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ABSTRACT

The onset of convection induced by coupled surface
tension gradient and buoyancy forces is investigated with
temperature dependent viscosity. Both surface tension and
viscosity are assumed to vary linearly with temperature. The
linear viscosity approximation was found to be an adequate
representation of relevant published experimental data. One
limiting case, Ma = 0, is the buoyancy driven convection
problem typically referred to as the Rayleigh-Benard stability
problem. The other limiting case, Ra = 0, is the surface tension
(gradient) driven flow problem referred to as the Marangoni-
Benard problem. Several investigations of the Rayleigh-Benard
problem with temperature dependent viscosity have been
reported. One stability investigation of the Marangoni-Benard
problem with a linear viscosity variation has also been
published. Results from that Marangoni-Benard study indicate
that linear viscosity variation is destabilizing while similar
studies for the variable-viscosity-Rayleigh-Benard problem
suggest that the above viscosity profile is stabilizing. In this
study the variable viscosity analysis is extended to the coupled
problem, which bridges the above limiting cases.

The equations and boundary conditions obtained from the
linear analysis are solved numerically as a generalized
eigenvalue problem. Neutral stability curves for different
viscosity slopes are generated for the Marangoni-Benard and
Rayleigh-Benard problems. It is shown that the curves can be
collapsed to a single curve by appropriately scaling the results
for each of the limiting cases. The critical Marangoni number is
determined as a function of the slope of the viscosity
temperature variation, e, for different values of the Rayleigh
number. Regression analyses of the numerical results are
performed to provide a convenient means of computing the
critical Marangoni number as a function of e and the Rayleigh
number. The linear temperature-dependent viscosity considered
in this analysis gives results which are consistent with the
Rayleigh-Benard studies employing an exponentially
temperature-dependent viscosity. When the viscosity decreases
linearly with temperature, the coupled buoyancy-surface
tension problem, including the limiting special cases of Ra = 0
and Ma = 0, is found to be more stable than the constant

viscosity case. The difference between this and the previous
Marangoni-Benard study is explained.

NOMENCLATURE

a-f
Bis

C!,c
d
g

h
i
k
k
Ma
P
p
Pr
Q
Ra
T
t
AT
U
w
U
x,y,z

finite difference coefficients (Eqs. (21) and (22))
surface Biot number
proportionality constants for ATC

fluid layer thickness or depth
gravitational acceleration (or finite diff. coef for
Eqs. (21) and (22)
surface heat flux temperature gradient

thermal conductivity
unit vector in z direction
Marangoni number
pressure
pressure disturbance
Prandtl number
surface heat flux
Rayleigh number
temperature
time
temperature difference

velocity vector
velocity disturbance amplitude
velocity disturbance vector
cartesian coordinates

Greek symbols
a wavenumber
P base temperature gradient
e viscosity - temperature slope
K thermal diffusivity
X eigenvalue (dimensionless frequency)
|A dynamic viscosity
v kinematic viscosity
9 temperature disturbance
<j> temperature disturbance amplitude



p fluid density
a surface tension
£ volumetric thermal expansion coefficient

Subscripts
0 parameter/variable value at lower surface
b base quantity
CL result based on Cloot and Lebon '85
c critical value
d parameter/variable value across fluid layer
max maximum value
min minimum value
s property/parameter value at upper surface

Superscripts
mb Marangoni-Benard (Ra=0)
rb Rayleigh-Benard (Ma=0)
T Transpose (see eqs. 2 and 11)
* dimensional quantity

INTRODUCTION

The onset of cellular convection with temperature
gradients imposed normal to the free surface continues to be an
active research topic as illustrated by Koschmeider's (1993)
extensive literature survey. Microgravity science applications
of thermocapillary flows have motivated the study of surface
tension induced instability known as the Marangoni-Benard
problem in both one-g and microgravity environments
(Legros, J.C., et al. 1990). In space, the effect of buoyancy is
minimal and one can consider surface tension to be the sole
driving force. Then the temperature difference necessary to
achieve the critical Marangoni number, Mac, depends only on
the fluid properties and fluid thickness. On the other hand, in
ground-based studies of surface tension driven problem, Mac

is also influenced by buoyancy, that is by the Rayleigh number.
To minimize the effect of buoyancy in the one-g environment,
the liquid layer must be thin but this means that a larger
temperature difference must be imposed across the layer of
fluid in order to reach the critical Marangoni number. As the
temperature difference increases it is no longer appropriate to
use constant values for the fluid properties. The effect of
variable fluid properties on Mac becomes an important
consideration.

The strong dependence of viscosity on temperature for
most fluids, has prompted several studies of the onset of
cellular convection which include this feature, (Palm, 1960,
Stengel et. al.,1982, White, 1988, and Koschmeider, 1993).
The studies almost exclusively consider the buoyancy induced
instability problem. In fact, only one study treats the surface
tension driven instability with a temperature dependent
viscosity (Cloot and Lebon, 1985). For small to moderate
viscosity variations, Stengel et al. and White found that the
variable viscosity had a stabilizing effect on the Rayleigh-
Benard problem while Cloot and Lebon concluded that the

viscosity variation is destabilizing for the Marangoni-Benard
problem. In this paper we investigate the effects of variable
viscosity on the combined buoyancy and surface tension driven
instability which was originally considered by Nield (1964).
The Marangoni-Benard and Rayleigh-Benard instabilities are
discussed as special cases. Viscosity is assumed to depend
linearly on temperature throughout the study.

The governing equations and boundary conditions are
developed in the following section. The numerical solution of
the resulting eigenvalue problem is briefly discussed. The
neutral stability curves for several viscosity-temperature slopes
are presented and these show the stabilizing effect of variable
viscosity for both the Marangoni-Benard and Rayleigh-Benard
instabilities (for small viscosity variations). After rescaling the
neutral stability results with the limiting critical parameter
values, the variable viscosity curves are shown to collapse onto
the constant viscosity curve. Variable viscosity results for the
coupled surface tension and buoyancy induced instability are
then compared with Nield's constant viscosity results. The
relative contribution of the surface tension and buoyancy in
establishing the instability is shown as a function of fluid depth
for a high Prandtl number fluid, silicone oil, and a low Prandtl
number fluid, mercury. The critical temperature difference
across the fluid layer indicating that the fluid has lost linear
stability, ATC, and the corresponding viscosity-temperature
slope, e, are shown as functions of the fluid depth for both
fluids. The validity of the linear viscosity profile which
depends on ATC is then examined as a function of the layer
thickness, d.

DEVELOPMENT OF EQUATIONS

A temperature difference is imposed normal to the free
surface of a thin liquid layer of fluid of infinite horizontal
extent and finite thickness, d, as shown in Figure 1. The initial
steady state or base state of the system is one of no fluid
motion, with a linear temperature profile across the layer. The
velocity and temperature profiles illustrated in Fig. 1 can
immediately be expressed as, UJ = 0 and T^ = T^0 - PZ* .
Using the notation of Pearson (1958) and Chandrasehkar
(1981), Ub and T£ are respectively, the base flow velocity and
temperature where the asterisk "*" denotes dimensional
quantities and the subscript "b" denotes that this solution is the
base flow. The temperature gradient of the base state, P is
defined as |3 = -dTb*/dz*or P = ATd*/d where

ATj = Tfco -Tb*,.. The lower surface is rigid and is held at a
constant temperature. The upper surface is free and exchanges
heat with the environment . It is well known that the
deformation of the free surface also affects the critical
temperature difference which leads to fluid motion, but in this
study we focus on the variable viscosity effect and assume that
the free surface is flat First we give the nondimensional form
of the governing equations and in the next section we linearize
about the base state just described in order to determine
whether small disturbances to the base state will grow or decay.



Specifically we are interested in the critical values of the
nondimensional parameters where the change of stability
occurs.

Figure 1. Base State For Thin Liquid Layer Of Infinite Extent

Nondimensional forms of mass, momentum, and energy
equations for an incompressible fluid with the Boussinesq
approximation are given in Eqs. (1) to (3). The derivation of
these equations with the Boussinesq approximation and
constant viscosity and their subsequent nondimensionalization
are well known and we refer the interested reader to
Chandrasekar (1981), and Drazin & Reid (1982) for details.
Since dynamic viscosity is the fluid property which depends
most strongly on temperature, in our study we permit the
dynamic viscosity to vary with temperature while all other
thermophysical properties apart from density and surface
tension, are assumed constant. The inclusion of variable
viscosity into the governing equations is discussed by Stengel
et. al. (1982).

v-u =

DU
Dt

-RaPr(T-Tb0)

Dt
- = V2T

(1)

(2)

(3)

0 , T, P, t are the velocity vector, temperature, pressure,
and time respectively. The reference values used to
nondimensionalize the variables; length, velocity, temperature,
pressure, and time are d, K j / d , (3d, Po*o/d2 > d2/K0'
respectively. PQ is the fluid density and KQ is the fluid thermal
diffusivity. The subscript 0 indicates that the properties are
chosen at the lower surface temperature, T^ The characteristic
value of the dynamic viscosity of the fluid, jo, is denoted as
(IQ. These reference values are consistent with those used in
the buoyancy instability studies presented hi Chandrasekhar
(1981) and Drazin and Reid (1982), and the surface tension
instability investigations of Pearson (1958) and Scriven and
Sternling (1964). Two dimensionless groups appear hi the
momentum equation, the Prandtl number, Pr, and the Rayleigh
number, Ra, which are defined as follows:

Pr = Ho

PoKo
Ra =

^0 is the volumetric thermal expansion coefficient and g is
gravitational acceleration in the negative z-direction. The dot
product of the unit vector in the z direction, k, and the
buoyancy (RaPr) term in Eq. (2) indicates that buoyancy only
acts in the vertical direction. Therefore the Rayleigh number
occurs only hi the z-momentum equation.

The relationship showing how viscosity depends on
temperature, n(T), is given by Eq. (4). This equation is a first

order expansion of |i(T) expanded about T^ where e = ——
9T

Substituting Eq. (4) into the momentum equation, and
expanding the viscous terms in the momentum equation leads
to equation (5).

(4)

—
Dt

Pr(l + e(T-Tb0))v2U (5)

When e = 0, Eq. (5) reduces to the constant viscosity
momentum equation. The effect of the parameter, e, on the
stability of the quiescent base state is the primary focus of this
paper.

The nondimensional boundary conditions are given by
Eqs. (6) and (7). Equations (6(a) to (c)) represent the no-slip
conditions and impenetrable wall condition at z = 0. Equation
(6(d)) is the constant temperature condition along the wall.
The normal stress boundary condition reduces to (Eq. 7(a))
when the free surface at z = 1 is assumed to be flat Boundary
condition (Eq. 7(b)) is the heat flux balance at the free surface,
where Q* is the dimensional surface heat flux to the
environment and kg is the fluid thermal conductivity. Equation
7(c) is the vector equation for the tangential force balance
along the free surface and it can be resolved into two equations
in the x and y directions.
at z = 0; 0(0) = (Ux , Uy , Uz ) = 0 ; T(0) = Tb0 (6(a) to (d))

dz
a tz= l ;

-H(T)

The operator, Vn, is the surface gradient defined as

i hj— where, i and j are unit vectors in the x and y
dx dy

directions respectively. The Marangoni number, Ma, which
Bd 2Yo

occurs in Eq. 7(c), is defined as: Ma = —j——-, where



parameter, yj, is defined as , and is often referred to

as the temperature variation of surface tension (Nield 1964 and
Adamson 1967) or the differential coefficient of surface
tension change with temperature (Scriven and Stemling 1964).
The surface tension, a*, does not appear in our equations or
boundary conditions since we have assumed a flat interface.
Further discussion of the nondimensionalization of the free
surface boundary conditions is found in Scriven and Stemling
(1964), and Koschmeider (1993).

The surface heat flux, Q , has to be expressed in a form
that is suitable for linearizing the heat flux boundary condition,
Eq. (7). This is accomplished by expanding Q about the
base state surface temperature, Tte. The first order expansion
is given by Eq. (8). As previously noted, the base state varies
only in the z-direction. Therefore, Q*(Tbs) can be re-expressed
using Fourier's law by Eq. (9).

(8)

dz*
(9)

z =d

Substituting Eq. (8) into Eq. (7(b)), using k^P in place of

Q*(Tbs) and defining h* =^
8T*

flux boundary condition becomes:

the dimensionless heat
Tl

The dimensionless group, Bis, is defined as Bis =
h*d

and is referred to as either the surface Biot number (Pearson,
1958 and Nield, 1964) or the surface Nusselt number (Scriven
and Stemling, 1964).

We note that the three-dimensional mass, momentum, and
energy equations are given in Eqs. (1) to (3), yet the boundary
conditions are only specified in the z-direction. After the
governing equations and boundary conditions are linearized
and simplified using some vector operations, it is clear that the
x and y components do not affect the stability of the base state.
Equations ((1), (3), (5), and (6)), and Eqs. (7(a) and (10)) make
up the system which we will linearize in the next section.

Linearize Governing Equations
The dependent variables are written in terms of the

following base flow and perturbation variables:

= u, = Tb+6, = APb+Ap

After substituting for Tb and VTb , the disturbance equations
for temperature dependent viscosity become:

~ = -Vp + k • RaPre - Pr e|"k • (Vu + (Vu)T Y]

+Pr(l-ez)V2u
(11)

(12)

k is the unit vector in the z-direction shown in Fig. 1. The curl
operator is applied twice to the momentum equation, Eq. (11),
which yields Eq. (13).

dt

The first curl operation yields the vorticity equation and
eliminates the pressure terms. The second curl operation
decouples the x and y momentum equations from the z-
momentum and the energy equations. The z-momentum and
energy equations remain coupled through the buoyancy term in
Eq. (13), the convective term in Eq. (12), and the tangential
free surface boundary condition (discussed below). Further-
more, the relevant stability parameters, Ma and Ra, do not
appear in either the x or y momentum equation or their
associated boundary conditions. Given these considerations,
Eq. (13) reduces to a scalar equation in uz, Eq. (14).

dt
— = RaPrV2

ve-2Pre —^-+Pr(l-ez)V4u

(14)

The boundary conditions for the perturbed variables
associated with Eqs. (12) and (14) are given by Eqs. (15)
and (16).

3u,
atz = 0, uz =0; • = 0; 6 = 0 (15(a)to(c»



atz=l , u z=0; -+Bi
oz

(16(a) and (b)) coefficients, a through e are functions of z while f, g, and r are
constants.

i >w i_2 + b(*i >wi-l +c(zi )wi +d<zi )wi + l

i = X(f W i _ j + gwj +f w i

Small Disturbance Analysis
Since Eqs. (12) and (14) are linear, we assume solutions

for uz and <|> are of the form:

i(axx+avy)+Xt i(a,x+avy]+Xt
u = w ( z ) e V x yj) and 9 = <t»(z)e^ * J

ax and (Xy are the dimensionless wavenumbers in the x and y
directions, and X is the dimensionless frequency. Substituting
these into Eqs. (12) and (14) results in the following ordinary
differential equations.

X<j>(z)-D2<Kz)4-a2<Kz)-w(z) = 0 (17)

-a2Dw) + Pr(l-ez)(D4w-2a2D2w+a4w(z))

(18)

where D = — and a2 =a2 +a2

dz
The boundary conditions at z = 0 reduce to:

w(0)=0, Dw(0)=0, (19(a)to(c))

At z = 1, the fiat interface condition, heat flux condition, and
tangential stress boundary condition are:

(20(a),(b))

(20 (c))

w(l) = 0,

(l-e)D2w = -a2Ma<|>(l)

Equations (17) to (20) are solved to determine whether the
velocity and temperature disturbances grow or decay for given
values of the relevant parameters, Ma, Ra, e, and a. This
problem is also referred to as a temporally developing flow
problem since the disturbance growth or decay is in time. For
temporally developing flows, <xx and a are real and the
eigenvalue, X, is complex. If the real part of A. is positive the
disturbance grows; if the real part of X is negative the
disturbance decays in time; and if X is zero, the disturbance
persists unchanged in time. Analytically determined approxi-
mate solutions may exist, such as the series solutions of Cloot
and Lebon (1985) and Nield (1964), but we chose a finite
difference approach because of its ease of implementation.

Equations (17) to (20) were discretized using a central
difference scheme. The discretized governing equations,
Eqs. (21) and (22), were arranged in the form Az = XBz, which
is the generalized eigenvalue problem. In this analysis,

(21)

issX(*i) (22)

B is a nonsingular matrix, so it is possible to reduce the system
to a regular eigenvalue problem of the form Cz = B-1A = Xz.
Assuming a flat interface ensures that B is a tridiagonal matrix
which can efficiently be inverted using a tridiagonal solver. For
this investigation, the resolution was 50 points across the fluid
layer In the z-direction. Since there are two differential
equations the matrix problem has order 100. The nature of the
boundary conditions permits this to be reduced to 99.

RESULTS

Neutral Stability Curves
The effects of variable viscosity on the neutral stability

curves for the limiting cases, Marangoni-Benard and Rayleigh-
Benard problems are shown in Figs. 2 and 3, respectively.
Results are presented for an insulated free surface, Bis = 0,
since this choice of Bis yielded the smallest values of Mac and
Rac. With the above heat flux restriction the boundary
conditions corresponding to the shown results are referred to
as a rigid and conductive lower surface and a free and insulated
upper surface. In both figures, the loci of points which give
zero eigenvalues move upwards for increasingly negative
values of viscosity slopes, e's, clearly showing the stabilizing
effect of the temperature-dependent viscosity. In Table 1 we
have shown the percentage change of the critical Marangoni
and Rayleigh numbers, relative to the case of constant
viscosity. The temperature dependent viscosity has a slightly
greater stabilizing effect on Ma™ b for the Marangoni-Benard
problem, than on Ra* for the Rayleigh-Benard problem. The
superscript "mb" emphasizes that this is the Marangoni-Benard
problem, therefore the Rayleigh number is zero. The
superscript "rb" denotes the Rayleigh-Benard problem
therefore the Marangoni number is zero. This distinction will
be important when the coupled buoyancy-surface tension
problem is discussed.

It is also of interest to know the nature of the new flow
which develops when the base flow loses stability. Some
inkling of this can be obtained from the critical value of the
wavenumber, a. In Figs. 2 and 3 the critical wavenumber
appears unchanged by the variable viscosity, however Table 2
shows that the critical wavenumbers, ac's, decrease slightly as e
becomes more negative.

The constant viscosity curve, e = 0, was first given by
Pearson for the case of a rigid and conductive lower surface



and a free and insulated upper surface. The simpler problem of
constant viscosity permits a closed form solution of the
eigenvalue problem and so formulae for the parameter values
which give zero eigenvalues can be obtained. At smaller values
of the wavenumber, a, our numerically computed Ma™b agrees
with Pearson's exact solution to three significant figures. But as
the wavenumber is increased, the accuracy of the numerical
results decreased. The maximum error in Ma™b with respect to

Pearson's results is 0.8% which occurs at a = 6. We also
compared our results with those of Nield for the
Rayleigh-Benard problem. In that case, the critical Rayleigh
number, Ra*, from the constant viscosity curve in Fig. 3
agreed with Nield's tabulated result within 0.1%.

The Marangoni-Benard problem with a linear temperature
dependent viscosity profile and a deformable free surface was
investigated previously by Cloot and Lebon (1985). They
obtained an analytical solution for that problem in terms of a
power series expansion. Cloot and Lebon concluded that a
viscosity profile which decreases linearly with temperature, is
destabilizing. Their conclusion contradicts the findings of the
present analysis which shows the above viscosity profile to be
stabilizing. We believe that this discrepancy occurred for the
following reason. While Cloot and Lebon permitted the
kinematic viscosity to vary in the momentum equation, they
assumed a constant (dynamic) viscosity in the tangential and
normal stress boundary conditions. Only the tangential
boundary condition is important here since we assume that the
interface is flat The neutral stability results from Cloot and
Lebon's, Mao;, are easily corrected for variable viscosity in the
tangential boundary condition as follows:
Mamb(e) = MaCL * (l-£). After adjusting their solution in
this manner we find that the results from their power series
solution agree with the results presented above. Critical
Marangoni numbers presented in Table 2 differ from the
corrected Cloot and Lebon results by less than 0.1%.

Detailed investigations of the variable viscosity Rayleigh-
Benard problem were performed by Stengel, Oliver, and
Booker (1982) and White (1988). Stengel et al., considered
rigid lower and free upper surfaces in addition to other surface
conditions; however both surfaces were maintained at constant
temperatures in all cases. White's configuration consisted of
rigid and conductive (constant temperature) conditions on both
surfaces. Since our boundary conditions are slightly different,
the Rayleigh-Benard results shown in Fig. 3 can only be
compared qualitatively with the Stengel et al. and White
studies. Stengel et al. showed that when the viscosity decreases
exponentially with temperature, corresponding to our e<0, and

when the ratio of v,^ (at Tb0), to v^ (at T*) is small to

moderate, Vm^/v^ < 3000, the effect is that the fluid is more
stable. On the other hand they found that at larger viscosity
variation ratios, the effect of the viscosity variation was to
cause the fluid to go unstable at smaller values of critical

Rayleigh number. White (1988) performed an extensiveset of
experiments to study the onset of convection for the Rayleigh-
Benard problem with temperature-dependent viscosity. He also
observed that Ra* increases with an increase in viscosity
variation for vmax/vmin < 0(1000). The results in Fig. 3 agree
qualitatively with those of Stengel et al. and White. This
agreement is expected since an exponential viscosity variation
is well approximated by a linear variation for small e. White
also examined the effect of variable viscosity on the critical
wavenumber and his numerical results show that the critical
wavenumber decreases slightly with increasing viscosity
variation for vmax/vmin <55. This is consistent with the

behavior of ac observed in Table 2.

500

450 -

400 -

350 -

300 -

250 -

200 -

150 -

100 -

50
3 4

a

Figure 2 Marangoni-Benard Neutral Stability Curves For
Different Viscosity-Temperature Slope Values, Ra=0
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Figure 3. Rayleigh-Benard Neutral Stability Curves For
Different Viscosity-Temperature Slope Values, Ma=0



Table 1 .-Increase of Critical Marangoni Number and

Critical Rayleigh Number For Marangoni-Benard and
Rayleigh-Benard Problems

e

0.
-.1
-.2
-.3

-.4

-.5

Ma.(e)-Ma c(0)
Mac(0)

0.

6.5

12.9

19.2

25.4

31.6

Ra e (e)-Ra e (0)
Rac(0)

0.

4.9

9.8

14.6

19.3

24.0

Table 2.-Critical Wavenumbers, Marangoni Numbers
and Rayleigh Numbers For Different Viscosity Slopes

e.
0.0
-O.l
-0.2

-0.3
-0.4

-0.5

a,mb(e)

1.991

1.985
1.974

1.965

1.958
1.951

Mamb
r(e)

79.6

84.8

89.9

95.0

99.9

104.8

<*.*(£)

2.085

2.080
2.075

2.070
2.066

2.062

Ra*^)

668.3

701.3

733.8

765.8
^ 797.3

828.4

Scaling
In Fig. 4 we show that when the wavenumber is divided by

its critical value, ac(e), and the Marangoni number is scaled by
Ma™b(e), the neutral stability curves for the Marangoni-
Benard problem, collapse onto a single curve. This figure also
includes the scaled results for the Rayleigh-Benard problem,
where the wavenumber and Rayleigh number are divided by
ccc(e) and Ra^ (e). This means that with a limited amount of

information, ac(e) and Mafb (e), the neutral stability curve for
a given viscosity slope, £., can be approximated from
Pearson's exact solution for the constant viscosity neutral
stability curve. The same is true for the Rayleigh-Benard
problem, where the neutral stability curve for e^O can be
obtained approximately by scaling the constant viscosity
neutral stability curve with known values of <xc(e) and Raf (e).
The maximum error that is incurred in this scaling process for
the Marangoni and Rayleigh curves occurred for
e = -0.5 and is respectively 3% and 2%.

The dependence of the critical values of Marangoni and
Rayleigh numbers and wavenumber on the slope of the
viscosity temperature relation, e, is shown in Fig. 5. This
figure reveals that the critical Marangoni and critical Rayleigh
numbers vary linearly with the viscosity slope, e. For the range
of e considered, the ac variation with e can also be
approximated as linear. The critical numbers, Ma™b(e) and

Ra*(s), are scaled by the constant viscosity critical numbers,

Ma™b(0) and Raf(O). Linear regression results of the
Figure 5 data are given by Eqs. (23) to (26). Values for ac(£),

Ma°b(e), Ra*(e) to three decimal places are given in
Table 2.
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Scaled Neutral Stability Curves

Rayteigh Neutral Stabffly Cuive

Marangoni Neutral Stability Curve

- S
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Figure 4. Scaled Rayleigh-Benard & Marangoni-Benard
Neutral Stability Curves.
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Figure 5. Critical Marangoni Number, Critical Rayleigh
Number, and Critical Wavenumbers as a Function of Viscosity
Temperature Slope



^JM = 1.000-.633e
Ma™b(0)

= 1.000-. 479 e

= 1.990+. 080e

a * =2.085+. 046 e

(23)

(24)

(25)

(26)

Coupled Buoyancy and Surface Tension Problem
The stability of a thin layer of fluid with a temperature

gradient normal to the free surface with combined buoyancy
and surface tension driving forces and constant viscosity was
first solved by Nield. In that work it was shown that the
buoyancy and surface tension forces "reinforced one another"
with regard to the onset of convection. In other words, Mac and
Rac are approximately inversely proportional for the constant
viscosity coupled problem. Nield normalized the critical
Marangoni Number, Mac, with the critical Marangoni number
from the Marangoni-Benard problem, Ma™b(0). Similarly, the
critical Rayleigh number, Rac was normalized with respect to
the critical Rayleigh number from the Rayleigh-Benard
problem, Ra*(0). The interaction between the scaled critical
values, Mac and Rac, for the coupled problem is shown in
Fig. 6. In our case, we modified Nield's approach by scaling
Ma,.(e) and Rac(e) by Ma™b(e) and Ra*(e), respectively. The
variable viscosity results shown in Fig. 6 are in excellent
agreement with Nield's constant viscosity results. The greatest
deviation from Nield's curve is = 0.3% and occurs for e = -0.5
results. Equation (27) is a curve fit of the constant viscosity
numerical data (Nield's curve) and is also shown in Fig. 6.

I

Rac(eVRae«(e)

Figure 6 Scaled Critical Marangoni Numbers and Rayleigh
Numbers For Different Viscosity Slope Variations

Mac(e)
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_,

*

1.055
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Equations (23) and (24) can be used to compute values of
Ma"b(e) and Raf (e). Then using either Fig. 6 or Eq. (27),
the critical values, Mac(e) and Rac(e) for the corresponding
variable viscosity coupled problem can be determined.

The results from the previous section are used to
investigate the stability of a thin layer for two different fluids, a
large Prandtl number fluid, silicone oil, and a small Prandtl
number fluid, mercury. Nield's curve, which is approximated
by Eq. (27), is used to determine the "critical" temperature
difference across the fluid layer, ATC, and the dimensionless
viscosity slope, e, for varying fluid layer thicknesses, d. For a
given fluid, the appropriate fluid layer thickness required for
study of the surface tension dominated, buoyancy dominated,
or coupled instability is also computed from Nield's curve. The
critical temperature difference, ATC, is computed by
substituting Eqs. (23), (24), and the value of e into Eq. (27)
and iteratively solving the resulting relationship between, ATC

and d. After solving for ATC, the curves in Figs. 7(a) and 8(a)
were obtained by directly substituting ATC, and d into the
definitions of Mac/Mac

mb and Rac/Rac
rb. The critical

temperature difference and the corresponding slope of
viscosity versus temperature, e, are plotted as functions of
fluid depth, d, in Figs. 7(b) and 8(b).

Figures 7(a) and 8(a) provide a measure of the controlling
instability mechanism, buoyancy or surface tension, at different
fluid layer depths, d. The transition from a surface tension
dominated instability to a buoyancy dominated instability, in
1 g, occurs at fluid depths of 7.5 mm for the silicone oil and
8.5 mm for mercury. We (arbitrarily) impose the limits
Raj/Ra,.* < .01 to define the Marangoni-Benard instability
and Mac/Mac

mb < .01 to define Rayleigh-Benard instability. In
1 g, the instability can be characterized as the Marangoni-
Benard for fluid depths less than 1 mm for both silicone oil and
mercury. For silicone oil and mercury depths greater than
7.25 cm and 8.15 cm, respectively, the Rayleigh-Benard
instability occurs in a Ig environment For 10"2g, the
Marangoni instability occurs for d less than 7.5 mm for silicone
oil and 8 mm for mercury. At 10^* g, the Marangoni-Benard
instability persists beyond the 3.5 cm fluid depth shown in the
figures.

Figures 7(b) and 8(b) show that the magnitude of both ATC

and the dimensionless viscosity slope, e, decrease with
increasing fluid depth, d. The ATC curves for the reduced
gravity case, 10"̂  g, lie above the Ig curves in the above
figures. The above observations are expected from the trends of
the critical Marangoni and critical Rayleigh numbers as well
as from an examination of Eq. (27). Approximating Nield's
curve by truncating the 1.055 exponent in Eq. (27) to 1, and
then solving for ATC, we obtain the following approximate

expression: ATr °c r- From this expression it is
Cld + c2gd3

readily observed that ATC decreases with an increasing fluid
depth and gravity. The behavior of -8 is identical to the ATC

behavior, with magnitude of e scaled by (IQ and dn*/dT*.
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Table 3 Thermal Physical Properties of Selected Fluids

Fluid Properties Taken At 300 K

Part (a)

Fluid

Silicone Oil3

Mercury1-2

e*

kg/m3

968

13539

k*

W/m-K

.156

8.180

Cp*

J/kg-K

1507.2

139.3

ri*
N-s/m2

.096800

.001688

Patt(b)

Fluid

Silicone Oil3

Mercury ^

£* (dn*/dT*)

N-s/m2-K

-6.54e î

-5.35e-6

t* (do*/dT*)

N/m-K

-.00020

-.00006

r

1/K

.00018

.00096

The viscosity slopes, e, shown in Figs. 7(b) and 8(b) suggest
that the linear variable viscosity approximation is valid for
d> lmm for silicone oil, and d> 2mmfor mercury. The
variable viscosity effect is negligible, e < -.01, for fluid depths
greater than 9 mm for both the silicone oil and mercury.

CONCLUDING REMARKS

Viscosity which is permitted to vary linearly with
temperature stabilizes the coupled Marangoni-Benard/
Rayleigh-Benard problem and both of the limiting cases,
Rayleigh number equal to zero and Marangoni number equal to
zero. A steeper (more negative) viscosity slope results in a
greater stabilizing effect. Cloot and Lebon's conclusion that
viscosity is destabilizing for the Marangoni-Benard problem
needs to be adjusted to reflect the variable viscosity in the
boundary conditions, by simply multiplying their critical
Marangoni number results by (1-e). The critical parameter
values for the two limiting cases, Ma™b and Ra*, were found
to vary linearly with e. Formulae showing the dependence of

Ma™b and Ra* behavior on the viscosity slope, e, are given
by Eqs. (23) and (24). These relations can be used to generate
the variable viscosity neutral stability curves from the constant
viscosity neutral stability curves for both the Marangoni-
Benard and Rayleigh-Benard problems.

The variable viscosity (linear temperature dependence)
results for the coupled Marangoni-Benard and Rayleigh-
Benard problem collapse onto Nield's curve by appropriately
scaling Rac(e) and Mac(e). The relative importance of
buoyancy and surface tension to the Benard instability can be
explicitly shown as a function of fluid layer depths. Specifying
the fluid depth also fixes ATC through Eq. (27). The parameter
8, is proportional to the temperature difference across the fluid
layer, which equals ATC at the bifurcation point. Since ATC is a
function of fluid depth, the validity of the small e
approximation at the bifurcation point that is, the critical
parameter value where linear stability is lost, can be examined
for different values of the fluid layer depth. It was determined
that the linear variable viscosity approximation is valid for
d > 1 mm for silicone oil, and d > 2 mm for mercury. When the



fluid depth exceeds 9 mm for both fluids, the bifurcation point
can adequately be determined with a constant viscosity
assumption.
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