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SUMMARY

This paper investigates the stability of the negative feedback interconnection

of two positive-real systems which have poles in the closed left-half of the complex

plane. A new definition of marginally strict positive real systems is introduced,

and sufficient conditions are obtained for the stability of the feedback

interconnection of such systems, using the Lyapunov method. The conditions obtained

have direct applications to dynamic dissipative controllers for flexible spacecraft,

and are the least restrictive ones published to date.

I. INTRODUCTION

A well known result in passivity theory [1] is the Passivity Theorem, which

states that a stable passive dynamic system can be stabilized by a stable strictly

passive controller. For linear, time-invariant (LTI) systems, passivity is

equivalent to positive realness. However, the relationship between strict passivity

and strict positive realness is somewhat more complicated because there are several

definitions of strict positive realness. Strict passivity is equivalent to the

strongest definition of strict positive realness (SPR) [2] for LTI systems. (We

shall refer to this def'mition simply as "strict passivity", even for the LTI case).

The Passivity Theorem, which is for general (possibly nonlinear) systems, can be

directly applied to LTI systems; i.e., the feedback interconnection of a stable PR

system and a strictly passive system is stable. However, the requirement of strict

passivity is too stringent, as it includes only 'systems with a relative degree of

zero. Another definition of strict positive realness was introduced in [2] for

scalar systems, and was further investigated in [3, 4, 5] for multivariable systems.

This definition (referred to as "strong SPR") is weaker than strict passivity.

In [6], an even less stringent def'mition of SPR, termed "weak SPR", was

investigated, and it was stated that the feedback interconnection of a stable PR

system and a weak SPR system is stable. That is, the strict passivity requirement

was replaced by the "weak SPR" requirement. This was a significant improvement,



since weak SPR systemscan include strictly proper systems,while strict passivity

requiresthe relative degreeto be zero. However,in all the studiesin the

published literature,both weak and strongdefinitions of SPRrequire the systemsto

be stable (i.e., all poles are required to be in the open left-half of the complex

plane). In this paper, we shall remove this restriction.

Let G(s) denote an mxm matrix whose elements are proper rational functions of

the complex variable "s". Let the conjugate-transpose of a complex matrix T be

.
denoted by T .

Definition 1: An mxm rational matrix G(s) is said to be positive real (PR) if

(i) all elements of G(s) are analytic in Re[s] > 0;

(ii) G(s) + G (s) > 0 in Re[s] > 0 , or equivalently,

(iia) poles on the imaginary axis are simple and have Hermitian,

nonnegative- definite residues, and

(iib) G(jto) + G (jto) > 0 for co _ (-,,*,00)

Given below are some definitions of strictly positive real systems. Def'mition

2, which represents the specialization to LTI systems of the general definition of

strict passivity, is the strongest definition of strict positive realness.

Definition 2: An mxm rational matrix G(s) is said to be strictly passive if

(i) all elements of G(s) are analytic in Re[s] _> 0;

(ii) there exists an E > 0 such that

G(jto) + G 0to) _> eI for to e (--0,_)

Definition 3: An mxm rational matrix G(s) is said to be strictly positive real in the

strong sense (strong SPR, or SSPR) if G(s-e) is PR for some e > 0; that is, if

(i)

(ii)

(iii)

(iv)

all elements of G(s) are analytic in Re[s] _> 0;

G(jto) + G 0to) > 0 for to e (-,,,,o0)

Z= G(oo)+GT(**) > 0

d_ to2[G(Jto) + G*(jto)] > 0 if Z;is singular
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Definition 4: An mxm rational matrix G(s) is said to be strictly positive real in the

weak sense (weak SPR, or WSPR) if

(i) all elements of G(s) are analytic in Re[s] > 0;

(ii) G(jco) + G Oto) > 0 for co _ (-0_,,,_)

Note that Definition 2 requires that Z= G(o_)+G'r(*o) to be positive definite;

i.e., the system must have a relative degree of zero. This requirement makes the

definition of strictly passive systems too restrictive. Definition 3 (SSPR) can

include certain strictly proper systems which satisfy additional conditions (iii) and

(iv). Definition 4 (WSPR) does not require these additional conditions, and is

therefore less restrictive than Definition 3. However, all the definitions (2-4) of

SPR require the system to be stable.

In this paper, we go one step further, and allow the system to have poles on the

imaginary axis. The significance of this is that many physical systems can now be

included in this (much larger) class of systems.

Definition 5: An mxrn rational matrix G(s) is said to be marginally strictly positive

real (MSPR) if it is positive real, and

G(j{o) + G (jo) > 0 for co e (-_,_)

Definition 5 of MSPR differs from Definition 1 (PR) because the frequency domain

inequality (_>) has been replaced by the strict inequality (>). The difference

between Definitions 4 and 5 is that Definition 5 allows G(s) to have poles on the

imaginary axis. This is an important difference because many real-life systems

contain pure integrators and oscillators, which are permitted under Definition 5, but

not under Definitions 2, 3, and 4. For example, let G(s) = -_- 8s +H(s) , where y

I

S sZ+0J z
0

and _5 are real non-negative scalars and H(s) is weak SPR. Then G(s) is marginally

SPR.



Suppose[A,B,C,D] is a minimal realizationof a rational matrix M(s). M(s) (or

[A,B,C,D]) is said to be minimum-phaseif its transmissionzerosareconfined to the

left-half plane (OLHP); i.e., rank [s/-A B] can drop below its normal valueopen only

for values of s in the OLHP.

II. PROPERTIES OF MSPR SYSTEMS

Suppose G(s) is positive real and has all poles (i.e., the eigenvalues of the

system matrix of its minimal realization) in the closed left-half plane (CLHP).

Following [7], G(s) can be written as:

G(s) = GI(S ) + G2(s ) (1)

where G(s) has purely imaginary poles, and G2(s) has poles only in the open

left-half plane (OLHP). Furthermore, Gl(s ) is of the form:

P

(X0 T(Xi s +_i
Gl(s) = -- + (2)

S /_$2+ (/)2
i=l i

where c_ and 13 are mxm real matrices, and ca>0, i=1,2, .... p (04 ca for i_j).
i' i i 1 j

Some remarks regarding the nature of the poles on the imaginary axis are in

order. The poles and zeros considered here are in the Smith-McMillan sense [8];

i.e., there can be more than one pole at a given location, without it being

considered a "repeated" pole. In particular, using standard results in matrix

fraction descriptions [8], it can be shown that the McMillan degree (i.e., the

minimal order of a state space representation) of the term: [o_0/s] is equal to p(o_0),

where p(.) denotes the rank. That is, there are v=P(_0) simple poles at s=0.

2 2

Suppose the McMillan degree of the term: [otis + 13i]/(s +cai ) is 2k, where k_<m.
1 1

Then this term has k i simple poles (each) at s=jca i and s=-jcaf

The following results state that G(s) is PR (respectively 7 MSPR) iff its stable

part is PR (resp. WSPR).
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Lemma 1. G(s) is PR (resp.MSPR) iff all of the following hold;

(i)

(ii)

(iii)

G2(s)is PR (resp.WSPR);

a.= a r>0,i=0, 1, 2 .... p;
1 1

l_i = -1_, i=l ,2, ...p.

Proof. From the requirement that the residues at the imaginary-axis poles be

nonnegative-definite, we get (ii) and (iii) (See [9]). Therefore, we have:

Gl(jt.0 ) + G*(jt.o) = 0 , and G0t.o) + G*(jo_) = G2(Jt.0 ) + G_(j_), which is positive

semi-definite (resp. positive definite) for all real co iff G2(s ) is PR (resp. WSPR). •

If G(s) is MSPR, the degree of [G(s)+G (s)] is generally less than the degree

of G(s); also, G2(s ) is stable, and both G(s) and G2(s) are minimum-phase.

We shall next consider a minimal realization of MSPR transfer functions.

111.MINIMAL REALIZATION OF MSPR SYSTEMS

Consider the realization of Gl(S). For the term [txjs], since tx0 is symmetric

and non-negative definite (Lemma 1), there exists an mxm real orthogonal

transformation matrix T which diagonalizes it, i.e.,

TT_0T = diag[_'l'_'2 ..... _'v '0 ..... 0] (3)

where _'i are positive scalars. Let A denote diag[_q,_, 2..... Lv].

realization (of order v) of Tr[tXo/S]T is: [_o,_0, _,0], where

A minimal

where 0 v and Iv denote vxv null and identity matrices. Therefore, a minimal

(vth-order) realization of [0_0/s] is given by [_o,_o, _,0], where

(4)



Consideringthe term: [o_is+ _i]/(S2-t-fZ)_), if its McMillan degree is 2k i (ki<m),

a minimal realization is given by [7]: [_.,_.,_T,0] where M; e _2kiX2ki,
1 1 ! , !

where

M; = diag(A_,a 2...... Ak ) (6)
i

=Eo -CO

Aj 0 j (7)

and _ie _2kiX_. Then a minimal realization of Gl(s ) is given by: [A1,BI,C1,0], where

A I= diag(_o, _'_1' _2 ...... _p); Bl = [_0 T Drl''''' _T]T.pz , C1 = [_0, _IT ..... _pT]; A

Nnlxnl' B1E IRnlxm' fIE [Rmxnl (nl _,_=1= v+2 ki)

n xn E [Rn2xm,Let [Aa,Bz,C2,D ] be a minimal realization G2(s ), where A2_ _ 2 2, B 2

C2E _mxn2, and D _ IRmxm Ila r BT1T(n2=n-nl). LetA=diag(A, A2); B = L_ l, zJ ; C=

nm mxn _mxm. (S) and G2(s )[CI,C2]. Then A e _nx_, B e _ , Ca _ , and D a Since G l

have no poles in common, [A,B,C,D] is a minimal realization of G(s).

IV. CHARACTERIZATION OF MSPR SYSTEMS

We next present the state-space characterization of MSPR systems, which is an

extension of the Kalman-Yacubovich lemma for WSPR systems, that was proved in [6].

Lemma 2. If G(s) is MSPR, there exist real matrices: P = pT > 0, P e _.x_, _¢_oe _kxn2,

W e _L,.,, (where k _> m), such that

ATp + PA =-L TL

C = BrP +wTL

wTw = D + D r

(8)

(9)

(lO)

6



L = [0 ,._n ] (11)
1 2

where [A2,Bz,_g'W ] is minimal and minimum-phase.

Proof. G(s) has the form given by Eqs. (1) and (2). Since G(s) is MSPR, conditions

(i)-(iii) of Lemma 1 hold. Considering Gl(s ) in Eq. (2), it consists of (p+l)

transfer functions in parallel. A minimal realization (Eqs. 4 and 5) of the first

term, [ao/S], is: [_o,_o, @0]. Letting Ho= A, it can be verified that the equations

are satisfied:

J_oTI-[o + IIo J_o "- 0 (12)

1-Io_o = 60'w (13)

A minimal realization (Eqs. 6, 7) of the ith component of the second term,

[a is+13i]/(s2+@, is given by [ _., _., _. T,0].
1 1 I Letting H i = I k , it can be seen that

i

this realization satisfies:

_fTl-l.+ rI. J(,= 0 (14)
I I 1 l

FI. _.= _ (15)
I 1 !

Finally, following [6,7], since G2(s ) is WSPR, there exist P2= pT> 0, P2a _"2""2 , W

IRhm, ._-_ _kx"2 (where k > m) such that

A2p2 + p2A2 = _.g,T _ (16)

C2= BTP2+wT._ (17)

wTw = D + D T (18)

where [A2,B2,.ffW] is minimal and minimum-phase.

DeFining

P1= diag(Ho,H l ..... lip)
(19)
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and

we have the required result.

P = diag(Pl,P2) (20)

V. STABILITY OF FEEDBACK INTERCONNECTION

Consider the system in Figure 1, where G(s) and H(s) are mxm proper rational

matrices. This system is said to be stable if its state-space realization consisting

of individual minimal realizations of G(s) and H(s), is asymptotically stable. We

have the following stability result.

Theorem 1. The negative feedback interconnection of G(s) and H(s) is stable if all of

the following conditions are satisfied:

(i) G(s) is MSPR;

(ii) H(s) is PR;

(iii) None of the jm-axis poles of G(s) is a transmission zero of H(s).

Proof. Let [A,B,C,D] denote the minimal realization of G(s) described in Section III,

and let x be the corresponding state vector of order n. Let n2denote the number of

poles of the stable part G2(s ) of G(s), and let [A2,B2,C2,D ] denote its minimal
A A A A A

realization. Let [A,B,C,D] denote a minimal realization of H(s), and let x denote

the corresponding n_order state vector. Since G(s) is MSPR, from Lemma 2, there

nxn mxn mxmexist matrices P pT > 0, P c _ , __'_ W _ _ ,= _ 2, such that Eqs. (8)-(11) are

satisfied, and [A2,B2,._;eW] is minimal and minimum-phase.
A A A A A

A A nxn A ASince H(s) is PR, there exist matricesP= _r > 0, P _ IR , L_ _kxn, W _ IR1_,

such that [7]

A A AA A
ATp + PA = -L T L

A A A A A

C = BTp +wTL

A A A

WTW = D + I_ T

(21)

(22)

(23)



Considerthe candidateLyapunovfunction:
A ATAA

V(x,x) = xTpx + x Px

Proceeding as in the proof of Theorem 1 in [6] we have:

ATA ATA
V= 2uTy- zTz+ 2U y-z Z

where

A A

Since u = y and y = -u,

(24)

(25)

z = Lx + Wu = _,Yx2+ Wu (26)
A AA AA

z = Lx + Wu (27)

^TA T
V = - zrz - z z _<- Z Z (28)

i.e., V is negative semi-definite. _r=0 implies z=0. However, z(t) is the output of

the system: F(s) = W+L(sI-A)-IB = W+._.(sI-A2)-IB 2, which is minimum-phase. Every

input u(t) that results in z(t) = 0 must have the form: u(t) =_ fi.tkj e_j t, where
J J

_j's are zeros of F(s), and Re[_j] < 0. Therefore, u(t) --) 0 exponentially; i.e.,
A
y(t)--)0 exponentially. As a result, y(t) will consist of i) exponentially decaying

terms corresponding to the zeros of F(s) as well as stable poles of G(s), and ii)

persistent terms such as l.teJt°i t, corresponding to unstable poles at s-._-j0._ i (including

at s=0) of G(s). Since j0_. are not the transmission zeros of H(s), this would imply
1

A eJOJit"that y(t) [=- u(t)] will contain persistent terms such as However, this

contradicts the fact proved previously that u(t) decays exponentially. Therefore,

y(t) can consist only of exponentially decaying terms, i.e., y(t)--)0 exponentially.

A A A A A

Because of the minimality of [A,B,C,D] and [A,B,C,D], this implies x(t)-)0, x(t)--)0

exponentially. Using LaSalle's invariance theorem [10], the system as asymptotically

stable. •

It should be noted that, in Theorem 1, G(s) and H(s) are completely

interchangeable.

The following corollaries are an immediate consequence of Theorem 1.

Corollary 1.1 The negative feedback interconnection of G(s) and H(s) is stable if

G(s) is WSPR and H(s) is PR.
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Corollary 1.1 is the samestability result which was given in [6].

Corollary 1.2 The negative feedback interconnection of G(s) and H(s) is stable if

both G(s) and H(s) are MSPR.

Example: Consider the rotational motion of a flexible spacecraft with m torque

actuators and m collocated attitude sensors (m__>3). Assume that there is at least one

torque actuator for each (orthogonal) axis of rotation. The transfer function from

the torque input to the attitude (position) output, yp, is given by:

G(s) = G'(s)/s (29)

where

P

(X0 _ (X i S
G'(s) = -- + - -- (30)

s i__/-Ts2+20 to s+to 2,

where G'(s) is the transfer function from the torque input to the attitude rate

Yr(=_'p ); °ci= o_Ti> 0 (i =0, 1, 2 .... p), and a ° is a rank-3 matrix; to(>0)i represent

the natural frequencies, and 9i_>0 represents the inherent damping ratio, for the ith

elastic mode (i=1,2 .... p). It can be easily verified that G'(s) is PR, and

therefore, from Theorem 1, it can be stabilized by any MSPR controller. Let 6(s)

denote an mxm stable transfer function which has no transmission zeros on the

imaginary axis, and suppose H(s) = [6°(s)/s] is MSPR. Then H(s) stabilizes G'(s).

Examining the block diagram in Figure 2, 6°(s) stabilizes G(s). In other words, a

flexible spacecraft, which has zero-frequency rigid-body modes as well as damped or

undamped elastic modes, is stabilized by the controller 6°(s) which has the above

properties. The stability does not depend on the number of elastic modes, or the

parameter values, and is therefore robust.

VI. CONCLUDING REMARKS

The concept of marginallystrictly positive real (MSPR) systems Was introduced,

which allows poles on the imaginary axis, and is therefore less restrictive than the

10



previous definitions of strict positive realness. A state-space characterization of

MSPR systems was obtained, and it was proved that the negative feedback

interconnection of an MSPR system and a positive real (PR) system, is asymptotically

stable. The result significantly extends the previous passivity-based stability

results for linear time-invariant systems.
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