagram, DFD: Data Flow Diagram, CFD: Control Flow Diagram
*Process is a transform in this context.

Figure 2. Dynamic Models and Diagrams

Dynamic behavior is the basis of information upon which threads of control are built;
however, dynamic behavior models only fragments of the system. State information is
associated with a particular class/object. Control and data flows are usually represented
between a particular group of classes/objects. Timing diagrams depict time durations of

SEW Proceedings

302

SEL-93-003

operations associated with segments of the system. Threads of control track the
information provided in the dynamic behavior models along a particular path which is
representative of a system scenario. In that threads of control integrate the puzzle pieces
which make up the system, their representation is fundamental to understanding how a
system operates as a whole.

THREADS OF CONTROL

A thread of control is a path which traces a sequence of operations among or within
objects or classes. This path represents a scenario which may be used during analysis,
design, or testing to trace through the model. Threads of control are valuable for
analyzing the model for completeness to ensure that all aspects of the system being
modeled are represented. Additionally, for real-time systems, they are essential in
identifying real-time processing requirements for iming constraints and bottlenecks.
Threads of control represent the integration, along a particular path, of the state, control
flow, data flow, and timing data contained in the dynamic behavior models. State
information is needed because the thread of control may vary depending on the state of the
class/object. Timing, data flow and control flow data provide the sequencing information,
data required along a particular sequence, and associated duration.

Coad and Yourdon presented thread of control information in a cursory fashion via
message connections on their Class-&-Object diagram; although descriptive information
about the threads of control as related to a particular class/object may be contained within
that class/objects specification. In all of the methodologies reviewed, only Shlaer and
Mellor had a clear representation of the relation between the states of a class/object and
the threads of control associated with the states using a thread of control chart; however,
the tie back to the associated class/object was not apparent and none of the data
associated with the flow was represented. The Timing Diagram was the only mechanism
available in Booch's methodology which reflected thread of control related information.
While it tied operations, sequencing, and times to objects, it was deficient in representing
data and state information. Firesmith provided three different diagrams containing various
thread of control information: an object-oriented control flow diagram for each major
thread of control, a thread-level interaction diagram to show the interactions of
classes/objects for a given scenario, and a timing diagram for each thread of control.
Rumbaugh used event trace diagrams to show the sequencing of events in a system;
however the information provided in this diagram depicted only the event sequencing and
the class/objects impacted by the event. Thread of control representations associated with
the methodologies reviewed are summarized in Figure 3.

The review of methodologies for thread of control information indicated that none of
the methodologies covered all of the information associated with threads of control.
Firesmith’s method appeared to provide the best and most comprehensive thread of
control information of the methodologies reviewed, but the information is spread over
several diagrams and is therefore difficult to assimilate.

SEW Proceedings 303 SEL-93-003

Coad and |Shlaer and| Booch Firesmith | Rumbaugh
Yourdon | Mellor
Thread Message Thread of Timing Dia- | TOC Object- | Event traces -
of Connections on | Control Chart | gram shows| Oriented CFD, | shows event
Control Class-3-Object | shows events| objects and | Thread-level sequencing and
(Toc) Diagram. and states operations | Interaction the associated
TOC in Class-&- | occurring in | sequence | Diagrams, class/objects
Object Specifi- | a thread and | and dur- TOC Timing
cation in bullet | associated ation. Diagram
list format or in | times.
Service Chart.
State
| Information no yes no no no
Control Flow
Information yes yes yes yoes yes
Dl:ltf.or::tvion no no no yes yes
Timing
Information yes yes yes yos no
A&:?";é;‘i’.ct yes no yes yes yes

Figure 3. Thread of Control Representations

Because of the significant role that threads of control play in understanding the overall
operation of a system, an effective means of representing them in object-oriented analysis
and design is needed. Current methodologies tend to fragment this information showing
only segments of the system at a time, using multiple models for different views of these
segments. The approach to integrating threads of control in object-oriented analysis and
design described here begins by abstracting classes/objects at a higher level. The rationale
for this higher level of abstraction is two-fold: first, end-to-end processing is easier to
show, as well as understand, at a higher level of abstraction; second, thread of control
information is attached at the higher level of abstraction which lessens the amount and
complexity of the information to be handled. Abstracting classes/objects at a higher level
implies that classes/objects are aggregated into larger groups based on some criteria, such
as being logically related to each other. These logically related groups make up a logical
view of the system.

LOGICAL COMPOSITE CLASSES

A logical view represents the groupings of classes/objects which are logically related
into higher levels of composition. Partitioning into groups is usually based on engineering
judgment, and minimizing the associations, aggregations and generalizations between
groups. Traditionally, the rationale for grouping classes/objects is for partitioning large
projects, and to provide a means of understanding the overall system and its interfaces. A
logical view which overlays a class/object diagram might look something like what is
shown in Figure 4.

SEW Proceedings

304

SEL-93-003

Logical View
1
class/object

logical

grouping

7
relationship

Figure 4. Groupings for a Logical View

Although no formal method for grouping classes/objects was presented in the
methodologies reviewed, each methodology touched on the concept in some fashion. Yet,
the terminology and approaches associated with the groupings of classes/objects varies
among the different methodologies. Coad and Yourdon use the term Subject. Subjects
are initially created by identifying the uppermost class, the parent, in each is-a or has-a
structure and calling it a subject. Subjects are further refined by minimizing the
relationships and message connections between the subjects. Shlaer and Mellor use a top-
down approach to grouping. They begin by identifying the different domains which make
up a system and partition large domains into subsystems. It is for each of these
subsystems that the class/object diagrams are constructed. Booch'combines
classes/objects into modules which are actually physical representations in that they are
intended to represent software modules. Modules may be further logically grouped into
subsystems. Firesmith groups classes/objects into subassemblies which ultimately make up
an assembly. He describes several approaches to identifying subassemblies depending on
the situation involved. Some of the approaches involve bottom-up development where
class/objects are identified and then grouped based on the criteria dictated by the
approach, such as coupling and cohesion criteria. Other approaches, such as recursion,
begin with top-down development by identifying parent subassemblies, and recursively
defining other subassemblies as needed. Rumbaugh introduces modules which are logical
groupings of the class/objects and associated relations defined in his object model.
Modules are the lowest level subsystems. The terminology, models and representations
associated with each of the methodologies for a logical view are shown in Figure 5.

SEW Proceedings 305 SEL-93-003

SEW Proceedings

Coad and | Shlaer and| Booch |Firesmith |Rumbaugh
Yourdon | Mellor
' : * Domain e Subsystem |+ Assembly « Subsystem
Terminology | Subjects * Subsystem |*Module * Subassembly] « Module
Model Subject Layer | » Domain Chart] Maodule Assembly NA
* Subsystem Architecture Model
Relationship
Model . .
Represent- Clags-&- « Subsystem ¢ Subsystem | e Context Object Diagram
ation Objects Communi- Diagram Diagram {(modules only)
Diagram cation Model | * Module e Assembly
« Subsystem Diagram Diagram
Access
Model

** No distinction between model and representation

Figure S. Logical View Representations

While these methodologies all describe logical groupings, they do not use this
construct in conjunction with thread of control information to represent end-to-end
processing. It is in this context that the logical composite class construct is introduced.

A logical composite class is a grouping of classes/objects which are logically related and
further refined/extended by integrating thread of control information. The rationale for
logical composite classes is that they provide a mechanism for representing end-to-end
threads of control through class/object groupings combining both static architecture and
dynamic behavior. They are also a precursor to process composite classes which further
refine groupings using process partitioning criteria. Process composite classes are detailed
in a later section. These constructs should be viewed as design-level classes which can be
integrated into a design language. Instances of this class are the actual groupings and their
associated data.

The methodology used to generate logical composite classes is a bottom-up approach
which begins with the initial groupings formed from the logical view. Next, the pertinent
state, data and control flow information required for threads of control is aggregated for
each logical grouping. As previously described in the dynamic behavior models, this
information is already available in fragmented form at the class/object level. To aggregate
the information means to recompose the information at the class/object level to the level of
abstraction of the logical groupings in a summarized form. This aggregated information is
assessed at the boundaries of the logical groupings by focusing on the information
required between the boundary classes/objects. The boundary class/objects are those
class/objects in the logical view that play an interface role between the groups defined in
the logical view. The aggregated information is attached to the associated logical
grouping. Groupings are then refined to minimize connections among groups. Figure 6

10

306 SEL-83-003

shows the logical composite classes which evolved from the logical view groupings of
Figure 4.

Logical Composite Classes

1 = 2
CH
n
d oy
3
message .
operation]
within EN
class/object

O boundary class/object
== example thread of control

Figure 6. Logical Composite Class Representation

The philosophy of using composite classes as aggregations of class/objects is probably
most closely associated with how Coad and Yourdon identify and refine subjects, since
subjects evolve partially out of has-a relationships. Refining the groupings as development
continues is consistent with Firesmith's recursive approach to development. However, the
logical composite class extends these concepts further by introducing a design-level
construct which contains a grouping of classes/objects at a higher level of abstraction and
attaches aggregated data representing thread of control information to those constructs.

While all of the methodologies described logical groupings, none of them addressed
the refinement of these groupings for processes as is required in real-time and distributed
systems. In this paper, the concept of grouping is extended even further using the process
composite class construct as a mechanism for refining groupings along process lines.

PROCESS COMPOSITE CLASS
A process view represents the mapping of class/objects to processes. In this context,

processes are entities implemented in software that may execute concurrently and compete
for resources. The introduction of multiple threads of control necessitates partitioning

11

SEW Proceedings 307 SEL-93-003

systems into processes. The logical composite classes shown earlier might contain
multiple threads of control as shown in Figure 7.

Logical Composite Classes

lj

1 : h 2

b

1]
B\

threads of control

1l

Figure 7. Logical Composite Classes with Multiple Threads of Control

Of the methodologies reviewed, the only methodology that provided a model for
processes was the Process Architecture model presented in Booch. This model described
templates for processes and processors. These templates contained information
concerning the characteristics of the computer, processes associated with each processor,
priority for each process and the scheduling approach. However, the model lacked any
transition or correlation to Booch's previously described class structure, object structure
or module architecture models. Additionally, no criteria for how processes should be
allocated or identified was provided.

The need for process partitioning has long been recognized in the real-time
development community. The merging of this technology with object-orientation is still in
its infancy. The key criteria for process partitioning have to do with communication and
timing. In terms of communication, the ideal is to minimize communication between
processes by grouping classes/objects which interface extensively within a process, thereby
reducing the interaction between groups. The interface between groups is referred to as
coupling, and within a group, cohesion. An excellent discussion on the coupling and
cohesion of objects and modules is presented in [Berard].

12

SEW Proceedings 308 SEL-93-003

Timing criteria affect process partitioning in a number of ways. For example, those
classes/objects whose operations support services which must be performed within a
specified time should be grouped in an independent process. Classes/objects whose
operations support services which perform on different cycles, sporadically, or at a low
level of priority should be separated into different processes. As previously mentioned,
threads of control may be used to trace through critical paths in a system to determine
total execution criteria. While a determination may be made to add processes due to
timing constraints, the tradeoff between adding these processes versus the overhead to run
them must be weighed. Additionally, the more processes that are added, the more
complex the system becomes. A representative listing of partitioning criteria for processes
is provided in [Neilsen].

The construct introduced in this paper to represent the partitioning of systems into
processes, is the process composite class. A process composite class is a grouping of
classes/objects originating from the logical composite class groupings and further refined
based on process partitioning criteria. The logical composite classes already represent an
initial partitioning based on the existence of interactions between groups. The
methodology for developing process composite classes begins by extending these logical
composite classes with timing information. The timing information associated with each
logical composite class is assessed. Class/objects or class/object groupings which have
distinguishing timing criteria such as being time critical or the other extreme, low priority,
are extracted from within the logical composite classes. Weights may then be assigned to
interfaces between modified groupings as a function of the number of data/control flows
among the groupings. These weights determine the need for further repartitioning based
on changed interactions between groups resulting from the previous repartitioning based
on timing. Weights reflect the magnitude of communications between the groups.
Repartitioning is performed as needed to achieve total execution time criteria. Figure 8
highlights how these sequences of repartitionings might look. Beginning with the
grouping of the logical composite classes from Figure 7, Figure 8 shows subsequent
groupings into process composite classes based on various process partitioning criteria.
Keeping track of these numerous classes/objects, the interrelationships among them, the
threads of control through them, and the partitioning criteria needed to determine the
potential groupings into composite structures, quickly becomes a complex problem which
is well suited for a database environment.

The formulation of groupings into process composite classes involves taking the
thread of control information attached to the logical composite class, and applying
process partitioning criteria with system constraints to result in process composite classes.
Classes and their associated attributes, operations and state data are contained in a
database. The relationships that tie operations to particular state values or changes in
attribute values are also maintained. In the context of a logical composite class, thread of
control information is extracted from the appropriate classes. That is, the class/objects
whose operations are invoked along that thread of control, and the attributes and data
impacted or used in conjunction with those operations, are linked to the thread of control.
Additional information associated with the particular thread of control such as operation

13

SEW Proceedings 309 SEL-93-003

precedence, identification of time critical operations (priorities and deadlines), priority and
timing constraints, and communication interface requirements is also included.

Process Composite Classes

= threads of control

Figure 8. Repartitionings of Process Composite Classes

After threads of control are enumerated, interrelationships may be identified and
assessed. For example, different threads of control may use different operations within a
class. Interrelationships may be involved if one thread of control alters attribute values by
invoking a particular operation in a class where these attribute values are also used by
another operation invoked by a separate thread of control. The intra-dependencies of
attributes affected by operations within a given class is maintained in the database. These
intra-dependencies must be considered among the various threads of control. The
interdependencies along various threads of control between logical composite class
groupings must also be considered. These dependencies and their magnitude provide
much of the data needed to make process partitioning decisions.

The process composite class definition can be augmented by algorithms which
provide optimal solutions to allocations. Given the proper criteria, these algorithms can

provide solutions using various methods such as graph-theoretic allocation or a heuristic
branch and bound allocation that minimizes or maximizes performance objectives

14

SEW Proceedings 310 SEL-93-003

[Horowitz], [Reeves]. Typical constraints minimize the cost of running the total system
by partitioning the process composite classes efficiently. The partitioning resulting from
the process partitioning criteria, combined with system constraints such as communication
bandwidth, processor speed or concurrency limitations, provide the information needed to
define the performance objectives. Figure 9 depicts the overall formulation of groupings
into process composite classes.

Thread of Control Information
Attached to Logical Composite Class

Thread of Control x

Process Partitioning

priority 1 Criteria

cycle time H « inter/intradependencies
duration + magnitude of dependencies
event a « timing/cycle criteria

class/object 1: operation 1.3
state value=q
class/object 4: operation 4.1

4

Classes Allocation System Constraints
» attributes Algorithms « timing
» operations * communication
« state data bandwidth

- transitions e concurrency

- events

- state values Process

Composite

Classes

Figure 9. Formulating Process Composite Classes

The results of this work are being used to develop a streamlined methodology for use
with distributed, real-time applications. Basic class/object static architectures and dynamic
behaviors will be drawn from the strengths of the methodologies reviewed and
consolidated. The logical and process composite class structures will provide a layer
above these other constructs and will be integrated in a design language. Integrating this
concept into a design language provides a means of representing the structure graphically,
building a database, and generating consistency checks. Additionally, it provides a basis
for an automated mechanism so that regrouping for logical and composite class structures,
and the application of algorithms to these structures, may be easily accomplished for
efficiency comparison purposes.

15

SEW Proceedings 311 SEL-93-003

FUTURE WORK

Several issues have arisen as a result of this research which require further
investigation. These issues focus on specific cases where object-oriented and distributed
system partitionings are in conflict. One case concerns the fact that distributed systems
sometimes require that parts of the same object be in multiple locations. For example,
different operations may be required on the same object depending on where it is located
in the system. This requirement is contrary to all of the attributes and operations
associated with an object being encapsulated within the object. Another case is one in
which the various operations contained in an object may have different timing constraints.
For example, one operation may be along a time critical thread of control while another
may not. The first inclination would be to group the object into a process in accordance
with the highest priority operation. The down side of this, however, is that all of the other
information related with that object, such as the secondary operations, and threads of
control and objects associated with those secondary operations, are then grouped into the
same time critical process. These cases and others like them require further exploration in
order to integrate solutions into the process partitioning approach.

SUMMARY

The results of this research indicate that current object-oriented analysis and design
methodologies’ representations do not provide a clear understanding of the end-to-end
processing which defines system operation. This research has introduced lo gical and
process composite classes that act as structures for representing groupings of
class/objects. These structures reflect classes/objects and the threads of control through
those classes/objects. Further study is needed to extend these structures into a design
language, and refine the partitioning conflicts which arise between objects and processes.

REFERENCES

[Berard] Berard, Edward V., Essays on Object-Oriented Software Engineering,
Volume I, Prentice Hall, Englewood Cliffs, NJ, 1993.

[Booch] Booch, Grady, Object-Oriented Design with Applications,
Benjamin/Cummings Publishing, Redwood City, CA, 1991.

[Coad91a] Coad, Peter and Yourdon, Edward, Object-Oriented Analysis, Second
Edition, Yourdon Press, Englewood Cliffs, NJ, 1991.

[Coad91b] Coad, Peter and Yourdon, Edward, Object-Oriented Design, Yourdon
Press, Englewood Cliffs, NJ, 1991.

(Fichman] Fichman, Robert G., and Kemerer, Chris, F., "Object-Oriented Analysis and
Design Methodologies Comparison and Critique," Computer, Vol. 25, No.
10, October 1992, pp. 22-39.

[Firesmith] Firesmith, Donald G., Object-Oriented Requirements Analysis and Logical
Design - A Software Engineering Approach, John Wiley & Sons, New
York, NY, 1993.

16

SEW Proceedings 312 SEL-93-003

[Horowitz] Horowitz, E., and Sahni, S., Fundamentals of Computer Algorithms,
Computer Science Press, Inc., Rockville, Maryland, 1978.

[Korson] Korson, T., and McGregor, J. D., "Understanding Object-Oriented: A
Unifying Paradigm,” Communications of the ACM, Vol. 33,No. 9,
September 1990, pp. 40-60.

[Nielsen] Nielsen, Kjell, Object-Oriented Design with Ada, Bantam Books, New

~ York, New York, 1992.

[Reeves] Reeves, Colin R., Modern Heuristic Techniques for Combinatorial
Problems, John Wiley & Sons, Inc., New York, NY, 1993.

[Rumbaugh] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W.,
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs,
NJ, 1991.

[Shlaer88] Shlaer, Sally, and Mellor, Stephen J., Object- Oriented Systems Analysis -
Modeling the World in Data, Yourdon Press, Englewood Cliffs, NJ, 1988.

[Shlaer91] Shlaer, Sally, and Mellor, Stephen, J., Object Lifecycles - Modeling the
World in States, Yourdon Press, Englewood Cliffs, NJ, 1992.

17

SEW Proceedings 313 SEL-93-003

Integrating End-to-End Threads of
Control into Object-Oriented
Analysis and Design

Eighteenth Annual Software Engineering Workshop
NASA/Goddard Space Flight Center
December 1-2, 1993

Janet E. McCandlish
TRW System Development Division
Huntsville Operations

Dr. James R. MacDonald Dr. Sara J. Graves
ALPHATECH, Inc. University of Alabama
in Huntsville
m-'.'. I?::-v-l mlmm 1
Problems

* Current object-oriented analysis and design
methodologies fall short in their
representation of end-to-end processing

— system is represented with multiple views
- only pieces of the system are represented
- people have difficulty in seeing how system operates

* Goals associated with object-oriented and
distributed systems are conflicting

- large-scale real-time distributed systems reconclile
competing demands for resources by partitioning the
system into muitiple processes

— object-oriented technology strives to partition a system
by objects where all data and operations associated with
an object are encapsulated within the object

— the partitionings for processes and objects appear to be
orthogonal in this context when threads of control are
considered

e SIS :

SEW Proceedings 314 SEL-93-003

Solution/Approach Overview

 Represent threads of control and their
associated class/objects to better illustrate
how the system operates

— Five current object-oriented analysis and design
methodologies assessed: Coad and Yourdon, Shtaer and
Mellor, Booch, Firesmith, and Rumbaugh

- Introduce a representation which overlays dynamic flow
(threads of control) onto a static structure
» Group class/objects at higher level of
abstraction for process partitioning

~ Combining dynamic and static representation to show
end-to-end processes requires some grouping of
classes/objects at higher levels

— To simplify partitioning problem, grouping is two-phased:
(1) logical groupings, further refined with thread of
control information (provides a coarse-grained
partitioning) (2) process groupings, extend logical
groupings with process partitioning criteria

& gygtem Development Division 3
& KWW rurteviie Opersticns

Background

Static Architecture
- non-temporal representation of the system
- typically depicted as an enhanced entity-relationship
diagram
Dynamic Behavior
— behavior attributable to timing and flow of information
- may include state, control flow, data fiow and timing
information
Thread of Control

- path which traces a sequence of operations among or
within objects or classes

- represents a scenario which may be used during
analysis, design, or testing to trace through the model for
completeness and real-time processing requirements

Static and dynamic representations exist, but

thread of control representation is limited

m..." mmopu'm:- ‘4

SEW Proceedings 315 SEL-93-003

Thread of Control Representations

Coad and |Shlaer and| Booch Firesmith [Rumbaugh
Yourdon Mell
Thread Message Thread of Timing Dia- [TOC Object- | Event traces -
of Connections on | Control Chart | gram shows| Oriented CFD, | shows event
Contro! Class-&-Object | shows events | objects and | Thread-level sequencing and
(Toc) Diagram. and states operations | Interaction the assoclated
TOC in Class-&- | occurring in | sequence Diagrams, class/objects
Object Specifi- |athread and | and dur- TOC Timing
cation in bullet | assoclated ation. Diagram
list format or in | times.
Service Chart.
State
|_Information ho yes o no no
Control Flow
Information yes yes yes yes yes
Data Flow no no s
information | yes ye
Timing
Information yes yes yes yes no
Associated es no es es
Class/Object| yes Y Y
¥ gystem Development Division 5
f 4 ;‘ Huntsvite Operstions

Logical View

* The Logical View represents groupings of
classes/objects which are logically related.
Partitioning into groups is based on:

— engineering judgement
- minimizing the associations, aggregations and
generalizations between groups

* Rationale for Logical Groupings

~ Partitioning for large projects
- Means of understanding overall system and interfaces

* Terminology
— Subjects - Coad and Yourdon
- Domains/Subsystems - Shlaer and Mellor
~ Subsystems/Modules - Booch, Rumbaugh
— Assemblies/Subassemblies - Firesmith

I 3ystem Development Diviaton 6
Hunisviie Operalions

SEW Proceedings 316 SEL-93-003

Logical Composite Class

Representation
Logical View Logical Composite Classes
1 1 2
ﬁ 2 ‘
— 3
3 message
class/object operation
within
/. class/object —
logical
grouping / O boundary class/object

relationship — example thread of control

S S gystem Development Divielen 7
& FKHW 1uctsvie Operstions

Process View

* The Process View represents the mapping of
class/objects to processes (entities
implemented in software that may execute
concurrently and compete for resources).

e The introduction of multiple threads of
control is a major reason for partitioning the
systems into processes.

» The only methodology reviewed that provides
a model for processes is Booch’s Process
Architecture.

- Describes templates for processes and processors

- Provides no transition from his other models (class
structure, object structure or module architecture) to the

process architecture

SE gystem Development Divisien
TR'n Huntavile Operations

SEW Proceedings 317 SEL-93-003

Process Composite Class

* A process composite class is a grouping of
classes/objects originating from the logical
composite class groupings and further
refined based on process partitioning criteria

* Process Partitioning Criteria

— Communication
» minimize communication between processes

- Timing

» class/objects whose operations support services
which must be performed within a specified time

» class/objects whose operations support services
which perform on different cycles, sporadically, or at
a low level

» adjust process groupings as needed to meet total
execution time criteria

B8 gygtem Development Divislon
' " Murtsyliie Operstions

Process Composite Class

Representation
Logical Composite Classes Process Composite Classes
1 i 2 1l Different
»| Cycle
— 3 I N
Time : Minimize
Critical 80 Communi-
— LNy b
= threads of control Service 172 cation
— 3 = g =3
¥ 4 '.'.;;;_vl-o’-ub:s 10
SEL-93-003

SEW Proceedings 318

Formulating Process Composite
Classes

Thread of Control Information
Attached to Logical Composite Class

Thread of Control x Process Partitioning
priority 1 Criteria

cycle time « interfintra-dependencles
duration + magnitude of dependencies
event a « timing/cycle criterla
class/object 1: operation 1.3 4

state value = q .

class/object 4: operation 4.1

Classes Aliocation System Constraints
« gttributes Algorithms « timing
» operations « communication
» gtate data bandwlidth
- transitions * concurency
-events Process
- gtate values Composite
Classes

B2 gystem Development Division 11
'2!" Huntavitie Operstions

Ongoing Work

» Represent the logical and process composite
class structure in a design language

- provides a means of representing the structure
graphically, building a database, and generating
consistency checks

— basis for automated mechanism so that regrouping for
logical and composite class structures may be easily
accomplished for efficiency comparison purposes

« Address specific cases where object-oriented
and distributed system partitionings are in
conflict and integrate solutions into process
partitioning approach. Examples include:

— distributed systems sometimes require that parts of the
same object be in multiple locations

— one operation in an object may be along a time critical
thread of control while another may not; requires that
entire object and all associated threads and objects be
grouped into time-critical process

% systam Development Divislon 12
""!" MHuntsvile Operations

SEW Proceedings 319 SEL-93-003

Summary

Current object-oriented analysis and design
methodologies representations do not
provide the viewer with a clear understanding
of the end-to-end processing which defines
system operation

This research has introduced logical and
process composite classes that act as
structures for representing groupings of
class/objects. These structures reflect
classes/objects and the threads of control
through those classes/objects.

Further study is needed to:
- extend these structures into a design language

- refine the parititioning conflicts which arise between
objects and processes

S 3yeiem Development Division
';a" Huntsvile Operations

SEW Proceedings

320

13

SEL-93-003

Session 5: Process

om/7T

SEW Proceedings

Susan Main Hall, SofTech, Inc.

Jeffrey M. Voas, Reliable Software Technologies Corp.

Regina Palmer, Martin Marietta Astronautics

321

SEL-93-003

SEW Proceedings 322 SEL-93-003

N94- 36497

Fusing Modeling Techniques to Support Domain Analysis
for Reuse Opportunities Identification

D)2~
Susan Main Hall / 3 e /
Eileen McGuire e
SofTech, Inc. /,,2 695
1600 N. Beauregard St. - [) g
Alexandria, Virginia 22311 -~/

(703)824-4561 FAX: (703)931-6530
email: shall@softech.com

Functional modeling techniques or object-oriented graphical representations, which are
more useful to someone trying to understand the general design or high level
requirements of a system?

For a recent domain analysis effort, the answer was a fusion of popular modeling
techniques of both types. By using both functional and object-oriented techniques, the
analysts involved were able to lean on their experience in function oriented software
development, while taking advantage of the descriptive power available in object

i oriented models. In addition, a base of familiar modeling methods permitted the group
- of mostly new domain analysts to learn the details of the domain analysis process

. while producing a quality product.

. This paper describes the background of this project and then provides a high level
° definition of domain analysis. The majority of this paper focuses on the modeling
" method developed and utilized during this analysis effort.

Project Background

The analysis work described in this paper was performed in support of the Software
Development Center - Washington, Army Reuse Center (ARC). Using functional
descriptions and design documentation of four Army software systems under
development and the Department of Defense Technical Reference Model, the
application support layer services, such as database services, network
communications, and the human machine interface, were studied. In addition,
technical references were used to support the development of the description for the
User-Machine Interface (UMI). The primary goal of the effort was to develop a
complete, understandable model of a generic application support layer system. When
completed, this model was utilized to identify potential reuse opportunities between the
existing software and future system development efforts. The majority of the work
performed by the ARC and its supporting staff focuses on increasing software reuse in

the government sector.

PRBGEDWNG PAGE B ANK NOT FILM™D
SEW Proceidin%z} 323 SEL-93-003
AN o INTENTICRALLY BLA

1

Domain Analysis

Domain Analysis is the process of identifying the commonalities in a class of similar
systems [Priento-Diaz 90]. Domain analysis could be considered as requirements
analysis performed on more than one system. The activities performed during domain
analysis include collecting, organizing, analyzing and concisely capturing information
from systems which perform similar tasks. System specifications, requirements
documents, functional descriptions, design documents, and even users manuals can
provide the information needed for domain analysis. The key to successful domain
analysis is to have complete descriptions for at least three systems in the software
family being studied. At least three systems are needed in domain analysis in order to
obtain a non-system-specific view of the domain.

There are two ways to view a family of systems or domain: venrtically or horizontally.
A vertical domain encompasses systems which perform the same system application.
For example, in Figure 1, Embedded Weapons Systems, Management Information

Embedded Management Command
Weapons Information and Control
Systems Systems Systems
Domain Domain Domain

(. O)
O O
| ' —————

Application Support Layer Software >
N—_—— —]

Logistics

_,./
System O
Financial
\) System O

Figure 1 The Application Support Layer Software is a horizontal
sub-domain of many software domains.

SEW Proceedings 324 SEL-93-003

Systems and Command and Control Systems represent three high-level vertical
domains. A horizontal domain is an area of activity or knowledge that spans the
vertical application oriented domains. The Application Support Layer Software domain
is used as the example domain in this paper to describe the modeling
technique/procedure that has been performed by this analysis team.

Unlike other domain analysis methods, the analysis procedure this SofTech team
employs incorporates the concept of domain-oriented high demand categories and a
knowledge base of domain and system information to support the identification of
areas predisposed to reuse. The identification of reuse opportunities is a priority in
our domain analysis work. The analysis procedure utilized is also unique because of
the effective method of combining several modeling techniques that was developed
(see the section below for a detailed description of this fused modeling technique).
Note, although a thorough study of the application support layer services was
performed, the pictorial description captured was limited to include only a high level
illustration of the domain.

Combining Itiple M ling Technique

Domain modeling is the process of capturing, in graphical form, the conclusions
resulting from analysis of a functional family of systems. Specifically, the operations,
data and data attributes need to be recorded in a clear, concise format. In general,
since object-oriented system descriptions make reuse opportunities easier to locate
[Weesale 92], an object-oriented model was targeted to be the final product of the
analysis effort. Unfortunately, one of the greatest challenges our team faced was
striving to bridge the gap between systems that are still being functionally designed
and the advantages that object oriented technologies offer. Therefore, we aiso came
to the conclusion that a fusion of modeling methods was necessary due to the relative

immaturity of the available techniques [Weesale 92].

When comparing and contrasting the understandability of modeling techniques, we
have found that one modeling technique could not do the entire job well. Since the
development of an understandable generic Application Support Layer (ASL) model is
critical to its future use we decided to combine several very different modeling
techniques. Our new modeling process includes utilizing functionally oriented models,
moving into a functional hierarchical grouping model, and then transitioning into a set
of object oriented models. Specifically, we used data flow diagrams [DeMarco 78],
state transition diagrams, flow charts, hierarchical diagrams, and object models

[Coad/Yourdon 91, Rumbaugh 91].

Studying the ASL software began by creating sketches of and reviewing pre-existing
data flow diagrams, state transition diagrams, and flow charts from documentation
available on the completed Army systems. These functionally oriented diagrams were

3

SEW Proceedings 325 SEL-93-003

beneficial to our understanding the systems because of the analysis team's experience
in developing functionally oriented software. In addition, capture of the functionality of
an ASL in these types of diagrams was performed quickly, since the example systems
being studied had been developed using functionally-oriented methods. Both the
analysts' experience and the system development techniques supported the easy
understanding of the processes performed by typical ASL software.

High-level data flow diagrams provided the basis for the majority of the analysis work
on the processes of the ASL software. For example, Figure 2 is a data flow diagram
(DFD) of the primary functions performed by the ASL software, according to the
functional descriptions of one of the systems studied. Also, shown in the same DFD
are the general data flows between the functions. This type of diagram provided an
understanding of the basic activities performed by an actual ASL code module.

Appln Lay
Appln
Perform Request to Appln Layer SW
Utilities & yer s '
Services Provide
Servic, Appln Appln Layer J Appin er
Requgst Layer SW Response nterface nse
Senvice
Response
User Reque
rovide
User/Machinej— Data Response
Interface
System Translated
RCSPODSC Rcsponsc Responsc
Help
Servicas/ R COTS
Reaues\ Infomalion) ® Provide
for Help COTS ific COTS
Provide nterface Comm
Help
Information o COTS
Response Packages

Figure 2 High-level data flow diagram of the ASL functionality of
one of the systems studied.

SEW Proceedings 326 SEL-93-003

Further breakdown of the processes helped to define the specific functions performed,
the role of these functions, and the existence of hardware and system dependencies
in the ASL software. For instance, the process in Figure 2 called Perform ASL Utilities
and Services includes sub-functions such as: Manage Errors, Perform Execution
Management, Manage Report Requests, Perform Platform Services, and Handle
Interprocess Communication. Note, the last two sub-functions in the previous list are
examples of hardware and software dependent activities. Though complete DFDs
were not created for each of the processes described by each of the ASL systems
studied, select functions were analyzed in greater detail to clarify the data and specific
operations involved.

As with many analysis efforts, the most familiar functions proved to be the most
difficult to accurately model. State transition diagrams and flow charts were used
occasionally to focus the analysis team on actual processing activities and data
manipulation details, instead of letting the team rely on sweeping assumptions. [n
some cases, functions were reviewed at a level of detail much finer than would be
captured in the final object-oriented model in order to avoid missing important
functionality.

Figure 3 shows an example flow chart of part of the analysis team's discussion on
how the ASL software provides the interface between the system user and the

Check butfer for
keypress

Keypressed?

Send Signal through
hardware to buffer

Execute the event
associated with
that keypress

Continue execution

Figure 3 A partial flow chart fepresenting the level of detail
discussed for some of the components of the Application Support
Layer domain.

5

SEW Proceedings 327 SEL-93-003

machine. Though details on keyboard use do not define software, they did provide
some insight as to the specific software objects involved such as text, lines and
shapes. The group reviewed the physical activities (i.e. pushing a function key) to
pinpoint the associated software (i.e. the ASL commands that perform the specific
data manipulation). By exploring the operations performed by the ASL software, the
data objects in this hidden layer of software were identified which assisted in providing
a more complete picture for the final object-oriented models.

Moving from a functional model to a object model can result in losing important
information. Therefore, in an effort to minimize the impact, a third technique called a
functional hierarchical grouping model was applied. This home-grown technique is the
fusion between a functional model and an object model. The technique consists of
putting the identified functions of the system in a hierarchical model and then grouping
the lowest level functions together based on the objects being manipulated. For
example, in Figure 4 below, all functions involving the human interaction with the
computer system were grouped together to form the basis of an object oriented user

machine model.

T ™~)) , :—--‘Lj \

A~

D,

...//
«

N
J
t

-
.
.

Application N S

Support
N Lgy?er z

/7 ™N

Accept Display

User
Input Output

fl Store Produce
Data Reports

Database
Object

User Machine
interface
Object

FIGURE 4 Starting with functional modeling techniques and moving
toward object oriented techniques, a fusion of methods occurred.

6

SEW Proceedings 328 SEL-93-003

The first objective in producing the hierarchical model was to list all of the functions
potentially performed by an ASL. The word potential is used because the interfaces to
the ASL also, needed to be defined. Therefore, in this case, too much high-level
information is actually helpful. As the top-level processes were broken down into less
complex sub-processes, the specific functionality of an ASL became apparent.
Activities performed by the application layer or the hardware support layer were
removed from the hierarchical model. For instance, one of the analysis team'’s first
hierarchical models included all of the components shown in Figure 5 below, but
through a series of iterations several of the components were determined not to be a
required part by the typical ASL. Some of the components were hardware support
layer activities, like the network functions and some of the components were found to
be embedded in other components. The Help functions are an example of this; that
is, most of the time, software modules contain their own help files, since Help is so
application dependent. In addition, some components were raised in importance
based on further analysis. For instance, the Kernel Support sub-function Platform
Abstraction in the hierarchical model shown in Figure 5 became a primary area of
focus in the final object-oriented model.

Application
Support
Layer
C |
Provide
Interface] Information Provide
User&Machmer Services System Services
Data Data
Handle Handle Comm. Mgmt. Help Language Kernel
Inputs Outputs Services Services Bindings Support
—O/S Blk.
yboard reen omm. Blk B I/F —Workstn
se Audio sg. Blk BMS Mgmt. Blk
en etwork Svcs. Blk L Network
creen Mgmt. Blk Report Mgr. Svcs.
Voice 1erprocess tring Utilities —Execution
Comm. Server

Figure 5 A sample of a draft hierarchical model for the
Application Support Layer domain.

SEW Proceedings 329 SEL-93-003

One facet of understanding a system that the functional and hierarchical diagrams did
not illustrate very well was the commonalities across the different ASL subsystems.
This aspect of the system was depicted more accurately by using object-oriented
models. Object-oriented models pull ali occurrences of the same data-type together,
grouping all attributes and operations. Details focus on the data instead of on the
functions. This permits code to be written with emphasis on the data being generic or
abstract. This data abstraction increases the reusability of the software components -
requirements architectures, design models, and code.

Three high-level object-oriented models created during this quick domain analysis
were the focus of reuse opportunities identification. These models were the Data
Base Management Systems model, the Platform Services model, and the User-
Machine Interface model. A simplified version of the Platform Services Object model
appears in Figure 6. Note, all data attribute and operation information has been
removed in this version of the figure to improve the readability of the model.

Message Spools t
4-| Queug Protocol o=
Sept to
Application | Destination [l 1o Directory
Congins
Communicates via Print
File
Message Queue L
Constts of Spodls to Tpr of TYPF of
[I Platform Network |
Header Format Body Configuration Configuration
Has Has Det[nes
Platform DeﬁnesL
7 7 Compgsed of
[[Py -
Input Display Hardcopy| [Network
Device Device Device
Gets input from | l_

Figure 6 This is a simplified version of the Platform Services
Object Model which was used to identify the software's basic

functionality.
8

SEW Proceedings 330 SEL-93-003

Unlike traditional domain analysis efforts, the primary objective in developing these
domain models was not to explicitly define all the details of each of the primitive
functions in the domain. Instead, this effort tried to provide an overview of the data
relationships and basic interactions. By determining the general data manipulations of
a typical ASL, the categories of components which are critical to the functionality of
this domain were pinpointed. For example, as shown in Figure 6, specifics of the
network were not needed, but understanding the relationship of the network
configuration with the rest of the platform configuration proved very useful. The
interaction of the ASL and the hardware support layer provided the distinction between
potentially reusable software components and those hardware dependent components
which require code, for instance, to be system unique.

Full lists of the data attributes and operations were developed for each object in each
model. This permitted each object to be treated as a black box; that is, no further
breakdown into sub-objects was necessary to expose software functionality. One
case of this occurred with the object Platform. One of the operations associated with
the object Platform is Enable/Disable Security. This single operation highlighted the
importance current software development efforts place on security functions. Security
functions are embedded throughout many software products, at multiple software
layers. Though the Platform Services Object mode! does not provide further details of
security functions, the high demand that software developers have placed on this
category of software was not lost by this analysis team. Security functions were
considered as prime reusable component candidates.

Besides providing a visual representation of the domain to assist in reuse opportunity
identification, this process of integrating multiple modeling techniques offers an
additional benefit. Though the faceted domain analysis approach described by Prieto-
Diaz could have been performed to identify reuse opportunities, no product would
have been available for future reusable component development. Typically, domain
analysis is considered to be divided into two types:

o} Consumer-oriented associated with reuse opportunities identification, and
o) Producer-oriented associated with the creation of reusable components
[Moore-Bailin].

However, the object-oriented models and their supporting documentation produced by
the procedure described in this paper can be used as a basis for reusable
requirements models. All of the high-level information on the domain is available in
these models and many of the domain component details can gleaned from the
analysis process documentation. Therefore, the final object-oriented models produced
by this process not only meet current needs, but also some of those for future reuse

planning.

SEW Proceedings 331 SEL-93-003

The purpose of performing reuse opportunity identification is to facilitate reuse within
one or among several system development efforts. During reuse opportunity
identification, systems are evaluated and selected as candidates for reusing software
components in their development life-cycle (client systems) and/or for developing and
providing reusable software components to support the software development life-
cycle of other systems (donor systems). Each potential client and donor system's
schedule, language and functionality are studied. This information, along with data on
the organization's policies, reuse knowledge and experiences, reuse training, and any
other information that might facilitate or limit reuse is researched.

A system's schedule together with the high demand categories (HDCs) of components
included in a system are the most crucial pieces of information needed when trying to
coordinate reuse between compatible systems. HDCs are classifications of software
components that are defined as being a necessity or requirement of all the systems
that are in a particular domain. The HDCs are chosen by domain engineers using the
generic architectures and domain models resulting from domain analysis. HDCs may
be either functional or object-oriented in nature. For this reason, the study of the
system’s functionality, as well as, the data or object-oriented aspects of the each
system involved in the reuse opportunities analysis is important.

This need of both functional and object-oriented views is where tusing modeling
techniques proved to be very beneficial. For example, the HDCs that evolved from
the domain analysis effort on the application support layer included process network
messages, manage data dictionary, user machine interface, and database
management system.

Once the analysis team had established the high demand categories from the domain
models, we had a basis from which to identify reuse opportunities. We then took the
potential client and donor system's schedules and identified which systems would be
the clients and which systems would be the donors. This schedule coordination is
critical to performing successful reuse opportunity analysis. The goal in this type of
analysis is to begin identifying the client-donor relationships as early as possible in the
client system's software development life-cycle (i.e. before requirements analysis, if
possible). This permits the software reuse to be planned into the client systems'
development schedule and thus, the largest cost benefits can be realized.

For systems which have similar software development schedules, if a client-donor
relationship is established early enough the systems can perform requirement analysis
or design development as a team. Then, one system could be chosen to write the
reusable code and donate it to the other. Or the systems could split the code
development effort and swap the highly reusable pieces before system integration
testing.

10

SEW Proceedings 332 SEL-93-003

After finding compatible systems according to schedule restrictions, the analysis team
took the products produced from the conceptual phase and/or the requirements from
the client system (depending on where the system was in the life cycle) and matched
them to the requirements and design of the donor system. The HDCs and the generic
models also guided this matching process by helping the analysts determine what was
reusable and what was application specific. Since the generic domain models
produced represent what is common (or reusable) among all systems in the ASL
domain the analysts using the models were able to quickly identify potential
opportunities for opportunistic and systematic reuse.

Summary

The initial use of this fusion of modeling techniques resulted in the development of a
complete, understandable high-level object-oriented ASL domain model. Since that
time, the technique has been applied successfully to the analysis efforts of other
vertical domains including the personnel and budget domains. In most of these
efforts, this fused modeling technique was employed to permit a very fast high-level
domain analysis for the purpose of reuse opportunities identification. Since traditional
domain analysis can take several person years per domain, this quick process
(measured in terms of person months, not years) proved to be substantially cost

effective.

However, our experience indicates that using multiple types of modeling techniques
closely linked together should enhance traditional domain and system analysis efforts
in general. Multiple views of a software modules functionality permits easier
identification of reuse opportunities, quickly locates inconsistencies in system design,
and encourages the development of more complete, reliable software products.

11

SEW Proceedings 333 SEL-93-003

iMs. Susan Main Hall is a Systems Consultant, Management, for SofTech,
Incorporated. She directs a technical group which supports the Army Reuse Center
through domain analysis, reuse requirements anzlysis, reuse opportunities
identification, library donor component selection, and quality assurance of reusable
software components. Additionally, Ms. Hall has over eight years experience in
supporting DoD Ada technical development efforts. She has participated in
independent verification and validation, modeling, and development. Ms Hall holds a
Bachelors of Science degree in Computer Science and a Masters of Science degree
in Computer Science with Software Engineering concentration from George Mason

University.

Ms. Eileen M. McGuire is an Associate Software Engineer for SofTech, Incorporated.
She preforms domain analysis, reuse requirements analysis, reuse opportunities
identification, and library donor component selection. Ms. McGuire holds a Bachelors

of Science degree in Management Science (Computer Based Decision Support
Systems Option) from Virginia Polytechnic Institute and State University.

References

Blaha, Michael, "Models of Models," September 1991

Caldiera, G. and V. R. Basili, "Identifying and Qualifying Reusable Software
Components,” IEEE Computer, Vol. 24, No. 2, Feb 1991, pp. 61-70

Coad, and Yourdon, Object-Oriented Analysis
Englewook Cliffs, NJ: Yourdon Press/Prentice Hall, 1991

Coleman, Derek, Fiona Hayes and Stephen Bear, "Introducing Objectcharts or How to
Use Statecharts in Object-Oriented Design,” IEEE Transactions on Software

Engineering, Vol. 18, No. 1, January 1992
Domain Analysis Guidelines, Draft, SofTech, Inc., May 1992

DeMarco, T., Structured Analysis and System Specification. Englewook Cliffs, NJ:
Yourdon Press/Prentice Hall, 1978

Fiscal Year 1994 Reuse Opportunities Reponrt, Final, SofTech, Inc., July, 30, 1993

Gomaa, H., L. Kerschberg, C. Bosch, V. Sugumaran and |. Tavakoli, “A Prototype
Software Engineering Environment for Domain Mcdzling and Reuse,” 1991

Iscoe, Neil, "Reuse - A Knowledge Based Approach,” NASA Software Engineering

12

SEW Proceedings 334 SEL-93-003

Workshop Proceedings, December 1992

Jacobson, Ivar and Frederik Lindstrom, “Re-engineering of Old Systems to an Object-
Oriented Architecture,” OOPSLA'91

Lubars, Mitchell D., "Domain Analysis and Domain Engineering in IDeA," IEEE 1991

McGarry, Frank, "Lessons Learned”, NASA Software Engineering Workshop
Proceedings, December 1992

Moore, John M. and Sidney C. Bailin, "Domain Analysis: Framework for Reuse
Technical Report", Computer Technology Associates, Rockville, MD, 193

Patel, Sukesh, William Chu, Rich Baxter, Brian Sayrs and Steve Sherman, "A Top-
Down Software Reuse Support Environment," 1992

Prieto-Diaz, Ruben, “Domain Analysis: An Introduction,” Software Engineering Notes,
Vol. 15, No. 2, April 1990

Prieto-Diaz, Ruben, "Domain Analysis for Reusability," Proceedings of COMPSAC
‘87, pp. 23-29

Rumbaugh, James, Michael Blaha, Wiliam Premerani, Frederick Eddy and William
Lorensen, Object-Oriented Modeling and Design, Prentice-Hall, Inc., 1991

Shumate, Ken, "BATCES Solution #1" an Object-Oriented Design from Functional
Requirements Analysis,” ACM Ada Letters, Nov/Dec 1993, Vol. Xill, Number 6, pp.
133-161

Tracz, Will, "Domain Analysis Working Group Report - First International Workshop on
Software Reusability,” Software Engineering Notes, Vol. 17 No. 3, July 1992

Wessale, Bill, "Large Project Experience with Object Oriented Methods and Reuse,”
NASA Software Engineering Workshop Proceedings, December 1992

13

SEW Proceedings 335 SEL-93-003

Fusing Modeling Techniques to
Support Domain Analysis for
Reuse Opportunities
Identification

by
Susan Main Hall
Eileen McGuire SOFTECH, INC.

Project Background

(Army Reuse Center, Software Development Center-Washington)

Needed quick methodology to:

» Perform Domain Analysis
— Application Support Layer Services Domain
—~ Four Army systems currently under development
- Systems and analysts were functionally oriented

» Focus on Identification of Reuse Opportunities
- Object-oriented models make this process easier

SOFTECH, INC.

SEW Proceedings 336 SEL-93-003

Problem Statement

Which provide a clearer understanding of high
-level system requirements:

Functional Models
or

Object-Oriented Graphical Representations

SOFTECH, INC.

Domain Analysis

Process of identifying commonalities in a class of
similar systems

Embedded Management Command
Weapons Information and Control

stems stems
Personne
System

Logistics
System
Financia
System

!

SOFTECH, INC.

SEW Proceedings 337 SEL-93-003

Fusing Modeling Techniques

Since one modeling technique could not capture the
domain analysis completely, we:

- Started with FUNCTIONAL models

« Moved to a functional HIERARCHICAL GROUPING
model

« Transitioned into a set of OBJECT-ORIENTED
models

SOFTECH, INC.

Functional Models

« Began by reviewing existing and creating new:
— data flow diagrams
-~ state transition diagrams
— flow charts
- Captured basic activities performed by the
actual Application Support Layer code module
being studied
- Overlaid each system on top of one another to
highlight commonalities and differences

SOFTECH, INC.

SEW Proceedings 338 SEL-93-003

Functional Models (continued)

CORE ASL FUNCTIONS _ Appln Laye

Appln
Request to Appin Layer SW
Layer SW
SAmSTTEd-App ApplpEayer
ervice Layer SW Response esponse
USCrequ Gponse 5 Dat ammand
Provide DawaRequest) Manage —
User/Machine}s— DataResponse ASL ASL Data
System nterfacg Translated COT Qata [ata Base
LS POTISE felp Response Response
Requekt Servides/
ucy :
for Helpn L OBl Request for COTS Specific COTS
0) COTS
R Oonse Packa ges
PO SOFTECH, INC.

Heirarchical Models

. Moving from a functional to an object model
can cause important information to be lost.

. So a home-grown technique was applied.

« This heirarchical technique consists of:
—listing the identified functions in a heirarchical tree

— grouping the lowest level functions together based
on the objects manipulated

~dividing functions into those IN the domain and

those INTERFACING WITH the domain.
SOFTECH, INC.

SEW Proceedings 339 SEL-93-003

Heirarchical Models (continued)

SAMPLE OF HEIRARCHICAL
GROUPING TECHNIQUE
Application
Support
Layer
pd N T N\
Accept || n;
User g':t':m’ Store | [Produce tee
Input Data | [Reports
User Machine Datab
nterface Object g;}eg?e

SOFTECH, INC.

Object-Oriented Models

- Used to illustrate commonalities across
Application Support Layer sub-systems

» Grouped occurrences of same data-type
together

« Captured data attributes

» Assigned functions to data

* Provided level of data abstraction to

increase reusability SOFTECH. INC

SEW Proceedings 340 SEL-93-003

Object Oriented Models (continued)

SIMPLIFIED PLATFORM
SERVICES MODEL Message 5.] Spools to
Queue Protocol |

Application | Destination| skntto Directory
Commynicates via Corgains
Message . m
yP% \Type
Conists of Spopls to of]
L ' Platform Network |
Headerj55[Format|i,s| Body Cmgi%uration Configuration
efnes
Platform Deﬁneb
Com&sed of
[| Py 1
Input | [Display | Hardcopy [\ +work

Device Device Device

Gets input from J —! SOFTI EC‘H, INC:

Reuse Opportunities Identification

f

Purpose: to facilitate reuse within one or
among several softare development efforts.

. During reuse opportunities identification,
systems are evaluated and selected as
candidates to:

— reuse software components in their software development
life-cycle (clients)

AND/OR

— provide reusable software components to support the
software development life-cycle of other systems

SOFTECH, INC.

SEW Proceedings 341 SEL-93-003

Models Assisted ROI

- Application Specific/System Unique components
were stripped away, using the functional and
heirarchical models.

- High Demand Categories were established, using
the domain models
— Functional
— Data-Oriented.

- Reusable software components were identified,
factoring in development schedules
- Requirements Architectures,
— Design Models,
— Code Modules.

SOFTECH, INC.

)‘ Summary (

« Multiple views illustrate a domain more clearly
than a single modeling approach
« This fusion of modeling techniques approach:
- identified more substantial reuse opportunity candidates,

—~ completed more quickly than traditional domain analysis, and

- provided a basis for future developement of a reusable domain
model.

7>

SEW Proceedings 342 SEL-93-003

N94- 3
6498

J2 670

P&

An Empirical Comparison of a Dynamic Software Testability
Metric to Static Cyclomatic Complexity*

Jeffrey M. Voas

Keith W. Miller

Jeffery E. Payne

RST Corp. Dept. of Computer Science RST Corp.
11150 Sunset Hills Road Sangamon State University 11150 Sunset Hills Road
Suite 250 Springfield, IL USA Suite 250

Reston, VA 22090 USA
(703) 742-8873
jmvoas@isse.gmu.edu

Abstract

This paper compares the dynamic testability pre-
diction technique termed “sensitivity analysis” to the
static testability technique termed cyclomatic com-
plexity. The application that we chose in this em-
pirical study is a CASE generated version of a B-737
autoland system. For the B-737 system we analyzed,
we isolated those functions that we predict are more
prone to hide errors during system/reliability testing.
We also analyzed the code with several other well-
known static metrics. This paper compares and con-
trasts the results of sensitivity analysis to the results
of the static metrics.

1. Introduction

The adage that non-exhaustive software testing
cannot reveal the absence of errors and only their
existence is as true today as it was when Dijkstra
wrote it [4, 1]. Unfortunately, between the time then
and now, we have begun to build orders-of-magnitude
more complex systems while our testing technologies
are no more advanced. Thus the same problems that
we had in past years when testing a 1000 line program
are compounded when we apply those techniques to a
10M line program today.

We must admit that we are building software sys-
tems that are destined to be inadequately tested.
Since we know this a priori, it suggests that we should
look for techniques that aid the testing process where
the process is known to be weak. In this paper, we
discuss one such technique: a method that quantifies
the dynamic testability of a system that is undergoing

©1993 RST Corporation, All Rights Reserved.

SEW Proceedings

(217) 786-6770

343

Reston, VA 22090 USA
(703) 742-8873

system/reliability testing. We will then compare the
results of this technique to other metrics that are in
wide-spread use today.

Software testing is performed for generally two rea-
sons: (1) detect faults so that they can be fixed, and
(2) reliability estimation. The goal of the dynamic
testability measurement technique presented in this
paper is to strengthen the software testing process as
it applies to reliability estimation. Dynamic testabil-
ity analysis is less concerned with fault detection, even
though it is plausible that a function that is more likely
to hide faults during system testing may also be more
likely to hide faults during unit testing. Instead, dy-
namic testability analysis is concerned with a lack of
fault detection.

II. Static Software Metrics

The study of software metrics has grown out of
a need to be able to express quantitative properties
about programs. The first software metric was simply
a count of the number of lines. This was acceptable
as a way of measuring program size, but was not ap-
plicable to other software characteristics.

Software complexity is another metric that tries to
relate how difficult a program is to understand. In
general, the more difficult, the more likely that errors
will be introduced, and hence the more testing that
will be required. Thus it is common for developers
to relate a software complexity measurement to the
allocation of testing resources. It is our experience,
however, that software complexity is still too coarse-
grained of a metric to relate to the testing of critical
software systems, those that must fail less than once
in 10° executions (or some other large number). Thus

SEL-93-003

even though software complexity can be useful as a
first-stab at how much testing to perform and where,
it is too coarse for assessing reliability in the ultra-
reliable region of the input space.

In this paper, we have considered 6 software met-
rics that are available in the PC-METRIC 4.0 toolkit:
(1) Software Science Length (N) (2) Estimated Soft-
ware Science Length (N*), (3) Software Science Vol-
ume (V), (4) Software Science Effort (E), (5) Cy-
clomatic Complexity (VG1), and (6) Extended Cy-
clomatic Complexity (VG2). We will briefly mention
what these metrics are; in general, any software engi-
neering text will go into more depth on these metrics
for the inquisitive reader.

Halstead [2] observed that all programs are com-
prised of operators and operands. He defined N; to
be the number of total operators and N, to be the
number of total operands. He defined length of a pro-
gram, N, to be:

N=N;+ N,.

Halstead also has a predicted length metric, N*, that
is given by:

N" = ny -loga(n1) + na - loga(ns),

where n; is the number of unique operators and nj is
the number of unique operands. Halstead has another
metric that he terms volume, V, that is given by:

V = N -loga(n; + na).
Halstead’s Effort metric, E, is given by:
E=V/L,
however most researchers use [5]:
E=V/(2/n;:-nz/N2)

McCabe’s cyclomatic complexity metric is less
based on program size (as are Halstead’s measures)
and more on information/control flow:

Vig)=e—n+2

where n is the number of nodes in the graph and ¢ is
the number of edges, or lines connecting each node. It
is the cyclomatic complexity metric that we are more
interested in for this paper, and most importantly how
cyclomatic complexity compares to the dynamic testa-
bility measure presented in Section 3.

SEW Proceedings

344

II1. Testability Analysis

Software testabilily analysis measures the benefit
provided by a software testing scheme to a particu-
lar program. There are different ways to define the
“benefit” of tests and testing schemes, and each differ-
ent definition requires a different perspective on what
testability analysis produces. For instance, software
testability has sometimes been referred to as the ease
with which inputs can be selected to satisfy structural
testing criteria (e.g., statement coverage) with a given
program. With this perspective, if it were extremely
difficult to find inputs that satisfied a structural cov-
erage criteria for a given source program, then that
program is said to have “low testability” with respect
to that coverage criteria. Another view of software
testability defines it as a prediction of the probabil-
ity that existing faults will be detected during testing
given some input selection criteria C. Here, software
testability is not regarded as an assessment of the dif-
ficulty to select inputs that cover software structure,
but more generally as a way of predicting whether a
program would reveal existing faults during testing
according to C.

In either definition, software testability analysis is
a function of a (program, input selection criteria) pair.
Different input selection criteria choose test cases dif-
ferently: inputs may be selected in a random black-
box manner, their selection may be dependent upon
the structure of the program, or their selection may
be based upon other data or they may be based on
the intuition of the tester. Testability analysis is more
than an assertion about a program, but rather is an
assertion about the ability of an input selection cri-
teria (in combination with the program) to satisfy a
particular testing goal. The same syntactic program
may have different testabilities when presented with
different input selection criteria.

In order for software to be assessed as having a
“greater” testability by the semantic-based definition,
it must be likely that failure occurs if a fault were to
exist. To understand this likelihood, it is necessary to
understand the sequence of events that lead to soft-
ware failure. (By software failure, we mean an incor-
rect output that was caused by a flaw in the program,
not an incorrect output caused by a problem with the
environment or input on which the program is execut-
ing.) Software failure only occurs when the following
three conditions occur in the following sequence:

1. A input must cause a fault to be erecuted.

2. Once the fault is executed, the succeeding data
state must contain a datae state error.

SEL-93-003

3. After a data state error is created, the data state
error must propagate to an output state.

The semantic-based definition of testability pre-
dicts the probability that tests will uncover faults if
a fault exists. The software has high testability for a
set of tests if the tests are likely to detect any faults
that exist; the software has low testability for those
tests if the tests are unlikely to detect any faults that
exist. Since it is a probability, testability is bounded
in a closed interval [0,1]. In order to make a prediction
about the probability that existing faults will be de-
tected during testing, a testability analysis technique
should be able to quantify (meaning predict) whether
a fault will be executed, whether it will infect the suc-
ceeding data state creating a data state error, and
whether the data state error will propagate its incor-
rectness into an output variable. When all of the data
state errors that are created during an execution do
not propagate, the existence of the fault that trigged
the data state errors remains hidden, resulting in a
lower software testability.

Software sensitivity analysis is a code-based tech-
nique based on the semantic definition of testability;
it injects instrumentation that contains program mu-
tation, data state mutation, and repeated executions
to predict a minimum non-zero fault size [7, 13]. The
minimum non-zero fault size is the smallest probabil-
ity of failure likely to be induced by a programming
error based upon the results of the injected instru-
mentation. Sensitivity analysis is not a testing tech-
nique, and thus it does not use an oracle, and can
be completely automated (provided that the user ini-
tially tells the technique where in the code to apply
the analysis).

Software sensitivity analysis is based on approxi-
mating the three conditions that must occur before a
program can fail: (1) execution of a software fault, (2)
creation of an incorrect data state, and (3) propaga-
tion of this incorrect data state to a discernible out-
put. This three part model of software failure [9, 10]
has been explored by others, but not in the manner
in which sensitivity analysis explores it. In this paper
we examine how to apply sensitivity analysis to the
task of finding a realistic minimum probability of fail-
ure prediction when random testing has discovered no
errors.

In the rest of this section we give a brief outline of
the three processes of sensitivity analysis. To simplify
explanations, we will describe each process separately,
but in a production analysis system, execution of the
processes would overlap. As with the analysis of ran-
dom testing, the accuracy of the sensitivity analysis

SEW Proceedings

345

depends in part on a good description of the input
distribution that will drive the software when opera-
tional (and when tested).

Before a fault can cause a program to failure, the
fault must be executed. In this methodology, we con-
centrate on faults that can be isolated to a single lo-
cation in a program. This is done because of the com-
binatorial explosion that would occur if we considered
distributed faults. A location is defined as a single
high level language statement. Our experiments to
date have defined a location as a piece of source code
that can change the data state (including input and
output files and the program counter). Thus an as-
signment statement, if, and while statement define a
location. The probability of execution for each loca-
tion is determined by repeated executions of the code
with inputs selected at random from the input dis-
tribution. An automated testability system, PiSCES
[11], controls the instrumentation and bookkeeping.

If a location contains a fault, and if the location is
executed, the data state after the fault may or may not
be changed adversely by the fault. If the fault does
change the data state into an incorrect data state, we
say the data state is infected. To estimate the prob-
ability of infection, the second process of sensitivity
analysis performs a series of syntactic mutations on
each location. After each mutation, the program is
re-executed with random inputs; each time the loca-
tion is executed, the data state is immediately com-
pared with the data state of the original (unmutated)
program at that same point in the execution. If the
internal state differs, infection has taken place. And
this is recorded by PiSCES and reported back to the
user.

The third process of the analysis estimates propaga-
tion. Again the location is monitored during random
tests. After the location is executed, the resulting data
state is forcefully changed by assigning a random value
to one data item using a predetermined internal state
distribution. After the internal data state is changed,
the program continues executing until an output re-
sults. The output that results from the changed data
state is compared to the output that would bave re-
sulted without the change. If the outputs differ, prop-
agation has occurred and PiSCES reports that back
to the user as a probability estimate.

For a test case to reveal a fault, execution, in-
fection, and propagation must occur; without these
three events occurring, the execution will not result
in failure. And for a specific fault, the product of
the probability of these events occurring is the actual
probability of failure for that fault. Each sensitiv-

SEL-93-003

ity analysis process produces a probability estimate
based on the number of trials divided by the number
of events (either execution, infection, or propagation).
The product of these estimates yields an estimate of
the probability of failure that would result when this
location contains a fault. Since we are approximating
the model of how faults result in failures, we also take
this multiplication approach when we predict the min-
imum fault size and multiply the minimum infection
estimate, minimum propagation estimate, and execu-
tion estimate for a given location. This produces the
testability of that location. We then take the location
with the lowest non-zero testability to be the testabil-
ity of the overall program.

IV. PiSCES

Several proof-of-concept sensitivity analysis proto-
types were built in the early 1990s. PiSCES is the
commercial software testability tool that evolved from
these prototypes. PiSCES is written in C++ and op-
erates on programs written in C. The recommended
platform for PiSCES is a Sparc-2 with 16 mbytes of
memory, 32 mbytes of swap space, and 20 mbytes of
hard disk space. For larger C applications, the amount
of memory that PiSCES needs increases, and thus we
currently are limited to running around 3,000-4,000
lines of source code at a time through PiSCES. For
larger systems, we perform anpalysis on a part of the
code, and when that is done, we perform analysis on
another part until all of the code has received dynamic
testability analysis. This “modular approach” is how
we get results for systems larger than 4,000 SLOC.

PiSCES produces testability predictions by creat-
ing an “instrumented” copy of your program and then
compiling and executing the instrumented copy. Al-
though it is hard to determine precisely, given the
default settings that PiSCES uses, the instrumented
version of your program is approximately 10 times as
large as the original source code. The instrumented
copy is then executed with inputs that are either sup-
plied in a file or PiSCES uses random distributions
from which it generates inputs.

V. Dynamic Testability Results

We were supplied with a C version of a B-737 au-
topilot/autoland that had been generated by a CASE
tool; the CASE tool has been under development by
NASA-Langley and one of their vendors for several

SEW Proceedings

346

years. We were told that as far as NASA knew, this
version of the autopilot/autoland had never failed; it
appears to be a correct version of the specification.
The version consisted of 58 functions; parameters to
the system included information such as direction of
wind, wind speed, and speed of gusts. The version we
used is not embedded in any commercial aircraft. In-
stead, the version is based on the specification of the
system that is embedded on aircraft, and hence this
code should contain most (if not all) of the function-
ality of the production aircraft system.

We should mention that the B737 source code was
approximately 3000 SLOCs, and it represents the
largest program to receive sensitivity analysis in its
entirety to date. Qur results here are based on 2000
randomly generated input cases that are correlated to
the following types of landing conditions:

1. no winds at all,
2. moderate winds, and
3. extremely strong winds with high gusts.

(We think it was important to exercise three major
classes of scenarios that the system would encounter in
operation.) We should mention that we found similar
results [12] when we used a different test suite with
1000 randomly generated inputs. The total amount of
clock time that it took for PiSCES analysis to run and
produce the results was 55 hours on a Sparc-2 (there
were no other major jobs running on that platform
during this time).

According to the Squeeze-Play model for testing
sufficiency for the B-737 version, sensitivity analysis
recommends 11,982,927 system level tests [8]. This
is based on the conservative testability prediction of
< 2.5E — 07 for the entire program; a conserva-
tive testabilily transiates into a liberal estimate of the
amount of needed testing. We use a conservative testa-
bility to ensure that we are not fooled into believing
that we have done enough testing when we really have
not. A testability written as an inequality indicates
that PiSCES encountered at least one location that
did not execute or propagate during analysis. One
possible quantification of this situation is to assign a
testability of 0.0, but that creates problems for fur-
ther analysis. Instead, PiSCES makes a reasonable
estimate on testability and signals the singularity with
the inequality. The process for doing this as well as
the mathematics are described in the PiSCES Ver-
sion 1.0 User’s Manual. (A 0.0 testability produces
an infinite amount of testing needed which is useless
to testers.) Since testing on approximately 12 mil-
lion inputs is impractical, there are other alternatives

SEL-93-003

for increasing the testability; if these alternatives are
applied successfully, they will decrease the number of
tests required, but we will not explain here how that
is done.

We now show the results for the 58 individual func-
tions of the B737.c system in Figures 1 and 2. As
you can see, there are 15 functions out of the 58 that
have a testability of greater than 0.01. These are func-
tions that the developer/tester need not worry over;
they appear to have little fault hiding ability. This in-
formation also tells the developer which functions (the
other 43) are more worrisome (in terms of hiding faults
at the system level of testing); by immediately isolat-
ing those functions of low testability, we gain insight
as to where additional testing resources are needed.
Note that the degree to which we consider a function
to be “worrisome” is a function of how much testing
is considered feasible.

As you can see from the bar charts, there were many
functions of low testability. This does not say that
these functions are incorrect (recall that this program
has never failed for NASA), but rather that these func-
tions should receive special consideration during V&V.
In our tool, there are ways of decreasing the recom-
mended testing costs if the user knows that the regions
of the code where the low testabilities occur are not
hiding faults. Although such knowledge is difficult to
obtain, it does provide the user with a justifiable way
of performing code inspections and testing sufficiency.

V1. Static Metric Results

This section provides several sets of data that we
collected from the B737 source code when we ran it
through a commercial metrics package with the de-
fault settings. Table 1 and Table 2 display the results
that were attained by running PC-METRIC 4.0 [5].

VII. Comparison of Results

Some software researchers and practitioners have
equated testability with McCabe’s cyclomatic com-
plexity or some other static metric. We contend that
such static measures do not capture the dynamic, data
dependent nature that is fundamental to testing and
our analysis of the effectiveness of testing.

In 1990, we introduced both a new definition of
testability and a new method for measuring testability
based on our definition. Still, we are frequently asked
how our definition compares to cyclomatic complexity,

SEW Proceedings

347

which we feel is a valid question. In this section, we
will try to show how these two measurement methods
differ, and what these differences mean for the typical
tester or QA manager.

As we have shown in Section 5, the B737 code had
functions of high testability and lower testability. If
the reader then considers Table 1, we immediately see
that the VG1 values for the functions of B737 never
exceeded 7, and for VG2, the functions never exceeded
10. According to the cyclomatic complexity measures,
all of these functions are labeled as “not complex;”
however sensitivity analysis has found that many of
these functions are more likely to hide faults during
testing than McCabe’s numbers might suggest.

Our interpretation for why this is true is simply
how the two metrics view a program; sensitivity anal-
ysis is based on the semantic meaning of the program,
whereas cyclomatic complexity is based on an abstract
and structural view of the program. It is true that
the structural view has some impact on the seman-
tics of the program, however during system level test-
ing, we argue that the information provided by cyclo-
matic complexity is essentially useless in terms of how
much testing to perform. Thus we conclude that for
unit testing, cyclomatic complexity is an easy means
of attaining a feeling for how good the structure of
the program is (essentially as a “spaghetti” code type
of measure), however for critical systems, we contend
that the semantic perspective on testability provided
by sensitivity analysis is far more valuable. Sensitiv-
ity analysis costs more, but the value added is also
increased.

VIII. Conclusions

We contend that the preliminary results of experi-
ments in software sensitivity are sufficient to motivate
additional research into quantifying sensitivity analy-
sis [13, 6]. Not only do we think that this technique
may hold promise in assessing critical systems, but in
Hamlet’s award winning IEEE Software paper [3] and
The National Institute of Standards and Technology’s
report on software error analysis [14], sensitivity anal-
ysis is acknowledged as a technique that should be
further explored for its potentially enormous impact
on assessing ultra-reliable software.

Although the subprocesses of sensitivity analysis
will in all likelihood require minor revisions as more is
learned about fault-based analysis, the ideas that mo-
tivate sensitivity analysis dispute the contention that
software testing is the only method of experimentally

SEL-93-003

Procedure N NV E VGl VG2

LIMITER 37 46 145 2186 3 3
LIM.180 59 72 259 4001 3 3
ONED 137 156 Tl4 25760 3 7
INTEGRATE 45 57 188 1642 3 3
FOLAG 43 68 186 2243 2 2
WASHOUT $3 72 233 3215 2 2
STATE 17 24 56 329 1 1
EZSWITCH 62 113 301 4694 2 3
KOUNT 66 71 290 3508 4 4
MODLAG 130 185 701 16964 2 3
MODLAG. 108 76 482 7706 7 7
MODLAG2 35 64 149 1772 2 3
MODLAG.3 68 82 308 5263 3 3
DZONE 22 40 84 €603 1 1
AUTOPILOT 276 610 1842 25716 2 2
MODE 172 323 1016 5166 1 1
MODES.2 178 351 1072 7309 1 1
MODE1 139 209 763 6940 1 10
MODE2 120 210 663 8948 1 8
CALC_GSTRK 120 134 605 9837 6 8
MODE3 108 168 576 7615 1 7
THROT 73 144 368 1432 1 1
ATHROT 180 310 1072 21174 5 7
PRE_FLARE 79 168 418 4840 2 2
VERSINE 29 57 121 605 1 1
WIND_SHEAR 99 151 512 6763 1 1
SPEEDC 18 36 67 320 1 1
AFTLIM 58 a7 273 3926 3 6
EPR.GAIN 43 72 189 2302 2 2
LONG.x 111 242 620 2391 1 1
LONGAP 226 399 1408 28817 3 3
CALC_HR 15 28 52 227 1 1
FLARE.CONTROL 135 185 728 12557 5 5
CALC.HDER 39 72 171 1485 2 2
PRE FLARE_LONG 98 185 528 7332 2 2
IN.ON_BEAM 39 71 171 1225 2 2
GSE_ADJ 37 67 160 1270 1 1
BEFORE.GSE 51 96 240 2657 1 2
BANK_ADJ 17 33 61 457 1 1
PITCH.ADJ 39 81 176 1491 2 2
CAS_ADJ 25 53 102 657 1 1
LATERAL 115 270 656 2394 1 1
LATAP 192 362 1173 19388 2 2
LOC.ERROR 78 128 390 4095 2 2
CROSS_VEL 18 36 67 320 1 1
LOCCMD 76 128 380 5510 2 2
LOCINT 46 101 219 1884 1 2
LOCCF 78 117 383 4521 4 4
CROSSTKADJ 33 71 145 957 2 2
BANK 90 156 469 5894 3 4
PHICMDFB 83 145 426 5830 2 3
RtocA XFD 103 191 559 7847 2 2
CALC.PSILIM 57 76 254 2898 3 3
SPOILER 51 81 231 2391 2 2
AIL_CMD 97 169 513 5287 4 4
RUDDER.CMD 75 145 385 3751 3 3
OUTERLOOPS 39 69 169 650 1 1
AUTOOL 69 117 339 3386 3 4

Table 1: Software Science Length (N) Estimated Software Science Length (N"), Software Science Volume (V),
Software Science Effort (E), Cyclomatic Complexity (VG1), and Extended Cyclomatic Complexity (VG2) for
B737.c :

SEW Proceedings 348 SEL-93-003

Metric Score
Software Science Length (N): 4707
Estimated Software Science Length (N*): 4107
Software Science Volume (V): 42147
Software Science Effort (E): 7963380
Estimated Errors using Software Science (B"): 13
Estimated Time to Develop, in hours (T*): 123
Cyclomatic Complexity (VG1): 70
Extended Cyclomatic Complexity (VG2): 111
Average Cyclomatic Complexity: 1
Average Extended Cyclomatic Complexity: 1
Average of Nesting Depth: 1
Average of Average Nesting Depth: 0
Lines of Code (LOC): 3312
Physical Source Stmts (PSS): 2683
Logical Source Stmts (LSS): 569
Nonexecutable Statements: 861
Compiler Directives: 9
Number of Comment Lines: 1384
Number of Comment Words: 1985
Number of Blank Lines: 629
Number of Procedures/Functions: 58

Table 2: Summary of Static Metric Scores

quantifying software reliability. We believe that dy-
pamic testability analysis is a new form of software
validation, because it is quantifying a semantic char-
acteristic of programs. We cannot guarantee that sen-
sitivity analysis will assess reliability to the precisions
required for life-critical avionics software, because as
we have pointed out, low testability code can never be
tested to any threshold that would strongly suggest
that faults are not hiding. However, we do think it
is premature to declare such an assessment impossible
for all systems, and we feel that this topic deserves
attention both from the avionics community as well
as the software engineering and testing communities.

This experiment demonstrates important differ-
ences between static and dynamic analysis of how
much testing is required. Admittedly, dynamic infor-
mation is far more expensive to attain; but for the
additional cost, the precision derived we feel is justi-
fied. This expense comes mainly from the fact that
the input space and probability density function are
also considered when assessing how much testing is
necessary, not only the structure of the code. And
this expense is in computer time, not human time.

We have felt that static software metrics are too
assumption-based to be useful for predicting how to
test critical systems. For this reason, we developed a
new perspective on testability, a new way of measuring
that definition, and commercialized a tool to perform
the measurement.

SEW Proceedings

349

Acknowledgement

This experiment was funded through NASA-
Langley Grant NAG-1-884. The authors thank Carrie
Walker for supplying us with the B737 auto-generated
code from the ASTER tool.

Disclaimer

The code supplied to us was from NASA and not
Boeing, and as far as we know, this code and the testa-
bility results do not reflect the quality of the software
used in Boeing aircraft or produced by Boeing. Boeing
is in no way affiliated with this experiment nor RST
Corporation.

References

(1] E. DuksTRA. Structured Programming. In
Software Engineering, Concepts, and Techniques.
Van Nostrand Reinhold, 1976.

[2] M. H. HALSTEAD. Elements of Software Science.
New York:Elsevier North-Holland, 1977.

[3] D. HAMLET. Are We Testing for True Reliability?
IEEE Software, pages 21-27, July 1992.

[4] O. J. DanL, E. W. DuskTRA, AND C. A. R.
HoARg. Structured Programming. Academic
Press, 1972.

SEL-93-003

[5] Ser LaBoraTories INc. PC-METRIC User’s
Manual.

[6] 3. Voas, J. PAYNE, C. MICHAEL AND K. MILLER.
Experimental Evidence of Sensitivity Analysis
Predicting Minimum Failure Probabilities. In
Proc. of COMPASS’93., NIST, Washington DC,
June 1993.

[7} 3. Voas, L. MoreLL, AND K. MILLER. Predict-
ing Where Faults Can Hide From Testing. IEEE
Software, 8(2):41-48, March 1991.

[8] J. Voas anp K. MILLER. Improving the Soft-
ware Development Process Using Testability Re-
search. In Proc. of the 3rd Int’l. Symposium on
Software Reliability Engineering., pages 114-121,
Research Triangle Park, NC, October 1992. IEEE
Computer Society.

[9] L. J. MoreLL. Theoretical Insights into Fault-
Based Testing. Second Workshop on Software
Testing, Validation, and Analysis, pages 4562,
July 1988.

[10] L. J. MoRreLL. A Theory of Fault-Based Testing.
IEEFE Transactions on Software Engineering, SE-
16, August 1990.

[11] J. Voas, K. MILLER, AND J. PaynE. PISCES: A
Tool for Predicting Software Testability. In Proc.
of the Symp. on Assessment of Quality Software
Development Tools, pages 297-309, New Orleans,
LA, May 1992. IEEE Computer Society TCSE.

[12) J. Voas, K. MIiLLER, AND J. PAYNE. Software
Testability and Its Application to Avionics Soft-
ware. In Proc. of the 9tk AIAA Computers in
Aerospace, San Diego CA, October 19-21 1993.

[13] J. Voas. PIE: A Dynamic Failure-Based Tech-
nique. IEFE Trans. on Software Engineering,
18(8):717-727, August 1992.

{14] W. PenG anp D. WaLLACE. Software Error Anal-
ysis. Technical Report NIST Special Publica-
tion 500-209, National Institute of Standards and
Technology, Gaithersburg, MD, April 1993.

SEW Proceedings

350

SEL-83-003

2
2
92

s PRy

A 2o g % % TS 28 s
R RSt % S Z A R s 2 _
e i /‘é P IR S T DL g
i i EREMY

et LA led G505 50%: 597 S as

sy
SRR SRR g

Figure 1: Testing needed given "raw” testability score for autoland module.

SEW Proceedings 351 SEL-93-003

T

Figure 2: Function testabilities for autoland.

10

SEW Proceedings 352 SEL-93-003

TS
R
SRS

N

e

oo aonoe

g
g

e P 53 003 08 0 8 0 MR

T,
ey

Figure 3: More function testabilities for autoland.

11

SEW Proceedings 353 SEL-93-003

An Empirical Comparison of a
Dynamic Software Testability
Metric to Static Cyclomatic
Complexity

Jeffrey Voas

Reliable Software Technologies Corp.
11150 Sunset Hills Road, Suite 250
Reston, VA 22090

(703) 742-8873
jmvoas@isse.gmu.edu

Achieving vs. Assessing Quality

® Quality is a “buzzword” that everyone uses, but in
software quality there are two distinct issues that
must be addressed:
— Achieving quality is the role of life-cycle phases such as: design,
requirements, coding.
— Assessing quality is the role of testing and V&V,
m It may be more difficult to assess quality than it is
to achieve it, which is very counter-intuitive.

SEW Proceedings

354

SEL-93-003

Assessment if Qur Business

@ We then are interested in software assessment
techniques that will provide an extra confidence not
directly available from testing that the code is
reliable.

m Type of Software that we are concerned with:

— Critical

— Has not failed since its last modification, however we have not
exhaustively tested it, nor have we any proof that it is correct.
All that we do have is knowledge that it has not failed during

recent testing/usage.

— The testing that has been performed has been with a tiny
proportion of the potential input space that this system will
encounter in use.

© Copyright 1993, RST Corporation

Theoretical Barriers to Exhaustive
Testing

m from [Manna and Waldinger ‘78]
— “We can never be sure that the specifications are correct”
— “No verification system can verify every correct pregram”
- “We can never be certain that a verification system is correct”

m Therefore we must shift from a “deduction” to a
“seduction” [Beizer ‘90].

SEW Proceedings 355 SEL-93-003

Difference between Testing and
Testability

m Testing is defined with respect to some “authority”
that asserts whether an output is correct.

m Testability says nothing about correctness, but
rather the likelihood of incorrect output occurring.

m This is a fundamental difference that needs to be
understood.

Balls and Urn

m Testing can be viewed as selecting different colored
balls from an urn where:
— Black ball = input on which program fails.
— White ball = input on which program succeeds.
m Only when testing is exhaustive is there an
“empty” arn.

AN Balis

OOOO‘OOOO.O

Um Q000000
OOOOOO.OOOOOO‘OOO
@0OO00000000

SEW Proceedings

356

SEL-93-003

Relating the PDF to Ball Density

Ay ——— -——-—-]

1 2 gt valmes

®
®

®
®®
®

© Copyright 1993, RST Corporation

Scenario 1 : A Program that
Always Fails

m This urn represents a program that fails on every
possible input i.e., 2 probability of failure of 1.0.

SEW Proceedings

357

SEL-93-003

Scenario 2 : A Correct Program

m This urn represents a program that succeeds on
every possible input i.e., a probability of failure of
0.0.

Scenario 3: A Typical Program

m This urn represents virtually all software in use
today.

SEW Proceedings

358

SEL-93-003

Traditional Definition of Software
Testability

m Definition: the ability of a system to be easily and
thoroughly tested, where thoroughly means that a
particular coverage metric is achieved (e.g. statement
coverage, branch coverage).

m Based on the weak assumption that covering code means
no faults remaining.

a Example: McCabe’s Cyclomatic Complexity Metric
[IEEE Transactions on Software Engineering, 1976].

Cyclomatic complexity

V(G) = # of regions
of
V(G)=L-N+2P
where:
L= # of links
N = # of nodes
P = disconnected parts

Our Definition of Software
Testability

that existing faults will be revealed during
testing according to some testing scheme D. B
(D is some input representation)

m If there is a fault at a particular location,
how likely is it you will see the fault as a
failure during testing according to D.

@ If faults are unlikely to cause failures then it
is obvious that the fault will be difficult to
detect during testing.

m Definition: a prediction of the probability \}Q/,

SEW Proceedings 359 SEL-93-003

Why Our Testability Definition?

= Ideally, we wish to be in the state of the tester’s
utopia.

B We need some way of measuring how close we are
to that situation.

@ A metric such as McCabes does not allow us that

ability.

© Copyright 1993, RST Cerporation

How Testability Can Affect the
Balls and Urn: Ball Stringing

B Fault size represents the number of inputs that
cause failure for some specific fault.

B The following urn represents five faults in the
program, each of size one.

© Copyright 1993, RST Corporation

SEW Proceedings 360 SEL-93-003

Ball Stringing (cont.)

@ This urn has five inputs that cause failure that are
all caused by one fault in the program.

m Thus, this fault is of size five.

© Copyright 1993, RST Corporation

Testability and Balls and Urn

m Testability can be viewed as an assessment of how
the black balls (if any) are distributed throughout

the urn.

m With high testability, any string of black balls is
long.

m With low testability, any string of black balls is
short.
High: Shortest string is 4 Low: Longest string is 2

SEW Proceedings 361 SEL-93-003

Example of Hiding Fault

x=x-1(z=x+1)

x = x div 30000

S outpat > write (x)

© Copyright 1993, RST Corporation

How Will We Predict the “Coloring”
and “Stringing” Within the Urn?

® Use lower level of code abstraction than McCabe.
m Use mutation analysis techniques.

m Approximate all 3 conditions of the fault/failure
model.

m Increase error classes considered beyond those
generally considered by fault-based/error-based

techniques.

B Use dynamic code analysis instead of static code
analysis.

SEW Proceedings 362 SEL-93-003

The Basis for True Testability: The
Fault/Failure Model

m Model published by Hamlet, Morell, Richardson
(RELAY) at different times in the 80s.

m For a fault to result i failure the following three
conditions are necessary and sufficient:
~ Faults must be executed (reachability).
— Data state must become infected (necessity).
— Infected data state must propagate to an sutput variable
(sufficiency).
m If any one of these conditions does not occur for a
particular input and a particular fault, the fault
does not cause a failure.

There are Three Urns

m Actual (or Conceptual): can never fully see this urn
unless testing is exhaustive.

m Estimated: from testing; a poor approximation in
general.

m Predicted: from sensitivity analysis; omly predicts
how any black balls are strung/dispersed.

m Note that all three urns are based on the same
input distribution.

SEW Proceedings 363 SEL-93-003

What is this Mess??

m For years, researchers in reliability/testing have
asked the question: “What is the probability that this
program will fail?” Now for a program that hasn’t
yet failed, this is a very difficult question. If the
program would at least fail x times, we could
roughly say that the probability of failure is x/N,

W This immediately suggests a problem with testing, in
the case where the program has not failed.

m So we decided to ask a different question: “What is
the probability that this program can’t fail even if the
program is incorrect?” This is the purpose for the
predicted minimum failure probability.

© Copyright 1993, RST Corporation

HHHE
1 1
1]
EE B737.c Experiment
(1

m Source code generated with a NASA-Langley

CASE tool, ASTER.
m 3,000-4,000 source lines, 58 functions.
m Auto-Pilot-Auto-Land system.

m Discrete-event simulation; no real-time.
m 2,000 randomly generated inputs

- no winds at all
-~ moderate winds
- extremely strong winds with high gusts :
m 55 hours for dynamic analysis, Sparc-2. .
x
.
11111

SEW Proceedings 364 SEL-93-003

EE S Results Comparing Dynamic
EE Testability to Cyclomatic
e Complexity

m 15 of 58 functions were of “high” testability.

m Several of the remaining functions, although
of quite low testability, were exhaustively
testable.

m All 58 functions had cyclomatic complexity
values in the <10 range.

m Since cyclomatic complexity only partially
estimates the 1st condition in the fault/failure
model (no pdf), it is unable to predict the
“chaining” within the urn.

SEW Proceedings 365 SEL-93-003

" N94- 36499
SOFTWARE QUALITY: PROCESS OR PEOPLE

by

Regina Palmer

/ R/ ? 7 Martin Marietta Astronautics
P.O. Box 179, M/S S1008
Y Denver, CO 80201
P -~ (303) 977-5748
&
Modenna LaBaugh
R&FC Group

3076 So. Hurley Circle
Denver, CO 80227
(303) 986-3729

This paper will present data related to software development processes and personnel involvement
from the perspective of software quality assurance. We examine eight years of data collected from
six projects. Data collected varied by project but usually included defect and fault density with
limited use of code metrics, schedule adherence, and budget growth information. The data are a
blend of AFSCP 800-14! and suggested productivity measures in Software Metrics: A Practioner’s
Guide to Improved Product Development.? A software quality assurance database tool, SQUID,?
was used to store and tabulate the data.

——

The projects represented varying degrees of programmer expertise, acquaintance with software
engineering techniques, and languages including Ada, C, FORTRAN, LISP, Pascal, and Prolog.
The programs evaluated were engaged in the production of simulation, R&D, mission operations,
flight, or ground support software. The size of the programs ranged from small, $500K to $2 million,
to large, in excess of $40 million.

Amongst the projects, we were able to track the responsiveness of different programmers to improv-
ing quality based on assessment and feedback. When quality goals and standards were established,
and stressed by management, the compliance of all could be obtained. Knowledge of management
expectation was especially important. This could be seen in how peers reviewed each other’s work
according to the tone set by their lead.

At a company such as Martin Marietta which develops software for various agencies of the govern-
ment, each with its own concept of getting the job done and the related cost, flexibility of process is
often sought. Such flexibility usually translates into eliminating budget for independent assessment

1 AFSCP 800-14, Software Management Indicators, Management Quality Insights, Air Force Systems

Command, 20 Jan 1987.

? Software Metrics: A Practioner’s Guide to Improved Product Development, K. H. Moller and

D. J. Paulish, Chapman and Hall, 1993.

3 Software Quality Assurance Interactive Database, produced by R&FC Group.

SEW Proceedings 366 SEL-93-003

of the quality of products and processes. It is easily argued that the engineers themselves are re-
sponsible for the quality of goods and will see to it. As soon as signs of engineering neglect appear,
this course is overturned and outside evaluators play catch up on project. Such action is not cost
effective, but can produce an accepted delivery. The most cost effective quality program, in our
experience, is one that assesses the output of individuals early in the process then concentrates on
those who show the least commitment or understanding of the quality of work expected.

In our case studies, deviation from expected output seems to occur amongst programmers who have
only produced software for internal use that does not need integration or coordination with other
software producers, those without a familiarization with programming standards and procedures,
and those who believe rules were made for someone else. The first two are helped by a well defined
process, the latter are a roadblock in any effort.

The success or problems of the process used on six programs is presented here. Each program is
characterized according to lines of code effort, number of programmers, experience level of program-
mers, criticality of software, degree to which contract requirements or budget guided the process
selected, and success of the process implementation as measured by the quality assurance effort.
The projects reported range from the best of all possible worlds to the worst.

The best world is one where all (most) parties agree on the process and are committed to adherence.
Next best has management in agreement with a restrained acceptance by the programming staff.
The worst world has a process imposed upon other habitual methods causing rework costs to soar
and pitched battles on a daily basis over budget and schedule.

Case study 1 was a model small program involving non critical ground support software written to
perform on a personal computer. Data from it is included to show nominal cost of quality when
the process produces the desired result with little rework.

Case study 2 involved a small project of four to seven programmers developing non critical software
in C and Prolog. Response of the programmers to metrics collection was examined and its influence
on their subsequent work analyzed.

Case study 3 was a large project involving a software engineering staff of 20 to 40 people using
Ada to develop software for a space experiment with human interaction and support software.
The performance of groups of programmers in the process defined for a full life cycle program is
examined and related to varying management expectation.

Case study 4 is our worst case model, where everything is wrong and the solution requires replace-
ment of staff. The programming languages were C and assembly.

Case study 5 was a medium sized project producing flight and ground software for a space exper-
iment written in Ada and C. It had a well defined process and the study documents how much
rework was involved related to programmers per their level of acceptance of the process imposed.

Case study 6 was a small project that was an engineering support task for one of the NASA centers.
It is used to show the difference in performance of the programmers involved based on their past
experience with software engineering discipline. No contract criterion was available but each was
totally responsible for code to work on a particular platform.

SEW Proceedings 367 SEL-93-003

DEFINITIONS

Productivity where reported was calculated from total software engineering hours, including support
from or for systems engineering, systems testing, program management, software quality assurance,
and direct support from areas like finance and planning. It represents the deliverable lines of code
divided by these hours times an eight hour day.

Fault Detection is reported in a form to show what activity was used to find defects and in what
phase they were found. It is also sometimes displayed to emphasize the quantity of defects found
in house versus at the customer’s site. Types of defects are reported if needed to explain the
other data. The process of tracking discrepancies in software provides information to help improve
productivity and efficiency. When problems are discovered during integration and system test, the
priority of the error is examined in addition to what caused the error. Priority of errors can range
from errors that make the system inoperable to errors that do not disrupt the running of a test.
The following details the levels of priority used by this paper:

A - error in the code in which the software did not meet the requirements or design, an error which
was a documentation error which caused the code to not meet the requirements or a code error
which crashed the system making the system non operational until the error was fixed.

B - error which crashed the system but there was a work around and the system could be used.
C - error found in the code which did not interfere with the operation of the system.
D - a minor error in the code such as a typographical error in a help message.

The cause is examined to identify the reason for the error. The cause could be a requirements
error, design error, coding error, hardware interface error, or a requirements change directed by the
customer.

In the few examples where code metrics are used to emphasize the difference between programming
groups, items found of value were the size of modules, and adherence to coding standards.

Schedule adherence was based on planned dates for major milestones versus actuals and slippage in
the final delivery. A major milestone was usually a formal review or delivery. In program 3, which
was cancelled before delivery and stretched out twice before then, adherence to internal schedules
was used to compare team performance and responsiveness.

PROGRAM 1 was a model small program involving non critical ground support software written
to perform on a personal computer. Data from it is included to show nomiral cost of quality when
the process produces the desired result with little rework. This program consisted of 7500 lines
of mission operations software. There was a software lead, six software engineers, one systems
engineer, and a test engineer. The 7500 lines of code were required to be developed and delivered
in six months. The entire team was experienced in developing and testing software. The program
philosophy was to use senior personnel to ensure that every task was completed on schedule.

The program began by producing a software development plan to document the process to be
implemented. As the SDP was being developed, the program conducted tabletop reviews with

the engineers that would implement the plan, SQA, test, systems, and the customer representative.

3

SEW Proceedings 368 SEL-93-003

u Moy

e

The tabletops were used to ensure that a process was developed that incorporated good engineering
practices as well as being streamlined. Once the SDP was approved and agreed upon by everyone,
the requirements were finalized. The customer was very involved assuring that the requirements
were finalized in a timely manner because of the tight schedule. A requirements review was held to
baseline the requirements with the customer. Design and code walkthroughs were held to ensure
that the design and code implemented the requirements and that the design and code standards
were adhered to. At each of the walkthroughs the software lead, SQA, test, systems, and a customer
representative were present. This ensured that everyone was aware of the state of the software and

agreed upon the results of the walkthroughs.

Figure 1 shows the planned versus actual schedule adherence by program 1. One week of slip in the
schedule occurred during the code phase but that slip was recovered during system test allowing
the program to still deliver the software on time to the customer.

Requirements Phase

Planned S
Requirements Phase B =
Actual]

Design Phase
Planned
Design Phase
Actual

Code Phase
Planned
Code Phase
Actual

System Test
Planned
System Test
Actual

Total Plan

Total Actual

Figure 1 - Program 1 Schedule Adherence

The results of the reviews of the requirements document are shown in table 1. The requirements
document improved after each review excluding the preliminary design phase which had a review
cycle too short to allow incorporation of meaningful corrections.

Table 1. SRS Document Completion Index

Phase DI Score
(1.0 high)
Requirements .67
Design (PDR) 67
Design (CDR) 77
Coding .83

Figure 2 shows the breakout of the types of errors found in each phase of the life cycle. Most of
the requirements errors were discovered during the requirements phase. The requirements errors

4

SEW Proceedings 369 SEL-93-003

found during the system test phase were due to the customer changing the requirements prior to
delivery. Overall the errors found during the life of the program resulted in a fault density score of
0.8 discrepancies per 1K line of code. There were no errors found after delivery of the software to
the customer site. 93% of the discrepancies were found before system test.

E Requirements Design Coding
rror
Source: Errors Errors Errors
17% 51% 32%
r y
Requirements Design Code Acceptance

Detected In: Reviews Walkthroughs Walkthroughs Test

11% 33% 49% %

Figure 2 - Percentage of Errors Found by Software Phase

This small program was very team oriented. At the start of the program, the lead, software
engineers, test, SQA, and the customer representative got together and decided that everyone would
need to work together to meet the scheduled delivery date. All engineering staff were experienced
in their fields and responded to action items from their peer reviews rapidly. The productivity was
below expected standards but adherence to schedule and accuracy of the code were the drivers.
Measured by those standards, the program was everything desired.

PROGRAM 2 was less than $2.5 million including delivery of commercial workstations used in
development. Requirements and most design had been accomplished under a previous contract. The
documentation produced under the previous contract included a system specification and functional
description document. Effort reported was a planned two year implementation and system test
with two deliverable prototypes and a final operating capability. New deliverable documentation
to be produced to Air Force standards included program and database specifications, and the
user’s manual. Projected coding effort called for five to seven programmers, including three leads
with more than two years experience at the company and the remainder being college graduates.
Contract was bid with a 20 LOC per day goal for each engineer. 81KLOC were developed (70K
C, 11K Prolog/LISP) and 199KLOC delivered (included legacy code from previous contract). The
end product was software used in a lab environment.

The process involved informal walkthroughs involving the software lead, programmer, tester, and
quality. Unit Development Folders were maintained till delivery. Programming standards described
headers required for all code, commenting and self descriptive naming for variables. A guideline of
less than 100 LOC per module was not enforced. A tester who was not part of the software devel-
opment staff was used for Computer Software Component (CSC) integration into the prototypes
and final delivery. Only test results of the CSC integration were reviewed. Discrepancy tracking
was initiated at CSC integration.

Defects were measured only through the testing program. Software measures for code simplicity,
self-descriptiveness, and conciseness were obtained on the C code. This was accomplished with
a code reading tool that calculated the Halstead Measure,! branching complexity, lines of code,

4 Elements of Software Science, M. Halstead, Elsevier, 1977.

SEW Proceedings 370 SEL-93-003

commenting as a percentage of total non blank lines, and variable density. The numbers found for
the code were not used as acceptance criteria. They provided a background from which to evaluate
changes in the code resulting from error reports. Large changes in any score were viewed as cause
to reconsider acceptability of proposed changes. Such a screening was used due to limited resources
for people to review changes.

The programming standards on the project were dictated by two of the leads. They adhered
to them, the third lead did not and the junior programmers did only after they became aware
that lack of adherence was reported to management. Most programmers responded positively
when management made metrics goals visible to them. In the first audit of code compliance to
standards, two samples were taken representing code from senjor programmers in sample A and
less experienced programmers in sample B. 81% of sample A was above average in score, but only
59% was above average in sample B. Sample B ratings tended to be either very good or very poor
with less than 20% of the modules falling in the middle. The results of the audit were distributed to
the programmers and a limited amount of time was authorized for rework. The group represented
in sample A reworked code that fell below the minimal acceptable level raising their mean score to
3.8 from 3.6. Sample B programmers reworked all code scoring average or below bringing up the
mean score for sample B to 4.4 from 2.9. The entire sample rose to 4.1 (excellent) from 3.2 (good).

Table 2. Code Compliance Audit

Sample Modules Score Rework
A 154 3.6 3.8
B 176 2.9 4.4
A+B 330 3.2 4.1

A major problem in the methodology used on this program was the lateness of finding the majority
of errors. 85% of the errors in the code were not found till integration of the final deliverable
though 60% existed in code baselined a year earlier. This occurred due to inexperience on the
part of the integration tester and a flaw in the test philosophy of the development personnel.
The tester assumed unit testing of low level functions had been performed by the developers.
The software leads were more involved in code development than anticipated and did not exercise
sufficient oversight of the unit test effort. Functional testing of the first baseline was not performed
because it was legacy from the previous contract and assumed working because of acceptance at
the customer’s site.

Table 3. Discrepancies in the Baselines

Baseline Size Fault Density
10C1 22KLOC 20
10C2 33KLOC 3
FOC 70KLOC 3

After delivery of the second prototype, the test philosophy on the program changed. More unit
testing was demanded before integration. Upon being told that code discrepancies were being
tallied during integration testing, the programmers became very active in finding and documenting
errors in the baselined code while performing unit testing prior to integration of their own code
with that baseline.

SEW Proceedings 371 SEL-93-003

The following table is in order of programming experience.

Table 4. Code Fault Density by Programmer

Programmer Fault Density of Code
Pl - sw lead 8
P2 - sw lead 18
P3 - new graduate 10
P4 - new graduate 8
P5 - new graduate 17

P2 and P5 were reluctant to take time to test. P4 was used to do most correction of P2 code and
P3 was used to correct P5 code because of the low fault density of code they wrote.

E 10C 1 10C 2 FOC
rror
Source: Errors Errors Errors
50% 14% 36%
\ Y
\ A
System System System
Detected In: Test Test Test
4% 6% 77%
Site Site Site
Test Test Test
2% 2% 9%

Figure 4 - Distribution of Errors in Baselines

The perceived error rate (that seen by the customer) was 1 fault per 1000 LOC. This was low in
the customer’s experience and the customer was pleased with the software and regularly used the

prototypes from the first two deliveries.

Table 5. Error Detection Activity

Phase Engineering Test Site Use
Errors Found Errors Found
I0C1 4% 2%
10C2 6% 2%
FOC1 21% 8%
FOC2 56% 1%

Schedule slippage appeared after planned enhancements to old code were completed and newly
developed code was nearing baseline. Up to three months before the planned delivery date for
the final operating capability, the program manager was reporting the program was on schedule.
Estimates made by the quality representative of test completeness projected that 90% of the errors

SEW Proceedings 372 SEL-93-003

in the code had been found. This was based on the completeness of scheduled testing by the
test department and the assumption that the error rate established in the first baseline testing
of 2 defects/KLOC would not grow to more than 4. Unfortunately, this estimate was in error as
became apparent when attempts to verify the completeness of unit testing for the final delivery
were initiated.

JOC1 Phase

Planned ﬁ J
1OC1 Phase I;:::; T
Actual e
10C2 Phase
Planned

10C2 Phase
Actual

FOC Phase
Planned
FOC Phase
Actual

Total Plan

Total Actual 30% slip

Figure 6 - Program 2 Schedule Adherence

The goal of 20 LOC per day per engineer was not met though at 16 LOC per day they did exceed
the company expectation at that time for production of ground support software. General problems
surfaced in relation to additional resources required to bring into compliance the code of the third
senior programmer and to make functional legacy software that should have been working but was
not. This effort, undertaken at the end of the development program, contributed to a significant
cost overrun that ate all profit bid for the program plus additional company funds.

The planned quality assurance budget on the program was exceeded by 10% and engineering budget
by 36%.

PROGRAM 3 was valued at more than $500 million including major space qualified hardware
development but less than $30 million for software. Software effort was projected to include from
14 to 40 developers over three years. There were five leads with experience in the range of 5 to 15
years. 60 KLOC Flight and 50 KLOC test bed software were to be developed by mostly experienced
programmers with subsequent updates for additional deliveries. 114 KLOC ground software were
to be developed or flight code would be reused and modified by programmers of varying skill level.
The programming language was Ada with less than 200 LOC of C used in the ground support
software. SSP30000° was the required standard.

The process covered a full development life cycle, including formal reviews, massive documentation,
independent test, and software system engineering at the start of contract conducted by a group
separate from software development. A programming and procedures standard covered coding
practices, defined the walkthrough process, software development folder contents, baseline activities,
and unit and informal CSC integration testing. Independent tests at the top level CSC (TLCSC),

SSP30000, Space Station Program Definition and Requirements, Section 2 Program Management
Requirements.

SEW Proceedings 373 SEL-93-003

-5

CSCI and system level were to be conducted. At the outset of the program, a methodology with
heavy involvement from groups separate from software development including system engineering,
test, quality assurance and system safety was instituted. The on site customer Tepresentative
became involved during the critical design phase.

Software documentation changes were controlled by the software manager after PDR through a
software review board (SRB). Modification to the requirements and design documents was through
redlines submitted to the SRB that were reviewed by the leads for all the CSClIs, software quality,
software test, and system engineering.

Defect density was measured using the numbers of software change requests processed by the SRB
and the action items generated by reviewers of walkthrough packages. An evaluation program run
by software quality furnished a rating on the documentation and code produced which yielded a
Document Completion Index value by phase.

The program was plagued by poor definition of requirements. It was a continuation of a previous
Phase B study that supposedly brought the product to a PDR level. On the subsequent Phase C/D
contract, more stringent requirements for process and products were imposed which necessitated
regeneration of documentation thought to have been completed in Phase B, and presentation of
a software requirements review (SRR). This had not been anticipated and directly impacted the
CDR schedule.

Requirements Phase
Planned*
Requirements Phase
Actual

Design Phase
Planned
Design Phase
Actual

Code Phase
Planned
Code Phase
Actual**

Total Plan

Total Actual 23% slip

* none planned
** program cancellation

Figure 7 — Program 3 Schedule Adherence

The increase in overall schedule included stretch out of the program. The slip due to requirements
definition accounted for all the slip in the design phase and a third of the overall slip in the program
through coding. The rest was a program replan dictated by funding constraints for the program.

Even with the three months of additional requirements definition, the requirements document did
not improve. The following table shows the progression of Document Completion Index for the
three major documents produced by the software group for the flight CSCIL. The SRS went through
10 iterations before the coding phase but did not get 50% of the available points.

SEW Proceedings 374 SEL-93-003

Table 6. Document Completion Index

Phase SRS 5DD STP Project
PDR A7 .55 .50 40
CDR .36 .74 .61 .07
Coding .64 .74 .61 .66

The program was terminated due to loss of funding half way into the flight software development
cycle. The above table shows a steady progression but clearly indicates that the SRS did not meet
the standards required. Its improvement for CDR was obtained by diverting design personnel from
the software area to support system engineering in rewriting the specification. This still did not
overcome the reluctance of the document authors to specify testable requirements. The rise in its
rating shown in the last score it received in review was obtained through the cumulative effect of
SRB actjons to remove implementation detail and replace with testable requirements.

The program was terminated before system test but the following chart shows the distribution of
known errors and what activities were used to find them.

A large number of requirement changes were generated by the customer and hardware designers
after the software design was baselined. Of the changes directed against requirements, 32% were
change summaries from the hardware subsystems. Software on this project responded to require-
ment change with software fixes, since it seldom could demonstrate that a hardware change for
a problem would be better than a software fix. Better on this project always meant cheaper or
quicker.

E Requirements Design Coding
rTor
Source: Errors Errors Errors
' 66% 30% 4%
Y
Y]

Requirements Document Code

Detected In: Changes Reviews Walkthroughs
12% 15% 42%
Design Requirements Code
Walkthroughs Changes Reviews
9% 21% 1%

Figure 8 - Fault Detection

There was a noticeable difference in the attitude of the groups producing the four CSCIs. The
three ground CSCI teams were reluctant to respond to action items and were lead by personnel
who believed completion of code was the number one priority and if it worked all else would be
forgiven. This corresponds to a black box mentality, i.e., the user should be happy with the result
and not want to know what’s inside. This is contrary to currently established specifications for
software development.

10

SEW Proceedings 375 SEL-93-003

Table 7. Action Item Response Time

CSCI Name Number of Items Average Response Time (days)
FLIGHT 24 33
EGSE 13 46
TRAINER 5 60
SIMULATOR 10 83

The items in the table, while not of top priority, were still non compliances to the contract which
required correction.

The ground teams also were more reluctant to meet internally established dates for review of their
work by peer groups.

Table 8. Code Schedule Adherence

CSCI NAME W/T Dates Average B/L Dates Average
Missed Slip (days) Missed Slip (days)
FLIGHT 10% 19 23% 15
EGSE 26% 28 43% 21
TRAINER 14% 7 0% 0
SIMULATOR 18% 28 18% 14

At termination of the contract the quality assurance budget for evaluations was 173% over plan.
The constant re-review of non compliant documentation had consumed 50% of total planned quality
budget before the majority of code evaluations and testing were approached.

PROGRAM 4 is our worst case model, where everything seems wrong and the solution required
replacement of staff. The programming languages were C and assembly. This program consisted
of 10K of flight (RAM) software, 0.7K of flight (PROM) software, and 20K of Ground Support
Equipment (GSE) software. There were four software engineers and one lead. The value of the
program was approximately $22 million.

The software had a Software Development Plan (SDP) that documented the process that the
engineers were to follow. This SDP was the model for programs at Martin Marietta and met the
minimum standards. It consisted of the requirement for informal walkthroughs for requirements,
design, and code. Unit Development Folders (UDF) were to be generated for both the flight and
ground software during the requirements phase and updated with design, code, test cases and
results, and problem reports. Design and coding standards were identified as well as standards for
testing the software (i.e., unit, CSC Integration, CSCI testing). The program had a goal of 100
lines of code per module as part of the coding standards. Formal reviews were held for the system
and software and consisted of a Preliminary Design Review (PDR) and Critical Design Review
(CDR). There was a separate Acceptance Review for the software.

The software lead that started this effort was not an experienced software engineer, had no previous
management position or training in software discipline. The lead was a hardware person that had
done some analysis/simulation software in a lab environment and had never worked a deliverable
software program. In an attempt to save money the SQA effort for this program was initiated

11

SEW Proceedings 376 SEL-93-003

after the beginning of the code and unit test phase though the original proposal had called for an
assurance effort from contract start. Although the SDP required that walkthroughs be held on the
software, none were conducted.

There were three builds of the flight software and then the delivery to the customer site. The testing
consisted of unit testing, CSC integration, and CSCI testing performed by the software engineers.
Discrepancy tracking was initiated just prior to system level test. A requirement for formal testing
with Quality was not levied until build 3 of the software. The ground software consisted of two
formal builds and delivery of the software to the customer. Parts of the ground software were
baselined as test software since the hardware needed software for test.

Figure 9 shows the schedule adherence for program 4. The program had a 14% slippage in schedule
that began in the requirements phase. One of the causes for the slippage in schedule was that the
program was placed on hiatus for two years in which no work was done. After those two years the
program restarted but the personnel that originally worked the program were no longer available
and the program had to use time to restaff and come up to speed. Another problem that caused
the slippage was the unknown state of the requirements. The requirements were continually being
changed by the program and the customer. Since there were no firm requirements, the design was
not baselined before coding and the code continually changed.

Requirements Phase [:]
Planned

Requirements Phase
Actual

Design Phase
Planned
Design Phase
Actual

Code Phase
Planned
Code Phase
Actual

System Test
Planned
System Test
Actual

Total Plan

Total Actual 14% slip

Figure 9 - Program 4 Schedule Adherence

Table 9 shows the various builds of the flight RAM software with the total lines of code for each
build with the total number of modules and the average percent of comments for the CSCIL. The
increase in the fault density score during build 2 was a result of replacement of one of the engineers
with a programmer who exercised greater test discipline.

12

SEW Proceedings 377 SEL-93-003

Table 9. Flight RAM Software

Total Average Average Size Total Number Fault

LOC Percent Comments Of Modules Of Modules Density
Build 1 4665 19.11% 52 90 1.70
Build 2 7835 16.22% 61 128 6.15
Build 3 9459 19.42% 66 143 2.42
Delivery 9538 19.43% 67 142 0.84

Table 10 shows the various builds of the flight PROM software with the total lines of code for each
build with the total number of modules and the average percent of comments for the CSCI for the
C code. The large increase in the fault density score was directly related to the replacement of the
PROM software engineer with a programmer who exercised greater test discipline.

Table 10. Flight PROM Software

Total Average Average Size Total Number Fault

LOC Percent Comments Of Modules Of Modules Density
Build 1 740 12.08% 49 15 10.81
Build 2 742 12.08% 49 15 32.35
Build 3 692 12.04% 46 15 5.78
Delivery 752 12.04% 50 15 0

Table 11 shows the various builds of the GSE software with the total lines of code for each build
with the total number of modules and the average percent of comments for the CSCI. For build 1,
of the 380 modules 18% of the modules had no comments at all; for build 2, 17% of the modules
had no comments; and for the delivery, 18% of the modules had no comments. Only two of the
files with no comments were changed after the initial baseline

Table 11. GSE Software

Total Average Average Size Total Number Fault

LOC Percent Comments Of Modules Of Modules Density
Build 1 18,624 8.1% 49 380 1.23
Build 2 19,317 7.9% 49 392 0.10
Delivery 19,002 7.8% 48 398 0

After start of system test, there were 18% priority A discrepancies, 23% priority B discrepancies,
53% priority C discrepancies, and 6% priority D discrepancies. Since the testing prior to baseline
relied on the software engineers, a large number of high priority discrepancies show the lack of
rigor used in unit testing. The number of priority A and B discrepancies found during system test
could indicate insufficient time for the engineer to test the code in sufficient detail before turning
over modified code, or it could indicate insufficient testing of the software prior to software and
hardware integration.

Figure 10 shows the types of errors found throughout the program. There were several types of
errors found. There were Coding Errors, Design Errors, Requirements Errors, Hardware Errors that

13

SEW Proceedings 378 SEL-93-003

resulted in the software being changed, and Requirements Changes. Coding Errors represented 69%
of all errors Even after the start of system test, 2% of the errors were in design or requirements.

Requirements 6%

Design E] 1%

Coding 1 69%

Hardware Interface

Requirements Changes

Miscellaneous 14%

Figure 10 — Percent Errors by Type of Discrepancy

The rapid rise in Figure 11 from build 2 to build 3 is directly related to the independent test program
instituted at this time. The original requirement for testing was that the software engineers perform
the testing to their own comfort level. During various reviews and evaluations it was discovered
by the new software lead that the level of testing was insufficient. Software had not been retested
after modifications. The new software lead recommended to the customer that a more rigorous test
program be implemented on the software under the cognizance of Quality. The customer agreed to
this and the large number of discrepancies after build 2 is shown in the following figure.

140 -1 Delivery

120 Build 3
100
80
60 -
40

20 Build 2

Months from Baseline (Build 1)

Figure 11 — Cumulative Flight Software Discrepancies

After delivery of the Flight RAM software, eight errors were discovered in the software. Of these
errors one was a hardware error that resulted in the software being changed, one was a requirements
error, and the rest were coding errors. Nine of the errors in Build 3 were a result of enhancements
to the software requested by the customer. One of the causes for the errors in the flight software,
was that the breadboard hardware used to simulate the flight hardware and used for testing the
flight software had several differences between it and the flight hardware, which resulted in the
software behaving differently between the two. Once the breadboard was changed to match the

14

SEW Proceedings 379 SEL-93-003

flight hardware, the software was corrected to operate on the flight hardware. During the phase of
Build 3 to Delivery of the flight PROM software, 18 errors were found in the software, These were
coding errors with the exception of one requirements change from the customer. Four of the errors
were customer requested enhancements to the software. The fault density of the flight software
after delivery to the customer site was 0.78.

Table 12 shows the number of discrepancies for the GSE software by build. The lack of requirements
and design errors can be directly attributed to the fact that the requirements and design were
changed to match the software as a result of the software engineer not adhering to the requirements
or design documents. After delivery of the GSE software, no errors were found at the customer
site.

Table 12. Types of GSE Software Discrepancies by Build

Build Coding Errors H/W Interface Errors
Test Software 17 0
Build 1 20 1
Build 2 5 0

The software development effort resulted in an average of 12 lines of code being developed per day.
There was an increase of 53% of software engineering hours from the original proposal submittal
and an increase of 47% of SQA hours. The 53% increase in the software development effort was
directly related to the fact that several of the software engineers and the software lead were replaced
nine months prior to delivery of the software. The software did not meet schedule, the software
did not work with the hardware, and none of the documentation met the documentation standards
or matched the software. The problems with the engineers that were replaced entailed not testing
the software sufficiently or not testing the software at all. The software lead, not having worked a
deliverable software program, did not enforce the SDP and ensure that the requirements were met
or that the software was tested prior to integrating the software with the hardware. The software
lead was replaced as well as two of the engineers, one ground and one flight. There was an overall
attitude between these three that their software was perfect, therefore there could not possibly be
any errors in the software and so it did not need to be tested.

The ground software engineer exhibited a lack of regard for the established process. The ground
software that was developed did not meet requirements or design and the documentation was
changed to match what the engineer had done after the fact. This engineer was replaced when the
new software lead found out that the software written did not meet requirements or design and
that the software had not been tested because the engineer did not think the ground software was
important enough to take time to test. The lack of discrepancies in the GSE software is due to
the requirements and design being changed to match what the software engineer had done. The
customer was apprised of the situation and agreed to changing the documentation to match the
software, and waived the unit and CSC integration testing of the software to prevent a schedule
impact.

The PROM software engineer had the attitude that the software did not need to be retested even
if the software had been changed by more than 50%. This software engineer was replaced and the
change in the fault density shows the significance of the new test program. The fault density of

15

SEW Proceedings 380 SEL-93-003

the PROM software went from 10.81 to 32.35 and then back down to 5.78 with the new software
engineer. '

PROGRAM 5 was a medium sized project producing flight and ground software for a space ex-
periment written in Ada and C. It had a well defined process and the study documents how much
rework was involved related to programmers per their level of acceptance of the process imposed.

This program consists of 13K of Flight software and 18K of GSE software. The value of the program
is approximately $20 million. The flight software is written in Ada and GSE in C. There are two
leads and five programmers. The software lead has 10 years experience of software development,
has not had a software lead position before but has developed deliverable software and knows the
process and the importance of defining requirements and testing the software sufficiently. The
software engineers that are used on the program have experience in software development but three
of those engineers were replaced on program 4.

The software lead has established the rules for developing the software on this program and is
ensuring that the software is developed and tested sufficiently. The software lead from program
4 has been given a position of testing the flight software on the breadboard umit and it has not
been determined if the testing is sufficient. The software was required to be developed to European
Space Agency (ESA) standard PS§S-05-0° and ESA PSS-01-21.7

The program has an SDP which documents the process for developing the software and docu-
mentation. The SDP requires informal walkthrough for requirements, design, and code as well as
formal reviews, (i.e., SRR, PDR, CDR). Software Development Folders (SDF) were required and
initiated during the design phase. These contain the requirements, design, code and unit test cases.
SQA’s involvement with this program started at Authority to Proceed (ATP) and has continued
throughout the program life cycle.

SQA participates in the various walkthroughs and reviews the requirements for traceability, testa-
bility, completeness, consistency, correctness, and understandability. SQA reviews the design for
traceability of requirements, conformance to contractual requirements, compliance with design stan-
dards, completeness, correctness , understandability, and consistency. SQA reviews the code for
compliance to coding standards, implementation of the design into the code, traceability of require-
ments, completeness, correctness, documentation of the code (i.e., comments), and consistency.

Figure 14 shows the breakout of the schedule for program 5 and the 17% slip in schedule. A
slip in the schedule started in the design phase as a result of customer changes and impacted the
Preliminary Design review date but was mostly made up in the Critical Design phase. The coding
effort has also experienced a slip due to changes in design and additional requirement changes. This

program will soon enter system test.

6 ESA PSS-05-0 ESA Software Engineering Standards.
7 ESA PSS-01-21 Software Product Assurance Requirements for ESA Space Systems.

16

SEW Proceedings 381 SEL-93-003

Requirements Phase
Planned E

Requirements Phase
Actual

Design Phase
Planned
Design Phase
Actual

Critical Design Phase l]
Planned

Critical Design Phase
Actual

Code Phase
Planned
Code Phase
Actual

Total Plan

Total Actual 17% slip

Figure 14 ~ Program 5 Schedule Adherence

As shown in Figure 15, the majority of the requirements errors to date were found during the
requirements phase.

E Requirements Design Coding
IToT
Source: Errors Errors Errors
40% 45% 15%
A 4 A
Requirements Design Code
Detected In: Reviews Walkthroughs Walkthroughs
35% 37% 28%

Figure 15 — Percentage of Errors Found by Phase

So far, this program seems to be on the right track. The only question mark is the fact that three
people who demonstrated problems in adherence to process on program 4 are on this program.
As shown in the following table, the average time to close action items of one of those inherited
programmers is double the others.

Table 13. Programmer Responsiveness

Programmer W/T Action Items LOC Average Time To Close
P1 49 9325 4 days
P2 31 1190 2 days
P3 70 1449 2 days
P4 45 3227 2 days
P5 10 1120 2 days
17

SEW Proceedings 382 SEL-93-003

w0

[EAIU

RIE R I IR

L T L L T TR L TR O Ry T T T O

IR

One flight programmer from program 4 seems to have learned the lesson from being replaced and
has exhibited a different attitude throughout this program. The engineer has placed a great deal of
emphasis on retesting software that has changed and when the customer brought up the issue if this
testing was necessary, this engineer emphasized the importance of testing changes to the software.
The ground support software engineer does not seem to have learned the lesson for implementing
the requirements and design and of testing the software. The software lead has had to intervene
more often to gain compliance to the process from this engineer. The other experienced engineers
— ground and flight — have been working to the process documented in the SDP. The process for
this program seems to be working in relation to the walkthroughs, implementation of requirements
and design, and testing of the software. The software is still a little behind schedule but that is
partially due to the hardware requirements changing.

The evaluation of the flight software requirements specification shows the evolution of the document
for the program. The requirements document is reviewed throughout the software development cy-
cle. Table 14 shows the results of the document reviews performed by SQA during the requirements,
design (PDR and CDR), and code phases. The requirements document was first reviewed during
the requirements phase and was found to be unacceptable due to the lack of testability and trace-
ability of the requirements. The baseline of the document during the requirements phase was an
improvement. The document continued to evolve throughout the development cycle and improved
slightly with each new revision. This is due to the fact that the requirements were understood
better than in the requirements phase and the hardware requirements were more firm than in the
requirements phase of the software.

Table 14. SRS Document Completion Index

Phase DI Score
(1.0 high)
Requirements .50
Requirements (Baseline) .60
Design (PDR) .65
Design (CDR) 73
Coding .75

PROGRAM 6 was an engineering support task for one of the NASA centers. It is used to show the
difference in performance of the programmers involved based on their past experience with software
engineering discipline. No contract criterion was available but each was totally responsible for code
to work on a particular platform. This program was a small research program that developed
software for a power system. The program consisted of a program manager, a software lead that
also acted as the deputy program manager and a programmer, and two software engineers. The
software lead (P1) was fresh out of college with a masters degree and had never worked a program
before, one of the engineers (P2) was fresh out of college but had worked as a summer hire for
Martin Marietta, and the last engineer (P3) had several years experience in developing deliverable
software. The software was developed primarily in Lisp on a Unix based machine with som