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eutectic displays a promising high temperature strength while still m g a  

reasonable room temperature fracture toughness when compared to other NM-bas& 

materials. 

The Laves phase NiAlTa was used to strengthen NiAl and very groIxlliskg 

creep strengths were found for the directionally solidified N'N-NMTa e1:11W,~c, n e  

eutectic composition was found to be near NM-15.5Ta (at. %) and well &gn& 

microstructures were produced at this composition. An offeutectic compsi~ow (of 

NiAl-14.5Ta was also processed. The offeutectic composition resulted h. 

microstructures consisting of NiAl dendrites surrounded by aligned eutecriie regions. 

The room temperature toughness of these two phase alloys was si 

NiAl even with the presence of the brittle Laves phase NN'Ifa. 

Evidence of a ternary peritectic reaction: NiA1 + NiAlTa+liquid = Ni2IhlTa wad% dm 

found from cast microstructures of Ni-Al-Ta alloys. 

Polyphase in-situ composites were generated by directional soli&fieaeow of 

ternary eutectics. This work was performed to discover if a balance of prophes 

could be produced by combining the NiAl-Laves phase and the NM-refhactoq m e d  

phase eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or 

alloys. Ternary eutectics were found in each of these systems and both &e eutm~c 

composition and temperature were determined. Of these eutectics, &e one in 

the NiAl-Ta-Cr system was found to be the most promising. The Eracture toughness 

of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the 

NiAl-NiAITa eutectic and the NiAl-Cr eutectic. The creep strength of this t e m q  

eutectic was similar to or greater than that of the NiAl-Cr eutectic. 
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OVERVIEW AND OBJEC 

To meet the requirements of advancing technologies in the aerospace and other 

hdustries, materials are needed with application temperatures higher than those of the 

~ckel-based superalloys currently in use. Intermetallics systems are being considered as 

m d i a t e  materials for advanced high temperature aerospace applications. In particular, 

the B2 compound NiAl is being extensively studied due to its superior oxidation 

resistance, high melting point, low density, and high thermal conductivity [l]. 

However, NiAl is brittle at room temperature and has poor elevated temperature 

saength, both of which render this material inadequate for structural applications. 

Re&forcing NiAl with second phases to form composite materials may eliminate these 

problems. 

One method for producing NiAl-based composites is by controlling the eutectic 

soGdification process of NiAl based alloys. During eutectic growth, two or more solid 

phases form simultaneously from the liquid. Directional solidification of these eutectic 

alloys may produce in-situ composites, where one or more phases are aligned parallel to 

Ike growth direction. 

One advantage of producing in-situ composites by directional solidification is 

that the phases are thermodynamically stable even up to the melting point. A 

&s;jldvantage is that alloy compositions are limited by the appropriate phase equilibria 

needed for eutectic growth. Unfortunately, the eutectic compositions for many systems 

sf  interest are unknown. 

The objective of this research was to develop high temperature, NiAl based, in- 

sih composites. The research objectives may be stated as: 
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Cr, V, and Mn all have limited solubility in NiAl. A few studies have k d i a t d  rBraat 

< 11 1 > slip occurs in N M  due to Cr or Mn additions when tested in the hwd 

orientation [15,16]. However, these alloys showed no signs of improved rmm 

temperature tensile ductility [15]. In addition, there has been no evidence of < 11 1 > 

slip in polycrystalline NiAl alloyed with Cr or Mn when tested in compression [8, In. 

Increases in tensile ductility have been observed for single crystal N i d  

microalloyed with Mo, Ga, and Fe within the 0.1 to 0.25 at. % range 1181. M a s u r d  

plastic strains in tension as high as 6% were seen when these alloys were test& in the 

< 110 > orientation. At higher alloying additions the effect of in dueatgr 

disappears. The mechanisms for the improved ductility from microallo*g have not 

yet been identified but are speculated to involve impurity trapping or dislw~om e m  

interactions with point defects 1181. However, tests performed on polycqsdhe N N  

imens microalloyed with Ga or h h  showed no improvement in tens2le diucajlly 

~191. 

Ductile phase toughening is another method for improving the toughess and 

ductility of brittle materials. The improved toughness is provided by the hLc:mchon 

between the propagating crack and the ductile phase during fracture. The chaenge is 

to increase the toughness without sacrificing the attractive high temperame propeajtes 

of the intermetalIic compound. For example, introducing Ni3M as a ductjile phase in 

NiAl improves the ductility and toughness of the composite material over &at of 

binary NiAl 193. Unfortunately, the melting temperature is depressed a d  aQle creep 

strength of the two phase alloy can be significantly lower than that of bkargr Nali 191, 

On the other hand, a number of eutectic microstructures consishg of N ~ B  m d  a 

refractory metal phase show both improved toughness and creep strength. Irwo examplie 

systems are the NiAl-Cr, and the NiAl-Mo eutectic alloys [20-241. The reiinforcing 

refractory metal phase provides increases in both the toughness and c r q  s@eng& of f i e  

composite material. The N i - C r  eutectic was one of the initial NiAl b a d  syskms 
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studied for possible high temperature use 1201. This system has disphyd plromising 

room temperature fracture toughness 1241 and promising elevated tempmI'ure s & a g f i  

[25]. These properties make the NiAl-Cr eutectic a good choice for wmphson when 

evaluating other NiAl-based in-situ composites. Furthermore, different psmesshg 

procedures and alloying additions may enhance the mechanical propfies of ~s 

eutectic. The Cr-NiAl quasi-binary phase diagram is shown in Figure 1.8. 

The different possible toughening mechanisms provided by a duc~le seeowd 

phase within a brittle matrix are shown in Figure 1.9. These different nnzwhanjlswas are 

classified as crack bridging, crack blunting, or crack deflection [9]. Crraek bridging 

occurs when a moderately strong bond exist between the ductile p h m  md the ma& 

phase [9]. The plastic deformation experienced by the s a n d  phm in ~ k r e  t:mck w&e 

inhibits further crack propagation. Crack blunting occurs when the sh'esses at &cle cmck 

tip are relaxed sufficiently by the ductile phase preventing tack propaga&on. 

Crack deflection occurs when a weak bond exist between phase ;md the 

matrix phase. Debonding between the two phases may causes the cmels: to bmch 

decreasing its energy. Of these different toughening mechanism, craGk b ~ d g h g  is 

commonly observed in eutectic microstructures due to the strong inkdaeial bond 

between the different phases. 

Elevated temperature prowrties 

Most intennetallics with high melting temperatures have connplex c q f s a  

structures with strong directional atomic bonding. This strong bondhg in gene& l a d s  

to a retention of mechanical properties at high temperatures. To a  st approGmaton, 

mechanical properties such as strength and creep resistance sale dbwrly wifi me l~ng  

temperature. However, NiAl with its simpler crystal structure e f i b i s  p r e r  crep 

resistance than either Ni3A.l or TiAl even though NiAl has the greater melfing 

temperature 125,261. 







The high temperature strength of NiAl is poor when compared to ~ o s e  of a 

nickel-based superalloy, Figure 1.10. Methods to improve the high temFrathare 

strength of NiAl by solid solution strengthening or precipitation hardening are gc=ne:My 

successful for fast deformation rates but the improvement is diminished at slow 

deformation rates [2q. Alloys containing precipitates of Heusler phases such ;zas 

f have shown promising creep properties 111. However, some of the most 

promising elevated temperature strengths have been displayed by NiAl-bves phase 

systems. An example of such a system is the NiAl-NiAZNb eutectic 125,281. By 

directional solidification of this eutectic, an order of magnitude in 

resistance was measured when compared to material processed using a easbg andunid 

extrusion procedure [28]. These results are shown in Figure 1.1 1. 

Polv~hase in-situ commsites 

of interest are composites structures containing more than mo phaises. 

Systems of interest would include a metallic phase for better low tempemmre toughness 

combined with several intermetallic phases for good elevated temperature s$reng&. 

Such systems considered are the NiAl-refractory metal eutectics and the NW-hves 

phase eutectics. on the room temperature toughness imparted by fie m e m e  

phase, the elevated temperature strength of the Laves phase, and the ofida~on resismec: 

of the NiAl phase, optimum properties may be achieved in a directionally soEdifid 

three phase eutectic. 

The intermetallic compound NiAl forms eutectic nnicrostructures ~~ the 

refractory metals Cr, Mo, V, W, and Re 181. The NiAl-Laves phase NiAM eutwfic 

has shown promising high temperature properties 1281. In addition, the h r e s  p h a  

NiAlTa forms stable equilibria with NiAl and such alloys have also d i ~ l a y d  p r o ~ s h g  

high temperature properties 125,261. 
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SCOPE OF RESEARCH 

Ordered intermetallics such as NiAl are considered candidate for cgh 

temperature structural applications provided that the proper combination of rmm 

temperature toughness and elevated temperature strength can be developed. 

Improvements in these areas are generally found for alloys. However, 

processing of intermetallics is usually difficult due to their refractory namre. &fore 

mechanical properties can be measured and optimized, processing routes must prdum 

sound bulk material which can be reliably tested. Part of the present re 

develop containerless processing techniques for producing composite mahe~als, In-siQ 

composites were generated by directional solidification in a levitation zone rehex.  n e  

facility design of the directional solidification laboratory allows automPed prwess 

control of the levitation zone refiner. Much of the present research wnsisw of 

software development to allow automated processing of a wider range mte,ds fhm 

previously possible. 

After the upgrade of the levitation zone refiner, two classes of NM-b 

composited were examined. These were the NiAl plus refractory metal eutec~c systems 

and the NiAl plus Laves phase eutectics. The ductile phase toughening of IcfiIBle 

materials was examined in the NiAl-refractory metal eutectics. Conversely, the veq 

hard and brittle Laves phases in the NiAl-Laves phases eutectics were ex3pecM to 

provide improvements in the creep resistance compared to other NiAl b 

Lastly, polyphase in-situ composites were generated by dire~tiond soEdifieaGon 

of ternary eutectics. This work was performed to discover if a balance of progex.tjies 

could be produced by combining the NiAl-Laves phase and the NW-rehetoy ~ n e d  

phase eutectics. 
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CONT S PROCESSING 

In-situ composites generated by directional solidification can possess more 

amctive high temperature properties than those produced by other techniques such as 

casting and extrusion. Containerless processing offers the additional advantage of 

e&anced purity by eliminating alloy contamination from the crucible. The crucible is 

by using induction power to heat, levitate, and constrain the liquid zone. 

Diurectional solidification is then accomplished by moving the liquid zone through the 

lmgth of the ingot. A schematic of the levitated molten zone is shown in Figure 2.1. 

Without crucible containment, precise dimensional control of the freezing ingot 

requires that the shape and position of the molten zone within the induction coils be 

controlled. Thus, the control variables are the position of the solid-liquid interface 

land the liquid zone diameter. The design of the solidification laboratory allows ingots 

to be processed under full computer control independent of any temperature 

ineasurements [I]. 

The following procedure is used to control the solidification process. A 

digitized image of the molten zone is captured by an image processing camera that is 

computer addressable. The interface location is held to a target position by 

lcsntroIling the induced power. The shape of the zone is controlled by maintaining a 

constant melt diameter by a stretch-squeeze action on the liquid. Both the interface 

psition and the melt diameter are held to tbeir target values by proportional, integral 

mntrol loops. An infrared pyrometer is also used to record the temperature near the 

soGd-Gquid interface. 



LIQUID ZONE IS STRETCHED OR 
SQUEEZED TO MAINTAIN A 
CONSTANT LIQUID DIAMETER. 

INDUCTION COIL 
(INDUCED POWER) 0 

SOLID-LIQUID INTERFACE: IS 
MAINTAINED AT A CONSTANT 
POSITION BY CONTROLLING 
THE INDUCED POWER. 

- - - - - -  

3 WATER COOLED 
EDDY CURRENT PLATE 

BOTTOM PORTION I IS ROTATED 

Figure 2.1: Schematic of molten zone during directional wlidificakn. 



The method for producing the electromagnetically constrained liquid zone is 

shown in Figure 2.2. To dlow for volume expansion upon melting, a gap is left 

between the upper and lower portions of the ingot during initial heating. As the 

material is melted, liquid is levitated until it comes in contact with the upper portion 

of the ingot. After thermal equilibrium is reached, the induced power is controlled to 

eshblish a stable liquid zone. The shape of the molten zone and dimensional control 

of the freezing solid-liquid interface can be maintained by moving the top portion of 

the ingot relative to the bottom (stretcwsqueeze). The lower solid portion of the ingot 

is rotated to maintain a smooth solid-liquid interface. The whole assembly is moved 

&rough the heating and shaping induction field. 

During a typical run, the induced power is manually adjusted at the b 

of the process to place the solid-liquid interface at a stable position in the cons 

field. The power is then placed under computer control using software to locate the 

soGd-liquid interface. As the liquidus temperature and composition of the interface 

directional solidification, the controller adjusts the power to maintain 

the interface position at the desired position independent of direct temperature 

mwmements. 





FACILITY DESIGN 

The thermal response of high temperature intennetallics such as NiAl is very 

fat. To steady state heat and mass transfer processes in these high energy 

hputloutput systems, the control system must maintain the solid-liquid interface at a 

f ied position within the thermal field. Experience has shown that control actions are 

needed 4 to 5 times per second to maintain the shape of the molten zone for 

high temperature systems. Times longer than this are insufficient to control the shape 

of the zone. Unfortunately, the computer acquisition and interrogation of the 

&@tized image are very time consuming. This allows only a small portion of the 

digitized image to be transferred to the computer within the given time con 

Furthemore, simultaneous control of both the liquid diameter and the position of the 

solid-liquid interface is needed for precise dimensional control of the processed ingot. 

is measured along a fixed pixel line during the control process, 

Figure 2.1. Thus, to maintain an accurate reading of the liquid zone diameter, a 

constant solid-liquid interface position must be maintained. However, a variety of 

different zone shapes and geometries have been observed for materials processed to 

date g effective computer control difficult. 

To overcome the time limitations imposed by the image processing hardware, 

el processing scheme using two computers was employed. With parallel 

processing, the position of the solid-liquid interface is found on one computer without 

hterfering with the control actions of the second computer. A schematic of the 

previous and upgraded facility design is shown in Figure 2.3. Computer control of 

the levitation zone refiner is divided into three parts. First, a central processing 



LEVITATION 
7AhlF C T T  STRETCH- I 
L V I " L  J 

PROCESSOR 
(SQUEEZE I 

I ' *  I llNfRPREDp 1 
DETECTOR 

POWER 

COMPUTER I OELL AT P 

(a) previous facility design. 

MONITOR 2 pg 61 -1 
process control 

1 4 DEC h-I 
COMPUTER solid-Liquid interface I I LEVITATION 

STRFTCH-I, 
SQUEEZE 1 I 

pRocE'oR p p  DETECTOR data from y p  I 
DEC computer COMPUTER 

(b) Parallel processing setup. 

Figure 2.3: System upgrade to include parallel processing opgb~ties. 
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cornputter is used to vary the power and stretcwsqueeze action of the levitation zone 

reker. Also, the length of the liquid zone diameter is found by this central 

processing computer. Next, the position of the solid liquid interface is found on a 

mond computer. This measurement is transferred to the main processing computer 

where the appropriate control action is performed. Lastly, a third computer is used 

for data acquisition of the run time variables. Details of the hardware setup and a 

fisting of the software code are given in appendix A. 

Dividing the tasks needed to control the zone melter among different 

mmputers allows for development of more extensive software. The difficulties 

experienced in developing algorithms to locate the solid-liquid interface were caused 

by the time constraints imposed by the image processing hardware. The distance over 

w$ich the solid-liquid interface can move during a typical run is small and less than 

20 pixels lines. With such a coarse resolution, the interface position must be fownd 

~& one or two pixel lines to successfully control the induction power. 

magnification and the working resolution would not allow the full width of 

the zone to be captured. The rotation of the solid-liquid interface may also create a 

sfight wobble in the ingot complicating matters further. 

Hence, the most successful algorithms were ones where the solid-liquid 

hterface was determined from the average of a large number of readings over a short 

t5me period. With the parallel processing arrangement, the frequency of the control 

acfions was increased by a factor of two. In addition, for each control action, the 

average interface position was determined from twice the number of reading than that 

previously allowed. 

Typical as-processed NiAl ingots are shown in Figure 2.4. These single 

crystal ingots were produced by containerless processing under full computer control. 

The melt record for one of these ingots is shown in Figure 2.5. Computer control 

was initiated at about 3000 seconds. From Figure 2.5, a constant interface position 
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7was maintained by varying the induced power. Similarly, constant liquid diameter 

was maintained by a stretch-squeeze action. Control of these two variables resulted in 

excellent dimensional control as represented by the plot of the solid 

Completing the melt record are the velocity of the scan frame, the rotation of the 

hterface, and the temperature near the solid-liquid interface. 
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notch tip prior to testing. Bend tests were performed on a mew driven test 

using a displacement mte of 1 .4x104 mm/s. Fracture toughness values were 

calculated using the K calibration for pure bending [2]. 

Metallographv 

Optical microscopy was used to characterize the general morphola~ m d  the 

degree of alignment for the eutectic microstructures after directional soEdiifia~on. 

Longitudinal and transverse sections taken from each directionally soli&fied ingoll 

were metallographically prepared and etched with a solution of 5 %HF-5 %%TP;PO3- 

90 %H20 by volume. 

Scanning electron microscopy (SEM) was also used to ch 

microstructure. Backscattered electron imaging was used to help identi* the pkdes 

present in the arc-melted and directionally solidified ingots. Quantitative X-my 

analysis on as-polished un-etched specimens was performed on a g elwtrcbn 

microscope equipped with an energy dispersive spectrometer (EDS) deteet~s. Rne 

"ZAF" method which attempts to correct the data for Z-atomic number, 

A-absorption, and F-fluorescence, effects was used to determine the phse 

compositions. 

Secondary electron imaging was used to examine the topology of the k c a r e  

surfaces from broken bend specimens. However, backscattered electron ima@wg wa 

often used in conjunction with secondary electron imaging to enhance phae conlpast, 

The sides of the bend specimens were also studied under backscattered ePmtron 

conditions near the notch to characterize the microcracking adjacent to &e firacmre 

surface. In all cases, the sides of the bend specimens were polished prior to tesmg. 

Transmission electron microscopy was used to er charaete&e the 

microstructure and to study the dislocation structure. Sample prepara~on m d  mM 
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malysis were performed by Mrs. X. F. Chen. Mrs. Chen is a visiting scholar from 

ithe Materials Science Department at Shanghai Jiao Tong University, C 

slices were taken from broken bend specimens both parallel and 

lppndicular to the growth direction using a low speed diamond saw. The E M  

spimens were taken as close to the fracture surface as possible. The thin slices of 

material were cut to 3 mm disks with a small pair of wire cutters. The corners of the 

sfices were sniped off with the wire cutters until the desired shape was obtained. 

g was performed by grinding and dimple grinding followed by twin-jet 

electroplishing in a solution of 5 vol. % perchloric acid, 95 vol. % acetic acid at 40 

volts and 300 K. 









ODUCTION 

Ductile phase toughening is one method for improving the fracture resistance and 

ductility of brittle materials. Increased toughness is provided by the interaction between 

the propagating crack and the ductile phase during the fracture process. The challenge is 

to increase the toughness and at the same time improve the high temperature strength of 

the intermemc compound. For example, introducing Ni3AI as a ductile phase in NiAZ 

improves the ductility and toughness of the composite material over that of binary NiAl. 

Unfortunately, the effective melting point is depressed and the creep strength of the two 

phase alloys, depending on the specific composition, is about the same or less than that 

On the other hand, a number of eutectic alloys consisting of NiAl and a 

refractory metal phase, such as NM-Cr, show both improved toughness and creep 

seength compared to single phase nickel aluminide alloys 12-51. Directional 

mlidification of these eutectic alloys results in in-situ composites where orie or more 

are aligned parallel to the growth direction. In this case, the reinforcing 

refixtory metal phase provides increases in both the toughness and creep strength of the 

composite material. 

One advantage of producing composites by directional solidification of eutectic 

alloys is that the phases are thermodynamidy stable even up to the melting point. A 

disadvantage is that alloy compositions are limited by the appropriate phase equilibria 

needed for eutectic growth. In many systems these compositions are often u h o w n .  

F y, the NiAl-Cr system is well characterized in terms of processing- 

ficrostructure relationships, second phase morphology, and constitutional assmiations 
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[2,5-91. The morphology of the NM-34Cr (atomic percent) eutectic consishs; of 

chromium rods within a NiAl matrix, both having a < 100 > growth s~en&~ow. The 

early work by Walter and Cline [6] has shown that small additions of i m p u ~ t y  dements 

such as Mo, V, and W will change the growth direction to < 11 1 > for bo& phases 

while changing the microstructure to a lamellar morphology. For exmpIe, addifions of 

molybdenum greater than 0.6 atomic percent will result in a lamellar chrodum 

morphology with a (1 12) facet plane. Thus, the effects of phase moqhc~Iogy rnd 

the orientation of the reinforcing phase may be studied without large cbmges in the 

volume fraction of reinforcement. 

e the microstructures of these NiAl-Cr,X alloys have been charilcte&d, 

mechanical property data are sparse. Furthermore, processing 

microstructures generally vary with each investigator, comparjlsons b e ~ w n  

research groups difficult. Therefore, the purpose of this study was to chmc the 

effects of containerless processing on the microstructure and subsequenllly the h e & =  

toughness and elevated temperature strength of in-situ composites based an the NM-@r 

and NM-(Cr,Mo) eutectic systems. 



EXP PROCED 

Recessing and materials 

Directional solidification of near-eutectic alloys was used to produce in-situ 

mrnposites with aligned microstructures for mechanical testing. Precursor ingots 

cmsisting of the NiAl-Cr eutectic and those alloyed with molybdenum were supplied by 

NASA Lewis research center. These ingots were produced by induction melting of 

elemental Ni, Al, Mo and a Ni-Cr master alloy. The 1-kg charge was then chill cast into 

a copper mold. After removal of the hot-top, precursor ingots were nominally 25 mm in 

eter and 300 mm in length. These ingots were then directionally solidified in the 

eonherless mode by the electromagnetically-levitated zone process in an ultra-pure 

helium atmosphere. 

Typically, two processing passes are necessary to produce clean bulk 

metallurgcal samples from the NiAl-Cr precursor ingots. During the first pass, oxide 

kclusions and other impurities migrate to the surface of the liquid zone and are deposited 

on the surface of the ingot as shown in Figure 3. la. The surface of the ingot and 

zsmiated impurities are then removed by machining and the ingot is processed a second 

 me, Figure 3.1 b. Automated control of the solidification process is performed by 

irnage andlysis (real-time) of the molten zone. During the first pass, oxide particles 

( ~ t h  a higher spectral emissivity) make the image analysis difEcult and prevent tight 

&mensional control of the freezing solid-liquid interface. After a cleaning pass is made, 

automted control is possible and good dimensional control can be maintained as 

demonsmted by the NiAl-33.4Cr-0.6Mo ingot shown in Figure 3.2. 
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To compare the behavior of a directionally solidified eutectic to mnvenfiondly 

cast material, a NiM-34Cr alloy was induction melted and cast into bars usling m 

alumina shell mold. Fracture toughness samples were then machined from the 

conventionally cast ingot. In addition, the thermal gradient through the IjlquidjsoGd 

interface was increased during one directional solidification run in an altempt ito prduea: 

a better aligned microstructure. To produce the steeper thermal gradient, a cmkng 

jacket was mounted below the eddy current plate in the levibtion zone refiner. me 

cooling jacket consisted of four water cooled rings (40 mm sat snnpplr(4 a 

series of thin copper strips that made mechanical contact with the w t .  A 

NiAl-3lCr-3Mo ingot was directionally solidified using this cooling jacket. The, 

compositions and processing conditions for all the materials used in this sady axe gstd 

in Table 3.1. 

Flexure testing 

Most of the bend specimens were tested in the as-processed con&~a>ra, However, 

heat treatments were performed on a number of specimens to investigate the eEat of 

long term thermal exposure on properties. Selected bend mens were eneapsdiiltd 

in silica tubing and back filled with argon to produce one atmosphere pressure at 

1300 K. The samples were then heat treated at 1300 K for 1 . 8 ~ 1 0 ~  s (500 hours) and ail 

cooled. After heat treatment, the samples were notched and the room tempmwre 

fracture toughness was determined by performing four-point bend tests. 



Table 3.1: Composition and processing conditions for NiAl-Cr alloys. 

N o h a 1  Growth Rotational Number 
Composition (at. %) velocity (mmlhr) velocity (rpm) of passes 

NX-34Cr 25 140 2 
NiAl-34Cr-0.1Zr 13 100 3 
NA-33.4Cr-0.6M 19 100 2 
NiAl-33Cr- 1 .OMo 13 40 
NM-3 1Cr-3Mo 19 35 
NM-28Cr-6Mo 19 150 

;* 
2 

NiAl-34Cr Induction melted and cast 
* 
cooling jacket used for increased thermal gradient 





Figure 3.3: Light optical photomicrographs taken from longitudinal sections of (a,b) 
conventionally cast and (c-f) directionally solidified eutectics having a fibrous second 
phase morphology. 



Figure 3.4: Light optical photomicrographs taken from longitudinal secljlons of 
directionally solidified NiAl-(Cr,Mo) eutectics having a lamellar second phase 
morphology. 



different automated control schemes employed. These bands are characterized by a 

change in eutectic spacing or a complete interruption of the eutectic microstructure. 

However, some important differences between the banding morphology exist between 

fibrous and lamellar eutectic microstructures. When the NiAZ-Cr alloys have a fibrous 

morphology, the banding defects can wnsist of uninterrupted layers of NiA1, Figure 

3.3d. The unreinforced NiAl phase within the banded region is expected to have 

meemely deleterious effects on the mechanical properties of the eutectic during tensile 

bading. In contrast, the density of banding defects in the lamellar microstructures is 

much less, Figure 3.4. For the lamellar reinforced alloys, the banding defects are the 

result of different eutectic spacings but still contain the reinforcing metal phase, Figure 

3.4b. Thus, the effects of banding in the lamellar microstructures are expected to be less 

severe in the fibrous microstructures. 

71?EM results 

Consistent with previous observations of the NiAl-Cr eutectic [q, results 

a cube-on-cube crystallographic relationship between the NiAl matrix and the 

~ k P O ~ u m  phase as determined from selected area diffraction patterns. Also, a < 100 > 

gowth direction was determined for the NiAl-34Cr eutectic while a < 11 1 > growth 

dketion was found for the NiAl-28Cr-6Mo ingot with the lamellar morphology. 

A semiwherent interface exists between the chromium-rich metal 

NiAl matrix due to the small lattice mismatch between the two phases [7,8]. The lattice 

~smatch  is accommodated by a network of interface dislocations as shown in 

Figure 3.5. The dislocation spacing along the interface is much smaller for the 

NiAl-28Cr-6Mo alloy than the NiAl-34Cr eutectic. This is due to the greater mismatch 

in lattice parameter between NiAl and (Cr,Mo) than for NiAl and Cr 181. 

In addition, arrays of fine precipitates were observed in the chromium-rich metal 

phase of the NiAl-28Cr-6Mo alloy, Figure 3.6. After heat treating at 1300 K, these 





Figure 3.6: TENI photomicrograph showing fine NiAl precipitates within the Cr-rich 
lanneh from an as-processed NiAl-28Cr-6Mo eutectic. 
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Table 3.2: Representative Creep Behavior of NiAl-Cr eutectic alloys 
compared to binary NiAl. 

Alloy Representative creep behavior 

NiAl [Ol] 1100-1300 Ea3 6.3 
(Ni-5OAl) 2 = (1.48~10 )cr exp(-439.3/RT) 1121 
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In Figure 3.7 the 1300 K compressive creep behavior of the NiAl-Cr and 

NM-(Cr,Mo) alloys are compared to single crystal binary NiAl 1123 and a nickel-based 

single crystal superalloy [13]. The creep characteristics, stress exponent and activation 

energy for deformation, are similar for the eutectic alloys and binary NM. However, 

uhe NM-Cr and NM-(Cr,Mo) alloys have significantly higher strengths compared to 

bhary NM. Of the two eutectic alloys, the lamellar NiAl-(Cr,Mo) alloy displays a 

sgghtly greater strength over the strain rates tested. e the NM-Cr and 

NM-(Cr,Mo) alloys are much stronger then binary NM, they are still weaker than a 

single crystal nickel-based superalloy. The elevated temperature strength of the 

NM-28Cr-6Mo ingot over the temperature range of 1200 - 1400 K is shown in 

Figure 3.8. Except for the fastest strain rates at 1200K where power-law breakdown 

behavior has occurred, the NiAl-28Cr-6Mo eutectic exhibits a very consistent power law 

behavior over the strain rates and temperatures investigated. 

Generally, the strength of a directionally solidified eutectic is controlled by the 

s&engh of the second phase. Since the refractory metal in the NiAl-28Cr-6Mo 

eutectjlc is precipitation hardened by fine NiAl precipitates, this material would be 

expected to have better strength than the simple ternary NM-Cr alloy. In addition, the 

grealer strength of the NiAl-28Cr-6Mo may be due to strengthening by the dislocation 

networks at the semicoherent interface between the chromium-rich phase and NiAl. 

Cline et al. suggested that the strengthening should be proportional to the lattice 

Bnjlsmatch and hence the dislocation density along the interface 181. From their data, the 

~ s m a t c h  for the NiAl-28Cr-6Mo eutectic should be greater than the NM-34Cr eutectic 

for all temperatures up to the melting point. However, the actual difference in strength 

htween the two eutectic alloys, especially at lower strain rates, is not as large as the 

previous arguments may suggest. e the network of interface dislocations is 

obile and constrained to lie along the interface, it may act as a source or sink for 
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ROOM TURE TOUG S 

The room temperature fracture toughness data for the eutectic alloys are listed in 

1Table 3.3. The fracture toughness of the directionally solidified NiAl-Cr and the 

Tqa-(Cr,Mo) eutectics are much higher than that of binary NM. The direGtion&y 

solidified eutectic alloys have a fracture toughness of around 20 - 22  dm as opposed 

to 6  dm El41 for polycrystalline NiAl or even 11  dm I161 for zone-refined 

shgle crystal NiAl. However, the improvement in toughness is only 

dgned, directionally solidified microstructures since the conventionally cast NiQ1-34Cr 

alloy had a fracture toughness of only 6 ~ d m .  

For the directionally solidified rnateds, the addition of molybdenum to the 

, while not having a sipificant effect on the measured fracture 

roughas, did have other advantages. For a number of the NiA1-34Cr bend specimens, 

hcture did not initiate at the notch, invalidating the test. Instead fracture occurred at 

Bhe banded growth defects described previously. In contrast, fracture initiated at the 

notch for all the NiAl-(Cr,Mo) alloys since any growth faults in these alloys were not 

mmposed of eutectic free zones. Moreover, two of the NiAl-31Cr-3Mo 

not break into two separate halves after fracture initiation but instead exhibited a strong 

eraGk anrest behavior. These specimens could be handled quite easily without 

propagation of the crack. The crack arrest behavior displayed by the NiAl-3lCr-3Mo 

bend spe~imens is due to the well-aligned microstructure. The NN-28Cr-6Mo 

'mens, having a cellular microstructure, did not display this behavior. 

Heat treating the bend specimens at 1300 K did not change the fracture toughess 

G g ~ f i w t l y  (Table 3.4). The toughness of both the NiAl-Cr and NiAl-(Cr,Mo) alloys 



Table 3.3: Room temperature fracture toughness of directionally 
solidified NiAl-(Cr,Mo) and induction melted and conventionally 
cast NiAl-34Cr eutectic alloys. 

NM-34Cr (cast) 
NiAl-34Cr (cast) 
NiAl-34Cr (cast) 
NN-34Cr (cast) 

Table 3.4: Room temperature fracture toughness of directionally 
solidified alloys heat treated at 1300 K for 1.8~106 s (500 hours) and 
air cooled. 



after heat treatment were similar to those in the as-processed condition. Consistent with 

the fracture toughness values, no major changes in eutectic morphology were observed 

after heat treatment. These results indicate that the eutectic morphologies are stable 

mder isothermal conditions. 



ROOM TEMP CTUREC 

In general, ductile phase toughening is an effective method for hereazskg the 

toughness of NiAl [I]. Her& et al. recently reviewed the different tougbehg 

mechanisms they observed in the NiAl-refractory metal eutectics 1151. Tm3.e improvd 

fracture toughness and the fracture characteristics of eutec~es o~ghs te  kom 

both initiation toughness and subsequent crack growth toughness processes. me:se 

toughening mechanism include crack trapping, crack renucleation, and mek b~idghblg. 

The initiation toughness depends upon the ductile phase morph01ogy. For a 

fibrous microstructure, such as the NiAl-Cr eutectic, a crack trapping m(x]h.~srn 

controls the initiation toughness. The crack front in this process is trap@ (or b d e r d )  

by tough second phase particles whose fracture toughness value ex s the, l d  stress 

intensity [17,18]. For a lamellar microstructure, such as the NiAl-(@r,Mo) eutwfie, the 

crack front cannot surround the tough second phase particles and m s t  renuclats: in the 

adjacent material [15,19,20]. With both toughening mechanisms, the crack may also be 

blunted or deflected by the ductile phase. 

Once a crack has initiated, unbroken second phase fibers or lame& may Sag 

behind the crack front. The plastic work expended upon stretching these smnd glnae 

particles dwing crack propagation provides a resistance to crack growtb and is refend 

to as crack bridging [21,22]. The amount of toughening provided by crack b ~ d g h g  

depends upon the volume fraction and flow characteristics of the second p h e  a ~ d  the 

amount of debonding present at the ductile phaselmatrix interface. d&orndkg at 

the interface enhances the toughening effect of the ductile phase [21]. 



on of microcracking near the notched region of broken bend specimens 

m y  offer some insight to the operative fracture mechanisms. The fracture behavior of 

the NM-34Cr and the NiAl-310-3Mo bend specimens is shown in Figure 3.9. These 

photomicrographs were taken along the side of the bend specimen perpendicular to the 

hcture surface. The volume fraction of the chromium-rich metal phase at 34 percent is 

essentially the same in both microstructures. However, the morphology and growth 

ofientation are different. For the NiAl-34Cr microstructure, the angle between the crack 

md the < 100 > growth direction is nominally 45 degrees. This observation is 

consistent with a (1 10) type cleavage plane for NiAl [23]. 

Crack bridging by the refractory metal phase is evident in both microstructures. 

h addition, crack renucleation and crack deflection mechanisms are visible in the 

heUar  microstructure, Figure 3.9b. Additional examples of crack bridging for the two 

 rer rent eutectic morphologies are shown in Figure 3.10. Partial debonding along the 

phase boundary and necking of the metal phase are visible. In all the 

cmck bridging mechanism was observed. Therefore, the amount of toughening provided 

by a crack bridging mechanism was estimated to determine the percentage of the 

toughness increase due to this particular mechanism. 

Crack brideing 

The increase in fracture energy, AG, due to a crack bridging mechanism has been 

d e s ~ b e d  by Mataga [21] and Flinn et al. [22] and can be written as: 

where 6, is the fracture energy for the matrix, f is the volume fraction of the ductile 

, and u* is the crack opening displacement needed to rupture the ductile phase. 







where go is the yield stress of the ductile phase, % is the radius of the ducas: phme, md 

x is the work of rupture parameter [22] which depends on the flow 

ductile phase and the amount of plastic constraint present. The mount sf plas~c 

constraint is controlled by the interfacial strength and the amount of dmhesion be(v\lmn 

the ductile phase and the matrix. The work of rupture parameter, x, is appro~mdte1y 

the ratio between the work needed to fracture the constrained ductile phase, to fiat of the 

case. Experimental studies of lead wires or sheets cons 

glass matrix have shown that x can vary from 1 (unconstrained) to about 6 when ~ s d d  

dmhesion is present 124,251. Converting the energy for fracture to the swess htensiq 

factor in plane strain by IS2 (1-vZ)=GE where v is Poisson's ratio and E is the elastic 

modulus gives [26]: 

(subscripts: m =matrix, c = composite) 

Ravichandran used such a model to predict the fracture toughness of a wlide mge of 

ductile phase composites with good results with an assumption that x=4 [26], 

To apply this model to the NiAl-Cr and NW-(Cr,Mo) eutectics, the ela~c: and 

plastic properties of the composite and constituent phases must be estimaed. The e l a ~ e  

properties of NiAl and chromium for < 100 > and < 1 1 1 > oriented vs ta l s  [27,2a me 

listed in Table 3.5. The rule of mixtures was used to estimate the elastie propdes s f  



Table 3.5: Elastic modulus for < 100 > and < 11 1 > oriented crystals 
s f  NiAl and Cr. 

Material orientation E (GPa) Poisson's ratio 

Wle  3.6: Vickers microhardness and estimated or measured strength 
data for NiA1,Cr and various NLAI-Cr alloys. 

Vickers Yield 
Material rnicrohamdess (kgImm2) stress @Pa) 

kc-melted NiAl-Cr alloys heat treated at 1100 K, for 9000 s (2.5 hours) 
~ K I  furnace cooled. 

NtAl (high purity) 276 - 
N N ,  Cr (NiAl- 1OCr) 43 1 560 1291 
Eutectic (NiAl-34Cr) 481 
Cr,NiAl (NiAl-9OCr) 589 

700, 
990 

a (high purity) 189 -- 

Compressive yield strength values for [l 001 oriented crystals of 
a ~ e c t i o n d y  solidified NiAl-34Cr eutectic and a NiAl single crystal. 

Ni [lo01 - 1400 [4] 
NAl-34Cr [100] 370 1240, [4] 
Cr-rich solid solution --- 930 



the eutsctic alloys. The yield strength of the eutectic and the constituent phms wm 

estimated from compressive yield strength data [4] and from microhardrmess 

measurements. These data are listed in Table 3.6. Due to the fineness of ~e eutee~c 

microstructure, the microhardness values for the constituent phases were detedned 

fkom arc-melted ingots. 

Microhardness data were generated with a standardized Vickers ~denIc:r ushg 

1 kg load and a dwell time of 15 seconds. To ensure similar th GstoIr?ies, ad. WC- 

melted ingots were heat treated at 1100 K for 9000 s (2.5 hours) and m a w  emld. 

The resulting microhardness data had a standard deviation less than + 15 W ,  me mfio 

of the hardness data from the directionally solidified and arc-melted NM-34Cr e u ~ ~ c  

ingots was used to scale the hardness values listed in Table 3.6. The scaledl finadmess 

values were then used to estimate the yield strength of the NM,Cr solid mluhon b a d  

on the relationship between hardness and yield strength d by CoMoxa et ;al. 

NiAl alloys containing up to 5 at. % chromium 1291. Since the microhardlness &a for 

the eutectic alloys follows the rule of mixtures behavior, the yield strengah for the 

chromium-rich solid solution was also estimated by the rule of ttl~es. laah f i ~ m  bo& 

the arc-melted and the directionally solidified ingots gave si values fom. yield 

strength of the chromium-rich solid solution, Table 3.6. 

Substituting the data from Tables 3.5 and 3.6 into the crack brid&ing mwIe1 dong 

with the following data, a, = 0.3 m from SEM photomicrographs, KI, = 11  dm 

for ~ i A l  having < lOO> crystal orientation [16], KI, = 9 w d m  for NiAl having a 

non- < 100 > crystal orientation [30], and x =4 (first approximation) @ves the faluow 

results: 



For the NiAl-Cr eutectic with a < 100 > growth direction, 

for the NiAl-(Cr,Mo) eutectic with a < 11 1 > growth direction; 

These values underestimate the measured values (Table 3.3) indicating that crack 

b~dging is not the only toughening mechanism in these microstructures. 

Crack initiation toughness 

Given the increase in fracture toughness due to crack bridging alone, it is evident 

that other toughening mechanisms must also be responsible for the measured toughness 

of the NiAl-Cr and NiAl-(Cr,Mo) alloys. The initiation toughness of these alloys can be 

described by a crack trapping mechanism for fibrous microstructures or by a c m k  

rmucleation mechanism for lamellar microstsuctures. Evidence for each of these 

m~hanisms can be found in the fracture surfaces of these alloys as demonstrated in 

figure 3.11. A crack trapping mechanism is clearly visible for the fibrous NiAl-34Cr 

elilwtic, Figure 3.1 la. Consistent with a crack renucleation event, the lamellar 

morphology of the metal phase is visible on the fracture surface of the NiAl-3lCr-3Mo 

alloy, Figure 3.11b. Plastic stretching of the chromium-rich metal phase is also evident 

for the lamellar NiAl-3 1Cr-3Mo eutectic. 

Heredia et al. [15] measured the initiation toughness of a lamellar NiAl-(Cr,Mo) 

eutectic at 17 w d m .  Using this value instead of 9 w d m  for the initiation 

toughness, a value of x = 11 in equation (3) is still needed for the work of rupture 

to account for the measured toughness of the NiAl-(Cr,Mo) specimens. Since 

extensive plastic deformation of the chromium-rich metal phase is not observed, such a 



Figure 3.1 1: SEM photomicrograph showing the fracture surface from (a) NM-34Cr 
eutectic and (b) NiAl-3 1Cr-3Mo eutectic. 
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Egh value for the work of rupture parameter is unreasonable. Hence, still other 

toughening mechanisms must be operative, at least in the ~i~l-(Cr,Mo) alloys. 

For the fibrous NiAl-Cr eutectic, using an initiation toughness of 17 m d m  

~& x=4 in equation (2) gives a fracture toughness of 20 MPdm which is much closer 

to Ike measured values. An estimate of x =4 is not unreasonable based on the plastic 

deformation of the chromium fibers bridging the crack path, Figures 3 -9 and 3.10. 

e the chromium fibers do not neck to a pint  (Figure 3.11) as in the NiAl-Mo 

euteetic [4,15,30], any plastic deformation of the chromium-rich phase is somewhat 

suvrising given the brittle nature of chromium alloys. For example, the arc-melted 

Mia-90Cr ingot (Table 3.6) was found to be extremely brittle. However, even with 

pmetidy no plastic deformation, a value nearing x=2 would be expected due to the 

t of the chromium fibers. For plane strain conditions, the average value 

of h e  effective yield stress is larger than the uniaxial yield stress by a calculated factor 

of 1.48 with experimentally determined values ranging between 1.5 and 2 [3 11. The fact 

Wt some deformation of the chromium-rich phase is observed, suggests that the work of 

should be greater than x=2, which demonstrates the potent 

toughehg effect from a crack bridging mechanism in these alloys. 

To a first approximation, the material at the notch root of a bend specimen is 

lassumed to be loaded under uniaxial tension. Since the rods or lamellae are 

&sconhuous, a large shear stress may develop at the ends of the fibers or lamellae as 

the load is transferred from the matrix to the reinforcing phase. However, for the 

NM-Cr or NiAl-(Cr,Mo) eutectics, this effect should be due to the small 

diEerence between elastic moduli of NiAl and chromium (Table 3.5). Consistent with 

~s observation, the fracture path does not follow the ends of the refractory metal rods 
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Small changes in orientation between eutectic grains or cells with the 1coahg ~s 

may effect the fracture behavior. Figures 3.12 and 3.13 show how the resoBvd nomd 

stress on (1 10) type cleavage planes may change in NiAl as the load axis is roQted away 

from the < 100 > or < 1 11 > growth direction. For a loading orientation aBawg the 

growth direction, there is a high resolved normal stress on more than one clavage, plme, 

Figures 3.12a and 3.13a. The angle between these cleavage planes can be 90" or a" 
apart. However, as the loading axis is rotated from the growth dire~tion, ody one 

cleavage plane is favored. If a shear stress is added to the stress tensor, ag& ody one 
* .  

cleavage plane is favored but it may be different than the one for the al m e .  

Changing the preferred cleavage plane may generate crack brancE~lg or crack 

deflection. For example in Figure 3.12a, a (T10) type cleavage plane is prefemd for a 

loading axis rotated -5O or so from the [I001 growth diection. If the p r q q a ~ n g  cmck 

is stopped by the metal phase, then the fractured NiAl phase cannot supprh a knslile 

stress and a shear stress must develop along the N i C r  boundary. Fm such a 

stress state, a (1 10) type cleavage plane would be favored, Figures 3.12b,e. Tbe 

alternating change of preferred cleavage planes may increase the energy n d d  far 

fracture. A torturous crack path that may have developed from such a meehmism is 

shown in Figure 3.9a. 

The induced shear stress along the N M C r  phase boundary rnay also =use the 

crack to deflect. Consider the lamellar morphology of the NW-(Cr,Mo) eutwbc shown 

in Figure 3.9b. Again, if the propagating crack is stopped by the metal phm,  a s h m  

stress would develop along the NiAU(Cr,Mo) phase boundary. Depenhg on the 

loading orientation, a normal stress may also develop at the NiAl/(Cr,Mo) phae 

boundary. Consider a (1 15) facet plane for the chromium-rich phase. A loading axis  

rotated -5' or so from the [Ill] growth direction would result in a change of -the 

preferred cleavage plane from (1 10) to (01 I), as the stress state changes kom tension to 

shear, Figures 3.13a-c. In addition, there is a compressive stress acting on the (1 13) 



(a) tensile loading (b) tensile and 
shear loading 

-125' . . .% , . a ,  - - - 1  -5 0 5 10 15 20 25 
I ' ~ ~ ~ i ~ ~ 4 4 i ~ ~ ' ~ i L ~ ~ ' I ' a ~ ~ l ~ ' ' ~ i ' ~ r ' I  

THETA (DEGREES) 

(c) shear loading 

Figure 3.12: Resolved normal stress on {110) type cleavage planes for (a) tensile, 
@) tensile and shear, and (c) shear loading orientation relative to the [I001 direction. 
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facet plane, see Figure 3.13~. However, for a loading axis rotated +5 or so from the 

grad direction, a tensile stress develops on the (1 15) facet plane. Also, there is no 

ehmge in the preferred cleavage plane. Such conditions are favorable for crack 

defl~tion along the NiAU(Cr,Mo) phase boundary as shown in Figure 3.9b. 

Cconsquently, the combination of crack deflection and crack renucleation due to 

ofientation effects contribute to the high toughness of the NiAl-(Cr,Mo) alloys. 

Linkage of microcracks 

A toughening mechanism similar to that of shear ligament toughening described 

by Chan [32] for two phase TiAl alloys is also observed in the NiAl-Cr and NiAl- 

(Cr,Nlo) alloys. Crack deflection and renucleation caused by the tough second phase 

rehforcement may result in a series of microcracks. The material between the 

&crmmcb should fkcture by shear as the microcracks connect with the 

e of these microcracks with the main crack may then provide 

c e k  growth. 

The fracture surface of a NM-34Cr bend specimen is shown in Figure 3.14. 

Characteristic to this type of fracture mechanism, 'strips' of material, containing both the 

chroIIlium rods and the NiAl matrix, have separated from the fracture surface due to the 

e of microcracks. Often these 'strips9 have peeled away from the fracture surface 

to be plastically deformed. As evident in Figure 3.14a, a shear has 

displad the 'strips' of material normal to the fracture surface. Formation of these 

's&ips9 can be visualized in Figure 3.14b, which shows the linkage of a series of 

ficrocracks in the NiAl-34Cr bend specimen. A similar mechanism is observed in the 

lmeuar NM-(Cr,Mo) alloys as shown in Figure 3.15. e the amount of toughening 

due to this mechanism is not known, it was widely observed on the fracture surfaces of 

the direGtionally solidified bend specimens. 







TEM 0b~e~ati0ns 

For material taken very near the fracture surface, localized regions of 

deformation are evident by the strain contrast produced by slip band formation, 

Figure 3.16. In all the specimens examined, the dislocation density found in the NiAl 

phase was much greater than that of the chromium-rich metal phase as shown in 

Figure 3.17. The low number of dislocations found in the chromium-rich metal phase is 

attributed to the greater yield strength of the chromium solid solution compared to the 

yield strength of non-< 100> oriented crystals of NiAl, Table 3.6. However, plastic 

deformation of the metal phase by a crack bridging mechanism is clearly evident in 

Figure 3.10. Hence, to account for the low dislocation density obsewed in the 

chromium phase, NiAl must deform and fracture before the yield strength of the 

chromium-rich phase is exceeded. The bridging chromium-rich phase then deforms in 

the crack wake. Specimens for TEM studies were taken below the fracture surface and 

thus away from the necked regions of the refractory metal phase. 

Cotton et al. have shown that the slip system in NiAl is not altered by chromium 

additions and is predominantly < 100 > (011) at room temperature [33]. To see if the 

molybdenum additions had any affect on the slip behavior of the NiAl,Cr solid solution, 

the Burgers vector was measured for dislocations observed near the fracture surface of a 

NiAl-28Cr-6Mo bend specimen [lo]. Consistent with other NiAl alloys, only a < 100 > 

Burgers vector was measured for dislocations in the matrix phase. 

As shown in Figure 3.5, a dislocation network exists along the phase boundary 

between the eutectic phases. This network is constrained to lie along the metaVNiAl 

interface, strengthening the alloy. During deformation, 'new dislocations are generated 

from the interface network. These dislocations can then move into the NiAl matrix as 

shown in Figure 3.17. However, due to the fineness of the eutectic microstructure, 

these dislocations are often pinned by neighboring interfaces, Figure 3.18, providing 

further strengthening. 



Figure 3.16: TEM photomicrographs from samples taken very near the ftacture 
surface showing slip activity (marked with arrows) for (a) NiA1-34Cr eutectic and 
@) NiA1-28Cr-6 Mo eutectic. 



Figure 3.17: 'EM photomicrographs of the dislocation structure in failed bend 
specimens of (a) NiAl-34Cr eutectic and @) NiAl-28Cr-6Mo eutectic. 



Figure 3.18: TEM photomicrographs showing dislocations (marked 'D') in NiAl that 
are generated and pinned by the interface dislocation network (marked 'ID') in 
(a) NiA1-34Cr eutectic and (b) NiA1-28Cr-6Mo eutectic. 



DISCUSSION 

The most notable changes due to alloying with molybdenum were llze changes in 

morphology, growth direction, and the degree of lattice mismatch betvve8:m the m a ~ i  

and refractory metal phase. However, the room temperature fracture resismw and the 

elevated temperature strength of the NiAl-Cr eutectic were moderately hpre,v& by 

molybdenum additions. The improved 1300 I( compressive strength of the 

NM-28Cr-6Mo alloy is likely due to a strengthening of the rehctory m e d  p w e  due 

to the presence of fine NiAl precipitates and to the greater lattice mismatch the 

eutectic phases. An increased lattice mismatch results in an inc number of 

immobile dislocations constrained to lie at the phase boundaries, creating adc8iibor1all 

obstacles for mobile dislocations. Solid solution hardening of the N M   ma^ plh~ase by 

molybdenum additions may provide some additional strengthening. However, at veq 

low strain rates such as those in the creep regime, the advantage of solid solu~m 

strengthening in NiAl is reduced or eliminated [34]. 

For NiAl, the change in growth direction from the 'hard' < 1W > o~en&.~on  to 

a 'soft' < 11 1 > orientation cannot account for the increase in strength of the 

NM-(Cr,Mo) eutectic. In fact, the opposite effect would be expe~ted [3:34], E8a addi~ow, 

the change from a fibrous microstructure to a lamellar one will not grearly e h q e  the 

amount of interfacial area between the eutectic phases. From the J a c h n  md Hurnt 

solution 1351, the rod to lamellar transition occurs at a volume fraction of %/ar (0,32), 

assuming isotropic surface energies. Thus, the NiAl-Cr eutectic, h a d g  a smond phase 

volume fraction of about 0.34, is a borderline case with both morphologies havhg &out 

the same energy. 
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The rwm temperature toughness of the NiAl-Cr and NiAl-(Cr,Mo) alloys is 

controlled by crack front interactions with the reinforcing metal phase, with a number of 

(&Rerent specific mechanisms all contributing to the enhanced toughness of the eutectics. 

However, the orientation of NiAl matrix has little effect on the measured toughness 

-values of the eutectic. Typically, the room temperature fracture toughness of NiAl 

tested with the notch perpendicular to the < 100 > direction is between 8-1 1 ~ ~ a n / m  

11 6,231. For softer orientations, like the < 1 1 1 > , the fracture toughness of N i  is 

bemeen 4-6 MPdm [23]. The fracture toughness of the eutectics changed very little 

when tested in these orientations. However, changing the morphology of the reinforcing 

zneLal phase did have some affect on the fracture toughness with the well aligned lamellar 

ficrostructure having the highest toughness. 

@)ti of the microstructure may provide further improvements in 

propelies. For example, the lamellar microstructure of the NiAl-(Cr,Mo) eutectic 

resdted in improved properties compared to the fibrous NiAl-Cr eutectic. Better aligned 

a d  finer eutectic microstructures should produce further improvements in fracture 

toughness and creep strength. Well aligned Ilaicrostructures can be produced from these 

eutectics, such as the NiAl-31Cr-3Mo eutectic grown in a large thermal 

alloying may provide increases in creep strength. Alloying approaches 

to s&engthen the NiAl matrix and the chromium-rich metal phase need to be 

kvestigated. For example, hafnium additions may further increase the creep strength of 

NN-(Cr,Mo) alloys by strengthening the NiAl phase. The effects of changing the 

(Cr,Mo)/NiAl phase boundary strength by alloying with interstitial elements should also 
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ODUCTION 

The intermetallic compound N M  has potential for structural applications at 

elevated temperature due to its superior oxidation resistance, high melting point, and 

high thermal conductivity [1,2]. However, improvements in both the room 

itemlperature fracture toughness and elevated temperature strength are necessary before 

N N  can be used in load bearing applications. Considerable research to improve the 

rmm ternperawe ductility of NiAl has been conducted with promising results 11-41. 

For example, a tensile ductility of five percent has been measured for both high purity 

[5] and kondoped single crystals of NiAl [6]. In addition, room temperature fixture 

toughness values nearing 24 m i d m  have been measured for in-situ composites 

refractory metal phase such as the NiAl-(Cr,Mo) eutectic [q. 

e improving the elevated temperature strength of NiAl based materials 

m y  not be considered as challenging, approaches to strengthen NiAl to date have not 

prduced materials competitive with the nickel-based superalloys. Conventional 

strengthening techniques such as precipitation, solid solution, and dispersion 

seengthening have all been applied with varying success [2,3]. Precipitates of the 

Heusler phases as a strengthening agent have shown the most promise [2,3,8,9]. The 

Heusler phases, such as Ni2AlTi or Ni2AlHf7 have a L21 crystal structure. Polvani 

et d. have shown that the creep resistance of the two phase microstructure 

NN+NizATi is much greater than that of the individual phases [lo]. e 

impressive yield strength values have been measured for NiAl containing Heusler 

prsipitates [3,9], the improved strengths from solid solution and precipitation 
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strengthening are shed at low strain rates such as those in the creep regime 

E2,31. 

Another approach to strengthening NiAl consists of developing com~s i t e  

materials containing phases much stronger than the Heusler phase, for exannp1e the 

NiAl-Laves phase alloys [ll]. Sauthoff has shown that the C14 Laves phms N 

and NiAlTa can be used to strengthen NiAl [11,12,13]. These phases are vealy briMe. 

They have a hexagonal MgZn2 type crystal structure and can be denoted by 

Ta(Ni,A1)2. In general, the improvement in strength of the NiAl+Laves phase allsys 

increases with the greater volume fraction of Laves phase present. Covessive yield 

strengths surpassing that of an advanced nickel-based superalloy have hen mmured 

for the NiAl-NiAlTa alloys [13]. 

However, eutectic microstructures are possible within the N N -  and 

NN-NiAlTa systems allowing for in-situ composite studies. ttenberger et d. 

have found that the creep strength of the NiAl-NiAlNb eutectic is extremely gns i~ve  

to microstructure and processing conditions [14]. By directional solidifia~on of ~s 

eutectic, an order of magnitude increase in creep resistance was m a w &  when 

compared to materials processed using a casting and extrusion we. 

Unfortunately, the creep strength of the NiAl-NiAlNb alloys is still less &ma that, of 

the nickeldbased superalloys. 

the phase equilibria in the NiAl-NiAlTa system are not well h o w n  

[15,16], directionally solidified alloys from this system may display be= strengths 

than the NiAl-NiAW alloys. The purpose of this study was to 

effects of containerless processing on the microstructure and subsequently the elevatd 

temperature strength and room temperature fracture toughness of in-situ comlpssite 

based on the NN-NMTa system. 



EXP AL PROCEDURES 

Are-melted ingots 

As a first approach to locating promising microstructures for in-situ 

connposites studies, alloys containing high purity Ni, Al, and Ta were arc-melted with 

a non-consumable tungsten electrode into approximately 12 graxn buttons. Each 

buaon was melted at least five times and flipped between each melting to promote 

homgeneiv. Arc-melted ingots were then metallographically examined. From this 

smey  study, a near eutectic alloy of NiAl-l4.5Ta (atomic percent) was chosen for 

h&er  study. 

Dire~tional solidification 

Near-eutectic alloys were directional solidified to produce in-situ composites 

foir mechanical testing. Precursor ingots consisting of the NiAl-NiAlTa eutectic were 

pro~ded by NASA Lewis Research Center. These ingots were produced by induction 

melhg of elemental Ni, Al, and Ni-Ta master alloys. The 1 kg charges were then 

cm cast into a copper mold. After removal of the hot-top, precursor ingots were 

25 mm in diameter and 300 mm in length. These ingots were then 

&stionally solidified in the containerless mode by the e1ectro~neticaU.y-levitated 

s in ultra-pure helium atmospheres, 

An as-processed NiAl-14.5Ta ingot is shown in Figure 4.1. The unusually 

mugh surface of the ingot was created by a series of very small spills where a portion 

of the molten zone would spill-over the edge of the solid-liquid interface. The melt 

rec=ord for this ingot is shown in Figure 4.2. Note that the liquid diameter was held 
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N~1-NiAITa eutectic 

Fully coupled microstructures consisting of NiAl and NiAlTa were found in 

ac-melM ingots containing 14 to 16 atomic percent tantalum. These microstructures 

consisted of the eutectic NiAl-NMTa microconstituent and contained no single phase 

dendrites. Since alloy compositions that contain lower percentages of tantalum are 

expted to have better oxidation resistance, an NM-l4.5Ta (at. %) alloy was chosen 

er study. Induction melted and drop cast ingots of this composition were 

 tion on ally solidified for mechanical property testing. 

Microstructures of the NiAl-NiAlTa eutectic are shown in Figure 4.3. This 

by a lamellar microstructure and has a melting point near 

1815 K as detennined by differential thermal analysis (DTA), see Appendix 33. The 

volume fractions were estimated as 53 % NiAl and 47% NiAlTa from SEM 

photomicrographs at . A < 100 > growth direction was found for the NiM 

glaase by selected area diffraction patterns. However, no definite crystallographic 

rela~onship was determined for the NWTa phase. 

The microstructure of the directionally solidified NM-14.5Ta ingot consisted 

sf NiAl dendrites and eutectic colonies, Figure 4.3b. Since the directionally 

soGdified ingot was processed at near equilibrium conditions, the dendritic 

microstructure represents an off-eutectic composition. To better determine the 

eut~t ic  composition, another NiAl-14.5Ta ingot was directionally solidified with a 

snlall mount of tantalum added to the initial molten zone. The added tantalum 

prduced a well aligned microstructure for the beginning section of the ingot, 



Figure 4.3: Light optical photomicrographs of arc-melted and directionally solidified 
NM-NMTa alloys showing (a) NiA1-14.5Ta arc-melted ingot, @) directionally 
solidified Ni-14.5Ta ingot (19mmlh) and (c) and (d) directionally solidied NiA1- 
15.5Ta ingot (15mmIh). 
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Figwes 4.36. An eutectic composition of NiAl-l5.5Ta (at%) was determined for this 

lregjlon by inductively coupled plasma atomic emission spectroscopy. Another 

INN-l4.5Ta ingot processed in a similar manner (with additional tantalum) also 

prsduced a well aligned, fully eutectic microstructure. This ingot was used for 

elevated temperature testin composition and processing conditions of the 

dkcxtionally solidied a alloys used in this study are listed in Table 4.1. 

The arc-melted and directionally solidified microstructures were different for 

the NiAl-14.STa alloy as shown by Figures 4.3a and 4.3b. The microstructure for 

the arc-melted ingot was essentially eutectic while the directionally solidified ingot 

c o n a e d  dendrites . The difference in the arc-melted and directionally 

s o g a d  micro ests, that for rapid solidification rates, the coupled 

grovvth region is skewed towards lower tantalum contents at moderate undercoolings. 

figher solidification rates and undercoolin roduced by the water cooled h 

d u h g  arc-melting. 

a more aligned microstructure for the Ni-l4.5Ta 

&got, a coolingjacketg jacket ted below the upward moving molten zone during 

one processing run. attempt to increase the thermal gradient through the 

so~d-liquid interface. Such a cooling jacket was previously used to produce aligned 

~costrucltures from alloys in the NiAl-(Cr,Mo) eutectic system [q. However, there 

wa no change in microstructure for the Ni-14.5Ta alloy when so processed. This 

kdiates that a much greater thermal gradient may be needed for coupled growth at 

this cornpsition. 

NiAl-Ni7AlTa-NiAlTa liauidus repions 

The shape of the liquidus surface for the NiAl, NiAlTa (Laves), and Ni2AlTa 

meusler) phases was estimated from the cast microstructures of arc-melted ingots. A 

cat microstructure consisting mostly of the NiAl-NiAITa eutectic is shown in 



Table 4.1: Compositions and processing conditions for NiAl-NNTa alloys. 

Nominal growth Rotational Number 
Composition (at. %) velocity (mmlh) velocity (rpm) of passes 

* 
cooling jacket used for increased thermal gradient 
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Figure 4.4: SEM backscattered electron photomicrographs showing the interdendritic 
Heusler phase Ni2AlTa in an arc-melted NiAl-15Ta alloy. 
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Pafier heat treating at 1373 K, the amount of Laves phase decreased as expected and 

addi~onal Heusler phase precipitates are observed in the NiA1. 

Similarly, the cast microstructure of the incomplete peritectic reaction: 

NiAlTa + Liquid -. Ni2AlTa (melt-2) 

is shown in Figure 4.7. This microstructure consists of primary NiAlTa dendrites 

sumounded by NizAlTa. Again, the Heusler phase encases the primary phase 

WNTa) preventing a reaction with the remaining liquid that solidifies as NM.  

After heat treating at 1473 K, the amount of NiAl decreases as expected. 

The projected view of the eutectic monovariant trough and the approximate 

Bwtion of the peritectic regions are shown in Figure 4.5. e this data represents 

a first approximation, it provides a starting point for M e r  alloying studies. The 

phas  compsitions from some of the directionally solidified and arc-melted alloys 

a e  fisted in Table 4.2. 



Table 4.2: Quantitative X-ray analysis for Ni-Al-Ta alloys. 

Nominal Processing Phase cornpsition (at. !%lo) 
composition technique Al i Ta 

NiAl- 14.5Ta+Ta directionally 
(NiAl-15.5Ta) solidified, 1 9 d h  

Ni-42.5Al- 15 .OTa arc-melted 
(near eutectic) 

Ni-26.4Al-27.7Ta arc-melted 
(melt-2, Figure 4.5) 

Ni-34.5Al- 13.3Ta arc-melted 
(melt-3, Figure 4.5) 

NiAl: 
NiAlTa: 

NiAl: 
NiAlTa: 
Ni2AlTa: 

NiAl: 
NiAlTa: 
Ni2AlTa: 





ELEVATED ERATURE STRENGTH 

The directionally solidified NiAl-NiAlTa alloys have a very g d  eomprress'lve 

creep strength when compared to binary NiAI. Most of the compression tests were: 

performed on an off-eutectic NiAl-14.5Ta dimtionally solidified ingot. However., a 

limited number of tests were performed on the fully eutectic microsmehue 

(NiAl-15.5Ta). The flow stress and strain rate, 6, &ta for these alloys were fiw to 

a temperature compensated-power law equation: 

where A is a constant, a is the applied true stress (MPa), Q is the activation enaeirgly 

for deformation (kJImol), T is the absolute temperature, R is the gas c m s m t  

(kJ/mol-K), and n is the stress exponent. The creep characteristics for NM-hves 

alloys are compared to single crystal NiAl in Table 4.3. 

The elevated temperature strength of the off-eutectic NN-14.5Ta alloy ovler 

the temperature range of 1200-1400 K is shown in Figure 4.8. Except for the Gabhest 

strain rates at 1200 K where power-law breakdown behavior has occurred, the 

Ni-14.5Ta alloy exhibits a very consistent power law behavior over the 

and temperatures investigated. 

In Figure 4.9, the 1300 K compressive creep behavior of the NN-hves 

alloys are compared to single crystal binary NiAl [17j and a nickel-based skgle 

crystal superalloy [18]. The N'i-Laves alloys have significantly higher sr~s=mg&s; 

compared to binary NiA1. Moreover, the strength of the NiA1-NNTa aliloys a e  



Table 4.3: Representative Creep Behavior for NiAl-Laves alloys compared to binary 
bTM. 

No Composition (at. %) Representative creep behavior 
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greater than that of the NiAI-N eutectic. However, the NiA1-14.5Ta alloy is 

weaker than the single crystal nickel-based superalloy. 

Conversely, the 1300 K compressive strength of the NiAl-l5.5Ta e u t w ~ e  

alloy matches that of the nickel-based superalloy as shown in Figure 4.9. eBkne 

strength of the NiAl-15.5Ta alloy was found at only three rate values, the t h b  

does represent a modest improvement of the creep resistance. The improvement in 

strength is likely due to a refinement in microstructure for the fully e u t c ~ e  alUioy. 

The lamellar spacing of the eutectic microstructure was measured as 2-3 brm from 

SEM and photomicrographs. This is much finer than the phase disbibu~on 

found in the NiAl- 14.5Ta alloy, Figure 4.3b. 



ROOM TEMP TOUG S 

The NiAl-NiAlTa alloys are brittle at room temperature with a fracture 

Loughness of approximately 5 MPadm. A total of nine bend specimens were tested. 

Wee bend specimens were tested in the as-processed conditions. The remaining 

s were heat treated at loo0 K for 7200 s (2 hours) then either air 

-led, oil quenched, or water quenched. Hack et al. [I91 have shown improvements 

in the fracture toughness of NiAl when rapidly cooled through the temperature range 

sf 673 to 300 K. Their results suggest that NiAl may be susceptible to -aging 

embrittlement. However, the post-processing heat treatments used in this study 

provided no improvement in toughness of the NiAl-NiA1Ta alloys and a fracture 

tcoughness of approximately 5 ~ a d m  was measured from all samples. 

In Table 4.4, the fracture toughness of the NiAl-14.5Ta alloy after the various 

h a t  treatments are compared to NiAl and the N i A l - N i  eutectic. The fracture 

toughness of the NiAl-NiAlTa alloy is comparable to that of polycrystalline hTiA1 

r203. Hence, the large increase in creep strength is not gained at the expense of 

Rmcture toughness. However, the fracture toughness of the NW-NiAlTa eutectic is 

less than that of single crystal NiAl having a [001] notch plane. Furthemore, if a 

hcture toughness of 2 m a d m  is assumed for the Laves phase W T a ,  then the 

facture toughness of the eutectic is close to that predicted by the rule of mixtures. 

On the other hand, materials containing a large volume fraction of the 

ex~emely brittle Laves phase can be reliably produced, handled, and tested by 

prmessing alloys near the eutectic composition. The fracture surface of a 

PJN-NiAlTa bend specimen is shown in Figure 4.10. The eutectic microstructure is 







remarkably visible from the fracture surface as a result of debondirag b e w ~ n  

phases during fracture. Further evidence of this fracture behavior is shown in 

Figure 4.11. A section of the directionally solidified NiAl-14.5Ta ingot .wa  pfislled 

and then broken with the polished surface in tension. The resulting frachre yrofle 

reveals a series of microcracks in the Laves phase with the NiAl phase bfidgllag the 

crack path. In addition, cracking is also visible along the NWNiAlTa p b e  

boundary. 

A high dislocation density was found in NiAl from material taken near the 

fracture surface of the broken bend specimen as shown in Figure 4.12. Tke 

microstructure of NiAl consists of coarse dislocation tangles with the dislwa~on 

density greatest in the sections where the NiAl lamella are the 

precipitates were found in the NiAZ phase for all the imaging conditions used. The 

above data suggest that the NiAl phase provides most of the fracture toughness in 

these brittle alloys. 







DISCUSSION 

The directionally solidified NiAl-NiAlTa alloys have a very good creep 

resismce. In fact the 1300 K compressive strength of the fully eutectic NiAl-15.5Ta 

day approaches that of a single crystal nickel-base superalloy, Figure 4.9. The 

mdest improvement in strength of the NiAl-NiAlTa eutectic alloy compared to the 

NN-14.5Ta alloy is probably due to a refinement of the microstructure. Sauthoff 

that the strength NiAl-Laves alloys follows a simple rule of mixtures 

behavior except for very fine phase distributions [13,2 11. Additional strengthening is 

provided once the ]lamellar spacing becomes less than a critical value corresponding to 

llle mean free dislocation path [21]. Klower and Sauthoff have studied the effects of 

lmellar spacing on the creep behavior for Ni-Al-Fe alloys and have calculated a 

crji~cal lamellar spacing of 8 pm for additional phase boundary strengthening 1221. 

The preli results for the creep resistance of the NiAl-NiAlTa eutectic with a 

lmellar spacing of 2-3 pm are consistent with their argument. 

However, the directionally solidified Ni-NiAlTa eutectic has a coarse 

e u t d c  spacing when compared to the NiAl-refractory metal eutectics such as the 

NiM-(Cr,Mo) eutectic [7]. In addition, the eutectic spacing was relatively coarse 

even for the quickly cooled, arc-melted NM-NMTa alloy, Figure 4.3a. Hence, 

Pmellar spacing is not a strong function of processing conditions and 

sighficant strengthening of the eutectic alloy is not expected at greater solidification 

rates. 

One method to further improve the strength of the NiAl-NiAlTa alloys may 

simply be to improve the strength of the NiAl phase. Promising strengths have been 



found for two phase material consisting of NiAl and the Heusler preeipihk Ni~hh4.1"a 

[93. Hence, alloys heat treated in the three phase region shown in Figure 4.5 may 

show improved strengths. For example, an arc-melted ingot with the coqpsi~orn 

near the Ni-NiAlTa liquidus trough (melt-4 in Figure 4.5) lies well w i ~  &e 

NiAl-Ni2NTa-NiAlTa region on the 1753 K isotherm. The cast microsmcWe of 

this alloy (Figure 4.13) consists mainly of NiAl-NiAlTa dendrites sunoundd by an 

interdendritic Heusler phase, Ni2AITa. Post-processing heat tteatments of ~s dPoy 

should produce precipitates of the Heusler phase within the NiAl phase. Moys w i ~  

compositions closer to the NiAl-NiAlTa eutectic should contain smaller permnages of 

the interdendritic Heusler phase. Hence, it may by possible to produce &gn& 

NiAl-NiAlTa microstructures with NiAl strengthened by the precipitates of &e 

Ni2AlTa phase. 

e the NiAl-NiAlTa alloys show promising creep strengths, the rmm 

temperature fracture toughness of these alloys is very poor. One scheme for 

improving the toughness is to include a metallic phase within the NN-NjiAlTa 

microstructure as described in Part 5. 
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Polyphase in-situ composites are defined here as directionally solidified 

eutectics resulting in three or more phases. The basic idea is to include a metal phase 

for improved room temperature toughness with a number of intermetallic phases for 

good high temperature properties. For example the N i - C r  eutectic described in 

P m T  3 has a promising room temperature fracture toughness while the NN-NNTa 

eutmtic described in PART 4 has a very good creep strength. Thus, it may be 

pssible to blend the properties of each system in a directionally solidified three phase 

eutectic, provided such systems thermodynamically exist. 

The systems-studied were the Ni-Al-Ta-X @=refractory metal) alloys. In 

addjlfon to chromium, NiAl undergoes a eutectic reaction with the refractory metals 

Mo, V, W, and Re [I]. The volume fractions of Re and W are very 

q w i - b h v  eutectics. In addition, the oxidation resistance of vanadium is extremely 

pmr. Since the NiA1-V eutectic has a room temperature fracture toughness near 40 

 dm [2], the Ni-Al-Ta-V alloys were studied as a model system. Thus, only the 

Ni-M-Ta-X (X=Cr, Mo, or V) systems were considered. Unfortunately, much of 

&e alloying work to date on these systems has considered only the nickel rich alloys 

C3-61. 







Figure 5.1: Light optical photomicrograph of ternary eutectics consisting of N N ,  a 
Laves phase, and a refractory metal. 
(a) NiAl-NiAlTa-mo,Ta) 
(b) NiAl-(Cr, A1)NiTa-Cr 
(c) NiAl-NiMTa-V 



Table 5.1: Melting point and volume fraction of each phase for ternary eu tdcs  in 
&e NiAl-NiA1Ta-refactory metal systems. Values for the volume fraction calculated 
by the lever rule are enclosed by parentheses. 

Volume Fraction 
Moy (at%) Melting point (K) NiAl Laves Metal 
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the ingot was dendritic in nature. A composition of Ni-42A1-12.5Ta-7.OMo (at. %) 

resdted in the largest volume fraction of eutectic material in either the arc-melted or 

kduction melted ingots. However, the melting temperature (1800 K) of this alloy 

wm greater than that of the NiAl-Mo eutectic (1778 K), indicating an off-eutectic . 

cornpsition. Ingots of this composition were directionally solidified at 19,25, and 

1 0  m d h  for mechanical property testing. 

The longitudinal microstructure from a directionally solidified ingot is shown 

21 Figure 5.3. The NiAl-NiAlTa-(Mo,Ta) ternary eutectic consists of a lamellar 

dcrostructure between NiAl and NiAlTa. A fibrous morphology is found for the 

molybdenum-rich solid solution that is surrounded completely by NiM. The slow 

p r m s b g  of 19 mm/h produced the best aligned microstructure. The 

~ e ~ t i o n a l l y  solidified microstructure consisted of some regions of well aligned three 

p b  material while other areas contained NiAl+(&lo,Ta) two phase dendrites and 

NiAl-NiAlTa eutectic microstructure. 

The phase compositions were determined for an arc-melted ingot heat treated 

a 1673 K for 14.4x1d s (4 hours). These results along with a schematic of the 

projected liquidus troughs are shown in Figure 5.4. The relative amounts of each 

lplbase d by lever rule calculations and by the area fractions measurements 

are comparable, Table 5.1. 

Ni-Al-Ta-Cr svstem - 

Alloys examined in the Ni-Al-Ta-Cr systems are plotted in the composition 

bimgle shown in Figure 5.5. Arc-melted ingots in this system were much easier to 

p d u c e  than the Ni-Al-Ta-Mo systems since no abrupt changes in microstructure 

were observed. An ingot with a composition of Ni-33A.l-28Cr-6Ta (at. %) was 

~ectionally solidified at 19 mm/h for further study. 
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The longitudinal microstructure from the directionally solidified ingot is shown 

in Figure 5.6. The microstructure of this ingot was essentially aU eutectic. The 

NM-(Cr,M)NiTa-Cr ternary eutectic consists of an NiAl matrix containing 

c h o ~ u m  rods and laths of the Laves phase. The morphology of this eutectic is inore 

clearly shown in Figure 5.7. The greater resolution of the TEM image more clearly 

shows the fine structure. 

The phase compositions were determined for an arc-melted ingot heat treated 

at 1673 K for 1 4 . 4 ~ 1 0 ~  s (4 hours). These results along with a schematic of the 

projated liquidus troughs are shown in Figure 5.8. The relative amounts of each 

phase determined by the lever rule differed from those determined from the area 

hetions. The difference in these values are probably due to errors in mea 

zuea fractions. The atomic number contrast of the NL4.l and chromium phases were 

similar making an accurate determination from the SEM backscattered electron image 

&%cult. As indicated in Figure 5.8, a possible continuous solid solution between the 

lVWTa and the Ta2Cr Laves phases exists. 

Ni-AI-Ta-V svstem 

Compositions studied in the Ni-A1-Ta-V systems are shown in Figure 5.9. 

:Based on the survey study, a near eutectic composition of Ni-28.54-10Ta-33V was 

&ation* solidified at 19 mm/h for further study. The microstructure of the 

(&ationally solidified ingot consisted of vanadium-rich dendrites surrounded by cells 

or colonies of the three phase eutectic. The eutectic cells were not aligned along the 

grswth axis of the ingot. The eutectic microstructure is shown in Figure 5.10. This 

eutectic is different than the previous two in that the Laves phase contacts both the 

N N  and the metal phase. The eutectic microstructure is characterized by a lamellar 

morphology between the between NiAl and vanadiurn-rich metal phase with the Laves 

phase having an faceted rod type morphology. Figure 5.10 consists of longitudinal 





Figure 5.7: TlEM photomicrograph of an arc-melted NW-(Cr,Al)NiTa-Cr e u t s ~ c .  



f3 = NiAl 
a = mdal phase 
L = Lava phase 

NiAl atomic  percent C r  Cr 

Figure 5.8: Compositions of the eutectic phases at 1673 K and a schematic of the 
projwted liquidus troughs in the NiAl-Cr-Ta system. 



NiAl atomic percent V V 

Figbre 5.9: Compositions of arc-melted ingots made in the NN-V-"I% systern. 







I 

@ = N i  
a = metal phase 
L = Laves phase 

atomic percent V 

e 5.11: Compositions of the eutectic phases at 1533 K 
and a schematic of the projected liquidus troughs in the 
NiA1--V-Ta system. 



ELEV S GTN 

Compressive creep strength of the NiAl-Ta-Mo and the NN-'Fa-Cr d o y s  w a  

determined within the temperature range of 1100 to 1400 K. The flow swess and 

strain rate data for these alloys were fitted to the standard power law erquasiioras as 

previously described in Parts 3 and 4. The creep characteristics for &e emrgi 

eutectics are listed in Table 5.2 and the corresponding data over the tempm1ure m g e  

of 1 100 to 1400 K are plotted in Figures 5.12. and 5.13. 

For the NM-(Cr,A.l)NiTa-Cr eutectic, there may be two creep regimes 

characterized by similar activation energies but having different stress expnena, A 

result is found for the NM-NMTa-(Mo,Ta) eutectic where a1 &fferent 

equation is needed to describe the 1200 K creep behavior. The lower stress czxpnent 

at low deformation rates are likely due to a decrease in the ductile to brjiae m s i ~ o n  

temperature (DBTT) of the ternary eutectic alloys compared to the NN-NaJlka 

binary system. Sauthoff has shown that DB'TT is a function of defowna~on mks in 

the NiAl-NiAlTa alloys and decreases with smaller percentages of Ilhe hves  phae 

[6]. The volume fraction of Laves phase in both ternary eutectics is less &a1  at of 

the NiAl-NMTa eutectic, Table 5.1. 

In Figure 5.14 and 5.15, the 1300 K compressive strength of b o ~  the N M -  

NMTa-(Mo,Ta) and the NiAl-(Cr,Al)NiTa-Cr eutectics are cornpillled to skigle 

crystal NiAl and the NiAl-NiAlTa eutectic. The 1300 K creep strengfi of b~o& 

ternary eutectics are substantially greater than that of b NiAl but are less %km 

that of the NiAl-NiAlTa eutectic. 



Table 5.2: Representative creep behavior of NiAl-(Cr7A1)NiTa-Cr 
a d  NM-NiMTa-wo7Ta) eutectic alloys. 

.AUoy Representative creep behavior 

high stress exponent regime 
8 = (9 .43~ 10- 13)a10.29exP(-422. 2 l ~ T )  

low stress exponent regime 
8 = (7.84)6 -22exp(-445. 2 1 ~ ~ )  
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ROOM TEMPERATURE TOUG S 

The room temperature fracture toughness values for the NN-NNTa- 

refractory metal eutectics are listed in Table 5.3. The fracture toug$ness of the 

NiAl-(Cr,Al)NiTa-Cr eutectic (15 w d m )  lies in between that of eke N N - N M a  

eutectic (5 MPdm) and that of the NiAl-Cr eutectic (20 MPan/m)* However the 

fracture toughness for the NiAl-NiAlTa-(Mo,Ta) and NM-NMTa-V eutw~es were 

only slightly greater than that of the NM-NiAlTa eutectic. 

Since the composition of the directionally solidified NiAZ-Ta-lk%as hgot wa off' 

eutectic, a number of heat treatments were performed in an attempt rto h c r m ~  the 

volume fraction of the metal phase. It was hoped that by heat treahg in &e ~e 

phase region below the ternary eutectic point, a more homogenous &s~bu$ioa of sline 

might result. However, a coarsening of the metal phase 1:esd~I a d  no 

significant improvement in the fracture toughness was measured. The b c m e  s d a a  

from the NiAl-Ta-Mo bend sample is shown in 5.16. By co nm md 

backscattered electron images of the fracture surface, the brittle b e b ~ o r  of ~s d s y  

is clearly due to the large volume fraction of the Laves phase. The h c a r e  :lidace is 

characterized by cleavage of the Laves phase. 

Conversely, the NiAl-Ta-Cr eutectic contains a smaller permneage of the 

Laves phase and hence has a greater fracture toughness. The fracture sULPEac(2 for this 

alloy is shown in Figure 5.17. The mode of fracture to consist 06 p h m  

boundary fracture between the NiAl phase and the Laves phase. In ad&fion, ~Bavage 

of the NiAl phase is also observed. 



Table 5.3: G m  temperature fracture toughness of NiAl-N'iAlTa-Refractory metal 
euwecs. 

~ Q Y  Fracture toughness ~ d m  

NN-NNTa-(Mo ,Ta) as-processed 5.2 
vi-42M- 12.5Ta-7Mo) 5.2 

NN-(Cr,Al)NiTa-Cr as-processed 15.1 
Wi-30.5A-6Ta-33Cr) 15.9 

15.2 
13.6 

NN-NMTa-V as-processed 8.2 
(Ni-2 8.5A- 1 OTa-33V) 8.7 

8.5 
7.9 
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Figure 5.18: SEM photomicrographs of the fracture surface of a broken 
NiA1-INiAlTa-V bend specimen. 
(a) sse~ondary electron image. 
(b) bacbcatterd electron image. 



DISCUSSION 

The ternary eutectic systems were studied to discover if a balm= of g~ropdes 

could be achieved by combining the properties of the individ 

the alloys studied, the ternary eutectic in NM-Ta-Cr system 

achieving this goal. The room temperature fracture toughness of ~s m&~al v v s  

greater than that of the NiAl-NiAlTa eutectic by a factor of three. Uilfo 

creep resistance of this material was no better than that of the NiAl-Cr euwtie. 

Since NiAl, NiAlTa, and Cr are all thermodynamically compa.~ble, 

conventional techniques to produce composite materials formed by j 

containing the NiAl-NMTa and the NiAl-Cr eutectics may be pssiblle, The, k m q  

eutectic represents the lowest melting temperature (1700 I() for alloy wrrapsi~oa?is 

within the NiAl, Laves phase, and chromium three phase region shorn in Fibwre 5.8. 

However, the melting point of the ternary eutectic at 1700 K is not s i a f i m d y  lower 

than that of the NiAl-Cr binary eutectic (1718 K). From the preli 

property data, the creep resistance of the ternary eutectic is similar to tlzinl: of the 

NiAl-Cr eutectic and the fracture toughness is greater than that of the N U - N N T a  

eutectic. Hence, the interface betureen materials consisting of the sepmte I b l i n q  

eutectics should be thermodynamically stable and mechanically sound. 
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232. 

2. Steve Josh ,  Ph.D. thesis, University of Tennessee (in progress). 
3. M. Durand-Charre, D. David and J. Wang, High Temp. Mat. dl Plrw, 13 

(1991), 1-12. 
4. S. Chakravorty and D. R. F. West, Mat. Sci. and Tech., 1 (19851, 978-985. . 
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The NiAl-(Cr,Mo) eutectic has a reasonable combination of p r c l p ~ e s  when 

compared to the other NiAl-based eutectics. The NM-(Cr,Mo) e u ~ ~ c  has a room 

temperature fracture toughness of 22 h r ~ ~ d m  and has a much greater crep s t r e n g ~  

than binary NM. 

The ternary eutectic systems were studied to discover if a b u m  of lprophes 

could be achieved by combining the properties of the individual b h w  euwf cs. $&e 

t e v  eutectic in the NiAl-Ta-Cr system came the closest to achievjing ~s god. 

The room temperature fracture toughness of this eutectic was interndate bemeen 

those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. However, laatermdhate 

values for the creep strength of the NN-(Cr,Al)NiTa-Cr euttx~e were found 

-5 1 only at high strain rates (> 10 s' ). At lower strain rates, the creep sIregilig~ of the 

ternary eutectic decreased to values near those of the b NiAl-Cr euw~c:, 

I .  conclusion, improvements in both the room temperature frac$ure touglmaness 

and the elevated temperature strength were found for all the eutectics ed when 

compared to binary NiAl. The NM-28Cr-6Mo eutectic was found to have the best 

combination of properties while the NM-15.5Ta eutectic was found to have an 

excellent high temperature strength, Both these alloys show prornis as bgh 

temperature structural materials and merit further study. 
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C 
@ Z O m  PROCESSOR FOREGROUND PROGRAM 
e RT-la FOR IV 4/9/1992 D m  
e 
C LINICIIIrG PROCEDURE ON RTll TO PRODUCE FOREGROUND EXECUTABLE 
e FROM PROGRAM ZONE.FOR: 
e 
e .a LINK 
e * ZONE=ZONE/I/R// 
e * DTLIB 
C * ITELIB 
C * IBVDP 
e * IBUP 
e * / /  
C LIShVLRY SEARCH? $SHORT 
e LIBRARY SERCH? <return> 
g: * -e -c 
e 
C 
C L PROCEDURE ON RTll TO PRODUCE BACKGROUND EXECUTABLE WITH 
C 0 S FROM PROGRAMS INGOT.FOR, OTEXT.FOR, OSUB1.FOR AND OSUB2.FOR 
g: 
C EINK/PROMPT INGOT 
C * OTEXT/O:l 
C * OSUB1/0:1 
C * OSUB2/0:1 
C 
g: 

* // 
C TO E D W T E  THE PRGORAMS: FRUN ZONE/BUFFER:3000 (then follow prompts) 
e 
C -- HISTORY -- 
g: 
@ 4/:1/1992 - ADDED MEASUREMET OF SOLID DIAMETER 
C 5/10/1992 - OUTPUT ITERFACE POSITION. ALLOW ANY NUMBER 
C OF AVERAGES OF INTERFACE POSTION. 
C 5/11/1992 - PLACE INTERFACE COMPARISON SEARCH ROW 
C INTO THE DATO MATRIX. 
C 
e 12/30/1992 - DIRECT OUTPUT TO DE-2 THROUGH IEEE INTERF'ACE 
e 1,11/1993 - DIRECT OUTPUT TO EITHER DELL#l OR DEU#2 
e 
C 1/2/1993 - INCREASE THE SIZE OF DAT( ) ARRAY TO 7x4 
C 1,/2/1993 - PUT VARIABLES FOR IEEE INTERFACE IN DATO ARRAY 
e 
e 1/9/1993 - ADD COMPLETION ROUTINE TO READ DATA FROM  DEW^ 
e 
C 4/9/1993 - TAKEOUT INTERFACE FINDER FROM RTll AND CONTROL 
e INTERFACE FROM  DELL#^ 
e 
C 7/14/1993 - CHANGE THE DEFAULT CONDITIONS FOR DELL#l 
C INTERFACE FINDER 
e 
C 9/3/1993 - CORRECT ERROR CHECKING IN THE POWER LOOP 
C 
C 
e PRWRiW DESCRIPTION : 
@ Foreground program to setup completion routines and to sample 
C background monitor for user input. Purpose of the program 
e is to control the diameter, and interface postion for a zone 
e melting procedure. This is accomplished setting up a power, and 
C stretch/squeeze loop by analizing a digital image of the zone. 
C Psogzams send and receive data from two IBM pc compatables refered 
C %o as DELL%l and DEL-2. 



168 
C VARIABLES: 
C DAT() - matrix holding process and system vari&le+, 
C BIAS() - array which holds the control offsets. 
C FTRANS - integer array which is received from background 
C FAREA - work space used to receive background data 
C AREA1 - work space used to call completion routine.. 
C IEEE - byte array containing output data- tm-rture etc* 
C IOUT - integer array containing the output data 
C 
C MATRIX VALUES FOR DAT(1,J): 
C (a) process variables 
C 1=1,2,3,4 for diameter, interface postion, rotation, sca.n, 
C J=1,2,3,4 for gain, time constant, setpoint, last read value 
C note: gain and time constant are not used for rotation a n d  scim. 
C area used for: rot flg., solid dia, search length, w i d l t h *  
c 
C (b) system variables 
C 1=5 for system timming values, and printer flag 
C J=1,2,3,4 for completion delay, delay time, comparison row, 
C and allowable pix change for power loop. 
C 1=6 for video graphics setup 
C J=1,2,3,4 for column to start search, row to measure dianneter 
C threshold intensity, empty 
C 
C (c) IEEE variables 
C 1=7 for ieee bus to DELL computers 
C J=l flag: communication with Della1 ? 
C J=2 flag: comunication with De11#2 ? 
C J=3 time in ticks to read inteface position from DelliBfl 
c 
C ROUTINES: SHED1 - completion routine to control the nkelt dia. 
C SHED2 - copletion routine to get inteface psition 
C from Dellfl pc and to control the i.nduced power. 
C LOADF - completion routine to recieve background values. 
C 
C SYSTEM CALLS: 
C IQSET - the number of 1/0 queues reserved. 
C ITIMER - calls completion routine after elapsed t h e  interval. 
C IRCMF - receives data and enters a completion subroutine. 
C ISLEEP - suspends main program execution for the t h e  period, 
C ISDTTH - sets the system date and time. 
C SECNDS - returns time in seconds (real) 
e 
C FROM DTLIB.OBJ: 
C IADC - analog to digital conversion (input to zone meltex) 
C IDAC - digital to analog conversion (output to zone melter) 
C 
C FROM ITELIB-OBJ: contains all the video graphics library routines* 
C 
C FROM IBUP-OBJ and 1BVDP.OBJ: libraries for the GPIBll IEEE hardware, 
C IBUP - send and recieve data via IEEE connection* 
c .................................................................... 
C 

PROGRAM ZONE 
C 
C DECLARE ALL VARIABLES 

EXTERNAL SHED1, SHED2, LOADF 
REA.L*4 SECNDS 
BYTE IEEE(20) 
INTEGER*2 IOUT(lO),IERRfSIZE, AREA2(4) 
INTEGERx2 FAREA(4) , AREA1 (4) ,DAT ( 7,4) FTRANS ( 5  ) ,ORGIN 
EQUIVALENCE ( IOUT , IEEE ) 
COMMON /SHDl/ DAT 
COMMON /LDF/ FTRANS 
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C 
C Completion routine executes after 'DAT(5,l)' ticks 
C calls the subroutine to control the melt diameter, freezing 
C velocity, and rotational velocity. 
c 
C 

SUBROUTINE SHEDl(ID) 
C 

EXTERNAL SHED1 
INTEGER*2 IERRI AREAl(4) . 
INTEGER*2 DAT(7,4) 
COMMON/ SHD 1 / DAT 

C 
c 
C MAIN JOB LOOP 

CALL CONTRL 
c 
C 
c RECALL THE COMPLETION ROUTINE (RECURSIVE) 

1ERR=1T1MER(0,0,0,DAT(5,1),AREA1,1,SHED1) 
C 
C 

RETURN 
END 

c ................................................... 
C 
C Power Control loop completion routine: 
C 
C receive the interface position from DellBl pc computer and 
C calculate the power output needed to control the zone size. 
c 
C 
C 

SUBROUTINE SHED2(ID) 
c 

EXTERNAL SHED2 
BYTE CDAT(4) 
INTEGER*2 AREA2 ( 4 ) , IALLOW 
INTEGER*2 DAT(7,4), NUMBER 
EQUIVALENCE(NUMBER,CDAT) 
COMMON/SHDI/ DAT 

C 
C MAIN JOB LOOP 

IALLOW=DAT(5,4) ! max change in pix position for power change 
IF (DAT(7,l)-GT.0) DAT(7,1)=IBUP(l,lICDAT,4) ! value from 1)ELL 
IF (DAT(7,l)-GT.0-AND.NUMBER.GT.0) DAT(2,4) ER 1 put in matrix 
IF (IABS(NUMBER-DAT(2,3)).GTT1ALLOW) GOT0 100 1 allowa$l@ change 

CO=GETC0(2) ! calculate control output folr power 
IF (CO.LT.0) CO=O ! check limits 
CALL IDAC(O,OICO) ! set the power 

100 CONTINUE 
C 
C 
C RECALL COMPLETION ROUTINE (RECURSIVE) 

IERR=ITIMER(OI0,0,DAT(7,3),AREA2,2,SHED2) 
c 
c 

RETURN 
END 

c 



c 
C! Completion rout ine  t o  load background data. 
C Action taken by t h i s  routine depends on t h e  var iable  FLAG 
C which is  loaded from t h e  background. 
C 

SUBROUTINE LOADF(1D) 
Q: 

EXTERNAL LOADF 
INTGRL(4) 

IBTPEGER*2 FAREA(4), FLAG, I, J, VALUE, IERR 
INTEGERf2 DAT(7,4), FTRANS(5), BIAS(4), CHNL(4) 
EQUIVALENCE (FLAG,FTRANS(2)) 
EQUIVALENCE (I,FTRANS(3)) 
EQUIVALENCE (J,FTRANS(4)) 
EQUIVALENCE (VALUE,FTRANS(S)) 
COmON /SEiDl/ DAT 
COMMON /CTL/ INTGRL, BIAS 
COPlMON /LDF/ FTRANS 
DATA CElNL/0,2,5,4/ ! port  f o r  s t / sq ,  power, r o t ,  scan 

C 
C *** TKANSFER OF CONTROL *** 

IF (FLAG.LT.1) GOT0 10 
DAT(FLAG,3)=DAT(FLAG,4) ! load setpoint  
INTGRL(FLAG)=O.O ! c lear  control  equation 
BIAS(FLAG)=IADC(CHNL(FLAG),O) ! needed o f f se t  
BIAS (1)=O ! s t / sq  b i a s  always zero 

10 W N T I r n  
C 
C *** FIAG ACTIONS *** 

IF (FLAG.GE.0) IERR=ISDATW(DAT(I,J),l) ! send t o  background 
IF (FLAG.EQ.-1) DAT(I,J)=DAT(I,J)+VALUE 1 increment matrix 
IF (FLAG.EQ.-2) BIAS(I)=BIAS(I)+VALUE ! increment b i a s  a r ray  
IF (FLAG.EQ.-3) DAT(I,J)=VALUE ! load matrix value 

C 
C S C m  TIIE BACKGROUND AGAIN FOR INPUT 

IERR=IRCVDF(FTRANS,4,FAREA,LOADF) 
g: 

mTURN 
Etrn 

C 
C -..------------------------------------------------------------ 

C 
SUBROUTINE CONTRL 

C 
@ Set up a power loop, s t r e t ch  squeeze loop, and ramp t o  t h e  
C set point  values f o r  t h e  rota t ion and scan velocity.  
C The s t r e t c h  squeeze control  is calculated by measuring t h e  diameter 
C of t h e  bar  with GETLEN. 
C mEDS: l i b r a r i e s  DTLIB-OBJ and ITELIB-OBJ 
C 

mBZ*4 INTGRL(B), RTEMP 
INTEGER*2 GETLEN,GETROW,GETCO,IABS 
IMTEGER*2 COUNT,Rl,R2,COLUMN,SLENIXTENStCO,XFACE 
INTEGER*2 DAT(7,4), BIAS(4), COUNT2, COUNT3 
COmON /SHDl/ DAT 
COMMON /CTL/ INTGRL, BIAS 
COMMON /GTLN/ COLUMN,SLEN,XTENS 
DATA COUNT/O/, COUNT2/0/, COUNT3/0/, RTEMZ)/O.O/ 

C 
C(SLUMN=DAT ( 6,l) ! horizontal posit ion of in te r face  search 
XTENS=DAT(6,3) ! threshold pixel  in tens i ty  
RL=DAT(6,2) ! ve r t i ca l  posit ion a t  s t a r t  of search 
R2=DAT(6,2)+DAT(4,1) ! ve r t i ca l  posit ion a t  end of search 
SI,EN=DAT ( 4,2 ) ! length of search. 



172 
C 
C GRAB A SCREEN TO PROCESS 

CALL GETSCR(R1,R2fDAT(1,4),DAT(2,4),DAT(1,3),DAT(2,3)8DAT(583)] 
C 
C MEASURE THE DIAMETER 

DAT(1,4)=GETLEN(R1,25,4851XTENS) 
CO=GETCO(l) 
CALL IDAC(l,OICO) 

C 
C 

COUNT2=COUNT2+1 ! do ro t a t i on  and scan 
IF (COUNT2.LT.DAT(3,1)) GOT0 20 ! only a f t e r  a certain 
COUNT2=0 ! number of ]?asses,. 

C 
C RAMP TO THE ROTATION SETPOINT 

DAT(3,4)=IADC(5,0) 
IF (DAT(3,3).LT.BIAS(3)) BIAS(3)=BIAS(3)-1 ! closed loop 
IF (DAT(3,3).GT,BIAS(3)) BIAS(3)=BIAS(3)+1 
CALL IDAC(3,0,BIAS(3)) 

C 
C 
C RAMP TO THE TRANSLATION SETPOINT 

DAT(4,4)=IADC(4,0) 
IF (DAT(4,3).LT*BIAS(4)) BIAS(4)=BIAS(4)-1 ? closed loop 
IF (DAT(4,3).GTaBIAS(4)) BIAS(4)=BIAS(4)+1 
CALL IDAC(2,0fBIAS(4)) 

C 
2 0 CONTINUE 
C 
C 
C MEASURE SOLID DIAMETER AT END OF INTERFACE SEARCH 

COUNT3=COUNT3+1 
IF (COUNT3.LT.(2*DAT(5,2)))) GOT0 30 

COUNT3=0 
DAT(3,2)=GETLEN(R2,25,485,XTENS) 

30 CONTINUE 
c 

RETURN 
END 

c .......................................................... 
C 

SUBROUTINE INITVS 
c 
C INITIALIZE THE VIDEO SYSTEM 
C The following subprograms a r e  contained i n  t h e  l i b r a r y  
C "ITELIB,OBJm and access t h e  analog processor and 
C t h e  frame buffer hardware. 
C 

CALL SELGRP(1) 1 se l ec t  video group 
CALL SELTAP(0) ! se l ec t  type of analog processor 
CALL INITFB(0) 1 i n i t i a l i z e  frame buffer  
CALL INITAP ! i n i t i a l i z e  analog processor 
CALL SELLT(0,O) 1 se l ec t  lookup t a b l e  
CALL DOLNLT(0) ! l inear ize  lookup t a b l e  
CALL SELLT(2,O) t select lookup t a b l e  
CALL DOLNLT(0) 1 l inear ize  lookup t a b l e  
CALL SELPLL(0) ! se l ec t  sync source 
CALL SELGFB(0) ! se l ec t  graphics frame buffer  
CALL GRAB(O,l,O) ! acquire an image & s t o r e  i n  meraoey 
CALL SELGPI(175) ! se l ec t  graphics pen in t ens i t y  

C 
RETURN 
END 

C 
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STIME=FLOAT(DAT(5,1)+12) 
GAIN=FLOAT(DAT(I,l))/lOO. ! scale gain 
CONST=GAIN/(FLOAT(DAT(I,2))*10.0) ! gain/(ti.m@ canst) 
ERRoR=DAT(I,3)-DAT(If4) ! error=setpt-measured 
INTGRL(I)=INTGRL(I)+CONST*ERROR*STIME ! kII(error)dt 
CO=GAIN*ERROR+INTGRL(I)+FLOAT(BIAS(I)) ! the control output 
IF (CO .GT. 2047.0) CO= 2047.0 
IF (CO .LT. -2048.0) CO=-2048.0 
GETCO=IFIX(CO) 

c 
RETURN 
END 

C *** program INGOT-FOR *** 
C BACKGROUND PROGRAM FOR ZONE-REL 
C RT-11 FORTRAN IV 1/5/1992 DRJ 
c 
C 5/10/1992 - TAKE OUT SEARCH AREA CHANGE. 
C ALLOW CHANGE OF NUMBER OF INTERFACE AVERAGES. 
C 5/11/1992 - ADD KEYBOARD ROUTINE FOR CHANGING THE COMPaaISON 
C SEARCH ROW. 
C 1/1/1993 - TELL FOREGROUND TO SEND OUTPUT TO DELL#l OR ]MELEI2 
C 1/2/1993 - SPLIT PROGRAM INTO MODULES FOR THE OVERLAY L I m R  
C 7/14/1993 - ADD PARALLEL PROCESSING TEXT 
C 

PROGRAM INGOT 
C 

INTEGER*2 CHOICE,SPCBARfFLAG,IIIJJ,IVAL~SETPTS(6),F'V~~2~ 
INTEGER*2 DELLl, DELL2 
REAL*4 CONV ( 4 ) , SVAL 
COMMON SETPTS, COW, FVAL 
DATA SETPTS/G*O/ 
DATA CONV/2.84091E-3, 1.0, 0,406937, 0.0111383/ 

C 
CALL IQSET(10) 
WRITE(S,*) ' PRESS <SPACEBAR> TO BEGIN.' 
IVAL=SPCBAR() 
CALL SETPAR(-99,4,4,IVAL) ! activate the f oregtoumt9, 

C 
C KEYBOARD MENU 
10 WRITE(5,ll) 
11 FORMAT('1 '/'1') 
C 

WRITE(5,*) 'OUTPUT: TIME TRAVEL T E  ZONE-DIA ST/SQ Pc3\mR\ 
* ' SCAN ROT BAR-DIA INTFC' 
WRITE(5,f) ' sec in C in in/mira !k ' 

* ' in/hr rpm in pixel ' 
WRITE(5,*) ' ' 
WRITE(5,*) ' ' 
WRITE(5,f) ' THE SET POINT VALUES ARE:' 
WRITE(5,12) ' DIAMETER =',FLOAT(SETPTS(l)*CONV(l)) 
WRITE(5,12) ' INTERFACE =',FLOAT(SETPTS(2)*CONV(2)) 
WRITE(5,12) ' ROTATION =',FLOAT(SETPTS(3)*CONV(3)) 
WRITE(5t12) ' SCAN VEL, =',FLOAT(SETPTS(4)*CONV(B)) 

12 FORMAT(4XIA12,F9.3) 
CALL SETPAR(0,7,1,IVAL) 
DELLl=FVAL ( 2 ) 

WRITE(5,*) ' ' 
IF (DEU1.GT.O) WRITE(S,*) ' RECIEVING DATA FROM DELLg1" 
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C 
C 

STOP 
END 

c 
C 
C rountine to send data to foreground 
c 

SUBROUTINE SETPAR(FLAG,I,J,VAL) 
C 

INTEGER*2 DAT(4), FVAL(2), SETPTS(6), FLAG, I, J, VAL, IEm 
REAt*4 CONV(4) 
COMMON SETPTS, COW, FVAL 

c 
DAT(l)=FLAG 
DAT(2)=I 
DAT(3)=J 
DAT ( 4 ) =VAL 
IERR=ISDATW(DAT,4) 
IF (FLAG.GE.0) IERR=IRCVDW(FVAL,l) 
IF ((FLAG.EQ.-l).ANI).(J.EQ.3)) SETPTS(I)=SETPTS(I)+VAL 

c 
RETURN 
END 

C 

C *** program ITEXT-FOR (for overlay with 1NGOT.FOR) *** 
C 

SUBROUTINE ITEXT(MENU,II,JJ) 
c 

INTEGER*2 MENU,II,JJ 
C 

IF (MENU.NE.1) GOT0 20 
WRITE(5t14) 

14 FORMAT ( IX/// ) 
WRITE(5,*) ' *** Key Board Control ***" 
WRITE(5,*) ' dia. interface rot. scan hor, vert.' 
WRITE(5,*) ' increase W R Y I a P a  
WRITE(5, *) ' decrease A D G J 6 E "  
WRITE(5,*) " 
WRITE(5,*) ' CTRL-P/L moves search comparison length U% sx Dome" 
WRITE(S,*) ' CTRL-R/D increase/decrease the power writhouta 

x 'changing the tuning.' 
WRITE(5,*) ' Note: 0.1 kW equals about 7 keystrokes." 
WRITE(5,*) " 
WRITE(S,*) ' Z=print time. SPACEBAR=menu.' 

WRITE(5,*) ' ' 
C 
C PARAMETER MENU 
20 IF (MENU.NE.2) GOT0 30 

WRITE(5,25) 
25 FORMAT('1 '1'1 ' )  

WRITE(5,*) ' *** SEUCTION MENU ***' 
WRITE(5,*) ' ' 
WRITE(5,*) ' choose by number.' 
WRITE(5,*) ' (1) DIAMETER' 
WRITE(5,*) ' (2) INTERFACE' 
WRITE(5,*) ' ( 3 )  ROTATION' 
WRITE(5,*) ' (4) SCAN VEL.' 
WRITE(5,*) ' (5) SOLID DIWTER' 
*WRITE(S,*) ' (6) COOL-DOWN' 
WRITE(5,*) ' (7) ACTIVATE DELL COMPUTERS' 
WRITE(5,*) ' ( 8 )  EXIT' 



C 
C graphics tuning menu 
30 IF (MENU.NE.3) GOT0 40 

WRITE(5,25) 
WRITE(5,") ' *** SOLID DIAMETER MEASURMENT **fq 
WRITE(5,f) ' ' 
WRITE(5,*) ' the solid diameter is measured at the' 
WRITE(S,*) ' lower horizonatal line. You can changeq 
WRITE(f,*) ' the distance between the liquid diameter' 
WRITE(5,*) ' line (upper) and the solid diameter line.' 
WRITE(S,*) ' Changing this value will not effect the' 
WRITE(5,*) ' the liquid diameter control.' 

c 
C cool down routine 
40 IF (MENU.NE.4) GOT0 50 

WRITE(5,*) ' ' 
WRITE(5,f) ' *** COOL-DOWN ROUTINE ***' 
WRITE(5,*) ' ' 
WRITE(5,*) The cool down program allows the power' 
WRITE(S,*) ' to be ramped down evenly to advoid' 
WRITE(5,*) thermally shocking the ingot.' 
WRITE(5,*) ' ' 
WRITE(S,*) ' Do cool-down? (l=yes12=no)' 

C 
e CONTROL OPTIONS MENU ( I1 is between 1 and 4. ) 
50 IF (MENU.NE.5) GOTO 60 

WRITE(5,*) ' ' 
mITE(5,*) " 
IF (II.EQ.l) WRITE(S,*) ' *** DIAMETER CONTROL ***' 
IP (11-EQ-2) WRITE(SI*) ' *** INTERFACE POSITON CONTROL ***' 
I:F (II.EQ.3) WRITE(5,*) ' *** ROTATION RAMP ***' 
IF (II.EQ.~) WRITE(S,*) *** SCAN vELocIm RAMP ***' 
WRITE(S,*) ' ' 
WRITE(5,*) ' do or change the following:' 
WRITE(5,*) ' (1) GAIN' 
6\TRITE(5,*) ' (2) TIME CONSTANT' 
WRITE(5,*) * (3) SETPOINT' 
WRITE(5,*) ' (4) TRANSFER CONTROL' 
mITE(5,*) ' (5) EXIT' 

C 
C! 
60 IF (MENU.NE.6)GOTO70 

WITE(5,*) ' ' 
WRITE(5,*) '(1) ACTIVATE DELL#l FOR INTERFACE CONTROL' 
WITE(S,*) '(2) ACTIVATE DELL#2 FOR DATA DOWNLOAD' 
mITE(5,*) '(3) EXIT' 

e 
70 RETURN 

Ern 

C: *** program OSUB1-FOR (for overlay with INGOT-FOR) *** 
C 
C: rpauStine to wait until the space bar is hit or perform 
C a function directly from the keyboard. 
C: 

INTEGER FUNCTION SPCBARO 
c; 

INTEGER*2 KEYI I, JI SETPTS(6)t FVAL(2)r VAL 
REAL*4 CONV(4) 
COMMON SETPTS, CONV, FVAL 

C 



C GET A KEY 
10 CALL IPOKE("44rIPEEK("44).0R."10000) 

KEY=ITTINR() 
CALL IPOKE("44,IPEEK("44).AND..NOT."10000) 
C A U  RCTRLO 

C 
C KEYBOARD CONTROL 

IF (KEY.EQ.32) GOT0 200 
IF (KEY.EQ.87) CALL SETPAR(-1,1,3,1) ! W 
IF (KEY.EQ.65) CALL SETPAR(-1,1,3,-1) 1 A 
IF (KEY.EQ.82) CALL SETPAR(-1,2,3,1) ! R 
IF (KEY.EQ.68) CALL SETPAR(-1,2,3,-1) 1 D 
IF (KEY.EQ.89) CALL SETPAR(-1,3,3,1) ! Y 
IF (KEY.EQ.71) CALL SETPAR(-1,3,3,-1) 1 G 
IF (KEY.EQ.73) CALL SETPAR(-1,4,3,1) ! I 
IF (KEY.EQ.74) CALL SETPAR(-1,4,3,-1) ! J 
IF (KEY.EQ.46) CALL SETPAR(-1,6,1,1) I . 
IF (KEY.EQ.44) CALL SETPAR(-1,6,1,-1) 1 , 
IF (KEY.EQ.62) CALL SETPAR(-1,6,1,5) ? > 
IF (KEY.EQ.60) CALL SETPAR(-1,6,1,-5) I 6 
IF (KEY.EQ.80) CALL SETPAR(-1,6,2,-1) 1 P 
IF (KEY.EQ.76) CALL SETPAR(-1,6,2,1) 1 L 
IF (KEY.EQ.18) CALL SETPAR(-2,2,2,1) I CTL R 
IF (KEY.EQ.4) CALL SETPAR(-2,2,2,-1) 1 CTL D 
IF (KEY.EQ.16) CALL SETPAR(-1,5,3,-1) t CTL P 
IF (KEY.EQ.12) CALL SETPAR(-1,5,3,1) t CTL L 
IF (KEY.EQ.13) GOT0 200 ! <RET> 
IF (KEY.NE.90) GOT0 190 1 CTL Z 

WRITE(5,187) 
187 FORMAT(lXI//' print time? [I-300]',$) 

READ(5,*) I 
IF (1.GT.O) CAU SETPAR(-3,5,2,I) 
GOT0 200 

19 0 CONTINUE 
IF (KEY.NE.27) GOT0 195 1 ESC 

WRITE(5,193) 
19 3 FORMAT(lX,//' enter MATRIX elements I, J: " $ )  

READ(5,*) I,J 
CALL SETPAR(O,I,JIVAL) 
WRITE(5,*) 'OLD VALUE=',FVAL(2),' ENTER NEW VmmP 

READ(5,*) VAL 
CALL SETPAR(-3,1,JIVAL) 
GOT0 200 

195 CONTINUE 
GOT0 10 

200 CONTINUE 
C 
C 

SPCBAR=KEY 
=TURN 
END 



e *** program OSUB2.FOR (for overlay with INOGT-FOR) *** 
e 
C rounti-ne to get an integer number from the 
C uses within the range of M1 to M2. 
e 

INTEGER FUNCTION CHOICE(MlIM2) 
C 

IMTEGER*2 MI, M2 I CH 
5 mITE (5,lO) 
10 FQ,RMAT(lX,' choice: ' $ )  

mAI)(5,20) CH 
20 FORMAT (14) 

IF ((CH.LT.Ml).OR.(CH.GT.M2)) GOT0 5 
@WOICE=CH 
=TURN 
Ern 

C ---.--------------------------------------------- 

C routine to see if user wishes to change the setpoint 
C value ox the control parameters. 
C 

SUBIROUTINE QUERY(I1,JJ) 
e 

INTEGER*2 F'LAG,IIIJJ,IVALIANSICHOXCE 
IIM"ICEGER*2 SCAN, ROTI DIA, FVAL(2)I SETPTS(6) 
RE%U;*4 CONV(4), VALUE 
COMPJlON SETPTS, CONV, FVAL 

e 
FmG=O ! flag to show value 
CALL SETPAR(FLAG,II,JJ,IVAL) 
V&UE=FLOAT(FVAL(2)) 

e 
IF ((JJ.EQ.3).AND.(II.LT.5)) VALUE=CONV(II)*VALUE 
mITE(5,12) VALUE 

12 FO=T(lX,/lX,' VALUE=',F9.3/) 
mITE(5,*) ' change value? (l=YES, 2=NO)' 
AMS=CHOICE(1,2) 
FIL&G=-9 9 

C 
IF (ANS.NE.l) GOT0 100 

50 WRITE(5,55) 
55 T(' Enter new value: ' $ )  

(5,*) VALUE 
IF (VALUE.LT.-32768.) GOT0 50 
IF (VALUE-GT. 32767.) GOT0 50 

5 7 (lXIt Input value=',F9.3) 
mITE(S,*) ' correct? (l=YESI 2=NO)' 
ANS=CHOICE(1,2) 
IF (ANS.EQ.2) GOT0 50 
FLAG=-3 ! flag for substitution 
IVAL=IFIX(VALUE) 
IF (JJ.NE.3) GOT0 90 

IF (II.LT.5) IVAL=IFIX(VALUE/CONV(II)+0.5) 
SETPTS(II)=IVAL 

90 CONTINUE 
100 CONTINUE 

CALL SETPAR(FLAG,II,JJ,IVAL) 
C 
C 

RETURN 
END 



C 3/23/1993 ver 1.7 DRJ 
C SOLID-LIQUID INTERFACE FINDER 
C 
C HARDWARE REQUIRED: DT-IRIS VIDEO BOARD 
C NATIONAL INSTRUMENTS IEEE BOARD 
C 
C SUBROUTINE CALLED: IVIDEO - SET UP CAMERA AND VIDEO SYSTEM 
C SEARCH - ROUTINE TO FIND S/L INTERFACE 
C INKEY - EtEY BOARD SCAN FROM FORUTIL LIBRARY 
C GETDIA - FIND THE ZONE LENGTH AT A GIVEN PIXEL ROW 
C 
C COMPUE AND LINK PROCEDURE: 
C fl ZONE,FOR MFIBL.OBJ IVIDEO 1SFORLIB.LIB FORUTIL.LIB 
C 
C where MFIBL.OBJ = GPIB IEEE LIBRARY 
C 1SFORLIB.LIB = DATA TRANSLATION VIDEO BOARD LIBRARY 
C FORUTIL-LIB = UTILITY LIBRARY -- KEYBOARD ROUTINES ETC. 
C 1VIDEO.OBJ = INITIALIZE VIDEO BOARD SUBROUTINE 
C 
$INUUDE:'ISDEFS.FOR1 ! VIDEO DEFINITIONS (comes with video hardware) 
$INCLUDE:'ISERRS.F0R1 ! VIDEO ERRORS DEFINITIONS 
C 
C VARIABLES: TOP - TOP ROW OF SEARCH AREA 
C WIDTH - WIDTH OF SEARCH RReA 
C DSET - DIAMETER LENGTH USED TO DEFINE THE INTERFACE 
c ............................................................ 
C 

INTEGER*2 STATUS,DSET/30/,KEY,INKEY,GETDIA,SEARCH 
INTEGER*2 OFFSET/20/, TOP/31O/, WIDTH/35/, COL/SO/ 
INTEGER*2 IFACE, SLEN/QO/, SCOL/l/, ITMetI,IAVG/6/ 
REAL XFACE 
EXTERNAL INKEY 

write(*,*) ' ' 
WRITE(*,*) ' INTERFACE FINDER-2' 
WRITE(*,*) ' ' 
WRITE(*,*) ' This program locates the interface by sweeping' 
WRITE(*,*) ' out an area near the interface. Horizontal lines' 
WRITE(*,*) ' are scanned across this area. The interface is' 
WRITE(*,*) ' located when the bright length of the scan line' 
WRITE(*,*) ' matches the length of a line scanned in the solid.' 
WRITE(*,*) " 
WRITE(*,*) ' use arrow keys to place the 2 dots that1 
WRITE(*,*) ' mark the left edge of the scan area *IN FRONT*' 
WRITE(*,*) ' of the interface. ' 
write(*,*) ' ' 
write(*,*) ' small increments: arrow keys ' 
write(*,*) ' large increments: control left and right arrows' 
write(*,*) ' page-up and page-down keys' 
write(*,*) ' ' 
CALL NIDEO ! initialize video 
PAUSE 'HIT RETURN TO BEGIN' 
write (*,*) * ----ok-----' 

DO WHILE(*TRUE.) 
XFACE = 0.0 
DO I=l,IAVG 
CALL USER(DSET,TOP,WIDTH,COL,SLEN,SWL) L user input 
STATUS = ISACQ(0,l) L aquire image 
STATUS = ISDISP(1) ! display image 
ITMP=SEARCH(TOP,WIDTH,COL,DSET,SLEN,SCOL) ! find interface 
XFACE = XFACE + ITMP 

ENDDO 
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SUBROUTINE USER(DSET,TOP,WIDTHICOLISLEN,SCOL) 
INTEGER*2 DSET,TOP,WIDTH,KEY,COL,SLEN,SCOL 

---user input--- 
up arrow 
down arrow 
l e f t  arrow 
r i g h t  arrow 
c t r l  arrow 
c t r l  arrow 
page UP 
page down 

RETURN 
END 

...................................................... 
Send t h e  in te r face  posi t ion t o  t h e  DEC RT-11 

SUBROUTINE SEND(1NUMBER) 

INTEGER*2 IBSTA,IBERFtIIBCNTIINUMBER 
INTEGER*2 BOARD,NUMBER,COUNT/4/ 
CHARACTER*4 DATA 
EQUIVALENCE (NUMBER,DATA) 
EXTERNAL IBSTAIIBERRIIBCNT 

NOMBER=INUMBER 
BOARD=IBFIND("GPIBO ") 
CALL IBWRT(BOARD,DATA,COUNT) 

RETURN 
END 

C ** from f i l e  VIDEO-FOR *** 

SUBROUTINE IVIDEO 
C 
$INCLTJDE:'ISDEFS.FOR' 
$INCLUDE:'ISERRS.FOR' 
C 

INTEGER*2 STATUS 
C; 

STATUS = ISINIT() 
STATUS = ISINTS(0) 
STATUS = ISOUTS(0) 
STATUS = ISSYNC(1) 
STATUS = ISDISP(1) 
STATUS = ISINFR(0) 
STATUS = ISOTFR(0) 
STATUS = ISPASSO 

C 

1 open chaannel t o  device d r ive r  
! se l ec t  input look-up t a b l e  Q 
! select output look-up table O 
! select sync source l=external  sync 
! enable display c i r c u i t r y  (on) 
1 select frame buffer 0 f o r  input  
! sec lec t  frame buffer 0 f o r  owtput 
1 real-time acquis i t ion and display 

RETURN 
END 
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HEAT RATE = 10 C/min 

TEMPERATURE, Deg. C 



TEMPERATURE, Rag. CI: 
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