
NASA Technical Memorandum 106449
AIAA-94-0408
ICOMP-93-49

Preconditioned Implicit Solvers for the
Navier-Stokes Equations on
Distributed-Memory
Machines

Kumud Ajmani
Institute for Computational Mechanics in Propulsion
Lewis Research Center
Cleveland, Ohio

and

Meng-Sing Liou and Rodger W. Dyson
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio

Prepared for the
32nd Aerospace Sciences Meeting and Exhibit
sponsored by the American Institute of Aeronautics and Astronautics
Reno, Nevada, January 10-13, 1994

NI\S/\

/ - 3 9«

E-8~c

Preconditioned Implicit Solvers for the Navier-Stokes
Equations on Distributed-Memory Machines

Kumud Ajmani'
Institute for Computational Mechanics in Propulsion

Lewis Research Center
Cleveland, Ohio

Meng-Sing Liout and Rodger W. Dyson*
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio

Abstract

The G MRES method is parallelized, and com­
bined with local preconditioning to construct an
implicit parallel solver to obtain steady-state solu­
tions for the Navier-Stokes equations of fluid flow
on distributed-memory machines. The new im­
plicit parallel solver is designed to preserve the
convergence rate of the equivalent 'serial' solver.
A static domain-decomposition is used to parti­
tion the computational domain amongst the avail­
able processing nodes of the parallel machine. The
SPMD (Single-Program Multiple-Data) program­
ming model is combined with message-passing tools
to develop the parallel code on a 32-node Intel Hy­
percube and a 512-node Intel Delta machine. The
implicit parallel solver is validated for internal and
external flow problems, and is found to compare
identica.lly with flow solutions obtained on a Cray
Y-MP /8. The computational speed on 32 process­
ing nodes of the i860 machines is comparable to the
speed on a single processor of the Cray Y-MP. A
peak computational speed of 2300 MFlops/sec has
been achieved on 512 nodes of the Intel Delta ma­
chine, for a problem size of 1024K equations (256K
grid points).

Introduction

Parallel machines based on distributed-memory
architectures are providing viable alternatives to ex­
pensive vector supercomputers for performing nu­
merical integrations of large-scale Computational

* Research Associate, AlAA Member
t Senior Scientist, .AlAA Member

t Computer Engineer

1

Fluid Dynamics (CFD) problems. As CFD codes
are combined with other codes to perform multidis­
ciplinary work, severe pressures will be exerted on
modern supercomputers - both in terms of mem­
ory requirements and CPU time.

The computational power of multiprocessor
machines with a large number of processors can be
harnessed to obtain solutions for the non-linear par­
tial differential equations of fluid flow. CFD can
choose between the wide variety of machine archi­
tectures currently available - shared-memory ma­
chines (e.g. Cray Y-MP), distributed-memory ma­
chines (e.g. Intel Hypercube) or machines with hy­
bird architectures. This paper concentrates on using
a distributed memory, Multiple Instruction Multiple
Data (MIMD), message-passing architecture to ob­
tain solutions to the Navier-Stokes equations of fluid
flow.

The Navier-Stokes equations are discretized in
space using an upwind, finite-volume, flux-split for­
mulation. The discretized equations are linearized
with an Euler-implicit linearization, and integrated
in time to obtain a steady-state solution. The Euler­
implicit linearization produces a system of simul­
taneous linear equations characterized by a large,
sparse, non-symmetric coefficient matrix. The work
described in this paper concentrates on investigating
parallel implementations of Krylov-subspace meth­
ods, particularly GMRESl, for solving this linear
system of equations at each time-step of the time­
integration.

In earlier work on parallel Krylov solvers, Sa.a.d
& Schultz2 combined GMRES with ILU precondi­
tionings on shared-memory machines and loosely­
coupled linear or mesh-connected arrays. O'Learr
implemented the block Conjugate Gradient algo­
rithm on a coarse-grained parallel machine. An­
derson & Saad4 examined the standard ILU(O) and
polynomial preconditioners for shared-memory ma­
chines. Their work concludes that ILU(O) may

outperform polynomial preconditioning if the num­
ber of processors is small. Radicati & RobertS
used overlapped domain decomposition to imple­
ment ILU preconditioning on a shared-memory mul­
tiprocessor. Their numerical experiments showed
t hat a local IL U factor on overlapping blocks is a
good preconditioning st rategy. Baxter et. alB ex­
amined the performance of Krylov solvers with IL U
preconditioning on a shared-memory machine and
on Hypercube architectures. Application problems
from reservoir engineering and mathematics were
studied in their work.

In more recent work on machines with large
number of processors , Berryman et. al7 have mea­
sured the perfo~mance of key interactive kernels
(sparse triangular solves , inner products etc.) of
preconditioned Krylov solvers on the CM-2 ma­
chine. The ideas of multi-level domain decompo­
sition for preconditioned Krylov solvers have been
presented by Gropp and Keyes8 • Shadid and
Tuminaro9 have implemented GMRES and other
Krylov solvers on a 1024-node ncube/ 2 Hypercube.
Their work has examined the efficiency of various lo­
cal and global precondit ioners, for several standard,
model problems. DesturlerlO has proposed a mod­
ified, computationally cheaper version of GMRES
for medium to fine grained parallelism on MIMD
machines.

In summary, several authors have explored im­
plementations of Krylov solvers on shared-memory
and distributed-memory architectures. Most of the
works have examined 'model' problems arising from
elliptic and hyperbolic PDEs. The IL U factoriza­
tion seems to be a popular preconditioner, as sev­
eral efforts have been made to study its performance
in the parallel environment. However , a comprehen­
sive study of the performance of preconditioners and
Krylov solvers for practical CFD problems appears
to be lacking in the literature.

This paper investigates the viability of using
the preconditioned G MRES algorithm in a domain­
decomposition framework to develop an implicit
solver for solving CFD problems on distributed­
memory machines. A new local preconditioner,
which is much cheaper than the popular IL U pre­
conditioner, has been developed to support efficient
implementation of the parallel GMRES solver. The
new preconditioner is based on symmetric Gauss­
Seidel sweeps across each domain, and shows excel­
lent scalability over a large range of processors. The
implicit parallel solver is validated on a 32-node In­
tel Hypercube and a 512-node Intel Delta machine.

This introduction section is followed by a sec-

2

tion describing some of the theory of parallel ma­
chines (MIMD architectures in particular) , CFD
and Krylov solvers. Detailed results of computa­
tions on an Intel Hypercube and Intel Delta ma­
chines will then be presented. The paper will con­
clude with some remarks about the present results
and some ideas for future work in the area of im­
plicit parallel solvers for CFD codes.

Presentation of Theory

Distributed-Memory Systems

Multiple Instruction Multiple Data (MIMD)
or distributed-memory machines are characterized
by a grouping of processors which are capable of
functioning independently as computational nodes.
Each processor has individual memory, computa­
tional units and communication units. Information
is exchanged amongst processors by sending pack­
ets of information or 'messages' from one proces­
sor to another. Each processor has its own clock,
and there is is no 'global' clock. The processors
can be 'synchronized ' by performing a 'global' com­
munication. The connectivity between processors
defines the topology of the machine and determines
the speed at which messages are passed from one
processor to another.

The processors in a Hypercube architecture are
interconnected with a cube-type connectivity ; each
processing node lies on the vertex of an order-n
cube. The 32-node Intel Hypercube machine at
NASA Lewis Research Center is organized as a
cube of order 5. In contrast , the processors for the
512-node Intel Delta machine at CalTech are ar­
ranged in a mesh-type connectivity (15*32 mesh) .
Both machines are based on the Intel i860 micro­
processor , with 16 MBytes of memory per node.
The i860 is a 40 MHz RISC microprocessor with a
peak theoretical rating of 32 MIPS (integer perfor­
mance) and 50 Mflops (54-bit floating-point perfor­
mance). The communication networks for the Intel
machines are characterized by relatively low com­
munication bandwidths and high communication la­
tencies. This implies that a few long messages are
preferable to numerous short messages. Further de­
tails of the Hypercube architecture may be found in
reference 11.

Navier-Stokes Equations

The governing equations of compressible fluid
flow in 2-D are the Navier-Stokes equations writ ten

as

where Q is the vector of independent conserved vari­
ables, F and G are inviscid flux vectors and F .. and
G.. are viscous flux vectors. The governing equa­
tions are solved computationally in their integral,
conservation law form in generalized coordinates,
using a cell-centered finite volume formulation. The
inviscid fluxes are upwinded using Van Leer's12 flux­
splitting scheme. The viscous fluxes are evaluated
with second-order accurate central-differences. Ad­
ditional details of the 'serial' code may be found in
reference 13.

The generalized-coordinate form of equation 1
can be written in compact form as

.!.. 8Q =::-R
J at (2)

where J is the jacobian of the transformation from
cartesian to generalized coordinates. R is called the
residual vector, and equals to zero for a steady-state
solution. The accuracy of the computed solution
is directly affected by the accuracy of the residual
vector computation. A nine-point stencil is used
for second-order accurate calculations of the resid­
ual vector.

The Euler-implicit time-linearization of equa­
tion 2 results in

(3)

where t:,.Qn is the incremental change in the cell­
centered values of the vector Q between the n + 1 th

time level and the known nth time level, i.e. t:,.Qn =::

Qn+l _ Qn. Rn+l is linearized in time ·about the
nth time level which results in

(4)

where J ~t is a block-diagonal matrix and ~~ is
a large, sparse, block, banded non-symmetric ma­
trix. In this paper, ~~ is evaluated with a five-point
stencil (as compared to a nine-point stencil com­
putationa for the R). This is done to reduce the
computational and storage costs associated with a
nine-point stencil evaluation of ~~ at the expense of
increased time-steps required to reach a converged
steady-state solution.

Equation 4 can be rewritten in matrix-vector
form as

(5)

3

Equation 5 represents the system of simultaneous
linear equations which has to be solved for t:,.Qn at
each time-step of the time-integration. For small
(of order 100), well-conditioned coefficient matri­
ces, the system may be solved exactly by iilverting
the matrix [VnJ at each time-step. However, for
large and/or poorly-conditioned matrices (found in
practical CFD applications) , an iterative solution
of equation 5 becomes more viable. The precon­
ditioned GMRES method, investigated in reference
13, is parallelized to solve equation 5. Some issues
related to the development of the parallel solver are
now discussed.

Parallel Domain-Decomposition

The discretized Navier-Stokes equations can be
solved in a parallel framework by decomposing the
original, large uniprocessor domain of grid points
into a number of smaller domains which are then
distributed to the available processors (one domain
per processor). In a distributed-memory system,
each processor can only access information from its
own local-memory. Thus, information may have to
be exchanged across the domain interfaces (or pro­
cessor boundaries) in order to preserve the charac­
teristics of the original problem.

Recall, that the residual vector computation
uses a nine-point stencil. Thus, the flux-evaluation
for cell-faces which lie on (and adjacent to) domain
boundaries will require information from (a maxi­
mum of) two adjacent cells which reside in a neigh­
boring processor. This information exchange is fa­
cilitated by creating two layers of 'ghost ' cells at
each domain boundary. At each time-step, data
from the neighboring domains is 'communicated' to
these 'ghost' cells before the flux-evaluation rou­
tines are invoked. This communication is done
prior to the application of the explicit boundary
conditions. The flux-balance evaluated by this ap­
proach has been validated to be identical to the
flux-balance computed for the original uniprocessor
domain. Note that each domain must contain at
least three cell-faces (in each coordinate direction)
for this approach to work successfully.

The implementation of boundary conditions at
physical boundaries may also require communica­
tion amongst processors. Airfoil calculations on C
and O-type meshes require communication between
non-neighboring processors in order to effect C and
O-type periodicity. This is achieved by communi­
cation amongst domains which lie along the wake­
cut line of the particular C or O-type grid. Note,

that the boundary condition routines are invoked
only for those processors which contain actual phys­
ical boundaries corresponding to the inflow, outflow,
bottom and top planes of the original uniprocessor
domain. This creates an imbalance in the work­
load across the processors, since the 'interior' pro­
cessors do not perform boundary condition calcula­
tions . This imbalance is not significant since < 1%
of the total computer time is required for the bound­
ary condition computations.

The inviscid and viscous flux vectors, and the
respective flux-jacobian matricesare first calculated.
The individal flux-jacbian matrices are then as­
sembled into the implicit, left-hand-side coefficient
matrix, for each domain. The coefficient matrix
is assembled from linear combinations of the flux­
jacobian matrices. Each domain assembles its own
individual matrix, and no extra communication is
required for this computational step. A five-point
stencil is used for the implicit operator, providing
a sparse, banded, coefficient matrix with five block­
diagonals.

The Parallel GMRES solver

The original, large, system of linear equations
corresponding to the uniprocessor domain is thus
transformed to a series of smaller linear systems,
with one linear system for each processor. A pre­
conditioned GMRES solver is used to iteratively
solve each linear system. The original G MRES
method is designed to iteratively solve linear sys­
tems with non-symmetric coefficient matrices. In
order to solve a linear system (say Ax = b), the
method seeks an approximate solution Xl.: of the
form XI.: = Xo + Z I.: , where Xo is some arbitrary ini­
tial guess to the exact solution x. The vector ZI.: lies
in the Krylov subspace, K(A , To , k) , defined by the
matrix A , the unit-vector WI = TO/f3 (TO = b - Axo,
f3 = IITol !) and the size of the Krylov subspace k .

The G MRES solver will converge the fastest
when each successive it erate XI.: minimizes the resid­
ual norm, IITI.: II over the subspace K(A, To,k). One
major practical difficulty with GMRES is that when
k increases, both storage and operation cost increase
as O(k) and O(k2) , respectively. If the available
storage is limited, the method may be restarted af­
ter k sub-iterations, with XI.: replacing Xo in step 1.
The restart version is often used in practical prob­
lems and is referred to as GMRES(k).

The complete GMRES algorithm can be writ­
ten as follows:

1. For any starting vector Xo , form TO = b-

4

Axo ; f3 = IITol12 ; WI = To / f3
2. Perform k steps of Arnoldi's methodI4 with W I

as the initial vector to form k vectors which are
successively orthogonal to WI

3. Find the vector (say Zk) which minimizes IITI.:I I
in the subspace defined by the vectors in step 2.
Compute the solution XI.: = Xo + ZI.:
The GMRES algorithm involves three basic lin­

ear algebra operations - inner-products of vectors
(steps 1 & 2) , saxpy operations (steps 1 & 3) and
matrix-vector products (steps 1 & 2). Evaluation
of the inner-products requires inter-processor com­
munications since the local inner-products have to
be accumulated across all the processors. This can
be done by passing 2log2 N messages across the N
processors. The saxpy operation can be performed
independently by each processor , since only local
data needs to be manipulated.

Each matrix-vector operation requires commu­
nication of the 'boundary' elements of the particular
multiplying vector to neighboring processors. The
components that correspond to the cells lying on
the the four boundaries of each domain are commu­
nicated to 'ghost' cells of the neighboring domains.
This is critical in order to reproduce the uniproces­
sor matrix-vector product , i.e. the product result ing
from multiplying the original, single-domain coef­
ficient matrix with a given vector . The multiple­
processor matrix-vector product is required to be
identical to the uniprocessor matrix-vector product,
at each sub-iteration of the GMRES solver. This is
to ensure that the parallel GMRES solver (without
preconditioning) has the exact convergence rate as
the serial GMRES solver.

Preconditioning the Linear System

The rate of convergence of any iterative al­
gorithm depends on the condition number , K2 (A) ,
of the iteration matrix A and the distribution of
singular-values of A. If K2(A) is large and/or the
spectrum of singular-values of A is wide and scat­
tered, the matrix A is poorly conditioned, and the
underlying algorithm may converge slowly. Precon­
ditioners improve the conditioning of the iteration
matrix, and usually have a first-order effect on im­
proving the convergence rate and overall efficiency
of solvers based on GMRES-like algorithms. For­
mally, a preconditioning matrix M transforms the
original system Ax = b into

M- I Ax = M-1b ¢> Ax = b (6)

The operation of M-l on any vector (say u =
Ax) is equivalent to the solution of a linear system

-----~

M ii = u, with M as the coefficient matrix. Such
linear systems have to be solved repeatedly for each
sub-iteration of the preconditioned GMRES algo­
rithm. Any matrix M which produces easy-to-solve
linear systems of the type M ii = u (e.g. M = Diag­
onal of A), is a potentially efficient preconditioner.

The costs associated with preconditioning can
be enumerated as (i) Computation of the precondi­
tioning matrix M, (ii) Linear system solves associ­
ated with M, and, (iii) Additional storage for the
matrix M, which may be of the order of storage re­
quirements for the matrix A. The selection of an
'efficient' preconditioner is motivated by the mini­
mization of the afore-mentioned costs.

Several different preconditioners that can be
chosen are diagonal (M = major diagonal of A),
block-diagonal, incomplete L-U factorization (ILU)
and block-IL U1S - in increasing order of the cost
to calculate and store M. Iterative methods used
in existing CFD codes can also be used as effective
preconditioners. A variant of the iterative scheme
of Y oon and Jameson 16 is used locally in each do­
main as a parallel preconditioner. This precondi­
tioner, referred to herein as the LUSGS precondi­
tioner, was validated with the serial GMRES algo­
rithm in reference 13, and found to be much more
efficient (in terms of CPU time and storage) and ex­
tremely competitive (in terms of convergence rate)
with the currently popular preconditioners based on
IL U factorizations of the matrix A.

The LUSGS preconditioner is applied to solve
linear systems like [M]{ ii} = {u} as follows:

1. Approximately factor [M] ~ [LJ[D]-l[U] where
[D]=major block-Diagonal of [M], [L]=([D]­
lower-triangular part of [MD, [U]=([D]- upper
triangular part of [MJ).

2. Invert the block-diagonal matrix [D]
3. Sweep forward (bottom-left to top-right) to

solve [L]{ii} = {u} for {u}.
4. Sweep backward (top-right to bottom-left) to

solve [U]{ii} = [D]{u} for {ii}.
The LUSGS preconditioner described above is

used without modification in the parallel implemen­
tation. Consequently, the sweeps in steps 3 & 4
(which are now partial sweeps limited to the con­
fines of the individual domains) will not produce
the same solutions as the serial algorithm. How­
ever, this is found to have only marginal effects
on the convergence of the parallel; preconditioned
GMRES solver. The preconditioner performs excel­
lently for rectangular or square domains, and the
performance deteriorates slightly for high aspect­
ratio domains. The LUSGS preconditioned GMRES

5

solver is found to maintain its convergence charac­
teristics to within 5% of the serial solver (for upto
512 processors) . This demonstrates the excellent
scalability of the new solver. Note, t hat if the num­
ber of processors equals the number of computa­
tional cells, the LUSGS preconditioner is equivalent
to a fully-scalable block-diagonal preconditioner.

I/O and Memory Considerations

This paper uses the Single Program Multiple
Data (SPMD) model of parallel programming to run
identical copies of the code on all processors. Each
processor performs its input/output operations in­
dependently of the other processors. The fastest
way of performing I/O operations on both iPSC/860
systems is to read/write from/to the Concurrent
File System (CFS). Each processor can access data
from the CFS at a peak rate of 1.5 Mbytes per sec­
ond.

Three data files are required by each processor
- an input parameter file, a grid file and a restart
file (if restarting). In the current implementation,
all processors read from a commonly shared parame­
ter file and grid file, both of which reside on the CFS.
Each processor determines its position in the global
domain, and correspondingly extracts the relevant
information from the parameter file and grid file.
Each processor is provided its own unique restart
file (if restarting), which it reads directly from the
CFS.

On completion of the user-specified time-steps,
each processor outputs a solution file directly to
the CFS. This invokes multiple writes to the CFS
and may cause delays due to contention for the
I/O nodes as all processors try and write to the
CFS at the same time. Since the global solution
is distributed across the various processors, a post­
processing program has been writt en to assemble
the global solution from the various output files.
The global solution file can also be used to gen­
erate restart information for any number of proces­
sors. The post-processor can be incorporated into
the CFD code itself, but has been avoided in favor
of the increased flexibility afforded by the current
approach.

It must be mentioned that if the I/O operations
are done to/from the front-end (or 'remote host ')
system (a Sun Sparc10 Workstation), the wall-clock
time of each run increases considerably. In addition,
if intermittent solution files have to be output to the
CFS (e.g. for an unsteady calculation), the I/O time
can tend to dominate the overall wall-clock time.

l.

The memory requiIements for the implicit code
are estimated at 320 words per grid point per pro­
cessor. This includes storage for 10 search directions
of the GMRES solver. 16 MBytes of RAM is avail­
able on each processor of the Intel Hypercube and
Intel Delta machines. In practice, a maximum of
~ 3000 grid points (corresponding to ~ 10 MBytes
of RAM) could be assigned to each processor, when
using 64-bit floating-point arithmetic. The remain­
ing memory is assigned for data, performance mon­
itoring tools, system software and communications
software. Hence, the maximum problem size is re­
stricted by the total available memory on the par­
allel machine.

Test Results and Discussion

A parallel, preconditioned GMRES solver has
been implemented for implicit solutions of the two­
dimensional, upwind, finite-volume, N avier-Stokes
equations. The global uniprocessor domain repre­
senting the computational grid is partitioned among
the processors of a distributed-memory machine.
Each processor runs identical copies of the same
computational code on different sets of data. The
processors communicate with each other at several
times during each computational time-step in order
to exchange information.

The parallel code has been developed on an
Intel Hypercube with 32 processors. All code­
development , testing and debugging, and perfor­
mance optimization has been done on the Hyper­
cube. The parallel code has been validated against
the original serial code (which is run on a single
processor of the parallel machine) . Results from
the parallel residual vector computation and par­
allel GMRES solver have been validated indepen­
dently over different domain decompositions , and
found to be identical to the serial code. This ensures
complete scalability ofthe domain decomposition al­
gorithm and the unpreconditioned GMRES solver.
The two problems selected for validation were low­
speed flow over a backward-facing step and subsonic
flow over a NACA 1406 airfoil. Subsequently, the
parallel code was ported to an Intel Delta machine
with 512 processors. All performance results pre­
sented here are based on data obtained from com­
putations on the Intel Delta machine.

Parallel Code Validation

The problem of computing low-speed flow lam­
inar over a backward-facing step was the first test
case to validate the parallel solver for internal flow

6

conditions. This flow problem illustrates the phe­
nomena of flow separation and recirculation in in­
ternal flows. All flow variables are second-order ac­
curate, fully-upwinded in the streamwise direction,
and third-order accurate , upwind-biased in the nor­
mal direction. The implicit (left-hand-side) opera­
tor is discretized in a first-order accurate manner.
Excellent comparisons with experimental data of
Armaly et. al17 have been obtained for this prob­
lem with the serial code13 .

The parallel validation was performed on 16
nodes of the Hypercube, with a 4 * 4 decomposition
of the 61 * 51 global grid. This partitioning assigns
16 * 14 grid points to nodes 0-7 and 16 * 13 points
to nodes 8-15. The uniprocessor grid is shown in
Figure 1. A freestream Mach number of Moo = 0.1
was specified. Four different flow conditions with
Reynolds number of Reoo = 100, 200, 300 and 389
were computed. Adiabatic, no slip boundary condi­
tions were used on the top and bottom walls form­
ing the boundaries of the channel, and on the lower
portion (which defines the step) ofthe inflow bound­
ary. For fully developed subsonic flow at the outflow
boundary, three variables (p, u and v) were extrapo­
lated and the pressure was determined by fixing the
stagnation enthalpy. The parabolic velocity profile
at the inflow boundary was simulated by imposing
a profile of Reimann invariants.

BACKWARD·FACING STEP
6Jx5! GRID

~~:~::========-==-=-=======::!!!~~~~=-
~"~;;;;'i"i.;::;:~.'li~i>'i':ii"i"iiiii;i"; __ :.-__ ~~ __ ~ ___ ~ __

;;:;;;.;;;;~;i;;;;;;;;;;~;;;;;;i.;;;.i;; ••• ~-;._;~~_=;_:.~~=~~~;;~~:.. ~

Figure 1. Computational Grid for Backward­
Facing Step

Figure 2 shows Mach number contours obtained
for the Re = 389 case. The nature and size of
the separation and recirculation behind the step
closely matches the physical description of the flow
as obtained in the experimental data. The ratio
of reattachment distance (XR) to step-height (S)
was found to be identical to the uniprocessor cal­
culations, for all the four Reynolds' numbers. The
calculated XR IS ratios also compared very well (to
within ±5% accuracy) with the experimental data.

Low Reynolds number, laminar, subsonic flow
over a NACA 1406 airfoil was the second valida­
tion test case for the parallel solver, for external
flow conditions. The flow conditions correspond
to a freest ream Mach number of Moo = 0.6 , an-

MACH NUMBER
RANGE:=O.O.O.I

IN"ffiR V AL:O.OO3

Figure 2. Mach Number Contours for Backward­
Facing Step

gle of attack, 0: = 1.00
, and Reynolds number,

He = 5.0 * 108 . The computational grid was a 'c'
mesh of 257 * 65 points , and is shown in figure 3.
The far-field boundary was placed five-chords from
the airfoil and points are clustered near the airfoil
to resolve viscous gradients. All flow variables are
third-order accurate, upwind-biased in the stream­
wise and normal directions.

SUBSONIC ADlFOn.
257.65 GRID

Figure 3. Computational Grid for Subsonic Air­
foil

The parallel validation for this case was per­
formed on 32 nodes of the Hypercube with an
8 * 4 partitioning of the 257 * 65 grid to yield
65 * 17 grid points per node. Figure 4 is a plot
of the computed steady-state pressure coefficient,
Cp , on the surface of the airfoil. The computed
lift, drag, and pitching moment coefficients ob­
tained were CL =O.18148, CD=0.041703, and CM =-
0.023718, respectively. These coefficients compared
exactly with those computed with the serial version
of the code.

Convergence Rate Comparisons

A comparison of convergence rates on the serial
and parallel machines reveals the effectiveness and
accuracy of the parallel implicit solver. A compari­
son for the backward-facing step test case is shown
in figure 5. A constant Courant number of 50 has
been used. It is clear that the parallel precondi­
tioned GMRES solver retains the convergence char-

7

~

'-' ,

1 .0

0 .8

0 .6

0 .4

0 . 2

0 .0

-0.2

-0.4

-0. 6

-0.8

- 1 .0

SUBSON IC AIRFOIL

Moeh=0. 6 Re-SOOO
Grid S ize=257)(65

""UOOoooo
0 oooooOOoc

1 8A"""""'-"'=""""x>oooooooooo::==~~ ,.

0 .0 0 .2 0.4 0 . 6
·Ie

0.8 1. 0

Figure 4. Chordwise Distribution of Cp

acteristics of the serial solver. The differences in the
serial and parallel solvers arise because of the local
(instead of global) implementation of the parallel
LUSGS preconditioner. The LUSGS sweeps were
restricted to the individual processor domains, and
no additional message-passing was done to repro­
duce the uniprocessor L USGS sweeps of the global
domain. This seemed to have a negligible impact on
the convergence rate of the parallel solver.

0

-2

:;i
=>
0 -4
~
""
~

0 - 6

'" g

-8

- 10
0

BACKWARD FACING STEP

Moch::::l<O . 1 Re=389
Grid Size=6 1 x5 1

A"S£R~
8 - 16 NOOES

400 800 1 200 1600 2000
TIME-STEPS

Figure 5. Convergence histories for Backward­
Facing Step

Figure 6 traces the convergence rates for the
subsonic airfoil calculations, for 1500 time-steps.
The parallel preconditioned G MRES solver was
tested on 16(8*2), 32(8*4), 64(16*4), 128(16*8) and
256(32 * 8) nodes. A constant Courant number of 10
was used for the comparisons with the serial solver.
It can be seen in figure 6 that t he convergence rate of
the parallel preconditioned G MRES solver decreases
as the number of processors increases. This decrease
implies that the number of time-steps required by
the parallel solver to attain an eight-order reduction
in the l2 norm of the residual vector, will increase
slightly (5-10%) as compared to t he serial solver.
The decrease in convergence rate is negligible up to
a four-order residual reduction, which is usually suf­
ficient for most engineering problems. Thus, it can

be claimed that an implicit parallel code (includ­
ing the preconditioner, the GMRES solver and the
residual-vector computation) has been designed to
perform consistently over a large number of proces­
sors in a distributed-memory environment.

0

-2

<' =>
"" ~
""
~

"" -6

9
-8

- 1 0
0

SUBSON IC AIRFOIL

MoCh=O .6 Re - 5000
Gri d S i ze=257x65

"'- SERIAL
9 - 10 NODES
C _ 32 NOOES
0 _ & 4 NODES
(- 128 NODES
F" _ 2:;e NODes

400 ~ru>E- ST~'S0 1600 2000

Figure 6. Convergence histories for Subsonic Air­
foil

Parallel Performance Results

The parallel code was run on a single node
of the Hypercube to determine the single-processor
performance. The code was compiled with the max­
imum available vectorization and optimization op­
tions. The 6h51 grid from the backward-facing step
calculation was used, as this was the largest number
of points that could be accommodated on a single
node (in accordance with memory requirements of
the CFD code) . The preconditiond GMRES solver
was run for 100 time-steps, with 5 sub-iterations
per time-step. The average single-processor CPU
time for the Intel Hypercube was recorded as 340
seconds. The total number of floating-point oper­
ations were determined by invoking the hardware
performance monitor (hpm) ofthe Cray Y-MP. The
hpm indicated that the code performed 1300 Mflops,
which translated to a 1300/340=3.8 Mflops/sec rat­
ing for a single processor of the Intel Hypercube.
The unpreconditioned GMRES solver performed at
a higher rate of 5.9 Mflops/sec on a single node of
the Intel Hypercube (1290 Mflops, 220 seconds, 100
time-steps, 10 sub-iterations per time-step).

The slower performance of the L USGS precon­
ditioned GMRES solver can be attributed in part
to the inherent lack of vectorization of the LUSGS
preconditioner. However, in practice, the faster vec­
tor performance of the unpreconditioned GMRES
solver was sufficiently compensated for by the much
superior steady-state convergence rate of the pre­
conditioned solver. The use of the L USGS precon-

8

ditioner considerably reduced the CPU time to at­
tain a steady-state solution 13. This suggests that
the LUSGS preconditioner can be used profitably
in a parallel environment, provided the convergence
rate does not suffer as the number of processors is
increased.

Recall that the i860 processor is rated at
60 Mflops/sec for 64-bit floating-point operations.
Hence, when running at 5.9 Mflops/sec, only 10%
of the peak performance is achieved (by the un­
preconditioned GMRES solver) on a single node.
These performance numbers seem to be very low,
but they compare very favorably with other typi­
cal CFD applications18 on machines built around
the i860 microprocessor. As a comparison, the
unpreconditioned and L USGS-preconditioned G M­
RES solvers performed at rates of 120 Mflops/sec
and 170 Mflops/sec, respectively, on a single proces­
sor of the Cray Y-MP located at the NASA Lewis
Research Center.

The CPU times for the subsonic airfoil calcu­
lation are plotted in figure 7. This figure demon­
strates that a parallel implementation on 32 nodes
can match the turnaround time of a serial imple­
mentation on a single processor of a Cray Y-MP. In
addition, a parallel implementation on 256 nodes is
three times faster than a Cray Y-MP implementa­
tion , in terms of CPU time to convergence. Note,
that for larger problem sizes, the potential gain in
CPU time with 256 nodes is much larger. This is
because the ratio of computational work to commu­
nication work increases with problem size, and each
processor is utilized more efficiently.

0

-2

<' =>
"" ~

_4

"" ~
0 -6

'" g

-8

-10
0

SUBSON IC AIRFOIL

Moch=0. 6 Re=5000
Grid S ize=2S7x65
1500 Time - Steps

"' - C t oy YMf>
e .. 16 Nooes
C _ 32 NOOtS
0 _ 64 NOC£.S
E_ 128 NODES
F" _ 2!56 NODES

1200

Figure 7. CPU time Characteristics for Subsonic
Airfoil

Figure 8 shows a profile of the run-time char­
acteristics for the parallel code on 32(8 * 4) of the
Intel Hypercube, for the 257 * 65 grid airfoil prob­
lem. The computational work is in slight imbal­
ance because the nodes which process the boundary-

condition information perform more work than the
'interior' nodes. The communication load is in slight
imbalance because the number and length of mes­
sages varies across each node (e.g. boundary nodes
have fewer messages) . However, this does not have
an effect on the overall load balance since the com­
munication time is only a small fraction (~5%) of
the total CPU time.

I '-_0-.-.0 . C "'OUl o.IIO" _NOde CO~'IOmE1SY.t.~ ODI ' _[§FlICW

N oo- Utlll:c a tion

011ttJl_

Figure 8. Run-Time Profiling Characteristics (32
nodes)

In this work, three grids of dimensions 193*161,
257*257 and 513*513 were employed to study the
effects of computational load on parallel perfor­
mance. The backward-facing step problem was cho­
sen as the test case. CPU times for 100 time-steps
(10 sub-iterations per time-step) of the unprecon­
ditioned GMRES solver were recorded. The per­
formance for each grid is summarized in figure 9. A
peak performance corresponding to 2300 Mfiops/sec
(512 nodes) is achieved for the 513*513 grid. The
256*256 and 193*161 grids have reduced peak per­
formances of 1350 Mfiops/sec and 750 Mfiops/sec,
respectively.

]
~
~

~

§

l
'"

M F lop s vs. # of Processors
~~~--~~~----~~~---,r-~ 

2~OO "-0 ' rg:s-ts"c 
4 2~7.2~7 

o !>' >-!S13 

2000 

1Soo 

0 

'000 

c 
0 

sao c 
..... r? 

a 

a 
a 100 200 ~OO 400 sao 600 

Number of P"'ocessors 

Figure 9. Variation of Performance vs. Load 

The 'ideal' performance (figure 9) is based on 
the single-node performance of 5.9 Mfiops/sec for 
a domain size of ~ 3000 points. This implies that 

9 

for a fixed size of the uniprocessor grid, the per­
formance will be less than 'ideal' as the number 
of processors increases (and the domain size de­
creases). This is evident from the performance 
numbers for the 193*161 grid, which deteriorate 
rapidly from 5.3 Mfiops/sec/node (16 nodes) to 
2.32 Mfiops/sec/node (256 nodes). However , when 
the grid size increases to 257*257, t he performance 
numbers range from 5.6 Mfiops/sec/ node (32 nodes) 
to 3.4 Mfiops/sec/node (256 nodes). The 513*513 
grid performs in the range of 5.2 Mfiops/sec/ node 
(128 nodes) to 4.8 Mfiops/sec (256 nodes) . 

The parallel efficiency for N processors, 1]N , is 
calculated as 

where Tl is the CPU time for one processor and 
TN is the CPU time for N processors. The parallel 
efficiency characteristics for different grid sizes are 
shown in figure 10. As expected, 1]N decreases as 
the number of grid points per processor decreases. 
It is estimated that ~ 1024 grid points per node 
are required to keep 1]N above 80%. Speedup fac­
tors for the different grids and processors can be 
derived from the values of 1]N by using the rela­
tion SN = 1]N * N. For example, for the 513*513 
grid, when N = 512 and 1]N =0.74, SN = 379. It 
must be remarked that the maximum speed-up for 
a fixed-size problem is governed by Amdahl's law19 , 

and depends on the distribution of sequential and 
parallel work in the code. 

E fficiency vs. # of Processors 
'.0 .---~---'---------~-----,------, 

C 4 
0 .8 . .. 0 

" 
c 
~ 0.6 

a; 
E 0.4 

rf. 

0.2 _ .c . l.s~.\6.\.. 
4 2.57- 2.57 
o !o 1 .J-!> 13 

0.00:----:-::, ooc::----:2700::----:-30=0:---.:-::00c::----:s700::-----:-!600 
Numb er of Processors 

Figure 10. Variation of Efficiency vs. Load 

Conclusions and Future Work 

A parallel, implicit solver has been developed 
for distributed-memory parallel machines, for ob­
taining steady-state solutions of t he compressible 
Navier-Stokes equations with a state-of-the-art CFD 



code. The implicit solver is a combination of a paral­
lelized Krylov solver (GMRES) and a scalable, local 
parallel preconditioner. This paper shows that the 
parallel, implicit solver provides steady-state con­
vergence rates which compare excellently with se­
rial implicit solvers used in shared-memory imple­
mentations. The domain-decomposition strategies 
adopted in this paper are validated for internal and 
external flow test cases, on a wide range of process­
ing nodes. 

The performance of the parallel CFD code 
varies as a function of t he computational workload 
and the communication overhead for each proces­
sor. The parallel efficiency (defined as ratio of ac­
tual speedup to ideal speedup) is found to decrease 
as the amount of computational workload (or num­
ber of grid points) per processor decreases. The 
parallel CFD code peaks at a computational rate of 
2300 Mflops/ sec on a 513 * 513 grid on 512 nodes 
of the Intel Delta machine. A parallel efficiency of 
80% or greater is achieved if each processing node is 
assigned at least 1024 grid points. The parallel im­
plementation is determined to be memory-bound, as 
a maximum of 3200 grid points can be accomodated 
in the 2MW RAM of each processor. The communi­
cation overheads are determined to be largely inde­
pendent of the nature of the domain decomposition 
and the assignment of domains to processors. The 
total communication time constitutes roughly 5-7% 
of the total execution time. 

The attainable single-node performance on the 
Intel machines (Hypercube or Delta) is 30 times 
lower than that on a single processor of a Cray Y­
MP (6 Mflops/ sec versus 170 Mflops/ sec). How­
ever , a subsonic airfoil calculation on 256 nodes 
is demonstrated to run three times faster than a 
single-processor Cray Y-MP computation. Consid­
erable improvements in the areas of compilers, data 
cacheing, memory-access times and I/ O operations 
are required to further enhance the competitiveness 
of parallel machines for large, three-dimensional, 
unsteady-flow simulations of fluid-flow problems. 
Improvements in parallel algorithms, solvers and 
programming models will also contribute to the ac­
ceptability of parallel machines in widespread CFD 
applications. 

The implicit, parallel CFD code developed 
in this paper is being integrated into a multi­
disciplinary design environment. Efforts are cur­
rently underway to parallelize the turbulence mod­
els and sensitivity-analysis algorithms, to obtain 
design-sensitivities for a large number of design 
variables in parallel. Recent Krylov solvers (CGS, 

----~----~-- -~---- - ----- - -

10 

BiCGSTAB and QMR) are also being studied to 
evaluate their competitiveness in parallel environ­
ments. 

Acknowledgements 

The authors wish to thank Dr. L. A. Povinelli 
for his support and encouragement of this research 
under the ICOMP Program at NASA Lewis Re­
search Center. Computational resources were pro­
vided by the Advanced Computational Concepts 
Lab (ACCL) at NASA LeRC and the Delta Consor­
tium at Caltech. The grid for the airfoil calculations 
was provided by Dr. A. C. Taylor of Old Dominion 
University, Norfolk, VA. 

References 

1. Saad, Y., and Schultz, M. H., "GMRES: A 
Generalized Minimal Residual Algorithm for 
Solving Nonsymmetric Linear Systems," SIAM 
Journal of Scientific and Statistical Computing, 
Vol. 7, 1986, pp. 856-869. 

2. Saad, Y. , and Schultz , M. H. , " Parallel Imple­
mentation of Preconditioned Conjugate Gradi­
ent Methods," Report No. AD-A161988 , Yale 
University, New Haven, CT., 1986. 

3. O'Leary, D. P. , "Parallel Implementation ofthe 
Block Conjugate Gradient Algorithm," Parallel 
Computing, Vol. 5, July 1987, pp. 127-139. 

4. Anderson, E., and Saad, Y ., "Preconditioned 
CG Methods for General Sparse Matrices on 
Shared Memory Machines," in Parallel Pro­
cessing for Scientific Computing, Proceedings 
of the Third SIAM Conference, Los Angeles , 
CA, 1987, pp . 88-92 . 

5. Radicati di Brozolo, G., and Robert , Y., "Par­
allel Conjugate Gradient-like Algorithms for 
solving Sparse Nonsymmetric Linear Systems 
on a Vector Multiprocessor," Parallel Comput­
ing, Vol. 11, August 1989, pp. 223-239. 

6. Baxter, D., Salz , J ., Schultz, M., and Eisenstat, 
S. , "Preconditioned Krylov Solvers and Meth­
ods for Runtime Loop Parallelization," Report 
No. AD-A206388 , Yale University, New Haven, 
CT. , 1989. 

7. Berryman, H. , Saltz , J. , Gropp, W., and Mir­
chandaney, R. , "Krylov Methods Precondi­
tioned with Incompletely Factored Matrices on 
the CM-2," NASA-CR-181961 , ICASE Report 
No. 89-54, 1989. 

8. Gropp, W. D., and Keyes, D. E. , "Domain 
Decomposition with Local Mesh Refinement ," 
NASA-CR-187528, ICASE Report No. 91-19, 
1991. 



9. Shadid, J . N., and Tuminaro, R. S., "Iterative 
Methods for Nonsymmetric Systems on MIMD 
Machines," Sandia National Labs Report No. 
90-2689C, Albuquerque, NM. 

10. Desturler , E., "A Parallel Restructured version 
of GMRES(m) ," Delfts University Report No. 
91-85 , Netherlands. 

11. Braaten, M. , "Development of a Parallel CFD 
Algorithm on a Hypercube Computer," IntI. J. 
Num . Meth. Fluids , Vol. 12, 947- 963, July 
1990. 

12. Van Leer, B. , "Flux Vector Splitting for the 
Euler Equations," Lecture Notes in Physics, 
Vol. 170, 1982, pp. 507-512 (also ICASE Re­
port 82-30 , September 1982). 

13. Ajmani, K. , "Preconditioned Conjugate Gradi­
ent Methods for the Navier-Stokes Equations," 
Ph.D Dissertation, Virginia Polytechnic Insti­
tute and State University, Blacksburg, VA, 
1991. 

14. Arnoldi, W . E. , "The Principle of Minimized 
Iteration in the Solution of the Matrix Eigen­
value Problem," Quart. Appl. Math .. Vol. 9, 
1951 , pp. 17-29. 

15. Meijerink, J. A., and Van der Vorst , H. A. , 
"Guidelines for Usage of Incomplete Decompo­
sitions in Solving Sets of Linear Equations as 
they occur in Practical Problems," Journal of 
Computational Physics, Vol. 44, 1981, pp. 134-
155. 

16. Yoon, S. , and Jameson, A., "An LU-SSOR 
Scheme for the Euler and Navier-Stokes Equa­
tions ," AlAA Paper 87-0600, January 1987. 

17. Armaly, B. F ., Durst, F ., Pereira, J. C. F. , 
and Schonung, B., "Experimental and Theo­
retical Investigation of Backward Facing Step 
Flow," Journal of Fluid Mechanics, Vol. 127, 
1983, pp. 473-496. 

18. Ryan, J . S., "Parallel Computation of 3-D 
Navier-Stokes Flowfields for Supersonic Vehi­
cles," AIAA Paper 93-0064, January 1993. 
Communication, June 1992. 

19. Amdahl, G. , Validityofthe single-processor ap­
proach to achieving large scale computing ca­
pabilities, Proc . AFIPS Conf. (1967), pp. 483-
485. 

---------

11 

__________ 0. __ - • 



-------------_. --_ .. _-_ .. - - _ .. - -_.-

REPORT DOCUMENTATION PAGE 
Form Approved 

OMS No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information . Send comments regarding this burden estimate or any other aspect of this 
collection of information , including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management an d Budget, Paperwork Reduction Project (0704-0168), Washington, DC 20503. 

1, AGENCY USE ONLY (Leave blank) 12, REPORT DATE 13, REPORT TYPE AND DATES COVERED 

January 1994 Technical Memorandum 
4, TITLE AND SUBTITLE 5_ FUNDING NUMBERS 

Preconditioned Implicit Solvers for the Navier-Stokes Equations on 
Distributed-Memory Machines 

6. AUTHOR(S) WU- 505-90-5K 

Kumud Ajmani, Meng-Sing Liou, and Rodger W. Dyson 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

National Aeronautics and Space Administration 
E-8302 Lewis Research Center 

Cleveland, Ohio 44135-3191 

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING 
AGENCY REPORT NUMBER 

National Aeronautics and Space Administration NASA TM-106449 
Washington, D.C. 20546-0001 ICOMP-93-49 

AIAA-94--0408 

11 . SUPPLEMENTARY NOTES 
Prepared for the 32nd Aerospace Sciences Meeting and Exhibit, sponsored by the American Institute of Aeronautics and Astronau-
tics, Reno, Nevada, January 10-13, 1994. Kumud Ajmani, Institute for Computational Mechanics in Propulsion, NASA Lewis 
Research Center (work funded under NASA Cooperative Agreement NCC3-233); Meng-Sing Liou and Rodger W. Dyson, NASA 
Lewis Research Center. ICOMP Program Director, Louis A. Povinelli, (216) 433-5818. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Unclassified - Unlimited 
Subject Category 64 

13. ABSTRACT (Maximum 200 words) 

The GMRES method is parallelized, and combined with local preconditioning to construct an implicit parallel solver to 
obtain steady-state solutions for the Navier-Stokes equations of fluid flow on distributed-memory machines. The new 
implicit parallel solver is designed to preserve the convergence rate of the equivalent 'serial' solver. A static domain-
decomposition is used to partition the computational domain amongst the available processing nodes of the parallel 
machine. The SPMD (Single-Program Multiple-Data) programming model is combined with message-passing tools to 
develop the parallel code on a 32-node Intel Hypercube and a 5l2-node Intel Delta machine. The implicit parallel 
solver is validated for internal and external flow problems, and is found to compare identically with flow solutions 
obtained on a Cray Y -MP/8. The computational speed on 32 processing nodes of the i860 machines is comparable to 
the speed on a single processor of the Cray Y -MP. A peak computational speed of 2300 MFlops/sec has been achieved 
on 512 nodes of the Intel Delta machine, for a problem size of 1024K equations (256K grid points). 

14. SUBJECT TERMS 15. NUMBER OF PAGES 

Parallel computing; Krylov solvers; Preconditioners 16. 

13 
PRICE CODE 

A03 
17. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19. SECURITY CLASSIACATION 20. LIMITATION OF ABSTRACT 

OF REPORT OF THIS PAGE OF ABSTRACT 

Unclassified Unclassified Unclassified 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



, 

N
at

io
na

l A
er

on
au

tic
s 

an
d 

S
pa

ce
 A

dm
in

is
tr

at
io

n 
L

ew
is

 R
es

ea
rc

h
 C

en
te

r 
C

le
ve

la
nd

, 
O

H
 

44
13

5-
31

91
 

lC
O

M
P 

O
A

l 
O

ffi
ci

al
 B

us
in

es
s 

P
en

al
ty

 f
or

 P
riv

at
e 

U
se

 $
30

0 

I 
_

_
_

_
_

 ~
~
~
~
_
 


