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ABSTRACT

This paper is concerned with optimal control problems for the von K£rm£n equations with

distributed controls. We first show that optimal solutions exist. We then show that Lagrange

multipliers may be used to enforce the constraints and derive an optimality system from which

optimal states and controls may be deduced. Finally we define finite element approximations of

solutions for the optimality system and derive error estimates for the approximations.
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1. Introduction

The von K£rm£n equations for a clamped plate are given by (see, e.g., [7] or [9])

_x2¢1+ 1[¢2'¢2]= 0 in 12

and

&2¢2 - [¢1, ¢2] = Ag in 12

where
02¢02¢ 02¢02¢ 02¢ 024

[¢'€]- 0_1_0_ + 0_ 0_ 2Oxlz20za z2

Here, fl is a bounded, convex polygonal domain in ]R 2, ¢1 denotes the Airy stress function, ¢2

denotes the deflection of the plate in the direction normal to the plate, and Ag is an external load

normal to the plate which depends on the loading parameter A.

The boundary conditions on F = 012 are given as follow:

0¢1 0¢2

¢1- _ -¢2- _-0 onr,

where O(.)/On denotes the normal derivative in the direction of the outer normal to F.

For reasons to be explained later we introduce appropriate rescalings, i.e., by replacing ¢1 by

A¢1, ¢2 by )_¢2, and g by Ag. Then we can rewrite the K£rm£n equations as follows:

A2¢a + A[¢2,¢2] = 0 in fl, (1.1)

A2¢2- A[¢1,¢2] = Ag in 12, (1.2)

and
0¢1 _ 0¢2

¢1 -- _ -- ¢2 "-- _'n -- 0 on r. (1.3)
We introduce the standard Sobolev spaces (see, e.g., [1])

Hg(121= ¢ € H2(121 ¢ = 0, _ = 0 on 1" ,

H02(12)= (H02(12))2 , H-2(12)= (H02(fl)) ", and H-2(fl)= (H02(12))*,

the bilinear form
P

a(¢,¢)=/nACACd12 V¢,¢E H2(12)

and the L2(12)-inner product

(¢'€) = fn ¢€d12 V¢,€ € L2(12).

Then we may define the following weak formulation of the von Kgrm£n equations (1.1)-(1.3): find

_b = (¢1, ¢2) T E H02(12)such that

a(¢1,€1) + _([¢2,¢21,€1) =0 V €1 E H2(12) (1.4)



and '

a(¢2,€2)- A([¢1,¢2],€2) -- A(g,¢2) V ¢2 E Ho2(fl). (1.5)

Here the notation (., .) stands for the L2(fl)-inner product and (., .) the duality pairing. Using the

identity

([¢,€],() = ([¢,¢'],€) V ¢,€,( E Ho2(fl), (1.6)

one can show that for each g E H-2(fl), (1.4)-(1.5) possesses at least one solution ¢ = (¢1, ¢2) T E

g02(_) and that all solutions of (1.4)-(1.5) satisfy the a priori estimate

H¢IH2 + 11¢2112<_C[Ig[I-2 ; (1.7)

see, e.g., [9], for details. In the sequel a solution to (1.1)-(1.3) will be understood in the sense of

(1.4)-(1.5).

Given a desired state ¢0 = (¢10, ¢20)T E L2(fl), we define the functional

J(¢, g) = ,_'(¢1, ¢2, g)

--fn A/g2d _ (1.8)- ((¢1- ¢1o)2+(¢5- +2

for all ¢ = (¢1,¢2) T E Yo2(fl) and g E L2(fl). We then consider the following optimal control

problem associated with the von K£rm£n plate equations:

min{fl(¢,g) I ¢ E H02(fl), g E 0 } subject to (1.4)-(1.5), (1.9)

where 0 is a convex, closed subset of L 2(fl). The physical interpretation of this optimal control

problem is that we wish to match a desired Airy stress distribution and a deflection distribution

on the entire plate by choosing an (optimal) external load g from an admissible set O.

Our plan is as follows. In §2, we show that an optimal solution exists. In §3, we use Lagrange

multiplier techniques to derive an optimality system from which optimal states and controls can be

deduced. We then specialize to the case O = L2(fl) and derive an optimality system of equations.

In §4, we define conforming finite element approximations of the optimality system of equations
and derive error estimates.

2. Existence of an optimal solution

We will prove in this section that an optimal solution exsits for the minimization problem

(1.9).
THEOREM 2.1. There exists a (¢,g) E Ho2(fl) × 0 such that (1.8) is minimized subject to

(1.4)-(1.5).
Proof. We choose a g(0) E 0 and let ¢(0) = (¢_o), ¢_0)) T E H02(fl) be a solution of

A

a(¢_°),(_l) --_ _([¢_°),¢_°)1, €1) = 0 V _)1 E H02(_)

and

a(¢_°),¢2) - A([¢_°),¢_°)],€2) = A(g(°),¢2) V ¢2 E g_(fl).
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The existence of such a _b(°) was established in [9]. We see that (_b(°),g(0)) E Ho2(_)× ® satisfies the

constraints (1.4)-(1.5) and J(_b(°),g(0)) < oo. We also note that J(_b,g) >_0 for all (¢,g) G X×®.

Thus we may choose a minimizing sequence ((¢(n),g(n))} C Ho2(_) × 0 such that for some constant
M>O,

,]'(_b('_),g('_)) _<M, (2.1)

a(_)_n),¢l) + _ ([_/)_n),_/)_n)],¢i) ----0 V €1 E H2(__) (2.2)

and

a(¢_),€2)- _([¢I_),¢_")],€2)=_(g(-),€2)v€2_ H0_(_). (2.3)

Using (2.1) and the definition of the functional J we deduce that the sequence (Iig('_)110} is bounded

so that by the a priori estimate (1.7), the sequence {[l¢(n)l]2} is bounded as well. Hence by choosing
a subsequence, we have that

g('_) --- g in L2(_)

and

¢(n) ..., _b in H02(_)

for some g E L2(_) and _b G H02(_). Using the convexity and closedness of ®, we deduce that

g E ®. By the compact imbedding H02(_) ¢--,¢--,L2(_), we obtain ¢('_) --_ ¢ in L2(f_) so that for

each € = (€1, €2) T E H02(_), we have that (also using the continuous imbedding H02(_) _ Loo(_))

n---*oo 2 _/) _) ],€1 ---- lim 1.-_o_7 ¢ 1,¢
1 1

=_ ([¢2,€1],¢2)=_([¢2,¢_],€1)

and

7"$--€- OO n --'_"GO

= - ([¢1,€2],¢5)= - ([¢1,¢_],¢2).

Hence we may pass to the limit in (2.2)-(2.3) to show that (¢,g) satisfies (1.4)-(1.5).

Finally, we use the sequential lower semi-continuity of the functional ,Y"to obtain that

j(¢,g) _<liraj(¢(_),g(_)).

Hence, we have proved that a solution (¢,g) G H_(_/) × ® exists that minimizes (1.8) subject to
(1.4)-(1.5). [:]

3. An optimality system of equations

In this section we assume that (¢,g) E H02(_) × ® is an optimal solution for the minimization

problem (1.9) and we attemp to characterize the optimal solution as the solution for a system

of partial differential equations. To be precise, we use Lagrange multiplier rules to derive an
optimality system of equations.



We define the Lagrangian for the constrained minimization problem (1.9) as follows:

f ([¢2,¢21,£(¢,g,r/) = J(¢,g) - ! a(¢l,m) +

+ a(¢2, .2) - A([¢,, ¢2], 772)- A(g,r/2)}

for all (¢,g,r/) E H02(f2)× L2(f_) × H(_(a).
By formally taking variations in the Lagrangian with respect to ¢ and g, we obtain:

a(_l,r/1)- A([¢2,_],_1) = A(¢, - ¢10,_1) V _I _ HO2([_), (3.1)

a(_2, TI2) 3t- ._([¢2, _1], _2) -- _([¢1, ?_2], _2) (3.2)

= :_(¢_- ¢20,5) v¢2_ Ho2(a)
and

A A
-_ (z,z) + A(z,m ) - _ (g,g)- A(g,r/2) > 0 Vz E®. (3.3)

For each EE (0, 1) and each t E ®, we set z = d + (1 - E)g E O in (3.3) to obtain

€2

-_(t-g,t-g)+_(t-g,g)+_(t-g, rl2)>_O VteO

so that, after dividing by _ > 0 and then letting _ _ 0+, we obtain

(t-g,g+rl2)>O VtEO. (3.4)

Now we show that there does exist an r/E H02(a) satisfying (3.1)-(3.3), or equivalently, (3.1)-
(3.2) and (3.4), so that we are justified to compute a triplet (¢,g,r/) from (1.4)-(1.5), (3.1)-(3.2)
and (3.4). In this paper we will not address the uniqueness of solutions for the system (1.4)-(1.5),
(3.1)-(3.2) and (3.4).

We first quote the following abstract Lagrange multiplier rule whose proof can be found in

[10].
THEOREM3.1. Let X1 and X2 be two Banach spaces and ® an arbitrary set. Suppose ff is a

functional on X1 × 0 and M a mapping from X1 × ® to X2. Assume that (u,g) is a solution to
the following constrained minimization problem:

M(u,g) = 0 and there exists an _ > 0 such that ff(u,g) < ff(v,z)
(3.5)

for all (v,z) such that Ilu-vllx,___,and M(v,z) = O.

Let U be an open neighborhood of u in X1. Assume further that the following conditions are

satisfied:

(A) for each z E 19, v _ if(v, z) and v _ M(v, z) are Frdchet-differentiable at v = u ;

(B) foranyv_ U, Zl,Z:_0, andT_ [0,1],thereexistsaz._=z._(v, zl,z2) suchthat

M(v,z._) = 7M(v,z,) + (1 - 7)M(v, z2)
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and

J(v,z_) <_73"(v,zl) + (1- 7)Y(v,z2);

(c) Range(M_(u,g))isdosedwitha finitecodimension;
and

(D) the algeraic sum M_,(u, g)X1 + M(u, O) contains 0 E X2 as an interior point,

where Mu(u,g) denotes the Frdchet derivative of M with respect to u. Then, there exists a a 7 E X_
such that

(7, M,_(u,g)v) - (J_(u,g),v) = 0 V v E X1

(or equivelently, [M_,(u,g)]* 7 - J_,(u,g)= O) and

min_(u,z,7)=L(_,g,7)
zEO

whereL(_,g,7) = J (_',g)- (7,M(_,,g)) istheLagr_ngianfor theconstrainedminimizationp_oblem
(2.5) and where Ju(u,g) denotes the Fr_chet derivative of ff with respect to u. []

We now define some spaces and operators in order to rewrite the constraint equations (1.4)-
(1.5) into a form that will facilitate our verification of the assumptions in Theorem 3.1.

We define the spaces X = H2(f_), Y = H-2(_2), G = L2(_2), and Z = Ll(_2). By compact
imbedding results, Z _--_--_Y. The control set (9 is a closed, convex subset of G = L2(f_). We also
note that Y = X*.

We define the continuous linear operator A E £(X;Y) as follows: for _b E X = H2(_2),
A¢ = f E Y = H -2 (_) if and only if

a(¢1,€1) = (f1,€1> V¢1 E Ho2(_2)

and

a(¢2,€2) = (f2,€2> V ¢2 E Hob(n).

It can be easily verified that A is self-adjoint, invertible, and A -1 E £(Y; X).
We define the (differentiable) nonlinear mapping N : X ---,Y by

N(¢)= -[¢_,¢217 V€ EX

or equivalently

1
(N(0),€) = _ ([¢2, ¢2], €1) - ([¢1, ¢2], €_) V_b= (€1,€2) T E X

and define K : g E L2(_) _ Y by

(0)
or equivalently,

(Kg,¢)= -(g,¢_) V¢= (€_,€_)_ X.



Clearly, the constraint equations (1.4)-(1.5) can be expressed as

A¢ + AN(¢) + )_Kg = O.

We are now in a position to prove the existence of a Lagrange multiplier r/ E Ho2(fl) that

satisfies (3.1)-(3.2) and (3.4).

THEOREM 3.2. Assume (¢,g) E Ho2(£/)x 0 is an optimal solution that minimizes (1.8) subject

to (1.4)-(1.5). Then, for almost all )_ E A, there exists a Lagrange multiplier rI E H2o(a) satisfying

the Euler equations (3.1)-(3.2) and (3.4).

Proof. We define a mapping M : Ho2(_/) x 0 --* H-2(fl) (i.e., X x O --* Y) by

M(4},z)-A4}+AN(4})+AKz V (4},z) E Ho2(_) x 0.

We see that minimizing (1.8) subject to (1.4)-(1.5) can be stated as minimizing if(€,g) subject to

M(d2,g) = 0. We first verify that the hypotheses (A)-(C) of Theorem 3.1 hold with X1 = X and
X2 =Y.

Obviously, for each z _ O, the mappings 4} _ if(4}, z) and 4} _ M(4}, z) are both Frgchet

differentiable, i.e., (A) holds.

Since ® is convex and the mapping K is linear, we have that for any 4} E H2(O), zl E O,

z2 E ® and 7 E (0, 1), the element zv _=7zl + (1 - 7)z2 belongs to ® and

M(4}, z.y) = A4} + A N(4}) + ,_Kz. r

= 7(A4}+ aN(4})) + (1 - 7)(A4}+ ,_N(4}))

+ _('rKz_+ (1- 7)Kz2))
= 7M(4},zl) "k (1 -7)M(4},z2).

Moreover, the mapping g _ Iigi]_ is obviously convex from ® into IR. so that

s(¢,z_)=_ 114}-¢o11:0+_ 117zl+ (1- 7)z211_0

(_I1€-¢011_+(1- _)114}-¢ollo_)+_ (_Ilzlllo_+(1- _)iiz:llo_)<_
_--")'S(4},Zl) -{-(I- 7)if(€,z2)•

Thus,(B) holds.

The operator M¢(d2,g ) from X to Y is defined by

U¢(¢,g).4} = A4}-k ,\i'(¢) .4} V 4}E X = H_(_) ,

or simply,

Me(€,g) = A + ,_g'(¢),

where for any € E X, the operator N€(¢) : X _ Y is given by

N'(¢).4}= -[¢1,q_]-[¢2,€11 V4}=(€1,€2) TEX.



Thus, using the definition of [.,-], we obtain that N'(¢). € E LI(_) = Z. Using the compact

imbedding Z ,---_¢--.Y, we see that N_(¢) is a compact operator from X to X. As a result,

M¢(¢,g) = A + AN'(¢) = A(I + AA-1N'(¢)) is a Fredholm operator so that it has a closed
range with a finite codimension, i.e., (C) holds.

We now verify that the hypothesis (D) holds for almost all A. In fact, if A _ 0 and (l/A)

a(-A-' N'(€)), where a(-A -1N'(¢)) denotes the spectrum of the operator (-A -1N'(¢)), then
it follows that

Y = Range(A(I + A A-1N'(¢)))= Range(M¢(¢,g))

so that Range(M¢(¢,g)) contains 0 E Y as an interior point, i.e., (D) holds. Since the spectrum

of a compact operator is at most countable, we conclude that for almost all A, (D) holds.

Hence, by Theorem 3.1, we obtain that for almost all A, there exists a _ E Y* = H02(f_) such
that

A*_/+ A [N'(¢)]* • _/- ff¢(¢,g)=O (3.6)

and

£(¢,g,_/) < £(¢, z,7) V z E ®. (3.7)

Recalling the definition of the operators A and Nt(¢) as well as the fact that A is self-adjoint, i.e.,

A* = A, we see that (3.6) is equivalent to (3.1)-(3.2). Using the definition of the Lagrangian, we

easily see that (3.7) is simply a restatement of (3.3), the latter being equivalent to (3.4). Thus we

have proved that a Lagrange multiplier r/E H02(a) exists such that (3.1)-(3.2) and (3.4) hold. 1-1

Remark. Now we can explain the rescalings that were introduced in §1. With these rescalings,

the parameter A appears in the form of an eigen value in the operator Me(€,g) - A + AN'(¢)
so that spectrum theories for compact operators can be readily employed in the proof of Theorem
3.2. D

So far 0 has only been assumed to be a closed, convex subset of L2(fl). In the sequel we

specialize to the case 0 = L2(f_). Then we can obtain two improvements in Theorem 3.2, the first

being that the results of Theorem 3.2 now hold for all A, the second being that (3.4) becomes an
equality.

THEOREM 3.3. Assume 0 = L2(fl) and (d2,g) E H2(12) × L2(_) is an optimal solution that

minimizes (1.8) subject to (1.4)-(1.5). Then, for all A E A, there exists a Lagrange multiplier

_1E H2o(_) satisfying the Euler equations (3.1)-(3.2) and

(t,g + r/2) = 0 Vt E L2(_/). (3.8)

Proof. In view of Theorem 3.2 and its proof, we only need to verify (D) when (l/A) E

a(-A-1N'(u)), i.e., we need to show that for each .f E H-2(_), there exists a _ E L2(f_) and a
¢ E H02(_) such that

ACq- AN'(€) .¢ . AK_= ],

or equivalently,

= (/1,€1)V€1 (3.9)
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and

a(¢2, €2) -- ,,_([¢1, _321, €2) -- /_([_bl, ¢21, €2) -- ,,_(g, _2) (3.10)
= (]2,¢5) v€5_ H0_(_).

To show this, we first let _b E H0Z(f_)be a solution of

a(¢l,¢l)-JI - ,'_([¢2,¢2],€1) "" (A,€1) V €1 _ g2(_'_)

and

a(¢2,¢5)- = v
The existence of such a € can be shown in a manner similar to that for showing the existence of

a solution to the yon K£rm£n equation; the key step is that by adding the two equations with the

test function _breplaced by ¢, we have the a priori estimate

a(¢1,¢1)-I- a(¢2, _b2)= (_,_1)-4- (./_, ¢2) •

Now, having chosen such a ¢, we simply set _ = -[¢1,z_]. Note that regularity results for the

biharmonic equation applied to (1.4)-(1.5) yield ¢ E g4(_) (see [3]). Hence, using imbedding

theorems we deduce that _ E L5(_2). It is obvious that ._ and _ satisfy (3.9)-(3.10). Thus, we have

verified (D) so that by Theorem 3.1, there exists a r/E X such that (3.1)-(3.2) and (3.4) hold.

Finally, (3.4) trivially reduces to (3.8) in the present case of t9 = L2(_2). [3

Combining the results of §2 and this section we see that we have proved the existence of a

triplet (¢,g,r/) E H02(fl) x L2(_) x H02(_) such that the system (1.4)-(1.5), (3.1)-(3.2) and (3.8)

is satisfied. For convenience we collect these equations here to form an Optimality System of

Equations:

a(_31, ¢1) -Jl- _)_ ([_D2, _72], €1) _-- 0 V €1 E H2(_ '_) , (3.11)

a(¢5,€2)- ;_([¢1,¢5],€2)= a(g,¢_) V€5 _ g02(a), (3.12)

a(f,,r/,)- A([¢5, r/2],(,) = A(¢I - ¢,0,(1) V (1 E H02(a), (3.13)

a((2, r/5) + A([¢2,7/,],(2) - A([¢1, r/,], (,) (3.14)
= _(¢5 - ¢_0,¢5) V ¢2 _ H0_(a)

and

(t,g + r/5) = 0 Y t E L2(_2). (3.15)

4. Finite element approximations and error estimates

4.1. Definition of finite element approximations.

A finite element discretization of the optimality system (3.11)-(3.15) is defined in the usual

manner. For simplicity, we will only study conforming finite element approximations in this paper.

However, the error estimation techniques used in this paper are equally applicable to mixed finite

element approximations based on the Hellan-Hermann-Johnson scheme for biharmonic equations.



See [4] (also [5]) for the definition and discussions of the mixed Hellan-Hermann-Johnson scheme

for biharmonic equations.

We first choose families of finite dimensional subspaces X h C H02(_) and G h C L2(_/) param-

eterized by a parameter h that tends to zero and satisfying the following approximation properties:

there exists a constant C and an integer r such that

inf I1€-_bhlI2< Ch'_llCllm+2,V,__ H,_+2(_),1 < m < r (4.1)
_h EX h

and

inf IIz- zhll0< Ch'_llzll,_, Vz _ H"_(W, 1 < m < r. (4.2)
zh EG h

One may consult, e.g., [2] and [6] for some finite element spaces satisfying (4.1) and (4.2). For

example, one may choose X h = V h × V h where V h is the piecewise quintic-C 1(_) finite element

space constrained to satisfy the given boundary conditions and defined with respect to a family of

triangulations of £t. In this case, h is a measure of the grid size.

Once the approximating spaces have been chosen, we may formulate the approximate problem

for the optimality system (3.11)-(3.15): seek ch E X h, gh E G h, and r/h E X h such that

a(¢h ch)+ _([¢h,¢hl,¢h) = 0 V ch E V h, (4.3)

a(¢h,¢h)_ ,_([¢h,¢h],¢h) = ,_(gh,¢h) y ch E Y h , (4.4)

a((h,r/h)_ ,_([¢h, r/h], _'h) = ,_(¢h _ ¢10,(h) y _-hE Y h , (4.5)

a(_h,r/h)+,_([¢h,r/hl,(h) -- A([¢h,r/hl,_'h) =,_(¢h-- ¢20,(_') V_"h E V h (4.6)

and

(zh,g h+rl h)=O Vz hEG h. (4.7)

Note that in the last equation, if G h : V h, then we have gh : _r/h SOthat the variable gh can be

eliminated to simplify the approximate problem. But in general we have to deal with the entire

system (4.3)-(4.7).

4.2. Quotation of results concerning the approximation of a class of nonlinear prob-
lems.

The error estimate to be derived in Section 4.3 makes use of results of [4] and [8] concerning the

approximation of a class of nonlinear problems. These results imply that, under certain hypotheses,

the error of approximation of solutions of certain nonlinear problems is basically the same as the

error of approximation of solutions of related linear problems. Here, for the sake of completeness,

we will state the relevant results, specialized to our needs.

The nonlinear problems considered in [4] and [8] are of the following type. For given A E A,
we seek ¢ E X such that

_(_, ¢) =¢ + 70(_,¢) = o, (4.8)
where 7" E £(Y; X), G is a C 2 mapping from A × X into Y, X and Y are Banach spaces, and A

is a compact interval of IR.. We say that {(,_,0(,_)) : ,_ E A} is a branch of solutions of (4.8) if



A ---*¢(A) is a continuous function from A into X such that 7-/(A,¢(A)) = 0. The branch is called

a regular branch if we also have that 7-/¢(A, ¢(A)) is an isomorphism from A' into X for all A E A.

Here, 7-/¢(., .) denotes the Frdchet derivative of 7-/(.,-) with respect to the second argument. We

assume that there exists another Banach space Z, contained in Y, with continuous imbedding,
such that

_¢(A,¢)E£(X;Z) VAEAandCEX, (4.9)

where g¢(., .) denotes the Fr4chet derivative of G(-, .) with respect to the second argument.

Approximations are defined by introducing a subspace X h C R" and an approximating operator

T h E £(Y; rYh). Then, given A E A, we seek Ch E X h such that

7-/h(A, Ch) -- Ch + ThG(A, Ch) = 0. (4.10)

Concerning the operator 7 "h, we assume the approximation properties

UmII(Th- T)" llx= 0 V EY (4.11)h---_0

and

lim II(Th - T)IIH(z;x) = 0. (4.12)h---_0

Note that whenever the imbedding Z C 3; is compact, (4.12) follows from (4.11) and, moreover,

(4.9) implies that the operator T_7¢(A, ¢) E £(X; X) is compact.

We can now state the result of [4] or [8] that will be used in the sequel. In the statement of

the theorem, D2G represents any and all second Fr6chet derivatives of G.

THEOREM 4.1. Let h' and y be Banach spaces and A a compact subset of 1_. Assume that

is a C 2 mapping from A × X into y and that D2G is bounded on all bounded sets of A × X.

Assume that (4.9), (4.11), and (4.12) hold and that {¢(A); A E A} is a branch of regular solutions

of (4.8). Then, there exists a neighborhood 0 of the origin in X and, for h < ho small enough, a

unique C 2 function A _ Ch(A) E ,,_'h such that {¢h(z_); )_ E A} is a branch of regular solutions of

(4.10) and Ch(A) -- ¢(A) E O for all A E A. Moreover, there exists a constant C > O, independent

of h and A, such that

IlCh( a)- ¢(A)IIx < CII( 7"h - 7")G(A,C(A))IIx V A E A. [] (4.13)

4.3. Error estimates.

In this section we will derive error estimates for the finite element approximations of solutions

of the optimality system.

We begin by fitting the optimality system and its finite element approximations into the

abstract framework in §4.2.

We set ,_' = X x G x Y*, 3) = Y x X*, Z = Z x Z, and ,._'h --- X h X G h x (y.)h. Then

we have that Z is compactly imbedded into y. (We recall that the spaces X = Ho2(l'/)= Y*,
Y = H-2(fl) = X*, Z = Ll(a) and G = L2(a) were all introduced in §3.) We define T E £(Y;X)

as follows: T(_, _) = (_b,_, _) for (?, _) E Y and (€, _, _) E X if and only if

a(_b,#)= (_,€) V€ _ Hg(ft), (4.14)
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a(0,w) = (_,w) Vw E Ho_(fl) (4.15)

and

(t,._ + #2) = 0 V t E L2(Q). (4.16)

Similarly, the operator T h E £(Y;X h) is defined as follows: Th(_,_ ")= (_bh,_lh,_h) for (_,_) E Y
~h hand (€ ,_ ,_h) E X h if and only if

a(_h,_h)=(_,¢h) V_h_ Xh, (4.1Z)

a(_h,_h) = (_,_h) Vwh E X h (4.18)

and

(th,_ h + _lh) = O V tbEG h. (4.19)

The nonlinear mappingg : A × x _ y is defined as follows: G(A,(¢,_,_/)) = (_,_) for A E A,
(¢, _, _/) E ,¥, and (_, _) E Y if and only if

\ _[¢1,¢2]+ _ /
and

.= { __[_2,_]+_(_1-¢1o)
\-_[¢2, _1]+ _[¢1,_] + _(_ - ¢_o)] '

or equivalently,

= --_([_,_],€1)+_([_1,_],€_)+_(0,€_)2

+_([_,_],¢_)+_(_1-¢1o,¢1)-_([_2,_],¢_)
+_([_1,_],¢_)+_(_ - ¢_0,¢_)v (€,¢)_Hob(a)×H_(_).

Using the operators N and K introduced in §3, we can also write the defining equations for
_(_,(_,_,_))_ fo_ows:

= AN(¢) + Ag_ (4.20)

and

= A[N'(¢)]*_/- A(¢- ¢0). (4.21)

It is easy to see that the optimality system (3.11)-(3.15) and its finite dimensional counterpart
(4.3)-(4.7) can be written as

(¢,_,_)+ :r_(_,(¢,_,_))=0
and

(¢h,_,,_) + =r_(_,(¢_,_h,_)) =0,

respectively, i.e., with ¢ = (¢,g,_/) and Ch = (¢h,gh,_ih), in the form of (4.8) and (4.10), respec-
tively.
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We now turn to the verification of the assumptions in Theorem 4.1. We first examine the
approximation results for the linear operators T and T h.

LEMMA 4.2. For every (_,'r) E _,

liraII(T- Th)ff,_)llx=0.h.--,0

_,'th_,_o,_,ifT(_,_')= (#,_,_)€Hm+2(n)×H,_(_)xHm+2(_),th_n

iI(T- 7"h)ff,_)llx_ Ch'_(ll'_ll-_+2+ II011-,+ 11011-_+2).

Proof. For each given (_,_) E Y, let (¢,_,ft) = T(_,_) and (_bh,_h,_la) = Th(_,_') , i.e.,

(€,_,_) E ,-l"and (_bh,_h,ft h) E X h satisfy (4.14)-(4.16) and (4.17)-(4.19), respectively. From the
well-known results concerning the approximation of biharmonic equations (see, e.g., [2] and [6]),
we obtain that

lira11')'-')'hl12=o
h---*0

and

liralift-_hl12= 0. (4.22)
h---*0

Furthermore, if _ E Hm+2(f_) and ft E H'_+2(f_), then

I1_'-'_hl12--<Ch'_ll¢ll,-+'

and

lift-fthll2---Chmllftllm+2"

(4.16) and (4.19) yields (g - gh, z h) = --(f12-- rlh, z h) for all z h E Gh. We then have that

= (g-_h,_- zh)_ (_2- _, zh--_h)

+lllz-  llg+ - +¼11 -
so that

I1_- _hllo---c (11_-zhllo+ I1_- _11o)•

It follows from (4.2) and (4.22) that limh.-,o I1_- _hllo= 0. Hence,

11(7"-7"h)ff,_)llx=tim \(11€- _'hll_+ I1_- _hllo+ lift-¢_hll_)=lim O.
h'-'-_O h--*O

Furthermore, if (€,_,_) E Hm+2(f_) × Hm(fl) × Hm+2(ft), then

119- _11o_ Ch_(ll_llm+ Ilftll,-+2)
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so that

li(:r- :rh)(_,#)iix= lit- "_hii2+ il0- 0hii0+ ii_l-_hfl,
<- Chm(ll_bllm+2 + II0llm + IDYll,n+,). D

Next, we examine the derivativesof the mapping g.
LEMMA 4.3. The mapping G is twice continuously Frdehet differentiable; the second order

derivative is bounded on all bounded subsets of A x X; and the first order derivative maps X into

Z continuously, i.e., g(¢,a,r/i(,_,(¢,g,_)) E £(X;Z).
Proof. Using imbedding theorems, Hblder inequalities and the fact that g consists of poly-

nomial maps, we deduce that the mapping g is twice continuously Fr6chet differentiable and the
second order derivative is bounded on all bounded subsets of A x ,t'.

A simple calculation shows that G(¢,o,_) (A, (¢, g, r/)) E £(,¥;Y) is given by

( )
where the operators N and K along with their derivatives were introduced in §3. Sobolev imbedding
theorems imply that

N,(€).,_= -[¢1,¢21-[¢2,¢11_L'(a),

_L,(a)q _

[N'(¢)]*•_1= [¢5,011- [¢1,_1)
and

(([N"(¢)1".¢) .9= [¢2,_]-[¢1,r/21) E Ll(fl).

Of course, _ E LI(.Q). From the definition of the operator K we see that K maps L2(.Q) into

{0} x L2(_) C L1(_2). Hence the operator G(¢,g,rl) (,_,(¢,g,r/)) maps h" into Z. Moreover, using
Holder inequalities and Sobolev imbedding theorems it is easy to see that

II0(¢,_,,7)(A,(€,g,,7)).(€,,._,O)llu(a)
_<c(11€11_+ I1_11_+1)(11,_112+ I1011o+110112)

so that

_(¢,o,_)(_,(¢,g,_))E£(X;Z). 17
Next, we recall the notion of regular solutions. A solution (¢(,_),g()_),r/()_)) of the optimality

system (3.11)-(3.15) is called regular if

(_+Tg(¢,g,_)(A,(¢,g,_)))-(¢,0,_)=(_,_,_)

has a unique solution (¢,_,#) E h' for any (_,h.,_) E h'. As T is invertible, (_,/_,_) = T(F,'_) with

(F,'7") _ _ = H-_(D) x g-2(_). Thus, (¢(,_),g(,_),r/(,_)) is a regular solution of the optimality

system (3.11)-(3.15)if

(I + TG(¢,g,r/)()_, (¢,g,rl))). (',},._,_)= T(_,_')

13



has a unique solution (€,_,_/) E X for any (_,_) E Y, or equivalently, the following system (for

the unknowns (¢,_,_)) is uniquely solvable for any (_,_) E Y:

a(_1,€1) -I-([_2,_2],€I) -_ (_1,€I) V €I E H02(_-_), (4.23)

a(_2, €2) -- _([_)1, _21, €2) -- ,_([_1, _/)21, €2) -- _<g,€2> (4.24)
= (_1,€1> V 42 E H02(a) ,

a(_l, _1)- ,,_([_b2, _2], _1)- _([_2, _]21, _1)- ,_(_1, _1) (4.25)

= <_,,¢,>v¢,_n0:(a),

a(_'2, _2) "_- ,_([_/)2, _11, _'2) -_- _([_2, TIll, _2) -- ,_([¢1, _21, _2) (4.26)

- _([_,,,_1,¢,)- _(_,,¢,)=<_,,¢,>v¢,_ H0_(a)
and

(t,.0 + _) = 0 Y t E i 2(_). (4.27)

Note that the linear operator appearing on the left hand side of (4.23)-(4.27) is obtained by

linearizing the optimality system (3.11)-(3.15) about (¢,g,r/).

LEMMA 4.4. For almost all A, solutions (_b(A),g(A),T/(A)) of the optimality system (3.11)-
(3.15) are regular.

Frog The system (4.23)-(4.27)can be rewritten as

(i +_TS(¢,g,,))(¢,0,_)=T(_,_), (42S1

where the linear operator $(€, g, 7) : "_' _ Y is defined by

1 (£, (¢, g,_/)). (_,_,_)s(¢,g,_). (_,_,_)_--_ _(¢,_,_)

(
N'(¢) ._ + K_, _¢)\ [N"(¢) • ¢]* • _ . [N'(¢)] ._/ "

It was established in Lemma 4.3 that the mapping _(_b,g,_/)(A,(¢,g,v/)) is compact from ,Y into y.
Now, T E £(Y; h'), so that (I + AT,q(¢, g,_/)) is a compact perturbation of the identity operator

from X to X. Thus, for almost all A, (4.28), or equivalently (4.23)-(4.27), is uniquely solvable, i.e.,

for almost all A, the solution (_b(A),g(A),_/(A)) of the optimality system (3.11)-(3.15)is regular.
[]

We are now in a position to derive error estimates. In the following theorem, we will assume

that the solution (¢(A),g(A),_(A)) of the optimality system (3.11)-(3.15)is regular. Lemma 4.4

guarantees that this is indeed the case for almost all A. Lemmas 4.2 and 4.3 verified all the

assumptions in Theorem 4.1. Thus we are led to the following error estimates.

THEOREM 4.5. Assume that A is a compact interval of lR+ and that there exists a branch

{(¢(A),g(A),_(A)) : A E A} of regular solutions of the optimality system (3.11)-(3.15). Assume

that the finite element spaces X h and Gh satisfy the hypotheses (4.1)-(4.2). Then, there exists a
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5 > 0 and an ho > 0 such that for h < ho, the discrete optimality system (4.3)-(4.7) has a unique
branch of regular solutions {(¢h(A),gh(A),rlh(A)) : AE A} satisfying

{llCh(A)- ¢(A)112+ Ilgh(A)- g(A)llo+ II0h(A)-- rt(A)ll2}< _ forallAEA.

Moreover,

/_{llCh(A)- ¢(A)II=+ Ilgh(,x)- g(,X)ll0+ II0h(,X)-rl(,X)ll2}= 0,
uniformly in A E A.

If, in addition,the solution of the optimality system satisfies (¢(A),g(A),TI(A)) E Hm+2(f_) ×
Hm(ft) × Hm+2(ft) for AE A, then there exists a constant C, independent of h, such that

I1¢(_)- ch(A)ll2+ IIg(_)-gh(_)llo+ IIo(A)- _h(A)ll2
-<Chm(llC('X)llm.2+ IIg(A)llm+ II0('X)llm+2),

uniformly in AE A. D

5. Conclusions

We studied an optimal control problem for the von Karman equations in this paper. We first

gave the mathematical statement of the problem and proved the existence of an optimal solution.

We then applied the Lagrange multiplier rules to derive an optimality system of equations that the

optimal state must satisfy (the use of Lagrange multiplier rules was justifed). We finally defined

finite element approximations for the optimality system and derived optimal error estimates. The

functional we minimized was a tracking functional (i.e., the tracking of the Airy stress function

and the normal deflection). The control we used was a distributed control (i.e., the external load).
However, the methods used in this paper apply equally well to optimal control problems with other

objectives (e.g., minimizing the stress functional in some areas) and/or other types of controls (e.g,
boundary controls).
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