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Abstract

Some issues concerning the updating of dynamic finitc-element models by incorporation
of experimental data are examined here. It is demonstrated how the number of unknowns
can be greatly reduced if the physical nature of the model is maintained. The issue of
uniqueness is also examined and it is shown that a number of previous workers have been
mistaken in their attempts to define both sufficicnt and necessary measurement require-
ments for the updating problem to be solved uniquely. The relative merits of modal and
frequency-response-function data are discussed and it is shown that for measurements at
fewer degrees-of-freedom than are present in the model, frf data will be unlikely to con-
verge easily to a solution. It is then examined how such problems may become more
tractable by using new experimental techniques which would allow measurements at all

degrees-of-freedom present in the mathematical model.

Introduction

The issues investigated in this report concern the modification, or development, of finite-
element-models such that the dynamic behaviour of that model correlates well with ex-
perimental data. The significance attached to the updating of finite-clement-models by
the use of experimental data is an implicit recognition that dynamic FEM’s are often a
poor representation of the actual structure. Such updating of FEM'’s cnables the cffects
of structural modifications to be assessed with much greater confidence by computer mod-
elling rather than full-scale testing, thereby reducing costs. Another potential advantage
to model updating is that it can help to highlight where crrors in the initial modelling

process are being made and, therefore, increase the efficiency of future FEM development.

Static stress analysis, the other main engineering application of finite-element-modelling, is
typically subjected to far less scrutiny than dynamic modelling for two reasons: firstly, it is
considerably more difficult to rigorously compare FEM stress analysis data with experiment

than is the case for dynamic data; and secondly, many more approximations are typically



made in dynamics models. Approximations involved in dynamics modelling arise from
trying to keep the model simple, i.e. to as few degrees-of-freedom as possible. Another main
approximation in dynamic FEM’s concerns damping; the most common approximation
being that it is zero. Zero damping is obviously never the case, but the mechanisms
of damping in built-up structures are so poorly understood and variable that it is often

practically impossible to model. Throughout this report, it will be assumed that damping

is negligible.

In this report, issues such as uniqueness of an updated model, and the relative merits
of modal data and frequency response function data will be explored with reference to
the current literature. Some concepts will be investigated with simulations using simple

mass-spring systems.

Uniqueness

Given a set of experimental data and an analytical model, is there more than one set
of analytical model parameters which will match the experimental data? This question

describes the issue of uniqueness.

Su and Juang (1992) carried out a study on the uniqueness of updated stiffness parameters
for the general case of updating the complete stiffness matrix. It was shown that either
the number of actuators, or the number of sensors, must be greater than or equal to
the number of degrees-of-freedom to enable the identification of the stiffness matrix in
physical coordinates. For the case where matrix symmetry was enforced, it was shown
that the sum of the number of sensors and actuators must be greater than or equal to the
number of degrees-of-freedom. In Su and Juang (1992), it was assumed that the number
of measured modes was equal to the number of analytical degrees of freedom. The issue
under investigation here is: what are the measurement requirements for uniqueness when
the physical nature of the stiffness matrix is enforced? Maintaining the ‘physical nature’
of the stiffness matrix means that actual element stiffness properties are updated. These

updated propertics are then used to reform the stiffness matrix. For example: consider



the three degree of freedom model shown in Figure(1).

Figure(1) simple three degrec-of-freedom mass-spring system

Techniques which operate on the stiffness matrix ([K}y, ) where N is the number of
degrees of freedom of the model (in this case, N = 3), as a whole, would require the
determination of N? (here, N2 = 9) independent parameters. If matrix symmetry is
enforced, the number of terms required reduces to Efili (here, Zfili = 6. These are
the two cases studied in Su and Juang (1992). Not surprisingly, it was found that where
the symmetry of [[{] was enforced, the corresponding uniqueness criterion was relaxed, ie.

fewer measurcments are required to determine fewer unknown parameters.

An option to reduce the number of parameters required to be determined even further is to

enforce physical connectivity and symmetry. This means that the stiffness matrix would

appear as

a b 0
b ¢ d
0 d e

where the 0’s mean that there is no direct connection between the first and the third degree
of freedom. This leaves 2N — 1 (here, 2N — 1 = 5) paramcters to be determined. Now

the number of parameters to be determined varies linearly, rather than quadraticaly, with

3



the number of degrees of freedom of the model. Note: there can be physical connectivity
between the first and third degrees of freedom as shown in Figure(2) meaning that the
K(1,3) and I{(3,1) term in the above matrix will no longer be 0; for a real srtucture, it
is unlikely that every modelled point will be directly connected to every other point, so it

can still be expected that the number of unknowns will grow linearly with the number of

degrees of freedom.

Further constraints can be-placed on the model by updating onty the physical parameters.

In this case, our stiffness matrix will look like

ki + ko —ky 0
—k2 ks + ks —ks
0 —ks ks

which requires the determination of only the spring stiffnesses k;, k, and k3. For the case

shown in Figure(2), the stiffness matrix would be of the form

ki +ky+ky =k —ky
—kg k'z -+- ka —k;;
—1\74 _k:! k3 + k4

Figure(2) Example showing three degrec-of-freedom system with a
direct connection between the first and third degrees-of-freedom.
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If the desired analytical model is as shown in Figures(1) or (2) (i.e. the desired analytical
degrees-of-freedom are as represented in these Figures), then the above representation
reduces the number of unknown parameters to a minimum (See Appendix 1 for a similar
treatment of the stiffness matrix of a beam element). In directly updating the physical
parameters of the stiffness matrix, we are accepting the implicit approximations involved in
the finite-element process. If we were to allow the updated model to have greater freedom,
then the resulting system matrix may be a better representation of the actual behaviour of
the structure, but the modifications may not be physically intrepretable. Also, in allowing
the updated model too much freedom; i.e. allowing too many paramecters to be updated,
there is a possibility that the updating process will begin to model the experimental noise
in addition to the real dynamic behaviour. In addition, if we update our finite-element
models with respect to physical parameters, it may help us to gain an understanding of
where we are going wrong in the initial modeclling and, therefore, help to improve initial
modelling in the future. For these reasons, this study will be primarily concerned with

updating physical parametcrs within the finite-clement model directly.

The nature of the data, with respect to the model, broadly defines the method of solution
for the system matrix which can be used. If measurements are carried out at all of the
degrees-of-freedom represented in the model, then a direct solution may be carried out. If
all degrees-of-freedom present in the model are not measured, then an iterative solution

technique may be required.

First: look at the case where all degrees-of-frcedom are measured. Working with eigenval-

ues and eigenvectors, the following eigenvalue equation is of intcrest

(K — \M]{¢:} =0 (1)

or

K {¢i} = \iM {4} (2)

5



For the 3 dof mass spring system shown in Figure(1)

ky+ky ke 0 b1,

K {¢:} = —ky ket ks —k3 $2.i (3)
0 —k3 ks ¢3.i
Rearranging gives
b1 b1,i— P2, 0 ki
K{¢i}=®;{k}=| 0 —¢1i+d2i ¢2i— 3. ko (4)
0 0 —@2,i+ ¢3,i k3

substituting back and rearranging, allows the k’s to be solved directly

{k} = Xi®; M {¢) (5)

Given the structure of the matrix ®;, it will typically be of full-rank and, therefore sufficient
to determine the three unknown parameters. This is for measurements performed at the
i’th mode and shows that measurements at all degrees-of-freedom for only one mode are
sufficient to determine the stiffness parameters for this case. This is not surprising when
the analogous case of static deflections is considered; if the system is statically deformed
by a known force at the third degree of freedom, then, using the principles of equilibrium,
knowledge of the displacements at each degrec-of-freedom is obviously sufficient to deter-
mine each spring stiffness. Static deformation data has been used to update the stiffness
data for a large scale finite-element problem by Lallement et al (1992). For the dynamic

case, the knowledge of the force is embedded in the mass matrix in that it defines the

inertial forces.

Additional measurements give redundancy and, therefore, greater robustness to the anal-

ysis. If both the ¢’th and j’th modes are measured, we can write
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{ K {¢:} } { AiM {¢:} }
- — — —— (6)
K {¢;} AjM {¢;}

A similar rearrangement to that carried out previously gives

®, ki MM {é:} )
- ky b= ————
At

—
-~
—

Which we will write as

O, i{k} =M;; (8)

where

®, AiM {é:}
®;, ;= {-——} and M, ; = { - - — } 9
®; AiM {4;)

The stiffness parameters may then be solved by

{k} = &}, M, ; (10)

where CI)?:J- is the pseudo inverse of ®; ;.
The addition of further measured modes is trivial.

From the previous analysis, it is clcar that, where the measured degrees-of-freedom match

those of the analytical model, the parameters defining the stiffness matrix may be readily
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identified with mcasurements of one mode only. Now to examine the case where there
are fewer measured degrees-of-freedom than exist in an analytical model; in this situation,
iterative techniques may have to be employed and the issue of uniqueness is far less straight-
forward. Consider the case of the two degree of freedom system shown in figure (3), where

the mass and stiffness matrices are given by

M= my 0 and K = kythe —k
Mo —ks ko

IROES

Figure (3) Simple two degree-of-freedom system

The characteristic equation for the system represented by the above mass and stiffness

matrices may be written as

/\2(m]m2)—/\(m1k2 +m2k1 +7712k2)+k1’s‘,2 =0 (11)

which may be rewritten as

Mag —day +ae=0 (12)

where the roots of this equation give the eigenvalues A; and A2. Now, if we assume that only
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the measured frequencies are used in the updating procedure, we can use the characteristic
equation to attempt to determine the stiffness parameters. It is not unreasonable to employ
only the measured frequencies, as many model updating procedures used in practice use
only a comparison of modal frequencies as a criterion in assessing the validity of an updated
model; it is also the data available in the case where only one scnsor is used. Allowing
only the stiffness parameters, k; and k, to change, it is clear from the above equation
that the coefficients of A! and A%, a; and ag respectively, will define the uniqueness of the
problem. If there is .more than one set-of k; and k; which will give the same a; and ao,
then there is more than one set of stiffness paramecters which will give rise to identical
eigenvalues and the system cannot be uniquely identified from frequencies alone. This is
easily investigated by a numerical example. If welet ky = 8,k; =6, m; = 2andmz = 4 we
have the cocfficients a; = 68 and ag = 48. Turning the problem around and determining
ki and ky given m;, ma, a; and ao, we find that ky and k; may equal 8 and 6 respectively
(as previously given) or 9 and 16/3. So, even for this simple example, it can be scen that
two measured modal frequencies will not give a unique identification of the two stiffness

parameters.

Jung and Ewins (1992), Lin (1993) and Botto et al (1993) have investigated the issuc of
the number of measurements required to update a number of parameters for models where

the physical nature of the system matrices is maintained. Jung and Ewins (1992) and Lin
(1993) state that

m(n+1)>1L (13)

where n is the number of mcasured degrees-of-freecdom, m is the number of measured

modes and L is the number of unknown paramecters. Botto et al (1993) states that both

mn > L (14)

and



m

5 2N =(m+1)}>1L (15)

must be satisfied. N is the number of analytic degrees of freedom.

These criteria for uniqueness obviously conflict. From our previous development of the
direct solution, it was shown that the stiffness parameters may be determined from having
sensors at each degree of freedom and having measurements for only one mode. According
to the criterion of Jung and Ewins (1992) and Lin (1993), we have 4 > 3 which agrees
with our statement that the stiffness parameters are identifiable. Examining the criteria
of Botto et al (1993), however, we have 3 # 3 and 2 # 3 respectively. Therefore, by the
criterion of Botto et al (1993), the stiffness parameters should not be identifiable whereas
by that of Jung and Ewins (1992) and Lin (1993), they should be. Let us inyestigate
another example, that of the two degree of freedom system with measurements at only one
degree-of-freedom for two modes. We have shown previously, that the stiffness parameters
are not uniquely identifiable for this case. By the criterion of m(n +1) > L , we have

4 > 3 so the parameters should be uniquely identifiable, but clearly are not.

An obvious criterion for uniqueness is that the number of independent measurements be
greater than or equal to the number of parameters required to be updated. Whilst this is
clearly a necessary condition of uniqueness, from the results of the two degrec of freedom

system already shown, it would not appear to be sufficient.

Jung and Ewins (1992) and Lin (1993) determined the criterion for uniqueness by investi-
gating the rank of the sensitivity matrix. The sensitivity matrix is given by the first term
of a Taylor series expansion to the changes in eigenvalues and eigenvectors experienced
due to a change in the relevant parameters. Use of sensitivity matrices is a common means
of solving non-linear identification problems and have been used by many workers in the
field of model updating. The basis behind sensitivity methods is given in the following

equation:

{a} =[5]{AD} (16)
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where {A} is a vector of differences between experimentally and analytically derived data,
[S] is the sensitivity matrix. {AD} is the change in variable required to reconcile the
differences expressed in the vector {A} if the model were linear; for non-lincar models,
{AD} is an approximation to the required changes. For model updating from modal

analysis data, Eq.(16) can be written as:

(A a{é1)  8lér) a(er) | ( BDD1)
{A¢1} aD, 3D, aDy AD,
o [ _ ﬁ ! (17)
Adm Dy D E. :
oD oD, 9D )
LYY dlon)  oien) e \ AD,,
L ~aD, aD, 3D,
where the dimensions of the matrices are
{A}m(n+1)xl = [S]m(n+1)xL {AD}LXI (18)

As noted by Jung and Ewins (1992), such a sensitivity matrix is likely to be ill-conditioned
because the magnitudes of the eigenvalue derivatives are likely to be much greater than that

of the scaled eigenvector derivatives. This problem is solved by normalizing the eigenvalue

derivatives by their respective eigenvalues giving

11
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( A/ ) ag{'¢,} ag{,d,ll ag,,d’l ( AD,

{Ady} dD, 8D, DL AD,
T y = ¢ L (19)
AAm/)‘m [ . ax ' a3\ . .
L {Ad} ) 7778)?/)\'" m)n?l/)‘m a—DT//\m \ ADy, )
{¢m) 8{dm} A{dm )
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If the sensitivities consisted of no higher order terms in the Taylor series than the first
term represented in [S], then the solution to the required change in parameters could be
immediately achieved. The actual eigenvalue and eigenvector sensitivities, however, are
highly non-linear, so an iterative scheme based on the following equation must be used to

attempt to find the parameters required to minimize the vector {A}:

Djy1=Dj+AD; =Dj + SHA; » - (20)

where j is the iteration number.

One considerable difficulty surrounds determining [S]. The sensitivity matrix may be most
simply approximated by perturbation of the desired parameters (ie. solving the eigenvalue
problem for slightly varied parameters thereby giving an approximation to the der'ivative).
Given that this requires solving the eigenvalue problem for each design variable at each
iteration, it is clearly not an efficient means of determining the sensitivity matrix for larger
problems. Fox and Kapoor (1968), give the derivative of an ecigenvalue with respect to a

parameter as

)Y T[OI\' aM] 5 1)

o0, =" (oD, ~"op;
The approximation for the eigenvalue derivative is easily derived, that for the eigenvector
derivative, however, is not so easy. A number of workers have given approximations to
eigenvector derivatives based on three approaches: i) direct differentiation, ii) modal syn-
thesis and iii) iterative techniques. Methods based on both the direct and modal approach
were first presented by Fox and Kapoor (1968). The direct method is based on differenti-
ating both the eigenvalue equilibrium equation and the mass orthonormalization equation.
The eigenvector derivative of the :’th mode is based only on the components of that mode,
thus, the full eigensolution is not required. The direct method of Fox and Kapoor (1968)
was improved by Nelson (1976) whose solution method maintains the bandedness of the
original problem and gives well-conditioned matrices, thereby increasing the accuracy of

solution. The main computational cost involved in Nelson’s method is that it requires the
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inversion of a matrix of order N — 1, where N is the order of the full analytic system.

The Modal method is based on a modal synthesis approach and uses all of the analytical
modes of the system. This can be expensive in computational effort for solution of the full
eigen problem for large systems. Fox and Kapoor (1968) postulated that a reduced system
of eigenvectors could be used to approximate the eigenvector derivative, but did not pursue
this investigation. Wang (1991) developed an accurate truncated modal synthesis method
by introducing a vector defined as astatic mode which-helps to-include-some of the effects
of the truncated modes. As with all modal synthesis techniques, great care must still be

taken to ensure there is sufficient frcedom to characterize the desired propertics.

Iterative techniques for determining eigenvector derivatives based on the subspacc iteration
techniques used to solve eigenproblems of large systems, were first proposed by Rudisill and
Chu (1975). The early techniques suffered from poor convergence rates and accuracy ‘and
a direct method, such as Nelson’s method was considered superior. Ting (1992) developed
an accelerated subspace iteration technique for determining eigenvector derivatives based
on Bathe’s acccleration technique (Bathe, 1977). For cascs involving a small number
of parameters, Ting (1992) claims decreases in computational cost, when compared to
Nelson’s method, of order 70%. As the number of parameters to be considered increases
though, the accelerated iterative technique becomes less efficient and may be surpassed by

Nelson’s method.

It is clear that the method used to optimally determine eigenvector derivatives is very

dependent upon the nature of the problem in question.

It would appear from Eq.(18) that a requirement to solve for A is that m(n+1) > L. It is
important to remember, however, that the eigenvectors must be scaled and that they have
no absolute value, therefore, some information is lost in this scaling process. Examining
the case where there is only one sensor shows that, for this case, an eigenvector derivative
is meaningless; all we are left with are cigenvalue derivatives in our sensitivity matrix. This
would lead to the assumption that because information is lost in the requirement to scale
eigenvectors, the requirement to solve Eq.(18) is that mn > L, which for the case of only

one sensor, becomes m > L. This assumption will be examined by example.
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Going back to the original 2 dof problem, with k; = 8 and k; = 6, the sensitivity matrix,
using Eq.(21) is:

G B/ 2492
(5= | /M o/ x] _ [0...4._7 0.2802] 2

2/% 2/x]  [0.1224 01885
which is of full rank with a condition number of 16.3. As has already been shown, however,
there is not a unique answer to this problem. Examining the rank of the sensitivity matrix,
however, is how some workers have attempted to define the conditions for uniqueness. The
difficulty in using the rank of the sensitivity matrix to define the uniqueness or otherwise
of such a problem arises because of the inherent non-linearity of the problem in that the
process involves iterating from an initial condition to a final answer. A full rank sensitivity
matrix tells us that, given a sct of initial conditions, there is only one solution that:can
finally be arrived at. This is because, if the matrix is of full rank, each iterative step will
be unique. Given another set of initial conditions, however, another solution may be found

which will be unique for the initial conditions, but not for the overall problem.

The solution process for a non-lincar sensitivity analysis was performed on a six degree

of freedom mass spring system using noise-free simulated data with randomly generated

initial conditions.

It was assumed that the six spring stiffnesses werc unknown and solutions were attempted
for a number of combinations of measured degrees-of-freedom and number of measured
modes. Each case used 100 different initial conditions. From this simulation, it would
seem that the uniqueness condition for this system is given by mn > 6 with the additional
condition that n > 1. Additional care would have to be exercised with noisy data for some
of the cases due to poor conditioning. For the case with two measured degrees-of-freedom
and 3 modes (mn = 6), the condition number for the matrix is of order 10'* and for the
case of three measured degrees-of-freedom and two modes, the condition number is of order
10%. Even though these cases satisfy the criterion for uniqueness, with ‘real’ data, they
would be almost impossible to solve. As with any identification problem, great care should
be exercised in ensuring that the experimental data has as little as possible noise and no

bias, and, given unbiased data, the more data, the better.
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Frequency Response Functions

A method of analysis based upon frequency response functions, promises a greater amount
of data to work with than for techniques based on modal properties. As well as providing
more data, an advantage of working with frequency response functions is that the process
of determining modal properties is avoided; -11611(3(3, the crrors that would be introduced
in this process are also avoided. In other words, the frequency response function data is
more ‘pure’ than modal data. The only way to work with data that is even more ‘pure’
would be to work with the time response data dircctly; the data storage requirements for

this would probably be prohibitive.
Consider the undamped, steady-state, forced response equation of motion with the forcing

function being sinusoidal at w rad/sec:

[-Mw? + K] {z} = {f} (23)

where M is the mass matrix, IV is the stiffness matrix, {z} is a vector of response am-
plitudes and {f} a vector of input force amplitudes. As was done previously, it will be
assumed that the masses are known and that the unknowns are the actual stiffness prop-

erties (as opposed to the stiffness matrix as a whole). Equation(23) can be re-written

as

K {z;} = {fi} + Mw? {z;} (24)

For the two degree-of-freedom system represented in figure (3), the left-hand-side of Eq.(24)

would be written as

ky + ke —ko Thi
—kz ko T2i
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which may be re-written as

Tii Ty — T2 k V.
0 —$1i+$2i]{k2}—xt{k}

leading to the solution for {k} being given by

{k} = X71({£i} + Mw} {2:})

Measurements for additional frequencics can be incorporated as follows:

[T11  T1,0 — T2 ) ( fia ) myw? 0 7 ¢ x11)
2
0 —za+72. fan 0 maw} T,
2
T2 Ti12 —T22 fi2 myw; 0 T1,2
2
0 -—-zy2+4+ 722 f2.2 0 mowsj T2

2
Ty T12— T2 fin nmiwy 0
L 0 —zy2+ 722 \ fa.N . 0 maw?, |

LI]'N
I2,N /

X {k} = {f} + [Muw?] {2}

giving

{k} = X ({f} + [Mw?] {z})

The above example is easily extended to incorporate additional degrees of freedom.
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An important consideration when dealing with frequency response function data is that
data collected at different frequencies cannot necessarily be considered independent. The
concept of linear independence of frequency response function data and its effect on the

condition number of the matrix X, as dcfined in Eq.(28), is illustrated in figure (4).
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Figure (4) Condition number for the matrix X, as defined in Eq.(28), for
simulated frequency response function data collected at five frequencies where
both the lowest frequency sampled and the frequency spacing, are given on the
horizontal axis.

The results presented in figure (4) are the condition numbers of the matrix X for simulated,
noise-free, data for five sampled frequencies spaced by the amounts given on the x-axis.
As can be seen, when the data are closely spaced, the condition number is very high,
it then reduces as the data become more lincarly independent. There is no requirement
that all of the sampled data be linearly independent, but, the more lincarly independent
measurements taken, the more robust the solution should be. It should be noted that the

most informative frequency spacing will be very problem dependent.
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The previous examples of analysis using frequency response functions were based on the
assumption that measurements were taken at all the degrees of freedom present in the
analytic model; now to examine the analysis involved when this is not the case, ie. the
case involving non-linear solution. As for the modal case, a sensitivity approach to the

non-linear solution of the design parameters may be written as

{a} =[S1{aD} (30)

where {A} is still a vector of differences between experimental and analytically derived
data, [S] is a sensitivity matrix, and {AD} is a vector of approximate changes in stiffness
parameters to account for the differences in experimental and analytic data. For frequency

response functions, eqn(30) takes the form

f {ATI} a{z, a{x, a{x, ( {ADl} )
(an)) T s s ({201
&= . & , (31)
. 8!;‘.“[ B.i:,,t .
\ {Atn} J éD, Tt oD k {AD,,} J

Determining the sensitivity matrix for frequency response functions is a more difficult
proposition than that for modal parameters. Once again, the sensitivities may be approx-
imated by perturbation, but this would require the inversion of a n x n matrix (where n is
the order of the analytic model) L x n times for each iteration (where L is the number of
paramcters to be dctermined and n is the number of sensors); impractical for most cases.
An approximation to the receptance sensitivity has been developed by Brandon (1987)
who showed that

Ola(w

)l , , .
—ap, = ~le(@lAZ(w) [a(w) | (32)

where [a(w;)] is the inverse of the dynamic stiffness matrix [K — w?M] and [AZ(w;))] is

called the ‘dynamic stiffness error matrix’ [(AZ(w;)] = [AK] — w? [AM]. The response
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vector sensitivities may then simply be determined by multiplying 9 [a(w)] /0D; by the
force input vector. The advantage of this method over the perturbation method, is that the
inversion required to create [a(w)] only need be done once for each frequency step rather
than for every design variable for cvery frequency step. He (1993) shows that the accuracy
of Eq.(32) reduces as the frequency approaches a resonance and concludes that sensitivity

analysis using such an approach will be more successful if data around anti-resonances are

used and data near resonances discarded.

From the perspective of measurement noise, rather than analytical errors, Ren and Beards
(1993) state that experimental data in the vicinity of resonances should not be used because

of higher measurement sensitivities to small changes in frequency in these regions.

Now, to compare the non-linear solution process using modal, and then frequency response
function data and examine how worthwhile it is to attempt to solve for parametérs using
sensitivity methods, let us investigate simulated data for the two degree-of-freedom system
shown in figure (3). For the case where there are two unknowns to be determined by a
non-linear method of solution, a visual understanding of how sensitivity techniques work,
can be gained by plotting the residuals against variation in each of the two parameters to

be determined. First, let us examine the residuals for modal data being given by

2_22: Agi — Aai\’ bEri— ¢ 12 (33
r2 = 3 + (PE2,i — PA2.i) )

i=1

where the subscript E denotes experimental data (here, noise-free simulated experimental
data) and A denotes analytically determined data (note: the differences in the eigenvectors
only use data from the second degree-of-freedom because the cigenvector data has been
scaled with the amplitude of the first freedom being one). The residuals over the range of

k; = 3 to 13Nm and k, = 1 to 11Nm are shown in figure (5).

19



100

40

z y

60
k1 = (34 0.1z)Nm 80

40

20 ky =(1+40.1y)Nm

100 O

Figure (5) Surface plot of the log of 72, as dcfined in eqn(33), for
ky ranging from 3 to 13 Nm and k; from 1 to 11 Nm with the actual
solution being at k&; = 8 Nm and &k = 6 Nm.

A sensitivity method of solution can be thought of as placing a ball on the surface shown
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in figure (5) at the co-ordinates of the initial estimates for k; and k2, and letting the
ball roll; the ball will stop rolling when it falls into a low region (if this region is the
lowest on the surface, then it has found the global minimum and, hence, the solution to
the problem). The surface shown in figure (5) would secem to be ideal for such a solution
process; a ball placed almost anywhere on this surface is likely to end up in the global
minimum. Therefore, with such data, the solution is likely to be quite robust and relatively

independent of initial conditions.

Now, we examine the same surface for the frequency response function with measurements

at both degrees-of-freedom for five frequency points spaced 0.5 rad/sec apart. Here, the

residuals are given by

5 2
r2 = Z {Z(-’vm,,‘ — mAi,j)z} (34)
=1 i=

=1

The plot of this surface over the same range of k’s as that shown for the modal residuals, is
presented in figure (6). Clearly, this system will not be as insensitive to initial conditions
as the case for modal analysis. The situation is even worse if we take measurements at
more frequencies c.f. figure (7) where data was simulated as being collected at seven
frequencies spaced 0.4 rad/sec apart. It must be remembered that the example shown
here is for a two degree-of-freedom system; for higher order models, the situation would
be much worse. These results show that for frequency response function data, sensitivity
methods will not be robust with respect to initial estimates; this is unfortunate because
such methods can be particulary efficient in solving non-lincar problems. For the types
of surfaces shown in figures (6) & (7), other non-lincar approaches such as random walks
or genetic algorithms (Larson and Zimmerman (1993)) would have to be applied; such
methods, for a significant number of unknowns, can become unwicldy. Ren and Beards
(1993) found similar problems with convergence and concluded that frequency selection and
the imposition of weightings is of the utmost importance in attempting to gain convergence,
it is also suggested that random sclection of frequencies can aid convergence; this suggests
that sensitivity approaches lose much of their appcal and the techniques suggested in Ren
and Beards (1993) are not far removed from approaches such as random walks. Link

and Zhang (1992), working with incomplete experimental data, found that a non-lincar
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technique based on frequency response functions was much more sensitive to measurement

noise than was a method based on measured modal parameters.

100

40
T 60 40 Y

ky =(3+0.1z)Nm 100 O k2 =(14+0.1y)Nm

Figure (6) Surface plot of the log of 12, as defined in Eq.(34), for 5
frequency points spaced 0.5 rad/sec apart and for k; ranging from 3 to 13
Nm and %2 from 1 to 11 Nm with the actual solution heing at k; = 8 Nm
and k; = 6 Nm (note: the large spikes arise from a measurement point in
the simulation being almost exactly on a resonance)
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Figure (7) Surface plot of the log of r2, as defined in Eq.(34), for 7
frequency points spaced 0.4 rad/scc apart and for ky ranging from 3 to 13
Nm and k; from 1 to 11 Nin with the actual solution being at &y = 8 Nm
and k2 = 6 Nm (note: the large spikes arise from a measurement point in
the simulation being almost exactly on a resonance)
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These results suggest that non-linear techniques will not be very successful when frequency
response function data is used; for this reason, it is probably best to further explore the
possibilities of linear methods of solution when using such data. The rcason for attempt-
ing non-linear techniques is because the mcasured degrees-of-freedom are incomplete with
respect to the analytical model, in order to attempt a linear solution, cither the experi-
mental data must be expanded to encompass all of the analytic degrees-of-freedom, or, the

analytic model reduced to the measured degrees-of-frecdom.

Model Reduction Techniques

The aim of any model reduction process is to, as closely as possible, represent the behaviour
of the more complete model in the reduced model. With fewer degrees-of-freedom in’ the
reduced model, there will naturally be fewer natural frequencies, but the aim is that these
represented frequencies be as close as possible to the corresponding frequencies in the full
model. There are four commonly used techniques used to reduce an analytic model! to the

measured degrees-of-freedom; these are:

i. Guyan Reduction (Guyan, 1965)

ii. Improved Reduction System (IRS) (O’Callahan, 1989)
ili. Modal (I{ammer, 1987)

iv. Hybrid (Kammer, 1987)

The most commonly used (and oldest) process is Guyan reduction. For such a reduction
process, the stiffness matrix is re-ordered and partitioned such that the desired degrees-of-
freedom (in this case, those degrees-of-freedom where measurements are carried out) are

partitioned from the omitted degrees-of-freedom, as follows for the stiffness matrix:

. I\’na I\’ao Tq
(K] {z} = [I\'Z; KM] {I} (35)
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The reduction transformation can be written as

{ﬁ:}={ﬂ{n} (36)

For Guyan reduction, the transformation matrix is given by

o= | il er | (37)

(Note: Guyan reduction is also known as static condensation because the transformation
matrix [T}g is a function only of the stiffness matrix). Applying this transformation to

the stiffness matrix gives [[Ng], the Guyan reduced stiffness matrix as

(5G] = [Kea] = Kao) oo ™" [Kao)" (38)

Applying Guyan reduction to the mass matrix, where the mass matrix is partitioned as

= | ] (30)
gives
11 =1 e R N TY - =15 1T
[MG] = [Maa] = [Kao] (Kool [Mao) (Mo} (Koo [Kao)” + (40)

+ [Kao) [K32'] (Moo] [ Koo)' [Iao)”

Guyan reduction is based on the assumption that there are no forces on the omitted

degrees-of-frecdom. When the situation involves dynamics, forces in the form of incrtias
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will arise at the omitted degrees-of-freedom if there is any inertia associated with these

degrees-of-freedom. As can be seen in Eq.(40), if the omitted degrees-of-freedom have no

mass, then the reduced matrix is exact.

O’Callahan (1989) developed the Improved Reduced System (IRS) to include terms which

approximate the effects of the removed masses. The IRS transformation matrix is given

by

(Thns = (Tl + [Thare | (a1)

where the inertial transformation matrix [T], , is given by

inrt

[Thinee = = Uoo) ™ ([Moa] + [Moo] [T)g) [Maa] ™" [Kad) (42)

Kammer (1987) developed both the Modal and Hybrid methods which use the full analyt-
ical mode shapcs to estimate the motion of the omitted degrees-of-freedom. The transfor-

mation matrix for the modal method is given by

[Tlaoa = $o [676a) " 67 (43)

and that for the Hybrid method is given by

[Tl = [Tlg + (Tluoa — (T1a) [8118)7 [T1h10a [M] [Tytoa (44)

where [M] is the full analytic mass matrix and [¢] is the full order cigenvector matrix.

In an attempt to assess both the accuracy and robustness of these reduction techniques,
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Tan (1993) carried out an analysis on a 10-bay truss which had been used for substructure
modal testing at NASA LaRC. This structure was initially reduced using Guyan reduction,
but, given that it was a truss structure with largely evenly distributed mass, this did not
provide satisfactory results (the retained degrees-of-freedom accounted for only 5% of the
total mass). The accuracy of the method was defined by the ability of the reduced model
to match the full FEM mode shapes and frequencies. The robustness was defined by the
ability to provide reliable cross-orthogonality (analytical vs test) and sclf orthogonality
(test vs test). The Guyan reduced system showed poor accuracy, but aceptable robustness.
The overall accuracy of the IRS was a great improvement over that for the Guyan reduced
results; the robustness also improved. Both the Modal and Hybrid methods gave highly
accurate results, which should not be surprising given that they are effectively based on a
modal synthesis of the full FEM. Both methods, however, performed considerably worse,
where robustness was concerned, than either the Guyan or IRS methods. Tan (1993)
makes the point that the robustness of the Modal and Hybrid methods is very dependent
upon the accuracy of the original FEM which a-priori is an unknown and that as a result,
use of such reduction methods for model verification may produce misleading results. The
same reasoning applies to methods which expand the experimental data to the analytical
degrees of freedom based upon the analytical model (Larsson and Sas (1992) and Nalitocla
(1993)) (note: this is not necessarily the case for problems involving damage dctection, as

will be discussed later).

It has been demonstrated by Gordis (1992) that a condition for IRS to be accurate and
robust is that there be minimum overlap between the eigenvalues of the included and
omitted degrees-of-frecedom, where the omitted cigenvalues are found from the system
[.M(,o]—l [K,0). Comparing this to the requirement for Guyan reduction, it is likely that
this criterion would be met by including as much of the mass as possible in the included
degrees-of-frececdom. In an analogous study to that of Gordis (1992), Larsson and Sas (1992),
showed that, when working with frequency response functions, the useful frequency range
for measurements is for frequencies below the lowest cigenvalue found when all of the

retained degrees-of-freedom are grounded.

It is important to note that once a model has undergone one of these reduction processes,

the system matrices become fully populated, thereby requiring that, for the stiffness matrix
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for example, v X v parameters be determined in any identification process (where v is the
order of the reduced model). Lin (1993), argues that degree-of-freedom reductions should
be carried out in such a way that the bandedness (hence, the physical connectivity) of the
system matrices be maintained. Such a reduction may be carried out in a number of ways:
the first being that standard finite-clements be used to replace a larger group of elements,
effectively continuing the type of approximation made in creating the original FEM; a
second method, would be to apply one of the previously described reduction processes to a
group of clements creating a ‘super-clement’; such ‘super-elements’ may then be combined
to create an over-all reduced model. The first method will obviously have greater sparsity
than the second, but the second will still be considerably more sparsc than the fully reduced
model. The appeal of this, is that there are far fewer unknown parameters to be determined
and that some physical meaning may be associated with the updated parameters. Lin
(1993) shows that such a reduction process is successful for the fairly simple case of a 102
degree-of-freedom beam model reduced to a 52 degree-of-freedom model by examining the
first 10 modes. This is clcarly not a very rigorous test. It would seem that considerable
analysis would have to be carried out on any structure in question before an assessment

could be made of how successful such techniques would be.

Improving Experimental Data

As has alrcady been mentioned, one of the largest problems when working with modal
experimental data, is the scarcity of data. This can be partly overcomne by collecting
data with perturbed boundary conditions (Barney ct al (1992), Li and Brown (1992) and
Lammens et al(1993)). For perturbed boundary condition testing, data is collected for
different configurations of essentially the same structure; each configuration has cither
known mass or stiffness changes made to the structure. Each set of experimental data will,
therefore, be different, but the number of unknowns will remain the same. As frequency
response function data at adjacent spectral lines will not be very lincarly independent,
perturbed boundary condition data where the changes to the structure do not result in
sufficiently significant changes to the measured modes will not give very independent data,

thereby giving a solution that is not as robust as one where the data were independent. For
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such testing, pre-test finite-element analysis would be of the utmost value when determining

optimum structural changes.

Another possible means of improving data collection is to use a full-field optical technique
to perform measurements. Recent availability of tools for full-field laser-doppler imaging
has made this a possibility (Oliver (1988) and Sriram et al (1991)). Such devices scan
over the structure being tested and give an area plot of the normal velocities. The velocity
data is typically corrclated such-that only-the velocities at the.frequency of-loading are
displayed. This would present the problem of too much data, in that there would be
likely to be experimental data for more points than there are dcgrccs-of—frccdom in the
model. Thereby, offering the choice of using only the data at the points of interest, or,
using interpolation routines to smooth the data prior to analysis. There is likely to be
sufficient data such that the potential for bias by a well chosen interpolation routine would
be small. Another significant advantage to such a technique is that it uses only oné sensor,
so different calibrations are not an issue and the likelihood of sensor malfunction during
the course of testing is greatly reduced. Also, being non-contacting, it is suitable for very
light structures where the placement of sensors may significantly alter the experimental

results. Such a technique could be potentially very useful for orbiting structures.

Damage Detection

The potential for dynamic data to detect and quantify structural damage has been a driving
force for much of the FEM updating work. Most of the work in this ficld has been carried
out in the field of space structures (cg. Kashangaki et al (1992) and Kaouk and Zimmerman
(1993)). For such structures, damage detection would be of immense importance in that
dynamic measurements could, potentially, be used to locate and quantify damage before

a hazardous and expensive repair process is instituted.

The problem of damage detection is, in many ways, the same as the model updating
problem; however, there are some important differences. When examining the model

updating problem for a truss structure, assumptions may be made about identical elements,
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thereby greatly reducing the number of unknowns to be found. For the damage detection
case, the properties of each element must be treated as being unknown. It has been
said previously that experimental data expansion using the analytic model is dangerous
because the assumptions made in the modelling can greatly bias the results; when working
on a damage detection problem, this may not be the case. Before carrying out a damage
detection analysis, it is assumed that a ‘valid’ finite-clement model exists. The aim of the
damage detection process is, essentially, to determine where differences from this original
model occur. Given that such an-eriginal model must be assumed-to be ‘valid’, data

expansion based on this model should be acceptable.

An important consideration for damage dctection in truss structures has been highlighted
by Doebling et al (1993). It was found that a damage detection algorithin which worked
satisfactorily for the case of a cantilevered truss, had much less success in identifying
damage in a free-free truss. The problem secms to stem from the increased significance
of local modes in the lower modal frequencies for the free-free case as opposed to the
cantilevered case due to the effects of localized masses in the strucrture examined. Earlier
studies with cantilevered structures by Kashangaki et al (1992) and Smith and McGowan
(1989) have bcen able to consider the changes brought about by damage to the global
modes as ‘frequency shifts’; for the free-free case, however, the changes to the local modes
cannot be viewed as a ‘shift’ in the sense that the effect on the local modes is large. It
has been mentioned before that the damage detection case involves looking for change
from a previously validated model and that that model may be used for experimental data
expansion purposes; when the damage is too much, from the perspective of the change
in the dynamic behaviour, then such methods will not be valid. It would implicitly be
possible to show that damage has occurred, but to identify that damage would require that
the model identification process be started from scratch. This would be a very difficult

identification if there was no a-priori knowledge about the location of the damage.
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Summary

It has been demonstrated how the number of unknowns in a model updating process can
be reduced to a minimum if the actual finite-clement properties, rather than the mass
or stiffness matrices as a whole, are treated as unknowns. This implicitly accepts the
assumptions made in the finite-clement process, but should allow the updated model to
be modified with greater confidence in the results. It should also indicate where crrors
are being made in the initial modelling process. For example, if the updated model still
does not adequately reflect the behaviour of the true structure, it may indicate insufficient

finite-clcment density in an important region.

The issue of uniqueness for non-lincar solution methods involving modal data has been
investigated. By example, it has been demonstrated that the criteria for uniquenéss given
by a number of previous workers is incorrect. A numerical simulation of the non-linear
solution process with randomly generated initial conditions, suggests that, for the case
studicd, the criteria for uniqueness arc that mn > L and n > 1 (where m is the number of
measured modes, n is the number of measured degrees-of-freedom and L is the number of
unknown parameters). It must be noted that this is not intended to be a rigorous proof

and was simply an exercise in attempting to detcrmine where the truth may lie.

For linear problems, the amount of data offered by frequency response function data should
make the use of such data superior to modal data for model updating. The appeal of the
amount of data offered by frequency response functions, however, is greatly diminished if
a non-linear method of solution is required. It is suggested that, rather than attempt such
a non-linear solution, either the modal properties be extracted and a non-linear solution
be then attempted with these new data, or that the model be reduced to the number of
measured degrees-of-freedom. The availability of new measurement technologics (such as
laser-doppler vibrometry) should allow the collection of data at more locations than has
previously been routinely available. This opens the possibility for measurcments to be
carried out at all degrees-of-frecdom represented in the finite-clement model (rotational
degrees-of-freedom would have to be inferred from translational measurements). With

complete measurements, direct, linear, solution techniques could be used to create the
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physical parameters of a finite-element model given the geometry. Measurements for a
range of frequencics should give considerable robustness to the solution. New measure-

ment technologies would seem to offer a very powerful tool in the finite-element updating

problem.

On the subject of limited modal data: literature has been reviewed concerning how the
amount of such data can be increased by testing a structure in different configurations,

where the difference between each configuration is accurately known.

Model updating for the purposes of damage detection in truss structures has been, very

bricfly, discussed.
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