~

' I~

NASA Technical Memorandum 109136 SO 2

)5

Robust Stabilization of Marginally Stable
Positive-Real Systems

Suresh M. Joshi
Langley Research Center, Hampton, Virginia

Sandeep Gupta
Vigyan Research Associates, Hampton, Virginia

(NASA-TM-109136) ROBUST N94-37058
STABILIZATION OF MARGINALLY STABLE

POSTITIVE-REAL SYSTEMS (NASA.

Langley Research Center) 15 p Unclas

G3/63 00146012

July 1994

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-0001



oy



SUMMARY

This paper investigates the stability of the negative feedback interconnection
of two positive-real systems which have poles in the closed left-half of the complex
plane. A new definition of marginally strict pos&ti?e réal systems is introduced,
and sufficient conditions are obtained for the stability of the feedback
interconnection of such systems, using the Lyapunov method. The conditions obtained
have direct applications to dynamic dissipative controllers for flexible spacecraft,

and are the least restrictive ones published to date.

I. INTRODUCTION

A well known result in passivity theory [1] is the Passivity Theorem, which
states that a stable passive dynamic system can be stabilized by a stable strictly
passive controller. For linear, time-invariant (LTI) systems, passivity is
equivalent to positive realness. However, the relationship between strict passivity
and strict positive realness is somewhat more complicated because there are several
definitions of strict positive realness. Strict passivity is equivalent to the
strongest definition of strict positive realness (SPR) [2] for LTI systems. (We
shall refer to this definition simply as "strict passivity", even for the LTI case).
The Passivity Theorem, which is for general (possibly nonlinear) systems, can be
directly applied to LTI systems; i.e., the feedback interconnection of a stable PR
system and a strictly passive system is stable. However, the requirement of strict
passivity is too stringent, as it includes only.systems with a relative degree of
zero. Another definition of strict positive realness was introduced in [2] for
scalar systems, and was further investigated in [3, 4, 5] for multivariable systems.
This definition (referred to as "strong SPR") is weaker than strict passivity.

In [6], an even less stringent definition of SPR, termed "weak SPR", was
investigated, and it was stated that the feedback interconnection of a stable PR
system and a weak SPR system is stable. That is, the strict passivity requirement

was replaced by the "weak SPR" requirement. This was a significant improvement,



since weak SPR systems can include strictly proper systems, while strict passivity
requires the relative degree to be zero. However, in all the studies in the
published literature, both weak and strong definitions of SPR require the -systems to
be stable (i.e., all poles are required to be in the open left-half of the complex
plane). In this paper, we shall remove this restriction.

Let G(s) denote an mxm matrix whose elements are proper rational functions of
the complex variable "s". Let the conjugate-transpose of a complex matrix T be

denoted by T*.

Definition 1: An mxm rational matrix G(s) is said to be positive real (PR) if

(i)  all elements of G(s) are analytic in Re[s] > O;

() G(s) + G*(s) 2 0 in Re[s] > O, or equivalently,
(iia) poles on the imaginary axis are simple and have Hermitian,
nonnegative- definite residues, and
(iib) G(j®) + G (j©) = 0 for @ € (-oo,00)
Given below are some definitions of strictly positive real systems. Definition
2, which represents the specialization to LTI systems of the general definition of
strict passivity, is the strongest definition of strict positive realness.

Definition 2: An mxm rational matrix G(s) is said to be strictly passive if

(i)  all elements of G(s) are analytic in Re[s] 2 0;
(ii)) there exists an € > 0 such that

G(w) + G*(jm) > el for @ € (-00,00)

Definition 3: An mxm rational matrix G(s) is said to be strictly positive real in the

strong sense (strong SPR, or SSPR) if G(s-€) is PR for some € > 0; that is, if

(1) all elements of G(s) are analytic in Re[s] 2 0;
() GGo) + G (o) > 0 for @ € (-o000)

(i) 2= G(eo)+G () 2 0

(v)  Jim 0’GGe) + G ()] > 0 if Zis singular



Definition 4: An mxm rational matrix G(s) is said to be strictly positive real in the

weak sense (weak SPR, or WSPR) if

(i)  all elements of G(s) are analytic in Re[s] 2 O,

(i) G(jw) + G (jw) > 0 for @ € (-00,00)

Note that Definition 2 requires that £= G(oo)+GT(oo) to be positive definite;
i.e., the system must have a relative degree of zero. This requirement makes the
definition of strictly passive systems too restrictive. Definition 3 (SSPR) can
include certain strictly proper systems which satisfy additional conditions (iii) and
(iv). Definition 4 (WSPR) does not require these additional conditions, and is
therefore less restrictive than Definition 3. However, all the definitions (2-4) of
SPR require the system to be stable.

In this paper, we go one step further, and allow the system to have poles on the
imaginary axis. The significance of this is that many physical systems can now be

included in this (much larger) class of systems.

Definition 5: An mxm rational matrix G(s) is said to be marginally strictly positive

real (MSPR) if it is positive real, and
G(w) + G*(im) > 0 for @ € (-00,%0)

Definition 5 of MSPR differs from Definition 1 (PR) because the frequency domain
inequality (2) has been replaced by the strict inequality (>). The difference
between Definitions 4 and 5 is that Definition 5 allows G(s) to have poles on the
imaginary axis. This is an important difference because many real-life systems
contain pure integrators and oscillators, which are permitted under Definition 5, but

not under Definitions 2, 3, and 4. For example, let G(s) = Y, 8s 2+H(s) , where ¥y
5 S+
0

and O are real non-negative scalars and H(s) is weak SPR. Then G(s) is marginally

SPR.



Suppose [A,B,C,D] is a minimal realization of a rational matrix M(s). M(s) (or
[A,B,C,D]) is said to be minimum-phase if its transmission zeros are confined to the
open left-half plane (OLHP); i.e., rank [Sé'A g] can drop below its normal value only

for values of s in the OLHP.

II. PROPERTIES OF MSPR SYSTEMS

Suppose G(s) is positive real and has all poles (i.e., the eigenvalues of the
system matrix of its minimal realization) in the closed left-half plane (CLHP).

Following [7], G(s) can be written as:

G(®) = G,(5) + G, ()

where Gl(s) has purely imaginary poles, and G 2(s) has poles only in the open
left-half plane (OLHP). Furthermore, Gl(s) is of the form:

P

VOL o.s +f
Gl(s) =_94 Z; - (2)

s s’ o
1

i=1

where o, and Bi are mxm real matrices, and (x)i>0, i=1,2,....p (a)i;t a)j for i#j).

Some remarks regarding the nature of the poles on the imaginary axis are in
order. The poles and zeros considered here are in the Smith-McMillan sense [8];
i.e., there can be more than one pole at a given location, without it being
considered a "repeated” pole. In particular, using standard results in matrix
fraction descriptions [8], it can be shown that the McMillan degree (i.e., the
minimal order of a state space representation) of the term: [aO/s] is equal to p(oco),
where p(.) denotes the rank. That is, there are v=p(a0) simple poles at s=0.

Suppose the McMillan degree of the term: [ocis + Bi]/(s2+u)?) is 2ki, where kiSm.
Then this term has ki simple poles (each) at s=j(x)i and s=-j0)i.

The following results state that G(s) is PR (respectively, MSPR) iff its stable
part is PR (resp. WSPR).



Lemma 1. G(s) is PR (resp. MSPR) iff all of the following hold;
(1) G,(s) is PR (resp. WSPR);
(ii) a=0;20i=0,12, .p

(iil) B.= BT i=1,2,..p.

Proof. From the requirement that the residues at the imaginary-axis poles be
nonnegative-definite, we get (ii) and (iii) (See [9]). Therefore, we have:

G, (jo) + G*(jo) = 0 , and G(jo) + G (jw) = G,(j) + G, (j®), which is positive
semi-definite (resp. positive definite) for all real w iff Gz(s) is PR (resp. WSPR). =

If G(s) is MSPR, the degree of [G(s)+G*(s)] is generally less than the degree
of G(s); also, Gz(s) is stable, and both G(s) and Gz(s) are minimum-phase.

We shall next consider a minimal realization of MSPR transfer functions.

IITI. MINIMAL REALIZATION OF MSPR SYSTEMS

Consider the realization of Gl(s). For the term [Q,O/S], since O 0 is symmetric
and non-negative definite (Lemma 1), there exists an mxXm real orthogonal

transformation matrix T which diagonalizes it, i.e.,
T _ .
T ocoT = dlag[?»l,kz,...,kv,O,...,O] 3)

where ?\.i are positive scalars. Let A denote diag[kl,kz,...,kv]. A minimal

realization (of order v) of TT[OL 0/s]T is: [./%, Q; , 6; ,0], where
A=[0.1; &=, 0; &= [A] @)
0o -vi’ Yo [Iv ’ o |0

where Ov and IV denote vxv null and identity matrices. Therefore, a minimal

(v‘h-order) realization of [ao/s] is given by [./%, Q;) , 60’,0], where



g%: 7] TT; €0=T G (5)

Considering the term: [ais + Bi]/(sz+a)?), if its McMillan degree is 2ki (kiSm),

a minimal realization is given by [7]: [JQ,QZ%,Q@;'T,O] where /(15 € !RZkixzki,

/{/ = diag(Al,ﬂ\z,....,Ak') (6)
where
58

and Qo;e R* ™ Then a minimal realization of Gl(s) is given by: [AI,BI,CI,O], where
- i ) — reaT 4T TT, _ T T
Al- dlag(/%, Jtl, JCZJ%) B = [Q@b, Q},...,QB; 13 Cl = [@Q@i’,...,% 1; Ale
RM™M, Be RM™, Ce R™" (n= v+2f k)
) 1=1

Let [A B ,C D] be a minimal realization G_(s), where A € R™2"2, Be R"2",
C,e ™™, and D € R™™ (n,=n - n ). Let A =diag(A, A)); B = [B[,B]]; C =
[C,,C,]. Then A e R™, Be R™, Ce R™, and D € R™™. Since G (s) and G (s)

have no poles in common, [A,B,C,D] is a minimal realization of G(s).

IV. CHARACTERIZATION OF MSPR SYSTEMS

We next present the state-space characterization of MSPR systems, which is an

extension of the Kalman-Yacubovich lemma for WSPR systems, that was proved in [6].

Lemma 2. If G(s) is MSPR, there exist real matrices: P = P* > 0, P € R™, fe R,

W e R™™ (where k > m), such that

A™P + PA=-LTL (8)
C=B"P+W'L (9)
W'W =D + D’ (10)



L=00,.%,] (11)

1 2
where [AZ,BZ,X W] is minimal and minimum-phase.
Proof. G(s) has the form given by Egs. (1) and (2). Since G(s) is MSPR, conditions
(1)-(iii) of Lemma 1 hold. Considering Gl(s) in Eq. (2), it consists of (p+1)
transfer functions in parallel. A minimal realization (Eqs. 4 and 5) of the first
term, [aols], is: [/% ,QZ% ,6:)’,0]. Letting 1'[0= A, it can be verified that the equations

are satisfied:

J%Tno+ n,.£=0 (12)
8= ¢ (13

A minimal realization (Eqgs. 6, 7) of the ith component of the second term,

[ais+Bi]/(sz+(o§), is given by [/Zi,QE;,QBi’ T0]. Letting Il = Ly it can be seen that

1

this realization satisfies:
‘/?Tni+ ni 4: 0 (14)
I @B= gg: (15)

Finally, following [6,7], since Gz(s) is WSPR, there exist P= PI> 0, P2€ R"2™ W

€ R™™ Fe R (where k > m) such that

_ T
AP+PA=-2% (16)
_ T T
C,=BP+W' Y (17)
W'W =D +D" (18)

where [Az,Bz,f W] is minimal and minimum-phase.
Defining
P1= diag(l'Io,Hl,...,I'Ip) (19)



and
P= diag(Pl ,Pz) (20)

we have the required result. =

V. STABILITY OF FEEDBACK INTERCONNECTION

Consider the system in Figure 1, where G(s) and H(s) are mxm proper rational
matrices. This system is said to be stable if its state-space realization consisting
of individual minimal realizations of G(s) and H(s), is asymptotically stable. We

have the following stability result.

Theorem 1. The negative feedback interconnection of G(s) and H(s) is stable if all of
the following conditions are satisfied:

(i) G(s) is MSPR;

(i) H(s) is PR;

(iii)) None of the jm-axis polés of G(s) is a transmission zero of H(s).
Proof. Let [A,B,C,D] denote the minimal realization of G(s) described in Section III,
and let x be the corresponding state vector of order n, Let n 2denote the number of
poles of the stable part G 2(s) of G(s), and let [Az’Bz’Cz’D] denote its minimal
realization. Let [A,ﬁ,é,ﬁ] denote a minimal realization of H(s), and let Q denote
the corresponding ﬁ’h order state vector. Since G(s) is MSPR, from Lemma 2, there
exist matrices P = P* > 0, P € R™, £e R™"2, W € R™™, such that Egs. (8)-(11) are
satisfied, and [A 2,B2,_2;” W] is minimal and minimum-phase.

A A A A A

A A A A
Since H(s) is PR, there exist matrices P = P* > 0, P € R"™, L € R™®, W e R¥™

such that [7]
I\TA AA I\-r A
AP+PA=-L"L 3}
A I\T/\ I\-rl\
C=BP+W'L (22)
/\T/\ _ A /\T
WW=D+D (23)



Consider the candidate Lyapunov function:
A T ATAA
V(x,x) = x Px + x Px 24)

Proceeding as in the proof of Theorem 1 in [6] we have:

V=2y -2z + 20"y -2"2 (25)
where
z=Lx + Wu = fx2+ Wu (26)
A AA A A
z=Lx + Wu (27)
) A A
Since u =y and y = -u,
V=-2"2-22<- 2% (28)

i.e., V is negative semi-definite. V=0 implies z=0. However, z(t) is the output of
the system: F(s) = W+L(sI-A)'1B = W+ f(sI-Az)'le, which is minimum-phase. Every
input u(t) that results in z(t) = 0 must have the form: u(t) =213 ﬁjtkj ecjt, where
Cj‘s are zeros of F(s), and Re[Cj] < 0. Therefore, u(t) > O exponentially; i.e.,
;(t)—>0 exponentially. As a result, y(t) will consist of i) exponentially decaying
terms corresponding to the zeros of F(s) as well as stable poles of G(s), and ii)
persistent terms such as ueimit, corresponding to unstable poles at szjmi (including
at s=0) of G(s). Since j(x)i are not the transmission zeros of H(s), this would imply
that ?(t) [=- u(t)] will contain persistent terms such as ei(oit. However, this
contradicts the fact proved previously that u(t) decays exponentially. Therefore,
y(t) can consist only of exponentially decaying terms, i.e., y(t)»0 exponentially,
Because of the minimality of [A,B,C,D] and [A,B,C,D], this implies x(t)50, X(1)+0
exponentially. Using LaSalle’s invariance theorem [10], the system as asymptotically
stable. =

It should be noted that, in Theorem 1, G(s) and H(s) are completely
interchangeable.

The following corollaries are an immediate consequence of Theorem 1.
Corollary 1.1 The negative feedback interconnection of G(s) and H(s) is stable if

G(s) is WSPR and H(s) is PR.



Corollary 1.1 is the same stability result which was given in [6].
Corollary 1.2 The negative feedback interconnection of G(s) and H(s) is stable if
both G(s) and H(s) are MSPR.
Example; Consider the rotational motion of a flexible spacecraft with m torque
actuators and m collocated attitude sensors (m=>3). Assume that there is at least one
torque actuator for each (orthogonal) axis of rotation. The transfer function from

the torque input to the attitude (position) output, Yy is given by:

G(s) = G'(s)/s (29
where
P
o, o.s
Co==+)—t— (30)
s S +2p @ S+

i=1

where G’(s) is the transfer function from the torque input to the attitude rate
yr(=3'/P); a. = a? 20@G0=0,1,2,..p), and o is a rank-3 matrix; (oi(>0) represent
the natural frequencies, and piZO represents the inherent damping ratio, for the i‘h
elastic mode (i=1,2,..,p). It can be easily verified that G'(s) is PR, and
therefore, from Theorem 1, it can be stabilized by any MSPR controller. Let &(s)
denote an mxm stable transfer function which has no transmission zeros on the
imaginary axis, and suppose H(s) = [ £(s)/s] is MSPR. Then H(s) stabilizes G'(s).
Examining the block diagram in Figure 2, &(s) stabilizes G(s). In other words, a
flexible spacecraft, which has zero-frequency rigid-body modes as well as damped or
undamped elastic modes, is stabilized by the controller &(s) which has the above

properties. The stability does not depend on the number of elastic modes, or the

parameter values, and is therefore robust.

VI. CONCLUDING REMARKS

The concept of marginally strictly positive real (MSPR) systems was introduced,

which allows poles on the imaginary axis, and is therefore less restrictive than the

10



previous definitions of strict positive realness. A state-space characterization of
MSPR systems was obtained, and it was proved that the negative feedback
interconnection of an MSPR system and a positive real (PR) system, fs asymptotically
stable. The result significantly extends the previous passivity-based stability

results for linear time-invariant systems.
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Figure 1. Negative Feedback Loop.
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Figure 2. Flexible Structure Example.
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