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Abstract

This paper develops a parallelizable multilevel multiple constrained nonlinear

equation solver. The substructuring process is automated to yield appropriately -

balanced partitioning of each succeeding level. Due to the generality of the pro-

cedure, both sequential, partially and fully parallel environments can be handled.

This includes both single and multi processor assignment per individual partition.

Several benchmark examples are presented. These illustrate the robustness of the

procedure as well as its capability to yield significant reductions in memory

ultilization and calculational effort due both to updating and inversion.
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I. Introduction

For nonlinear static and implicit transient finite element or difference simu-

lations, generally some form of Newton Raphson [1"31iterative algorithm is typically

° employed to solve the resulting nonlinear set of equations. Prior to the 1980's,

generally the classical version of the scheme I1"31was the preferred method. With the

advent of constrained adaptions, problems exhibiting postbuckling behavior can now

.be standardly handled. To date a wide variety of constraint procedures have been

developed, for instance

i) Arc length control 141

ii) Linear [sl,circular I_,vj,elliptid s,gland piecewise continuous ll°l constraints as

well as

iii) The enforcement of bounds on successive stress, strain and energy IsJ°,11]

excursions.

More recently, modifications have been introduced to partition and parallelize

the scheme. These include a variety of different approaches, i.e.

i) The least square method l_21

ii) The mixed direct-iterative solution of the stiffness matrix [131

iii) The use ofmultiple/multilevel constraints t14Js3and k

iv) The use of progressive substructuring 1_61.

Overall the foregoing I4"161procedures have greatly widened our ability to tackle

highly nonlinear response problems including the interaction of contact, large defor-

mation kinematics, complex material response, postbuckling, etc.

The thrust to parallelize the Newton Raphson family of algorithms has risen

out of the need to handle ever increasing problem sizes. The heart of the difficulty

lies in the storage and inversion of the tangent matrix. While attempts to use

: progressive substructuring _3J6J7] point to potentially significant gains, overall the

approach typically yields hit or miss improvements !18"2°_.This follows from the fact



that generally no attempts have been made to balance memory and computational

efforts. As a result, progressive substructuring can lead to an imbalance between

internal and external variables yielding potentially increased costs in

a) communications

b) memory and

c) computational effort.

In the context of the foregoing, this paper will develop a parallelizable

multilevel constrained nonlinear equation solver. To provide for a proper balance

between the internal and external variables associated with successive levels, the

hierarchical poly tree (HPT) of Padovan and Gute Ils'2°_will be employed. This will

enable the minimization of computational effort, communications and memory

requirements. Concomitantly, the multilevel substructuring process will be auto-

mated to yield the appropriate partitioning of each succeeding level.

Due to the generality of the procedure, both sequential, partially and fully

parallel environments can be handled. Two approaches to parallelism will be under-

taken, i.e.

1) Where single processor assignment is defined for each partition and

2) Where multiple processor assignment is employed.

To further extend the rafige and capability of the scheme

i) A variety of local partition level update schemes will be explored, namely

BFGS 121J,full, and modified[i-3]

ii) Local and global convergence criteria will be developed and

iii) A variety of constraint procedures will be explored, i.e. global]individual

partition level].., etc.

In the sections which follow, detailed discussions will be given on problem

formulation, hierarchically substructured constrained solvers and automated sub- '

structuring. The results will be benchmarked in a series of numerical examples.
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T[. Problem Formulation: Assessment ofCurrent Capabilities

For structural systems composed of nonlinear media undergoing potentially

large deformations/strain excursions, the governing equations of motion take the

form ,

a__Sj_(Sik+ (U) + (Ui)% . p6:p--dto. (1)

where Sjk,Ui, fi, P, 8ik,xj and t respectively represent the 2nd Piola Kirchoff stress

tensor, the displacement vector, body force, density, Kronecker delta, Lagrangian

coordinates and time. The boundary conditions associated with (1) are given by t22]

i) forVxzSVs;

( o )-Sjk 8ik+ --(U i) n.=S*.a_k 2 ' (2)

ii) forV xsaV.;

u. =u: (3)
| !

where nj, S i" and U i" respectively define the surface normal, prescribed surface

traction (on 8Vs) and displacement (on OVa). Given the use of the 2nd Piola Kirchoff

stress measure, the stress-strain relation: will be cast in the form {22!

S j = Sij (Ln' LI_.... ) (4)

where Lijare components of the Green-Lagrangran strain tensor, i.e.

1
L.j = _ {Ui.i + Uj, i + Ut.i Ut,j} (5)

Assuming a displacement type formulation, it follows that

, u = IN]Y (6)



d 2
n (u) = IN]Y
at2 _ (7)

where [N], Y and Y are the shape function, nodal displacement and nodal accele-

ration. Based on the use of the virtual work principle, (1-7) yield the following FE

formulation namely t1"3]

i a2[B*]T S do + [M]m Pl) = R
V dt 2 (8)

such that S, [M], R are respectively the 2nd Piola-Kirchhoff tensor cast in vector

form, the lumped/consistent mass matrix, the nodal force vector and 11"3]

[B*] = [BI + [BN (Y)] (9)

Since (8) is highly nonlinear, both its static and implicit transient solution

requires introduction of the tangent stiffness formulation namely

I [B*lTSdv-I [B*]TSdvl +[Kr]AYv v Y (I0)
o

where [*-3]

[KT] = I {[G]T[SlJG] + [B*]T[DT][B*I}dv (11)v

such that [S] and [D T] are the prestress matrix and material tangent stiffness. Based

on (10), (8) reduces to the form

d2 I[M] -- (Y) + [K r] AY = R - [B*]T S dv]y
dt 2 v o (12)

Employing various of the implicit solvers [2z],(12) can be recast to yield the

expression
J

[KDIAY= RD- I [B*ITSdvly (13)V o
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such that [K D]and R D are respectively the dynamic stiffness and load, i.e. a function

of At the time step. For static problems, (13) reduces to
t

[KT]AY = R- ! [B'iTs dvlY (14)" V o

Equations (13) and (14) define the core Newton Raphson relation. Cast in

algorithmic form, we yiel'd the expression

I [B*]T S dul[KD(V__,)]AYj= R_-". v YJ (15)i-1

such that j defines the load/time step increment and i the iteration count for the

given increment.

To control/constrain successive iterate excursions, typically a one parameter

bound is introduced to scale RnJnamely [4-1°1

V Yi-1 (16)

where kJ is defined by a constraint condition. Considering the case of an elliptic

constraint surface Is],Fig. 2.1, kJis chosen to:satisfy the relation

J J _ IIR_II2P][Y{I_+ Xi]IRo[_- (17)

suchthatp istheaspectratiooftheellipse.The parameterp canbe selectedby

variousofthefollowingcriteriaIt°l,i.e.:

I) By definingan allowableexcursionforHAY_I[,i.e.aglobalcondition;

2) By restrictingtheallowableexcursionofagivennode(alocalcondition)or

3) By restrictingtheallowableexcursionsinstress/steamorenergy- either

globallyorlocally.

The algorithm (16) can be updated in three different formats

1) Fully-[K w(y_!)]is conti_uously updated and inverted



2) Modified - [KT (YJ)] is intermittently updated and inverted- at the

beginning of each new load step or

3) BFGS- [Kw(YJ)] is updated by pre and post multiplication via appropriate

resealingmetrics t_°,2_].

These update strategies pose the main short coming to the Newton Raphson scheme.

In particular the updating and inversion of[K T(yeJ)] requires significant storage and

computational effort.

Considering 2-D and 3-D square and cubic regions with N nodes on an edge, it

follows that asymptotically the following work load (_) and memory (p) require-

ments are defined namely:

i) 2-D: Fig 2.2

_zo~ 0 (N_

P2D--0 (N3) (18)

ii)3-D:Fig2.2

°3/) -- O (N 7)

PaD- 0 (N5) (19)

These trendsobviouslypointtovery disturbingconsequencesas problem size/

complexity grows.

Substructuring can potentially reduce the calculation burden. For the classic

two level case, considering the foregoing 2-D square region, it follows that for parti-

tioning into _ square regions, the net effort is defined by a two tiered expression, i.e.

_2o~ (1%o)i+ ((_2o)2 (20)

where ((D2D)I, and ((D2D) 2 are espectively the work loads associated with the root and

branch levels. Recalling the work of Padovan, Gute and Johnson IlsJ, it follows that
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the operations count can be defined by tracing the number of row and column multi-

plications and additions, Note here an operation will be defined as a multiplication -

addition pair. Several forms of operational control are possible for the two tiered

- format, in particular:

1) All substructure are handled sequentially by a single processor, Fig. 2.3

2) For a P processor machine

• Each of the P processors can be individually reattached to separate new

partitions upon completion of work in prior assignments, Fig. 2.3 or

• Sets of processors may be continuously reattached to partitions - single

assignment to a branch multiple at root, Fig. 2.3 - multiple assignment

at both branch and root, Fig. 2.4.

Performing the requisiteoperations count, asymptotically the'work load at the

root and individual 2nd level partitions is given by the relations
\ : _. . . • .

(9 -24
ER_(03._4._.\ _-, )(_)2 (21)

9
: , Ep~._(03_(___._))4

[N\
(22)

such that ER, Ep, _ and _ respectively denote the root effort, 2nd level partition effort,
. r..

the number of partitions on an edge and the number of degrees of freedom pernode.

Note the net global work load is given by

1

EG= 2 (03(N)4 (23)

Employing (23) to normalize the effort counts of the sequential and (partially/fully)
.i

parallel cases, we yield the following relationships:

i) Purely sequential (single processor machine)



ii) Partially (sub) parallel (P processor machine, single assignment, (_)2> p)

• Ep (9K-24 9
(_)2p (25)

iii) Partially (sub) parallel (P processor machine, multiple assignment)

(9_-24 9
= 7 4_P-F_S_I)+ -(K)2p (26)

iv) Fully (iso) parallel (__processormachine, multiple processorassignment)

(_D) (ER) 1 (Ep) 1 (9t¢-24_ 9(_)4 (27)

v) Super parallel (P > _.2processor machine, multiple processor assignment)

ER 1

(g), -r
Based on the trends defined by (24)-(28), it follows that significant improve-

ments are possible for both the sequential and sub/iso/super parallel arrangements.

This must be tempered by the fact that in the case of multiple processor assignment,

significant ioses in efficiency occur - a direct result of Amdhal's law. Noting Table

5.6 which illustrates the effects of the number of processors on overall efficiency, we

see that significant reductions are recorded as (P,N) are increased. In this context,

the P in multiple assignment areas must be replaced by

Pe = P (P,N) (29) "- e

such that P denotes the effective number of processors.



All this points to the fact that great care must be taken in balancing the

number of substructure as well as their external to internal variable ratios. For

instance noting the subparallel work effort ratio defined by (26), it follows that

- replacing P by Pe i.e. (29), we yield the expression

p 4NP _- 1 +e (K)4P (30)@

Given realistic machine configurations, P generally reaches a saturation value, !.e.

Ps" In this context (30) reduces to the form

c°2D 1 { _ 9}('_G) -_S _._(9g--24)+__p _-1 (_)2 (3i)

Here we see that the delimits controlling improvement are _ and N. For a given N,

(31) illustrates that there is a critical value of . yielding peak work load reduction,

i.e.

5
_ori,ic_~ VSN (32)

This points to the fact that for a given machine configuration, the proper tuning of

the substructuring process strongly influences speedup potential.

Similar trends apply to memory usage. Note for the 2-D (_)2square region, the

net memory requirement is defined by the expression

P2D= (_m),+ (P2D)2 (33)

where (tl2D)I and (la2D)2 are respectively the memory requirements associated with

the root and branch levels. Performing the requisite count, the root and individual

partition level memory requirements are defined by the expressions

(p2D)l~ _ (_)216(g)3--8(K)2 --2g+ 2 (34)



,,°>,-v(!.' ,==>
Based on (33-35), we again see that the optimal memory reduction is controlled by

the (N,_) pair. To achieve further gains, one must move to multilevel substructur-

ing. Additionally, procedures need to be established which enable the proper tuning/

balancing of the substructuring for general shapes.

Beyond the inversion problem, difficulties also arise out of the need to update.

For nonlinear problems, the update process is generally on the same order of magni-

tude as the inverse problem. In this context the net computational burden is given

by

_.et _ (w2D)i.ver=e+ (_.2D)-_e (36)

where typically

(_}2D)update _ 0 {(W2D)inverse}

-- r (W2D)invcr$ e (37)

such that generally F _ (0, 1). In this context, it follows that to parallelize the net

effort, assuming partial parallelism

NE
1

Ev (38)

wherein NE and Eve are the number of elements and the update effort for the eth

element. If the element level data is cloned offinto partitioned sets, thenthe level of

contention between processors is reduced especially for systems with some localized

memory. Such characteristics tend to drive the architecture to large P, i.e. a large

number of processors. Since the two level tree is _ limited, a multilevel tree (MLT)

would be required to enable a balanced growth of the number of separate top level

partitions. Furthermore, there would have to be a balancing of multiprocessor '

reassignments due to system saturation.
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]]:[. Hierarchically Scaled and Partitioned Constrained Solvers

As noted earlier, to provide a proper balance between externals and internals,
4

depending on problem size and connectivity, several levels of substructuring may be

- necessary. Referring to Fig. 3.1, a multilevel tree (MLT) can be associated with the

partitioning process. Such a MLT defines the flow of control of the various stages of

intermediate forward elimination, backsubsitution and assembly. Overall the IVILT

consists of the top-intermediate branches and root. Element generation occurs at the

top branches. The intermediate branches and root are a result of the successive

stages of the forward elimination process.

At a typical top level branch, the partitioned version of(15) takes the form

PA[KD(Yi-1)]AJPAYJ-_ "Ii R_)-
Phv[B*]rSdvly'i_l-' : . (39)

where the various pre-post super-subscripts denote

p - partition number

A - top level branch

" j - increment number

i - iteration count '_

Introducing separate partition level constraints, (39) yields the following expression

namely :

- jp j pAyJ_, p j-1 _[ARJ] p jkj [B.]Tsdv[A[KD(Yi-1 )] A i ARD + A i -- PV yJ (40)^ i-I.

such that here

.>Rg= .
a (AR_))E : (41)

ll



_ P _J'_

_}, (42)

where

^P3._-ptb partition constraint of Am top level branch

_k[ - common root le_iel

Note the parameter Ek_is used to provide a global constraint on the solution.

Overall it controls the I!O among the various participating substructure. Its solution

is obtained once the root equations are assembled. The local parameters ^P}_control

the flow of partition level lJO into the system. In this context they serve a dual role

namely:

1) To control the flow of^P(ARDJ)I as well as,

2) Provide a bound on the ^PAT[ generated during successive partition level

iterations. Their values are established via a local partition/substructure

level solution.

Overall E_ and ^P_ are obtained in a three pass operation. This is described

below.

i. First Pass. Initially the local and global constraints are set equal to each

other, i.e. o.

xJ -- P_J (43)Ei Ai

for V p and A. Hence (40) reduces to the form

[[Ko(vJ- p I [B*]SdvlJl)]^_Yi ^R_ + - (44)
E i PV Yi- I -

Next (44) are solved in a substructural sense, eliminating all local top branch

internal variables, i.e.

12



p J
A(AYi)I ..

: This is achieved by restructuring the local tangent stiffness matrix and incremental

displacement vector into the following form namely "

IK D IEK D

^ ,El, __J (45)

PAyJ = i :
A i

A (AY)E i (46)

In terms of (45) and (46), (44) can be rearranged to obtain an expression for the

external incremental displacement of each (p,A) top branch, in particular:

_[_K'_(YJ)I(P.AY_)_=EXj(_ARD)E + PFE (47)

where

"A-'D "E _-I E

_((,_(Y{)lE,K._J)l-I)([ [B*lrSdvl ; ) -" _

Assembling (48) at the next branch level, (A-l), we obtain the following intermediate

expression

^__K_) (YJ)I(^_IPAYj) = Eh{(^ 1PARD) + ^_iv[" (49)

: such that the (A-l) presubscript denotes the assembled coefficients and detiendent

variables. Restructuring into the (A-1)th level externals and internals yields the

relation
J.

13



_z" ,y.i_l(pAY-_=?,_(,,,_'ARp_+^_ff_ (50)A-ILE"D" i'"A-I i'E

Repeating the process recursively for each of the requisite branch levels, we obtain o

the following algorithmic relationships namely

A._W_(Y4)](._._v4)= x_(A_Rp +A-_ (51)-_ u L A-_ _ E i -

A ;i.K*.. (Y#.')](. PAY#'),,= J P + A-_PFE (52)-_u z _-c z_ E_i (A-_ARD)E

where e c [0,..., A-l]. Once the root level is reached, we can solve for Eli and IPAYij.

This is achieved by simultaneously satisfying the algorithms

and

.,,, + = (54)
where p is chosen from the inequality

2. Second Pass. The results obtained in the first pass are backsubstituted up the

MLT to yield the intermediate and top level dependent fields. To obtain the

corrected top level results, local i_rations are necessary. The requisite algorithms

are given by the expressions

PI" h'* (YJ_](PAyJ)l = P._J(_ARD) ] + _l" I (56)A'I"D i'" _, z A i

and

• ... p j j2
• p.lpyj112+(^hil_hRDl_ = (l_hR_)2 (57)• hr"A i

.2 ."

where the local (p, A) scaling parameters are defined by the inequities

14



• . p J ....

pp = Max { A(AYi)k }v_p,A._ AY (58)

such that AY defines the allowable individual degree of freedom excursion. The

iteration process is continued until el! top branch formulations ai-e converged.
L'_

3. Third Pass. Once the second pass iteration process is complete, recursive passes

up and down the tree can be employed to yield global convergence for the given load/

time step. All this is illustrated in Fig. 3.2. "

The foregoing multipass algorithms can be performed either sequentially or in

a partially-fully parallel format.' Recalling Fig. 2.3, the sequential multilevel

adapfion possesses several branch levels, i.e. Fig. 3.3. When the processor is

stationed at a particular substructure, it must perform several functions. These

include:

i) Update local stiffness- for top level only;

2) Forward elimination - forward pass;

3) :Back substitution- backward pass;
..: •

4) Matrix assembly- forward pass;

5) Newton Raphson iteration - top and root levels.

For multilevel subparallel applications, the flow of control is given in Fig. 3.4_ As

with the sequential case, the individual processors are also reassigned to the tasks

devoted by 1)-5) above. This can be achieved in eithera Single or multipie-processor

assignment process. "

Note the partition leap frogging described in the flow diagrams given in Figs.

3.3-3.5 is a result of the subparallel nature of the setup, i.e. P is less than the number

of top branch partitions. Note, the leap frogging occursboth on a given branch as

well as between succeeding levels. As the solution process moves down the tree, the

number of partitions on succeeding levels reduces, in this context, while the upper

15



levels may be subparallel, the lower ones particularly the root will be superparallel.

For MLT wherein the work load of each level is uniformly distributed among the

associated partitions, then the scheduling problem is fairly well defined. In particu-

lar as the process moves from sub to iso to super parallel levels, multiple processor

assignment occurs. In such situations, scheduling difficulties are somewhat miti-

gated by the fact that work load uniformity regulates the problem. For problems

involving localized material or boundary induced nonlinearity, the updating and

iterative convergence will create complications for those partitions where multiple

assignment is scheduled. Note such scheduling problems may be handled directly by

the system compiler-operating system which directs the reassignment of processors

to the ongoing tasks. Figure 3.6 illustrates the reassignment process associated with

superparallel situations. Note once Ps the saturation level is reached, no more

reassignment should be continued at that partition.

To close the discussion on the solver algorithm, we must address the issues of

updating and convergence checks. Concerning updating, as noted earlier, three

forms are possible. For highly nonlinear zones, continuous updating is typically

necessary, i.e. for regions involving contact-impact, complex media (hyperelastic,

inelastic,.. ), large strains/rotations, and complex boundary interactions (follower

forces..). In regions which are primarily linear elastic but undergoing moderate

rotations, the BFGS scheme can be employed to effect a quasi update. Traditionally

the method has been employed in a global context. Here it can be employed at the

local partition level.

In tree applications, several considerations are possible. These include:

1) Top level branches where direct element updating occurs; "

2) Intermediate branch levels which are linked directly to top partitions

undergoing updating;

16



3) Intermediate branch levels which are connected to a mix of up and non-

, updated top partitions and

4) Top and intermediate levels not undergoing updating due to association

" with essentially modestly nonlinear substructural zones.

The foregoing points to two issues, namely

1) when to update and,

2) how to update- full or quasi (BFGS).

Several investigators have considered the problem of when to update [l°.t4.1m.

For instance in the work of Sheu et. al. tim,two criteria were employed namely

i) Incremental ratio tests of the normed out of balance loads or deflections

and the appropriate reference states and

ii) Evaluation of successive variations in incremental energy states.

In fact a wide variety of possible flags can be established. Depending on problem

type, these can be categorized into several basic tests

1) Measures of large rotation/small strain

2) Large strain/volumetric/shape distortion

3) Material nonlinearity and

4) Bounding induced effects.

Overall, the tests can be grouped into two classes of solution checks, i.e.:

1) Direct-performed at the top level and;

2) Indirect-performed primarily at intermediate and root levels.

The direct monitoring involves the evaluation of the conditioning of the localized

dependent field variables. This includes both kinematic and stress measure

namelyt _o]

• Invariants of the deformation gradient, Green Lagrange measure, Fingers

tensor, Cauchy stress,., etc.

• Rotations associated with designated target nodes

17



• Dilatation

• Element eigenvalues and so on.

Note since the stress and kinematic states define natural response, all system

characteristics are covered. To assess conditioning, incremental variations can be _-

ratio tested. For instance, if we consider the Green-Lagrange invariants 11,12,I_, the

element level test would have the form

Tol > _ k_(1,3)
_,(_'k_], (59)

such that e designates the element number and AI k the averaged k th invariant.

Similar tests could be run on the other field variables. Overall such a test would be

run for the top level branches only. This would gage the need to perform element

level updating.

The indirect tests are performed to evaluate the state of the intermediate

branches and root. Since a typical intermediate branch may be composed of various

updated and nonupdated top level partitions, its update is contingent on the degree

to which local effects penetrate to lower levels of the tree. Since it is less meaningful

to define the kinematic and stress fields at such tree levels, we resort to gross/norm

states. This can be achieved for both the global and intermediate branches. The

tests consist of ratios of incremental variations in out-of-balance load, deflection,

energy, inelastic growth, gross partition rotation and volume/area change. At the

intermediate partition level we have

i) Out-of-balanceload

Tol >

18



ii) Deflection

Tol > -- :

I AY oll (61)
t

iii) Energy

pJ

Tol> -- :
• (62)

iv) Inelastic growth

pJ
Tol> --

pJ
_Apl (63)

v) Gross rotation

PA_ j
Tol>

P J (64)

where IIIIdefines the Euclidean norm, and

^RD - _v [B*]TS dVlyj (65)i-I

PE-_= 1 I
^ i "_(aY_)Tj_v{[B*lVSIj

m [S_]r Sl )dr
Yi-, Y_ (66)

For the gross problem and root levels, two tests are possible namely

1) Those restricted to strictly the root variables or

2) Those involving all or various of the branch level externals as one tele-

scopes from the root to the top of the tree.

Such tests are exemplified by the following expressions:

1. Root only:

19



• Out of balance loads

II,aFJll
Tol> --

II,AR_ll (67)

• Deflection

II,AY_I[
Tol >

II_AY_II (68)

• Energy

Ej1 i
Tol > m

1E_ (69)

2. Telescoping (all levels)

• Out of balance loads

A

e p
Tol >

A

7 7 _l, (70)
P

• Deflection

A

t pTol >
A

t p

•Energy

2O



A

p
, Tol > A

_" _ _EJ (72)
p

Contingent on modelling needs, one or more of the foregoing tests can be

implemented.

If the foregoing tests remain below a specified tolerance limit, then a modified

version of the BFGS scheme can be employed to update local partition level stiffness.

This enables reasonable iterative convergence while bypassing the need for an

inverse at the given substructure. Adapting the scheme to a partition level

application, it follows that the updated local stiffness takes the form

PrK° (YJ)] - [(_i IT P[K*(YJ)]= [¢i] (73)A-_" D i "i A-_ 1) i i

where

[q)ilT= [/] + Vi (Wi)r (74)

The ,vectors V i and Wi are calculated from the known nodal point forces and dis-

placement using the relations

[}0-f^ (75)
and

1
W.- 5.

!

= (6i)T Yi (76)

where

8i=Yi-¥i_l (77)
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Yi= F._- F.z_, (78)

Due to the generality of the formulation described by (73)-(78), BFGS type

updating can be applied to any level in the MLT and any partition of that level.

Note, near bifurcations and turning points, buckling, the full update should be -_

employed to yield the proper transitional characteristics. This also holds true in

inelastic/history-dependent processes wherein the proper updating is needed to trace

the plastic event. As the calculations proceed down the MLT, it is possible that an

isolated local zone can be handled via BFGS updating at intermediate levels. This

would greatly reduce the work load.

IV. Automated Substructuring

Overall to automate substructuring four basic steps are required. These

include:

i) Symmetry checks on both geometric and nodal topology

ii) Establish multilevel partitioning

iii) Bandwidth minimize each individual substructural component and

iv) Optimize memory and work load by selecting best number of levels and

decomposition per level.

Often times structure have localized symmetries which, due to loading and

boundary conditions, cannot be taken advantage of in a global sense. Such

symmetries can be at the root - intermediate - top levels. To determine such

attributes, an automated symmetry check must be used to help optimize the

substructuring. While visually such properties are easily spotted, from a numerical-

analytical point of view, such is not the case. Here we adopt the following multistep

procedure namely

i) Find CG

ii) Determine inertia tensor (I) relative to CG
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iii) Find principal coordinates and components of(1), i.e. (Ip) .

iv) Establish nature of symmetry based on =
!

• properties of(I R)

• • coordinate check about principal axes

v) Define nature ofpartitioning based on symmetry type and

vi) Perform such checks recursively at succeeding levels.

From an FE point of view, the determination of the global/substructural CG
.:_ :

can be established by employing the element properties. Specifically atthe _h level

and pth partition. The associated elements define the following expression

1

where

Iv=5" e (8o)
e

such that

_PVe - element volume

ePV- net volume of(p, e) pair

Based on the CG location, the inertia tensor takes the form

• . _Ica]= _" Ipe [iceldv• _" v (81)

such that f ( ) dv defines typical Gauss quadrature and

2 2

[ice] = ]-X2X 1 X 1 + X 8 -X2X32
[_-X3X _ -X3X 2 X_ + X2 (82)
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Since [Ico] is a 2nd order tensor, its principal orientation and properties can be

established in the usual manner, this yields

o:1lip] -- Ip2 "

0 (83)

As noted earlier depending on the makeup 0f [Ip], various symmetries can be

identified in particular

i) If two components are repeated, there is planar symmetry

ii) If three are repeated, there is 3-D symmetry.

If no repeated roots exist, then potential symmetries about each principal can be

ascertained via a sum check. Specifically, for nodes symmetrically placed relative to

the CG, the following identies hold

_" Xli < Tol. (1 axissymmetry)
i

_ X2i < Tol. (2axissymmetry)
i

/_.._X3i < Tol. (3 axissymmetry) (84)
i

where the tolerance dependson user expectations.

In the case that repeated roots are found, then the foregoing sum tests are

automatically satisfied about any Cartesian coordinate system, i.e. arbitrary planar

orientation for two repeated roots and arbitrary 3-D orientation for three roots. For

the case of Ipl =Ip2 (two roots), to find the symmetry axes we search for the max

points, i.e. outer bounds of the object. These will lie in a skew symmetric format. In
o

this context we search for

XIM = Max {Xi}iv.[1,_V] (85)
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where M defines the outlier node, i.e. (XIM , X2M , X3M ). • Once obtained, the

appropriate transformations can be established. For 2-D/3-D situations these are

represented by the relations

• i) 2-D;

a = TAN- l(X2M]XIM) (86)

)
Xlfl COS (a)_.]k.X2 .,

ii) 3-D

aI= TAN- 1(X2MiXIM) (88)

a2 = TAN- 1(X3M]X,M) (89)

{} {}X 1 X I

X2 = [T(al, a2)] -X2

X3 X3 (90)

such that ( )*denotesthe symmetry axissystem. Note for repeated principal

inertias,a multitudeofsuchaxissystemsarepossible.

Once thenatureoftheavailablesymmetry isestablished,thetypeofpartition-

ing must be chosen. In the contextofthe I-IPTrecentlydevelopedby Padovan

et.al.[IsJg],itfollowsthatoptimalresultsrequirethe appropriatesubstructural

arrangement. For instance,consideringthe2-D case,thereiseither1 or 2 axesof

symmetry. These respectively require _1 and _1 _2partitioning such that _i are even.

In this way, in addition to yielding the proper choice of external-internal load

balancing, maximum use can be made of cyclic substructural generation for linear
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elements. Such cloning can yield respectively at least a two and four fold speedup for

1 and 2 axes of symmetry. This can be achieved at each level with symmetric

partitions. Note such enhancements are in addition to the benefits of the MLT. For

the 3-D case, _1, _1 _2 and _l x2 _a partitions must be established for 1, 2 and3

axisymmetric states. Again, for linear substructure, such symmetries enable at

least a 2, 4 or 8 fold speedup via cloning at each possible level.

Note beyond defining the cloning and substructuring characterization,

symmetry properties can be employed to define multiply seeding points from which

to initiate simultaneous partitioning. Two procedures are possible, i.e.

i) The consecutive node attachment (CNA) scheme of Wilson and Farhat txTl

and

ii) The direct element connect filling (DECF) scheme

In the Wilson-Farhat scheme, substructuring is automated into a series of

recursive steps involving:

1) Bandwidth minimization

2) Connection of elements attached to nodes of ascending order

3) Partition definition completed when appropriate number of attachments

achieved

4) Procedure repeated with already defined substructure substracted from

process: at this point bandwidth minimization preapplied to the reduced

model.

Due to the recursive use of bandwidth minimization, the current procedure is

limited to starting from the initial node number. This follows from the fact that due

to the goal of reducing the skyline height, it is possible to have noncontiguous node

numbering. Hence, potentially nonconnected, i.e. discontinuous partitions may
4

develop during the agglomeration process. This is especially true if starting points
° .,. .... .

further up the node count were attempted.
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To bypass the foregoing difficulty, a DECF scheme will be employed. Here the

steps include ,
!

1) Establish multiple starting points; Fig. 4.1

2) Using element connectivity map, adjoin elements directly connected l_o

starter nodes, Fig. 4.2; proceed simultaneously at each initiation site

3) Continue process in successive waves of attachment; Figs. 4.3 and 4.4 :

4) In syTnmetrical problems, attachments are preformed in balanced pairs;

Fig. 4.2

5) Fill process continued until requisite number of elements adjoined - con-

tingent on number of partitions defined for level•

The starting points are chosen via similar criteria to traditional bandwidth

• [24 "minimizer, (Cuthlll-McKee ],Glbbs-Poole-StockmeyerI2Sl),i.e.:

1) Determine points with minimum connectivity - outside corners, kinks,

edges;

2) Due to symmetry, several starting points may be employed simultaneously

• 2-D/2 axis- 4 points/l axis- 2 points

• 3-D/3 axis - 8 points/2 axis - 4 points

3) Beyond providing seeding points, symmetry can be used to define con-

straint surfaces which control the growth of partitions during the agglom-
T •

eration process, in particular

i. 2-D problems, Fig. 4.5 ' :

• I axis- single axis disection

• 2 axis - two axis

" ii. 3-D problems, Fig. 4.5

• 1 axis/prismatic-single planar dissection

• 2 axis/prismatic- two plane

• 3 axis- three plane
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As noted earlier, the partitioning process can be reapplied at each succeeding

level. In such applications global-root level symmetries may give way to symmetric

or asymmetric intermediate levels, Fig. 4.6. If multiple levels of symmetry are

noted, Fig. 4.6, cloning where possible can lead tosignificant speedup.

Once each of the various substructure are defined, the associated external-

internal node number count must be minimized. The traditional bandwidth mini-

mizers t261are formulated to minimize the skyline height associated with individual

nodes. In this context the nodes can be shifted to any location on the diagonal. For

substructural problems, the external nodes must be positioned at the base or top of

the diagonal. This can cause a suboptimal arrangement between the externals and

internals. Noting Fig. 4.7, minimizing strictly the internals yields a skyline

structure with large coupling side bands. For instance considering the square region

discussed earlier, the overall computational effort for a typical column elimination

operation is given by the expression, Fig. 4.8

Single Column Effort ~ EI + E_ + E4 (91)

such that

E 1 --Effortinpurelyinternalblock

E2n - Sidebandeffort

E 4 --Externalblock "

When averaged overall rows, we obtain

Net Effort _ E 1+ E2r3 + E4 (92)

where

1 N4
- E l ~ _ (g-2) 2 (93) .

E2t3- 4 N (N- l ) (N- 2)2 (94)
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E4 ~ 4 (N- 1)2 (N- 2)2 (95)

!

Asymptotically, as N -, (large), it follows that

9 N4Net Effort _ -
•2 (96)

In this context, substructuring yields a 450% increase in woi'k load over the straight

solution.

The root cause of the increase lies in the fact that the bandwidth minimization

did not account for the fact that the optimal treatment of the problem involves the

handling of the multipoint constraint defined by the externals. In view of this,

instead of starting the search for the minimum skyline profile from single •least

connected internal nodes, the substructured version could alternatively start from

the externals. Based on this, the operational steps of the minimizer become

1. starter points involve all externals

2. Determine all directly connected internal nodes from connectivity map -

this generates a "shell" 0f nodes

3. Adjoin shell directly to starter nodes

4. Determine next layer of direct connected internal nodes

5. Adjoin to previous shell

6. Continue process in successive shells of attachment, Fig. 4.9.

Overall the procedure generates an inwardly spiralling numbering pattern. To

illustrate the improved computational efficiency of such a skyline, we reconsider the

square patch. Noting Fig. 4.10, the spirally count causes the succeeding attachment

• shells to have reduced bandwidths, i.e. going from 4N-4 for the external first shell to

4N-4-8(e-!) for the eta internal shell. The population of nodes associated with such

skyline heights reduce as one moves inward into the substructure. Namely, from• .. ..

(4N-4) in the first sheli::to 4N-4Y8(e-1) for the ethshell. This is illustrated in Fig. 4.11.
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To determine the work effort associated with the foregoing numbering scheme,

it is noted that unlike the traditional approach, no large coupling side bands are

encountered. The computational effort can be cast in the form

2

1

1 _- (4N+4_8e)3 - 2 (4N_4)_, (97)Net Effort - _ e=1

which for arbitrary N yields

1 (4N-4) 3
Net Effort ~4N2(N2-2) - _ (98)

From an asymptotic point of view, the net computation effort associated with the

succeeding attachment shell numbering pattern takes the form

Net Effort _ 4N 4 (99)

This represents a potential 12+% improvement over the classical approach, i.e. Eq.

(91). Note such improvements are strongly dependent on geometry, element type

and element density within a given region. Hence, care must be exercised in its use.

As has been seen by Padovan and Gute 1191,the choice of the optimal hierarchy

of levels and partitions is highly problem dependent. In this context to determine

the best arrangement an iterative strategy must be implemented. Overall it consists

of the following steps

1) Recursivelychoosenumberoflevels

2) Partition each level through various permutations

3) Estimate work load for bandwidth minimized partitions

4) Compare work loads of various level/partition arrangements to achieve

optimal results.

!
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V. Discussion - Benchmarking

In the previous sections, a hierarchically scaled multilevel nonlinear equation
4

solver was developed. Overall the procedure provides for the possibility of assigning

• separate constraints to each partition throughout all the levels of the MLT. The

focus of the benchmarking of the scheme will be two fold, namely to illustrate

1) The numerical performance of the nonlinear solver and

2) The memory-computational savings afforded by the Tree scheme.

Figure 5.1 illustrates the arch type truss structure used to evaluate the

numerical/iterative performance. The arch was chosen since it possesses highly

nonlinear force deflection attributes. These are illustrated in Fig. 5.2. Depending on

whether compressive or tensile loading is applied, either softening or hardening

behavior is excited. The associated deflected shapes are given in Fig. 5.3. Such

nonlinear characteristics yield varying numerical sensitivities. In this context,

Tables 5.1-5.3 illustrate the effects of initial step size, truss geometry and loading

direction on the numerical convergence. Various types of iterative update schemes

were evaluated. These include L

Root Second Level

Full Full

BFGS Full

BFGS No update

No update Full

No update No update
Automatic Automatic

: For the automatic case, updating and constraint control is triggered by the

appropriate criteria. Here due to the large deformation/rotation behavior associated

with the truss, a rotation check can be employed. Once the requisite change in
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rotation is accumulated, the local partition stiffness is Updated. Here both full and

BFGS type schemes were tested.

As can be seen from Tables 5.1 &5.2,the full and automated update schemes

yielded essentially the same results. In the case of the automated scheme, signifi-

cantly less updating was required. For the cases noted, the automatic scheme

yielded update savings of 30-40%. This was achieved with no changes recorded in

comparisons with the global scheme.

When localized constraints are introduced for each partition, convergence was

obtained for all the load ranges considered. Note care must be taken when

employing such a robust approach especially for problems with multiple solution

states. In such situations, the load readjustment generated by the individual

constraints may cause movement to different loading paths thereby leading to an

alternative solution state. This can be prevented by tightening up'on the admissible

dependent field excursions generated during successive iterations.

For large loads, generally an incremental application is necessary. The arches

sensitivity to such a loading approach is depicted in Table 5.3. As can be seen, as the

increment is decreased, the iterative requirements become essentially the same for

all the schemes. Conversely, in the case of the largest increment, only the full and

automated updating schemes converge. Here the automated scheme requires 37%

less updating. This is a result of the possibility of intermittent reformation at the

various partition levels. This of course is highly dependent on the geometry/connec-

tivity as well as the loading history of the model treated.

To illustrate the parallel attributes of the nonlinear MLT scheme, we will con-

sider the large scale truss problem depicted in Fig. 5.4. The model was substructured

into a three level tree consisting of 1, (3)2 and (9)2, 1st, 2nd and 3rd level square

partitions. The problem was tested on the NASA Lewis Alliant system with eight

available processors. This enabled a partially parallel application wherein multiple

32



processor assignment was employed. To simplify the programming, all the

processors were assigned to a given substructure. At the top/third level, the effort

includes both updating, assembly condensation and partial assembly for the next

• level. Once completed, all the processors are reassigned to the next partition andso

on in a success!on of assignment steps. The next lower branch level is performed in a

level by level format down the MLT. Once the root is handled, the condensation step

is complete. Next the process is reversed level bylevel for the backsubstitution step.

Two forms of testing were considered, i.e. single and multiple processor assignment.

This enabled the evaluation of potential system contention problems.

For the given problem and style of Fortran programming, 25 edge nodes

defined the break even point of the chosen MLT. For larger problems, significant

improvements can be obtained. For instance at 41 and 56 per side, the single

assignment (purely sequential) scheme yielded speedups of 2. and 3. relative to the

global scheme. Employing 8 processors, the 41 and 56 edge noded truss yielded

speedup factors of 11.4 and 15.5 respectively. In contrast, for the 25 edge noded ease,

a factor 6.02 was recorded. One would have expected a (two/three) to one difference

between the 25 and (41156) noded examples. The variation is a result of"the

increasing contention which occurs as problem size increases. The increased number.

of memory fetches required by larger partitions causes increased traffic control

problems in the system buss thereby delaying coinputations. In this context, for

architecture employing multiple 'processor assignment, smaller partitions are more

advantages. This is clearly illustrated in Table 5.4 which describes the contention

problem as a function of size and number of processors: this is of course machine

dependent.

Next we shall consider the problem of how to select the proper number of

partitions and levels to yield optimal results. As an initial demonstration, we shall

consider a square mesh defined by 2D four node quad elements. Employing either
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model fill or the Wilson-Farhat _'71scheme, the region is dissected into 2, 3,..., 9,..

partitions,i.e. Fig. 5.5. Noting Fig. 5.5, optimal speedup results are obtained for (_)2

type arrangements, i.e. symmetrical square partitions: Applying the model fill

scheme recursively on a level by level basis, the same (_)2type decomposition yields

the most optimal results at all the various branch levels, i.e. top, intermediate and

root. Based on such an approach, Tables 5.5and s.6 illustrate the effort and memory

reduction potential Of the tree scheme for several sized problems. As'can be seen,

many order ofmagnitude reductions can be obtained.

In the case of multiply connected regions, the use of the CNA 1171scheme yields

nonoptimal partitions. This follows from the fact that bandwidth minimization often

leads to noncontinguous node numbering. During the agglomeration process used to

define the partitions, potential nonconnected or disjoint substructure are possible.

Consider the meshes depicted in Figs. 5.6 and 5.7. The CNAI1v]procedure tends to

lead to distended substructural regions depicted in Fig. 5.8. In contrastl the DECF

scheme yields more regular subregions, i.e. Fig. 5.9. Here a variety of seeding points

were employed to start and continue the process.

To reduce the periphery of the various partitions, salient control was applied on

the" second pass. Overall the procedure consists of checking boundary attached

elements for the level of connectivity withintheir partition. Specifically, the

number of adjacencies bordering each edge of a.given element are determined. By

employing the connectivity information, the number Of elements bordering the

candidate element are determined in each of the .I_ and parallel directions to the

interconnect boundary. If the noted element has less than a preset number of

adjacencies along one direction, then it is adjoined to the appropriate neighboring

substructure with the requisite connectivity. The results of such a process is

illustrated in Fig. 5.9. Had model symmetry been employed, the results depicted in

Figs. (4.1-4) would have been achieved. This ofcourse is highly model dependent.
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To establish the improvement potential of the DECF based partitioning

scheme, both the perimeter to internal node ratio and individual substructural-net

computational effort are determined. These are used to quantify the Comparison

• with the CNA scheme of Farhat and Wilson Ira. In particular, recalling the models

defined in Figs. 5.6 and 5.7, Figs. 5.10-5.14 illustrate the topological arrangements

for varying levels of automated substructuring; i.e. 4, 9, 16,.. partitions.
r.

To provide a consistent basis for comparison, the reverse Cuthill-McKee

scheme t24]is employed to locate the first, i.e. seed note on the diagonal. The proce-

dure is reapplied to each succeeding reduced model generated by subtracting pre-

viously defined substructure from the original formulation. Overall the procedure

lead to the effort comparisons described in Table 5.7. As can be seen, the DECF

method consistently out performed the CNF. Significant factors of improvement

were noted over a wide range of partitions choices.

An unexpected benefit of the Tree scheme arises for problems involving

repeated-multilevel symmetries, i.e. Fig. 5-15. For such structure, the Tree reduces

the burden of assembly and condensation in linear partitions. In particular, if a

problem such as that depicted in Fig. 5.15 remains linear for several steps, the unit

ceil'illustrated is all that needs to be generated and translated-rotated to yield the

rest of the substructure. Hence the work load at the top level would be essentially

that of a parallelized setup. The same would be true of each lower level. Hence the

condensation speedup and memory reduction would be that associated with a single

assignment parallelized Tree, i.e. a separate processor for each partition. During the

backsubstitution phase, a similar procedure applies. Overall depending on problem

topology, significant order of magnitude speedup could be achieved in large scale

problems.
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Figure and Table Captions :

Fig. No. Caption

2.1 Successive iterations of elliptically constrained Newton Raphson
Scheme

2.2 2-D square and 3-D cubic regions "

2.3 Sequential and partially parallel flow of control: single processor
assignment

2.4 Partially parallel with multiprocessor reassignment

3.1 Multilevel tree defining linkages between successive substructural
levels

3.2 Flow of control of HPT

3.3 Sequential flow ofcontrol of multilevel tree

3.4 Subparallel single assignment processor leap frogging: Multilevel

3.5 Subparallel multiple assignment processor leap frogging: Multilevel

3.6 Super/iso parallel processor reassignment process

4.1 Multiple starting points for 2-D 2 axis of symmetry model

4.2 Balanced multiple initiation point agglomeration

4.3 Successive waves of attachment: 2 axes of symmetry

4.4 Successive waves of element attachment

4.5 Potential lines and planes of symmetry in 2-D and 3-D defining
constraint surfaces

4.6 Multiple levels of substructural symmetry

4.7 Typical skyline of substructured component with minimization
employed or internal variables

4.8 Work load associated with elimination of ith column: Internally band-
width minimized substructured partition

4.9 Successive shell attachment scheme for node numbering substructured
components

4.10 Spiralling node connectivity generated by successive shell attachment
scheme

4.11 Skyline of Spiralling node connectivity model
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•5.1 Arch truss simulation and two level tree

5.2 Softening and hardening load deflection characteristics of truss:
e = 10°

5.3 Compressive and tensile deflected shapes of truss (Fig. 5.1)

" 5.4 Large scale truss structure used to test parallel version of nonlinear
multilevel tree

5.5 Effect of number of partition on speedup: two level tree: partition
selection via Wilson-Farhat Scheme117]:8 processors

5.6 Multiple connected mesh: several cells: Model 1

5.7 Multiple connected mesh: multiple cells: Model 2

5.8 Mesh partitioning: Wilson-Farhat Scheme1171

5.9 Model flllingmesh partitioning
A - CCW fill - CCW speeding
B - CCW fill - CC speeding
C - Balanced fill and speeding

5.10 Partitioning of Model 1:4 partitions

5.11 Partitioning of Model 1:9 partitions

5.12 Partitioning of Model 2:4 partitions

5.13 Partitioning of Model 2:9 partitions

5.14 Partitioning of Model 2:16 partitions

5.15 Multilevel symmetries

Table No. Caption

5.1 Load step sensitivity of various update schemes: arch 60°; compressive
loading (tolerance 10"6/10.3)

5.2 Load step sensitivity of various update schemes: arch 10° tensile load
(tolerance 10"6/10.3)

5.3 Multiload step sensitivity of"various update schemes: arch 60° (No. of
increments/total iterations)

5.4 Efficiency (%) ofAlliant Parallel Processor
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5.5 Effects of problem size on speedup and tree morphology: sequential
case

5.6 Effects of problem size on speedup and tree morphology: parallel case

5.7 Comparison of DECF and CNF schemes of partitioning
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Load (KIPS) 1 2 4 6 8 .106

U-U 4/3 513 5/3 614 6/4 614

• BFGS-U . 614 914 11/7 1619 29/15 43/17

N-U 1015 1718 * * -* - *

BFGS-N 915 1418 * * * *

N-N- 1215 3.4115 * * * *

.- Auto 413 513 - 513 614 614 614

._ *Failed to converge _n50 iterations -

Table 5.1 • :

Load (KIPS) 1 2 4 6 8 10

U-U 413 5/3 5/3 6/3 614 714

BFGS-U 714 916 12/7 16/9 27119 30/21

N-U 914 1718 * * * *

BFGS-N 13/5 20/10 * * * *

N-N 1216 33/15 * * * *

Auto 413 513 513 613 614 714

• Failed to converge in 50 iterations

Table 5.2
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Number of Load Increments
10 (KIPS) -.
Target 2 4 6 8 10 20

U 7117 10/25 13/26 15/30 _18/36 32/64 :

BFGS * 10/30 13/42 15/50 18/38 32/64

N * * 13/61 15/52 18/64 32/64

U-U 7/17 10/25 13/26 15/30 18/36 32/64

N-U * 10/45 13/42 15/52 18/38 32/64

N-N * * 13161 15152 18/64 32/64

BFGS-U * 10/30 13/26 15130 18136 32/64

Auto 7117 10/25 13/26 15/30 18/36 32/64

• Failed to converge m 50 iterations

Table 5.3.
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' ' , , , m

Matrix Number of Processors

S i z e Z 3 4 5 6 7

225 93.66 86.22 80.28 76.58 72.36 67.88
450 95.43 90.22 87.62 79.72 79.34 73.69
500 96.84 92.30 89.24 82.20 '81.96 74.93
600 96.65 93.02 87.68 81.38 82.10 76.33
700 95.99 92.05 87_25 81.21 80.81 76.52
800 97.76 92.89 88.20 86.51 81.60 80.68

_ 900 97.12 91.68 89.i5 85.65 81.31 78.02
i080 97.93 92.68 88.69 84.46 82.16 78.11
1100 96.55 92.89 86.12 84.18 81.99 78.41
1200 96.49 92.04 87.56 83.38 80.25 76.32
1500 95.69 90.90 85.21 82.54 78.82 74.58
2000 96.15 90.39 84.97 81.60 76.23 71.73

TABLE 5.4



|i

N L S MR 2 3 4 5 6 7 8 9

50 2 3.75 1.98 3
50 3 5.01 2.25 2 3
50 4 5.43 2.16 2 2 2
50 5 5.44 1.99 2 2 2 2 ,

i00 2 5.88 2.77 4
100 3 8.78 3.24 2 3
100 4 !0.28 3.60 2 2 3
100 5 10.71 3.48 2 2 2 2
100 6 10..71 3.27 2 2 2 2 2

i000 2 26.10 7.45 9
1000 3 60.14 12.57 3 6
1000 4 82.54 16.56 2 3 5
1000 5 95.88 19.65 2 2 3 4
1000 6 101.87 21.31 2 2 2 3 3
1000 7 104.58 21.58 2 2 2 2 2 3
1000 8 105.24 21.41. 2 2 2 2 2 2 2
1000 9 105.34 20.88 2 2 2 2 2 2 2 2

N--problem size

L--number of levels

S--speedup
• o

MR--memory reduction

K. --number of partitions /i th level/

per edge

T LE 5.5
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K i

N L P S MR 2 3 & 5 6 7 8 9

50 2 4 15.00 1.98 3
50 3 4 20.04 2.25 2 3
50 4 4 21.72 2.16 2 2 2
50 5 4 21.76 1.99 2 2 2 2

100 2 4 23.52 2.77 4
i00 3 4 35.12 3.24 2 3
i00 4 4 41.12 3.60 2 2 3
100 5 4 _ 42.76 3.48 2 2 2 2
100 6 4 42.84 3.27 2 2 2 2 2

1000 2 4 104.40 7.45 9
1000 3 4 240.56 12.57 3 6
i000 4 4 330.16 16.56 2 3 5
1000 5 4_ 383.52 19.65 2 2 3 4
1000 6 4 407.48 21.31 2 2 2 3 3
1000 7 4 418.32 r21.58 2 2 2 2 2 3
1000 8 4 -420.96 21.41 2 2 2 2 2 2 2
i000 9 4 421.36 20.88 2 2 2 I 2 2 2 2 2

N--problem size

L--number of levels

P--number of processors

S--speedup

MR--memory reduction

X. --number of partitions /i th level/per

per edge

TLE 5.6
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Effort Ratio
Number of Partitions (DECF/CNF)

Model 1: Fiq. 5.6
4 .398

9 .25

Model 2: Fiq. 5.7
4 .78

9 .416

16 .327

Table S.7.
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