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Executive Summary
Real-time distributed systems for mission- and life-critical applications typically employ

processing sites of various levels of redundancy which communicate with one another as
well as with I/O devices by means of fault tolerant intercomputer and I/O networks. The
Charles Stark Draper Laboratory has developed and implemented a number of reconfig-
urable circuit-switched networks for input/output and intercomputer communication. Such
networks currently are considered fundamental building blocks for Draper designed dis-
tributed fault tolerant systems such as the Advanced Information Processing System
(AIPS). They appear as various I/O networks and as the Intercomputer (IC) network for
the AIPS system.

The design of a network for this type of mixed redundancy distributed system poses nu-
merous challenges. The following are the principal attributes desired in such an inter-com-
puter network:

Possess Theoretically Sound Basis for Fault Tolerance
Possess Capability for Mixed Redundancy
Support Independence between Network and Site Failures
Possess Flexibility and Expandability
Use Existing Standards
Support Heterogeneous ComputationalPlatforms
Support Heterogeneous Networks
Support Variable Integrity and SecurityRequirements

Current inter-computer architectures which support some of these attributes do so by
means of a tightly synchronous triple layer network where redundant copies of messages
are voted by receiving sites. This approach requires that there be some means for synchro-
nizing multiple media layers to one another as well as to the processing sites. Furthermore,
the multiple layers are used strictly for fault tolerance and cannot be used for bandwidth en-

hancement. The inherent limitations imposed by the theoretical requirements for system
which does not use authentication has made the implementation of the such a network
costly in terms of complexity and performance. Moreover, difficulties of communication
and fault identification in networks arise primarily because the sender of a transmission

cannot be identified with certainty, an intermediate node cancorrupt a message without cer-
tainty of detection, and a babbling node cannot be identified and silenced without lengthy
diagnosis and reconfiguration.

Authentication Protocols use digital signaturetechniques to verify the authenticityOfmes-
sages with high probability. Such protocols appear to provide an efficient solution to many
of these problems. The objective of this program is to develop, demonstrate, and evaluate
inter-computer communication architectures which employ authentication. As a context for
the evaluation, the authenticationprotocol-based communicationconcept was demonstrated
under this program by hosting a distributed, real-time, flight-critical Advanced Guidance,
Navigation, and Control (AGN&C) application on a distributed, heterogeneous, mixed re-
dtmdancy system of workstations and embedded fault tolerantcomputers.
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1. Introduction

Real-time distributedsystems for mission- andlife-criticalapplicationstypically employ
processing sites of variouslevels of redundancywhich communicatewith one anotheras

well as withI/O devices bymeansof fault tolerantintercomputerandI/O networks. Figure
1 is anabstractrepresentationof such a system.

Triplex
Single
Processor

Single
Processor Triplex

)
Single
Processor Duplex

Figure 1. GenericMixed-Redundancy Distributed System

The Charles Stark Draper Laboratory has developed and implemented a number of re-

configurable circuit-switched networks for input/output and intercomputer communication.

Such networks currently are considered fundamental building blocks for Draper designed

distributed fault tolerant systems such as the Advanced Information Processing System

(AIPS). They appear as various I/O networks and as the Intercomputer (IC) network for
the AIPS system.

The design of a network for this type of mixed redundancy distributed system poses nu-
merous challenges. The following are the principal attributes desired in such an inter-com-
puter network:

Possess Theoretically Sound Basis for Fault Tolerance - The network should sup-

port the theoretically sound basis for fault tolerance known as Byzantine resilience;

that is, the capability to operate correctly in the presence of a defined number of
arbitrary faults.
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Possess Capabilityfor Mixed Redundancy - The network should provide commu-

nication between sites of varying levels of redundancy without jeopardizing the

more reliable sites.

Support Independence between Network and Site Failures - Network and

site/processor failures should be independent of one another. Thus any number of

site failures (simplex, duplex, or triplex) should not affect communication between

non-failed sites. In addition, any single failure in the network should not prevent

non-faulty sites from communicating with one another nor should it affect the reli-

ability of communication between different sites.

Possess Flexibility and Expandability - The network should be expandable in terms

of adding additional sites regardless of redundancy level, adding additional fault

tolerance to the network or any site, and providing increased bandwidth. The net-

work should allow a simple interface for non-redundant sites and provide an inter,

face which is independent of the degree of synchronization within the redundant el-

ements of any single site.

Use Existing Standards - The network should make maximum use of existing in-

dustry and military standard network topologies, protocols, and physical media.

Support Heterogeneous Computational Platforms - The network should support

interoperability of disparate computational platforms (workstations, embedded

computers), operating systems (Unix, LynxOS, Ada Run Time Systems), and pro-

gramming languages (C, Ada).

•Support Heterogeneous Networks - The network should support interoperability of

disparate network topologies, protocols, and physical media, such as Ethernet,

FDDI, ATM, MIL-STD 1553,etc.

Support Variable Integrity and Security Requirements - The data integrity and se-

curity requirements supported by the network should range from data integrity but

no security in the presence of random malicious faults to data integrity and security

in the presence of crypto-malicous faults.

Current inter-computer architectures which support some of these attributes, such as the

AIPS system [Lala84][Lala87], do so by means of a tightly synchronous triple layer net-

work where redundant copies of messages are voted by receiving sites. This approach re-

quires that there be some means for synchronizing multiple media layers to one another as

well as to the processing sites. Furthermore, the multiple layers are used strictly for fault

tolerance and cannot be used for bandwidth enhancement. The inherent limitations imposed

by the theoretical requirements for system which does not use authentication has made the
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implementation of the such a network costly in terms of complexity and performance.

Moreover, difficulties of communication and fault identificationin networks ariseprimarily

because the sender of a transmission cannot be identified with certainty, an intermediate

node can corrupt a message without certainty of detection, and a babbling node cannot be

identified and silenced without lengthy diagnosis and reconfiguration.

Authentication Protocols use digital signature techniques to verify the authenticityof mes-

sages with high probability. Such protocols appear to provide an efficient solution to many
of these problems.

The purpose of this program is to develop, demonstrate, and evaluate inter-computer

communication architectures which employ authentication. As a context for the evaluation,

the authenticationprotocol-based communicationconcept will be demonstrated by hosting a
distributed, real-time, flight-critical Advanced Guidance, Navigation, and Control

(AGN&C) application on a distributed, heterogeneous, mixed redundancy system of
workstations and embedded fault tolerant computers.
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2. Technical Approach and Theory

2.1. Architectural Concepts using Authentication Protocols

AuthenticationProtocolsareconstructedusingdataintegrityproperties bestowedby digi-

tal signaturingtechniques.The correctuse of digitalsignaturesallows a recipientto verify
the authenticityof received messages with high probability. Figure 2 shows the use of

secret-key authenticationfor communicationbetween two nodes in an arbitrarynetwork.

The sender, node A, signs his message M using the signaturingfunctionF and the secret

key k. He then sends the message-signature pair <M, S> to B through the communication

network. When B receives the message he computes the signature on the message M using

the signaturing function F and the secret key k. If the computed signature matches the sig-

nature sent with the message then B is guaranteed that the message is from the sender A

and that the message is uncorrupted. Note that we assume in this example that the network

has sufficient connectivity to guarantee that at least one uncorrupted copy of the message

gets to B (hence B may get several copies), that messages contain sequence numbers to

prevent malicious nodes from resequencing messages, and that each pair of nodes share a

pairwise common private key. The issue of privateversus public key-based authentication
will be discussed below.

Sender _ Reciever

(_ <M,S> <M,S> _=/ orI/O / "

S=FK(M) _twork _ AuthenticateifS=FK(M).

Figure 2. Secret-Key Authentication

A communications protocol which uses digital signatures to achieve fault tolerance must

meet several requirements. First, signatures must be message-specific in order to prevent

an interveningnode from corrupting a message and then appending a correct signature to it.

In the flawed example shown below, node A sends "A says go" and signs it with Sa. If the

signatures were not message-specific, node B could corrupt the message to "A says stop,"
append Sa to it, and C would accept the corrupted message as authentic.

-5-



 Asas Asayss
Figure 3. Message CorruptionWithout Authentication

Message-specific signatures keep a node from copying another's signature and appending

it to a corrupted message. Replaying the above scenario with message-specific signatures,

if B corrupts the message from "A says go" to "A says stop" and attempts to append Sa to

it, C will detect that the signature and the message do not match and discard it.

Asays r_ _ j stop,

Figure 4. Use of Authentication to Protect Against Message Corruption

However, even with message-specific signatures, an intermediate node can still erro-

neously and undetectably repeat a message/signature pair. In the flawed example shown

below, node A sends "A says go" followed by "A says stop." Node B can erroneously

save the first message and transmit it twice, absorbing the second message without C being

any the wiser, since both messages received by C authenticate.

A saysgo,Sa _ A saysgo,Sa

Figure 5. Undetected Message Replay

To eliminate this possibility, a monotonically increasing sequence number must be at-

tached to each message by the sender. The sequence number introduces a varying message

component which ensures that a relaying node cannot undetectably replay a saved copy of a

message. Such replays would be rejected by the receiver because they have identical se-

quence numbers. Sequence numbers also ensure that, when a source intentionally transmits

two identical messages, the signatures will differ because the signature, which is calculated

with respect to the message and the sequence number,has a spectrallywhite dependence on

both the message and the sequence number.

_A saysgo,1,Sa _ A saysgo,1,Sa

A says stop,2_._a_A says go, l,Sa__

Figure 6. Use of Sequence Numbers to Protect Against UndetectedMessage Replay
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The above figures show a single path from node A to node C, passing through node B.

This Connectivityis inadequate to achieve fault masking communication, since, even with

the precautions outlined above, a single node can absorb a message, as shown below.

Figure 7. Undetected Message Absorption

Therefore dual, mutually exclusive paths from each possible source node to each possible

destination node are necessary to ensure delivery of at least one correct copy of a given

message without retry. In this document, each path is designated a Media Layer.

Asaysgo,1,S_ B

A C

A says D go,1,Sa

Figure 8. Use of Biconnected Graph to Protect Against Undetected Message Absorption

The use of authentication significantly reduces the theoretical requirements necessary for

providing Byzantine resilience (the ability to tolerate arbitrary faults with 100% coverage)

and provides an increase in the ability to diagnose faults. Table 1 below summarizes the

theoretical requirements necessary to provide f-Byzantine resilience as reported in

[Pease80, Lamport82, Dolev82, Dolev83]. The use of authentication decreases the required

number of participants and the required network connectivity such that Byzantine resilient

protocols may be embedded into common communication and I/O network topologies to

provide unity fault survival coverage. These topologies include the ring, redundant con-

tention bus, cube/hypercube, multiple bus, toms, and braided mesh. In addition to the re-

duction in connectivity, the use of authentication provides a dramatic increase in the effi-

ciency of Byzantine resilient protocols since authentication protocols provide a reduction in

the number of required messages from O(nf) to O(nf). With the ability to embed Byzantine

protocols into I/O and communications networks one can make rigorous statements about

the reliability of communication in those networks similar to the rigorous statements we
make about the reliability of Draper FTPs.
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Protocols Without Authentication
Authentication Protocols
(PreviousDraperSystems)

Participants 3f+l 2f+l
Connectivity 2f+l f+l
Rounds of
Communication f+l f+l

Messages O(nf) O(nf)

Table 1. Metrics for ByzantineAgreement

With the reduction in theoretical requirements through the use of authentication one can

develop system architectures which exploit these bounds. Towards this end we have devel-

oped two types of network architectures which are classified in terms of the connectivity

between processors and media layers. The first architecture type is denoted "Cross-

Strapped" since the redundant processor channels are cross-strapped with media layers,

and the second type is denoted "Non-Cross-Strapped" since it employs no cross-strapping

between processor and media layers.

2.1.1. Cross-Strapped Network Architecture

Figure 9 shows the basic scheme for the communication between two triply redundant

processing sites in a cross-strapped authentication inter-computer network. The network

contains two disjoint media layers, denoted Network L and Network M. Communication

proceeds in three basic phases.

In the first step of the protocol, each processor in the sending site signs its local copy of

the message to be sent. In the cross-strapped design, all members of the sending site gen-

erate identical signatures in the absence of faults.

In the second step, redundant copies of the signed message are voted and transmitted on

one or both outgoing paths. Any single failure of a sending processor or failure to correctly

sign any single local message copy will be masked by the voter on each outgoing layer. A

voter failure may affect at most one media layer, and hence if messages are sent on both

layers we are guaranteed that at least one uncorrupted, correctly signed message enters one

of the media layers. If a message is sent on only a single layer then end-to-end handshaking

must be performed to insure that if one layer is not working properly communication is

switchedto the alternate layer.

In step 3, upon receiving a message from one or both of the communication paths, the

message is authenticated locally by each processor in the receiving site. Each processor dis-

cards any messages which are determined to be not authentic. Additionally, messages

which arrive and are duplicates of authentic messages already received (either a redundant
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message from the alternate layer or a message which was incorrectly sent twice) are dis-
carded.

The use of multiple media layers is to guarantee that at least one fault-free path exists be-

tween any non-faulty pair of sites. The simplest method for ensuring separation of the mul-

tiple paths is to make the media layers completely disjoint (i.e. two separate busses or

rings); however, numerous other multi-path communication network architectures could be

used. Since no voting of received messages is performed, multiple media layers need not

be synchronized and do not necessarily need to be used redundantly (carrying redundant

copies of messages). A processing site may choose to use one media layer as its primary

communication path, sending all its messages on only this path, and designate the other

layer as an alternate to be used if proper handshaldng from destination sites is not forth-
coming.

-9-
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The signature generation and authenticationfunctions must be considered part of the pro-

cessor Fault Containment Region (FCR). These functions along with the necessary bus in-
terface logic are grouped into a functional unit denoted as the Processor Interface Unit

(PIU). In addition each voter must be grouped with its respective layer of the network and

the voter and other network interface logic make up a functional unit denoted as the

Network Interface Unit (NIU). The voters are isolated from the processing site such that
any processor site failure will not affect voter operation.

Figure 4a shows the motivation behind associating the signature generator with each pro-

cessor rather than placing it after the voter on each media layer. If the processor simply sent

data to the network interface unit, which first voted and then signed the data, a single voter

fault could cause a corrupted but correctly signed message to be sent on one of the layers.

Thus a receiving sitecould receive conflicting but authentic messages. Figure 10 shows the

rationale for grouping the authenticatorwith each receiving processor rather than placing an

authenticator on each receive layer. If placed on a receive layer, an authenticator could send

conflicting messages to the different redundant channels of the processing site.

"+".:... F.+ .+,.'_y:j:"

..:..
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A unique feature of this type of authentication network is that simplex (non-redundant)

processors are able to connect to both layers. The motivation behind this is to provide all

non-faulty simplex processors with the capability to communicate even in the presence of

network faults. A faulty simplex processor is not capable of impersonating any other pro-

cessing site (simplex/duplex/triplex) since it is incapable, even when faulty, of forging

messages. However we must prevent the failure of a simplex processor from corrupting

good messages on the network. The method for doing this is shown in Figure 11. The PIU

interfaces to the media layers through the NIU which is considered part of the media layer

fault containment region. The NIU is responsible for network interfacing, voting of multi-

ple copies of messages from redundant PIUs (only for duplex and triplex sites), network

protocol maintenance, etc. The PIU simply queues signed messages to be sent to particular

layers. A PIU/processor failure affects only the messages going in or coming out of the

queues to the NIU and an NIU failure could take down a whole layer but cannot affect PIU

operation to alternate N1Us. The NIU simply acquires the bus/network and sends the mes-

sage. However, to prevent a faulty simplex from saturating one or more layers with exces-

sive message traffic (thereby degrading network performance) the NIU performs round

robin prioritized bus contention as weU as acting as a throttle for processor message traffic.

PIU

Figure 11. Dual Attached Simplex Processor

2.1.1.1. Dual Token Ring Network Architecture

Figure 9 shows an authentication cross-strapped communication architecture that uses a

dual fiber-optic token ring network as a dual media layer. The topology consists of two

unidirectional rings consisting of nodes, Network Interface Units, connected with point-to-

point uni-directional fiber optic links. Two media layers are provided to insure that in the

presence of an arbitrary failure one ring layer will still be usable. Figure 12 also shows the

use of a spare link to provide fault tolerance within a single media layer. This would be

used to bypass sections of the ring which were faulty. Unlike the AIPS Inter-Computer

Network [Lala87], where media layers and network sites were synchronized, the dual lay-

ers are not synchronized with one another and operate independently.

-12-



Triplex FTP

Processor Channel

Triplex FTP

Processor Channel Workstation

ProcessorChannel

ProcessorChannel
DuplexFTP

Figure 12.Authentication Dual-Ring Network Architecture

2.1.1.1.1. Network Interface Unit

Figure 10 shows the architecture of the ring Network Interface Unit (NIU). The NIUs
each have one incoming port and one outgoing port which are connected to one another to

form a unidirectional ring.

The NIUs use a traditional prioritized token passing protocol to perform communication.

As a frame of data arrives at the NIU the initial bytes of the frame are buffered in a local

FIFO while the Node Controller determines the action to be performed on the frame.

Depending upon the frame header the frame may be delivered to the processor attached to

the NIU and/or may be forwarded to the next node in the ring. Note that the local frame

buffer need only buffer enough of the message for the decision to be made.
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ARecv Data

B Recv Data 125Mbits/Se_
CRecv Data Fiber Link

C Xmit Read'

.._'_. 125 Mbks/SecFiberLink
AXmitData
B Xmit Data

J
C Xmit Data

Figure 13. Network Interface Unit

The xmit data and xmit ready inputs to the NIU are connected to a message queue in the

PIU of each redundant processor. The NIU performs a vote/timeout on the message ready

signals from each processor. The message ready signals should go true within the maxi-

mum skew between the actions of nonfaulty processors, and a timeout needs to be applied

in case a processor has failed. Once all of the message ready signals are true or a majority

are true and the timeout has expired, the msg ready signal informs the node control block

that a message is ready to be sent. The node controller then attempts to capture the next

transmit token to arrive. Without a prioritized token passing scheme, each site, regardless

of redundancy level, would have even access to the ring. A prioritized token passing

scheme would be implemented to insure that simplex sites would only have access to the

ring if no duplex/triplex sites wished to transmit. Once the .NIUhas captured the transmit
token it clocks data out of the redundant PIU buffers, through the voter and onto the ring.

Once the message has been sent, the NIU generates a new transmit token and forwards it

onto the ring. Note that the operation of the NIU is independent of processor/PIU failures.

In the case of triplex sites any single processor/PIU failure is masked and we are guaran-

teed that correct data comes out of the voter in each NIU. For simplex sites, a fault in the

processor/PIU may cause excessive traffic on the ring. However, a simplex site cannot dis-

rupt communication.

2.1.1.1.2. Processor Interface Unit

The Processor Interface Unit (PIU) is the interface between a processor and the Network

Interface Units on each layer. The architecture of the PIU is shown in Figure 14. The PIU

consists of a Bus Interface Unit (BIU)and several Authentication Engines (AEs) which act

to either sign or authenticate messages on the fly. The BIU consists of a variable set of ring
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buffers which are used to buffer data between the network and one or more processors on

the processor bus. Several transmit ring buffers may exist to allow multiple processor

transmit queues as well as multiple priority levels for transmitted data. For received data,

ring buffers may be specified to buffer data according to message destination, message pri-

ority and source redundancy level.

The PIU contains a single transmit Authentication Engine. For the cross-strapped authen-
ticated architecture the PIU transmits data to one/both NIUs and a selector circuit after the

AE determines to which NIU/layer the message is sent. In the case of the non-cross-

strapped architecture the PIU may connect directly to a media layer through a Network
Media Controller contained within the PIU. The PIU contains one or two receive

Authentication Engines. Depending on the type of architecture used, data may be received

from an NIU on each layer, from a Network Media Controller within the PIU and from a
redundant PIU.

__ AuthenticationEngine

Bus [
Processor_ Interface _ Authentication
Interface Unit Engine

_-_ Authentication

Engine

Figure 14. The Processor Interface Unit

2.1.2. Non-Cross-Strapped Network Architecture

The second type of authentication system architecture we have developed requires no

cross-strapping between the redundant processing channels and media layers. This pro-

vides several advantages over the previously mentioned architecturewhich are as follows.

(1) The most important implication of eliminating cross-strapping is that we are able to

reduce the number of connections required to implement the architecture. This is particu-

larly critical for several reasons. When implementing cross-strapping one is connecting

three to five FCRs together. The underlying assumption behind any Byzantine Resilient ar-

chitecture is that faults will not propagate from one FCR to another. In order to accomplish

this careful consideration must be paid to maintain the isolation/integrity between FCRs by
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providing both physical and logical barriers against the propagation of faults. This is a

costly process due to the complexity of both design and implementation.

(2) The use of a voter in the NIU implies that data received from the multiple PIUs is

synchronous such that redundant data values can be voted directly, therefore some mecha-

nism must exist to synchronize redundant PIUs to one another.

(3) In the event of a failure one would like to mask voter inputs so that an erroneous

channel's data is no longer voted against good data. (This is typically used to provide the

capability to tolerate a subsequent failure.) This requires a means for the redundant chan-

nels to communicate a mask value to the NIU as well as a mechanism for voting the masks

before they are applied to the voter.

(4) The use of a cross-strapped architecture prevents the use of off-the-shelf communica-

tion devices which attach directly to a processor bus. However, with the non-cross-

strapped architecture we could use the signature/authentication mechanisms as a "co-pro-

cessor" for signing and authenticating message with processor communicating directly with

the Network//O device.

Figure 15 below shows a "Non-Cross-Strapped" authentication network architecture and

the sequence of steps required to send a message using this architecture.

The source processor(s) (in this case a triplex, each channel of which has a copy of the

message to send) sign their local copy of the message with their channel-specific signature.

The three channels then exchange their respective signatures (using the cross-channel

source congruency exchange mechanism within the triplex) and append each signature to

the message to be sent.

The message is then sent to the receiving site on one or more layers of the network. If the

message is sent on only one layer then end-to-end handshaking and retry must be used.

When a processor receives a message on either media layer it uses the cross-channel ex-

change mechanism to exchange the message and signatures. At this point each channel in

the redundant receiving site has an identical copy of the message and signatures received

over that media layer. Each channel then authenticates each of the three signatures against

the message and accepts the message as valid if at least two of the three signatures authenti-

cate against the message. Similar authentication rules apply for quadruplex, duplex, and

simplex senders. The duplicate message which may arrive over the other media layer may

be unambiguously identified as a duplicate using its sequence number and subsequently
discarded.

There are several performance implications for the non-cross-strapped architecture, as

compared to the cross-strapped architecture. While the cross-strapped architecture requires
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little to no use of the sender/receiver's intra-computer exchange mechanism to effect com-

munication, the non-cross-strapped architecture requires the sending channels to exchange

their respective signatures (8 bytes per channel for a total of 24 bytes for a triplex) and ap-

pend the signatures to each message. This process does not incur a large amount of over-

head since it is independent of the message size and can be accomplished very quickly.

However, a receiving channel must exchange the message received on its media layer

through the intra-computer exchange mechanism and then all channels of a redundant recip-

ient must authenticate each redundant signature against the receivedmessage. The latterpart

of the process is message length independent and can be accomplished efficiently, however

the single source exchange of the received message is dependent on the message length and

therefore the rate at which the processors can exchange data becomesthe limiting factor. (It

also affects processor bandwidth if the processor must actively exchange the data). Current

Draper FTP's can exchange data at a rate of 400KBytes/sec and would hence limit their

end-to-end communications bandwidth to this rate (since all communications must pass

through this exchange network, sometimes twice), although media layer communications

could still proceed at much higher speeds.

The non-cross-strapped architecture also imposes additional requirements of the signature

and authentication mechanisms. The signature hardware must now be able to sign a mes-

sage, return the value to the processor, then receive and append additional signatures from

the processor. The authentication mechanism must be able to authenticate three signatures

against the received message and indicate the majority result to the processor. However,

these additional overheads need not increase the transport delay of the system if sign-

ing/authenticating can be overlaid (pipelined)with the reception of the current or next mes-
sage.
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2.2. Authentication Concepts

The use of authenticationprotocols presumes the abilityto generatea signature-message
pair with the following properties:

A1. The receiver can readily verify the authenticity of a sender's signature-message
pair.

A2. The sender's signature cannot be forged.

A3. Any alteration of the sender's message can be detected.

Assumption A2 can never be guaranteed since a signature is simply a digital sequence of

bits and could be randomly generated by a processor. However, by making the number of

bits in the signature sufficiently large we can make the probability of a processor forging a

sender's signature by random attempts extremely small. For example, if we assume that a

processor generates messages at the rate of 106 per/hour, and a probability of system fail-

ure of 10-10 per hour is desired, then the probability of forging a signature needs to be 10-

16 per message. The signature would need to consist of at least 53 bits to provide a prob-

ability of forgery of 10-16. This is only a lower bound for the number of bits in the key

since this assumes random attempts to forge a signature. Assuring unforgeability to mali-

cious attempts may require a greater signaturelength.

Similarly, assumption A3 cannot be guaranteed with unity probability since the genera-

tion of an n bit signature for a k bit message where n<k implies that there exists a signature

which corresponds to at least two messages. Thus a processor may change the content of a

message with a finite probability that the changed message's signature is identical to the

original message's signature. If we assume that the signaturing function uniformly dis-

tributes messages over the signature space, that is for all signaturesvi in the signature space

Q, vi is the signature for exactly 2k-n messages, we can bound the probability that a pro-

cessor can undetectably corrupt a message by guessing its corresponding signature to be

2-n. To provide a probability of undetectable corruption of 10-16 per message would again

necessitate a key of 53 bits and a "spectraUywhite" signaturing function.

For many applications we can assume that faulty processors may exhibit malicious be-

havior, but not to the extent of a malicious cryptoanalyst, particularly in cases in which we
axeusing authentication to protect against random hardware failures in fast hard real-time

applications. Hence our authenticator need not be cryptographically secure but only robust
against randomly malicious behavior. Due to the malicious nature of some hardware fail-

ures we still need to exercise some caution in determining a signaturing scheme. To this
end both private key and public key authenticators have been examined.
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2.2.1. Private Key Authentication

The approach for an authenticator using private (secret) keys uses a signaturing function

v=Sk(M) which generates a signature v for message M based upon key k. Each participant

which wishes to authenticate messages from a sender must possess k, the key the sender

used to sign the message. A receiver i verifies a message from a sender j by computing

Sk(M) using the sender's key and comparing that signature with the signature sent with the

message. The problem with private key authenticationis that the authenticationkey must be

identical to the key used to sign the message. Hence a receiver which is able to authenticate

a message from a sender j will also be able to forge outgoing messages with j's signature.

Two methods may be used to prevent this scenario from occurring.

The first method is to use pair-wise common keys. Each sender j has a different key for

each other node in the system. A receiver i has the key that each sender uses to sign mes-

sages sent to i. (See Figure 16.) Thus in the worst case, a faulty node can only forge mes-

sages to himself. This solution creates a number of key management problems and pre-

cludes the ability to broadcast information to all participants without attaching a separate

signature for each potential recipient.

The second method to prevent a receiver from forging a message is to compartmentalize

the receiver from the transmitter. (See Figure 16.)By this we mean that one would insure

that no propagation of key information from receiver to transmitter would be possible

through the use of hardware isolation/protection mechanisms. One method for doing this

might be to only allow the transmit key to be set on power-up. Again, this method creates a

number of key management problems; however unlike the previous method it does allow a

node to broadcast messages without attaching a separate signature for each potential recipi-
ent.
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Figure16.CompartmentalizedSingleKey vs.PairwiseSecretKey System

2.2.2. Private-KeyImplementationMethod

An approachfordevelopinga privatekeyauthenticatorthatissecureagainstrandomly

maliciousfaultsistouseasignaturingmethodbasedupontheCyclicRedundancyCheck

(CRC).MostcommunicationssystemsusetheCRC asamethodfordetectingerrorsinthe

communicationsmedium.Attransmissiontimea CRC ofthemessagetobesentiscom-

putedandattachedtotheendofthemessage.Upon reception,thereceivercomparesthe

CRC valueitreceivedfromthesenderwiththeCRC computedonthereceiveddata.Ifa

mismatchoccursthenthemessagehasbeencorrupted.Mostcurrently-usedCRC schemes

employa 16bitCRC check.From theevaluationdiscussedpreviouslythenumberofbits

necessarytomake theprobabilityofforgeryadequateforourapplicationswouldnecessi-
tatea CRC of about 64 bits.

One methodfor generatingsimplebutcryptographicallyinsecuresignaturesis to use a
modification of the CRC error checking technique. This method would be to have the n bit

binary key k[1..n] specify the generator polynomial G for the CRC as follows:

G(X)= k[0] + k[1]*X + k[2]*X 2 + k[3]*X 3 +... + k[n_l],X n

In this manner the signature (or CRC) of a message would be different for nodes with

different keys. Some polynomials are better than others for generating signatures for use in
digital signaturing schemes [Galetfi90].
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2.2.3. Public-Key Authentication

In public-key cryptosystems each participant i has an encryption function Ei and a de-

cryption function Di with the followingproperties:
B1. Ei(Di(message)) = message

B2. Both Ei(message) and Di(message)are easy to compute

B3. Di cannot not be inferred from knowledge of Ei with any reasonable effort

To apply the public-key cryptosystem scheme to a public key authentication system
sender i encodes the message Mtext such that M# is a n bit number representative of Mtext.

The spectrally white encoding function is common knowledge; computation of a CRC over

the message is an acceptable algorithm. The encryption procedure Ei for all i is also com-

mon knowledge.

For A to send a message to B, the following steps are taken:

1. A computes M# = CRC(message)

•2. A computes SA = DA(M#)

3. A sends <M,SA> to B

4. B computes M# = CRC(message)

5. B strips off SA and computes EA(SA)

6. If EA(SA) = M# then the message is authentic

While public-key signature systems do not require secret keys, and broadcasts are possi-

ble, they do require the availability of suitable functions E and D which possess properties

Bl-B3. The public-key authentication methods eliminate the problems associated with key

management and do allow the efficientuse of broadcasts.

2.2.4. Public Key Authentication Method

Current implementations of crypto-secure public-key authenticators are very time con-

suming and can process data at only a rate of 100-300 KBits/Sec. However, fast hard real-

time embedded applications will require an eventual throughput of 1 GBit/Sec but unlike

current public-key crypto-systems need only to protect against randomly malicious faults.

Therefore we can use a public-key authentication scheme based on modular inverses as

suggested in [Lamport82]. This scheme uses two numbers P and p-1 (p inverse) for which

p o p-1 mod N = 1, where N is a very large number (in our case 264).With this scheme P

is the private signature key and p-1 is the public authentication key. Several simple exam-

ples of P and P-1,s are shown below.
13 x5 mod 25 = 1

1033 x 569 mod 211 = 1

9294586028090793467 x 350969587744990515 mod 264 = 1
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To sign a message, the message is first encoded as a 64-bit number with a 64-bit CRC

function similar to that discussed in the previous section. Thus, for A to send a message to
B using CRC message encoding and modular inverses PA and PA-1 over N = 26.4, the fol-

lowing steps are taken:

1. A computes M# = CRC(message)

2. A computes SA = DA(M#) = PA ° M# mod N

3. A sends <M,SA> to B

4. B computes M# = CRC(message)

5. B strips off SA and computes EA(SA) = SA • PA"1mod N

6. If EA(SA) = M# then the message is authentic

This is true since modular multiplicationis commutativeand associative:

(PA °M#) ° PA-1 = (PA ° PA-1) ° M# = (1) • M#

The cost of providing public-key authenticationusing modular inverses is reasonable. To

sign a message the sender calculates the 64-bit CRC of a message and performs a single

64-bit multiply. To authenticate a message the receiver calculates the CRC of a received

message, multiplies the received signature with the public-key, and compares the result to

the CRC calculated on the received message. Note that in this case all nodes may use the

same generator polynomial for the CRC function.

2.2.5. DoD Secure Authenticators

Authentication Protocols are able to provide security as well as fault tolerance. In secure

applications an authenticator must provide signatures which are cryptographicaUysecure -

the data itself may or may not need to be encrypted. Because current applications primarily

benefit from the fault tolerance aspects of Authentication Protocols rather than crypto-se-

cme aspects, we have not pursued the use of crypto-secure authentication beyond this

point. However, our approach in the development of both the systems architectures and

hardware authenticators has been modular. A transition to a crypto-secure environment

would only entail the replacement of the authenticator module, and, if encryption is re-

quired, the use of the cross-strapped architecture.

2.3. Authentication Implementation Issues

2.3.1. Authentication Engine

The authentication network architectures discussed previously have specified the signa-

ture and authentication functions as distinct functional blocks. However, the process of

authenticating a message is almost identical to that for signing a message and hence we
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have chosen to design a single "Authentication Engine" which is capable of either signing

messages or authenticating received messages. The Authentication Engine (AE) functional

block is pictured in Figure 17.The implementation of the AE requires 14chips, provides a

sustained throughput of 12.5 MBytes/Sec and a transport lag of less than 10 ktsec. In

transmit mode the authentication engine signs outgoing messages on-the-fly with a key

written into the AE by the processor at start-up. In receive mode the AE authenticates re-

ceived messages on-the-fly and performs a process called "source throttling." The authenti-

cation process' receipt of a message is somewhat more complex since the public key for the

sender must be looked up in the receive key table according to a source ID contained in the

message. Source throttling controls the rate at which messages from specific processors are

forwarded through the AE to prevent a faulty simplex processor (which floods the network

with messages) from overflowing the receive buffers of other non-faulty processors. For

example a simplex processor which exceeded the specified message rate would have its

messages marked as rejected (the messages would not be placed in the receiver's buffer).

ProcessorBus•

Interface _32

Authentication
7 " gi 8/.- En ne / "-

12.5 MBytes/Sec 12.5 MBytes/Sec
(14 Chips)

less than 10us transportdelayv

• SignatureGeneration OR • Message Authentication• Source Throttling

Figure 17.Authentication Engine

The internal components of the Authentication Engine are shown in Figure 18. The input

and output data paths are buffered through synchronizing FIFO's to allow data to arrive

and leave the AE asynchronously. In transmit mode the AE signs a message by clocking

arriving data out of the synchronizing FIFO into the packet FIFO and into the CRC-64

function. When all the data in the packet have been clocked out of the FIFO, the 64-bit

CRC is clocked into the MAC (Multiply-Accumulator) where it is multiplied with the pri-

vate key which was pre-loaded into the MAC at startup. The resulting signature is then

clocked out of the MAC through the CRC-64 mechanism (which now acts a 32 bit to 8 bit

bus converter) and into the outgoing synchronizing FIFO along with a preset source ID

(this places the signature and source ID on the head of the message).
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In receive mode, the source ID is first clocked out of the Synchronizing FIFO and into

the Source Throttle and CRC-64 functions. The CRC-64 block performs a key lookup

from the source ID and loads the source's public key into the MAC. The signature is then

clocked out of the Synchronizing FIFO, through the CRC-64 mechanism and into the MAC

where it is multiplied with the public key. The remaining data in the packet is then clocked

out of the Synchronizing FIFO and into the packet FIFO and CRC-64 mechanism. The 64-

bit CRC computed on the packet data is then compared againstthe result stored in the MAC

and if not identical the A-reject line is set true. If the Source Throttle determines that the

source has exceeded its specified message rate it sets the T-reject line to true. If either T-re-

ject or A-reject is true the buffering logic (external to the AE) does not buffer thepacket but

instead places the packet into a diagnostic buffer for examination by fault identification
software.

_/ _yncronizingFIFO[ _ _i Packet FIFO _ SyncronizingFIFO[ ._

T-Reject _ _-Reject

32

Figure 18. Internals of Authentication Engine

The functions required to implement the AE are either off-the-sheKparts (e.g. the FIFOs,

RAMs, MAC) or easily implemented in programmable logic. The CRC-64 function uses a

simple byte-wide table lookup algorithmwhich has been modified to minimize the data path

widths as shown in Figure 19.This logic minimizes the required data path widths (from 64

to 32) by multiplexing the RAMs and exclusive OR logic to provide an implementation re-

quiring four RAMs and four programmable logic devices. The look-up table (in the RAMs)
is pre-loaded by the processor on start-up for a specific CRC polynomial.
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Figure 19.Multiplexed CRC-64 Block Diagram

2.3.2. Crypto-Secure Authenticator

Authentication can be used to provide a Byzantine Resilient communication system which

is cryptographically secure for all levels of DoD secure information. The complexities of
implementation and the difficulty of receiving NSA endorsement for embedded encryption

devices motivate the use of an off-the-shelf encryption device. The Ultron Crypto-

Engine[Ultron88] is a near optimal device due to its high throughput and functionality. It is
also attractive since the device itself is unclassified and the information regarding its opera-

tion is readily available. The Crypto-Engine (CE) is a single chip embeddable device which

provides up to 40 Mbits/sec throughput and is NSA-endorsed for all levels of classified

data. It has a Message Authentication Code (MAC) mode for generating message specific

signatures. In systems which use signatures without encryption, the MAC mode would be

used to provide signatures although the device could also be used to provide encrypted

DoD secure communication along with authentication. The block diagram of the CE is

shown in Figure 20. The CE uses a dual-key system with red and black keys. The red keys
are classified at the same level as the data being transferred and the black keys are unclassi-

fied and are themselves an encrypted form of the key and are red key specific. To operate,

the CE needs a single red key and a black key for every node it wishes to communicate
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with. Both keys' types have special properties and must be obtained directly from the
NSA.

Red Key Fill
h._ AlarmInterface

1 J, -
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Figure 20. Block Diagram of the Ultron Crypto-Engine

2.3.3. Authenticator Implementation Benchmarks

In order to provide a low cost non-real time alternative to hardware implemented authenti-

cators as well as to provide a means for testing our prototype hardware we have developed

and benchmarked software implementations for CRC generation, signature generation,

message authentication and an authenticated vote operation. These routines have been

coded as hand optimized assembly language routines for maximum performance. The

benchmarks measured on a 25 MHz 68030 processor are given in Table 2 along with es-

timates for the time required for equivalent operations when implemented in hardware.

Note that except for CRC generation, the times required to perform the functions are inde-
pendentof message length.

Software Hardware

(25 MHz 68030) (Estimated)

CRC Generation 6.6 lasec+ 2.1 l.tsec/byte 0 (on-the-fly)

Sign 0.3 _tsec/message 700 nsec/message

Authenticate 11.1 _sec/message 800 nsec/message

Auth. "Vote" 8.2 _tsec/message 500 nsec/message

Table 2. Benchmarks of Authentication Mechanisms
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3. Detailed Design of Authentication Protocol
System

3.1. Overview

An Authentication Protocol (AP) inter-computercommunicationsystem was implemented

and demonstrated under this program. The purpose of this implementation is to provide a
feasibility demonstration and performance evaluationof authentication-based fault tolerant

network communication between a number of mixed redundancy heterogeneous hosts (the

Fault Tolerant Parallel Processor Cluster 3 (FTPP C3), the Fault Tolerant Parallel

Processor Cluster 2 (FTPP C2), Sun, and 68030-based Unix workstation), operating sys-

tems (SunOS, LynxOS, Ada Run Time Systems), and programming languages (Ada, C).

The open system attributes of the design were to be demonstrated by layering the AP de-

sign on an industry-standard network such as Ethernet and User Datagram Protocol

(UDP). The resultant implementation was then to be demonstrated while the various hosts

were executing a real-time distributed launch vehicle Advanced Guidance, Navigation, and

Control processing demonstration which includes ASTER-generated code, and perfor-

mance data were to be taken while executing this application. These objectives have been
met.

The AP implementation uses the non-cross-strapped architecture and CRC / modular in-

verse-based authentication schemes described earlier. The protocol architecture is modular

to allow any network to be accommodated by simply changing or adding network interface

driver code to the bottom of the protocol stack.The protocol architecture is also designed to

allow multiple, possibly disparate, networks to be interconnected as required by the appli-

cation, with support for AP-based communication being provided to all hosts which require

the level of fault tolerance and security provided by AP. The protocol architecture's modu-

larity extends to allow the use of various authentication schemes ranging from those which

provide data integrity in the presence of random-malicious faults to those which provide

cryptographically sounddata integrity and security in the presence of malicious faults.

Figure 21 shows the main components comprising the AP implementation and AGN&C

demonstration. The configuration consists of five hosts: the quadruply redundant FTPP

Cluster 3 (also known as the Army Fault Tolerant Architecture, or AFTA), the quadruply

redundant FTPP Cluster 2 (an earlier version of the FTPP), a Sun SPARC 10 (hostname

"Einstein"), a Sun SPARC 2 (hostname "Feynman"), and a Motorola MVME147 (68030)-
based workstation (hostname "Dirac").
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The FTPP C3 executes the AFTA XDAda Run Time System, the FTPP C2 executes the

C2 XDAda Run Time System, the Sun workstations execute SunOS, and the MVME147

workstation executes LynxOS, a POSIX-compliant kernel.
Hosts

_ [SUN'ENS_'N') (SUN'F_') CMVME"_'OI_C',I
MO3OROLA68030 MOTORCLA68000 SUN SPARC 10 SUN SPARC2 MOTOROLA68030

Cross-CharmdA Cross-Chan_#t I
Exchanm/II Exchange_1] I

,""7'111 ,,,  rll Ii I I I
VEHCILEGUDANCE VEHICLENAV& "tRAJECTORYDISPLAY NETWORKDSPLAY VEHDIE SMULATICN

(FENOC) CONTROL

AFTAXDADA C2 XD ADA SUN SUN LYNX
RUNTIMES-YSTEM RUNTIME-SYSTEM OPERATINGSYSTEM OPERA'nNGSYSTEM OPERATINGSYSTEM

AP INTERFACE AP INTEF_:ACE APINTERFACE AP INTERFACE AP INTEI:_ACE

ETHERNET#2

Figure 21. Architectureof AGN&C Demonstration

The Authentication Protocol interface software executes on each host. This software

provides the application message-passing interface, signing, exchanging, routing, media

layer interface, and authenticationfunctions described below.

The redundant hosts possess internal cross-channel exchange networks which are imple-

mented using FTPP Network Elements. The media layers are implemented using the

Draper Laboratory-wide Ethemet contention network. Each host must possess at least one
Ethernet connection to communicate over AP (Virtual Groups inside the FTPP C3 need not

possess Ethernet connections to communicate over AP. In their case AP traffic would be

routed through the Network Elements to the Ethemet Gateway Virtual Group.) The redun-

dant hosts may possess two or more Ethernet connections comprising additional media lay-

ers. However, two arerequired for Byzantine resilient communication to occur.

The FI'PP C3 executes Ada launch vehicle trajectory generationcode which was automat-

ically generated using the Draper ASTER software engineering tool. The FTPP C2 exe-
cutes Ada launch vehicle control code which was also ASTER-generated.The Sun Einstein

executes a C-based graphical interface which displays important application-relatedparame-

ters such as trajectory, and allows a user to control the entire distributed system via a set of

mouse-operated push buttons. The Sun Feynman executes a C-based graphical display of

the fault status of the hosts and the AP system, including fault injection via mouse-downs
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on various parts of the display. Finally, the MVME147 executes the C-based real-time

simulation of the launch vehicle dynamics. All communication between applications is

through the AP's message-passing services.

The data communication patterns and frequencies for the AGN&C application are

depicted in Figure 22. All messages are 256 bytes in length.

Sun Graphical * _ Launch Motorola
Sparc II User Vehicle 68030
SunOS Interface Simulation LynxOS

I " l• 1 Hz 50 Hz

50 HzI
FTPP C3 FTPP C2

68030 FENOC Navigation 68030
XDAda Guidance and XDAda

AFTA RTS Control C2 RTS

_1 Hz 1 Hz 1 Hz H
Sun

Sparc 10 Network
SunOS Monitor

* aperiodic
**periodic but frequency << 1 Hz

Figure22. AGN&CDemonstrationConfigurationandInter-HostCommunication
Requirements

3.2. Major Components of AP Processing Suite

The major components required to execute AP on a single host are shown in Figure 23.

Two sets of tasks are required for a host to participate in AP communication:the application

tasks and the AP Send-Recv task. The following sections describethose tasks and other

interfaces, data smactures,and algorithmsused to implement AP.
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3.2.1. Application Task

An arbitrary number of application tasks may reside on any given host, subject to mem-

ory and performance limitations. Application tasks communicate with each other by send-

ing and receiving messages using the calls defined in section 3.2.5.1.1. To set up for

communication, a task must first establish a persistent port. During the port creation

process input and/or output queues are created; the dimensions of these queues are

specified in the operation of opening a port. An application task may create up to 256 ports,

any of which may be either for input, output or bi-directional communication. Messages

which are sent by the application are deposited in a Send-RecvOutput queue, and messages

which are destined for the task are read from a Send-Recv Input queue.

3.2.2. Authentication Protocols (AP) Send-Recv Task

The AP Send-Recv Task is responsible for the execution of the authentication-based

communication protocol. Output messages emanating from application tasks are taken

singly off a Send-Recv Output Queue chosen by the AP Send-RecvTask's Queue Selection

Logic and copied into the Host Output Buffer. The task looks up the routing information

necessary to send the message to the correct destination. An authentication trailer is gener-

ated containing a monotonically increasing sequence number and digital signatures (CRC-

based in the current implementation). The routing information determines the Network

Driver ID and the next node that the message needs to be sent to. Once this has been de-

termined, the AP Send-Recv Task writes the message to the appropriate Network Driver

and is ready to either process another outgoing or incoming message.

For input messages, the AP Send-Recv Task reads a messages from a specific Network

Driver determined by the AP Send-Recv Task's internal Network Selection Logic. The se-

quence number is checked to see if the message is either a duplicate or out of order. If the

message is neither, the AP Send-Recv Task examines the message routing information to
determine whether the message should be delivered to the host or routed to another host. If

the message is to be routed, it is placed into the routing queue for forwarding by the output

side of the AP Send-Recv Task. If the message is destined for a task resident on the local

host, the AP Send-Recv Task checks the message for authenticity. If the message is valid,

AP Send-Recv Task copies it onto the correct Send-Recv Input Queue.

3.2.3. Network Driver

The Network Driver function resides at the bottom of the protocol stack and is responsi-

ble for relaying messages between the AP Send-Recv task and the media layer(s) to which

the host is attached. A given host may be attached to several media layers, which may vary
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arbitrarily in redundancy level, type, and technology. Each host possesses a Network

Driver for each media layer to which it is attached.

For outgoing messages, each Network Driver forwards the message from the AP Send-

Recv Task to the media layer(s) controlled by that Network Driver. For incoming mes-

sages, each Network Driverdetermines whether a message has arrived on its relevant me-

dia layer(s) and forwards that message up to the AP Send-Recv Task.

Note that, in the case of a redundant host, all members may not possess interfaces to

media layers. The Network Driver is responsible for hiding this from the AP Send-Recv

task and all higher layers of the protocol, allowing them to perform their functions in bit-

wise exact match (also known as congruent) execution. It only transmits outgoing mes-

sages on media layers to which the host is attached. It also performs appropriate source

congruency (interactive consistency) on incoming messages to ensure that all members of a

redundant host have identical views of the incoming message stream, regardless of the re-

dundancy level of the controlledmedia layer.

3.2.4. Network Monitor

The Network Monitor (Netmon) program provides a convenient graphical display of the

activity within the authentication protocols network. The Netmon program has two win-

dows: the virtual window and the physical window. The virtual window shows the dis-

tributed virtual computation sites, the applications mapped to each site, and the virtual AP

network topology. The physical window shows the individual elements that make up the

virtual configuration.

The virtual window display is shown in Figure 24. The current configuration includes 5

systems: Einstein, a simplex Sun workstation; Feynman, another simplex Sun workstation;

C2, a quadruplex FTPP; C3, a quintuplex FTPP; and Dirac, a simplex LynxOS system.

Each system is shown as a virtual simplex system since this is the application program-

mer's model, even for the systems that are redundant. The redundant systems are shown

with shadow processors to indicate their redundancy; however, the application code on

each redundant processor is identical.
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Figure 24. Network Monitor Virtual Window

Each of the virtual sites in the virtual configuration are connected together by one or more

AP subnets. An AP subnet is a virtual communication channel and may be simplex or re-

dundant. Redundant subnets are composed of multiple simplex subnets. The current vir-

tual configuration includes two simplex subnets and one virtual subnet. Only redundant

processing sites can be connected to a redundant subnet.

The virtual display provides two menu options. The first menu option allows the user to

selectively display the mapping of application and operating system software onto the vir-

tual configuration. Selecting "Node Name" causes only the name of each system to be dis-

played. Selecting "Processor" adds the type of CPU to each system. The "Application" op-

tions displays the application software executing on each platform. Selecting "Operating

System" shows the type of operating system in use on each site. Finally, "Network" shows

the network layer protocols used by each site to communicate with the other sites. For all

systems in the current virtual configuration, the network layer is the AP network. The only

difference between systems at the network layer is whether each system has simplex or re-
dundant interfaces to the network.

The second menu option allows the user to terminate Netmon. Selecting "Exit" causes the

program to display a confirmation box. If the exit is confirmed, Netmon will terminate. If

the exit is not conf'm-ned,the program will return to normal operation.

The physical window display is shown in Figure 25. Each virtual site from the virtual

window is represented in the physical window in its true configuration. Simplex sites are

shown nearly identical to their virtual display. The FrPP sites, however, are displayed as

redundant processors interconnected by internal communication links. The current physical
configuration has two redundant FTPPs, C2 and C3. The network is also shown in its true

-35-



physical configuration. There are two simplex media layers in the physical network topol-

ogy. The simplex sites are only connected to one of the simplex layers. The redundant sites

are connected to both simplex layers. However, a different channel is used to connect to

each layer, thus preventing a single FTPP channel from disrupting both simplex layers. For

redundant communication, the redundant processing sites can transmit on both media layers

simultaneously. This mode of operation is implemented through the virtual redundant sub-

net shown in the virtual configuration.
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Figure 25. Network Monitor Physical Window

The physical window shows the current fault status of each channel, device, or subnet in

the system. It also allows the user to inject software level faults into the AP network soft-

ware to simulate real faults in the communication system. These simulated faults are limited

to the network software and do not affect the applications or operating system running on

each machine.

To inject a fault, the user f'trst selects the type of fault to be injected from the menu item.

Fault types include "Babble", which causes the element to emit random data at random in-

tervals; "Silent", which causes the element to cease operation altogether; "Corrupt

Message", which causes part of the message (possibly including the header, data, sequence

number, and/or signature) to be modified in a random fashion; and "Repeat Message",

which causes a complete message, including sequence number and signatures, to be re-

peated at a random point in time. The user may also select "Fix Fault", which causes a

previously failed element to be "repaired."After selectinga fault to inject or repair, the user

clicks on an element, which could be a processor channel, a network interface device, or a

network subnet. When the element is clicked on, a message is sent to that element to cause

it to change its software fault state. The element will send a message back to Netmon to re-
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port its new fault state. Netmon will then redraw the element in red if the element is failed,

or in its natural color if it has been repaired.

The physical window also contains a message box for displaying messages that arrive at

Netmon. These messages include the status messages mentioned above and fault detection

messages. For example, if a system detects s faulty signature, a message is sent to Netmon

and displayed at the bottom of the physical window. A more sophisticated version of

Netmon could use the information contained in the message to diagnose and reconfigure

around faults in the system.

3.2.5. Important Data Structures_ Interfaces, and Algorithms

3.2.5.1. Send-Recv Input/Output Queues

The Send-Recv input/output queues represent the communication ports through which

application tasks communicate over AP. Application tasks create queues, and send and re-

ceive messages via the queues.

The Send-Recv input and output queues are the interface buffers between the application

tasks and the AP Send-Recv task. Multiple application tasks can deposit or retrieve mes-

sages from a queue. However, a single AP Send-Recv task on each computer system pro-

cesses messages from and to these queues. The queues serve to decouple the application

tasks from the authentication protocol send-receive task. Application tasks perform "send

message" operations which save messages in their output send-recv queue. The authentica-

tion protocol send-receive task consumes messages from all application tasks' output

queues, signs them and deposits them in the network output queue. Incoming messages are

authenticated and stored into the appropriate destination input send-recv queues which are

consumed by each destinationapplication task by the "receivemessage" operation.

A queue is associated with a task by its port number. This port number is incorporated

into the source and destination addresses. Therefore, a task which sends a message to an-

other task must be cognizant of the destination's task port address.

Each application task must establish at least 1 queue for communication over AP. Each

task may create a maximum of 256 message queues for either the input or output of mes-

sages. The implementation of multiple queues enables a task to maintain multiple ports

through which it may send or receive messages. This queue architecture enables a task to

sort incoming messages by publishing a specific port for reception of certain types of mes-

sages. In addition, if the appropriate scheduling mechanisms are implemented, these queue
may be perceived as priority queues.
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The send-recv input and output queues consist of data structures for the maintenance of

global host information for accessing task queues, of data structures for the maintenance of

queue information and of buffer space for the messages themselves. Additionally, the send-

recv input and output queues include the access operations which decompose the buffer

management of these queues into numerous functions. There are well defined interfaces to

the global host information as well as to the queue methods which manipulate the queue

data. There are essentially 2 types of tasks which interface to the send-recv input/output

queues--the application tasks and the authentication protocol Send-Recv task. The applica-

tion tasks interact with the queues by means of 5 interface calls -- open_port, config-

ure_port, close_port, send_message and receive_message. The AP Send-Recv task inter-

faces to the send-recv input/output queues by invoking write_sr_oq and read_sr_iq, by ini-

tializing the global data structures for the host computer via the bs_create sm buffer,

qm_create_port_table, qm_create_lock calls and by searching the port table directly by ac-

cessing qm_access_port_table. These data structures as well as the operations accessing

these structures are shown hierarchically by the following diagram. The shadowed areas

represent the data structures and the arrows represent routine invocations.
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Figure 26. QueueHierarchy Diagram
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3.2.5.1.1. Application Task Interface with Queues

Application tasks manipulate the input and output queues by means of the application in-

terrace calls. These procedures enable the user to create a communication port for input or

output and with certain size dimensions, to read or write messages via a certain port or to

modify the port configuration. The following procedures comprise the application interface:

1) open_portcreates a port and queue

2) close_port closes a port

3) configure_port reconfigures a port's parameters

4) send_message sends a message through an AP port

5) receive_message reads a message from an AP port

Because these procedures comprise a major interface in the protocol stack, the proce-

dures, parameters, and usage are more fully described in Appendix A, "Man Pages."

3.2.5.1.1.1. open_port

The open_portcall createsa port for communicationusing authenticationprotocol (AP).

A task uses this call to initialize a queue and buffer pool pair corresponding to a certain port

number. These port numbers are made up of a task ID in the upper byte and a queue ID in

the lower byte. A task is only allowed to open ports with either its own task ID for the up-

per byte or certain protocol-specified ports with zero as the upper byte. The caller config-

ures the port for either unidirectional or bi-directional message passing.

The open_port routine updates the port table to add this port request. The open_port rou-

tine locks and unlocks the port table to ensure that the port table is not accessed during the

open port call. The open_port modifies the port table by adding entries to it. It defines a

port for input, output or both input and output.

The open_port facility also enables a previously opened input (output) port to be subse-

quently reopened for the complementary output (input) operation. If the port has already

been opened for both output (input) then an error message is returned.

The underlying buffer pool is dynamically allocated to provide the requested application

message passing buffers. The size of the buffer space is estimated using both the in_queue

and in_bufpool_size parameters (or alternatively, out_queue and out_bufpool_size). The

in_queue parameter is used as an estimation of the aggregate number of messages expected

within a frame and the in_bufpool_size is used as an estimation of the total number of bytes

of these messages. The total estimate is inflated by 25% and is longword aligned.
bs_create_buff actually allocated memory returning the address of where the buffer infor-

marion resides. This address is saved in the port table.
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3.2.5.1.1.2. close_port

The close_port call closes a port being used for communication using authentication pro-

tocol (AP). A task uses this call to end communications using this port. All structures as-

sociated with the port (queues and buffer pools) are deallocated and all messages remaining

in the queues are deleted.

The close_port facility updates the port table to delete the indicated port. close_port

deletes the port for both input and output. Additionally, the underlying buffer pools are dy-

namically deallocated and the port table updated to delete the entry. The close_port proce-

dure must lock and unlock the port table to prevent simultaneous modifications to the port

table by different procedures.

3.2.5.1.1.3. configure_port

The configure_port call is used for control and status operations on open ports. The con-

figure_port procedures updates the port table to modify the selected port's configuration.

Configure_port interprets the command and takes appropriateaction. Because it updates the

porttable information the configure_portfacility must lock and unlock this table.

3.2.5.1.1.4. send_message

The send_message procedure copies the requested message to the designated Send-Recv

Output Queue via a call to the write_sr_oq facility. It returns immediately after the copy. To

maintain consistency the source network address in the header information is updated from

the port number. The send_message facility must perform a lock prior to invoking

write_sr_oq and to perform an unlock afterward.

3.2.5.1.1.5. receive_message

The receive_message call retrieves the oldest message from the caller-specified Send-

Recv Input Queue and places it into a buffer provided by the application programmer. It

strips the network header (size,message type, destination, source) and authentication trailer

(sequence number, digital signature) from the message and places them into appropriate
data structures.

3.2.5.1.2. AP Send-Recv Task Interface with Queues

The AP send-recv task is decoupled from the application task by the Send-recv queue

structures. The AP send-recv task scans the output queues for the defined ports and ex-

tracts outgoing messages. Likewise, the AP send-recv task deposits authenticated mes-

sages in the destination input queue. These 2 functions are facilitated by the invocation of

the read_sr_oq and write_sr_iq. These comprise 2 of the functions defined in the Send-

Recv interface. The other 2 functions (read_sr_iq and write sr oq) are invoked by the

application task's interface routines (receive_messageand send_message).
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The send-recv interface calls are responsible for the interface between the AP send-recv

task and the buffer server or between the application interface and the buffer server. It de-

termines which queue should be accessed given the port number and the specific operation

requested. It interfaces with the queue manager to locate the buffer and requests the appro-
priate operations of the buffer server.

The 4 send-recv interface calls:

1) to write a message to the output queue (interface with the application task) -
write_sr_oq,

2) to read a message from the input queue (interface with the application task) -
read sr_iq,

3) to read a message from the output queue (interface with the send-recv task) -
read_sr_oq,

4) to write a message to the input queue (interface with the send-recv task) -
write_sr_iq.

3.2.5.1.2.1. write sr_oq

The write_sr_oq procedure is invoked by the application task's send_message call. It re-

quests the address of the output queue for the specified portnum from the queue manager

and invokes the bs_write_buffer_w_hdr routine. The msg_size parameter is assumed to

represent the size of the message (exclusive of the header).

3.2.5.1.2.2. read_sr_iq

The read_sr_iq procedure is invoked by application task's read_message call. It requests

the address of the input queue for the specified portnum from the queue manager and in-

vokes the bs_read_buffer w hdr to copy header, message and trailer into application
buffers from the specified pormum queue.

3.2.5.1.2.3. read sr oq

The read_sr_oq routine is invoked by the AP Send-Recv Task. It requests the address of

the output queue for the specified portnum from the queue manager and invokes the

bs_read_buffer routine to copy one message out of a specific Send-Recv Output Queue and
increment the Send-Recv Output Queue's pointers.

3.2.5.1.2.4. write sr_iq

The write_sr_iq routine is invoked by the AP Send-Recv Task. It requests the address of

the input queue for the specified portnum from the queue manager and invokes the

bs_write_buffer routine to copy one message into a specific Send-Recv Input Queue and
increment the Send-Recv Input Queue's pointers.
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3.2.5.1.3. Buffer Server

The buffer server is responsible for managing the storage of message and header data.

The buffer server manipulates a buffer pool which is preallocatedby the application task via
an invocation to a buffer server function. Because these interfaces are internal to the AP

protocol stack, they are not documented in Appendix A, "Man Pages."

The buffer server provides the following facilities:

1) to create a shared memory segmentfrom which buffer pools are allocated

int bs_create_srn_buffer0;

2) to delete the shared memory segment

int bs_delete_sm_buffer0;

3) to retrieve the address of the shared memory segment

int bs_access sm buffer();

4) to allocated and free memory blocks from the shared memory segment

char *bs_alloc(int size);

int bs_free(char *);

5) to cream a buffer pool

int bs_create_buff(int bufpool_size,

buff_struct **buff_addr);

6) to destroy a buffer pool

int bs_destroy_buff(buff_struct *buff__addr);

7) to write a header and its associated message

int bs_write_buffer w hdr(buff_struct *buff_addr,

char *message,

int msg__size,

header_stmct *header);

8) to read a header and its associated message

int bs_read_buffer w hdr(buff_struct *buff_addr,

char *message,

int max_msg_size,

header__struct*header,

trailer_struct*trailer);

9) to write a message

int bs_write_buffer(buff_struct *buff_addr,

char *message,

int msg_size);

10) to read a message
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int bs_read_buffer(buff_struct *buff_addr,

char *message,

int max_msg_size);

3.2.5.1.4. Queue Management

A management facility must maintain information regarding these queues on a single

host. Specifically, a facility must maintain the number and locations of queues, whether a

queue is input or output and which port is associated with each queue.

The port table defines the mappings of port to the input and/or output queues.

Furthermore, the port table provides accessibility to all send-recv input/output queues

within a host computer system. For each port on the host computer it defines the locations

of input and output queues. A num_of_ports variable def'mesthe number of assigned ports;

it represents the number of legitimateentries in the port table. The format of the port table is
shown in Figure 27.

numberof ports I
I

port
number input queue outputqueue

1

2

3

I1-1

11

Figure27.Port_table

Additionally,thequeuemanagementis responsiblefor thecreationanddeletionof the

porttable,ahashtable,semaphores,andasharedbuffer.Becausethesend-recvqueuesare

sharedbetweenanapplicationtaskandasend-recvtask,a hostcomputer-widedataspace
must be created and accessprimitives provided.

The open_port application interface call interfaces directly with the port table in the cre-

ation of a queue. The application task specifies the buffer pool size, and whether the queue

is designated input, output or both. The close_port application interface call similarly oper-
ates on the port table.

In addition, the queue management function must respond to requests to translate

(pormum, input/output flag) to a specific buffer pool address. As part of this request it
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must ensure that a buffer pool for the pormum exists and that it is designated for input or

output as requested by the invocation. The encapsulation of an input/output flag within the

global queue management will enable the use of the same network address for both input

and output.

The queue management function also provides the mechanisms for creation and deletion

of a semaphore and for locking and unlocking that semaphore.

The followingroutines are defined in the queue management:

1)to createa shared memory segmentfor the port table and task hash table

int qrn_create_port_table0;

2) to delete the shared memory segment for the port table and task hash table

int qm_delete_port_table0;

3) to enable a process to access the port table in shared memory

int qrn_access_port_table(port_table_struct**port_table__pu);

4) to enable a process to access the hash_table in shared memory

int qm_access_hash_table(int**hash_table_ptr);

5) to retrieve the queue address associated with the specified pormum

int qm_req_queue_addr(shortportnum,

boolean in_out_flag,

buff_struct **queue_ptr);

6) to create and to deletea semaphore

int qm_create_lock0;

int qm_delete_lock0;

7) to perform P and V operations on the semaphore

int qm_lock0;

int qm_unlock0;

Because these interfaces are internal to the AP protocol stack, they are not documented in

Appendix A, "Man Pages."

3.2.5.1.5. Buffer Queue

The port table guides the location of the buffer queue for the storage of messages. A

buffer queue consists of a buffer header and a contiguous memory area where messages are

stored for either input or output. A single buffer queue (also referred to as buffer pool) is

associated with each queue. An example is shown below:
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begin

eno

b_tail

"--- b_heac

L Source Destination MessageSize Message1

Message 1
(cont.) Source Destination Message Size Message 2

Message 2
(cont.) Source Destination Message Size Message 3

Message 3 (cont.)

Message 3 (cont.)

Figure 28. Structure of Buffer Queue
The fields in this buffer area are as follows:

begin: First address of the buffer area (a constant).
end: Address of the 1st byte beyond buffer area (a constant).

b_tail : Address of the next available locationwhere a message can be added.
b_head: Address of the oldest message in the buffer.

When a port is opened by the application task, the buffer pool is allocated according to

the dimensions derived from the queue_size and buffpool_size parameters on the open port
invocation. The buffer pool is maintained by the buffer server as a first-in-first-out circular

queue. When a message is sent via a port, the buffer server copies a contiguous message

from the application task address space and stores it within the buffer pool. If necessary,

the message will be segmented by the bottom of the buffer pool; the remainder will be

saved at the beginning of the buffer pool. Retrieved messages will be reconstructed into a
contiguous message.

A message can be saved in the queue with or without its header; this depends upon the

buffer server invocation. When the header is saved, the fixed length header consisting of a

source address, destination address and a message size is prepended to the message as it is

stored in the buffer area. For efficiency reasons, the headers and messages will always be
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longword aligned. The messages themselves, however, are not required to be an integral

multiple of a longword in size.

Because of issues of sharing the buffer pool between 2 tasks, the buffer pools were allo-

cated from a shared memory area which is controlled by the queue management function.

Using a shared memory methodology the queues are addressable by either the application

task or the AP Send-Recv task. While the accessibility issue is not a problem for an em-

bedded computer system such as the C2 or C3 FTPP OS, it does pose a significant prob-

lem for the UNIX operating system which isolates tasks from each other. For this reason,

buffer server primitives have been established for accessing the shared memory buffer

space from which the buffer queues are allocated. These routines are bs_create_sm_buffer,

bs_delete sm buffer and bs_access sm buffer.

The port table and a buffer pool are related as shown in the followingdiagram.
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numberof ports I
port
number inputqueue outputqueue

....

3

n-1

n

enc

m b_tail

b_heac

-I_ Source DestinationMessageSize MessageI

MessageI
(cont.) Source DestinationMessage SizeMessage2
Message2

Source DestinationMessageSizeMessage3(cont.)

Message3 (cont.)

Message 3 (cont.)

Figure 29. Port_table and buffer pool interaction

3.2.5.2. AP Send-Recv Task Interface to Network Driver

The protocolstack on a given host containsone NetworkDriverper subnetconnectedto
that host.
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The AP Send-Recv Task interface calls to the Network Driver are outlined below.

Because this is a major interface in the protocol stack, these calls, parameters, and usage

are more fully described in Appendix A, "Man Pages."

3.2.5.2.1. ATP_open

The ATP_open call initializes the data structures and hardware necessary to provide

communications over a specific device.

3.2.5.2.2. ATP close

ATP_close call discontinues communicationsusing the specified device.

3.2.5.2.3. ATP read

ATP_read call checks a specific device and returns a message if any present.

3.2.5.2.4. ATP write
m

ATP_write call sends a message out through the specified device.

3.2.5.2.5. ATP ioctl

ATP_ioctl call provides various control and status operationson an open device.

3.2.6. Routing and Authentication

Routing is performed in both the AP Send-Recv task and the Network Driver, while au-

thentication is performed solely within the AP Send-Recv task. Routing in the AP Send-

Recv task is responsible for a lookup based on source host and destination subnet that de-
termines whether there is a direct connection between the source and destination host or

whether a gateway is needed and, in either case, which Network Driver to use to transmit

the message. If an authentication trailer is needed, the task appends it to the end of the mes-

sage. The send_message_network interface call is then used to pass the authenticated mes-

sage, the required Device ID, and the host number of the next machine to receive the mes-

sage to the correct Network Driver. The Network Driver looks up in the ARP table the

needed physical information on the destinationand sends one message for each media layer

it is responsible for.

3.2.6.1. Network Addressing

All application tasks which use AP to communicate must use a network address to desig-

nate the source and destination of any given message. Network addresses uniquely identify

a subnet, host, and port. The network address consists of three 16-bitquantities: the subnet

ID, the host, and the port.

typedef unsigned short network_address[3];

network_address[0] --> Network ID (mode and subnet)
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bits 0..13: Subnet ID

bits 14..15: Mode => 00 Point to Point

01 Multicast (Not implemented)

11 Broadcast (Not implemented)

network_address[1] --> Host/VID ID

network_address[2] --> Port number, which may be further broken down into Task ID

and Queue ID (this provides capability for application-definedprioritizedqueues)

bits 0..7: QueueID

bits 8..15: Task ID

3.2.6.2. Routing

The routing function of the AP uses the following 2 tables:

1) A routing table is indexed by host and scanned by the routing function until the

correct subnet ID is found, containing connection information (direct vs. gateway),

gateway ID's (if necessary), and interface drivers (IPR0, IP11, etc.).

2) An Address Resolution Protocol (ARP) table is used, whose format is dependent
on the interface driver supported by the overall network. The ARP table contains the

addressing information of all machines in the network. For UDP drivers, this includes

IP address of host and port and socket numbers.

To illustrate routing, the following figure shows three hosts connected over six virtual

subnets. The subnets are overlaid over four media layers: two media layers between Host 1

and Host 2, and two media layers between host 2 and Host 3. Two subnets (1 and 4) are
dual-redundant, and four subnets (2, 3, 5, and 6) are nonredundant.

The subnet identification includes its redundancy. In this example, the two media layers
between Hosts 1 and 2 can be used to construct two nonredundant subnets as well as a

duplex redundant subnet, both of which can be simultaneously in use.

Network Driver IPR0 (Internet Protocol, Redundant, Subnet 1) is used by Host 1 and

Host 2 to reliably communicate over redundant subnet 1, while Network Driver IPR1

(Internet Procotol, Redundant, Subnet 4) is used by Host 2 and Host 3 to reliably commu-

nicate over redundant subnet 4. Host 1 and Host 2 may also unreliably communicate over

nonredundant subnets 2 and 3 using Network Driver IP00 and IP01, respectively. Host 2

and Host 3 may unreliably communicate over nonredundant subnets 5 and 6 using
Network Driver IP10 and IP11, respectively.
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Figure 30. Routing Example

3.2.6.2.1. Routing Table

If Host 1 wishes to reliably send a message to Host 3, that message must be routed

through Host 2, which serves as a gateway between subnets 1, 2, and 3 and subnets 4, 5,

and 6. To determine where to send a given message, each host uses its routing table. Given

a destination subnet (derived from the subnet field of the destination host's network ad-

dress), the routing table informs the source host whether that subnet is directly connected to

the source host (D) or whether the message must be sent through an intermediate Gateway

(G) host. In either case, the routing table informs the source host which Network Driver ID

should be used to send the message.

The routing table is organized as a list indexed by source host and destination subnet.

Each source host has an entry, and each entry is of the following structure:

slruct Routing_Table_Entry

(
unsigned long Subnet_ID;

unsigned long connection;

unsigned long GW_id;

unsigned long Device_id;

}
stmct Routing_Table_Entry Roufing_Table[NUM_HOSTS]

For example, the routing table for H1 in the configuration above would be as follows:
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1

Destination Subnet Type of Connection GatewayID DeviceID
ID

i

1 Direct none IPR0

2 Direct none IP00

3 Direct none IP01

4 Gateway H2 IPR0

5 Gateway H2 IPR0

6 Gateway H2 IPR0

Table 3. Routing Table Example
3.2.6.2.2. ARP Table

The ARP table contains the physical addressing information for all of the hosts in the

network. The Network Driver will only look at the fields necessary for communications.

Currently, the table only supports Ethernet connections (both single and virtual dual). The
table entry is defined as:

structARP_Table_Entry
{
unsigned long host_address;

unsigned long send_IP0;

unsigned long send_IP1;

unsigned long read_IP0;

unsxgnedlong read_IP1;

unsigned long send_port0;

unsigned long send_port1;

unsigned long read_port0;

unsigned long read_portl; }

structARP_Table_Entry ARP_Table[NUM_HOST];

3.2.6.2.3. Routing Header

The AP Send-Recv task uses the information in the routing header to determine the

Network Driver and local entities to which the message should be delivered. The routing

header is generatedwithin the send_message interface call before the message is placed in a

Send-Recv Output Queue. The information in the routing header remains constant for the
lifetime of the message.
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Byte

message
.............tYLS_...............

destination
_,+_etwork----

identifier
destination

.............,host..............
identifier

destination
....tasklqueu_.....

identifier
source

..........network..........
identifier
source

identifier

source

.......task/oNeue......
identifier

Figure 31. Routing Header

The size specifies the size of the user message, in bytes, which immediately follows the

routing header.

The message type field is used by the AP Send-Rec task to determine which of multiple

transport layer protocols is to receive the message. The most significant bit indicates

whether or not the authentication trailer is present. If the authenticationtrailer is present, the

MSB is set, otherwise the MSB is cleared. This field may also be used for FDIR to force

each node to append an authenticationtrailer.

The destination network identifier specifies the subnet to which the message is to be de-

livered. The AP Send-Recv task uses this entry each time a new message enters the routing

layer to determine what to do with the message.

The destinationhost identifier indicates the host on the specified subnet to which the mes-

sage is to be delivered. The AP Send-Recv task uses this entry to determine if it is an in-

termediatenode or if the message has reached its final destination.

The destination task/queue identifierindicates which application and queue the message is

intended for. The AP Send-Recv task uses this entry to determine which specific Send-

Recv Input queue to put the message in.
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The source network identifier specifies the subnet from which the message originated.

The source host and task/queue identifier, in conjunction with the subnet ID, indicates the

entity from which the message originated.This field never indicates a multicast group.

3.2.6.3. Authentication

3.2.6.3.1. Authentication Trailer

If a message is to be transmitted over a subnet requiring authentication, an authentication

trailer must be attached to the message. If an incoming message already has an authentica-

tion trailer attached, that trailer is used. Otherwise, the AP Send-Recv task requests the au-

thenticationprotocol to generateone.

When the message has reached its final destination, the AP Send-Recv task requests the

authentication protocol to test the authenticity of a message based on the contents of the at-
tached authenticationtrailer.

Byte

signature

sequence
..........i_ii#iS_i:..........

......._.ig..not.u..r..e.O.........

additional
signatures

Figure 32. AuthenticationTrailer
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The signature configuration indicates the number and identity of the signing members of

the authentication trailer. A message may be signed by one to four individual members,

with each using a different signature key. The sigconfigfield is divided into four fields of 4

bits each. Each four-bit field indicates the key that was used to generate each corresponding

signature. A field of all 0s indicates no signature. If a field indicates no signature for a

given signature N, no signatures beyond N-1 may be included in the trailer, and any con-

figurations specified in the sigconfig field will be ignored. Thus, if the sigconfig field is

1010 0101 0000 1011, only two signatureswould be expected in the authentication trailer.
15 12 8 4 0

Figure 33. Signature Configuration Field

The netid and netext fields in the authentication trailer specify the agent which signed the

message. The authenticating agent may or may not be the source of the message specified

in the routing header, thus the need for a separate specification. The form of the authentica-

tion agent is the same as for the source address. The authentication agent address is used to

determine which set of authentication keys and which sequence number to use in checking

the authenticity of a message.

The sequence number fields and signature fields are defined by the authentication proto-

col. Signature fields cover the entire user message, the routing header, and all of the au-

thentication trailer except for the signatures.

3.2.6.3.2. Keys

Verificationis carriedout using pairsof keys: host-specificprivatekeys to sign the mes-

sage and globally-known public keys to authenticatethe message. Each host capable of

sending and/or receiving Authentication Protocol messages is assigned one of these pairs

when it is added to the network. If a redundant host is responsible for a message (i.e.,

C3's VIDs), each member will sign the message.

3.2.6.3.3. Private Keys

Private keys are stored in local memory on each individual host. Each processor has a

unique private key. A triplex virtual group containing three processors would therefore

possess three private keys, one for each member. No member of a virtual group possesses

the private key of another member.

3.2.6.3.4. Public Keys

Public keys are stored in a global table which must be updated any time the network is re-

configured (i.e., reconfiguration of VID groups). The table has an entry for each host

which contains all of the keys needed to authenticate a message. For example, in the table
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below, C3, VID 1 is configured as a triplex and the entry must provide three public keys,

one for each PE in the unit. The keys (denoted # in the table) are placed into the table con-

tiguously, with the remaining fields containing zeros.

Host Public Key 1 Public Key 2 Public Key 3 Public Key 4

H1 # 0 0 0

H2 # 0 0 0

C3, VID 1 # # # 0

C3, VID 2 # # # #

Einstein # 0 0 0

Table 4. Public Key Table

3.2.6.3.5. Key Pair Generation

As mentioned earlier, a public-key authentication scheme used for the current protocol

implementation is based on modular inverses. This scheme uses two numbers P and P"1 (p

inverse) for which P • P-1 mod N = 1, where N is a very large number (in our case 264).P

is the private signature key and P-1 is the public authentication key. At system startup or

compile time the key pairs P and p-1 must be generated for each authenticating node in the
system. The key pairs are generated using an extended version of Euclid's algorithm (see

page 302 in Knuth's The Art of Computer Programming, Volume 2 / Seminumerical

Algorithms). To use this algorithm, we note that if

p ° p-1 rood N = 1 (1)
then

p op-1 = N ov + 1 (2)

(or P ° p-1 + N ° v = 1) (2')

since N • v = 0 for any v, 0_<v<N.If equation (2) is true, then it is also true that

gcd(P, N) =1 (3)

Given N and P, where P is a prospective 64-bit private key, perhaps chosen at random,

the Extended Euclid's algorithm can be used to calculate p-1 and gcd(P, N) (v is of no in-

terest). If gcd(P, N) _ 1 (not every number P, 0<_P<N,has a solution in equation (2)), then

P is not co-prime with respect to N and hence is not a suitable private key. If gcd (P,N) =

1, then P and P-1 are modular inverses and are suitable for use as a key pair.

3.3. AP Send-Reev Task Algorithm

Pseudocodefor applicationtasks, the AP Send-Recv Task, andthe Network Drivers is
presentedbelow.
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3.3.1. AP Send-Recv Task Initialization
Each task copy, i (Congruent Operations on Congruent Data):

AP Send-Recv Task:

Check Routing Table:
Scan for all direct connections

Initialize a device for each Device ID which is directly connected
to the host

Determine number and location of all Send-Recv Application Output
/ Input Queues, set up system Send-Recv Output / Input Queues

Figure 32. Pseudocode of Authentication Protocols Send-Recv Task Inidalizaton

-56-



3.3.2. Application Task Output
Each task copy, i (Congruent Operations on Congruent Data):

AP Application Interface:

Send message(i) to correct Send-Recv Output Queue
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3.3.3. AP Send-Recv Task Output
AP Send-Recv Task (Congruent Operations on Congruent Data) :

Copy message from Send-Recv Output Queues into Host Output Buffer
using Queue Selection Logic which:

Decide which application to process

Decide which Send-Recv Output Queues to access and in what or-
der

Decide how many messages from each queue are processed this
round and in what way (i.e., all messages from 1 queue, one
message from each queue, i0 messages from one and 5 from the
next)

Decide how many message are processed (by frame time or number
of messages?)

Examine routing information
Extract destination network address from network header

Use destination[0] to determine destination subnet

Scan Routing Table for destination subnet

Check connection field -> Direct or Gateway

Save the Host ID of the next node (destination[l] if it is a
direct connection, or the Gateway_ID)

Save Device ID

Extract Source network address from network header

Compare source[l] (Host ID) with current host

If (source[l] = Host) or (Message_type says to authenti-
cate),

append trailer

Append Signature Configuration to end of message

Generate Sequence number

Must be monotonically increasing
Add to trailer

Increment sequence number

Generate Signature(i) (Congruent Operations on Non-
Congruent Data)

Currently CRC-based, using private key

From_i : Signature(i)

Append all signatures to end of sequence number

Send message(i) using Network Send-Recv call

Each task copy, j, with Media Layer Interface:

Network Driver (Incongruent Operations on Congruent Data) :

Transmit message(j)

Figure 33. Pseudocode of Au_enficafion Protocols Output Message Processing
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3.3.4. AP Send-Recv Task Input
Each AP Send-Recv task copy, i:

Poll Network Driver (Incongruent Operations on Incongruent Data) :

Read any messages coming in over the networks

Retrieve message from Network Send-Recv calls into Input Host
Buffer using Network Selection Logic which decides:

Which network to check first

How many message from each network to take

How many iterations to run

If message present,

From_i : Message(i)

(Congruent Operations, Congruent Data)

Check Sequence number and source to see if message is new If mes-
sage is old,

Stop processing and get next message

Each task copy, j (Congruent Operations, Congruent Data) :
Examine Routing Information

Extract destination and source network addresses from net-
work header

Compare destination[l] to My_Host_ID

If destination[l] = My_Host_ID,

Use public key for source[l] (Host) to authenticate mes-
sage

If invalid,

Log message
Else

Use destination[2] to distribute to correct Send-
Recv Input Queue

Else

Put in Gateway Queue

Figure 34. Pseudocode of Authentication Protocols Input Message Processing

3.4. AP System Performance

Thefollowingperformancefigureswere takenon theAFTA's 25MHz68030PEswhile

executing the AGN&C apphcation. AUmessages are 256 bytes in length.
Execution

Authentication Protocols Function Time,
milliseconds

send_message(applicationcall) 0.430
read_message(apphcationcall) 0.510

sign and cross-channel exchange four 3.890
channels' signatures

authenticate four channels' signatures 2.850

Table 5. Performance of Selec_d AP Functionality
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3.5 Lessons Learned

In the course of implementing and integrating the Authentication Protocols and the

Advanced Guidance, Navigation, and Controls systems, several lessons were learned. It

should be noted that few are related to the basic AP theory of operation or underlying fault

tolerance of the FTPPs themselves. Instead they are more symptomaticof the immaturity of

the state of the art of developing a complex distributed system on heterogeneous execution

platforms.

The software for the AP system was implemented in C and developed on Sun worksta-

tions using the GCC compiler. This included code for the Suns themselves, the Dirac

LynxOS workstation, and the FTPPs' XDAda Run Time System. The FTPP XDAda code

was developed on a VAX. Conditional compilation switches were used for including host-

specific operating system calls and other features necessitatedby the heterogeneous operat-

ing environment. A complete AP system (not including the AGN&C code) comprises about

96 source and header fries, for a total of 18,000lines of C code (including comments). At

any given time, four to five programmers were working on developing the system, often

working on the same file concurrently. Extreme cost and schedule pressures were in effect

throughout the project.

In retrospect, successful completion of this project would not have been possible had not

several key decisions been made.

Modular Design and Implementation: A significant amount of up-front work and

debate was expended in attempting to clearly definethe desiredcapabilities of AP, modular-

izing these capabilities, defining the interfaces between the modules, and assigning devel-

opers to the modules. While module capabilities, interfaces, and "ownership" changed

(sometimes significantly)as the implementation and integration proceeded, this initial effort

was crucial to the successful implementation of this complex design.

RCS: The large number of files and concurrentlyworking programmers had the potential

for creating a configuration management (CM)nightmare. Early on in the implementation a

configuration management system based on the Unix RCS version management system

was implemented for the AP code. (Code that was not included in the AP CM system was a

continual source of difficulty.) While configuration management was still difficult for the

AP code, failure to implement a rigorous CM program at such an early stage would have

made it impossible. In addition, the constant documentation encouraged by RCS allowed a

programmer to understand and debug another's code without the presence of the other pro-

grammer being required. Notwithstanding, towards the end of the program we instituted a

rule that no one could leave the building while they had an RCS source file "checked out."
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NFS: All source files under CM were resident on a single Sun workstation and exported

to other environments for final linking and downloading. The ability to easily share the

large repository of AP source files in real time without lengthy file copying made updating

(and diagnosing) the entire set of load modules relatively straightforward.

Windows: The full-up AP / AGN&C demonstration exercises code running on about a

dozen processors, with a total of about fifty concurrently active tasks. The multi-windows

capability of the Sun workstations allowed a developer / operator to simultaneously view

and control a carefully selected subset of these concurrent actions on one screen. This ca-

pability is now thought to be absolutely essential when developing any type of distributed
system.

Logic Analyzer: A multichannel logic analyzer was connected to the FTPP processors'

parallel output ports. The processors could then be programmed to write selected patterns

to their output ports at selected points during the execution of code. By capturing and

viewing on the logic analyzer the sequence of patterns emanating from all processors of in-

terest, the redundant system's real time behavior could be conveniently and unobtrusively
observed.

Some design decisions and development/operating environment constraints adversely
impacted the AP design's ease of implementation and performance.

Distributed System Debugging: Debugging the code running on the Sun and

LynxOS systems was relatively straightforward using the GDB debugging tool. However,

it was not possible to globally set and clear breakpoints, single step execution, etc.,

throughout the distributed system due to the lack of a distributed system debugger. In addi-

tion, the Ada code running on the redundant FTPPs had no debugger which would work in

the real time, redundant, distributed, synchronous environment. The programmer in this

case had to resort to programming screen print outs and examining memory dumps from
halted processors.

XDAda Run Time System: As mentioned before, the AP system was implemented in

the C programming language. For commonality, the same source code was compiled for
use on all hosts running AP, including the FTPPs. However, the XDAda Run Time

System running on the FTPPs at the time has no provision for interfacing to code written in

any other high order language. Therefore the AP code had to be downloaded separately to a

"safe" area of memory, and, when an Ada task invoked an AP call, a "jump" to the appro-

priate C code was forced via an assembly language Pragma Interface. This was imple-

mented with surprisingly little effort and caused no obvious problems. However, it seems

to violate the principles of good software engineeringpractice.
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Mutual Exclusionon Shared Memory:The AP systemis designedto allowa large

numberof applicationprocesseson anygivenhost to utilizeAPcommunicationservices.
Onthe Unix/ LynxOShosts,whereprocessesmay be scheduledarbitrarily,this necessi-
tatedtheenforcementofmutualexclusionondata structureswhichare sharedamongappli-

cationprocessesandthe AP Send-RecvTask. (On theFrPPs' RunTime Systems,mutual
exclusionis easily enforcedvia preciselyschedulingthe varioustasks.)Mutualexclusion
was obtainedusing Unix systemcallswhich, in conjunctionwith the latencyrequiredto
scheduletwotasks to senda message(the applicationtask as well as the AP Send-Recv

Task),proved to severelyslowdown the executionof application/ AP task suites com-
paredto simplesocket-basedcommunication.Tuningwasrequiredto achievereal timeper-
formance,and in.somecasesreal timeperformancecouldnot be achievedat all. In addi-

tion,necessarymutualexclusionwas occasionallyanderroneouslyremovedin an attempt

to improveperformance,resultingin hard-to-trackspuriouserrors.In retrospectit is clear
that insufficientattentionwaspaid to thispartof theimplementation.
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Appendix A. Man Pages

APPLICATION INTERFACE
The application interface is defined in section 1.This section is useful for
applicationsprogrammers who need to know details of the system caUsfor
accessing ATP communicationports.

CONTENTS
open_port
close_port
configure_port
send_message
receive_message
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OPEN_PORT(I) OPEN_PORT(I)

NAME
open_port- openan ATPportfor unidirectionalor bidirectionalcommunication

SYNOPSIS
#include"appl_interface.h"
int open_port(uwordl6portnum,port_config._struct*config);

DESCRIPTION
open_port0createsa portforcommunicationusingtheauthenticationprotocol
(ATP).Theportmaybe eitherunidirectionalorbidirectional.

The desiredport numberis indicatedbyportnum,a 16-bitquantitywhich
definesthelastshortintegerin thenetworkaddress.Mappingofportsto
processesor tasksis definedby theimplementation(seegetmyport(1)).

Theportis configuredaccordingto theparametersdefinedin theconfig
structure.

The port is opened for output if the config->open_foroutput parameter is set to
TRUE. If the port uses a static queue structure, the queue is allocated to handle
config->outqueuesize messages. If the port uses a static buffer pool, a pool
of config->out_bufpool_size bytes is allocated. If either of these structures is
non-existent or dynamically allocated, the correspondingparameter is ignored.

The port is opened for input if the config->open_forinput parameter is set to
TRUE. If the port uses a static queue structure, the queue is allocated to handle
config->in_queuesize messages. If the port uses a static buffer pool, a pool of
config->in_bufpool_size bytes is allocated. If either of these structures is non-
existent or dynamically allocated, the correspondingparameter is ignored.

A port is never (even partially) opened if any error occurs.

RETURN VALUES
ATPSUCCESS

Success

ATPEOPEN
The requested port is already open

ATPEBADPORT
The requesting task has asked for an illegal port number, or a port
which it does not have permission to open.

ATPENOOUTSPACE
There is not sufficient memory to open the port with the requested
outputport configuration. It might be possible to open the port by
reducing the size of the output buffers.

ATPENOINSPACE
There is not sufficient memory to open the port with the requested input
port configuration. It might be possible to open the port by reducing the
size of either the output buffers, the input buffers, or both.
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OPEN_PORT(1) OPEN_PORT(1)

SEE ALSO
close_port(I),configure_port(I),send_message(i),receive_message(I)
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CLOSE_PORT(I) CLOSE_PORT(I)

NAME
close_port - close an ATP port.

SYNOPSIS
#include "appl__intefface.h"
int close_port(uword16portnum);

DESCRIPTION
ATP ports are closed using close_port0. If the port requested by portnum is
open, all structuresassociated with the port are deallocated and no further
communication with the port is allowed unless it is reopened. Any messages
remaining in the queues belonging to the port are lost.

RETURN VALUES
ATPSUCCESS

success

ATPENOTOPEN
The requested port is not open

ATPEBADPORT
The requesting task has asked for an illegal port number, or a port
which it does not have permission to close.

SEE ALSO
open_port(l), configure_port(l), send_message(l), receive_message(l)
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CONFIGURE_PORT(I) CONFIGURE_PORT(I)

NAME

configure_port0 - modify or obtain status information on an ATP port

SYNOPSIS
#include "appl_interface.h"
int configure_port(uwordl6 portnum, int command,

port_config_stmct *config);

DESCRIPTION

The implementation of configure_port0 is currently undefined. Eventually, it
will be used for various control and status operations on open ports, including
(possibly) changing queue and buffer allocation, determining queue status,
receiving accumulatederror information, etc.

Some examples:
get message lost counter
reset message lost counter
reallocate queue and/orbuffer size
flush queue and/or buffer

RETURN VALUES
ATPSUCCESS

Success

ATPENOTOPEN
The requested port is not open

ATPEBADPORT

The requesting task has asked for an illegal port number, or a port
which it does not have permission to configure.

ATPEILLEGAL

The requested command is not a legal operation for this port.

ATPEINVALID

The parameter structure config contains an invalid entry.

SEE ALSO

open_port(1), close_port(1), send_message(1), receive_message (1)
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NAME
send_message0 - send a message over the authentication network

SYNOPSIS
#include "appl_interface.h"
int send_message(uwordl6 pormum,

char *message, header_struct *header,
flags_type flags);

DESCRIPTION
The send_message0 function is used to transmit a message using the
authentication protocol out ATP portportnum. The message is a contiguous
stream of bytes pointed to by message. All characteristicsof the message,
including message length, message type, source address, and destination
address are defined by *header, except the port part of the source address,
which is specified byportnum. The send_message0 call does not fill in the
information in the header, except for the source port. The user is expected to
format the packet header correctly before transmittingthe message.

Theflags are used to request special operations. Currently, the definition of the
flags operand is undefined.

RETURN VALUES
On success, send_message0 returns the actual number of data bytes transmitted
(not including the header). This should be the length of the message specified in
the header structure. On error, send_message0 returns a negative number
indicating one of the following errors:

ATPENOTOPEN
The requested port is not open for writing.

ATPEBADPORT
The requesting task has asked for an illegal port number, or a port
which it does not have permission to transmit on.

ATPEQFULL
The output queue for the requested port are full.

ATPEBUFFULL
The output buffer pool is incapable of holding a message of the
requested length.

SEE ALSO
open_port(I), close_port(i), configure_port(i), receive_message(I),
getmysubnet(1), getmynode(1)
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NAME
receive_message0 - receive a message from the authenticationnetwork

SYNOPSIS
4finclude"appl_interface.h"
int receive_rnessage(uword16portnum,

char *message,
int max_msg__size,
header_struct *header,
trailer_struct *trailer,
flags_type flags);

DESCRIPTION
Attempts to read a message from the ATP port requested byportnum. If there is
a ready message on the port, and the user buffer is large enough, the message
will be copied to the location indicated by message. The size of this buffer is
indicated by max_msg_size; the receive_message0 call will never return a
message which is longer than max_msgsize (not including the header or
trailer).

Only the data part of the message is copied to message. The header (and
optionally, the trailer)are copied to the structuresheader and trailer,
respectively. If the trailer argument points to NULL, the trailer is not returned.
It is an error for either header or message to point to NULL.

The flags are used to request special operations. Currently, the definition of the
flags operand is undef'med.

RETURN VALUES
On success, receive_message0 returns the actual number of data bytes read (not
including the header or the trailer).This should be the length of the message
specified in the header structure. On error, receive_message0 returns a negative
number indicating one of the following errors:

ATPENOTOPEN
The requested port is not open for reading.

ATPEBADPORT
The requesting task has asked for an illegal port number, or a port
which it does not have permission to receive on.

ATPETOOSMALL
The message buffer message of length max_msgsize is too small to
contain the next message from the port.

ATPEBADPARAM
Either the message or header parametersdid not point to a valid memory
location.

ATPENOMSG
There were no message waiting to be received at the specified port.

ATPEQFULL
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The input queue for the requested port was full and at least one
incoming message was discarded.

ATPEBUFFULL
The input buffer pool was incapable of holding at least one incoming
message. This(ese) message(s) was(were) discarded.

SEE ALSO
open_port(1), close_port(1), configure_port(1), send_message(1)
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NAME
getmysubnet, getmynode, getmyport, getmyportmask - get information about
the local host

SYNOPSIS
#include "appl_interface.h"
uwordl 6 getmysubnet(int interface);
uword16getmynode(int interface);
#include "atp_groups.h"
uword16getmyport(int group);
uword16 getmyportmask(int group);

DESCRIPTION
getmysubnet0 obtains the subnet identifier to which the network interface
specified by interface is connected. If the parameter interface is -1, the host's
"preferred" subnet identifier is returned. The preferred subnet is generally the
highest reliable subnet to which the host is connected.

getmynode0 obtains the node identifier assigned to the specified network
interface.If the interfaceparameter is -1, the host's "preferred"node identifier
!s returned. The preferred node generally corresponds to the highest reliable
interface on the host. The return value of getmynode(-1) is consistent with the
return value of getmysubnet(-1), i.e. the combined result can be used to create
the source address for a message header.

getmyport0 and getmyportmask0 are used to determine a valid port name for
the task. The group parameter is used to identify certain system groups to which
the task may belong. The default group is USER. Other groups include:

FDIR

reserved for fault detection, isolation, and reconfiguration software.
DIRECTORY

directory assistance
NETMON

network monitor
GATEWAY_PORT

reserved for ATP internaluse
EXP0-EXP3

these four groups are available for experimentation when the use of
dynamic port numbers and directory assistance is not desired. Since the
number of fixed ports is limited, the use of these ports should generally
be replaced by dynamic port allocation and directory assistanceafter
preliminary testing is complete.

The value returned by getmyport0 may represent a range of valid port names.
The mask value returned by getmyportmask0 indicates which bits of the port
name range may be modified by the task. If a bit is set in the mask, the
corresponding bit will be cleared in the port name. However, the task may
modify this bit when selecting a port name. If getmyportmask0 returns 0, the
task must use the exact value returned by getmyport0.

getmyport0 and getmyportmask0 do not actually test the permission of the task
to open a specific port; they return the appropriateport number assuming the
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task has the appropriatepermission. Thus, getmyport0 and getmyportmask0
can be used to determine the local port addressfor communicatingwith certain
system tasks.

For example, a newly awakened task can use getmyport0 and getmyportmask0
to determine the appropriatelocal address of the Directory Assistance (group
DIRECTORY) task.

EXAMPLES
#include "header.h"
#include "atp_groups.h"
#include "appl_interface.h"
header_struct myheader;
myheader,src_addr[0] = getmysubnet(0);
myheader,src_addr[i] = getmynode(0);
/* using the convention <15:8> == taskID and */
/* <7:0> == queueID, set queueID to 37 */
myheader.src_addr[2] = getmyport(USER) l

(getmyportmask(USER)& 37);

RETURN VALUES
getmysubnet0 and getmynode() return the appropriate result if the specified
interface exists. If the specified interface does not exist, or is not configured,
getmysubnet0 and getmynode0 both return 0.

getmyport0 and getmyportmask0 return a valid value under all conditions. If
the parameter to either getmyport or getmyportmaskis not specified or
corresponds to a non-existent group the assumed value of the parameter is
USER.

SEE ALSO
configure_port(I), send_message(l)
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NETWORK DEVICE DRIVER INTERFACE
The network device driver interface is defined in section 2. This section is of
interest primarily to those writing either new network device drivers or those
implementing the application interfacedescribedin section 1.

CONTENTS
atp_init
atp_open
atp__close
atp_read
atp_write
atp_iocfl
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NAME
atp_init - initializeeach authenticationprotocol interfacedriver

SYNOPSIS
#include "atp_driver.h"
atp_init(driver__table_stmct*master_driver_table[]);

DESCRIPTION
Drivers for ATP interfacesare initialized at startup by atp_init0. The argument
master driver table specifiesa hierarchical initializationstructure for
configurationof drivers and devices. The master driver table is an array of
pointers to driver_table_struct's. The size of maser driver table is
MAXNUMDRIVERS. The atp_init0 function searc-hesthe-table startingwith
entry 0. For each valid entry, corresponding to a driver to be initialized,
atp_init0 will call the individualdriver initializationroutine. At the first invalid
entry, indicated either by a pointer to NULL in master driver table or by
scanningpast the (MAXNUMDRIVERS-1)'th entry, initialization is terminated.

Initializationresults in allocation and initializationof local data structures. It may
also generatenetwork traffic.

RETURN VALUES

ATPEINVALID
Theparameter arg contains an invalid quantity.

EXAMPLES
The figure below demonstrates the hierarchy of structures passed to the atp_init
routine, including the driver- and device-specificstructures for a hypothetical
driver named xx.

master_driver_table driver__table_struct xx_initO
driver0 _ inifO _='_= driverinit Idriver I driverargs 71 routine
driver2 device0 '

driver3 device1 L_ xx_driver_argsdriver-specificI
driver4 device2 parameters

null null

device_table_struct

-_ devnum

devminor xx._device_args

devargs _ device-specificI
parameters I

Initialization Structure Hierarchy

The following examplecode demonstrateshow to configure the pointersto
constructa hierarchy similarto the one shownabove. Initializationof structure
elements besidespointersis not shown.
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/* configure one loopback device, two udp devices, */
/* and one udpr device */
#include "atp_driver.h"
#include "ib.h"
#include "udp.h"
#include "udpr.h"

driver_table_struct *master[MAXNUMDRIVERS];
driver_table_struct ib_driver;
driver_table_struct udp_driver;
driver_table_struct udpr_driver;

device_table_struct ib_device;
device_table_struct udp_device[2];
device_table_struct udpr_device;

ib_driver_args ib_drv;
ib_device_args ib_dev;

udp_driver_args udp_drv;
udp_device_args udp_dev[2];

udpr_driver_args udpr_drv;
udpr_device_args udpr_dev;

master[0] = &ib_driver;
master[l] = &udp driver;
master[2] = &udpr driver;
master[3] = NULL;

ib_driver.driverargs = (char *)&ib_drv;
ib_driver.device table[0] = &ib_device;
ib_driver.device table[l] = NULL;
ib_device.devargs = (char *)&ib_dev;
/* configure ib driver in ib_drv, configure the single */
/* ib device in ib_dev */

udp_driver.driverargs = (char *)&udp_drv;
udp_driver.device_table[0] = &udp_device[0];
udp_driver.device_table[l] = &udp_device[l];
udp_driver.device_table[2] = NULL;
udp_device[0].devargs = (char *)&udp_dev[0];
udp_device[l].devargs = (char *)&udp_dev[l];
/* configure udp driver in udp_drv, configure the two */
/* udp devices in udp_dev[0] and udp_dev[l] */

udpr_driver.driverargs = (char *)&udpr_drv;
udpr_driver.device_table[0] = &udpr_device;
udpr_driver.device_table[l] = NULL;
udpr_device.devargs = (char *)&udpr_dev;
/* configure udpr driver in udpr_drv, configure the */
/* single udpr device in udpr_dev */
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SEE ALSO
atp_open(2),atp_close(2),atp_read(2),atp_write(2),atp_iocfl(2),
driver_table_struct(3),device_table_struct(3),lb(4), udp(4),udpr(4)
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NAME
atp_open - open an interface to the ATP network

SYNOPSIS

int atp_open(intdevice, int flags);

DESCRIPTION

atp__openopens the interface specified by device for sending and receiving
messages over the authentication protocol network.

The atp_open0 call behaves similarly to the Unix open(2) system call.
However, instead of passing a character string filenameparameter to indicate
the desired device, atp_open takes the device's integer name. This integer name
is also used by the other atp_ calls. For consistency with open(2), atp_open0
returns the device integer name on success.

A device that is marked DOWN may be opened, but no data can be sent or
received by that device until it is configured UP by an atp_ioctl0 call.

The atp_open0 call supports the following flags:

QRDWR Open device for read and write. Interfacedevices in ATP are
always opened for bidirectional access.

RETURN VALUES

On success, atp_open0 returns a positive value indicating the opened device.
Currently, the returned value will be the same as the first parameter passed to
atp_open.

On failure, atp_open0 will return one of the following errors.

ATPEOPEN

The named device is already opened and the devicerequires exclusiveaccess.

ATPENOEXIST
The named device does not exist.

ATPEINTERNAL
An internal protocol error occurredwithin the driver.

SEE ALSO

atp_init(2), atp_close(2), atp_read(2), atp_write(2), atp_ioctl(2)
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NAME
atp_close - close an ATP interface

SYNOPSIS
atp_close(intdevice);

DESCRIPTION
The atp_close0 call is used to close an interface. Interfaces are marked DOWN
before they areclosed. An interface may be openedlater by this or another
process.

RETURN VALUES
atp_close0 will return one of the following values.

ATPSUCCESS
device was successfully closed.

ATPENOTOPEN
The named device was not opened by this process.

ATPENOEXIST
The named device does not exist.

ATPEINTERNAL
An internalprotocol error occurred within the driver.

SEE ALSO
atp_init(2), atp_open(2), atp_read(2), atp_write(2), at-p_ioctl(2)

BUGS
Since ATP device names are not stored in the standardfile descriptor table, ATP
devices are not closedautomatically upon exit.
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NAME
atp_read - read from an ATP interface

SYNOPSIS
atp_read(int device, char *buf, int nbyte);

DESCRIPTION
atp_read0 is used to get input from the interfacedevice specified by device.
The atp_read0 call behaves in a similar manner to the read(2) system call.

The atp__read0call preserves message boundaries. If nbyte is smaller than the
length of the next message segmentremaining, exactly nbytes of the message
are returned in buf, and the remaining bytes are left on the device queue to be
read by subsequent calls to atp_read0 (this behavior is similar to the STREAMS
message-nondiscard mode). If nbyte is larger than or equal to the length of the
next message segment, the complete message segment is returned in buf and the
number of characters in the message segment is returned by atp_read0.

If nbyte < 0, atp_read0 does nothing and returns 0.

Following a call to atp_read0, the source address of the message can be
retrieved using an atp_ioctl0 call to GETSRCPHYS.

Calls to atp_read0 are always non-blocking, so the error ATPENOMSG is
returned when there is no data to be read on the named device.

RETURN VALUES
On success, atp_read0 returns the actual number of characters returned in buf.
Note that zero-lengthmessages are valid in ATP.

On failure, atp_read0 returns one of the following errors.

ATPENOTOPEN
The named device is not opened by this process.

ATPENOEXIST
The named device does not exist.

ATPEINTERNAL
An internal protocol error occurred within the driver.

ATPENOMSG
There is no data waiting to be read on the named device.

ATPENOPHYS
The physical address of the device has not been configured.

SEE ALSO
atp_init(2), atp_open(2), atp_close(2), atp_write(2), atp_ioctl(2)
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NAME
atp_write- write to an ATP interface

SYNOPSIS
atp_write(intdevice,char*buf,intnbyte);

DESCRIPTION
atp_write0 is used to send a message on the interface device specified by
device. The atp_write0 call behaves in a similar manner to the write(2) system
call.

The atp_write0 call preserves message boundaries. If the device is incapable of
accepting a message of length nbyte, the atp_write0 call will return an
ATPENOSPACE error.

If nbyte < 0, atp_write0 does nothing and returns 0.

Before calling atp_write0, the destination address must be configured using an
atp_ioctl0 call to SETDESTPHYS.

Calls to atp_write0 are always non-blocking, so the error ATPENOSPACE is
always returned if the device cannot accept nbytes of data.

RETURN VALUES
On success, atp_write0 returns the actual number of characters transmitted from
buf. This value will always be exactly equal to nbyte.

On failure, atp_read0 returns one of the following errors.

ATPENOTOPEN
The named device is not opened by this process.

ATPENOEXIST
The named device does not exist.

ATPEINTERNAL
An internal protocol error occurred within the driver.

ATPENOSPACE
The named device is temporarily incapableof accepting a message of the
requested length.

ATPETOOLARGE
The specified message is too large for transmissionby the specified
device.

ATPENOPHYS
The destination physical address has not been configured.

SEE ALSO
atp_init(2), atp_open(2), atp_close(2), atp_read(2), atp_ioctl(2)
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NAME
atp_ioctl - control an ATP interface

SYNOPSIS
#include "atp_driver.h"
#include "phys_addr.h"
#include "arp.h"
atp_ioctl(intdevice, int request, char *arg);

DESCRIPTION
The followingioctl calls use arg as a pointer to a physaddr_stmct structure.

SETMYPHYS - sets the physical address of the device. This operation is not
allowed on some types of devices. The type of physical layer is specified in arg-
>phys_type as follows:

ATP_UNK - unknown physical type.
ATP_UDP - physical layer is UDP
ATP_ETHER- physical layer is Ethemet
ATP FDDI - physical layer is FDDI (either single or dual attach).
ATP_LTALK- physical layer is LocalTalk
ATP_1553 - physical layer is MIL-STD-1553.
ATP_NE - physical layer is the FTPP (a.k.a. AFTA) network element.

The number of distinct physical addresses is specified by arg->phys count.
Currently, only one or two physical addresses are supported. Multip]_physical
addresses are necessary for certain types of redundant network connections
with different addresses on each media layer. The order in which multiple
physical addresses are specified is significant.
The physical address to be assigned to the device is contained in arg-
>physaddr. The interpretation of this union is dependent on the actualphysical
type as indicated above.Each union element may be an array containing one or
more physical addresses, one for each media layer to which the device is
connected.

GETMYPHYS- returnsthephysicaladdressof theunderlyingphysicallayer
device.

SETDESTPHYS - sets the destinationphysical address to be attached to
outgoingpackets to that specified by arg. The destinationphysical address is the
address to which all packets sent via atp_write() will be transmitted.

GETDESTPHYS - returns the current destination physical address configured
for the device in arg.

GETSRCPHYS - returns the source physical address of the most recently
received packet. This information is not normally required by the upper layer.
The source physical address will be retained by the device driver, to be read
with this ioctl call, until a subsequent atp_read0 call occurs.

The followingioctl calls use arg as a pointer to an arp_struct structure.The
physaddr_struct structure in the arp_struct structure is suitable for use with the
preceeding ioctl calls that interpret arg as a pointer to a physaddr_struct
structure.
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ARPADD - add an entry to the ARP table, arg indicates an arp_stmct, arg-
>phys_addr indicates the physical address to be added, arg->net._addr[3]is the
network address to be matched to the physical address. Only the first two
values in the network address are used by the ARP table.

ARPDELETE - delete an entry from the ARP table, arg indicates an arp_struct.
Thephysaddr element of arg is ignored by ARPDELETE.

ARPLOOKUP - look up an entry in the ARP table. A network address is
presented in arg->netaddr and the resulting physical address, if found, is
returned in arg->phys_addr. An error of ATPENOADDR is returned if no entry
was found corresponding to the specified network address.

The following iocfl calls require no input or outputparameter.

SETDEVICEUP, SETDEVICEDOWN- Enables or disables the device,
respectively.

RETURN VALUES
atp_ioctl0 returns ATPSUCCESS upon successful completion, or one of the
following errors:

ATPENOTOPEN
The named device is not opened by this process.

ATPENOEXIST
The named device doesnot exist.

ATPEINTERNAL
An internal protocol error occurred within the driver.

ATPENOTFOUND
no entry could be found in the ARF table for the requested network
address.

ATPEARP
An error or inconsistency exists in the ARP table.

ATPEILLEGAL
The requested operation is not permitted on the specified device.

ATPEINVALID
Theparameter arg contains artinvalid quantity.

ATPENOPHYS
The requested physical address has not yet been assigned. This error
will occur on a GETSRCPHYS call if no messages have been received
on the indicated device since it was opened.

SEE ALSO
atp_init(2), atp_open(2), atp_close(2), atp_read(2), atp_write(2),
physaddr_struct(3), arp_stmct(3)
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INCLUDE FILES

atp_ioctl.h- defines valid ioctl calls for atp_ioctl0
phys_addr.h - defines structures for various physical address forms, and

structures for manipulating the ARP tables.

BUGS

The routines for manipulating the routing tables (ARPADDand ARPDELETE)
are not currently implemented.
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TYPE DEFINITIONS
Severalcompound types are defined in section 3. These types have application
throughout the ATP network system. The header_structand trailer_struct are
primarily of interest to applicationprogrammers and to those implementing the
application interface. The physaddr_structand arp_struct are used in the
application interface and in the device drivers. The driver_table_structand
device_table_structare of interest to those implementingdevice drivers and for
those who are configuring devices in a system.

CONTENTS
physaddr_struct
arp_struct
header_struct
trailer_struct
driver_table_struct
device_table_struct
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NAME
physaddr_struct- structureto containphysical addresses

SYNOPSIS
#include "phys_addr.h"
physaddr_structphys_addr;

DESCRIPTION
The physaddr_struct type is a generic structure for containing an arbitrary
physical address. The definition of physaddr_struct is intended to be
independent of the device-specificsassociated with different types of network
devices. By using physaddr_struct structures wherever a representation of a
physical address is required, the user can manupulate physical addresses
withoutknowing the detailed physical address representation.

The definition of the physaddr_struct structure is as follows:
typedef struct
{
uwordl6 phys_type;
uwordl6 phys_count;
union
{
char unknown[64];
udp_addr udp[2];
ether_addr ether[2];
fddi_addr fddi[2];
italk_addr italk[2];
m1553 addr m155312];
ne_addr ne;

) phys_addr;
} physaddr_struct;

The phystype element indicates the type of physical address contained in
phys_addr. The type indicates how thephys_addr union is to be interpreted.
Predef'medtypes in phys_layer.h include:

ATP_UNK - unknown physical type.
ATP_UDP - physical layer is UDP
ATP_ETHER - physical layer is Ethemet
ATP_FDDI - physical layer is FDDI (either single or dual attach).
ATP_LTALK- physicallayer is LocalTalk
ATP_1553 - physical layer is MIL-STD-1553.
ATP_NE - physical layer is the FTPP (a.k.a. AFTA) network element.
ATP_UNDEFINED - physical address is undef'med.This is different

than the unknownphysical type.
The type ATP_UNK can be used to represent physical addresses with no
representation in thephys addr union. The type ATP_UNDEFINED is used
specifically to indicate th_ the physical address represented byphysaddr is not
defined.

The number of distinct physical addresses is specified by phys count.
Currently, only one or two physical addresses are supported, v_Tithcertain types
of redundant network connections, such as redundant FDDI or redundant
Ethernet, each copy of a message to be transmitted on multiplemedia layers will
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use different destination physical addresses. Other types of redundant
connections, such as the network element, do not require different physical
addresses. Thus, phys_count does not necessarily indicate the redundancy level
of the interface, but simply how many different physical addresses of the
indicated type are needed.

For all devices which require multiple physical addresses, the order of the
physical addresses is important. The true physical address for such a redundant
device is always a complete, ordered list. The driver must always treat this list,
and its own internal list of physical connections, in a consistent manner (i.e.,
always in the same order).

The physical address is contained in physaddr. The interpretation of this union
is dependent on the phys_type indicated above. Each union element is an array
containing one or more physical addresses as specified by phys_count. Unless
otherwise noted, the formatting and byte ordering of these physical addresses is
defined by the relevant standard.

The physical address unknown is used for new types of interfaces which are
not currently defined. It is simply a string of 64 bytes which can be interpreted
in any way. Since it also represents the maximum size of the phys_addr union,
it can also be used to access the byte image of any other type of physical
address. However, due to machine dependencies, this access mode should be
minimized, and should never be used for inter-processor communication.

The UDP address represents one or more UDP ports for communication over a
simulated authentication protocol network. In this case, UDP is used as a
physical layer to the ATP network, although it actually resides at the transport
layer in the TCP/IP protocol suite (an example of recursive protocol stacks).
The defintion of udp_addr is as follows:

typedef struct
{
uword32 ipaddr;
uwordl6 port;

} udp_addr;
The UDP address for a UDP interface specifies, for each media layer, an IP
network address (ipaddr) and a UDP port number (port).

Ethernet addresses are represented by the etheraddr structure as follows:
typedef struct
{
uword8 ether[6] ;
llc_s llc_addr;

} ether addr;
The 6-byte element ether represents a valid Ethemet address as defined by IEEE
802.3. The Ethernet address smacture also includes the logical-link address, as
defined by IEEE 802.2 and IEEE 802-1990.

Fiber Distributed Data Interface (FDDI) addresses are represented by the
fddi_addr structure as follows:

typedef struct
{
uwordl6 fddi_addr_type;
union
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{
uword8 long[6];
uword8 short[2];

) fddi;
llc_s llc_addr;

) fddi_addr;
Either short or long addresses arepermitted. The type of address contained in
fddi is indicated byfddi addr type, and is either FDDI_SHORT_ADDR or
FDDI_LONG_ADDR.q'he fo'riaiatfor short and long addresses is defined in
ANSI X3.139-1987. Thefddi_addr structure, like the ether addr structure,
contains entries for the IEEE logical-linkcontrol layer. -

LocalTalk network addresses are represented by the ltalk addr struct. The use
of LocalTalk as the physical layer for ATP networks is c_rently undefined.

Addresses for the MIL-STD-1553Bare represented by the m1553 addr
structure. The use of MIL-STD-1553Bfor ATP networks is currently
undefined.

The Fault-Tolerant Parallel Processor (FTPP) network element addressing is
defined by the ne addr smactureas follows:

typedef struct
(
uword8 fromvid;
uword8 tovid;
uword8 class;
uword8 user;

uword8 votesyn;
uword8 clkerr;
uword8 linkerr;
uword8 unusedl;

uword8 obne_to;
uword8 ibnf_to;
uword8 score_votesyn;
uword8 unused2;

•uword32 timestamp;
) ne_addr;

The ne addr structureis designed to closelyresemble the format of the network
elemen_info blocks (defined in the AFTA Network Element Hardware
Documentation, "Programmer'sReference") to optimize communication with
the network element. For this reason, not all fields are def'medin all
circumstances. For example, if a destinationphysical address is represented by
ne__addr,the syndrome, timeout, and timestamp fields will be meaningless.
Although these fields have nothing to do with the physical address, they are
represented here so that the higher layer protocols have a mechanism to obtain
this useful informationfrom the network element device driver. Typically, the
higher layer will obtainthe information through a GETSRCPHYSioctl call to
the network elementdevice.

Although the network element, when used as a subnet of the ATP network,
represents a redundant, Byzantineresilient interconnect, multiple physical
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addresses are not required, as they are on other redundant connections, such as
Ethernet.
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NAME
arp_stmct - structure for address resolution protocol (ARP) requests

SYNOPSIS
#include "arp.h"
arp_struct arpreq;

DESCRIPTION
Each device driver is responsible for manipulating address resolution tables for
the address resolution protocol (ARP). Each device may have its own unique
table. Containing these tables in the device ensures that any device-specific
aspects of the physical address are handled inside the driver, freeing the higher-
layer protocols from having to deal with physical addresses at anything but an
abstract level.

ARP operations areperformed on the ARP tables through special ioctl calls
defined by atp_ioctl(2).These ioctl calls use an arp_struct structure as the
argument. The arpstruct structure is defined as follows:

typedef struct
{
physaddr_struct phys_addr;
uwordl6 net_addr[3];

} arp_struct;
The phys_addr is a representation of a physical address as described by
physaddr_struct(3), net addr is the network address corresponding to
phys_addr. Only the first two bytes of net_addr are used in mapping between
physical and network addresses.

SEE ALSO
atp_ioctl(2), physaddr_struct(3)
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NAME
header_struct - ATP packet header structure

SYNOPSIS
#include "header.h"
header_structheader;

DESCRIPTION
The header of an ATP packet is describedby the header_structstructure as
follows:

typedef struct
{
uwordl6 msg_size;
uwordl6 msg_type;
uwordl6 dest_addr[3];
uwordl6 src addr[3];

) header_struct;
The length of the data part of the packet (ignoring the header and trailer), in
bytes, is indicated by msg_size. The msg_type field is user defined, except for
the MSB. The MSB of msg_type is used to indicate the presence (1) or absence
(0) of the authenticationtrailer.

The dest addr and src addr fields indicate the destinationand source network
address_, respectivel.y',of the packet. For both network addresses, the first
byte, xx_addr[O],is the subnet ID, the second byte, xx_addr[1] is the node ID,
and the third byte, xx_addr[2], is the port ID.

The bit field <15:14> of the subnet ID indicates the mode of the network
address as follows:

0 - point-to-point
1 - multicast
2 - undefined/reserved
3 - broadcast

The remaining bits in the subnet ID are used to identify the subnet using a
system-wide unique identifier. (Note: the use of multicasts and broadcasts in the
ATP network is currently undefined).

For point-to-point communication, the node ID indicates a singlephysical
processing site (which, particularly in the FTPP, could be a redundant virtual
group). For multicasts, the node ID indicates a multicast group encompassing
zero or more processing sites.

The port ID indicates a software address. A process may have multiple ports of
communication. By convention, ports 0-255 are reserved for fixed system
applications. Also by convention, the remainingports are divided such that the
bit field <15:8> indicates a unique task ID, and the bit field <7:0> indicates a
unique socket ID for the indicated task. Thus, any given task can have a
maximum of 256 ports, in addition to any of the reserved ports the task is
allocated.

SEE ALSO
trailer_struct(3)
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NAME
trailer_struct - ATP packet trailer structure

SYNOPSIS
#include "trailer.h"
trailer_structtrailer;

DESCRIPTION
The trailer of an ATP packet is defined by the trailer struct structure.Presence
of the trailer is indicated by the msg_typefield in themessage header. If the
trailer is not present, the message terminates after the last data byte in the
message. If the trailer is present, the first byte of the trailer immediately follows
the last data byte in the message during message transmission.For alignment
reasons, the trailer may have to be moved when stored in memory.

The trailer struct structureis defined as:
typedef struct
{
uword8 sig_config[4];
uword64 seq_num;
struct
{
uword64 sig;

} sigs[4];
) trailer struct;

The sig_config array indicates one of 255 possible signatures used to generate
each of the one to four signatures in the trailer. Each element of sigconfig
corresponds to a signature in the sigs an'ay. If an element in sig_config is 0, the
corresponding signature, and all following signatures, do not exist.

The seq_nurn is the authenticationsequence number attachedto this packet The
sequence number is paired with the source network address (subnet and node
IDs only) and should be greater than the sequencenumber attached to the most
recently accepted packet from that host If the sequence number is less than or
equal to the sequence number on the last packet accepted from the host, the
newest packet should be rejected.

Following the sequence number appears from 1 to 4 64-bit signatures. The
existence of signature N (0<_N_) is indicated by non-zero entries in all
elements of the sig_config array from 0 to N. Although the trailer struct
structure defines all four signatures, some of these signatures may-notactually
exist by the above rules. The programmer must make sure that a program does
not attempt to access a signaturethat does not exist

The trailer_struct structurecontains a number of 64-bitquantifies defined as
uword64. These entities are actually 2-element arrays of 32 bit unsigned
integers. Thus, to access an entire 64-bit quantity requires two distinct accesses
to each 32-bit element (see the examplebelow).

EXAMPLES
To read signaturei:

trailer_struct mytrailer;
uword32 upper,lower;
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int sigexist;

if (mytrailer.sig_config[i])
{
upper = mytrailer.sigs[i].sig[O];
lower = mytrailer.sigs[i].sig[l];
sigexist = YES;

]
else
sigexist = NO;

SEE ALSO
header._struct(3)
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NAME
driver_table_struct - Table entry for configuring ATP device drivers

SYNOPSIS
#include "atp_driver.h"
driver_table_structdrivetab;

DESCRIPTION
A device driver for ATP devices is configured using a driver_table_struct. An
array of pointers to driver_table_struct'sis passed to the atp_init0 call for
configuring all devices for ATP. Each structure indicated by the array is targeted
for a different driver.

The driver_table_struct is defined as:
typedef struct driver_table_s
{
int (*init)();
char *driverargs;
device_table_struct *device_table[MAXNUMDEVICES];

) driver_table_struct;
The init member indicates the initializationsubroutinefor the driver. The
driverargspointer indicatesa driver-specificstructurecontaining additional
parameters for configuring the driver.

The device_table array is an array of pointers to device_table_struct's. These
individual structs are used for configuringthe individual devices under the
control of the driver. If there are fewer than MAXNUMDEVICES associated
with this driver, the active devices should be listed in order starting with
devicetable[O]. The last device in the list should be followed by a pointer to
NULL.

SEE ALSO
atp_init0, device_table_struct0,
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NAME
device_table_struct- Table entry for configuringATP devices

SYNOPSIS
#include "atp_driver.h"
device_table_structdevtab;

DESCRIPTION
An ATP device is configured using a device_table_struct. An array of pointers
to device_table_struct's is passed to the device driver in the driver's
driver_table_struct.Each structure indicated by the array is targeted for a
different device.

The device_table_structis defined as:
typedef struct device_table_s
{
int devnum;
int devminor;
char *devargs;

} device_table_struct;
The devnum parameter indicates thepublic name of the device; this name is
generally reflected in the file devicenames.h.The devminorparameter indicates
the private name of the device, used only within the atp_ device driver and the
individualdevice driver. The minor device number is used so that, while the
public names of devices in a system may be non-contiguous, the internal names
can be contiguous. Contiguous internal names makes device array manipulation
much easier.

The devargsparameter points to a device-specificstructurecontaining additional
parameters for configuring the device.

SEE ALSO
atp_init0, driver_table_struct0
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DEVICE DRIVERS
The current selection of device drivers is defined in section 4. This section is
useful for those implementing new device drivers and for those who are
configuring devices in a system.

CONTENTS
lb
udp
udpr
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NAME
lb - loopback device driver

SYNOPSIS
#include "lb.h"

DESCRIPTION
The loopback driver is used to implement a simple device for testing read and
write procedures. The driver implements a single loopback device, lb0, which
places any messages written to it using lb_write() into a queue to be read using
lb_read0.

The driver is configured using the lb_driver_args structure.The device is
configured using the lb_device_args structure. Currently, these structures are
empty, as there is nothing to be configured on either the driver or the device.

The lb driver responds to all standard ioctl0 calls, although they are all ignored.
There is no physical address associated with the loopback device. The atp__ioctl
call always returns ATPSUCCESS, provided the specified device exists and is
opened, and the request argument specifies a legal operation.

SEE ALSO
atpjoctl0
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NAME
udp - UDP (User Datagram Protocol) device driver

SYNOPSIS
#include "udp.h"

DESCRIPTION

The udp device driver implements a simplex subnet connectingan individual
UDP socket to any other UDP socket accessibleon the underlying TCP/IP
network. Since the IP layer below UDP generally provides routing services, the
device can communicatewith otherdevices located on physically independent
Ethemets (or whatever the underlying physical layer is).

Although the UDP protocol is normally used as a transport layer protocol, with
underlying protocols for network, data-link, and physical layers, it is used as a
virtual physical layer within ATP. The physical address of a udp device is the
IP address and port number of the socket the device uses to communicate
through UDP.

The udp driver is configured using the udp_driver_argsstructure, defined as:
typedef struct
{
arp_struct *arp_table[MAXARPTABLELEN];

} udp_driver_args;
The only parameter to the driver is the initial ARP table. All udp devices share
the same ARP table. The table is specified as an array of pointers to
arp_struct's. The driver scans this array beginning with arp_table[O],copying
each entry to its internal ARP table. If the driver encounters either a null pointer
in the array, or the (MAXARPTABLELEN-1)'thentry, the ARP table copy is
terminated.

The individual udp devices are configured using the udp_device_args structure,
defined as:

typedef struct
{
udp_addr udp;

} udp_device_args;
The only parameter to the device is the UDP address (IP addressplus UDP port
number) to attach to the device. The definition of the udp_addr structureis
defined in the physaddr.h fde. Since the udp devices represent simplex subnets,
there is only one UDP address per device.

The udp device takes its physical addressat initiailizationtime from the
udp_device_args structure. The physical address is static, and thus cannot be
changed with a SETMYPHYS ioctl0. Such a call will result in a remm of
ATPEILLEGAL.

For now, the only way to define the ARP table for the udp driver is through the
udp_driver_args structure.The ARP table cannot be manipulated after
initialization.A call to ioctl0 with a requestof ARPADD or ARPDELETEwill
result in a return of ATPEILLEGAL. However, ARP table searchesusing
ARPLOOKUP are honored by the udp driver.
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SEE ALSO
atp_ioctl0

BUGS
The ARP table shouldbe dynamically alterable.
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NAME
udpr - Redundant UDP (UserDatagram Protocol) device driver

SYNOPSIS
#include "udpr.h"

DESCRIPTION

The udpr device driver implements a redundant (duplex) subnet connecting two
UDP sockets to other UDP sockets accessible on the underlying TCP/IP
network. Since the IP layer below UDP generally provides routing services, the
device can communicatewith other devices locatedon physically independent
Ethemets (or whatever the underlyingphysical layer is).

Although the UDP protocol is a transport layer protocol, with underlying
protocols for network, data-link, and physical layers, it is used as a virtual
physical layer withinATP. The physical address of a udprdevice is the IP
address and port number of each of the two sockets the device uses to
communicate through UDP.

The udpr driver is configured using the udpr_driver_args structure, defined as:
typedef struct
{
arp_struct *arp_table[MAXARPTABLELEN];

} udpr_driver_args;
The only parameter to the driver is the initial ARP table. All udpr devices share
the same ARP table. The table is specified as an array of pointers to
arp_struct's. The driver scans this array beginning with arp_table[O],copying
each entry to its internal ARP table. If the driver encounters either a null pointer
in the array, or the (MAXARPTABLELEN-1)'th entry, the ARP table copy is
terminated.

The individual udpr devices are configured using the udpr_device_args
structure, defined as:

typedef struct
{
udp_addr udp [2];

) udpr_device_args;
The only parameter to the device is the two UDP addresses (IP address plus
UDP port number) to attach to the device. The definition of the udp_addr
structure is defined in the physaddr.h file. Since the udpr devices represent
duplex subnets, there are two UDP addresses per device. The order in which
these addresses is specified is significant.

The udpr device takes its physical address at initiailizationtime from the
udpr_device_args structure. The physical address is static, and thus cannot be
changed with a SETMYPHYS ioctl0. Such a call will result in a return of
ATPEILLEGAL.

For now, the only way to define the ARP table for the udpr driver is through
the udpr_driver_argsstructure.The ARP table cannot be manipulated after
initialization.A call to ioctl0 with a request of ARPADD or ARPDELETE will
result in a return of ATPEILLEGAL. However, ARP table searches using
ARPLOOKUP are honored by the udpr driver.
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SEE ALSO
atp_ioctl0

BUGS
The ARP table should be dynamically alterable.
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