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ABSTRACT 

Three copper systems with relevance to materials technology are discussed. In the fIrst, a CuS 
precursor, Cll4SlO(4-methylpyridine)4 (4-MePy), was prepared by three routes: reaction of CU2S, 
reaction of CuBr·SMe2 and oxidation of copper powder with excess sulfur in 4-methylpyridine by 
sulfur. In the second, copper powder was found to react with excess thiourea (H2NC(S)NH2) in 
4-methylpyrldine to produce thiocyanate (NCS-) complexes. Three isolated and characterized 
compounds are: Cu(NCS)(4-MePyh, a polymer, [4-MePy·H][Cu(NCSh(4-MePyh], a salt, and 
t-Cu(NCSh(4-MePY)4. Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and 
Ga in N-methylimidazole (N-MeIm) resulted in the synthesis of a Cu-containing polymer, 
CU(S04)(N-MeIm). The structures are presented; the chemistry will be briefly discussed in the 
context of preparation and processing of copper-containing materials for aerosp~ce applications. 

INTRODUCTION 

The chemical and physical properties of copper have resulted in its use going back to ancient 
times [1]. Current technological applications include thin-films of the metal in electronics [2], use 
of sulfides and mixed-metal chalcogenides in photovoltaics [3], and as a component of the 
recently-discovered high-temperature ceramic superconductors [4]. All three of these technologies 
offer research opportunities for chemists and materials scientists involved in materials fabrication 
and processing. 

Due to the critical importance of copper as an interconnect metal in microelectronics, there has 
been an international effort to produce selective chemical vapor deposition (CVD) precursors [5-8]. 
Also, the lack of a simple, effective dry etch for copper has resulted in a large effort to understand 
mechanisms for copper etching in heterogeneous systems [9-12]. Other areas of active chemi~al 
research relevant to copper include: the search for precursors for copper-containing materials such 
as CuInQ2, (Q = S or Se) [13,14] for thin-film photovoltaics; rare-earth, bismuth, and thallium 
ceramic superconductors, such as YBa2Cu3<>7-x, Bi2Sr2Ca2Cu208, and Tl2Ba2Ca2Cu3010 and 
related metal-doped compounds for numerous applications [15,16]; and the synthesis of catalysts 
for the chemical and petroleum industries [17]. In our efforts to prepare new copper-containing 
precursors for aerospace applications, we have discovered a number of new compounds and new 
chemistry. We highlight selected reaction chemistry and the relevant structures. 
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EXPERIMENTAL 

All operations of moisture- and air-sensitive materials were performed under an inert 
atmosphere using standard Schlenk techniques and a double-manifold vacuum line. Solids were 
manipulated in a Vacuum Atmospheres Co. drybox equipped with an HE-493 dri-train. Copper, 
thiourea (H2NC(S)NH2) and sulfur (Aldrich), and CuBre SMe2 (Alfa) were used without 
additional purification. The synthesis of [«CH3hChGa(J.1-SH)h is described in [18]. The 
instrumental details are given in [18]. 

RESULTS AND DISCUSSION 

In 1990, Rauchfuss et al. reported that the reaction of Cu with S8 in pyridine (C5H5N,Py), 
(1), produces the cluster C\l4SlO(Py)4-Py, where Py is a solvent of crystallization in the solid-state 
structure[20]. We report here that carrying out the reaction in 4-methylpyridine produces the 
cluster C\l4SlO(4-methylpyridine)4e4-methylpyridine (4-MePy) (1) whose C\l4SlO cluster unit is 
the same as that of the Rauchfuss compound. The 4-methylpyridine cluster (1) can also be 
prepared by other routes. In fact, compound (1) was first produced by the reaction of CU2S with 
excess'sulfur in 4-methylpyridine as shown in equation (2). It has also been prepared according to 
equation (3) in which CuBreSMe2 reacts with S8. The stucture of compound (1) was detennined 
by x-ray crystallography. The structure determination shows that this compound consists of two 
pentasulfide chains linking four Cu(I) ions each with a coordinating 4-methylpyridine and has 
approximate S4 symmetry. The structure of (1) is shown in figure 1. Selected structural 
parameters are given in table 1. 

4-Mepy 
CuD + S8 ---~) CU4SlO(4-MePY)4 (1) 

25°C 

4-Mepy 

CU2S + S8 ---4) C\l4SlO(4-MePY)4 (2) 

4-Mepy 
CuBr-SMe2 + S8 ---4) Cll4SlO(4-MePY)4 (3) 

250C 

Computer enhancement of a featureless electronic absorption spectrum yielded a single peak in 
the near ultraviolet (A. = 334 nm, e= 10,000), most likely an inttaligand transition [21]. Cyclic 
voltammetry indicates that (1) undergoes an irreversible oxidation and reduction at -0.25 and -
0.58 V vs. SCE, respectively, at 298K in 4-methylpyridine when swept at 20mV/sec. It is logical 
to conclude that oxidation takes place at the copper atoms, destabilizing tetrahedral geometry, 
leading to decomposition. Reduction is most likely to occur at the polysulfide ligands, leading to 
the decomposition of the cluster through the production of smaller Sx2- units. 

The compound seems to form quite readily in systems of Cu(l)-polysuJfide chemistry. Similar 
reaction conditions with other metals did not produce analogs of (1), but instead produced [M(N­
MeIm)6]Ss for M = Mg, Mn, Fe, and Ni, (N-MeIm) = N-methylimidazole (N(CH3)NC3H3) [22]. 
However, CU2S also served as a starting material for the production of the N-Melm analog of (1), 
(2) [22]. The pyridine analog of compound (1) was found to produce CuS quite readily at 200°C 
by Rauchfuss et al. [20]. Its facile formation but ease of decomposition seems to be a result of the 
metastability of Cu(l); even moderate temperatures, by solid-state processing standards.drives the 
redox chemistry of Cu+ and Sx2- to form CuS. 
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· ... 

Figure 1. - ORTEP drawings of compounds (1) - (5). The thermal ellipsoids enclose 50 % of 
electron density. Compounds are shown clockwise with (1) in upper left-hand corner .. 

TABLE 1. X-RAY DATA SUMMARY FOR COPPER COMPOUNDS· 

Compound (1) (2) (3) (4) (5) 
a, A 13.983 (2) 8.4138 (8) 14.656 (1) 16.070 (1) 9.0754 (6) 
b, A 15.384 (2) 5.8127 (7) 15.635 (2) 9.9729 (7) 
c, A 9.660 (1) 14.459 (2) 14.390 (1) 16.070 (1) 12.745 (2) 

a 93.87 (1)0 98.342 (9)° 

f3 93.38 (1)0 106.783 (9)° 112.886 (7)° 95.367 (9)° 

r 99.78 (1)° 114.153 (5)° 

V, ),.3 2037.9 (9) 677.0 (3) 3038.0 (1) 2381 (2) 1026.3 (4) 
Z 2 2 4 3 2 
form. weight 1040.42 g . 307.88 g 611.31 g 620.31 g 488.02 g 
space group Plbar (#2) P21 (#4) Cc (#9) R3 bar (#148) Plbar (#2) 
T -120°C -70°C 20°C -70°C 20°C 

A. 0.71069 0.71073 0.71073 0.71073 0.71073 

Peale, g/cm3 1.695 1.510 1.337 1.297 1.579 

J..L(Mo Ka.) 25.89 cm-! 17.49 cm- l 9.45 cm- l 8.29 cm-l 12.03 cm-l 

R(Fo)a 0.026 0.028 0.043 0.071 0.031 

Rw(Fo)b 0.036 0.037 0.053 0.090 0.038 

a R(Fo) = ~IIFol- IFcll/IIFol; b Rw(Fo) = [~wIFol-IFcl]2IkwIFoI2]ll2; w = 1/a2(1Fol). 
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Other copper and sulfur containing compounds were obtained when thiourea (H2NC(S)NH2) 
instead of S8 was reacted with copper metal. The reaction of copper powder with thiourea 
produced thiocyanate compounds, of which three were isolated and characterized. The three 
characterized products are: Cu(NCS)(4-MePyh (2), t-Cu(NCSh(4-MePY)4e(4-MePYh/3(H20)1/3 
(3), and [4-MePyeH)[Cu(NCS)3(4-MePyhl (4) figure 1. Compound (2) has been previously 
structurally characterized [23]. The formation of these compounds is a function of the ratio of 
thiourea to metal. Compounds (2) and (3) were isolated for a ratio of 2:1, (4), while (4) was 
isolated in a reaction with an 5: 1 ratio, equation (5). 

4-Mepy 4-Mepy 
---~) (2) + "0" ----t) (3) (4) 

140°C 

4-Mepy 
CuO + 5 H2NC(S)NH2 ----t) [4-MePyeH][Cu(NCS)3(4-MePy)2] (5) 

140°C 

The fIrst step in this reaction may be attack of thiourea of CuO (6) to produce hydrogen where 
thiourea acts like an acid on copper. The H2NC(S)NH- species can then rearrange to produce 
NCS- and NH3. As discussed above, highly basic solvents promote the reaction of metals with 
sulfur. Another process that is likely is an acid/base reaction of thiourea with the solvent followed 
by rearrangement to produce NH3 and NCS- (7). The reaction does not occur at room temperature 
in 4-MePy or in boiling Py. The presence of both NCS- and 4-MePy in the coordination sphere 
suggests a concerted reaction mechanism. A second oxidation step is indicated by the presence of 
two NCS- ligands around the Cu(I1) species, (3) and (4). 

4-Mepy 
---~) Cu+ + 1/2 H2 + H2NC(S)NH- (6) 

140°C 

4-Mepy 
---~) [4-MePyeH][NCS] + NH3 (7) 

140°C 

While (6) and (7) are reasonable proposed reactions, we have not as yet obtained direct 
evidence of hydrogen or NH3 formation. Work is currently underway to observe these by­
products. It should be noted that acidic solutions of thiourea are used to remove copper 
encrustations from boilers by dissolution of the copper materials. In this case the mechanism is 
acid solubilization of copper species with stabilization of Cu(l) species by thiourea [24]. Dry 
etching of Cu remains a challenge; 'Solution systems offer a low-cost alternative. 

Finally, an attempt to produce a mixed-metal sulfide precursor of Cu and Ga by reaction of 

CuBreSMe2 and [«CH3hChGa{J.t-SH)12in N-methylimidazole (N-MeJrn), reaction (8), resulted 
in the synthesis of a Cu-containing polymer, Cu(S04)(N-MeIm)4 (5), figure 1 and table 1. 

N-MeIm 
CuBreSMe2 + [«CH3hC)2Ga(Il-SH)12 + "O"---~) CU(S04)(N-Melm)4 (8) 

4 
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It is apparent that an oxidizing impurity led to the formation of the sulfate. Interestingly, this 
species has not been previously structurally characterized. We have previously observed similar 
chemistry. In an attempt to oxidize Cu powder with diphenyldisulfide in pyridine, the only 
isolable species that we characterized was CU(C6HSS03h(pY)4 (6) [25]. The presence of the 
phenyl ring in (6) precludes polymerization and results in isolated molecules in the solid-state 
structure. Compound (5) can also be compared to an analogous compoundCu(S04)(PY)4·H20 
that is polymeric but linked through hydrogen bonds through the sulfate groups [26]. A one­
dimensional structure such as (5) may have relevance for molecular magnets [27]. There are 
recent reports of InICu chalcogenide precursor molecules that were used to produce CuInQ2 (Q = S 
or Se), a material used in thin-film solar cells [13,14]. 

CONCLUSIONS 

In the process of investigating reactions of copper and its compounds with sources of sulfur 
for aerospace applications, we have observed some interesting new chemistry and obtained 
structural characterization of a number of the compounds produced. The structure determinations 
found that the nature and degree of linkage of the copper atoms of these precursor materials varies. 
One of the compounds has a cluster structure while another has a copper coordination unit linked in 
a polymeric chain. In a third compound, the Cu atoms of neighbors are associated through a weak 
CuNCS-Cu interaction. The remaining two compounds described have discrete molecular units 
containing a single Cu atom. The varying chemistries that we observed when reacting copper and 
low-valent copper compounds with sources of sulfur show that these systems are very sensitive to 
reaction conditions and are driven to produce Cu(II) species. This experience will hasten the 
discovery of useful materials precursors and processing for applications. 
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4. K.A. Muller and J.G. Bednorz, Science 237, 1133 (1987). 

5. A.E. Kaloyeros, A. Feng, J. Garhart, K.C. Brooks, S.K. Gosh, A.N. Saxena, and F. 
Leuthers, J. Electron. Mater. 19, 271 (1990). 

6. D.B. Beach, F.K. LeGoues, and C.K. Hu, Chem. Mater. 2, 216 (1990). 

7. H.K. Shin, K.M. Chi, M.J. Hampden-Smith, T.T. Kodas, J.D. Farr, and M. Paffett, 
Chern. Mater. 4,788 (1992). 

5 

It is apparent that an oxidizing impurity led to the formation of the sulfate. Interestingly, this 
species has not been previously structurally characterized. We have previously observed similar 
chemistry. In an attempt to oxidize Cu powder with diphenyldisulfide in pyridine, the only 
isolable species that we characterized was CU(C6HSS03h(pY)4 (6) [25]. The presence of the 
phenyl ring in (6) precludes polymerization and results in isolated molecules in the solid-state 
structure. Compound (5) can also be compared to an analogous compoundCu(S04)(PY)4·H20 
that is polymeric but linked through hydrogen bonds through the sulfate groups [26]. A one­
dimensional structure such as (5) may have relevance for molecular magnets [27]. There are 
recent reports of InICu chalcogenide precursor molecules that were used to produce CuInQ2 (Q = S 
or Se), a material used in thin-film solar cells [13,14]. 

CONCLUSIONS 

In the process of investigating reactions of copper and its compounds with sources of sulfur 
for aerospace applications, we have observed some interesting new chemistry and obtained 
structural characterization of a number of the compounds produced. The structure determinations 
found that the nature and degree of linkage of the copper atoms of these precursor materials varies. 
One of the compounds has a cluster structure while another has a copper coordination unit linked in 
a polymeric chain. In a third compound, the Cu atoms of neighbors are associated through a weak 
CuNCS-Cu interaction. The remaining two compounds described have discrete molecular units 
containing a single Cu atom. The varying chemistries that we observed when reacting copper and 
low-valent copper compounds with sources of sulfur show that these systems are very sensitive to 
reaction conditions and are driven to produce Cu(II) species. This experience will hasten the 
discovery of useful materials precursors and processing for applications. 
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