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NOZZLE FLOW WITH VIBRATIONAL NONEQUILIBRIUM

Introduction

We consider the problem of modeling a high temperature diatomic gas _/V2 flowing
^through a converging-diverging high expansion nozzle. The problem is modeled in two
ways. The first model uses a single temperature with variable specific heats as functions
of this temperature. For the second model we assume that the various degrees of freedom
all have a Boltzmann population distribution which means that each degree of freedom
has its own temperature and consequently each system state can be characterized by these
temperatures. This suggests the formulation of a second model with a vibrational degree
of freedom as having its own temperature along with a rotational-translational degree of
freedom with its own temperature. Initially the vibrational degree of freedom is excited
by heating the gas to a high temperature. As the high temperature gas expands through
the nozzle throat there is a sudden drop in the rotational-translational temperature along
with a finite relaxation time for the vibrational degree of freedom to achieve equilibrium
with the rotational-translational degree of freedom. That is, the temperature change that
occurs when the N2 gas passes through the nozzle throat is so great that the changes in
the vibrational degree of freedom lags behind the rotational-translational energy changes.
The resulting relaxation time is finite. It is in this context that the term nonequilibrium
is used. That is, the term nonequilibrium denotes the fact that the energy content of the
various degrees of freedom are characterized by two temperatures. We neglect any chemical
reactions resulting from the high temperatures which could also add nonequilibrium effects.

We develop the basic equations for the two models in various forms in order to check
the derivations with other sources, references [1],[2]. The final form which is solved nu-
merically are the scaled equations in a conservative dimensionless form.

Single Temperature Model

For our first model we assume that there exits a single temperature T which charac-
terizes the energy state of the system. Using the list of symbols given in the Appendix
A, the basic equations describing the flow through a nozzle with cylindrical symmetry are
given by

Continuity

Momentum

j

Energy

Equation of State

Dp
— - + gV •V = 0

+ ij + Vj,i) + V)

?
ot

P = gRT

(1)

(2)

(3)

(4)

(5)



where -B; = -ji + V • V is the material derivative andDt

+ qzez, V = Vrer + Vzez (6)

dT dT

(8)T _ ,

(9)

We assume that the external- heat sources Q are zero. The symbol <j> denotes the char-
acteristic vibrational temperature which is unique for each gas species. For 7V2 we use
^ = 3395 ° K. For small temperatures we have Cv « 5R/2 so that the vibrational degree
of freedom only becomes excited when the temperature is on the order of magnitude of (f>.
The coefficients of viscosity 77 and A = — 2r;/3 are determined from the Sutherland formula,
reference [3] where

where for 7V2 we use ci = 1.488 * 2.16(10~8), gc = 32.174, and c2 = 184.0. The units of
viscosity are kg/m — sec when the temperature T is given in Rankine units. The quantity
$ represents the dissipation function and is given by

* = V(r0-Vy) - V • V(r0-) = (r,-^),,- - V^j (11)

where T^J are the viscous stress terms given by

TV = iWj + V j t i) + .\SiSV • V. (12)

The coefficient of thermal conductivity K is written, reference [4]

K = K r t +K v = ̂ +T^ (13)
/> oc

where Pr is the Prandtl number and Sc is the Schmidt number. For 7V2
 a^ 0 ° A", we have

the approximations Pr ~ 0.71 and Sc ~ 0.74. These values remain constant over a wide
range of temperatures and produce the approximations

Krt w 4.9377^ Kv ss l.Z5rjCvv. (14)



Computational Coordinates

The basic equations (1) through (5) are written in the weak conservative form,
Continuity

Momentum

'z - rrz}) + jfc(eV? + P- r z z )=0 (17)

Energy

-~-\ (r[(Et+P)Vr — VrTrr—VzTrz+qr])+-^-((Et+P)Vz-VrTrz — VzTzz+qz) = 0 (18)

Equation of State

P = eRT (19)

where Et is the total energy per unit volume

* *• rt V T" Z / \ /

and the stresses given by

Trr = ty-z1- + AV • V (21)

rzz = 2r/—- + AV • V (22)

Tee = 2r;— + AV • V (23)

and e is the internal energy per unit mass determined from the relation

de = Cv dT. ' (26)

The internal energy per unit mass e is given by equation (9).
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The equations (15) through (19) are to be solved over the solution domain 0 < z < 6,
0 < T < /(z) where /(z) defines the shape of the nozzle. We introduce the dimensionless
variables

*•_£ t* = - -— T'* VT — V*
L L/Vo r ~ V08/L *

0o 170 ~ QQVt T. V?

where L,5 are characteristic lengths, VQ a characteristic velocity, po a characteristic density,
r?0 a characteristic viscosity, and TO is a characteristic temperature. There then results the
dimensionless equations
Continuity

(28)
( '

dt* r*dr* v K r) ' dz*

Momentum

T^V:} + (rVW + - r

- + - = o (29)

(r*Ie*v;v; - ~r

WV; + P* - r;z/J2e) = 0 (30)

Energy

i * 1 / 9 T " 2

* * *
(31)

o

Equation of State

P* = Q*BT*(TolVZ) (32)

where £"* is the scaled total energy per unit volume

*7 = fi'e* + ( ( V ; ) 2 + (V;)2) (33)



and the stresses given by

r = + A*V* • V

dv;

(34)

(35)

(36)

(37)

(38)

with

where Re = eoV0L/r]0 is the Reynolds number, A* = — 2r/*/3 and E* = E t/(goVo)-
We write these dimensionless equations in the weak conservative form

at/
r*

i
T-r*

where

(39)

17* =

L E*t J *)y; - vr*r*rr/Re -

L^r
6*Vr*Vz* - r*rz

*V*V* + P* - T
- Vz*rzz/Re + q*g J

The solution domain is now 0 < r* < f(Lz*)/8 and 0 < z* < b/L.
The change of variable

q;

0
0

(40)

(41)

x = y -

converts the system of equations (39) to the form

dU BE dF TT
577 + a" + "a- + H =dt* dx dy

(42)

(43)



over the domain 0 < x < 1 and 0 < y < 1 where

E - LF* F = 6 G* -*- r' * f(bxr /(bx)
(44)

f(bx) ' yf(bx)^

Note that in the limit as y —* 0 we have the result

lim
y

0

Re dy

dy J

(45)

Using the vector of primitive variables

and the vector of computational variables

I/ = 001(^0*^0*17, E;

(46)

(47)

we obtain the first three primitive variables from the computational variables from the
relations

Vi = tfi = g*
v2 = u2/ul = v;

(48)

(49)
(50)

The remaining primitive variable is determined using Newton's iterative method on the
system

= T» - e(Hr^e° (51)

where e0 = Vo2(C/4 - \V\(^fV^ + V?))/Vi and e(T) is given by equation (9) with |f, = Cv.
After solving for T we calculate V^ = T* — T/To- Conversely, we can construct the
computational variables from the primitive variables using the relations

= i *
= F * (52)

f/4 = V! * e(T0 *



Operator Splitting

The weak conservative form for the equations of motion in terms of the computational
coordinates x, y are given by the system of equations (43). We can then define the operator
Lx as the numerical solution of the system ^j- + ^ = 0 given by

Predictor: U% =U*j - ^(E*+IJ - Efc)

Corrector: U% =\(U^ + U** - £(E% - £&„•)).

Define the operator Ly as the numerical solution of the system ^ + Qj- — 0

Predictor: U** =U^ - |̂ +1 - *?„•)

Corrector: U$ = ̂  + Z7?J - £j(F*J- F*^)).

Define the operator L as the numerical solution of the system 4^ + H = 0 as

Predictor: £/** =U? .- - &tH* ,
*»J *>J *iJ

Corrector: t/** =1(^. + C/** - AtH**)

where 1^. = F(C7t^), ̂ ,* = ̂ ( ) , etc.
For the method of operator splitting we time march according to the sequence of

operators

and progress the solution from time raAi* to (n + 2)A£* where At* is selected to satisfy
the Courant-Fredrich-Lewy CFL stability condition. The CFL stability condition is deter-
mined by time steps At2 and Atr evaluated at all internal node points. These time steps
are given by (reference [7])

*.- ^ y/2>y2/3

/(**)*!

A(r ffl*
^+ V^/¥

Q \ f ( b x ) k l C p ' 6/1!

From all such time steps we select the minimum time step At = ^{mj {Air, A<r) and then

scale this real time to calculate the scaled time step At* = A^°.
Other methods to solve the system of equations (43) are Runge-Kutta methods and

various implicit methods. Current research is trying to establish an efficient method for
solving the system of equations (43) together with appropriate boundary conditions.



Two Temperature Model

For our second model we assume a vibrational degree of freedom together with a
combined rotational-translational degree of freedom. Each degree of freedom is assumed
to follow a Boltzmann distribution and the energy content of each degree of freedom is
characterized by temperatures Tv and T respectively. As the gas passes through the nozzle
there is a certain finite relaxation time r for the vibrational mode of excitation to achieve
equilibrium with the rotational-translational mode of excitation. Define the quantities:

ni Population density of ith energy level

€.{ Energy per molecule of the ith level

hi Time rate of change of n, due to collisions

qt Heat flux

q = <frr + <T
where qrr is the heat flux due to rotational energy

<f Heat flux due to energy excitation of all energy levels

* Total energy from all energy levels

~* ~* ~*
where Ui = Vj; — V is the diffusion velocity of molecule in state i

$ The Dissipation function.

Let ge* = £): n,e, denote the total energy per unit volume of the vibrational mode so
that by integrating over the volume and surface of an arbitrary volume element we obtain

— / ge*dv = - \^ n^Vi • dS + I
at Jv Js J

— *where dv is a volume element and dS is an area element of the control volume and ri,- are
rate equations to be determined. Using the Gauss divergence theorem and interchanging
the order of summation and integration there results

V)) =

(53)

Using the identities

V • V(0e*) + V(0e'y) - 0e*V • V - V • V(<?e*)



together with the continuity equation and

De* ^Dp De
c Dt Dt Dt

we write the vibrational energy equation as

De* _ ̂  . _^
e-jfi-- 2^rn€i-Vq .

i

Assuming linear harmonic oscillators and using the rate equations from Meador, et. al.,
reference [5],

Q *—r T

where the subscript e denotes equilibrium, the above equation becomes

De* _ e*e-e* I -j
Dt ~ T g q '

Letting * denote the vibrational mode then if Tv exists, the vibrational energy equation
can be represented as

Dev _ _ DTV \ev(T)-ev(Tv)
-V-&. (54)

The second energy equation is obtained by substituting e = ert + ev into the energy
equation (4) to obtain the form

V(ert + ev] + PV • V + V(&« + qv) - $ + gCvvX - gCvvX = 0 (55)
u»i/

where
CVVX = ^Ljd /56\

T ^ '

and then employing the vibrational equation (54) to obtain the coupled energy equations

g-^- + gV- Vert + PV • V + V • qrt - $ + gCvvX =0

de -. (57)

Q-jfi- + QV • Vev + V • qv - gCvvX =0

which reduce to the form

DT -1
Dt gCrt

(V • qrt - $ + PV • V + QCVVX)



where

= Cvv dT = R (59)

The integral in equation (59) is used to calculate the quantity

1 -(ev(T)-ev(Tv)).

Integration produces the result

T2 1 — t>—
w J- *t •*• C

(60)

The quantity gCvvX = ^(ev(T] — ev(Tv}) can be viewed as a coupling term for energy
between the vibrational and rotational-translational modes. The other terms in the coupled
equations (43) are given by

/"• /-» if
^v — t-'urt T ^wt))

ert = ^RT

Cvrt = 5.R/2, Cvv = _ 1)2

"-£"
X =

Cvv dT =

•WT)-

R(f>
e<j>/T0 _

(61)

(62)

(63)

T2 /I --L •*•

qrt = -KrtVT
qv = -

Krt =
Kv = 1.35rjCv

77 = Sutherland's formula

= (1.488) * 2.16(10~8), ge = 32.174, c2 = 184.0

(64)

(65)

(66)

(67)

(68)

(69)

(70)

Here we have assumed that the coefficient for self diffusion between molecules in different
internal states is a constant for all energy states. This in turn produces the above specific
heats.

The divergence of the heat flux terms are given by

„ fd2T IdT
• n^ — — K-, \ -I

r dr
V • qrt = -Krt

V - q v = -Kv

dK,rt
\ d r< J dT (f) +l^

(dTV
( d r .

(71)

(72)
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For the pressure we assume an equation of state for an ideal gas P = pRT. Following
Meador et.al. [5] the relaxation time r for N% is taken as

(73)

where <^, 0, £ are characteristic temperatures given by $ = 3395 K,0 = 3.2324(107) K,
£ = 95.9 K, and

J(T) = 1+ 1 + —
1/2'

y
-1/3

where

(1 - e~2<- ) exp[-(x + C+ - C-)l dx (74)

For the two temperature model we replace the single temperature equation by two
temperature equations. We define the column vector of primitive variables

V = col( Q, Vr, Vz, T, 2V,)

and use the computational variables

(76)

Ert,Ev). (77)

This requires that we replace the temperature equations (58) by energy equations in con-
servative form. The conservative form of the split energy equations are obtained by sub-
stituting Et = Ert + Ev into the equation (18) to obtain the equations

n

i d

or or

where
Ert = 0ert

Ev = gev

P)Vr - Vrrrr - V2rrz + qrt})

Z - Vrrrz - VZTZZ + qzrt] + 6CVVX = 0

Q

qrv)} + ^-[EVVZ + qzv] - gCvvX = 0

|(Vr
2

v = QR(j)/(e-t>ITv _

These equations must be scaled and added to the continuity and momentum equations
developed earlier. The resulting set of coupled equations are given by

11



where

U* =

g*Vr*Vr*

(E*rrt q*rt

F* =

where

(E*rt - Vz*rzz/Re + q*zzrt

, H* =

T/r>* "
J-v = If

J-0

-P* + -
0

qrt

C* =

The above equations involve the primitive variables

and conservative variables

T=T0T«

12



Boundary Conditions

The initial inlet temperature, inlet pressure, and inlet density, are given a priori. From
these values we calculate the critical values V*, P*, g*,A*,T* from a one dimensional model
for the flow and from these values determine the inlet velocity. The one dimensional nozzle
values of pressure, temperature, density and velocity are calculated as a function of nozzle
distance z. These values are then used as starting values for each model. We require a
no slip boundary condition at the nozzle walls, symmetry with respect to the centerline,
and normal derivative of the pressure to be zero at the walls. Extrapolated boundary
conditions are then applied to the exit values and as well as extrapolated temperature
values at the wall and centerline. The exit pressure is also initially assigned.

Comparison with isentropic one-dimensional model

For comparison purposes we also assume an isentropic process and calculate the results
for a one- dimensional flow through the nozzle in the z direction where the area of the nozzle
is a function of z. For an isentropic process we have

dh- te-
ds = „ g = o,

with h = e + RT, e = ff0 CV(T] dT and dh = Cp dT. Consequently,

= C ^ - R d - T = QUp T P

or

Let

f
JP

V = dV =
- 1)

dT
T '

dT

and integrate by parts to obtain

I

In the last integral, let z = e**'T - l,dz = -

'T j 1 _ f* dz
rrl ~/hlT 1 / _/

and consequently

•To T2 e+/T - 1

so that

dT.

(78)

(79)

(80)

(81)

[ <!> 1 ,T f2 dz f*dz_ [z _dz_
JTo T t e t / T - 1 1 ~ J2o Z(z + l) ~ Jzo z +JZO z + l

J

r

To

(82)
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Therefore, we can calculate the pressure ratio as

•7 in . tr—

P / rn \ I / * /i —folTr, \ / ± IT' A. IT1 \
I •* 1 I *• ~ e \ I V *• 9/-LQ \ /00x— ^ I — I I I pxn I — I I X.i I

pn V Tn / \ 1 — f~<t>/T I v \ f<t>/T _ i r<l>/T0 _ 1 / • ^°°'- * o x - ^ u / \ A C ^ / \ •*•/

Since P = gRT we can write

o /T <£ \5/2 /I - e-^/T°t r / - t V ' \ f - 1 0 \ l i r / - r / *u i ^84.^

where <J)/TQ is treated as a parameter.
In one dimension the energy equation can be written

dh + Vz dVz = 0 or Cp dT + V2 dVz = 0. (85)

Consequently, we may write

fV. fT
\ VzdVz = - Cp dT

Jv,0 JTO

which integrates to

V? - VI = 7R(T0 - T) + 2R4 - - -- . (86)

By dividing by a2 = -yRT, the local speed of sound, the one dimensional mach number
can be represented

M2 = + ~ + ~ T (87)

with M = Vz/a. The mach number and one dimensional analysis is used to obtain an
approximate solution to the more complicated two dimensional problem. Here

= L =
7 Cv 5 2 7 ' r - 2 > l ;

The one dimensional continuity equation is given by

AVSQ = A*V;(T (89)

where the * quantities represent those values at the throat of the nozzle where M = 1.
That is, set M = 1 in equation (84), then solve the equations (84)(85) simultaneously for
the value of <^/T, treating <^/T0 as a parameter. This calculated value of <^/T gives T = T*
when M = 1 and consequently we can calculate the values of P*,£*,7*, V* = j*RT* at

14



this critical value of the temperature. The equation (86) can then be expressed in the
following form involving the above critical parameters

Rg*T*

(90)

= _ .
A* ~ My 7 (j>T* P0 P'

Knowing the critical values T*,7*,P*, A* we can calculate the ratio T/(f> as a function of
A/A* which is a function of z, with TO/^ as a parameter. These one dimensional values are
then used as starting values for the solution of the two dimensional non-isentropic nozzle
problem.
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APPENDIX A
LIST OF SYMBOLS

a Speed of Sound [rn/s]

A Cross sectional area [m2]

b Body force per unit mass [Newton/Kg]

Cv,Cvrt,Cvv Specific heat at constant volume [Joule/Kg K]

Dij Rate of deformation tensor [s~l]

—- = — + V • V Material or substantial derivative
Dt at

e,e r t,ev Energy per unit mass [Joule/Kg]

Ert,Ev,Et Energy per unit volume [Joule/m3]

h Planck's constant [Joules]

h Enthalpy [Joule/m3]

k Boltzmann's constant [Joule/'K]

K, Krt, Kv Thermal conductivities [W/m K]

m = W/Na Molecular mass [Kg]

M Mach number

Na Avogadro's number [moJ"1]

9*> <fr t> 9» Energy flux [Joule/m2 s]

P Pressure [Newton/m2]

Q External heat source per unit volume [Joule/m3]

R Gas Constant [Joule/Kg K]

r Radial distance [m]

s Entropy per unit volume [Joule/m3 K]

t Time [s]

T, Tv Temperatures [K]
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V Velocity [m/s]

Vr,Vz Velocity components [m/s]

W Molecular weight of N? [Kg/mol]

X Coupling term [K/s]

x,y Computational coordinates

z axial distance [m]

77 Viscosity coefficient [Kg/ms]

A Second coefficient of viscosity [Kg/m s]

g Density [Kg/m3]

T Relaxation time [s]

T{J Stress tensor [Newton/m2]

(j>, 6, £ Characteristic temperatures [K]

v Frequency [s-1]

7 = —••- Ratio of specific heats

$ Dissipation function [ Joule/m3 s]
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