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Abstract

The Personnel Launch System (PLS) being studied by NASA is

a system to complement the Space Shuttle and provide alternative

access to space. The PLS consists of a manned spacecraft launched

by an expendable launch vehicle (ELV). A candidate for the manned

spacecraft is the HL-20 lifting body. In the event of an ELV malfune-

tion during the initial portion of the ascent trajectory, the HL-20 will

separate from the rocket and perform an unpowcred return-to-launch-

site (RTLS) abort. This work details an investigation, using optimal

control theory, of the RTLS abort scenario. The objective of the op-

timization was to maximize final altitude. With final altitude as the

cost function, the feasibility of an RTLS abort at different times dur-

ing the ascent was determined. The method of differential inclusions

was used to determine the optimal state trajectories, and the optimal

controls were then calculated from the optimal states and state rates.

1. Introduction

NASA is currently studying concepts for a new

generation of manned space vehicles. This system
is known as the Personnel Launch System (PLS).

One design under consideration is a lifting body des-

ignated the HL-20 (fig. 1), which would be placed
in orbit by an expendable launch vehicle (ELV) like

the Titan III. The HL-20 is similar to previous lift-

ing body vehicles that NASA has studied, such as
the HL-10, the Martin Marietta X-24A, and the

Northrop M2-F2 (ref. 1).

An HL-20 mission would begin with a vertical
launch into low Earth orbit.. It. is assumed that

the launch site would be the Keimedy Space Center

(KSC) at Cape Canaveral, Florida. Once in orbit.,

the HL-20 will carry out such primary duties as a

space station crew transfer or satellite repair. When
returning to Earth, the vehicle will reenter the atmo-

sphere and glide to a horizontal landing in a manner

similar to the Space Shuttle orbiter.

1.1. Description of Abort Scenarios

One area of study for the HL-2() mission is that

of aborts during the ascent phase. Five abort Inodes

were investigated in references 2 and 3. These are

(1) on the pad, (2) return to launch site (RTLS),
(3) ocean landing by parachute, (4) transatlantic

abort landing (TAL), and (5) abort to orbit (ATO).

A description of these abort scenarios follows.

On-the-pad aborts would occur when a problem
is detected with the booster while the HL-20 is

mounted on top of the ELV at the launch pad. This
would necessitate that the crew be removed a safe

distance from the rocket in a short period of time.

This abort would begin by firing a solid rocket, motor

(SRM) to remove the HL-20 from the ELV, and then
the HL-20 would glide to the Cape Canaveral Air

Force Station (CCAFS) skid strip or to the KSC

Shuttle Landing Facility for a horizontal landing.

hnmediately after launch and until 20 see into

the ascent phase, the vehicle could perform an RTLS

abort to the Shuttle Landing Facility. Between 20
and 64 sec the vehicle could glide back to the CCAFS

skid strip. The RTLS abort to the skid strip will be
examined in detail in this paper. Figure 2 shows the

locations of Pad 40, the skid strip, aim the Shuttle

Landing Facility at KSC.

Between 65 and 430 see the abort option would

be to parachute to an ocean landing. Beginning at
430 sec the vehicle could perform a TAL at one of

the current Space Shuttle orbiter emergency landing
sites. An ATO would be chosen from 490 to 510 sec.

1.2. Optimal Control Theory

The proMem of (tetermining the feasibility of an
RTLS abort at some time during the Titan III/

HL-20 ascent phase is essentially that of an aerospace

vehicle perfornfing a minimum energy glide and turn

through the atmosphere to a point above a runway,
meeting some final boundary conditions, and satis-

fying some state and control equality and inequality

constraints during the nmneuver. Optimal control

theory has been applied to the problem of hypersonic

glide in reference 4. Chern and Vinh considered the
problem of maximum downrange distance and other
cost functions for both fiat Earth and spherical Earth

models. They investigated the optimal control prob-

lein by using the calculus of variations approach to
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derive the first-order necessary conditions for opti-

mality described in reference 5. For each problem

considered, the assumption of constant Mach number

was made in reference 4. Much of the work dealt with

two-dinmnsional cases; the three-dinmnsional ca._es

investigated were maxinmm cross-range distance and

footprint calculation.

1.3. Purpose of Work

The use of optimal control theory applied to an

RTLS problem could determine the ultimate RTLS

performance of the HL-20, whereas the application

of a simulation tool with less optimization capability

lifting body.

nmy not. In the actual RTLS problem, the vehicle

must be flown back to a point at. which it can safely

make the designated runway. To apply optimal

control theory to the RTLS prot)lem, however, careful

thought must be given to the choice of a suitable

cost function. In this work, final altitude was chosen

as tile (:()st flmction. A solution to this optimal

control problem will determine the feasibility of an

RTLS abort, but will not deternfine the actual RTLS

trajectory to bc flown (except in two causes the

earliest and latest times at which an RTLS abort is

possible).

In section 2 the HL-20 vehicle is described in de-

tail and the aerodynamic, atmospheric, and dynamic

models are presented. Section 3 introduces the con-

cept of the hodograph, or state rate space. The solu-

tion method and its application to the HL-20 RTLS

problem in two and three dimensions is discussed in

this section. In section 4 results are presented for the

feasible RTLS aborts along the a.scent trajectory.

2. Vehicle and Model Description

2.1. Vehicle Description

A three-view drawing of the HL-20 vehicle is

shown in figure 1, which depicts the seven control

surfaces of the HL-20: rudder, two upper body flaps,

two lower body flaps, and two wing flaps. The

2



surfacedeflectionlimits for thecontrolsurfacesare
asfollows:-t-30° tk)rthe wingflaps,0° to +60 ° for

the lower body faps, and -60 ° to 0 ° R)r the upper

body flaps. A positive surface deflection is taken

as trailing edge down for tile wing and body flaps.

In this investigation, the effect of the rudder was

ignored.

Table I gives geometrical and physical parame-

ters of the HL-20. The HL-20 is assumed to have

an empty weight of 22932 lb and 2948 lb fuel for

tile Orbital Maneuvering System (OMS) fl)r a total

weight of the HL-20 at lift off of 25 880 lb. The cen-

ter of gravity (cg) location fl)r the empty vehicle is

55.5 percent of the vehicle length l (where 0 percent

would represent the nose) and the eg location for the

vehicle with flfll OMS fuel is 57.5 percent. It is as-

sumed in this study that an abort would occur with

a full load of OMS fuel.

Tabh: I. HL-20 Physical Parameters

Vehicle length I, ft ............... 27.31

Span h, ft .................... 13.89

Wing area Sref, ft 2 .............. 286.15

Empty weight IV, lb .............. 22 932

OMS fuel weight II'OMS, lb ............ 2918

cg location (empty) :rcg, percenl .......... 55.5

cg location (fltll) .r¢.g, percenl ............ 57.5

2.2. Aerodynamics

The aerodynanfic data for the HL-20 was taken

fl'om reference 6. Coefficients for cubic polynomial

expressions for drag coefficient CD, lift. coefficient CL,

and moment coefficient CM for the basic vehicle (con-

trol surfaces undefleeted) are given as functions of

angle of attack a, at various Mach numbers M. The

aerodynamic coefficients were given for a ranging

from -2 ° to 16 ° (and sometimes higher) aim for ;1I

ranging from 0.3 to 4.0. Plots of CD and CL against (t

for several values of 1_I are shown in figures 3 and 4.

Reference 6 also provides coefficients for cubic poly-

nomials for increments in CD, CL, and CM due to

the control surface deflections b as a function of c_ for

several values of _ and M.

It is important that the vehicle be flown within

its trim envelope. Since the vehicle uses the body

and wing flaps to accomplish this, it is probable

that at some flight conditions a unique configuration

of surface deflections to trim the vehicle would not

exist. Therefore, in order to obtain trim CD and

trim CL vahles as functions of c, and M, a nonlinear

parameter optimization problem was formulated that

.5
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Figure 3. Basic Iti,-20 vehicle drag coetfMent.
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Figure 1. B_sic HL-20 vchMe lilt coctficicnt.

at every combination of (_ and kl, would minimize

the total drag coefficient CD.7" of the vehicle while

also trimming the vehicle. The independent variables

that wouhl accomplish this were the upper body flap

deflection 6u, lower body flap deflection _/, and the

wing flap deflection _5,,.

Tile problem is to minimize the cost function

.J = CD, T = CD,V q- 2ACI),, + 2ACI).t + 2ACD.,. (2.1)

over the parameters 6u, 6t, and 6,:, where CD,I." is

the basic (control surfaces undeflected) vehicle drag,

and ACD,u, ACD,I, and ACD, e are the increments

3



to thetotal dragcoefficientdueto tile deflectionsof
the upperbody flaps, lowerbody flaps,and wing
flaps,respectively.Eachincrementalcontribution
is doubled,sinceincrementsto the coefficientsare
givenfor the rigig or left componentsof a control
surfacethat is assumedto act symmetrically(left
andright flapsdeflectequally).Thetrim condition
to besatisfiedis

OM,r+(CL•l, COS,_-I - CD, r sina:)(:rc_ - 3"ref) 0 (2.2)

where, in a similar fashion as CD,T,

CL,T = CL,V + 2ACL,, + 2ACL,I + 2ACL,e (2.3)

CM3' = CM,V + 2ACM., + 2ACM,t + 2ACM,e (2.4)

and Xrd is the location of the nlonlent reference

center from reference 6 and is equal to 54.0 percent.

The center of gravity location meg for this problem

was for flfll OMS fuel. (See table I.) Tile basic vehicle

acrodynanfic coefficients arc fimctions of a and M,

and the incrcnwnts of the coefficients are functions

of _, _[, and surface deflection.

This nonlinear programming problem was solved

at all wdues of (, and M for which data is given

froIn reference 6. Tile code NPSOL (ref. 7), a set of

Fortran subroutines that minimize a fimction subject

to linear and nonlinear constraints and bomlds on tile

t)aramcters, was used to solve the nonlinear t)rogram-

ruing problem. Solutions were obtained through the

full range of _ (-2 ° to 16 °) at all Math numbers

except t.6, 2.0, and 2.5. Table II smnmarizes the

results of the above t)arametcr optimization prob-

lem, presenting maximum triIn a, and maximum and

nlininmm trim C L. The minimum trim CL occurred

for each Math number at _t = -2 ° . Figure 5 plots

Table 1I. Maximum "IYim _ and C L

M

0.3

.6

.8

.9

.!t5

1.1

1.2

1.6

2,0

2.5

3.0

3.5

1.0

++n,ax. deg

16.0

16.0 .7009

16.0 .7285

16.0 .7.187

16.0 .7.191

16.0 .6574

16.0 •6288

9.1 .2537

10.6 •2643

12./) .2477

16.0 .3895

16.0 .3592

16.1) .3-122

(?L,nlax C L,min

0.6628 -0.2045

-.2340

.2949

-. 1950

-.3357

-, 1906

.2106

-.0838

-.0737

-.0658

-.0530

-.0489

-.0457

4

the nliniinunl and maximum trim C L vahles against

Mach number.

CL .2

o
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-- Max trim CL
---- MintrimC L

/
,/

s
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M

Figure 5. Minimum and maxinmm trim C L.

Once values of trim CD and C L were determined

for all possible values of a and M, a curve-fit of the

fornl

C D = CD,O(.]I)+CD,I(._I)CL +CD,2(a.l)C 2 (2.5)

was made at each value of 51. The values of CD,O,

CD,1, and CD, 2 are displayed in table III an(t plotted

in figures 6, 7, and 8. To determine these coefficients

at Mach immbers other than those in the table, a

spline routine is used.

Table III. Coefficients for ('l) Expression

M

0.3

.6

.8

.9

.95

1.1

1.2

1.6

2.0

2.5

3.0

3.5

4.0

CD,0

0•0,138

.0473 -.0169

•0.'191 -.0151

•0788 .1014

.0756 .0240

•16,10 .1605

•1534 .0771

•1494 .0098

.1410 .0625

.1270 .0266

.1167 -.0499

.1101 -.0325

.1080 .0121

CD.1 CD.2

--0.0200 0.3263

.3783

A171

.5310

.4636

.7288

,6507

.8535

.3606

.6474

.9923

1.0738

1.0992
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2.3. Atmospheric and Gravitational Model

With the 1962 U.S. Standard Atmosphere (ref. 8)
as a reference, an exponential curve-fit was made

to density p in tile altitude range h from sea level
to 150000 ft. The sea level density value P0 of the

exponential model matched the standard atmosphere

model. The model is given by

p = po e-;_h (2.6)

A cubic polynomial was fit to the standard atmo-

sphere variation of speed of sound a with altitude.
This model is of the form

a = ao + alh + a2 h2 + a3 ha (2.7)

1.1

1.0

.9

.8

CD,2 .7

.6

.5

.4

.3

Figure 8. CD. 2

I I I I I I I I

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

M

second-order coefficient for Ct).

An inverse square gravitational model was used of
the form

(2.q= g0 ?_

where R E is the radius of the Earth and go is the
sea level gravity. The coefficients and parameters for

equations (2.6), (2.7), and (2.8) are given in table IV.

Table IV. Parameters for Atmospheric and

Gravitational Models

P0, slug/ft 3 ............... 2.3769 x 10 -3

i'_, ft ,-[ ................. 3.6000 x 10 -5

a0, ft/sec ................ 1.1235 x 103

"1, sec I ............... -5.7923 x 10 a

a2, ft ]-sec -1 .............. 6.2641 x 10 s

aa,'ft '2-see-1 ............. -1.7708 x 10 13

90, ft/see2 ................ 3.2174 x 101

R_.:, ft .................. 2.0926 x 107

2.4. Dynamic Model

The equations of motion for a point mass, non-

thrusting aerospace vehicle over a spherical, non-
rotating planet may be defined with six states. These

states are altitude h, longitude 0, latitude A, ve-

locity V, flight path angle 7, and heading _. The

governing equations of motion are (ref. 4)

/z = V sin 7 (2.9)

V cos _ cos _p (2.10)
r COS )k

V cos _/sin 0
(2.11)



I) D- 9 sin
Ill

_= mvC°S_ V cos

(2.12)

(2.13)

(2.14)
. L V

4' - sin cr - -- cos _t cos g: tail A
mV cos "7 r

where r= RE + h, m is tile vehicle mass, D is the

drag three, L is tile lift force, and o is the bank angle.
The heading angle is zero for due east flight and
increases in a counterclockwise direction. Figure 2

shows a heading cylinder with different values of f:
corresponding to different flight directions. From the

back of the vehicle, the bank angle cr is zero when

the lift. vector points directly upward, and increases
as the lift vector rotates counterclockwise from the

vertical. The lift and drag forces are given by

"' (2.15)L = pSref_' 2C L

1

D = 2PSrefV2CD (2.16)

where Sr_¢ is the total wing area of the HL-20.

Ill the time between the latmch and the con>

mencement of an RTLS abort, the vehicle distance

from the landing strip is small compared with the
radius of the Earth. Also, the maximum speed tim

w, hicle attains during an RTLS abort is much smaller

than orbital velocity. These two conditions lead to

the use of the sinq)ler ttat Earth equations of Inotion:

]'_ = V sin ") (2.17)

:i: = V cos "ycos _,', (2.18)

//= V cos _tsin _.') (2.19)

f: _ D gsin7 (2.20)
Ht

L 9
;? = nti_ cosa - _7 cos7 (2.21)

• L
---- - sin c_ (2.22)

mV cos 7

In this system, longitude and latitude have been

replaced with flat Earth Cartesian coordinates x

and y. The origin of the x-y system is a point on the

extended skid strip centerline, 10 725 ft southeast of
the skid strip threshold. Tile x-axis points east and

the y-axis north. The location and orientation of this

coordinate system is sllown in figure 2.

Tile controls for this problein are the lift coeffi-

cient CL and the bank angle or, which together spec-
ie" tile magnitude and direction of the aerodynamic
lift vector.

3. Hodograph Analysis and Solution

Method

In this section optimal control theory and the con-

cept of the hodograph are discussed. The hodograph
leads directly to the concept of tile set of attain-

ability and to tile method of differential inclusions,

which is used to solve the optilnal control problems

presented in this work. A two-dimensional maxi-
mum final altitude problem is presented, and the so-

lution method as applied to this problem is discussed.
This discussion is then extended to a problem in

three dimensions representing the HL-20 RTLS abort

t)roblenl.

3.1. Optimal Control Theory

A general optimal control problem involves filM-

ing the control fimction u(t) that maximizes a scalar
cost function

,I- (p[x(t f )] (3.1)

subject to the differential constraints

:k(t) = f[x(t), u(t)] (to <_ t < t f) (3.2)

where x E R _' is the state vector, u C R" is the

control vector, and t is the time. Assume free final

time tf for this problem. Some of tim states at the

initial and final times, to and t f, may be given in the
forln

qJ [x(t0), x(tf)] = 0 (3.3)

In addition, there may be control and state equality

arid inequality constraints of the form

g[x(t), u(t)] = 0 (3.4)

h[x(t), u(t)] < 0 (3.5)

c[x(t_=0 (3.6)

d[x(t)] _< 0 (3.7)

Equations (3.1) (3.7) constitute an optimal control
problenl. For a derivation of tile necessary conditions

that nmst be satisfied for u({) to be a solution of the

above prot)lem, see reference 5.

3.2. The Hodograph and the Set of

Attainability

The notation of reference 9 is adopted to discuss

the hodograph. For a set. of states x, the hodograph,

or state-rate space, is defined as the set of all possible



staterates± that canbeachievedbyvaryingtile con-
trolswithin their permissiblelimits. Thehodograph
canberepresentedby

S(x) = {5¢ C R" Ix: = f(x, u), u E $_(x)} (3.8)

where [_(x) is tile set of adnfissil)le controls:

l'_(x) = {u • Rmlg(x, u) = 0, h(x, u) <_ 0} (3.9)

Tile controls can then be thought of as an instrument

for parameterizing tile hodograph. The optimal state
history and optimal cost associated with the optimal

control t)roblenl defined in equations (3.1) (3.7) will

be unchanged if the control vector is replaced by any
other set of variables (with the appropriate control

constraint functions, ('(t s. (3.4) and (3.5)), so long as

the hodograt)h remains unchanged.

As described in reference 9, it is assumed that

the controls can be expressed in terms of the states
an(t state rates so that there are smooth filnctions p

and q such that the hodograph can t)e rewritten a.s

S(x) = {5c • R"lp(Sc, x) = 0, q(5c, x)<_ 0} (3.10)

The information from equations (3.8) an(t (3.9) has

been combined into equation (3.10) and the hodo-

graph has been ext)ressed entirely ill terms of states
and state rates, with no controls present. The pres-

ence of the inequality constraints q in equation (3. l 0)

implies that the state rates can take on values within

tile range of permissible state rates as deterinined by,
the admissible controls. Therefore, instead of speci-

fying the value of the state rates as in a differential
equation, we choose the state rates from among their

permissible values. This is the concept of differential
inclusions.

Now define, the set of attainability K(to, x0; t l) as

tile set of all states to which the state vector x0 at t0

can be steered to at time tl by varying the controls

through the a dnfissible range. The set of attain-

ability has a direct relationship to the hodograph

and, for a small enough time step, can t)e approx-
ilnated to first order by using the ho(tograph. Let

At be the slnall time step and let tl=t0+At.

Approximate the set of attainal)ility by

K(t0,x0; t_)={x • R"lx = x0 + At. S(x0)} (3.11)

"When At is small enough, it can be seen that the

states at neighboring times are related by the ho(h)-

graph and the set. of attainability concepts. In an

optimal control problem, the states must t)e chosen
to maximize the cost fimction J, and neighboring

states must lie within the set. of attainability ms de-

termined by, the state rates and the time step. Tile

range of state rate vahms is deternfined by the ad-
missible controls. If a first-order approximation to

the state rates is made using the values of tile states

at two nodal points, the problem has been reduced
to a dctermination of the optimal states only, with

constraints specifying the set of attainability.

3.3. Numerical Approach

Subdivide the time interval, which, without h)ss

of generality, is a.ssumed to be t • [0, 1] into N

equal subintervals. Then the N + 1 holies call be

represented t)y
i

ti -- -- (3.12)
N

where i = 0, 1,2,..., N. Let the vector X t)e of length

n. (N + 1) representing the state vector x at the
nodes, where x • R _. The ()ptimization t)r()t)lem
is now to find the vector X that will minimize the

cost funet ion

J = 0[x(tx) ] (3.13)

subject to the t)oundary conditions

qJ[x(t{}), x(t?+)] = 0 (3.14)

If the state rates are approximat('d t)y

X i -- Xi+l -- Xi (3.15)
At

an(t the states [)y

xi + Xi+l (3.16)
xi- 2

then the necessary ('onstraints are

p()¢i,Xi)= 0}q(x,, xJ _<0
(3.17)

where i = 0, 1, 2,...,N - 1. In equations (3.15)

(3.17), the simple Euler apt)roximation in equa-

tion (3.11) has been replaced t)y a more precise

midpoint rule.

The I)rot)lem has become one of finding the states
at the nodes that optimize tile cost function subject

to the boundary conditions and the equality and

inequality constraints p and q. These two constraint
vectors contain the dynamical infornmtion an(t must

be satisfied at the nfidpoint of each node. Ill other

words, a nonlinear progranuning t)rot)lenl must be

solved, where the I)arameters are the states at the
nodes. The co(te NPSOL was used to solve the

nonlinear pr()granmfing problem.
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3.4. HL-20 RTLS Abort--Hodograph

Analysis

Tile use of this solution method for the HL-20

RTLS abort problem defined in tim previous section
is now examined. For a solution of the optimal con-

trol problem to exist, it is required that the hodo-

graph be convex and that the optimal state rates be

on tile boundary of or within the hodograph. This

implies using inequality constraints to specify the
surface an(t interior of the hodograph. To explain

how this is done, the hodograph of a two-dimensional

nonthrusting aerospace vehicle over a flat Earth is ex-

amine(t. With this as a foundation, the concepts are
then extended to the full three-dimensional problem.

3.4.1. Two-dimensional ease. The optimal

RTLS at)ort problem in two or three dimensions is to
maximize the cost flmction

J = h(tf) (3.18)

or, equivalently, to minimize the cost fimction

J = -h(tf) (3.19)

Tim equations of motion for the two-dimensional case
arc

/'z = V sin 7 (3.20)

:i" = V cos7 (3.21)

_ _ pV2SCD
2m g sin 7 (3.22)

PV,_CL g
") -- 2m V cos'y (3.23)

where h, x, V, and "_ are defined as in section 2. The

one control in this case is CL, and CD is again given
by

CD = CD. 0 + CD,IC L -{- CD,2C2L (3.24)

It is a.ssumcd that CL is bounded 1)y

0 __ C L < CL,ma x (3.25)

Now select permissible values of the four states

and determine the state rates from equations (3.20)

(3.23) ms the control CL varies throughout its ad-

nfissible region given by equation (3.25). The re-
sult is a two-dimensional hodograph. Since the

equations for /_ and k are independent of the con-

trol, the hodograph in the h,5: space is a single
point whose coordinates are given by equations (3.20)

and (3.21).
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Figure 9 shows a drag polar as given by equa-

tion (3.24). If CD and CL from (3.22) and (3.23) are
determined as

(v
CD -- pV2-S \ + 9 sin (3.26)

and
2m g

cos ?) (3.27)= +
then it is seen that the hodograph in the V, "_ space is

similar to the drag polar in the CL, CD space but it is

scaled and shifted. Equation (3.24) is the boundary
of the two-dimensional hodograph.

°I /
CD, max L" / / " " / "

F/l/l/l//
I////////
r///////
V/////_
I/ / / // ,I/

G v/ / // /i

oo-b,5 s ")'/
C . __ /

D, rn,n

t
I

GL, max G L

Figure 9. Drag polar (two-dimensional hodograph).

As stated previously, the optimal state rates must

lie on the surface of, or within, this hodograph or

drag polar. This requires that for some value of CL,

the value of CD, given by equation (3.26), nmst be

greater than or equal to the value of CD on the drag
polar, given by equation (3.24), or

2,, (V+gsin_)> CD,o+CD, ICL +C1),2C_ (3.28)
pV'2 S - .

where CL is given by equation (3.27). Since C L is

bounded, this implies an upper limit to C D. Adding
a constraint on the upper limit of CD implies that it is

necessary to search for the optimal state rates in the
shaded region of figure 9. To do this, the constraint

2m (V + gsin T) < CD,max
pV2S

(3.29)

where CD,ma x is given by

2 (3.30)CD,ma x = CD, 0 -}- CD,1CL,ma x + CD,2CL,ma x

is needed. Although the physics of this aerospace
problem suggests that equation (3.28) should actu-

ally be an equality, the convexity condition of the



hodographtells us that an inequalityconstraintis
equivalent.

TheparameteroptimizationproMemnmstthere-
foresatisfytheequalityconstraints

Jz - V sin'y = 0 (3.31)

2 - Veos7 = 0 (3.32)

and the inequality constraints of equations (3.28)

and (3.29). After the optimal states have been
found from the nonlirmar programnfing problem, the

control CL can be found from equation (3.27). For
the two-dimensional case, the size of tile equality

constraint vector p is 2 (eqs. (3.31) and (3.32)), and
the size of the inequality constraint vector q is 2

(eqs. (3.28) and (3.29)).

3.4.2. Three-dimensional case. Now" this

analysis is extended to tile three-dinmnsiolml case.
The cost filnction for this case will remain the same
as for the two-dimensional case. In a similar fashion

to equations (3.31) and (3.32), the differential equa-
tions for" altitude, downrange distance, and cross-

range distance (h, x, and g) lead to the three equality
constraints that nnlst be satisfied

/'_ - V sin 7 = 0 (3.33)

5: - I/cos 7 cos 0 = 0 (3.34)

//- V cos')sin g_ = 0 (3.35)

To determine the necessary hodograph irlequal-

ity constraints, the two-dimensional hodograph is ro-

tated about the vertical, or CD, axis. This three-

dimensional hodograph is shown in figure 10. The
rotated drag polar ill the C L cos el, CL sill or, and CD

space is similar to the hodograph ill the _z, ,},

and '_ space, since

_ 2,,,( cos )
C L sin (_ pVS

2m (. g )CLcoscy= _ _+ _cos7 (3.37)

2m (ty + gsinT) (3.38)
C D - flV2S

Once again, the hodograph in tile I7, "_, and _) space

is a scaled and translated version of the rotated drag

polar in the CL cos a, C L sin a, and CD space.

Note that since the two-dimensional drag polar

is not symmetric about the CD axis (because of the

a×

//
CLsin

C D

_'_'__ CLCOS o

Figure 1(1. Rotated drag polar (three-dinmnsional hodograph).

linear CD, 1 term) the rotated three-dimensional drag
polar is not convex. It carl be seen that the minirnum

value of CD(CD,min) is less than CD,O, and so the bot-
tom of the three-dimensional hodograph appears to

t)e pushed upward into the interior of the convex hull
of the hodograph. The three-dimensional hodograph

couht t)e made convex by requiring that when C L is

less than the value of CL for CD,mi n (CLIcI),mi,,) then

C D = CD,mi n (3.39)

This flattens out tile hodograph at the bottom and

is known as relaxing the problem. For a discussion

of the convex hull of the hodograph and relaxing an

optimal control prot)lem, see reference 10. It was
found that it was not necessary to relax the problem

because the optimal vahles of CL, as determined from

thc optimal states and state rates, showed that C L is

always larger than CLICD,mi,,.

To calculate the controls for the three-dilnensional

case, it is seen from equations (3.36) and (3.37) that

the bank angle c_ can be expressed as

(_ cos 7
tanc, = (3.40)

+ + (v/V)eos'r

and the lift coefficient can he expressed as

2rn f/;, "_2 + _,(a/
9

CL- pVSV\--'I' _cosT_/ + _ cosTj 2
(3.41)

Equation (3.41) is similar to equation (3.27) but with
a term to reflect the heading rate.

To restrict our search for the optimal state rates

to the boundary or interior of the rotated drag polar,

9



TableV.TrajectoryConditionsandAbortInitialConditionsat30Sec

Altitude,ft..............
Vek)city,ft/sec...........
Latitude,(leg............
Longitude, (leg ...........

Flight path angle, deg ........

Azimuth, deg ............

Trajectory conditions Abort initial conditions

1.07025576 x 10 4

8.04746952 x 10 2

2.84006296 x 1()l

2.79,128431 x 1(12

7.11376!)32 x 101

9.16395039 x 101

2.77408551 x 104

1.01506581 × 10a

2.84001727 x 101

2.79445672 x 102
6.49159663 x 101

9.19469374 x 101

tile same two inequality constraints as in the two-

(timensional problem are needed, equations (3.28)

and (3.29). Tile lift coefficient CL is now given

by equation (3.411 and not equation (3.27). So for
the three-dimensional case, the size of the equality

constraint vector p is 3 (eqs. (3.33) (3.351), and the
size of the inequality constraint vector q is again 2.

For each abort case considered, NPSOL was

used to solve the nonlinear programming problem
with 41 nodes. This resulted in a problem with

247 (6 x 41 + l) independent variables representing

the states at each node and the final time, 212
(5 x 40 + 12) constraints representing tile 5 hodo-

graph constraints that must be satisfied at the mid-

t)oint of each interval, 6 initial state I)oundary con-

ditions, 5 fiiml state 1)oundary conditions, and a
parameter representing the free final time. Tile num-

ber of hodograph constraints will be ext)lained in the
next section. The difference in the state histories be-

tween converged cases with 41 nodes and 101 nodes

was examined and found to t)c insignificant; so in the

interest of computational tiine, 41 nodes were used
in all cases.

4. Results

In this section, the launch profile of the HL-20
vehMe boosted by a Titan III launch vehicle is

first discussed. Then the mechanism for ELV/
HL-20 separation is briefly described. Initial and fi-

nal conditions for an RTLS abort are given, and re-
sults for RTLS aborts at three times along the ascent

trajectory are presented.

4.1. Ascent Launch Profile

Throughout the investigation it is assumed that

the HL-20 is delivered to orbit by a Titan III rocket.

The ascent trajectory of this Titan III/HL-20 com-

bination is given in reference 3. This ascent trajec-
tory was determined from abort considerations for

all t)ortions of the trajectory. Only that portion of
the ascent trajectory during which the HL-20 can

safely return to the launch site is of interest in this

investigation.
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4.2. Separation Mechanism

Reference 3 describes the mechanism for separat-
ing the HL-20 from the Titan III. There are two sets

of four SRM's to perform the separation. For RTLS

aborts, four primary abort SRM's burn for 3.5 sec
with a combined thrust of 248 800 lb. This is followed

by four sustainer abort SRM's of 33 000 lb combined

thrust burning for 12.5 sec. These solid rocket motors

are required to get the HL-20 away from an explod-

ing ELV. It is assumed that the OMS engines do not
fire during the separation or during the RTLS abort
glide back to the runway.

When an at)ort at time t = T se(: is (tiscussed, it is
understood that the initial abort conditions are the

conditions at time T along the ascent trajectory, fol-

lowed by the prinmry SRM's burn, followed by the

sustainer SRM's burn (when possible). The initial
conditions for an abort at time T along the ascent

trajectory will then be tile conditions at time T, fol-

lowed by the 3.5-see burn of the prinmry SRM, fop
lowed by the 12.5-see sustainer SRM burn. Tile pri-

mary and sustainer SRM burns are assumed to occur
for all abort cases except when noted otherwise.

4.a. Initial and Final Boundary
Conditions

To understand the effect of the SRM burns on the

HL-20 position and velocity, two flight conditions for
the vehicle are t)resented in table V. The second col-

umn shows the conditions at T = 30 sec along the
lmmch trajectory. The third column shows the condi-
tions that would result if an RTLS abort commenced

at T = 30 scc after launch (when the vehicle had the

conditions given in the second column) with the two
SRM burns. The SRM's have the primary effect of

increasing the vehicle altitude and velocity. The po-

sition and heading do not change significantly dur-
ing the firing of the SRM's for this case. As the

ascent trajectory flattens out, however, the position

is increasingly affected by the SRM burns.

The initial conditions for aborts beginning at

times from 15 to 65 see along the launch trajectory



Table VI. RTI, S Ab()rt Initial State Boundary Conditions

Time,
see

15.0 1.8745648 x 104

20.0 1.9542422 x 10 4

25.0 2.3134577 x 104

30.0 2.7740855 x 104

35.0 3.3599490 x 104

40.0 4.0475148 × 104

45.0 4.7865123 x 104

50.0 5.5686139 x 104

55.0 6.4005911 x 104

60.0 5.0263039 x 104

65.0 5.8047153 x 104

h, ft x, ft y, ft V, ft/sec ¢,, (leg

-5.7470680 x 103

-1.4644223 x 104

-9.1229215 x 103

-6.3246933 x 103

-3.2577126 x 103

6.3,i78304 x 102

6.0726763 x 103

1.2990810 x 104

2.1276190 x 104

1.2722135 x 104

2.0051551 x 10'1

4.5283500 x 104

4.5599964 x 104

4.5412128 x 104

4.5323737 x 104

4.5222760 x 1(14

,1.5090776 x 104

4.4902247 x 104

,1.4656591 x 104

4.4355667 x 104

4.4203290 x 104

4.1405061 x 104

1.0011717 x

9.2742651 x

9.663580q x

1.0150658 x

1.1221,180 x

1.3057310 x

1.5278721 x

1.7782816 x

2.0602513 x

2.52751,12 x

2.778(1916 x

2, (leg

103 5.2205378 x

102 7.8466266 x

102 6.9053372 x

l03 6.4915966 x

l{)3 6.5218080 x

103 6.5236462 x

103 6.2192217 x

103 5.72853,16 x

103 5.27673;37 x

103 5.3469,127 x

103 5.0(}50729 x

101

101

101

101

1(}1

101

101

1(11

10 l

10 I

1()1

-1.9757279 x 1()°

-1.8261807 x 1()2

-1.9055671 x 10 [)

-1.9469374 x 10 a

1.9956142 x 10 °

-2.0383687 x 10 o

2.0711914 x l0 [)

-2.10,11202 x 10 o

-2.1,101928 x 10 °

-3.0684166 x l() [_

-2.0997139 x 10 [I

xlO 3
70 -

Sustainer SRM burn
50 -

No sustainer SRM burn

20 -

10 I I I I t I

0 20 30 40 50 60 70

Abort time, sec

Figure 11. Initial altitude for HL-20 RTLS abort.
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xl0 3
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Sustainer SRM burn
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"K

-10 [
-20 I I I I I I
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Abort time, sec

Figure 12. Initial x for HL-20 RTLS abort.
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>_

x 103
45.6

45.4

45.2

45.0

44.8

44.6

44.4

44.2

"k_o sustainer SRM burn\,
/

I L I I _ I

10 20 30 40 50 60 70

Abort lime, sec

Figure 13. Initial !I for HL-20 RTLS abort.

are given in table VI and also in figures 11 16. The
sustainer SRM's burn is not used for the 60- and

65-see cases because if they arc fired, the vehicle is
unable to return to the skid strip.

The final states are chosen as follows. In refer-

ence 3 a final altitude of 2000 ft and dynamic pressure
of 300 lb/ft 2 were targeted, where dynamic t)ressurc _/

is given by 0 = ½PV2. These values correspond to a
final velocity of 520.8 ft/sec. Although a different
final altitude will result from a solution of the opti-
mal control problem as posed, the same final velocity
was targeted. As in reference 3, a final _ of -19 ° was
used.

The final location above the ground corresponded
to a point on the extended centerline of the skid
strip runway 31, displaced 10 725 ft to the southeast
of the mmway threshold. Since this point does not
change for any of the cases examined, the origin of the

x-y system was placed here so that x(tf) = y(tf) = 0.
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Figure 16. Initial heading angle fl)r HL-20 RTLS abort.

Figure 1.1. Initial velocity for HL-20 RTLS abort. Table VII. RTLS Abort Final State Boundary Conditions

80 -

75 -

/_ No sustainer
/ _ SRM burn

10 20 30 40 50 60

Abort time, sec

Figure 15. Initial flight path angle for HL-2(} RTI,S abort.

70 -
3D

m 65 -

o-

..¢:
60 -

c

55 -

I

70

In latitude and longitude coordinates, this point

is A(tf)= 28016'33 `' and O(tf)= 279°27'55 ". At
lifts final point the vehicle shouht be lined up with
the runway so it should have a final heading an-

gle of _',(tf)= -220.7 °. These final conditions are
summarized in table VII.

A solution to the optimal control problem as

posed will result in a trajectory that, in most cases,

ends at. an altitude well above the skid strip. It

is assumed that some control logic exists that can

steer the vehicle to any altitude lower than the max-

imum tinal altitude, while also meeting the terminal

x, ft ....................... (}.0

y, ft ....................... (}.0

V, ft/sec .................... 520.8

% deg ..................... -19.0

_,, deg .................... 22{).7

boundary conditions. Therefore, using final altitude

as a cost function will determine the fea.sibility of

an RTLS abort and will not determine the actual

trajectory that should be flown back to the runway

(except in two cases the times of earliest and latest

ahorts, when the vehicle will be above the final point

with only enough altitude to reach the skid strip and

flare).

4.4. Results of RTLS Aborts

There will be some final critical altitude at the

final (x, y) location below which the vehicle cannot

glide back to the runway. The final altitude that was

targeted in reference 3, h(tf) = 2000 It, will be used

for this critical altitude. If the final optimal altitude

is greater than this, under the assulnption from

the t)revious section, it is assumed that a successflfl

landing following an RTLS abort is possible.

It was found that the vehicle could make it back

to the skid strip between 15 sec and 65 sec into

the launch. No data was available for the time

before 15 sec. At 70 sec, the vehicle is too far from

the skid strip to return and would have to land in

the ocean by deploying a parachute.
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The cost function (final altitude) is shown in
figure 17 plotted against the time along the launch

trajectory at which an abort procedure is initiated.

It is seen that the final altitude in all cases is greater

than the critical altitude of 2000 ft, which suggests

that in all cases an abort is possible.

40

35

30

25
0_

g
20

"15

10

xl0 3

0 I
10 70

Sus'a'ner /<1
/ No sustainer SRM burn _

Critical altitude

I I I I I
20 30 40 50 60

Abort time, sec

Figure 17. Cost function versus abort time.

Tile 15-, 30-, and 65-sec cases are now examined

in detail. Figures 18 29 show the states and controls
for RTLS aborts at these times. When states for an

RTLS problem are plotted against time, t = 0 refers

to the moment when the final SRM's (primary or

sustainer) have ceased firing.

Figure 18 shows that the final altitudes were
11200 ft, 17700 ft, and 11300 ft for the 15-, 30-,

and 65-see abort cases, respectively. Making the
assumption that a control logic exists to steer the

vehicle to 2000 ft if the final optimal altitude is

greater than this, it is seen that in each case there

is some altitude margin at the final point, and an
RTLS abort is possible at 15, 30, and 65 sec into the
launch.

Each abort case exhibits the same characteristic

of trading velocity for altitude to reach some max-

imum altitude, and then continually losing altitude
for the rest of the trajectory (fig. 18). It can be seen
that the initial altitude increases as the launch time

increases from 15 to 30 to 65 sec as the ELV/HL-20

climbs on its ascent trajectory. The 65-sec case is
seen to have a much longer time of flight than the

other two cases (280 sec compared to 120 see).

The ground track of the three cases shows the
eastward travel of the ELV as it ascends from 15

130

110

9O

70

50

3O

10

103
p

* \

-- / \

/ \

- / \

I' \

\

.... 15-sec case
--30-sec case
.... 65-see case

I I "

50 100

\

\

\

J i T---

150 200 250

Time, see

I

300

Figure 18. Altitude versus time for 15-, 30-, and 65-see aborts.

y, tt

50 103

40 _ _"''._ \

30 • \

\

20 ------15-see case \

--30-sec case "\

.... 65-sec case X10

0 _ /"/'

-10 I I I I I I I x104
-2 0 2 4 6 8 10 12

x. ft

Figure 19. Ground track for 15-, 30-, and 65-sec aborts.

to 30 to 65 sec, and also shows that the 65-sec case

has a much longer ground track than the other two

cases (fig. 19), as would be expected from the much

longer time of flight. All cases end up at the origin
of the coordinate system heading in a northwesterly
direction as desired.

The velocity and Mach number profiles in fig-

ures 20 and 21 show that initial velocity and Mach
number increase as the launch time increases from 15

to 30 to 65 sec. They also show that for each case the

velocity initially decreases as the vehicle climbs, and
that after it reaches its maximum altitude the vehi-

cle picks up speed as it dives. In the 65-see abort
case, the vehicle starts supersonic, becomes subsonic

during its climb, then becomes supersonic again dur-

ing the dive, and finally ends at a subsonic veloc-

ity. The final velocity in each case is the desired

V(tf) = 520.8 ft/sec.

13
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The characteristics of climbing and losing speed

and diving and gaining speed call also be seen in the

flight path angle histories (fig. 22), which also show
that the ascent trajectory is flattening out (decreas-

ing 7(t0)) as the ELV climbs from 30 to 65 sec. Oscil-

lations are apparent in the flight path angle history,
and in the 65-see case the vehicle reaches a maximum

negative 3' of nearly -80 ° . The final flight path angle

in each case is the desired ?(t f) = -19 °.

The heading history for each case shows nearly

easterly flight along the ascent trajectory and a final

heading aligned with the runway. It is also seen that

in each case the vehicle wants to turn to the right (de-
creasing ,_0) for the entire duration of the trajectory,
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ending in each case at the desired _(tf) = -220.7 °
(fig. 23).

If the vehicle energy per unit mass, or specific

energy, is defined as

V 2

E = _- + g(h)h (4.1)

the energy profiles (fig. 24) show that initial energy

increases along the ascent trajectory and that final
energy, with final velocity fixed, exhibits the same
characteristic as final altitude for the three cases.
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That is, just as h(tf) for the 30-see abort case is

greater than h(tf) for the 65-sec case, which is greater

than h(tf) for the 15-see case, so is E(tf) for the
30-see case greater than E(tf) for the 65-see case,

which is greater than E(tf) for the 15-see case.

Dynamic pressure histories for the three cases are
shown in figure 25. The maxinmln dynamic pres-

sure tImax occurs in each case at the initial time

when the velocity is greatest. The vehicle dynamic
pressure decreases immediately as the vehicle gains

altitude and loses speed. When the vehicle reaches

its maximum altitude and has lost a large portion
of its initial speed, the dynamic pressure decreases

to a point where the aerodynamic control surfaces

may no longer be effective. To maintain control sur-

face authority in this region, it. may be necessary

to impose a minimum dynainic pressure constraint.
This becomes more important when the maxinmm
altitude achieved for each abort case becomes in-

creasingly greater and dynamic pressure becomes
correspondingly smaller.

The normal and axial load factors, a X and ax, are
defined for small a as

= L/w (4.2)

ax = D/W (4.3)

and shown in figures 26 and 27. The load factors

do not present a problem in the 15- and 30-see abort

cases. During the 65-see case however, on the pullout

froin the "_ =-80 ° dive, the load factors increase
to 4.2 and 2.5 for the normal and axial directions,

respectively. A constraint on the load factors can be

imposed should these vahles be considered too large.

The reason for the high load factors can be seen

from a plot of the required lift coefficient (fig. 28)

calculated from the states and state rates (eq. (3.41)).

For the 65-see abort case, a spike in the CL history

occurs at the pullout of the (live, resulting directly in
the normal load factor spike and, indirectly through

drag coefficient., resulting in the axial load factor

spike.

Figure 29 shows bank angle histories for the three
cases. It is seen that for the 15- and 30-see cases

inverted flight is desired (o < -90 °) at the begiIming
of the trajectory, with the remainder of the trajectory

flying upright. For the 65-see case however, the

vehicle begins upright, flies inverted for a time, and
then ends upright with a significant portion of time

spent flying with a bank angle of nearly 0°.

The vehicle could fly the initial portion of tim 15-

and 30-see trajectories inverted with positive lift. or

upright with negative lift. It is assumed that when
the lift vector is directed downward, the vehicle will

fly inverted. Since there is a linear term in the CD

expression, the value of CD for values of CL with

equal magnitude but opposite sign will not be equal.

In fact, since CD, 1 is negative at most Mach numbers
(except for M = 1.6, 2.0, and 2.5 see table III),

then CD for a positive value of CL is less than CD for

a negative value of CL with equal magnitude. Flying
inverted with positive lift will result in lower drag

than flying upright with negative lift of the same

magnitude.

As stated previously, some altitude margin exists
for the 15- and 65-see abort cases. Since data were

15
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not available for the time before 15 sec, it is not

known if an abort of this type is possible. However,

applying the work in reference 11, which involved

RTLS aborts to the skid strip runway 13 from the

launch pad (i.e., abort time of 0 sec), the assumption

can be made that RTLS aborts to the skid strip are

possible at any time before 15 sec. The latest time

an abort is possible would be slightly after 65 sec

(but before 70 sec, since an abort was not possible

at this point because of the distance of the vehicle

from the skid strip). At all the times for which

initial conditions are given in the tables, RTLS aborts
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were also possible, but the data are not shown here,

since the 15-, 30-, and 65-sec cases are considered

representative of all the cases.

5. Concluding Remarks

This work has applied optimal control theory

to the problem of determining the feasibility of an

return-to-launch-site (RTLS) abort of an HL-20 ve-

hicle carried into orbit by a Titan III expendable

launch vehicle (ELV). The trajectories that resulted,

in which final altitude near the runway was maxi-

mized, were not the trajectories the HL-20 would fol-

low to return to the skid strip at Cape Canaveral Air



ForceStation.Althoughtheproblemof determining
the actualRTLSabort trajectoryis alsoof interest
forthetrajectoryplanner,thatwasnotcoveredhere.

It wasfoundthat for an HL-20launchedfrom
KennedySpaceCenter(KSC)pad40,RTLSaborts
couldbeperformedto runway31of the KSCskid
stripbetweenthelaunchtimesof 15secand65sec,
afterwhich,thoughthevehicleenergyhasincreased,
thevehicleis too far awayto glideback.

Maximizingfinalaltitudewith finalvelocityfixed
is nearlythe sameproblemasmaximizingfinalen-
ergy (or minimizingenergyloss). The minimum
energylossproblemhasapplicationin the calcula-
tionof themaximumachievablegroundcoverage,or
footprint,of a reentryvehicleor theabortpathsof
vehiclessuchasthe NationalAero-SpacePlane.

Additional future work in the areaof optimal
RTLSabortscouldinvolveshapingthe ascenttra-
jectoryof an ELVto maximizethe amountof time
duringwhichan RTLSabort couldbe performed.
Theuseof theorbital maneuveringsystemengines
duringtheabortphaseandaddingguidancelogicto
theprimaryandsustainersolidrocketmotorburns
couldalsobe investigated.

NASALangleyResearchCenter
Hampton,VA23681-0001

April 21, 1994
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