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Abstract

Some issues concerning the updating of dynamic finite-element models by incorporation

of experimental data are examined here. It is demonstrated how the number of unknowns

can be greatly reduced if the physical nature of the model is maintained. The issue of

uniqueness is also examined and it is shown that a number of previous workers have been

mistaken in their attempts to define both sufficient and necessary measurement require-

ments for the updating problem to be solved uniquely. The relative merits of modal and

frequency-response-function data are discussed and it is shown that for measurements at

fewer degrees-of-freedom than are present in the model, frf data will be unlikely to con-

verge easily to a solution. It is then examined how such problems may become more

tractable by using new experimental techniques which would allow measurements at ;dl

degrees-of-freedom present in the mathematical model.

Introduction

The issues investigated in this report concern the modification, or development, of finite-

element-models such that the dynamic behaviour of that model correlates well with ex-

perimental data. The significance attached to the updating of fitfite-elemont-models by

the use of experimental data is an implicit recognition that dynamic FEM's are often a

poor representation of the actual structure. Such updating of FEM's enables the effects

of structural modifications to be assessed with much greater confidence by computer mod-

elling rather than full-scale testing, thereby reducing costs. Another potential advantage

to model updating is that it can help to highlight where errors in the initial modelling

process are being made and, therefore, increase the efficiency of future FEM development.

Static stress analysis, the other main engineering application of finite-element-modelling, is

typically subjected to far less scrutiny than dynamic modelling for two reasons: firstly, it is

considerably more difficult to rigorously compare FEM stress analysis data with experiment

than is the case for dynamic data; and secondly, many more approximations arc typically



made in dynamics models. Approximations involved in dynamics modelling arise from

trying to keepthe modelsimple,i.e. to asfewdegrees-of-freedomaspossible.Another main

approximation in dynamic FEM's concernsdamping; the most common approximation

being that it is zero. Zero damping is obviously never the case, but the mechanisms

of damping in built-up structures are so poorly understood and variable that it is often

practically impossible to model. Throughout this report, it will be assumedthat damping
is negligible.

In this report, issuessuch as uniquenessof an updated model, and the relative merits

of modal data and frequency responsefimction data will be explored witil referenceto

the current literature. Someconceptswill be investigatedwith simulations using simple

mass-springsystems.

Uniqueness

Given a set of experimental data and an analytical model, is there more than one set

of analytical model parameters which will match the experimental data? This question

describes the issue of uniqueness.

Su and Juang (1992) carried out a study on the uniqueness of updated stiffness parameters

for the general case of updating the complete stiffness matrix. It was shown that either

the number of actuators, or the number of sensors, must be greater than or equal to

the number of degrees-of-freedom to enable the identification of the stiffness matrix in

physical coordinates. For the ease where matrix symmetry was enforced, it was shown

that the sum of the number of sensors and actuators must be greater than or equal to the

number of degrees-of-freedom. In Su and Juang (1992), it was assumed that the number

of measured modes was equal to the number of analytical degrees of freedom. The issue

under investigation here is: what are the measurement requirements for uniqueness when

the physical nature of the stiffness matrix is enforced? Maintaining the 'physical nature'

of the stiffness matrix means that actual element stiffness properties are updated. These

updated properties are then used to reform the stiffness matrix. For example: consider



the three degreeof freedom model shown in Figure(l).

Figure(I) simple three degree-of-freedom mass-spring system

Techniques which operate on the stiffness matrix ([K]NxN) where N is the number of

degrees of freedom of the model (in this case, N = 3), as a whole, would require the

determination of N 2 (here, N 2 = 9) independent parameters. If matrix symmetry is

enforced, the number of terms required reduces to _--_N=1i (here, _//v=l i = 6. These are

the two cases studied in Su and Juang (1992). Not surprisingly, it was found that where

the symmetry of [K] was enforced, the corresponding uniqueness criterion was relaxed, ie.

fewer measurcments are required to determine fewer unknown parameters.

An option to reduce the number of parameters required to be determined even fltrther is to

enforce physical connectivity and symmetry. This means that the stiffness matrix would

appear as

where the O's mean that there is no direct connection between the first and the third degree

of freedom. This leaves 2N - 1 (here, 2N - 1 = 5) parameters to be determined. Now

the number of parameters to be determined varies linearly, rather than quadraticaly, with
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the number of degrees of freedom of the model. Note: there can be physical connectivity

between the first and third degrees of freedom as shown in Figure(2) meaning that the

It'(l, 3) and K(3, 1) term in the above matrix will no longer be 0; for a real srtucture, it

is unlikely that every modelled point will be directly connected to every other point, so it

can still be expected that the number of unknowns will grow linearly with the number of

degrees of freedom.

Further constraints can be-placed on tile model by updating ordy file physical-parameters.

In this case, our stiffness matrix will look like

kl +k2 -k2 0 1
- k2 k2 .-1-k3 - k3

0 -k3 k3

which requires the determination of only the spring stiffnesses kl, ks and k3. For the case

shown in Figure(2), the stiffness matrix would be of the form

I kl "4- kS-[- k4 -ks -k4
- ks ks q- k3 - k3

- k4 - k3 k3 q- k4

Figure(2) Example showing three degree-of-freedom system with a

direct connection between tile first and third dcgrees-of-frecdom.



If the desired analytical model is as shown in Figures(I) or (2) (i.e. the desired analytical

degrees-of-freedom are as represented in these Figures), then the above representation

reduces the number of unknown parameters to a minimum (See Appendix 1 for a similar

treatment of the stiffness matrix of a beam element). In directly updating the physical

parameters of the stiffness matrix, we are accepting the implicit approximations involved in

the finite-element process. If we were to allow the updated model to have greater freedom,

then the resulting system matrix may be a better representation of the actual behaviour of

the structure, but the modifications may not be physically intrcpretable. Also, in allowing

the updated model too much freedom; i.e. allowing too many parameters to be updated,

there is a possibility that the updating process will begin to model the experimental noise

in addition to the real dynamic behaviour. I11 addition, if we update our finite-element

models with respect to physical parameters, it may help us to gain an understanding of

where we are going wrong in the initial modelling and, therefore, help to improve initial

modelling in the future. For these reasons, this study will be primarily concerned with

updating physical parameters within the finite-element model directly.

The nature of the data, with respect to the model, broadly defines the method of solution

for the system matrix which can be used. If measurements are carried out at all of the

degrees-of-freedom represented in the model, then a direct solution may be carried out. If

all degrees-of-freedom present in the model are not measured, then an iterative solution

technique may be required.

First: look at the case where all degrees-of-freedom are measured. Working with eigenval-

ues and eigenvectors, the following cigcnvalue equation is of interest

[K - {¢, } = 0 (1)

or

(2)
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For the 3 dof mass spring system shown in Figure(l)

lC{¢i} = -k2 k2 + k3 -k_ ¢2,i

0 -k3 k3 ¢3,i

(3)

Rearranging gives

-¢1,i + 4:,i ¢3,i k2
0 -¢-.,i + ¢3,_ k3

(4)

substituting back and rearranging, allows the k's to be solved directly

{k} = {¢,} (5)

Given the structure of the matrix ¢I'i, it will typically be of full-rank and, therefore sufficient

to determine the three unknown parameters. This is for measurements performcd at the

i'th mode and shows that measurements at all degrees-of-freedom for only one mode arc

sufficient to determine the stiffness parameters for this case. This is not surprising when

the analogous case of static deflections is considered; if tile system is statically deformed

by a known force at the third degree of freedom, then, using the principles of equilibrium,

knowledge of the displacements at each degree-of-freedom is obviously sufficient to deter-

mine each spring stiffness. Static deformation data has bccn used to update the stiffness

data for a large scale finite-element problem by Lallemcnt et al (1992). For the dynamic

case, the knowledge of the force is embedded in the mass matrix in that it defines the

inertial forces.

Additional measurements give redundancy and, therefore, greater robustness to the anal-

ysis. If both the i'th and j'th modes are measured, we can write



(6)

A similar rearrangement to that carried out previously gives

(7)

Which we will write as

(8)

where

¢i,i = -- and

¢bj

f AiM

Mi,j = {
( } (9)

The stiffness parameters may then be solved by

{k) = ¢i+_Mi,j (lO)

where q_+. is the pseudo inverse of q'i,j.

The addition of further measured modes is trivial.

From the previous analysis, it is clear that, where the measured degrees-of-freedom match

those of the analytical model, the parameters defining the stiffness matrix may be readily
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identified with measurementsof one mode only. Now to examine the casewhere there

are fewermeasureddegrees-of-freedomthan exist in an analytical model; in this situation,

iterative techniquesmayhaveto beemployedand the issueof uniquenessis far lessstraight-

forward. Considerthe caseof the two degreeof freedomsystemshownin figure (3), where

the massand stiffnessmatricesare givenby

Figure (3) Simple two degree-of-freedom system

The characteristic equation for the system represented by the above mass and stiffness

matrices may be written as

_2(mlm2) -- _(mlk2 + m2kl + m2k2) + k_k2 = 0 (11)

which may be rewritten as

•k2a2 - _al + ao = 0 (12)

where the roots of this equation give the eigenvalues )_1 and )_2. Now, if we assume that only



the measured frequencies are used in the updating procedure, we can use the characteristic

equation to attempt to determine the stiffness parameters. It is not unreasonable to employ

only the measured frequencies, as many model updating procedures used in practice use

only a comparison of modal frequencies as a criterion in assessing the validity of an updated

model; it is also the data available in tile case where only one sensor is used. Allowing

only the stiffness parameters, kl and k2, to change, it is clear from the above equation

that the coefficients of )0 and ,_0, al and a0 respectively, will define the uniqueness of the

problem. If there is.more than one set-of kl and k2 which will give the same al and a0,

then there is more than one set of stiffness parameters which will give rise to identical

eigenvalues and the system cannot be uniquely identified from frequencies alone. This is

easily investigated by a numerical example. If wc let kl = 8, k2 = 6, ml = 2 and m2 = 4 we

have the coefficients al = 68 and (to = 48. Turning the problem around and determining

kl and k2 given rnl, rn2, (tl and a0, we find that kl and k2 may equal 8 and 6 respectively

(as previously given) or 9 and 16/3. So, even for this simple example, it can be aeen that

two measured modal frequencies will not give a unique identification of the two stiffness

parameters.

aung and Ewins (1992), Lin (1993) and Botto et at (1993) have investigated the issue of

the number of measurcments required to update a number of paraincters for models where

the physical nature of the system matrices is maintained. Jung and Ewins (1992) and Lin

(1993) state that

m(n + 1) > L (13)

where n is the number of measured degrees-of-freedom, m is the number of measured

modes and L is the number of unknown parameters. Botto et al (1993) states that both

mn > L (14)

and



'£ {2N -(m + 1)} > L
2

(15)

must be satisfied. N is tile number of analytic degrees of freedom.

These criteria for uniqueness obviously conflict. From our previous development of the

direct solution, it was shown that tile stiffness parameters may be determined from having

sensors at each degree of freedom and having measurements for only one mode. According

to tile criterion of Jung and Ewins (1992) and Lin (1993), we have 4 > 3 which agrees

with our statement that tile stiffness parameters are identifiable. Examining the criteria

of Botto et al (1993), however, we havc 3 _ 3 and 2 _ 3 respectively. Therefore, by thc

criterion of Botto et al (1993), tile stiffness parameters should not be identifiable whereas

by that of Jung and Ewins (1992) and Lin (1993), they should be. Let us inyestigate

another example, that of the two degree of freedoin system with measurcments at only" one

degree-of-freedom for two modes. We have shown previously, that tim stiffness parameters

are not uniquely identifiable for this case. By tile criterion of m (n + 1) > L , we have

4 > 3 so the parameters should be uniquely identifiable, but clearly are not.

An obvious criterion for uniqueness is that the number of independent measurements be

greater than or equal to the number of parameters required to be updated. Whilst this is

clearly a necessary condition of uniqueness, from the results of the two degree of freedom

system already shown, it would not appear to be suflZicient.

Jung and Ewins (1992) and Lin (1993) determined the criterion for uniqueness by investi-

gating the rank of the sensitivity matrix. The sensitivity matrix is given by the first tcrm

of a Taylor series expansion to the changes in cigenvalues and eigenvectors experienced

due to a change in the relevant parameters. Use of sensitivity matrices is a common means

of solving non-linear identification problcms and have bccn used by many workers in the

field of model updating. The basis behind sensitivity methods is given in the following

equation:

{A} = IS] {AD} (16)
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where {A} is a vector of differences between experimentally and analytically derived data,

IS] is the sensitivity matrix. {AD} is the change in variable required to reconcile the

differences expressed in the vector {A} if the model were linear; for non-linear models,

{AD} is an approximation to the required changes. For model updating from modal

analysis data, Eq.(16) can be written as:

I AA1 [

{,x¢,}

O_ALX
OD,

OD_

ODt

OD_

o x_Al_
OD2 " " " ODL

OD_ ODL

OD_ ODt.

OD2 " " " ODL

''A.9

A g:

_ADL

(17)

where the dimensions of the matrices are

{A}m(.+l)× 1 = [S]m(n+l)× L {AD}L×I (18)

As noted by Jung and Ewins (1992), such a sensitivity matrix is likely to be ill-conditioned

because the magnitudes of the eigenvalue derivatives are likely to be much greater than that

of the scaled eigenvector derivatives. This problem is solved by normalizing the eigenvalue

derivatives by their respective eigenvalues giving

l a_Lt_x/ -[
OD1 OD2 IA, " " " ODt. /,"_1

_ _ I AD_
OD! OD2 " " " ODL A D2

¢9/)1 (')02 I"rn ODL /-,m

Ol)t 01)2 " " " ;_l)t.

, ADL

(19)
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If the sensitivities consisted of no higher order terms in tile Taylor series than the first

term represented in IS], then the solution to the required change in parameters could be

immediately achieved. The actual eigenvalue and eigenvector sensitivities, however, are

highly non-linear, so an iterative scheme based on the following equation must be used to

attempt to find the parameters required to minimize the vector {A_:

Dj+I = Dj + ADj = Dj -4- S+Aj (20)

where j is the iteration number.

One considerable difficulty surrounds determining [S]. The sensitivity matrix may be most

simply approximated by perturbation of the desired parameters (ie. solving the eigenvalue

problem for slightly varied parameters thereby giving an approximation to the derivative).

Given that this requires solving the eigenvalue problem for each design variable at each

iteration, it is clearly not an efficient means of determirfing the sensitivity matrix for larger

problems. Fox and Kapoor (1968), give the derivative of an eigenvalue with respect to a

parameter as

The approximation for the eigenvalue derivative is easily derived, that for the eigenvector

derivative, however, is not so easy. A number of workers have given approximations to

eigenveetor derivatives based on three approaches: i) direct differentiation, ii) modal syn-

thesis and iii) iterative techniques. Methods based on both the direct and modal approach

were first presented by Fox and Kapoor (1968). The direct method is based on differenti-

ating both the eigenvalue equilibrimn equation and the mass orthonormalization equation.

The eigenvector derivative of the i'th mode is based only on the components of that mode,

thus, the full eigensolution is not required. The dircct method of Fox and Kapoor (1968)

was improved by Nelson (1976) whose solution method maintains the bandedness of the

original problem and gives well-conditioned matriccs, thereby increasing the accuracy of

solution. The main computational cost involved in Nelson's method is that it requires the
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inversion of a matrix of order N - 1, where N is the order of tile full analytic system.

The Modal method is based on a modal synthesis approach and uses all of the analytical

modes of the system. This can be expensive in computational effort for solution of the full

eigen problem for large systems. Fox and Kapoor (1968) postulated that a reduced system

of eigenvectors could be used to approximate the eigenvcctor derivative, but did not pursue

this investigation. Wang (1991) developed an accurate truncated modal synthesis method

by introducing a vector defined as a-static mode whichhelps to-include-some of the effects

of the truncated modes. As with all modal synthesis techniques, great care must still be

taken to ensure there is sufficient freedom to characterize the desired properties.

Iterative techniques for determining eigenvector derivatives based on the subspacc iteration

techniques used to solve eigenproblems of large systems, were first proposed by Rudisill and

Chu (1975). The early techniques suffered from poor convergence rates and aceui'acy'and

a direct method, such as Nelson's method was considered superior. Ting (1992) developed

an accelerated subspace iteration technique for determining eigenvector derivatives based

on Bathe's acceleration technique (Bathe, 1977). For cases involving a smM1 number

of parameters, Ting (1992) claims decreases in computational cost, when compared to

Nelson's method, of order 70%. As the number of parameters to be considered increases

though, the accelerated iterative technique becomes less efficient and may be surpassed by

Nelson's method.

It is clear that the method used to optimally determine eigenvector derivatives is very

dependent upon the nature of the problem in question.

It would appear from Eq.(18) that a requirement to solve for A is that m(n + 1) > L. It is

important to remember, however, that the eigcnvcctors must be scaled and that they have

no absolute value, therefore, some information is lost in this scaling process. Examining

the case where there is only one sensor shows that, for this ca.se, an eigcnvcctor derivative

is meaningless; all we are left with are eigcnvaluc derivatives in our sensitivity matrix. This

would lead to the assumption that because information is lost in the requirement to scale

eigenvectors, the requirement to solve Eq.(18) is theft mn> L, which for the case of only

one sensor, becomes m >_ L. This assumption will be examined by example.
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Going back to the original 2 dof problem, with ka = 8 and k2 = 6, the sensitivity matrix,

using Eq.(21) is:

[O_b_L_I_ O_A_I_ ] [0.2427 0.2802]
Okl IA1 Ok2 /AI

[S]= 0__.zx,_ 0_hz_,, [0.1224 0.1885
Okt / 2 Ok_ / ''t2

(22)

which is of full rank with a condition number of 16.3. As has already been shown, however,

there is not a unique answer to this problem. Examining the rank of the sensitivity matrix,

however, is how some workers have attempted to define the conditions for uniqueness. The

difficulty in using the rank of the sensitivity matrix to define the uniqueness or otherwise

of such a problem arises because of the inherent non-linearity of the problem in that the

process involves iterating from an initial condition to a final answer. A full rank sensitivity

matrix tells us that, given a set of initial conditions, there is only one solution that' can

finally be arrived at. This is because, if the matrix is of full rank, each itcrativc step will

be unique. Given another set of initiM conditions, however, another solution may bc found

which will be unique for the initial conditions, but not for the overall problem.

The solution process for a non-linear sensitivity analysis was performed oil a six degree

of freedom mass spring system using noise-free simulated data with randomly generated

initial conditions.

It was assumed that the six spring stiffnesses were unknown and solutions were attempted

for a number of combinations of measured degrees-of-freedom and number of measured

modes. Each case used 100 different initial conditions. From this simulation, it would

seem that the uniqueness condition for this system is given by mn> 6 with the additional

condition that n > 1. Additional care would have to be exercised with noisy data for some

of the cases due to poor conditioning. For the case with two nmasurcd degrees-of-freedom

and 3 modes (ran = 6), the condition number for the matrix is of order 1013 and for the

case of three measured degrees-of-freedom and two modes, the condition number is of order

105. Even though these cases satisfy the criterion for uniqueness, with 'real' data, they

would be almost impossible to solve. As with any identification problem, great care should

be exercised in ensuring that the experimental data has as little as possible noise and no

bias, and, given unbiased data, the more data, the better.
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Frequency Response Functions

A method of analysis based upon frequency response flmctions, promises a greater amount

of data to work with than for techniques based on modal properties. As well as providing

more data, an advantage of working with frequency response functions is that the process

of determining modal properties is avoided; hence, the errors that would be introduced

in this process are also avoided. In other words, the frequency response function data is

more 'pure' than modal data. The only way to work with data that is even more 'pure'

would be to work with the time response data directly; the data storage requirements for

this would probably be prohibitive.

Consider the undamped, steady-state, forced response equation of motion with the forcing

function being sinusoidal at w tad/see:

+ I,'] {x} = {f} (23)

where M is the mass matrix, K is the stiffness matrix, {x} is a vector of response am-

plitudes and {f} a vector of input force amplitudes. As was done previously, it will be

assumed that the masses are known and that the unknowns arc the actual stiffness prop-

erties (as opposed to the stiffness matrix as a whole). Equation(23) can be re-written

as

(24)

For the two degree-of-freedom system represented in figure (3), the left-hand-side of Eq.(24)

would be written as

[/,:1+k2 -/_:2] {xli}-k2 k2 x2i
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which may be re-written as

0 --xli + x2i ;2 j
(25)

leading to the solution for {k} being given by

{k}= x.' ({y,}+ M,_ {x,}) (26)

Measurements for additional frequencies can be incorporated as follows:

'XI,I _1,1 -- X2,1

0 -xl,l + x2,1

Xl,2 Xl,2 -- X2, 2

0 -z_,2 + x2,_

xx,2 xl,2 - x2,2

0 -xl,2 + x2,2

fl ,1

f2,1

f1,2

f2,_

• +

fl ,N

f2,N

Xl, 1 '

X2,1

Xl,2

X2,2

XI,N

, X2,N ,

(27)

x (_:}= (f} + [M,.,'] (.} (28)

giving

(k} = x+ ((S} + [M,,'] I_}) (29)

The above example is easily extended to incorporate additional degrees of freedom•
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An important considerationwhen dealing with frequencyresponsefunction data is that

data collected at different frequenciescannot necessarilybc consideredindependent. The

concept of linear independenceof frequencyresponsefunction data and its effecton the

condition number of the matrix X, as defined in Eq.(28), is illustrated in figure (4).

I015

i..,

..,=e

0

1012

10 v

10_

103

J

0.3 !.5 2.5 ' i ' '10° 0 3 3 5 4 4.5 5

Frequency Spacing (rad/sec)

Figure (4) Condition number for the matrix X, as &'fined in Eq.(28), for

simulated frequency response function data collected at five frequencies where

both the lowest frequency saml)lcd and the frequency spacing, are given oil the

horizontal axis.

The results presented in figure (4) are the condition numbers of tile matrix X for simulated,

noise-free, data for five sampled frequencies spaced by the amounts given on the x-axis.

As can be seen, when the data are closely spaced, the condition number is very high,

it then reduces as the data become more linearly independent. There is no requirement

that all of the sampled data bc linearly independent, but, the more linearly independent

measurements taken, the more robust the solution should be. It should be noted that the

most informative frequency spacing will bc very problem dependent.
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The previousexamplesof analysisusingfrequencyresponsefunctions were basedon the

assumption that measurements were taken at all tile degrees of freedom present in the

analytic model; now to examine the analysis involved when this is not the case, ie. tile

case involving non-linear solution. As for the modal case, a sensitivity approach to the

non-linear solution of the design parameters may be written as

{A} = [S] {AD} (30)

where {A} is still a vector of differences betwcen experimental and analytically derived

data, IS] is a sensitivity matrix, and {AD} is a vector of approximate changes in stiffness

parameters to account for the differences in experi,ne,ltal and analytic data. For frequency

response functions, eqn(30) takes the form

{,xzl}

{Ax.}

0Am/ 0_tin/
ODt OD2 "'" ODL

OD1 ...... ODe

{AD,} }

{ADs}

{AD,}

(31)

Determining the sensitivity matrix for frequency response flmctions is a more difficult

proposition than that for modal parameters. Once again, the sensitivities may be approx-

imated by perturbation, but this would require the inversion of a n x n matrix (where n is

the order of the analytic model) L x n times for each iteration (where L is the ,mmber of

para, nctcrs to bc dctcrmincd aad n. is the ,mmbcr of sensors); impractical for most cases.

An approximation to the receptancc sensitivity has been developed by Brandon (1987)

who showed that

0[_( w, )1 _ _ [(_(wi )] [A Z(w, )] [a(wi )] ( 32 )
OD i

where [tr(wi)] is the inverse of the dynamic stiffness matrix [K-w_M] and [AZ(wi)l is

called the 'dynamic stiffness error matrix' [(AZ(wi)l = [AK]- w 2 [AM]. Tile response

18



vector sensitivities may then simply be determined by multiplying 0[or(w)]/ODj by the

force input vector. The advantage of this method over the perturbation method, is that the

inversion required to create [_(w)] only need be done once for each frequency step rather

than for every design variable for every frequency step. He (1993) shows that the accuracy

of Eq.(32) reduces as the fi'equency approaches a resonance and concludes that sensitivity

analysis using such an approach will be more successfid if data around anti-resonances are

used and data near resonances discarded.

From the perspective of measurement noise, rather than analytical errors, Ren and Beards

(1993) state that experimental data in tile vicinity of resonances should not be used because

of higher measurement sensitivities to small changes in frequency in these regions.

Now, to compare the non-linear solution process using modal, and then frequency response

function data and examine how worthwhile it is to attempt to solve for parameters using

sensitivity methods, let us investigate simulated data for the two degree-of-freedom system

shown in figure (3). For the ease where there are two unknowns to be determined by a

non-linear method of solution, a visual understanding of how sensitivity techniques work,

can be gained by plotting the residuals against variation in each of the two parameters to

be determined. First, let us examine the residuals for modal data being given by

\
i=1

(33)

where the subscript E denotes experimental data (here, noise-free simulated experimental

data) and A denotes analytically determined data (note: the differences in the eigenvectors

only use data from the second degree-of-freedom because the cigenvector data has becn

scaled with the amplitude of the first freedom being one). The residuals over the range of

kl = 3 to 13Nm and k2 = 1 to 11Nm are shown in figure (5).

19



100 0

Figure (5) Surface plot of the log of 7"2, as defined in eqn(33), for

k] ranging from 3 to 13 Nm and _r_ from 1 to 11 Nm with the actual

solution being at kl = 8 Nm and k2 = 6 Nm.

A sensitivity method of solution can be thought of as placing a ball on tile surface shown
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in figure (5) at the co-ordinates of the initial estimates for kl and k2, and letting the

ball roll; the ball will stop rolling when it falls into a low region (if this region is the

lowest on the surface, then it has found the global minimum and, hence, the solution to

the problem). The surface shown in figure (5) would seem to be ideal for such a solution

process; a ball placed almost anywhere on this surface is likely to end up in the global

minimum. Therefore, with such data, the solution is likely to be quite robust and relatively

independent of initial conditions.

Now, we examine the same surface for the frequency response function with measurements

at both degrees-of-freedom for five fiequency points spaced 0.5 rad/sec apart. Here, the

residuals are given by

3=1 i=1

.(34)

The plot of this surface over tile same range of k's as that shown for tile modal residuals, is

presented in figure (6). Clearly, this system will not be as insensitive to initial conditions

as the case for modal analysis. The situation is even worse if we take measurements at

more frequencies c.f. figure (7) where data was simulated as being collected at seven

frequencies spaced 0.4 rad/sec apart. It must be remembered that the example shown

here is for a two degree-of-freedom system; for higher order models, the situation would

be much worse. These results show that for frequency response function data, sensitivity

methods will not be robust with respect to initial estimates; this is unfortunate because

such methods can be particulary efficient in s,)lving non-lin_'ar problems. For the types

of surfaces shown in figures (6) & (7), other non-linear al)I)roaches such as random walks

or genetic algorithms (Larson and Zimmerman (1993)) would have to t)e applied; such

methods, for a significant number of unknowns, can become unwichly. Ren and Beards

(1993) found similar problems with convergence and concluded that frequency selection and

the imposition of wcightings is of the utmost importance in attempting to gain convergence,

it is also suggested that random selection of frequencies can aid convergence; this suggests

that sensitivity approaches lose much of their appeal and the techniques suggested in Rcn

and Beards (1993) are not far removed from approaches such as random walks. Link

and Zhang (1992), working with incomplete experimental data, found that a non-linear
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teelmiquebasedon frequency response functions was much more sensitive to measurement

noise than was a method based on measured modal parameters.
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Figure (6) Surface plot of tile log of r2, as defined in Eq.(34), for 5

frequency points spaced 0.5 rad/sec apart and for kl ranging from 3 to 13

Nm and k2 from 1 to 11 Nm with the a ctuM solution being at kl = 8 Nm

and k2 = 6 Nm (note: the large spikes arise from a measurement point in

the simulation being almost exactly on a resonance)
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Figure (7) Surface plot of the log of )'2, as defined ix_ Eq.(34), for 7

frequency points spaced 0.4 rad/sec apart and for kl ranging fi'om 3 to 13

Nm and k2 from 1 to 11 Nm with the actual solution being at kl = 8 Nm

and k2 = 6 Nm (note: the large spikes arise from a measurement point in

the simulation being almost exactly oil a resonance)
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These results suggest that non-linear tectmiques will not be very successful when frequency

response function data is used; for this reason, it is probably best to further explore tile

possibilities of linear methods of solution wilen using such data. The reason for attempt-

ing non-linear techniques is because tile measured degrees-of-freedom are incomplete with

respect to the analytical model, in order to attempt a linear solution, either the experi-

mental data must be expanded to encompass all of the analytic degrees-of-freedom, or, the

analytic model reduced to the measured degrees-of-freedom.

Model Reduction Techniques

The aim of any model reduction process is to, as closely as possible, represent the behaviour

of the more complete model in the reduced model. With fewer degrees-of-freedom in" the

reduced model, there will naturally be fewer natural frequencies, but the aim is that these

represented frequencies be as close as possible to the corresponding frequencies in the full

model. There are four commonly used techniques used to reduce an analytic model to the

measured degrees-ohfreedom; these are:

i. Guyan Reduction (Guyan, 1965)

ii. Improved Reduction System (IRS) (O'Callahan, 1989)

iii. Modal (Kammer, 1987)

iv. Hybrid (Kammer, 1987)

The most commonly used (and oldest) process is Guyan reduction. For such a reduction

process, the stiffness matrix is re-ordered and partitioned such that the desired degrees-oh

freedom (in this case, those degrees-of-freedom where measurements are carried out) are

partitioned from the omitted degrees-of-freedom, as follows for tile stiffness matrix:

[Kl{x}= KL Koo
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The reduction transformation can be written as

{z. } = [TI {x.}Xa
(36)

For Guyan reduction, tile transformation matrix is given by

[Tlc,= [ I- KooKS] (37)

(Note: Guyan reduction is also known as static condensation because the transformation

matrix [T]G is a fnnction only of the stiffness matrix). Applying this transformation to

the stiffness matrix gives [KG], the Guyan reduced stiffness matrix as

[I¢c1 = [K..]- [K.ol [Koo]-' [K.o] T (38)

Applying Guyan reduction to tile mass matrix, where the mass matrix is partitioned as

[M.. M.o] (39)[MI= M5 Moo

gives

[MGI= [M..] - [K.ol [Koo]-' [M.olr - [^Lol [ICool-'[K.o]T

+ [K.ol [K_o'][Mool[Koo]-I [IGolT

+
(40)

Guyan reduction is based on the assumption that there are no forces on the omitted

degrees-of-freedom. When the situatkm involves dynamics, forces in the form of incrtias
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will arise at the omitted degrees-of-freedomif there is any inertia associatedwith these

degrees-of-freedom.As can be seenin Eq.(40), if the omitted degrees-of-freedomhaveno

mass,then the reducedmatrix is exact.

O'Callahan (1989)developedthe Improved ReducedSystem(IRS) to include terms which

approximate the effectsof tile removedmasses.Tile IRS transformation matrix is given

by

[T]IRS= [T]G + [Tli.rt (41)

where the inertial transformation matrix [T]i,r t is given by

ITl_,,,t = -[Koo]-' ([Mo.I + [Moo] [TIG)[M,,,.]-' [K,,,.I (42)

Kammer (1987) developed both the Modal and Hybrid methods which use the full analyt-

ical mode shaI)('s to estimate the motion of the omitted degrees-of-freedom. The transfor-

mation matrix for the modal method is given by

[TlMod = ¢o [¢_'¢,,]-' ¢_' (43)

and that for the Hybrid method is given by

[Tl,,yb [TIG + ([TlMod [Tlc)[¢I[¢]T T= -- [TlMod [MI [T]Moa (44)

where [M] is the full analytic mass matrix and [6] is the fi,ll order eigenvector matrix.

In an attempt to assess both the accuracy and robustness of these reduction techniques,
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Tan (1993)carried out an analysison a 10-baytruss which had beenusedfor substructure

modal testing at NASA LaRC. This structure wasinitially reducedusingGuyan reduction,

but, given that it wasa truss structure with largely evenlydistributed mass,this did not

provide satisfactory results (the retained degrees-of-freedomaccountedfor only 5% of tile

total mass). Ttle accuracyof the method wasdefinedby the ability of the reducedmodel

to match tile full FEM mode shapesand frequencies.The robustnesswasdefinedby the

ability to provide reliable cross-orthogonality (analytical vs test) and self orthogonality

(test vstest). Tile Guyan reducedsystcmshowedpoor accuracy,but accptablerobustness.

The overall accuracyof the IRS wasa great improvementover that for the Guyan reduced

results; the robustnessalso improved. Both the Modal and Hybrid methods gave highly

accurateresults, which shouldnot be surprising given that they areeffectively basedon a

modal synthesisof the full FEM. Both methods, however,performed considerablyworse,
where robustnesswas concerned, than either the Guyan or IRS methods. Tan (1993)

makesthe point that the robustnessof the Modal and Hybrid methods is very dci_cndcnt

upon the accuracyof the original FEM which a-priori is an unknowu and that as a result,

use of such reduction methods for model verification may produce misleading results. The

same reasoning applies to methods which expand the experimental data to the anMytical

degrees of freedom based upon the analytical model (Larsson and Sas (1992) and Nalitoela

(1993)) (note: this is not necessarily the case for problems involving damage detection, as

will be discussed later).

It has been demonstrated by Gordis (1992) that a condition for IRS to be accurate and

robust is that there be minimum overlap between the cigenwllues of the iucludcd and

omitted degrees-of-freedom, where the omitted eigrnwllues art found f,'om the system

[Moo] -_ [Koo]. Comparing this to the requirement for Guyan reduction, it is likely that

this criterion would be met by including as much of the mass as possible i,1 the included

degrees-of-freedom. In an analogous study to that of Gordis (1992), Larsson and Sas (1992),

showed that, when working with frequency response flmctions, the useful frequency range

for mea.surements is for frequencies below the lowest eigenvaluc fou,id when all of the

retained degrees-of-freedom are grounded.

It is important to note that once a ,nodcl has undergone one of these reduction processcs,

the system matrices bcco,ne flllly populated, thereby rcquiri,lg that, for the stiffness matrix
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for example, r, x u parameters be determined in any identification process (where u is tile

order of tile reduced model). Lin (1993), argues that degree-of-freedom reductions should

be carried out in such a way that tile bandedness (hence, tile physical connectivity) of the

system matrices be maintained. Such a reduction may be carried out in a number of ways:

the first being that standard finite-elements be used to replace a larger group of elements,

effectively continuing tile type of approximation made in creating the original FEM; a

second method, would be to apply one of tile previously described reduction processes to a

group of elements creating a 'super-element'-; such 'super-elements' mny then be combined

to create an over-all reduced model. The first method will obviously have greater sparsity

than the second, but the second will still be considerably more sparse than the fully reduced

model. The appeal of this, is that there are far fewer unknown parameters to be determined

and that some physical meaning may be associated with the updated parameters. Lin

(1993) shows that such a reduction process is successful for the fairly simple case of a 102

degree-of-freedom beam model reduced to a 52 degree-of-freedom model by exami'ning the

first 10 modes. This is clearly not a very rigorous test. It would seem that considerable

analysis would have to be carried out on any structure in question before an assessment

could be made of how successful such techniques would be.

Improving Experimental Data

As has already been mentioned, one of the largest problems when working with modal

experimental data, is the scarcity of data. This can be partly ow_'rcome by collecting

data with perturbed boundary conditions (Barney ct al (1992), Li and Brown (1992) and

Lammens et a1(1993)). For perturbed boundary condition testing, data is collected for

different configurations of essentially the same structure; each configuration has either

known mass or stiffness changes made to the structure. Each set of experimental data will,

therefore, be diffcrent, but the number of unknowns will remain the same. As frequency

response function data at adjacent spectral lines will not be very linearly independent,

perturbed boundary condition data where the changes to the structure do not result in

sufficiently significant changes to the measured modes will not give very independent data,

thereby giving a solution that is not as robust as one where the data were independent. For
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such testing, pre-test finite-element analysis would be of the utmost value when determining

optimum structural changes.

Another possible means of improving data collection is to use a full-field optical technique

to perform measurements. Recent availability of tools for full-field laser-doppler imaging

has made this a possibility (Oliver (1988) and Sriram et al (1991)). Such devices scan

over the structure being tcsted and give an area plot of the normal velocities. The velocity

data is typically correlated such.that only.the velocities at tha.frequo_ncy oLloading are

displayed. This would present the problem of too much data, in that there would be

likely to be experimental data for more points than there arc degrees-of-freedom in the

model. Thereby, offering tile choice of using only the data at the points of interest, or,

using interpolation routines to smooth the data prior to analysis. There is likely to be

sufficient data such that tile potential for bias by a well chosen interpolation routine would

be small. Another significant advantage to such a technique is that it uses only on6 sedsor,

so different calibrations are not an issue and the likelihood of sensor malfunction during

the course of testing is greatly reduced. Also, being non-contacting, it is suitable for very

light structures where the placement of sensors may significantly alter the experimental

results. Such a technique could be potentially very useful for orbiting structures.

Damage Detection

The potential for dynamic data to detect and quantify structural damage has been a driving

force for much of the FEM updating work. Most of the work in this field h,'_s been carried

out in the field of space structures (eg. Kashangaki et al (1992) and I(aouk and Zimmerman

(1993)). For such structures, damage detection would be of immense importance in that

dynamic measurements could, potentially, bc used to locate and quantify damage before

a hazardous and cxpcnsive repair process is instituted.

The problem of damage detection is, in niany ways, the same as the model updating

problem; however, there are some important differences. When examining the model

updating problem for a truss structure, assumptions may be made about identical elements,
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thereby greatly reducing the number of unknownsto be found. For the damagedetection

case, the properties of each element must be treated as being unknown. It has been

said previously that experimental data expansionusing the analytic model is dangerous

becausethe assumptionsmadein tile modelling cangreatly bias the results; whenworking

on a damagedetection problem, this may not be the case. Beforecarrying out a damage

detection analysis, it is assumedthat a 'valid' finite-element model exists. The aim of the

damagedetection processis, essentially,to determinewhere differencesfrom this original

model occur. Given that such an.original model must J)e assumed-to be 'v_ali(l',data

expansionbasedon this model shouldbe acceptable.

An important consideration for damagedetection in truss structures hasbeenhighlighted

by Doebling et al (1993). It was fomadthat a damagedetection algorithm which worked

satisfactorily for the caseof a.cantilevered truss, lind much lesssuccessin identifying

damagein a fi'ee-freetruss. The problem seemsto stem from the increasedsignifiq£nce

of local modes in the lower modal frequenciesfor the free-freecaseas opposed to the
cantileveredcasedue to the effectsof localizedmassesin the strucrture examined.Earlier

studieswith cantileveredstructures by I_ashangakiet al (1992)and Smith and McGowan

(1989) have been able to consider the changesbrought about by damage to the global

modesas 'frequency shifts'; for the free-fi'eecase,however,the changesto the local modes

cannot be viewed as a 'shift' in the sensethat the effect on the local modesis large. It

has been mentioned before that the damagedetection caseinvolves looking for change

from a previously validated model and that that modelmay bc usedfor experimentaldata

expansion purposes;when the damageis too much, from the perspectiveof the change

in the dynamic behaviour, then suchmethods will not lyevalid. It would implicitly be

possibleto showthat damagehasoccurred,but to identify that damagewould require that

the model identification processbc started fi'om scratch. This would bca very difficult

identification if there wasno a-priori knowledgeal)out the location of the damage.
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Summary

It hasbeendemonstratedhow the number of unknownsin a model updating processcan

be reduced to a minimum if the actual finite-element properties, rather than the mass

or stiffness matrices as a whole, are treated as unknowns. This implicitly accepts the

assumptionsmade in the finite-clement process,but should allow tile updated model to

be modified with greater confidcnccin the results. It should also indicate where errors

are being made in the initial modelling process.For example, if the updated model still

doesnot adequatelyrcflcct the bchaviour of the truc structure, it may indicate insufficient

finite-clcment density in an important region.

The issue of uniquenessfor non-linear solution methods involving modal data has been

investigated. By example, it hasbeendcmonstrated that the criteria for uniquen6ss given

by a number of previous workers is incorrect. A numerical simulation of the non-linear

solution process with randomly generated initial conditions, suggests that, for the case

studied, the criteria for uniqueness arc that mn> L and n > 1 (where m is the number of

measured modes, n is the number of measured degrees-of-freedom and L is the number of

unknown parameters). It must be noted that this is not intended to be a rigorous proof

and was simply an exercise in attempting to determine where the truth may lie.

For linear problems, the amount of data. offered by frequency response function data should

make the use of such data superior to modal data for model updating. The appeal of the

amount of data offered by frequency response flmctions, however, is grcatly diminished if

a non-linear method of solution is required. It is suggested that, rather than attempt such

a non-linear solution, either the modal properties be extracted and a non-linear solution

be then attempted with thcsc new data, or that the model be reduced to the number of

measured degrees-of-freedom. The availability of new measurement technologies (such ,as

laser-doppler vibrometry) should allow the collection of data at more locations than has

previously been routinely available. This opens the possibility for measurements to be

carried out at all degrees-of-freedom represented in the finite-element model (rotational

degrees-of-freedom would have to bc inferred from translational measurements). With

complete measurements, direct, linear, solution techniques couhl bc used to create the
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physical parametersof a finite-element model given the geometry. Measurementsfor a

range of frequenciesshould give considerablerobustnessto the solution. New measure-

ment technologieswould seemto offer a very powerful tool in the finite-element updating

problem.

On the subject of limited modal data: literature has been reviewedconcerninghow the

amount of such data can be increased by testing a structure in different configurations,

where the difference between each configuration is accurately known.

Model updating for tile purposes of damage detection in truss structures has been, very

briefly, discussed.
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