
/

SOFTWARE QUALITY: PROCESS OR PEOPLE

by

ReginaPalmer
Martin MariettaAstronautics

P.O.Box 179,M/S $1008

Denver,CO 80201

(303)977-5748
&

Modenna LaBaugh

R&FC Group

3076 So.HurleyCircle

Denver,CO 80227

(303)986-3729

N94- 36499

i

This paper will present data related to software development processes and personnel involvement#

I from the perspective of software quality assurance. We examine eight years of data collected from

six projects. Data collected varied by project but usually included defect and fault density with
! limited use of code metrics, schedule adherence, and budget growth information. The data are a

blend of AFSCP 800-141 and suggested productivity measures in Software Metrics: A Practioner's

Guide to Improved Product Development. 2 A software quality assurance database tool, SQUID, 3
was used to store and tabulate the data.

The projectsrepresentedvaryingdegreesof programmer expertise,acquaintancewith software

engineeringtechniques,and languagesincludingAda, C, FORTRAN, LISP, Pascal,and Pro_og.

The programs evaluatedwere engagedin the productionof simulation,R&D, missionoperations,

flight,orground supportsoftware.The sizeoftheprograms rangedfrom small,$500K to$2 million,

tolarge,inexcessof$40 million.

Amongst theprojects,we were ableto tracktheresponsivenessof differentprogrammers toimprov-

ing qualitybased on assessmentand feedback.When qualitygoalsand standardswere established,

and stressedby management, the complianceofallcouldbe obtained.Knowledge ofmanagement

expectationwas especiallyimportant.This couldbe seeninhow peersreviewedeach other'swork

accordingto the tonesetby theirlead.

At a company such as Martin Marietta which develops software for various agencies of the govern-
ment, each with its own concept of getting the job done and the related cost, flexibility of process is

often sought. Such flexibility usually translates into eliminating budget for independent assessment

I AFSCP 800-14,SoftwareManagement Indicators,Management QualityInsights,Air ForceSystems

Command, 20 Jan 1987.

2 Software Metrics: A Practioner'sGuide to Improved Product Development, K. H. Moller and

D. J.Paulish,Chapman and Hall,1993.

3 SoftwareQualityAssurance InteractiveDatabase,produced by R&FC Group.

SEW Proceedings 366 SEL-93-003

of the quality of products and processes. It is easily argued that the engineers themselves are re-

sponsible for the quality of goods and will see to it. As soon as signs of engineering neglect appear,
this course is overturned and outside evaluators play catch up on project. Such action is not cost

effective, but can produce an accepted delivery. The most cost effective quality program, in our

experience, is one that assesses the output of individuals early in the process then concentrates on
those who show the least commitment or understanding of the quality of work expected.

In our case studies, deviation from expected output seems to occur amongst programmers who have

only produced software for internal use that does not need integration or coordination with other

software producers, those without a familiarization with programming standards and procedures,
and those who believe rules were made for someone else. The first two are helped by a well defined

process, the latter are a roadblock in any effort.

The success or problems of the process used on six programs is presented here. Each program is
characterized according to lines of code effort, number of programmers, experience level of program-

mers, criticality of software, degree to which contract requirements or budget guided the process
selected, and success of the process implementation as measured by the quality assurance effort.

The projects reported range from the best of all possible worlds to the worst.

The best world is one where all (most) parties agree on the process and are committed to adherence.

Next best has management in agreement with a restrained acceptance by the programming staff.
The worst world has a process imposed upon other habitual methods causing rework costs to soar

and pitched battles on a daily basis over budget and schedule.

Case study 1 was a model small program involving non critical ground support software written to

perform on a personal computer. Data from it is included to show nominal cost of quality when
the process produces the desired result with little rework.

Case study 2 involved a small project of four to seven programmers developing non critical software

in C and Prolog. Response of the programmers to metrics collection was examined and its influence

on their subsequent work analyzed.

Case study 3 was a large project involving a software engineering staff of 20 to 40 people using
Ada to develop software for a space experiment with human interaction and support software.

The performance of groups of programmers in the process defined for a full life cycle program is
examined and related to varying management expectation.

Case study 4 is our worst case model, where everything is wrong and the solution requires replace-
ment of staff. The programming languages were C and assembly.

Case study 5 was a medium sized project producing flight and ground software for a space exper-
iment written in Ada and C. It had a well defined process and the study documents how much

rework was involved related to programmers per their level of acceptance of the process imposed.

Case study 6 was a small project that was an engineering support task for one of the NASA centers.

It is used to show the difference in performance of the programmers involved based on their past

experience with software engineering discipline. No contract criterion was available but each was
totally responsible for code to work on a particular platform.

SEW Proceedings 367 SEL-93-003

DEFINITIONS

Productivitywhere reportedwas calculatedfromtotalsoftwareengineeringhours,includingsupport

from orforsystemsengineering,systemstesting,program management, softwarequalityassurance,

and directsupportfrom areaslikefinanceand planning.Itrepresentsthe deliverablelinesofcode

dividedby thesehours timesan eighthour day.

Fault Detection is reported in a form to show what activity was used to find defects and in what

phase they were found. It is also sometimes displayed to emphasize the quantity of defects found
in house versus at the customer's site. Types of defects are reported if needed to explain the

other data. The process of tracking discrepancies in software provides information to help improve
productivity and efficiency. When problems are discovered during integration and system test, the

priority of the error is examined in addition to what caused the error. Priority of errors can range
from errors that make the system inoperable to errors that do not disrupt the running of a test.

The following details the levels of priority used by this paper:

A -errorin the codeinwhich the softwaredldnot meet therequirementsordesign,an errorwhich

was a documentation errorwhich causedthe code to not meet the requirementsor a code error

which crashedthe systemmaking the systemnon operationaluntilthe errorwas fixed.

B -errorwhich crashedthe systembut therewas a work around and the system couldbe used.

C -errorfound inthe code which did not interferewith theoperationofthe system.

D -a minor errorinthe code such asa typographicalerrorina helpmessage.

The cause isexamined to identifythe reason for the error.The cause could be a requirements

error,designerror,codingerror,hardware interfaceerror,ora requirementschangedirectedby the
customer.

Inthe few examples where code metricsareusedtoemphasizethedifferencebetween programming

groups,itemsfound ofvaluewerethe sizeofmodules,and adherencetocodingstandards.

Scheduleadherencewas based on planneddatesformajor milestonesversusactualsand slippagein

the finaldelivery.A major milestonewas usuallya formalreviewor delivery.In program 3,which

was cancelledbeforedeliveryand stretchedout twicebeforethen,adherenceto internalschedules

was used to compare team performanceand responsiveness.

PROGRAM 1 was a model smallprogram involvingnon criticalground support softwarewritten

toperform on a personalcomputer.Data from itisincludedtoshow nominal costofqualitywhen

the processproduces the desiredresultwith littlerework. This program consistedof 7500 lines

of missionoperationssoftware.There was a softwarelead,sixsoftwareengineers,one systems

engineer,and a testengineer.The 7500linesofcode were requiredto be developedand delivered

in sixmonths. The entireteam was experiencedindevelopingand testingsoftware.The program

philosophywas to use seniorpersonnelto ensurethateverytaskwas completedon schedule.

The program began by producinga softwaredevelopmentplan to document the processto be

implemented. As the SDP was being developed,the program conducted tabletopreviewswith

the engineersthatwould implementtheplan,SQA, test,systems,and thecustomerrepresentative.

SEW Proceedings 368 SEL-93-003

The tabletops were used to ensure that a process was developed that incorporated good engineering

practices as well as being streamlined. Once the SDP was approved and agreed upon by everyone,

the requirements were finalized. The customer was very involved assuring that the requirements
were finalized in a timely manner because of the tight schedule. A requirements review was held to

baseline the requirements with the customer. Design and code walkthroughs were held to ensure

that the design and code implemented the requirements and that the design and code standards
were adhered to. At each of the walkthroughs the software lead, SQA, test, systems, and a customer

representative were present. This ensured that everyone was aware of the state of the software and

agreed upon the results of the walkthroughs.

Figure 1 shows the planned versus actual schedule adherence by program 1. One week of slip in the
schedule occurred during the code phase but that slip was recovered during system test allowing

the program to still deliver the software on time to the customer.

Requirements Phase
Planned I I

Requirements Phase ::::::::::::::::::::::::::::::::::::1Actual

Design Phase [[Planned

Design Phase [ii::iii::i::_iiii::iiiii::i::i::iiiii::_iiii[
Actual

Code Phase IPlanned

Code Phase
Actual

System Test
Planned

System Test
Actual

Total Plan [

Total Actual

I I

I
[i i i i i i i i i i iii i i i i iii iiiii i i iii i iiiiiiiii i i i i i!iiiiii i i iiiiiiiiiiiiii i iiiiiiiiiii i i i ii!iiiiiiii ii iiiiii!iiiiiiiiiiiii iii i iii i i no sup

Figure 1 - Program 1 Schedule Adherence

The results of the reviews of the requirements document are shown in table 1. The requirements

document improved after each review excluding the preliminary design phase which had a review

cycle too short to allow incorporation of meaningful corrections.

Table 1. SRS Document Completion Index

Phase

Requirements
Design (PDR)

Design (CDR)

Coding

DI Score

(1.0 high)

.67

.67

.77

.83

Figure 2 shows the breakout of the types of errors found in each phase of the life cycle. Most of
the requirements errors were discovered during the requirements phase. The requirements errors

4

SEW Proceedings 369 SEL-93-003

found during the system test phase were due to the customer changing the requirements prior to

delivery. Overa_ the errors found during the life of the program resulted in a fault density score of

0.8 discrepancies per 1K line of code. There were no errors found after delivery of the software to

the customer site. 93% of the discrepancies were found before system test.

Error

Source:

Detected In:

Requirements
Errors

17%

Requirements
Reviews

11%

r I I c°din'Errors Errors
51% 32%

t t
Walkthroughs Walkthroughs Test

33% 49% 7%

Figure 2 - Percentage of Errors Found by Software Phase

This small program was very team oriented. At the start of the program, the lead, software

engineers, test, SQA, and the customer representative got together and decided that everyone would

need to work together to meet the scheduled delivery date. All engineering staff were experienced

in their fields and responded to action items from their peer reviews rapidly. The productivity was

below expected standards but adherence to schedule and accuracy of the code were the drivers.

Measured by those standards, the program was everything desired.

PROGRAM 2 was less than $2.5 million including delivery of commercial workstations used in

development. Requirements and most design had been accomphshed under a previous contract. The

documentation produced under the previous contract included a system specification and functional

description document. Effort reported was a planned two year implementation and system test

with two deliverable prototypes and a final operating capability. New deliverable documentation

to be produced to Air Force standards included program and database specifications, and the

user's manual. Projected coding effort called for five to seven programmers, including three leads

with more than two years experience at the company and the remainder being college graduates.

Contract was bid with a 20 LOC per day goal for each engineer. 81KLOC were developed (70K

C, 11K Prolog/LISP) and 199KLOC delivered (included legacy code from previous contract). The

end product was software used in a lab environment.

The process involved informal walkthroughs involving the software lead, programmer, tester, and

quality. Unit Development Folders were maintained till delivery. Programming standards described

headers required for all code, commenting and self descriptive naming for variables. A guideline of

less than 100 LOC per module was not enforced. A tester who was not part of the software devel-

opment staff was used for Computer Software Component (CSC) integration into the prototypes

and final delivery. Only test results of the CSC integration were reviewed. Discrepancy tracking

was initiated at CSC integration.

Defects were measured only through the testing program. Software measures for code simphcity,

self-descriptiveness, and conciseness were obtained on the C code. This was accomplished with

a code reading tool that calculated the Halstead Measure, 4 branching complexity, hnes of code,

4 Elements of Software Science, M. Halstead, Elsevier, 1977.

SEW Proceedings 370 SEL-93-003

commenting as a percentage of total non blank lines, and variable density. The numbers found for
the code were not used as acceptance criteria. They provided a background from which to evaluate

changes in the code resulting from error reports. Large changes in any score were viewed as cause
to reconsider acceptability of proposed changes. Such a screening was used due to limited resources

for people to review changes.

The programming standards on the project were dictated by two of the leads. They adhered
to them, the third lead did not and the junior programmers did only after they became aware
that lack of adherence was reported to management. Most programmers responded positively

when management made metrics goals visible to them. In the first audit of code compliance to
standards, two samples were taken representing code from senior programmers in sample A and

less experienced programmers in sample B. 81% of sample A was above average in score, but only

59% was above average in sample B. Sample B ratings tended to be either very good or very poor
with less than 20% of the modules falling in the middle. The results of the audit were distributed to

the programmers and a limited amount of time was authorized for rework. The group represented
in sample A reworked code that fell below the minimal acceptable level raising their mean score to
3.8 from 3.6. Sample B programmers reworked all code scoring average or below bringing up the

mean score for sample B to 4.4 from 2.9. The entire sample rose to 4.1 (excellent) from 3.2 (good).

Table 2. Code Compliance Audit

Sample

A
B

A+B

Modules Score Rework

154 3.6 3.8
176 2.9 4.4

330 3.2 4.1

A major problem in the methodology used on this program was the lateness of finding the majority
of errors. 85% of the errors in the code were not found till integration of the final deliverable

though 60% existed in code baselined a year earlier. This occurred due to inexperience on the
part of the integration tester and a flaw in the test philosophy of the development personnel.
The tester assumed unit testing of low level functions had been performed by the developers.
The software leads were more involved in code development than anticipated and did not exercise

sufficient oversight of the unit test effort. Functional testing of the first baseline was not performed
because it was legacy from the previous contract and assumed working because of acceptance at

the customer's site.

Table 3. Discrepancies in the Baselines

Baseline Size Fault Density

IOCI 22KLOC

IOC2 33KLOC

FOC 70KLOC

2O

3
3

After delivery of the second prototype, the test philosophy on the program changed. More unit

testing was demanded before integration. Upon being told that code discrepancies were being

tallied during integration testing, the programmers became very active in finding and documenting
errors in the baselined code while performing unit testing prior to integration of their own code

with that baseline.

SEW Proceedings 371 SEL-93-003

The following table is in order of programming experience.

Table 4. Code Fault Density by Programmer

Programmer Fault Density of Code

P1 -sw lead

P2 - sw lead

P3 - new graduate

P4 - new graduate

P5 - new graduate

8

18

10

8

17

P2 and P5 were reluctant to take time to test.P4 was used to do most correctionof P2 code and

P3 was used to correctP5 code because of the low faultdensity of code they wrote.

 rror[IOC11Source: Errors
50%

Detected In:
System

Test

4%

Site
Test

2%

ioc2j IFocJErrors Errors

14% 36%

System
Test

6%

t
System [

Test
77%

l sitei i siteTest Test

2% 9%

Figure 4 - Distribution of Errors in Baselines

The perceived error rate (that seen by the customer) was 1 faultper 1000 LOC. This was low in

the customer's experience and the customer was pleased with the software and regularly used the

prototypes from the firsttwo deliveries.

Table 5. Error Detection Activity

Phase

IOCI

IOC2

FOCI

FOC2

Engineering Test
Errors Found

4%
6%

21%

56%

Site Use

Errors Found

2%
2%

8%
1%

Schedule slippage appeared after planned enhancements to old code were completed and newly

developed code was nearing baseline. Up to three months before the planned delivery date for

the final operating capability, the program manager was reporting the program was on schedule.

Estimates made by the quality representative of test completeness projected that 90% of the errors

SEW Proceedings 372 SEL-93-003

in the code had been found. This was based on the completenessof scheduledtestingby the

testdepartment and the assumption thatthe errorrateestablishedin the firstbaselinetesting

of 2 defects/KLOC would not grow to more than 4. Unfortunately,thisestimatewas inerroras

became apparent when attempts to verifythe completenessofunittestingfor the finaldelivery

were initiated.

IOC1 Phase
Planned

IOC1 Phase
Actual

IOC2 Phase

Planned

IOC2 Phase
Actual

FOC Phase
Planned

FOC Phase
Actual

Total Plan

Total Actual

I i

Ii iiiiiiiiiiii iiii iiiiiii iii l

I I

I I

Figure 6 - Program 2 Schedule Adherence

30% slip

The goal of 20 LOC per day per engineer was not met though at 16 LOC per day they did exceed
the company expectation at that time for production of ground support software. General problems
surfaced in relation to additional resources required to bring into compliance the code of the third

senior programmer and to make functional legacy software that should have been working but was
not. This effort, undertaken at the end of the development program, contributed to a significant

cost overrun that ate all profit bid for the program plus additional company funds.

The planned quality assurance budget on the program was exceeded by 10% and engineering budget

by 36%.

PROGRAM 3 was valued at more than $500 million including majoi" space qualified hardware

development but less than $30 million for software. Software effort was projected to include from
14 to 40 developers over three years. There were five leads with experience in the range of 5 to 15

years. 60 KLOC Flight and 50 KLOC test bed software were to be developed by mostly experienced
programmers with subsequent updates for additional deliveries. 114 KLOC ground software were
to be developed or flight code would be reused and modified by programmers of varying skill level.

The programming language was Ada with less than 200 LOC of C used in the ground support
software. SSP30000 s was the required standard.

The process covered a full development life cycle, including formal reviews, massive documentation,

independent test, and software system engineering at the start of contract conducted by a group
separate from software development. A programming and procedures standard covered coding

practices, defined the walkthrough process, software development folder contents, baseline activities,
and unit and informal CSC integration testing. Independent tests at the top level CSC (TLCSC),

s SSP30000, Space Station Program Definition and Requirements, Section 2 Program Management

Requirements.

SEW Proceedings 373 SEL-93-003

CSCI and system levelwere to be conducted.At the outsetof the program, a methodology with

heavy involvementfrom groupsseparatefrom softwaredevelopmentincludingsystem engineering,

test,qualityassuranceand system safetywas instituted.The on sitecustomer representative

became involvedduringthe criticaldesignphase.

Softwaredocumentation changeswere controlledby the softwaremanager afterPDR through a

softwarereviewboard (SRB). Modificationtotherequirementsand designdocuments was through

redlinessubmittedto the SRB thatwerereviewedby theleadsforallthe CSCIs, softwarequality,

softwaretest,and systemengineering.

Defectdensitywas measured usingthenumbers ofsoftwarechangerequestsprocessedby the SRB

and the actionitemsgeneratedby reviewersofwalkthroughpackages.An evaluationprogram run

by softwarequalityfurnisheda ratingon the documentation and code produced which yieldeda

Document Completion Index valueby phase.

The program was plagued by poor definition of requirements. It was a continuation of a previous
Phase B study that supposedly brought the product to a PDR level. On the subsequent Phase C/D

contract, more stringent requirements for process and products were imposed which necessitated
regeneration of documentation thought to have been completed in Phase B, and presentation of

a software requirements review (SRR). This had not been anticipated and directly impacted the
CDR schedule.

Requirements Phase
Planned*

Requirements Phase
Actual

Design Phase
Planned

Design Phase
ActuM

Code Phase
Planned

Code Phase
Actual**

[I

 i iiiiiiiiiiiiiiiiiiiii iiiiiiiiiiiiiiiii i i iiiiiiiii iiiii!ii iii iiiiiiiiiiiiiiiiiiiiiiiiiiii

[J

I

To, PI,. t l

* none planned

** program cancellation

23% slip

Figure 7 - Program 3 Schedule Adherence

The increase in overall schedule included stretch out of the program. The slip due to requirements
definition accounted for all the slip in the design phase and a third of the overall slip in the program

through coding. The rest was a program replan dictated by funding constraints for the program.

Even with the three months of additional requirements definition, the requirements document did

not improve. The following table shows the progression of Document Completion Index for the
three major documents produced by the software group for the flight CSCI. The SRS went through
10 iterations before the coding phase but did not get 50% of the available points.

SEW Proceedings 374 SEL-93-003

Table 6. Document Completion Index

Phase SRS SDD

PDR .17 .55

CDR .36 .74

Coding .64 .74

STP Project

.50 .40

.61 .57

.61 .66

The program was terminated due to loss of funding half way into the flight software development

cycle. The above table shows a steady progression but clearly indicates that the SRS did not meet

the standards required. Its improvement for CDR was obtained by diverting design personnel from

the software area to support system engineering in rewriting the specification. This still did not

overcome the reluctance of the document authors to specify testable requirements. The rise in its

rating shown in the last score it received in review was obtained through the cumulative effect of
SRB actions to remove implementation detail and replace with testable requirements.

The program was terminated before system test but the following chart shows the distribution of

known errors and what activities were used to find them.

A large number _f requirement changes were generated by the customer and hardware designers

after the software design was baselined. Of the changes directed against requirements, 32% were

change summaries from the hardware subsystems. Software on this project responded to require-

ment change with software fixes, since it seldom could demonstrate that a hardware change for

a problem would be better than a software fix. Better on this project always meant cheaper or

quicker.

Error
Source:

Detected In:

Requirements]
Errors

66%

Requirements
Changes

12%

Design
Errors
30%

Document
Reviews

15%

l Design] L Requirements
Walkthroughs Changes

9% 21%

I Coding
Errors

4%

Walkthroughs
42%

Code [
Reviews

1%

Figure 8- Fault Detection

There was a noticeable difference in the attitude of the groups producing the four CSCIs. The

three ground CSCI teams were reluctant to respond to action items and were lead by personnel

who believed completion of code was the number one priority and if it worked all else would be

forgiven. This corresponds to a black box mentality, i.e., the user should be happy with the result
and not want to know what's inside. This is contrary to currently established specifications for

software development.

10

SEW Proceedings 375 SEL-93-003

Table 7. Action Item Response Time

CSCI Name Number of Items Average Response ,Time (days)

FLIGHT 24 33
EGSE 13 46

TRAINER 5 60
SIMULATOR 10 83

The items in the table, while not of top priority, were still non compliances to the contract which

required correction.

The ground teams also were more reluctant to meet internally established dates for review of their

work by peer groups.

Table 8. Code Schedule Adherence

CSCI NAME

FLIGHT

EGSE

TRAINER

SIMULATOR

W/T Dates
Missed

10%
26%
14%
18%

Average

Slip (days)

19

28
7

28

B/L Dates
Missed

23%
43%

0%
18%

Average

Slip (days)

15

21
0

14

At termination of the contract the quality assurance budget for evaluations was 173% over plan.

The constant re-review of non compliant documentation had consumed 50% of total planned quality

budget before the majority of code evaluations and testing were approached.

PROGRAM 4 is our worst case model, where everything seems wrong and the solution required

replacement of staff. The programming languages were C and assembly. This program consisted
of 10K of flight (RAM) software, 0.7K of flight (PROM) software, and 20K of Ground Support

Equipment (GSE) software. There were four software engineers and one lead. The value of the

program was approximately $22 million.

The software had a Software Development Plan (SDP) that documented the process that the

engineers were to follow. This SDP was the model for programs at Martin Marietta and met the
minimum standards. It consisted of the requirement for informal walkthroughs for requirements,

design, and code. Unit Development Folders (UDF) were to be generated for both the flight and
ground software during the requirements phase and updated with design, code, test cases and
results, and problem reports. Design and coding standards were identified as well as standards for

testing the software (i.e., unit, CSC Integration, CSCI testing). The program had a goal of 100
lines of code per module as part of the coding standards. Formal reviews were held for the system
and software and consisted of a Preliminary Design Review (PDR) and Critical Design Review

(CDR). There was a separate Acceptance Review for the software.

The software lead that started this effort was not an experienced software engineer, had no previous

management position or training in software discipline. The lead was a hardware person that had
done some analysis/simulation software in a lab environment and had never worked a deliverable

software program. In an attempt to save money the SQA effort for this program was initiated

11

SEW Proceedings 376 SEL-93-003

after the beginning of the code and unit test phase though the original proposal had called for an

assurance effort from contract start. Although the SDP required that walkthroughs be held on the

software, none were conducted.

There were three builds of the flight software and then the delivery to the customer site. The testing

consisted of unit testing, CSC integration, and CSCI testing performed by the software engineers.

Discrepancy tracking was initiated just prior to system level test. A requirement for formal testing

with Quality was not levied until build 3 of the software. The ground software consisted of two

formal builds and delivery of the software to the customer. Parts of the ground software were

baselJned as test software since the hardware needed software for test.

Figure 9 shows the schedule adherence for program 4. The program had a 14% slippage in schedule

that began in the requirements phase. One of the causes for the slippage in schedule was that the

program was placed on hiatus for two years in which no work was done. After those two years the

program restarted but the personnel that originally worked the program were no longer ava$1able

and the program had to use time to restaff and come up to speed. Another problem that caused

the slippage was the unknown state of the requirements. The requirements were continually being

changed by the program and the customer. Since there were no firm requirements, the design was

not baselined before coding and the code continually changed.

Requirements Phase
Planned
Requirements Phase
Actual

Design Phase
Planned

DesignPhase
Actual

Code Phase
Planned

Code Phase
Actual

System Test
Planned
System Test
Actual

Total Plan L
Total Actual

L l

I]

I I

Figure 9 - Program 4 Schedule Adherence

14% slip

Table 9 shows the various builds of the flight RAM software with the total lines of code for each

build with the total number of modules and the average percent of comments for the CSCI. The

increase in the fault density score during build 2 was a result of replacement of one of the engineers

with a programmer who exercised greater test discipline.

12

SEW Proceedings 377 SEL-93-003

Table 9. Flight RAM Software

Build 1

Build 2
Build 3

Delivery

Total

LOC

4665

7835

9459

9538

Average
Percent Comments

19.11%

16.22%

19.42%
19.43%

Average Size
Of Modules

52

61

66

67

Total Number
Of Modules

90

128

143

142

Fault

Density

1.70
6.15

2.42

0.84

Table 10 shows the various builds of the flight PROM software with the total lines of code for each

build with the total number of modules and the average percent of comments for the CSCI for the

C code. The large increase in the fault density score was directly related to the replacement of the

PROM software engineer with a programmer who exercised greater test discipline.

Table 10. Flight PROM Software

Build 1
Build 2

Build 3

Delivery

Total

LOC

740
742

692
752

Average
PercentComments

12.08%

12.08%
12.04%

12.04%

Average Size
Of Modules

49
49

46
5O

TotalNumber

Of Modules

15
15
15

15

Fault

Density

10.81
32.35

5.78
0

Table 11 shows the various builds of the GSE software with the total lines of code for each build

with the total number of modules and the average percent of comments for the CSCI. For build 1,
of the 380 modules 18% of the modules had no comments at all; for build 2, 17% of the modules

had no comments; and for the delivery, 18% of the modules had no comments. Only two of the

files with no comments were changed after the initial baseline

Table I1. GSE Software

Build 1

Build 2

Delivery

Total

LOC

18,624

19,317
19,002

Average
Percent Comments

8.1%

7.9%
7.8%

Average Size
Of Modules

49

49

48

TotalNumber

Of Modules

380

392
398

Fault

Density

1.23

0.10
0

After start of system test, there were 18% priority A discrepancies, 23% priority B discrepancies,

53% priority C discrepancies, and 6% priority D discrepancies. Since the testing prior to baseline
relied on the software engineers, a large number of high priority discrepancies show the lack of

rigor used in unit testing. The number of priority A and B discrepancies found during system test
could indicate insufficient time for the engineer to test the code in sufficient detail before turning

over modified code, or it could indicate insufficient testing of the software prior to software and

hardware integration.

Figure 10 shows the types of errors found throughout the program. There were several types of
errors found. There were Coding Errors, Design Errors, Requirements Errors, Hardware Errors that

13

SEW Proceedings 378 SF_L-93-O03

resulted in the software being changed, and Requirements Changes. Coding Errors represented 69%

of all errors Even after the start of system test, 2% of the errors were in design or requirements.

Requirements _ 6%

Design _] 1%

Hardware Interface _ 6%

Requirements Changes [] 4%

Miscellaneous Iiiii!ii!iiii_i_!i_i_i!il14%

Figure 10 - Percent Errors by Type of Discrepancy

The rapid rise in Figure 11 from build 2 to build 3 is directly related to the independent test program

instituted at this time. The original requirement for testing was that the software engineers perform

the testing to their own comfort level. During various reviews and evaluations it was discovered

by the new software lead that the level of testing was insufficient. Software had not been retested
after modifications. The new software lead recommended to the customer that a more rigorous test

program be implemented on the software under the cognizance of Quality. The customer agreed to

this and the large number of discrepancies after build 2 is shown in the following figure.

140

120 -

100 -

80-

60-

40- 4

202

0

0

3

J Build 2

5 10

Months from Baseline (Build 1)

Figure 11 - Cumulative Flight Software Discrepancies

.------""'_D el ive ry

, ' I

After delivery of the Flight RAM software, eight errors were discovered in the software. Of these

errors one was a hardware error that resulted in the software being changed, one was a requirements

error, and the rest were coding errors. Nine of the errors in Build 3 were a result of enhancements

to the software requested by the customer. One of the causes for the errors in the flight software,

was that the breadboard hardware used to simulate the flight hardware and used for testing the

flight software had several differences between it and the flight hardware, which resulted in the

software behaving differently between the two. Once the breadboard was changed to match the

14

SEW Proceedings 379 S!5L-93-003

flight hardware, the software was corrected to operate on the flight hardware. During the phase of
Build 3 to Delivery of the flight PROM software, 18 errors were found in the software. These were

coding errors with the exception of one requirements change from the customer. Four of the errors
were customer requested enhancements to the software. The fault density of the flight software

after delivery to the customer site was 0.78,

Table 12 shows the number of discrepancies for the GSE software by build. The lack of requirements

and design errors can be directly attributed to the fact that the requirements and design were
changed to match the software as a result of the software engineer not adhering to the requirements

or design documents. After delivery of the GSE software, no errors were found at the customer
site.

Table 12. Types of GSE Software Discrepancies by Build

Build Coding Errors H/W InterfaceErrors

TestSoftware 17 0

Build 1 20 I

Build2 5 0

The software development effort resulted in an average of 12 lines of code being developed per day.
There was an increase of 53% of software engineering hours from the original proposal submittal
and an increase of 47% of SQA hours. The 53% increase in the software development effort was

directly related to the fact that several of the software engineers and the software lead were replaced

nine months prior to delivery of the software. The software did not meet schedule, the software
did not work with the hardware, and none of the documentation met the documentation standards

or matched the software. The problems with the engineers that were replaced entailed not testing

the software sufficiently or not testing the software at all. The software lead, not having worked a

deliverable software program, did not enforce the SDP and ensure that the requirements were met
or that the software was tested prior to integrating the software with the hardware. The software
lead was replaced as weU as two of the engineers, one ground and one flight. There was an overall

attitude between these three that their software was perfect, therefore there could not possibly be
any errors in the software and so it did not need to be tested.

The ground software engineer exhibited a lack of regard for the established process. The ground
software that was developed did not meet requirements or design and the documentation was
changed to match what the engineer had done after the fact. This engineer was replaced when the

new software lead found out that the software written did not meet requirements or design and

that the software had not been tested because the engineer did not think the ground software was
important enough to take time to test. The lack of discrepancies in the GSE software is due to

the requirements and design being changed to match what the software engineer had done. The
customer was apprised of the situation and agreed to changing the documentation to match the
software, and waived the unit and CSC integration testing of the software to prevent a schedule

impact.

The PROM software engineer had the attitude that the software did not need to be retested even
if the software had been changed by more than 50%. This software engineer was replaced and the

change in the fault density shows the significance of the new test program. The fault density of

15

SEW Proceedings 380 SEL-93-003

the PROM software went from 10.81 to 32.35 and then back down to 5.78 with the new software

engineer.

PROGRAM 5 was a medium sized project producing flight and ground software for a space ex-

periment written in Ada and C. It had a well defined process and the study documents how much
rework was involved related to programmers per their level of acceptance of the process imposed.

This program consists of 13K of Flight software and 18K of GSE software. The value of the program

is approximately $20 million. The flight software is written in Ada and GSE in C. There are two

leads and five programmers. The software lead has 10 years experience of software development,
has not had a software lead position before but has developed deliverable software and knows the

process and the importance of defining requirements and testing the software sufficiently. The

software engineers that are used on the program have experience in software development but three

of those engineers were replaced on program 4.

The software lead has established the rules for developing the software on this program and is

ensuring that the software is developed and tested sufficiently. The software lead from program

4 has been given a position of testing the flight software on the breadboard unit and it has not
been determined if the testing is sufficient. The software was required to be developed to European

Space Agency (ESA) standard PSS-05-06 and ESA PSS-01-21. r

The program has an SDP which documents the process for developing the software and docu-

mentation. The SDP requires informal walkthrough for requirements, design, and code as well as

formal reviews, (i.e., SRR, PDR, CDR). Software Development Folders (SDF) were required and

initiated during the design phase. These contain the requirements, design, code and unit test cases.

SQA's involvement with this program started at Authority to Proceed (ATP) and has continued

throughout the program life cycle.

SQA participates in the various walkthroughs and reviews the requirements for traceability, testa-

bility, completeness, consistency, correctness, and understandability. SQA reviews the design for

traceability of requirements, conformance to contractual requirements, compliance with design stan-

dards, completeness, correctness , understandability, and consistency. SQA reviews the code for

compliance to coding standards, implementation of the design into the code, traceability of require-

ments, completeness, correctness, documentation of the code (i.e., comments), and consistency.

Figure 14 shows the breakout of the schedule for program 5 and the 17% slip in schedule. A

slip in the schedule started in the design phase as a result of customer changes and impacted the

Preliminary Design review date but was mostly made up in the Critical Design phase. The coding

effort has also experienced a slip due to changes in design and additional requirement changes. This

program will soon enter system test.

6 ESA PSS-05-0 ESA Software Engineering Standards.

7 ESA PSS-01-21 Software Product Assurance Requirements for ESA Space Systems.

16

SEW Proceedings 381 S EL-93-003

Requirements Phase
Planned

Requirements Phase
Actual

Design Phase
Planned

Design Phase
Actual

CriticalDesign Phase
Planned

CriticalDesign Phase
Actual

Code Phase

Planned

Code Phase

Actual

l I

I I

I l

Figure14 - Program 5 ScheduleAdherence

As shown in Figure 15, the majority of the requirements errors to date were found during the

requirements phase.

Error
Source:

Detected In:

 quiremen lIErrors
40%

T
I Requirements

Reviews

35%

Errors Errors
45% 15%

l I ,
Walkthroughs WMkthroughs

37% 28%

Figure 15 - Percentage of Errors Found by Phase

So far,thisprogram seems tobe on the righttrack.The onlyquestionmark isthe factthatthree

people who demonstrated problems in adherenceto processon program 4 are on thisprogram.

As shown in the followingtable,the averagetime to closeactionitems ofone of thoseinherited

programmers isdoublethe others.

Table 13. Programmer Responsiveness

Programmer W/T Action Items

P1

P2
P3

P4

P5

49

31
70

45
10

LOC

9325

1190

1449

3227

1120

Average Time To Close

4 days
2 days

2 days
2 days

2 days

17

SEW Proceedings 382 SEL-93-003

One flight programmer from program 4 seems to have learned the lesson from being replaced and
has exhibited a different attitude throughout this program. The engineer has placed a great deal of

emphasis on retesting software that has changed and when the customer brought up the issue if this

testing was necessary, this engineer emphasized the importance of testing changes to the software.

The ground support software engineer does not seem to have learned the lesson for implementing
the requirements and design and of testing the software. The software lead has had to intervene

more often to gain compliance to the process from this engineer. The other experienced engineers

-- ground and flight -- have been working to the process documented in the SDP. The process for
this program seems to be working in relation to the walkthroughs, implementation of requirements

and design, and testing of the software. The software is still a little behind schedule but that is

partially due to the hardware requirements changing.

The evaluation of the flight software requirements specification shows the evolution of the document

for the program. The requirements document is reviewed throughout the software development cy-
cle. Table 14 shows the results of the document reviews performed by SQA during the requirements,

design (PDR and CDR), and code phases. The requirements document was first reviewed during

the requirements phase and was found to be unacceptable due to the lack of testability and trace-
ability of the requirements. The baseline of the document during the requirements phase was an

improvement. The document continued to evolve throughout the development cycle and improved
slightly with each new revision. This is due to the fact that the requirements were understood
better than in the requirements phase and the hardware requirements were more firm than in the

requirements phase of the software.

Table 14. SRS Document Completion Index

Phase DI Score

(1.0 high)

Requirements
Requirements (Baseline)

Design (PDK)
Design (CDR)

Coding

.50

.60

.65

.73

.75

PROGRAM 6 was an engineering support task for one of the NASA centers. It is used to show the

difference in performance of the programmers involved based on their past experience with software
engineering discipline. No contract criterion was available but each was totally responsible for code
to work on a particular platform. This program was a small research program that developed

software for a power system. The program consisted of a program manager, a software lead that
also acted as the deputy program manager and a programmer, and two software engineers. The

software lead (P1) was fresh out of college with a masters degree and had never worked a program
before, one of the engineers (P2) was fresh out of college but had worked as a summer hire for
Martin Marietta, and the last engineer (P3) had several years experience in developing deliverable
software. The software was developed primarily in Lisp on a Unix based machine with some software

developed on a PC in Pascal. The software was divided into two CSCIs, application software which
totaled 116,000 lines of code and lower level processor (LLP) software which totaled 5800 lines of

code. The program had a series of change orders which documented the requirements changes to
the software and the hardware.

18

SEW Proceedings 383 SEL-93-003

Although this program was a small research program, Martin Marietta has minimum standards

that all software programs are required to meet. This consists of a software development plan,

documented requirements and design, testing, and configuration control. The program generated a

SDP that reflected how the program was going to operate while still meeting the minimum Martin

Marietta requirements. A requirements document was generated for the software and malntMned

through the life of the program. The design for the software was documented in monthly progress

reports to the customer. The software was tested at the system level but did not include lower level

functional testing. A formal software test was run at the Martin Marietta facility prior to delivery

and system test at the customer site. The level of testing was determined by the engineer. There

were no coding standards per se, therefore style was dependent on the individual software engineer.

There were no slips in the schedule for program 6 due to the program's statement of work being

written such that whatever software was developed at the time of delivery was what the customer

accepted. As long as the software had the required functionality, the customer was satisfied.

Table 15 shows the two CSCIs with the total lines of code, the average size of a module and the fault

density of the software. The majority of the application software was developed by programmers

P1 and P3. The LLP software was developed by P2. The difference in fault density of the two types

of software shows the level of unit testing that was performed by the en_neers. Programmer P2's

software was not sufficiently tested prior to baselining. There is a significant difference between

the two engineers, P1 and P2, although they were both new graduates from college when they first

started on the program.

Table 15. Program 6 Software

Software Total Average Size Total Number Fault

LOC Of Modules Of Modules Density

Application 116,712 451 259 1.15

LLP 5,857 345 17 3.07

There were 152 discrepancies found in the software of which 12% were requirements changes by the

customer and 88% were coding errors.

Table 16 breaks out the errors by priority. The A priority can be requirements errors/changes or
crashes in the software.

Table 16. Program 6 Percent Discrepancies by Priority Level

Priority Percent

A 13%

B 13%

C 70%

D 4%

Programmer P2 moved from the LLP software to the Application software when the development

was done. When the total number of crashes (A priority) are reviewed 53% of the crashes (software

that was not tested sufficiently after modification and incorporated into the system) were introduced

by programmer P2.

19

SEW Proceedings 384 SEL-93-003

As shown in Figure 16, the majority of the errors were found during engineering test. A large

portion of the discrepancieswere requirements changes requested by the customer. This resulted

in a fault density of 0.05 afterdelivery of the software to the customer and 1.24 for the program

overz]].

Requirements[l Coding
Error Errors Errors

Source: 12O./o 88%

Detected In:

t
Requirements I

Changes
1%

Requirements
Changes

11%

l n,in eri.,]o,t,2 lAccep'ace]Te t2
Figure 16 - Program 6 Percentage of Errors

T

CustomerTest4% [

For program 6, there were 122,569 linesof code developed over a fiveyear span. This software

changed drasticallyfrom the initialdevelopment effortbecause ofchange ofplatforms. The software

originallystarted with a Xerox computer, a VME-10, and a Symbolics. The Xerox software was

rehosted on a Solbourne, the VME-10 on a 386, and the Symbolics on the Solbourne. The lines

of code developed per day could not be computed since the software effortwas redefined through

requirement changes including rehost effortsfor developed software.

The difference in programmer discipline is shown on this program through the fault density measure.

The software written by programmers P1 and P3 had a fault density of 1.15 and code written by

programmer P2 had a fault density of 3.07. This difference is significant because of the large number

of lines of code in the application software that were rehosted compared to the other software. The

LLP software rehosted was 5.8K lines of code compared to 116K. Although the process defined

for this program was a minimum set of standards, the programmers implemented the process

differently. Programmers P1 and P3 were more conscientious in testing of their software than

programmer P2. This was reflected in the number of A and B priority discrepancies found in the

application software after programmer P2 moved to the application software. The majority of the

rehosting of the application software was complete before programmer P2 moved over. Programmer
P2 introduced double the number of A and B priority discrepancies as the other two programmers.

2O

SEW Proceedings 385 SEL-93-003

CONCLUSIONS

Table 17. Program Comparisons

Item

Involvement with

Process Definition

Stable Requirements
Adequate Unit Test

Quality Oversight

for Complete Program
Schedule Slip

Engineering Overrun
Quality Overrun

Planned Quality Budget

versus Engineering
Actual Quality Budget
versus Engineering

Productivity Planned
Productivity Actual

1

YES

YES
YES

YES

NO
NO

NO

5%

5%

2

NO

YES

NO

NO

30%

36%
10%

13%

10%

20
16

NO

NO
NO

YES

23%*
$

14%

9

4

NO

NO

NO

NO

14%

53%
47%

12%

14%

22
12

5 6

YES N/A

NO YES
YES NO

YES NO

17% NO

NO** NO
NO** NO

10% 2%

**% 2%

7 25
** 25

* Program cancelled, data unavailable
** Program in process of completing

1. Following the Process

In all these programs a development plan was required by company standards and, on some, by
contract requirement. Those programs that participated in defining the contents of the plan were
more likely to adhere to it. Participation certainly strengthens understanding the contents which
goes a long way toward following the process defined. Programmers accustomed to meeting stan-

dards adjust to new process definitions and respond to changes in their development environment
by getting on with the job,

It is helpful to establish early who follows the process, so that additional resources can be brought
to bear to gain adherence and reduce rework and action items.

Program 3 was, in the experience of the authors, a classic example of how direction from the

software leads can effect the adherence to process. The worst adherence to schedule was shown
by the group under the guidance of what we would describe as a whiner who wanted no rules, no

oversight, and no process. The best adherence and best response for time to fix was demonstrated
by the group directed by a person who expected adherence to schedule and expected the group to

follow the agreed upon methodology as a team.

Having the people involved in the work responsive to the process is superior to bringing in the
heavy artillery, i.e., upper management, to dictate compliance.

Program 6 is an example of what individuals bring to the job. This small program had little
structure, no documentation other than task descriptions of a very high level, and the individual

21

SEW Proceedings 386 SEL-93-O03

programmers chose their own method of test and evaluation of the results. One set of software

had a significantly higher fault density than the other, though neither rating was excessive. The

programmer who produced code with the higher fault density also had the most errors causing

system crashes. The programmer producing code with the lower fault density approached the

development of the application in a structured manner going from requirement to design to code
and test. The other sat at the terminal and wrote code till it appeared to work.

2. Changing Requirements

As discussed under programs 3, 4, and 5, changing and/or nebulous requirements handicap a

program. Program 3 overcame poor software requirement definition by establishing preliminary

design based on the system specification and continuing to work the software requirements through

the design and coding phase. This represented the design and development personnel overcoming

the process. The reluctance of the requirements group to meet their responsibilities because of an

overall program problem of requirements flux was a losing situation. The process dictated that

this group produce and it did in volumes of bad documentation. Eventually, the responsibility for

the product migrated to a more focused group under the control of the end users that allowed the

evolution of an acceptable product.

Program 4 requirement changes came mostly from the customer and usually involved functionality

in the ground support software. Such changes are more easily accommodated than hardware or

design change and had little impact on delivery of the flight unit. A problem on program 4 involved

not keeping the breadboard used to test the software current with flight hardware design changes.

This caused considerable consternation and finger pointing when system integration testing could

not start because the software would not run the hardware. The lack of communication and

understanding of need was corrected by replacing the software lead with someone experienced in

development of software for an embedded system.

Program 5 still has time to overcome the program slip introduced in its design and coding phase

caused by requirement changes.

Performing document evaluations and reporting the document completion index provides visibility

into progress toward meeting program goals. This is especially important with the requirements

document since inadequacy in it is felt through the following phases.

3. Discipline in Informal Testing

Informal test lacking objective goals accomplishes little but can give a false sense of security.

Programs 2 and 4 suffered from too little structured unit testing. This is shown in the large jump

in defects found when test philosophy and responsibility changed. Both programs experienced

considerable engineering overruns and schedule slip.

Program 2 personnel adjusted to the new test philosophy and informally competed with each other

for best time to fix and fixing it right the first time. Program 4 personnel were so burdened with

ego that to accomp].ish adequate unit test and institute correctness of fixes programmers had to be

replaced.

On Program 3, the considerable number of slips in scheduled code walkthroughs and baselines for

the ground CSCI were caused by additional coding effort needed to complete informal integration

22

SEW Proceedings 387 SEL-93-003

of the CSC into the CSCI. Except for the leads on the ground CSCIs, the programmers were used

to developing stand alone code and lacked an understanding of meeting interface requirements.

The unit test on program 6 was defined and executed by the individual programmers involved. As
reported previously, lack of rigor in unit testing surfaced in system test as more software crashes

were introduced by one of the programmers than the total for the other two.

4. Reviewing Early

Trying to save budget by avoiding the use of early objective reviews as shown in program 4 can be

self defeating. An inspection or review process that can point out errors early but not effect their
correction, as shown on program 3, is a poor process in terms of cost and quality. The thorough

review process used on program 1 was integral to keeping on a very tight schedule.

5. People

Pinpointing who is most likely to cause rework and frustration is an effective way to control rework.

It is a matter of tracking number of action items and response to action items. If a problem
with responsiveness or understanding of the importance of compliance to the process is identified,

management must accept the responsibility of replacing the problem, redefining standards, or strong

arming compliance.

6. Collecting Data

Using a database tool to pool data makes sense. However a project evolves, it will have re-
views/evaluations of some type, discrepancy reporting and status to schedule. Collecting the result

of objective reviews and other defect data should be a high priority for complete quality records.
Current status of development progress is needed to flag problem areas and replan work to make up

for known slips. The tool used to collect the information on these programs, SQUID, was designed
around the Air Force pamphlet, Software Management Indicators, Management Quality Insights,

Air Force Systems Command, 20 Jan 1987 and practical knowledge based on twelve years of per-
forming software quality on projects. Reporting from a database is superior to digging through

data retention boxes. Use of a tool can give structure to multiple quality programs and allow
meaningful comparisons between different types of projects.

Each program undertaken yields a better idea of what is a meaningful measure. Program 2 was

the first program that the authors had the opportunity to collect metrics on during the life of the
program. Defect density and coding complexity measures were used because involvement began

after coding start. After this experience the authors started looking more at early fault detection
via walkthroughs and reviews. This in turn lead us to look at responsiveness of individuals in

correcting deficiencies as a major driver in software quality.

In summary, we believe our observations support the conclusion that good programmers produce

good code. A good programmer in the context of this paper is a programmer who is committed to

project goals, highly disciplined, and responsive to constructive criticism that is based on meeting
those goals. Of itself, a process does not make a product. The best a process definition can
do is let producers know what is expected before they are evaluated for method and output.

Proper execution of a process requires the cooperation of the participants. The more readily this

cooperation is given the less the cost of rework.

23

SEW Proceedings 388 SEL-93-003

Software Quality: Process or People

Regina Palmer
Martin Marietta Astronautics

P. O. Box 179, M/S $1008
Denver, Colorado 80201

&

Modenna LaBaogh

R&FC Group

3076 So. Hurley Circle

Denver, Colorado 80227

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Agenda

- Introduction

- Background of Programs

- Process

- Success

- Problems

- Lessons Learned

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 389 SEL-93-003

Software Quality: Process or People

• Introduction

- The Paper Describes the Following for Each Study

- Involvement with process definition

- Stability of requirements

- Thoroughness of unit and system test

- Degree of Quality oversight
- Schedule Adherence

Variance from planned completion dates
- Overruns - Engineering and Quality

- Planned Quality Budget as percent of Planned Engineering

- Actual Quality Budget as percent of Actual Engineering
- Planned Productivity

Lines of code per engineering day

Includes Program Management, Engineering, and Quality hours

Exdudes Business Operations and Property Management -- net readily
available to authors

- Actual Productivity

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 1

- Very involved with process definition.

- Very stable and well defined requirements. Clearly defined end of phase before

beginning of next. As shown by the high Document Completion Index scores.

Phase DI Score

(1.0 high)
.67
.77
.B3

Requirements
Design (CDR)
Coding

- Thorough unit and system test

- Quality oversight from beginning of contract

- Schedule Adherence - no slip
- Overruns - none

- Planned Quality Budget as percent of Planned Engineering - 5%

- Actual Quality Budget as percent of Actual Engineering - 5%

- Planned Productivity - 6 LOC

- Actual Productivity - 6 LOC

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 390 SEL-93-003

Software Quality: Process or People

• Program 2
- Little involvement with process definition. Programmers were unfamiliar with

testing rigor and programming standards. Table is in order of programming

experience.

Programmer
P1 - sw lead
P2 - sw lead

P3 - new graduate
P4 - new graduate
P5 - new graduate

Fault Density of Code Produced
8

18
10

8
17

- P2 and P5 were reluctant to take time to test. P4 was used to do most

correction of P2 code and P3 was used to correct P5 code because of the low

fault density of code they wrote.

- Disagreement late in program on requirements

- Quality oversight on program from beginning of coding

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 2 (continued)
- Lack of discipline in unit test - 60% of errors found in final testing were in the

first baseline.
- Schedule Adherence - 30% slip in final delivery of software. Legacy code required

upgrades to meet customer expectation of usability that was not anticipated in
contract bid.

IOC| Plan

IOC1 Actual

IOC2 Plan

IOC2 Actual

FOC Plan

FOC Actual

Total Plan

Total Actual

I I

I I

I I

l il 30% dip

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 391 SEL-93"003

Software Quality: Process or People

• Program 2 (continued)

- Overruns

- Engineering exceeded plan by 36%

- Quality exceeded plan by 10%

- Planned Quality Budget as percent of Planned Engineering - 13%

- Actual Quality Budget as percent of Actual Engineer'mg - 10%

- Planned Productivity - 20 LOC

- Actual Productivity - 16 LOC

12/2/93 GSFC Software Engineer'mg Workshop

Software Quality: Process or People

• Program 3
- No involvement with process definition except for defining coding standards

- Very unstable and poorly defined requirements. Document completeness scores

for documents highEght this.

Phase SRS SDD STP Project

PDR .17 .55 .50 .40
CDR .36 .74 .61 .57

Coding .64 .74 .61 .66

- Unit test had only begun at contract close

- Quality oversight from beginning of project but no authority for action item
resolution

CSCI Name Number of Items

FLIGHT 24
EGSE 13
TRAINER 5
SIMULATOR 10

Average Response Time (days)
33
46
60
83

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 392 SEL-93-003

Software Quality: Process or People

• Program 3 (continued)
- Schedule Adherence - 23% slip due to requirement def'mition during design phase

- Attitude of software leads to maintain internal schedules varied.

CSCI NAME

FLIGHT
EGSE
TRAINER
SIMULATOR

W/T Dates
Missed

10%
26%
14%
18%

Average

Slip(days)
19
28

7
28

B/L Dates
Missed

23%
43%

0%
18%

Average

Slip (days)
15
21

0
14

- Overruns

- Engineering - Program cancelled, unable to compute

- Quality - at beginning of code phase had exceeded evaluation budget by

173%.

- Planned Quality Budget as percent of Planned Engineering - 14%

- Actual Quality Budget - Program cancelled, unable to compute

- Planned Productivity - 9 LOC

- Actual Productivity - Program cancelled, unable to compute

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 4

- No involvement with process definition

- Unstable requirements - 33% of change traffic for the last buil_l before delivery

were enhancements requested by the customer.

- Lack of test discipline in unit test - Large number of errers found after build 1

when other programmers were brought in to validate software.

Number of Defects

Build 1 16
Build 2 72

Build 3 thru Delivery 35

- Quality oversight begun in coding phase
- Overruns

- Engineering - 53%

- Quality - 47%

- Planned Quality Budget as percent of Planned Engineering - 12%

- Actual Quality Budget as percent of Actual Engineering - 14%

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 393 SEL-93-003

Software Quality: Process or People

• Program 4 (continued)

- Schedule Adherence - 14% slip

Requirements Plan

Requirements Actual

Design Plan

Design Actual

Code Plan
Code Actual

System Test Plan

System Test Actual

Total Plan

Total Actual

1
l_ii-:_i._,_,_,__xZ!_i:_i-',:_i.:,_.I

I I

r-_

]
I,,;;;_.;:;;;,;......................,;_......,'"'."............;".'-.i",..........I 14% slip

- Planned Productivity - 22 LOC

- Actual Productivity - 12 LOC

12/2/93 GSFC Software Engineering Workshop

Software Quality: Process or People

• Program 5 '

- Very involved with process definition. Reviews used in process very successful for

finding errors early.

Error
Source:

Detected In:

Requirements
Errors
40%

T

I Requirements
Reviews

35%

I Design
Errors
45%

t
Design

Walkthroughs
37%

Coding IErrors
15%

I Code
Walkthroughs

28%

12/2/93 GSFC Software Engineering Workshop

SEW Proceedings 394 SEL-93-003

Software Quality: Process or People

• Program5 (continued)
- Responsivenessof individualprogrammersto the correctiveaction process is

shownin the table.

Programmer
P1
P2
P3
P4
P5

W/T Action Items
49
31
70
45
10

LOC AverageTime To Close

9325 4 days
1190 2 days
1449 2 days
3227 2 days
1120 2 days

- Stabilityof requirements- requirement changeswereimposedduring the design
phaseimpactingPreliminaryDesignschedulebut time wasmadeup during
critical design.Hardwarerequirementschangedafter designbaseline.

- Thoroughnessof unit test due to stressof softwarelead
- Quality oversightfrom beginningof program
- PlannedQuality budget as percentof planned Engineering- 10%
- Actual QualityBudget aspercentof actual engineering(to date) - 10%

12/2/93 GSFC SoftwareEngineeringWorkshop

Software Quality: Process or People

• Program5 (continued)
- Overruns- Programhas not completed code phaseyet. not calculated to date
- ScheduleAdherence- 17% slip appearedin code phase,to be madeup in test

RequirementsPlan [_1
RequirementsActual

DesignPlan I---'--]
DesignActual Iiiiii:_-_i_:;_.i:i:_:i:i_i::.:_i:_i:_i_:]

Critical DesignPlan L I
Critical DesignActual f

Code Plan I I
Code Actual

Total Plan [J
Total Actual 17% slip

- PlannedProductivity- 7 LOC
- Actual Productivity- Program not due to completetill next year

12/2/93 GSFCSoftwareEngineeringWorkshop

SEW Proceedings 395 SEL-93-003

SoftwareQuality: Process or People

• Program6
- No processdefinition

- Requirementschangescausednew work order
- Unit test performedat a level definedby the individualprogrammer. The

differencein testing thoroughnessis shownin the fault densityof the software
as measuredby discrepanciesfound duringsystemtest.

Software Total
LOC

AverageSize
Of Modules

Total Number
Of Modules

Fault
Density

Application 116,712 451 259 1.15
LLP 5,857 345 17 3.07

- Quality providedconfigurationcontrol onlyfor deliveryto customer

- ScheduleAdherence- asa level of effort contract the scheduleis alwaysmet
- Overruns- N/A, level of effort
- PlannedQuality Budgetas percentof PlannedEngineering- 2%
- Actual Quality Budget aspercentof Actual Engineering- 2%
- PlannedProductivity- 25 LOC
- Actual Productivity- 25 LOC

12/2/93 GSFCSoftware EngineeringWorkshop

Software Quality: Process or People

• LessonsLearned

- Processdefinitionmustinvolvethe participantsto assureacceptance.
- Peoplewho do not acceptthe processcauserework expense.Thoselikely to

causereworkor delayare identifiableby trackingaction itemsand responsetimes.
- Programmersmust be madeaware of objectivegoals for unit testing.
- Fault densityby itself is a deceptivemeasure.Using it, program2 wasestimated

to be on scheduletwo monthsbeforethe final delivery. Before endof test it
becameobviousthat the unit test program had been inadequateand a 7 month
slip occurred.

- Programswhich only collectmetricsduringtest missopportunitiesfor early
detectionof problems.

- Programknowledgedisappearssoon after each milestoneon a program unless
someonecollectsit as it happens.

- Eachprogram undertakenyieldsa better idea of what is a meaningfulmeasure
withina companyculture.

- Data for this paper were scatteredamongstindividualsinvolved on the programs
reportedand not readilyavailabletill input into the databasetool used.

12/2/93 GSFCSoftware EngineeringWorkshop

SEW Proceedings 396 SEL-93-003

SoftwareQuality: Processor People
I

Item
Involvementwith
ProcessDefinition
Stable Requirements
Adequate Unit Test
QuaEtyOversight
For Complete Program
ScheduleSlip
EngineeringOverrun
Quality Overrun
Planned Quality Budget
To Engineering
Actual Quality Budget
To Engineering
ProductivityPlanned
ProductivityActual

ProgramComparisons
1 2 3 4

YES NO NO NO

5
YES

YES YES NO NO NO
YES NO NO NO YES
YES NO YES NO YES

NO 30% 23%* 14% 17%
NO 36% * 53% NO**
NO 10% * 41% NO**
5% 13% 14% 12% 10%

5% 10% * 14% **%

6 20 9 22 7
6 16 * 12 **

* Program cancdled,data unavailable
** Programin processof completing

12/2/93 GSFC SoftwareEngineeringWorkshop

6

N/A

YES
NO
NO

NO
NO
NO
2%

2%

25
25

SEW Proceedings 397 SEL-93-003

SEW Proceedings 398 SEL-93-003

