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ABSTRACT

Hybrid optical correlator systems use two Spatial Light
Modulators (SLMs) , one at the input plane and the other at the
filter plane. Currently available SLMs such as the Deformable
Mirror Device (DMD) and Liquid Crystal Television (LCTV) SLMs
exhibit arbitrarily constrained operating characteristics. The
pattern recognition filters designed with the assumption that
the SLMs have ideal operating characteristic may not behave as
expected when implemented on the DMD or LCTV SLMs. Therefore
it is necessary to incorporate the SLM constraints in the
design of the filters.

In this report, an iterative method is developed for the
design of an unconstrained Minimum Average Correlation Energy
(MACE) filter. Then using this algorithm a new approach for
the design of a SLM constrained distortion invariant filter in
the presence of input SLM is developed. Two different
optimization algorithms are used to maximize the objective
function during filter synthesis, one based on the simplex
method and the other based on the Hooke and Jeeves method.
Also, the simulated annealing based filter design algorithm
proposed by Khan and Rajan is refined and improved.

The performance of the filter is evaluated in terms of
its recognition/discrimination capabilities using computer
simulations and the results are compared with a simulated
annealing optimization based MACE filter. The filters are
designed for different LCTV SLM's operating characteristics
and the correlation responses are compared. The distortion
tolerance and the false class image discrimination qualities
of the filter are comparable to those of the simulated
annealing based filter but the new filter design takes about
1/6 of the computer time taken by the simulated annealing
filter design.
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CHAPTER 1

INTRODUCTION

There has been considerable growth of interest in problems of pattern recog-

nition and image processing for the past two decades. Applications of pattern

recognition and image processing include character recognition, target detection,

medical diagnosis, remote sensing, speech recognition, fingerprint identification, ar-

chaeology, missile guidance, and automatic inspection. Due to its inherent parallel

operation and high speed, optical pattern recognition (OPR) is a preferred method

for real-time applications such as missile guidance, target tracking, and aerospace

missions. Hence considerable work is being carried out in developing a practical

optical correlator system for pattern recognition applications.

1.1 Optical Correlator

The possibility of implementing two-dimensional Fourier transform using

optical lenses [1] encouraged the use of correlation-based techniques for pattern

recognition. The research in optical pattern recognition was triggered by the opti-

cal realization of complex valued matched filter by Vander Lugt in 1964 [2]. Vander

Lugt's method is illustrated in Figure 1.1. When a coherent parallel beam of light

from lens LI passes through a transparency PI of a scene, the light becomes am-

plitude modulated with that scene. The resulting beam is focused on plane P2 by

lens L2 producing a spatial Fourier transform of the original scene.
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The output at plane P2 is the product of the Fourier transformed input image

and the matched spatial filter (MSF). The lens L3 then takes the inverse Fourier

transform. The light intensity at the correlator output plane P3 can be used to

determine the presence of the reference scene in the input scene.

Optical correlators as described above have certain difficulties for real-time

practical applications. They are :

1. To process the signal at the correlator plane, certain electronic sys-

tems are required.

2. Purely optical systems can be designed for a specific application;

however, they cannot be used where a great level of flexibility is

required.

Correlators can be made more practicable by using a hybrid system shown

in Figure 1.2. Hybrid systems are made by combining electronic technology with

optical systems. In the hybrid systems fast switching of filters is possible and also

the output correlation plane can be processed for decision making.

In the hybrid system shown in Figure 1.2, LI is the collimating lens that

gives rise to a uniform light distribution, t(x,y). The object of interest, i(x,y), is

imaged by the camera. The camera output is used by the Spatial Light Modulator

(SLM) driver to generate the drive signal for the input SLM. The input SLM (SLM1)

modulates the incident light and the resulting amplitude value at SLMl output is

given by

(1.1)
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The lens L2 produces the Fourier transform of si(x,y) at the location of

SLM2 , denoted by

Sl(u,v) = JF{5l(z,y)} = *i(x,y) • e d x d y . (1.2)

To implement correlation in optical Fourier domain, the computer synthesized fre-

quency domain complex valued filter H(u,v) is implemented on SLM2. If the filter

is a matched spatial filter (MSF), then the filter is the conjugate of the Fourier

transform of the reference image, given as

H(u,v) = SZ(u,v) (1.3)

where the superscript * denotes the complex conjugate operation and

52(u,t;) = ^{32(x,y)} (1.4)

where 33(3;, t/) is the reference image. The output of SLM2 is

Cl2(u,v) = Sfav) • H(u,v) (1.5)

= $!(«,!;). $*(«,«). (1.6)

The lens L3 takes the inverse Fourier transform and the correlation output is avail-

able at the correlation plane. It is given as

Cl2(z,T/) = F~l{Cu(u,v}} (1.7)

= f ! Sl(u,v)H(u,v)e'2^ux+vrtdudv (1.8)

= J j s i (x ,y ) sZ(x ' -x ,y ' -y )dx 'dy (1.9)
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»y) (1.10)

where 0 denotes the correlation operation.

It can be shown that for two images Si and s^ the correlation has the following

property [3]

[ci2(x,y)]2<C l l(0,0).c2 2(0,0) (l.ll)

where c,-, is the auto-correlation value at the origin for the ith image, given as

c,-,-(0,0) = lkl|2 = If \8i(x,y)\*dxdy. (1.12)

If the input image s\ is the same as the reference image s? then

|cn(z,y)|<cn(0,0). (1.13)

So, the correlation value at the origin can be used to make a decision whether the

input image is identical to the reference image.

1.2 Need for the Study

Vander Lugt's correlator used an MSF in the filter plane. These MSFs yield

the highest possible Signal-to-Noise Ratio (SNR) when detecting a known image

in the presence of additive white noise. Generally it is expected that a correlation

filter possesses the following characteristics:

1. Produce a large correlation peak sharp enough for easy identification

of the true class (wanted) image at the input.



2. Produce a small correlation peak for a false class (unwanted) image

when present at the input.

3. Produce a high SNR at the correlation plane.

4. Produce good light efficiency.

5. Be tolerant to the geometric distortions (different perspective views)

of the same object. The filter is normally called "distortion tolerant,"

if it possesses the above quality.

6. Be implement able on the commercially available SLMs.

Unfortunately, no single filter can provide all the above characteristics. Even

though the MSFs give the highest SNR when detecting a known image in white noise

they do not produce sharp correlation peaks and they are light inefficient [4], Also

the MSFs are very sensitive to geometric distortions in the input images. Further,

MSFs are complex valued in nature. Currently available SLMs, viz., Magneto-

Optic SLM (MOSLM), Deformable Mirror Device (DMD), Liquid Crystal Light

Valve (LCLV), and Liquid Crystal Television (LCTV) cannot accommodate a fully

complex valued filter.

To overcome the limitations of MSF, several new filter synthesis techniques

have been proposed. The light efficiency (Homer efficiency) is improved by the

Phase-Only (POF) filters [5]. The distortion tolerance is improved by the compos-

ite filters known as Synthetic Discriminant Function (SDF) filters [6]. They are

discussed next.

1.2.1 Composite Filters

The SDF is synthesized from a linear combination of input training images

with weights adjusted to satisfy the specified correlation values at the origin [7].

The SDF has two major problems: (1) The SDFs control only the output at the
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origin. When the peak is not at the origin this leads to sidelobe problems. (2) The

SDF filter is generally complex valued and cannot be implemented on the currently

available SLMs.

To alleviate the shortcomings of SDF, several variations to SDFs have been

proposed. Among them, the Minimum Average Correlation Energy (MACE) filter

[8] and Minimum Noise and Correlation Energy (MINACE) filter [9] have received

considerable attention. The MACE filter tries to minimize the average correlation

plane energy while maintaining the specified value at the origin in the correlation

plane and thus produces a sharp correlation peak. The MINACE filter reduces

the correlation plane energies resulting from both noise and training images and

offers better noise tolerance than MACE filter. Both of the above filter designs use

training images which are sufficiently representative of all the expected geometric

distortions, to produce distortion invariant filters. The details of the filter designs

are given in Chapter 2.

The MACE and the MINACE filters are generally complex valued in nature.

As mentioned earlier, currently available SLMs cannot implement a fully complex

filter. Each SLM has a different constraint. The constraints are imposed on the

filter in the Fourier domain. The filter designed assuming ideal operating conditions

may not behave as expected when implemented on the constrained SLMs. So it is

necessary to take SLM constraints into account when designing a filter. Some single

image SLM constrained filters are discussed next.

1.2.2 SLM Constrained Single Image Filters

Recently, experimenters have shown interest in the use of inexpensive LCTV

SLM's for input and filter planes in optical correlators. This SLM has a single

control signal which affects both phase and amplitude together at each pixel point



in the SLM [10]. This type of operating characteristic is called "arbitrarily con-

strained " or "amplitude and phase cross coupled." Juday [11] has developed a set

of necessary conditions for optimizing an optical correlation filter realizable with

coupled phase and amplitude SLM . Farn and Goodman [12] proposed a technique

for the design of an optimal filter (in the sense of maximizing intensity) for arbitrar-

ily constrained devices. Vijayakumar, Juday, and Rajan [13] proposed the design

of Saturated Filters (SF's). The SF's optimize SNR if the SLM exhibits annular re-

sponse operating curve. Saturated filter design also considered the detector noise at

the correlation plane. Juday [14] proposed a unified approach to synthesize optimal

realizable filters for various metrics, viz., Intensity, SNR, Peak to Correlation En-

ergy (PCE), and Peak to Total Energy (PTE). An important outcome of the above

approach is that optimal performance can be obtained for any SLM limitation by

using the Minimum Euclidean Distance Mapping (MED) between the optimal filter

(unconstrained) and the achievable filter (SLM constrained). The optimal mapping

minimizes the mean squared error between the optimal filter and the achievable

filter responses.

All the filter designs proposed above consider only a single image as ref-

erence for filter synthesis. Since these filter designs do not consider the possible

image distortions while constructing the filter, the filters are sensitive to geometric

distortions in the input image and do not produce acceptable performance. To de-

sign distortion invariant filters for constrained SLMs, several techniques have been

proposed by researchers. They are discussed next.

1.2.3 SLM Constrained Composite Filters

Jared and Ennis [15] have presented the design of Binary Phase-Only Filter

(BPOF) by including the filter modulation (due to SLM) in the synthesis process.
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Casasent and Rozzi [16] have shown that the performance of Phase-only and Binary

Phase-only SDFs is not satisfactory for pattern recognition. Balendra and Rajan

[17]-[18] have developed real-valued MACE (RMACE) and real-valued MVSDF-

MACE filters. Mahalanobis and Song have also developed the real-valued MACE

filter [19]. These filters are suitable for implementation on a filter SLM whose oper-

ating characteristic is not complex. Rajan and Muttiah [20]-[21] designed saturated

MACE filters implementable on SLMs with origin-centered, finite contrast annular

response regions. Commercially available SLM's such as DMD and LCTV exhibit

arbitrarily constrained operating characteristics.

Carlson and Vijayakumar [22] extended Jared and Ennis's [15] relaxation

algorithm for coupled SLMs. They introduced a projection function for mapping

unconstrained MACE filter on the SLM operating curve to get a realizable filter.

The designed filter maximizes the Fisher Ratio [23] for two-class (True, False) Pat-

tern recognition. Their results for MOSLM, DMD, and LCTV SLMs reveal that the

filter behaviour for non-training images is not satisfactory. They did not consider

the effect of input SLM and noise in the input images. There is no guarantee that

the relaxation-based iterative technique will always converge.

Khan and Rajan [24]-[25] used a simulated annealing-based optimization

technique [26] for minimizing the average correlation plane energy and the deviation

of the obtained correlation peak value at origin from the specified value. Simulated

annealing is a form of stochastic optimization, and is generally used for problems in-

volving a large number of variables. The methods discussed above for the design of

filters for arbitrarily constrained SLMs use a mapping technique to map an unreal-

izable filter to an SLM operating curve during the optimization process. But Khan

and Rajan's method uses optimization on the realizable filter and does not involve

mapping during the iteration and this reduces the computation time. Also in the

simulated annealing optimization algorithm, it is possible to reduce the probability
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of being trapped in local minima while searching for the global minimum. The

simulation results show that the filter performance is satisfactory. The correlation

response of the filter for true class images shows a sharp correlation peak and low

correlation plane energy. This helps in easy detection of the peak which is needed

for decision-making. But Khan's method has a few drawbacks. They are:

1. The algorithm at the start assumes a value at the origin of the cor-

relation plane and tries to achieve it for all the correlation planes.

As the value is chosen arbitrarily, the specified value may not be the

best value for the selected SLM.

2. The design also assumes the correlation value at the origin to be

real. This restriction is not necessary for the filter design.

3. The design did not consider the presence of an input SLM.

4. Simulated annealing-based optimization technique [26] is computa-

tionally intensive.

1.3 Objectives

In order to overcome the shortcomings mentioned above in the design of com-

posite filters for arbitrarily constrained SLMs, the main objective of the research

reported in this report was to develop a technique for the design of input and filter

SLM constrained composite filters for pattern recognition and study its performance

for various LCTV SLM's operating characteristics. The LCTV SLM exhibits differ-

ent operating characteristics such as amplitude-only, phase-mostly, high-contrast,

and highly-coupled. These characteristics were provided by Dr. Richard Juday of

NASA Johnson Space center.

Since the MACE-SDF produces a sharp correlation peak with minimum cor-

relation plane energy, the MACE-SDF formulation was used during the design of
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the SLM constrained filters. Three different optimization techniques were used.

They are: (1) simplex method [27], (2) Hooke and Jeeves method [28], and (3)

simulated annealing method [26]. The sum of peak to correlation energy (PCE) for

all the correlation planes belonging to the training images was chosen as the objec-

tive function to be maximized using either Simplex or Hooke and Jeeves method.

Juday's [14] Minimum Euclidean Distance (MED) concept was used for mapping

an unconstrained filter on an SLM operating curve during the filter design. Finally

a relaxation based [15] technique was used to get equal correlation peak values for

all the training images. Khan and Rajan's [24] simulated annealing-based MACE

filter design was refined and used to compare with the new filter design technique

based on simplex or Hooke and Jeeves method.

1.4 Outline of the report

The report is organized as follows. In Chapter 2, various unconstrained

and SLM constrained filter designs are reviewed. Chapter 2 also discusses the

characteristics of currently available SLMs. Chapter 3 discusses the design of a

composite filter for arbitrarily constrained SLMs at both the input and the filter

planes. Chapter 4 presents the simulation tests carried out to study the filter

performance for distortion in the input images. The performance of filters designed

using simplex method and Hooke and Jeeves method are compared with simulated

annealing based filter design. Chapter 5 presents the conclusions of this research

and recommendations for future work.



CHAPTER 2

PATTERN RECOGNITION VIA OPR FILTERS

In this chapter, a review of correlation-based filter design techniques that

have been proposed in literature is presented. The correlation-based filters can be

broadly classified as Unconstrained filters and SLM constrained filters. The filters

designed without considering the SLM's limitation are termed as unconstrained

filters. The SLM constrained filters are designed by incorporating the SLM's limi-

tations in the design process.

2.1 Unconstrained Filters

Unconstrained filters are designed with the assumption that the SLMs have

infinite contrast ratio and can accommodate any complex valued filter. In this

section some filter designs are discussed which do not take into account the SLM's

limitations. Throughout this report the images as well as the filters are expressed

in discrete domain as either vector or scalar functions. The vectors are represented

by the symbol (") and scalar quantities are denoted by lowercase letters. Uppercase

symbols also refer to the frequency plane terms and lowercase to represent spatial

domain quantities.

2.1.1 The Matched Filter (MF)

An optical correlation filter matched to the reference image s(x,y) should have

a transfer function proportional to the complex conjugate of the image spectrum.

13
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The MF is given as

where 5*(u, v) is the complex conjugate of the image spectrum, Pn(u, v) is the power

spectral density of the noise in the test image, and k is an arbitrary constant. In

the case where noise spectral density can be assumed constant, the filter transfer

function and its impulse response become

H(u,v) = k' S*(u,v) (2.2)

and

h(x,y) = k's*(-x,-y). (2.3)

The matched filter maximizes the signal-to-noise ratio (SNR) when the noise is

stationary and additive [29]. The noise spectral density can often be considered

uniform (white noise). However, in pattern recognition applications, false class

images (unwanted) are considered as noise. Clearly, this noise can, in general, be

highly correlated to the image; in this case the MF described in Equation 2.1 is

not necessarily optimum [29]. The major shortcoming of MF is its sensitivity to

distortions of the reference images, poor light efficiency, and the complex valued

nature of the filter.

Various techniques have been proposed to get distortion invariant filters for

OPR. The most well-known is the Synthetic Discriminant Function (SDF) [6] and

its variants. The design of SDF is discussed next.
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2.1.2 Conventional SDF

The SDF is constructed as a filter that is matched to a linear combination

of different images in the training set that cover the possible range of distortions.

In the following a derivation of SDF as proposed in [6] is outlined.

Let Si = [a,(l) s,(2) . . . s,-(d)]T represent the ith training image in the set

of Nt training images each with d pixels. The vector 5, = [•S'i(l) •5i(2) . . . 5,(<f)]T

denotes the DFT sequence of $*,. Let S = [Si S^ • • • SAT,] be a matrix of d x Nt

formed by DFT vectors of training images. The SDF filter, HSDF is designed to

satisfy the constraint given as

= c (2.4)

where c = [ci(0) c2(0) . . . Cff t(0)]T is the correlation output vector and the su-

perscript f denotes the conjugate transpose operation, c, is the correlation output

at the origin when the image J*, is placed at the input of correlator. Normally c,- is

assumed to be 1 for true class and 0 for false class images.

The SDF filter is given as

HSDF = Sa. (2.5)

The unknown weight vector, a = [aa a2 ...ajv,]r can be determined by

substituting Equation (2.5) in Equation (2.4),

(2.6)
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By substituting Equation (2.6) in Equation (2.5), the SDF niter is given as

HSDF = S(S^S)-lc. (2.7)

The SDF designed as above has two major drawbacks. They are :

1. The SDF controls only the output at the origin. When the peak

is not at the origin, it is difficult to locate the peak value in the

presence of noise.

2. The SDF is generally complex valued and cannot be implemented

on currently available SLMs.

When the input noise is white, the SDF is the best one (in the sense of minimizing

the output variance) [30]. But in reality noise is not always white.

To overcome the shortcomings of SDF, different variants of SDF have been

proposed. Vijayakumar [30] proposed Minimum Variance Synthetic Discriminant

Function (MVSDF) which minimized the output variance due to colored noise in

the input. Similar to SDF, the MVSDF also controls the response at only one

point in the output correlation plane. Thus large sidelobes in the correlation may

degrade its performance. Mahalanobis et al. [8] proposed the Minimum Average

Correlation Energy (MACE) filter which produces sharp correlation peak at the

origin while minimizing the average correlation plane energy. The details of the

design for MACE filter is given next.

2.1.3 The MACE Filter

Let Si represent the ith training image in the set of Nt training images and

Si denote the DFT sequence of s*,. Let S be a matrix of d x Nt formed by DFT
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vectors of Nt training images, given as

S = [S, S2 ...SN,}. (2.8)

The vector h represents the MACE filter in space domain and its DFT sequence is

H. The average correlation plane energy for all the Nt images is given by

. (2.9)
J

The above equation can be written in matrix- vector form as

Eave = H*DH (2.10)

where the superscript f denotes the conjugate transpose operation. D is a diagonal

matrix of size d x d and its diagonal elements are given by

(2.11)

The objective of the MACE filter is to minimize the average correlation plane

energy while maintaining the user-specified value at the correlation plane origin for

each training image. The user-specified constraint at the origin is given as

«(0) = \ £ S*(k)H(k) = 6, (2.12)
d k-l

for all i = 1, 2, ..., Nt training set images. By using the Lagrange Multiplier method,

the constrained minimization problem is solved and the MACE filter is obtained as

HMACE = D~l S(& D~l S}~lb. (2.13)
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To get the relationship between the MACE filter and the conventional SDF,

the MACE filter is written as

HMACE =

(2.14)

So, the MACE filter can be viewed as the conventional SDF for the preprocessed

images. The preprocessor, Z)"1/2, forces the average (over all the training images)

power spectrum of the training images to become white. The MACE filter is optimal

for target recognition in the presence of noise for which D"1/2 is the whitening filter.

Since the MACE filter is synthesized using training images of possible distortions,

this filter can be used for distortion invariant pattern recognition. However, the

filter is not realizable on the available SLMs. In Chapter 3, a method is proposed

to design a MACE filter so that it is realizable on arbitrarily constrained SLMs.

2.2 SLM Constrained Filters

The filter designs discussed in Section 2.1 did not consider the SLM limi-

tations. So, these filters are not always practically realizable. To overcome this

difficulty various filter design techniques which take into account the SLM limita-

tions have been proposed. These are discussed next.

2.2.1 Spatial Light Modulators (SLMs)

The implementation of OPR correlator requires two SLMs, one at the in-

put plane and the other at the filter plane. Several SLMs are developed for this
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purpose. They are : Magneto-Optic SLM (MOSLM), Liquid Crystal Light Valve

(LCLV), Deformable Mirror Device (DMD), and Liquid Crystal Television (LCTV).

The SLMs encode the phase and amplitude information of an image or a filter onto

an incident beam of coherent light as a function of space. Figure 2.1 shows some op-

erating characteristics of SLMs. None of the above SLMs have ideal characteristics.

The LCTV and DMD SLMs exhibit phase-mostly and arbitrarily constrained op-

erating characteristics. MOSLM is capable of producing binary phase only (BPO)

and ternary phase only (TPO) characteristics.

2.2.2 Filter Designs for Binary and Ternary Characteristics

The MOSLM is a binary or ternary modulator and it can take two values +1

and -1 or three values +1, 0 and -1. Psaltis et al. [31] proposed a Binary Phase-Only

Filter (BPOF) which is implementable on MOSLM. Generally BPOF is expressed

as

3 +Si(u,v)sm/3] (2.15)

ifx > 0
sgn[x] = _

— 1 otherwise

where ft ranges from — 7T/2 to ir/2 and SR(U,V) and Si(u,v) are real and imagi-

nary parts of the image spectrum, respectively. The threshold angle f3 needs to be

searched in the range [— 7T/2,7r/2] to find the optimum choice.

To improve the SNR of BPOF, Vijayakumar and Bahri [32] suggested a

3-level filter taking on values -1, 0, +1 and this filter is called a Ternary Phase

Amplitude Filter (TPAF). This filter is implementable on a MOSLM. Dickey et al.

[33] proposed complex ternary matched filter (CTMF).
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The CTMF can be implemented using two MOSLMs operating in a 3-level

mode. The CTMF filter yields output SNR within IdB of the SNR provided by the

MF.

All the filters discussed above, namely BPOF, TPAF, and CTMF were syn-

thesized with one training image and so they are not distortion invariant. Hendrix

and Vijayakumar [34] proposed an iterative algorithm for synthesizing BPOF com-

posite filters. Recently, Downie [35] reported that binary composite filters show

fairly low levels of discrimination ability and SNR and he proposed ternary SDFs

(TSDFs) with the purpose of increasing the overall performance over BSDFs.

2.2.3 Filter Designs for Real, Phase-Only, and Annular Characteristics

Balendra and Rajan [17] developed real-valued MACE, real-valued MVSDF-

MACE, and real-valued space domain MACE filters. Mahalanobis and Song [19]

have also developed the design of real MACE. These filters are suitable for prac-

tical implementation on SLMs whose operating characteristics are real. In some

operating modes, the LCTV SLM exhibits nearly real characteristic.

Since the Phase-Only Filter (POF) produces sharper correlation peak and

higher light efficiency than MF, some researchers worked on the development of

Phase-Only SDFs. Homer and Gianino [36] modified the conventional SDF to

phase-only SDF by setting the magnitude of the filter to unity. In this approach,

the original SDF requirements may no longer be met. Jared and Ennis [15] included

the filter modulation in the filter synthesis process itself. They used a relaxation

algorithm to synthesize BPOF-SDF and POF-SDF. Casasent and Rozzi [16] showed

with the help of simulations that the performance of BPOF-SDF and POF-SDF are

in general unacceptable.
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Vijayakumar, Juday, and Rajan [13] proposed the design of saturated filters

(SFs) which optimized the SNR for finite contrast, annular response SLMs. The

POFs and BPOFs are special cases of SF for phase-only and real SLMs, respectively.

Rajan and Muttiah [20] designed saturated MACE filters for SLMs having origin-

centered, finite contrast, annular response regions. Commercially available SLMs

do not exhibit this type of characteristic.

Recently Roberge and Shang designed a phase-only composite filter using

LCTV SLM [37]. They used a relaxation-based iterative technique to synthesize

the filter and implemented the filter on the phase-mostly operating characteristic

of LCTV. The correlation results show low sidelobes and sharp correlation peak.

The distortion tolerance of the filter is not given. They assumed the phase-only

characteristic for filter SLM but in reality the LCTV SLM exhibits phase-mostly

operating characteristic.

2.2.4 Filter Designs for Arbitrarily Constrained SLMs

The LCTV and DMD SLMs exhibit arbitrarily constrained operating char-

acteristics. These devices are also called arbitrarily constrained or cross-coupled

devices. In the following sections different techniques for filter synthesis suitable for

implementation using cross-coupled SLMs are discussed.

2.2.4.1 Farn and Goodman's approach. Farn and Goodman [12]

proposed a fast algorithm to design a filter which maximized the correlation intensity

at the output origin. A brief description of the algorithm as given in [12] is presented

below. Since the realizable region (SLM's constraint) is assumed continuous, the

analysis for the filter design is presented in the continuous domain.
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The correlation intensity at the output origin is expressed as

/ = I /+°° S(u)H(u)du (2.16)
\J-00

where S(u) = \S(u)\exp(j8a(u)) and H(u) = \H(u)\ fxp(j6H(v.)). The correlation

value at the origin is

c= S(u)H(u)du = \c\ exp(ja) (2.17)
J B

where B denotes the passband of the filter. The objective of the design is to maxi-

mize |c| with respect to an SLM realizability constraint given as

H(u) e fl foraU u (2.18)

where fl is the region of realizability. The maximum correlation value (magnitude)

is dependent on a, the phase of the correlation output at the origin. So

u (2.19)
B

and

max|c(a)| = max] He[H(u)S(u)exp(—ja)]du\
UB J

= I \S(u)\max{\H(u}\cos[0H(u) + ds(u)-a}}du. (2.20)
J B

The above equation explains that to determine the best a which maximizes the

intensity at the origin, the a is to be searched in the range [0, 2?r) for each signal

frequency. Also, the term H(u) is variable. So, for each signal frequency, H(u)
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is varied on the realizable curve and a is varied in the range [0,27r]. This is a

computationally intensive operation.

To speed up this process Farn and Goodman suggested a projection function

G given as

G(</>) = max {Re[H(u)exp(-j<j>)]}

= max{\H(u)\cos{dH(u)-<t>}}. (2.21)

Since the region fi is known a priori, the projection function G is calculated

ahead of time. The projection function is illustrated in Figure 2.2. Now, the

maximum value at the origin can be expressed as

max|c(a)|= / \S(u)\G[a-6s(u)]du. (2.22)
J B

From the above equation it is understood that the optimization is simply a search

over a.

2.2.4.2 Juday's approach. In this section, the analysis is presented

in the continuous domain because the SLM's realizable region is assumed to be

continuous. Juday [11] used calculus of variation to derive the necessary conditions

under which the filter produces the maximum correlation intensity. Let the signal

be s(t) and its Fourier transform be S(f). Then S(f] = 4(/)exp[j(£(/)]. The

coupled SLMs are normally controlled by a single variable called drive V. The filter

is H(f) = (i>[V(f)]exp{jv[V(f)]}, where p[.] and v[.] are SLM's magnitude and

phase values for the given drive value V.

The value at the origin of the correlation plane is

/

+ 00
A(f)exp(j<f>(fMV(f)}exp{jv(V(f)}}df. (2.23)

-00
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Juday derived a necessary condition for the maximum value of c(0) as

<£(/) + a[V(f)] = 0, a constant, (2.24)

where a[.] is called the augmented phase (Refer Figure 2.3). The augmented phase

is given as:

The augmented phase is the analog of the phase produced in a phase-only SLM,

including additionally the amplitude variation of the cross-coupled SLM.

The main outcome of the above result is that for maximum intensity at the

correlation plane origin, the necessary condition as denned above should be met.

2.2.4.3 Carlson and Vijayakumar's approach. Carlson and Vijayaku-

mar [22] designed a MACE-SDF for implementation on an arbitrarily constrained

SLM. They used the projection function as suggested by Farn and Goodman for

mapping an unrealizable filter on the SLM operating curve. They used a relaxation

algorithm [15] for updating the real weights of the MACE-SDF. Their simulation

results show that the filter performance for non-training images is not satisfactory.

2.2.4.4 Khan and Rajan's approach. Khan and Raj an [24] used a

simulated annealing optimization technique to design a composite MACE filter for

an arbitrarily constrained filter SLM. They used the following objective function

which was minimized by optimization.

Nt Nt

E(H) = &DH + £ fclt[Re{S/#} - «,-]2 + k2 £[Im{Sttf }f. (2.26)
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Figure 2.3. Physical Interpretation of an Augmented Phase [11]
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The distortion tolerance and the discrimination abilities of the filter are sat-

isfactory. The correlation response of the filter for true class image is sharp at the

origin and the correlation plane energy is low. This helps in the easy detection of

the peak value in the correlation plane for decision making.

However, the simulated annealing based optimization is computation inten-

sive. Also, the arbitrary values selected for the u,s may not be the best ones for a

given SLM. A refinement of the algorithm is proposed in the next chapter.

2.2.4.5 Juday's optimal realizable filters. Juday [14] proposed a uni-

fied approach for designing optimal realizable filters for maximizing the metrics of

Intensity, SNR, PCE, and PTE. He showed that optimal performance can be ob-

tained for any specified SLM limitation by using the Minimum Euclidean Distance

(MED) method of mapping between the optimal filter (unconstrained) and a filter

that is achievable with the SLM. The MED mapping minimizes the mean squared

error between the optimal filter and the achievable filter responses.

Juday considered the region of realizable complex filter values as the union

of its boundary and its interior because different constraints apply to filter values in

each. Let the signal be 5(/) — A(f)exp[j<j>(f)], the interior of the filter be H(f) =

M(/)exp[>0(/)], and the filter on the boundary be H(f) = j*[V(/)]exp{jt;[V(/)]},

where V is a unidimensional parameter which specifies the position along the bound-

ary. The correlation value at the origin is c(0) = Bexp(j(3) = £fc HkSk-

The following metrics are optimized:

Intensity = B2 (2.27)

SNR = <2'28'
PCE = (2'29)
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where a\ is the variance of the correlation plane detector noise, and Pnk is the power

spectral density of the additive input noise. The filter H is said to be optimal with

respect to a metric if the metric is stationary with respect to the filter value at each

frequency, Hk given as

d{Metric} _
8H>k

= 0. (2.31)

The optimal filters for SNR and PCE are given below

-*.)], (2-32)

HPCE = GpcE^-exp{j((3-<t>m}}, (2.33)

(2.34)

GPCE = *"'£*"*. (2.35)

The design of optimal realizable filters involves a two-dimensional search for the

parameters G and (3.

The approach proposed by Juday considers only a single image as the ref-

erence for filter synthesis. Since the filter design does not consider the possible

distortions in the input image while constructing the filter, the designed filters are

not distortion invariant. A procedure to design filters that are distortion invariant

will be presented in the next chapter.
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2.3 Summary

Chapter 2 covered the design details of unconstrained filters and SLM con-

strained filters. In the unconstrained filters, the concepts of matched filter, SDF

filter, and MACE filter were covered. Since the area of interest for this report is

on the design of SLM constrained filters for an arbitrarily constrained SLM, Farn

and Goodman's method of optimal filter design for intensity maximization, Juday's

necessary condition for intensity maximization, and Juday's optimal realizable filter

concepts were covered in some detail.



CHAPTER 3

DESIGN OF MACE FILTERS REALIZABLE ON ARBITRARILY

CONSTRAINED SLMS

In Section 2.2.4, different techniques for the design of filters realizable on

SLMs exhibiting arbitrarily constrained operating characteristics were discussed.

Among these, only two methods deal with the design of composite filters for arbi-

trarily coupled SLMs. One method is due to Carlson and Vijayakumar [22] and the

other is due to Khan and Rajan [24]. The drawbacks of the above two methods

were also discussed in Chapter 2. In this chapter, some refinements to the simulated

annealing method are first presented. Then a new faster algorithm for the design

of composite MACE filters for arbitrarily coupled SLMs is presented. In both the

methods, the presence of an input SLM is assumed.

3.1 Improved SLM-MACE Design using Simulated Annealing

Optimization

In the simulated annealing-based method proposed by Khan and Rajan [24],

the peak value constraint is included in the objective function using the penalty

function method and the search of the filter values that minimize the objective

function is carried out by the simulated annealing technique. The following objective

function was minimized using the optimization.

Nt N,

E(H) = H*DH + £ k^ReiSlH} - u,f + fc2 £[Jm{S/#}]2 (3.1)

30
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where fci,'s and k? are positive constants greater than unity, ideally infinity and u,-'s

are user-specified values at origin. As may be seen, the specified value at the origin

is (it,- -fj'O), purely real. However, from the recognition point of view, only intensity

is observed and hence phase value is of no concern. It is enough to constrain the

magnitude leaving arbitrary phase. This additional degree of freedom is likely to

yield a lower objective function resulting in a better filter. Hence in this report the

modified objective function given below is used. The function to be minimized is

Nt

E(H) = H*DH + £ *!,- • [\S}H\ - Ui}
2. (3.2)

1=1

The algorithm for the minimization of the above objective function will be

similar to that given by Khan [25] and is briefly outlined next. The filter pixel values

are the variables to be determined in this optimization. So, the objective function

to be minimized is E(K), i=l,2,...,d, where K's represent the function variables to

be determined.

The optimization is started by randomly perturbing the variable V{. Khan

considered the phase values of the filter pixels as Vj's. In an arbitrarily constrained

SLM operating curve, a single phase value of SLM may have more than one ampli-

tude value. So, for a given phase value, the amplitude value may not be unique.

In the modified method, instead of the phase perturbation, the drive to the SLM

corresponding to each pixel value of the filter is perturbed. The energy change

AJ5 caused by the random perturbation AV; for the ith variable is calculated as

AE = Enew - EMt where Enew = E(V?ld + AV-) and EM = E(V?ld). If A£ > 0 ,

then the perturbation is accepted based on the acceptance probability

<3-3'
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where T is the temperature parameter. If A.E < 0 then the perturbation is ac-

cepted unconditionally. The technique of accepting higher energy values in this

optimization avoids the possibility of system being trapped in local minima.

In the above method, the initial temperature T is chosen to be one-half the

initial value of the objective function. The temperature parameter T is lowered

exponentially as Tn = (0.95)"T0, where Tn is the temperature at the nth stage and

To is the initial temperature. If the desired number of accepted perturbations is not

achieved at three successive temperatures, the system is considered to have reached

its lowest energy state, and the optimization is concluded.

A Fortran program implementing the above algorithm is given in Appendix

C. Performance of the filters designed using this program is given in Chapter 4.

3.2 An Iterative Method for the Design of Realizable MACE Filters

As pointed out earlier, the simulated annealing-based optimization takes

the SLM constraints and peak value constraints simultaneously and minimizes the

energy in a single step. However this results in a time-consuming process. An alter-

native approach will be to perform the design in two steps: (i) design a realizable

MACE filter with equal peak values and (ii) map the designed filter on an SLM.

Perform the two steps repeatedly so that the final filter is an SLM realizable optimal

filter. The conventional MACE filter design is achieved using the formula

HMACE = D-lS(&D~lS)-lc. (3.4)

However this filter as stated earlier is not guaranteed to be implementable

on a given SLM. In the following an iterative method which will yield a filter imple-

mentable on an SLM is developed. First the iterative method for an unconstrained
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MACE filter is developed and then it is modified for the design of a constrained

MACE filter.

3.2.1 Design of an Unconstrained MACE Filter

Let Si = [si(l) s,(2) . . . Si(d)]T represent the i"1 training image in the set

of Nt training images each with d pixels. All the training images are affected by the

input SLM's operating limitations. Normally, the SLM's operating characteristic is

available to the filter designer as a table of pairs of values representing phase and

magnitude. The gray scale value for each pixel of the training image is transformed

to the corresponding input SLM's phase and magnitude. The transformed training

images are then used in the synthesis of the MACE filter. The 2-D DFT of the

transformed image J, is expressed in vector form as 5, = [•?,(!) 5,(2) . . . 5,-(d)]T.

Let S be a matrix of size d x Nt formed by DFT vectors of Nt training images, given

as

(3.5)

Then the MACE filter is given as

HMACE = D-lS(&D-lS)-lc, (3.6)

where D is a diagonal matrix of size d x <i, the diagonal elements of which are given

by

(3J)
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and c — [ci(0) £2(0) . ..CAT,(0)]T is the output correlation vector. c,(0) is the

desired correlation value at the origin when the ith image is passed through HMACE-

From Equation (2.14), the MACE filter is given as

HMACE — D~ ' HSDF

= Sa (3.8)

where 5 = D~l/2S. The MACE filter is nothing but the conventional SDF for

prewhitened images. The unknown weight vector a=[a \ a2 ... a,Nt]
T is obtained

by using a relaxation algorithm similar to the one suggested by [15] as discussed

below.

3.2.1.1 Relaxation Algorithm to Obtain the Weight Vector

The steps involved in this algorithm are given below:

1. Let k=0; Select a set of initial values for the elements of a°.

2. Construct the MACE filter

HkMACE = Si?, (3.9)

where the superscript k represents the kth step in the iteration.

3. Calculate the correlation value at the origin for all the training im-

ages. The correlation vector is in = [mi m-i .. .m,Nt}
T, where m,-

is the correlation value at the origin when the ith image is correlated
-*

with HMACE • The correlation vector is formed as

mk = &Hk
MACE. (3.10)
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4. Update the weight vector a*. The individual elements of a* are

updated as given below:

(3.11)

where c, is the desired value at the correlation plane origin for the

ith training image. Normally, for true class images c,' s are chosen

to be 1. a is a user selected damping parameter chosen to ensure

the convergence of the algorithm.

5. Check whether ak+l is approximately equal to ak. If so stop; other-

wise increment k by 1. Go to Step 2.

The HMACE obtained at the end of the iteration is a complex valued filter and

cannot therefore be accommodated on constrained SLMs.

3.2.2 Design of SLM Constrained MACE Filter

The unconstrained MACE filter obtained in the previous section is used as

the start value for the constrained filter design. It may be easily verified that if

HMACE is an optimal filter (in the sense of maximizing the peak to correlation

energy ratio (PCER)), then filter GH.MACE&® will als° De optimal because e*13 does

not affect the peak magnitude and G does not affect PCER.

Following Juday's method of optimal filter expression [14] , the MACE filter

is expressed as

= G • HMACE • eP (3.12)
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and G is assumed to be real whose range is unknown and (3 is limited to [0,27r).

The superscript + denotes an optimal but unrealizable filter. To convert HMACE

into a realizable filter H°, one may use minimum euclidean distance (MED) method

suggested by Juday [14]. However, different values of G and /3 will yield different

H° and each will have different performance functions. To obtain the best possible

filter, one has to carry out a two-dimensional search on the G-/3 space such that the

objective function given below is maximized.

= ( }

where H° is the realizable MACE filter obtained after mapping H+ on the SLM

operating curve by MED method suggested by Juday [14]. To perform the G and

(3 search efficiently, one may use direct search methods or gradient based methods.

In this report direct search methods are used. The reasons for selecting the direct

search methods are discussed next.

3.2.2.1 Direct Search Methods

Many gradient-based algorithms exist in literature for multivariable opti-

mization. Many multivariable problems in engineering have objective functions that

are mathematically complex or are based on tabular data. For these optimization

problems, finding the partial derivatives required to calculate the gradient is often

impossible. For these problems, it is necessary to use a search algorithm that does

not depend on calculation of the gradient. One type of technique that satisfies this

requirement is the pattern search method. "Pattern search methods are known for

their simplicity and are popular in the optimization field because their performance
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is often better than methods that rely on gradient calculation or gradient approx-

imation. Pattern search algorithms have been demonstrated to be far superior to

gradient methods when used on merit surfaces that have sharply defined ridges as a

result of the imposed constraints [38]." Two methods are popular in pattern search

techniques because of their ease of implementation and fast convergence; they are

: (1) The Simplex method, and (2) Hooke and Jeeves method. In this report, both

these methods were independently used for performing a two variable search to find

the best G and /3, for the filter such that the objective function is maximized.

3.2.2.1.1 Simplex method of optimization. It is to be noted here that

the simplex method in pattern search is different from Dantzig's simplex method

in linear programming problems. The Simplex method was proposed by Nelder

and Mead in 1965 [27]. The simplex is an n-dimensional, closed geometric figure in

space that has straight line edges intersecting at n+1 vertices. In two dimensions

this figure would be a triangle. In three dimension it would be a tetrahedron.

Since the optimization of the objective function (sum of PCERs) involves only two

unknowns, G and /3, the simplex is a triangle.

The idea of the method is to compare the values of the function at the (n+1)

vertices of the simplex and move the simplex towards the optimum point during

the iterative process. The movement of simplex is achieved by the application of

three basic operations reflection, expansion, and contraction. The above mentioned

simplex method gives the best values for G and /? denoted as G° and (3°, respectively.

3.2.2.1.2 Hooke and Jeeves method of optimization. The algorithm

[28] proceeds as follows. First, a base point is chosen with exploration step sizes.

Next, an exploration is performed with a given increment along each of the inde-

pendent variable directions. A new temporary base point is established whenever

there is a functional improvement. Once this exploration is complete, a new base
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point is established and a "pattern move " takes place. This pattern move con-

sists of an extrapolation along a line between a new base point and the previous

base point. Once the new temporary base point has been found, an exploration

about this point is instituted to see if a better base point can be found. Using this

optimization technique, the G° and /3° values are found.

3.2.3 Relaxation Algorithm to Satisfy SDF Constraint at the Origin

The objective function chosen for the filter design does not guarantee equal

correlation values at the origin for all training images. So, an iterative technique is

used to satisfy the above requirement. The steps in the algorithm are given below:

1. Let k=0. Use G* and {3° values obtained after Simplex or Hooke and

Jeeves optimization.

2. Construct the filter with G* and /3° as

Hk = G«- (Sak] • ej0\ (3.14)

3. Use the MED method of mapping to map the unrealizable filter Hk

on to the SLM operating curve. The mapped filter is H°.

4. Update the weight vector a. The elements of a are updated as given

below:

TO?. .

(3.15)

where rhk = S*H° and k represents the kttl iteration step.

5. The iteration is repeated from Step 2, until the elements of vector a

are a'- ' - ss a* .
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The simplex or Hooke and Jeeves method of optimization and the relaxation

algorithm are repeated until no changes in a occur during the relaxation algorithm.

After the above iteration, the filter H° is the realizable MACE filter.

3.3 Summary

This chapter discussed a modified simulated annealing optimization-based

MACE filter design. Then it presented an iterative method without requiring a

matrix inverse for the design of an unconstrained MACE filter. Following this, this

chapter presented the steps involved in the design of an unconstrained MACE filter

in the presence of an input SLM, the formulation of the objective function, the

simplex and Hooke and Jeeves methods of optimization to find the values G0 and

/3* which maximized the objective function, and the relaxation method of iterative

technique to get equal values at the correlation plane origin for all the training

images. Performance of the filters designed using the above methods with respect

to real world SLMs in pattern recognition problems is presented in the next chapter.



CHAPTER 4

PERFORMANCE EVALUATION OF THE REALIZABLE MACE

FILTER

In Chapter 3, a new approach for the design of a realizable MACE filter

was discussed. An algorithm for its construction was also presented. Khan and

Rajan's [24] simulated annealing-based MACE filter design was modified and the

updated algorithm was also discussed. In this chapter the distortion tolerance and

the discrimination ability properties of the designed filter are studied using computer

simulations.

4.1 Simulation

The realizable MACE filter was designed on a computer (SUN SPARC sta-

tion 2) using three different algorithms (simplex method, Hooke and Jeeves method,

and simulated annealing-based optimization) described in Chapter 3. The filter

was synthesized using seven training images of space shuttle (s!28.15n, s!28.10n,

s!28.5n, s!28.0, s!28.5, s!28.10, s!28.15) where s!28.15n represents the shuttle

image rotated by 15 degrees in the clockwise (negative) direction and s!28.15 rep-

resents 15 degrees anti-clockwise rotated image. A space shuttle image is shown in

Figure 4.1. These images are of size 128 x 128 pixels and were obtained by padding

a 32 x 32 image with zeros. The above seven images are considered to belong to

the true class and represent possible distortions in the distortion range.

40
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Figure 4.1. The Space Shuttle Image

Figure 4.2. The Airplane Image
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The distortion considered here are in-plane rotations. Airplane images were

used to test the discrimination ability of the filters for false class images. A typical

airplane image is shown in Figure 4.2. To estimate the filter's ability to recognize

the out-of-plane rotated images, a test with truck images was performed and the

results are also presented in this chapter. The database used to test the recognition

and distortion tolerance of the filters consisted of thirty-one images in each of the

shuttle class and the airplane class. These images were obtained by rotating an

image in each class from minus fifteen degrees to plus fifteen degrees in steps of

one degree. The shuttle and airplane image databases are shown in Figure 4.3 and

Figure 4.4, respectively.

LCTV SLMs are available which exhibit different operating characteristics,

namely, phase-mostly, high-contrast, highly-coupled, and amplitude-only. The mag-

nitude and phase relationship of the LCTV SLM characteristics are shown in Figures

4.5 through 4.8.

4.1.1 Unconstrained MACE Filter in the Presence of an Input SLM

An unconstrained MACE filter was designed using the relaxation algorithm,

discussed in Section 3.1.1. The input images were constrained by the Amplitude-

Only operating characteristic. Seven training images from the space shuttle class

were used for filter synthesis. The correlation plane statistics for the training images

are listed in Table 4.1. Figure 4.9 gives a typical three-dimensional plot of the output

correlation plane when the filter was correlated with a training image (s!28.15). The

maximum magnfor shuttle

images are represented with a D and airplane images are represented with x.
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Figure 4.3. The Shuttle Image Database

Figure 4.4. The Airplane Image Database
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Table 4.1. Correlation Plane Statistics for an Unconstrained MACE Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

22419.0

119688.0

4199.3

5.65

s!28.10n

22419.0

118438.0

4243.6

5.65

s!28.5n

22419.0

117873.0

4338.3

4.85

sl28.0

22418.9

177389.0

2833.3

4.37

s!28.5

22419.1

117569.0

4275.0

4.44

S128.10

22419.0

119228.0

4215.5

5.57

S128.15

22419.0

117924.0

4262.1

5.07

20000

15000

10000

5000

32

96

64

64 32

128

128

Figure 4.9. The Output Correlation Plane for the Unconstrained MACE Filter
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4.2 Performance of a Simplex-based MACE Filter

The algorithm for the design of an SLM-constrained MACE filter using the

simplex method of optimization was discussed in Chapter 3. The computer simu-

lation results are presented below.

4.2.1 Constrained MACE Filter for Phase-Mostly Operating Curve

An unconstrained MACE filter was designed using the relaxation algorithm

as discussed in Section 3.1.1. Then using the simplex method of optimization, the

objective function was maximized for the Phase-Mostly filter SLM characteristic

shown in Figure. 4.5. The input images were constrained by the Amplitude-Only

operating characteristic. Seven training images from the true class (space shuttle)

were used for filter synthesis. The correlation plane statistics for the training images

are listed in Table 4.2. Figure 4.11 gives a typical three-dimensional plot of the out-

put correlation plane when the filter was correlated with a training image (s!28.15).

The correlation magnitude values are shown with respect to pixel numbers in the

two-dimensional plane. The maximum magnitude occurs at the origin (65,65). The

filter was correlated with all the images available in shuttle and airplane databases.

The correlation outputs for all the images are shown in Figure 4.12. The correlation

outputs for the shuttle images are represented with a D and the airplane images are

represented with x.
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Table 4.2. Correlation Statistics for Phase-Mostly SLM Constrained

MACE Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

12777.6

154694.0

1055.4

2.21

s!28.10n

12828.7

156246.0

1053.3

2.83

s!28.5n

12799.0

157471.0

1040.2

2.47

s!28.0

12775.3

176920.0

922.4

1.88

s!28.5

12771.7

158033.0

1032.1

2.54

S128.10

12781.3

157081.0

1039.9

2.76

sl28.15

12756.8

156541.0

1039.5

2.11

12000 -

8000 -

4000 -

96

64
32

32

128

Figure 4.11. The Output Correlation for Phase-Mostly SLM Constrained

MACE Filter
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4.2.2 Constrained MACE Filter for High-Contrast Operating Curve

An unconstrained MACE filter was designed using the relaxation algorithm

as discussed in Section 3.1.1. Then using the simplex method of optimization, the

objective function was maximized for the High-Contrast filter SLM characteristic

shown in Figure 4.6. The input images were constrained by the Amplitude-Only

operating characteristic. Seven training images from the true class (space shuttle)

were used for filter synthesis. The correlation plane statistics for the training im-

ages are listed in Table 4.3. Figure 4.13 gives a typical three-dimensional plot of

the output correlation plane when the filter was correlated with a training image

(s!28.15). The correlation magnitude values are shown with respect to pixel num-

bers in the two dimensional plane. The maximum magnitude occurs at the origin

(65,65). The filter was correlated with all the images available in the shuttle and

airplane databases. The correlation outputs for all the images are shown in Figure

4.14. The correlation outputs for the shuttle images are represented with a D and

the airplane images are represented with x.

Table 4.3. Correlation Statistics for High-Contrast SLM Constrained

MACE Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

3261.

10326

1030.

2.46

8

.2

3

s!28.10n

3259.

10495

1012.

2.37

9

.6

5

s!28.5n

3261.1

10666.4

997.0

3.25

s!28.0

3256.1

16833.1

629.8

2.57

s!28.5

3262.9

11379.9

935.5

2.67

8128.10

3266.1

11247.2

948.5

2.66

sl28.15

3267.5

11035.1

967.5

2.86
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4.2.3 Constrained MACE Filter for Highly-Coupled Operating Curve

The filter was designed for the Highly-Coupled LCTV operating curve shown

in Figure 4.7. As done before, the input images were constrained by the Amplitude-

Only operating characteristic. Seven training images from the true class (space

shuttle) were used for filter synthesis. The correlation plane statistics for the train-

ing images are listed in Table 4.4. Figure 4.15 gives a typical three-dimensional plot

of the output correlation plane when the filter was correlated with a training image

(s!28.15). The correlation magnitude values are shown with respect to pixel num-

bers in the two-dimensional plane. The maximum magnitude occurs at the origin

(65,65). The filter was correlated with all the images available in the shuttle and

airplane databases. The correlation outputs for all the images are shown in Figure

4.16. The correlation outputs for the shuttle images are represented with a n and

the airplane images are represented with x.

Table 4.4. Correlation Statistics for Highly-Coupled SLM Constrained

MACE Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

2612

4966

1373

3.6

.2

.5

.8

s!28.10n

2614.

5036.

1357.

3.11

8

6

5

s!28.5n

2614.

5012

1363

16

.8

.2

3.62

s!28.0

2616.7

8113.0

843.9

2.79

s!28.5

2610.2

5431.19

1254.5

3.09

s!28.10

2613.0

5431.6

1257.1

3.92

sl28.15

2606.

5323.

1275.

3.86

2

5

9
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4.2.4 Filter for High-Contrast Input and Highly-Coupled Filter SLMs

The filter was designed for the Highly-Coupled LCTV operating curve (Fig-

ure 4.7) using the simplex method of optimization. The input images were con-

strained by the High-Contrast operating characteristic shown in Figure 4.6. Seven

training images from the shuttle database were used for filter synthesis. The cor-

relation plane statistics for the training images are listed in Table 4.5. Figure 4.17

gives a typical three-dimensional plot of the output correlation plane when the filter

was correlated with a training image (s!28.15). The correlation magnitude values

are shown with respect to pixel numbers in the two-dimensional plane. The maxi-

mum magnitude occurs at the origin (65,65). The filter was correlated with all the

images available in the shuttle and airplane databases. The correlation outputs for

all the images are shown in Figure 4.18. The correlation outputs for the shuttle

images are represented with a O and the airplane images are represented with x.

Table 4.5. Correlation Statistics for High-Contrast Input and Highly-

Coupled Filter SLMs Constrained MACE Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

5495.9

24385.9

1238.6

3.06

s!28.10n

5494.2

25193.3

1198.2

2.93

s!28.5n

5498.0

25820.7

1170.7

3.79

s!28.0

5492.4

37278.0

809.2

2.95

s!28.5

5498.9

26946.8

1122.2

3.15

sl28.10

5507.3

26244.5

1155.6

3.35

sl28.15

5496.5

25703.3

1175.4

3.84
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4.2.5 Filter for High-Contrast Input and Phase-Mostly Filter SLMs

The filter was designed for the Phase-Mostly filter SLM using the input

images which were constrained by the High-Contrast operating characteristic. Seven

training images from the space shuttle database were used for filter synthesis. The

correlation plane statistics for the training images are listed in Table 4.6. Figure

4.19 gives a typical three-dimensional plot of the output correlation plane when the

filter was correlated with a training image (s!28.15). The correlation magnitude

values are shown with respect to pixel numbers in the two-dimensional plane. The

maximum magnitude occurs at the origin (65,65). The filter was correlated with all

the images available in the shuttle and airplane databases. The correlation outputs

for all the images are shown in Figure 4.20. The correlation outputs for the shuttle

images are represented with a D and the airplane images are represented with x.

Table 4.6. Correlation Statistics for High-Contrast Input and Phase-Mostly

Filter SLMs Constrained MACE Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

24066.5

1220000

473.3

2.21

s!28.10n

24095.2

1230480

471.8

2.57

s!28.5n

24082.0

1230000

469.2

2.47

S128.0

24068.5

1306002

443.3

1.90

s!28.5

24086.4

1230000

468.1

2.59

S128.10

24081.6

1230011

469.0

2.59

S128.15

24070.2

1230000

469.4

2.83
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4.2.6 Filter for Phase-Mostly Input and Phase-Mostly Filter SLMs

The filter was designed for the Phase-Mostly filter SLM using the input

images which were constrained by the Phase-Mostly operating characteristic. Seven

training images from the true class (space shuttle) were used for filter synthesis. The

correlation plane statistics for the training images are listed in Table 4.7. Figure

4.21 gives a typical three-dimensional plot of the output correlation plane when the

filter was correlated with a training image (s!28.15). The correlation magnitude

values are shown with respect to pixel numbers in the two-dimensional plane. The

maximum magnitude occurs at the origin (65,65). The filter was correlated with all

the images available in the shuttle and airplane databases. The correlation outputs

for all the images are shown in Figure 4.22. The correlation outputs for the shuttle

images are represented with a D and the airplane images are represented with x.

Table 4.7. Correlation Statistics for Phase-Mostly Input and Phase-Mostly

Filter SLMs Constrained MACE Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

107625

122241000

94.8

2.4

s!28.10n

107902

122256000

95.2

2.4

s!28.5n

107726

122268000

94.9

2.6

S128.0

107608

122388000

94.6

1.90

S128.5

107753

122278000

94.9

2.4

S128.10

107755

122277000

94.9

2.3
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4.3 Performance of Hooke and Jeeves-based MACE Filter

The algorithm for the design of a SLM-constrained MACE filter using the

Hooke and Jeeves method was discussed in Chapter 3. The computer simulation

results are presented below.

4.3.1 MACE Filter for Phase-Mostly SLM

The filter for the Phase-Mostly operating curve (Figure 4.5) was synthe-

sized using the Hooke and Jeeves method of optimization. The input images were

constrained by the Amplitude-Only operating characteristic. Seven training im-

ages from the shuttle database were used for filter synthesis. The correlation plane

statistics for the training images are listed in Table 4.8.

4.3.2 MACE Filter for High-Contrast SLM

The filter for the High-contrast operating curve (Figure 4.6) was synthe-

sized using the Hooke and Jeeves method of optimization. The input images were

constrained by the Amplitude-Only operating characteristic.

Table 4.8. Correlation Statistics for Phase-Only SLM Constrained Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

12779.9

155561.0

1049.9

2.20

s!28.10n

12816.1

157128.0

1045.4

2.81

s!28.5n

12804.9

158388.0

1035.2

2.48

S128.0

12788.6

177927.0

919.2

1.88

S128.5

12796.9

159044.0

1029.7

2.55

S128.10

12796.9

158117.0

1035.7

2.77

S128.15

12767.8

157604.0

1034.3

3.27
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Table 4.9. Correlation Statistics for High-Contrast SLM Constrained Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

2971.7

8563.3

1031

2.6

.2

s!28.10n

2974

8716

1014

2.3

.2

.7

.8

s!28.5n

2973.

8627.

1024.

3.11

1

2

5

s!28.0

2960.0

13808.0

634.5

2.44

s!28.5

2971.5

8984.1

982.8

2.87

s!28.

2970

10

.7

9197.4

959.

2.8

6

s!28.15

2971.8

9181.8

961.9

3.05

Seven training images from the shuttle database were used for filter synthesis.

The correlation plane statistics for the training images are listed in Table 4.9.

4.3.3 MACE Filter for Highly-Coupled SLM

The filter for the Highly-Coupled operating curve (Figure 4.7) was synthe-

sized using the Hooke and Jeeves method of optimization. The input images were

constrained by the Amplitude-Only operating characteristic. Seven training im-

ages from the shuttle database were used for filter synthesis. The correlation plane

statistics for the training images are listed in Table 4.10.
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Table 4.10. Correlation Statistics for Highly-Coupled SLM Constrained Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

2846.7

5931.5

1366.2

3.46

s!28.10n

2841.3

6082.0

1327.3

3.16

s!28.5n

2829.0

6218.0

1287.2

3.78

s!28.0

2800.1

9677.1

810.2

2.84

s!28.5

2838.4

6500.2

1239.4

3.2

s!28.10

2846.6

6336.6

1278.8

3.94

S128.15

2849.1

6202.5

1308.7

3.82

4.4 Performance of Simulated Annealing-based MACE Filter

The algorithm for the design of an SLM-constrained MACE filter using sim-

ulated annealing optimization was discussed in Chapter 3. For filter synthesize the

value at the origin was chosen from the value obtained in the simplex based filter.

The computer simulation results are presented below.

4.4.1 MACE Filter for Phase-Mostly SLM

The filter for Phase-Only operating curve (Figure 4.5) was synthesized us-

ing simulated annealing optimization. The input images were constrained by the

Amplitude-Only operating characteristic. Seven training images from the shuttle

database were used for filter synthesis. The correlation plane statistics for the

training images are listed in Table 4.11.
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Table 4.11. Correlation Statistics for Phase-Only SLM Constrained Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

11562.7

148586.0

899.7

2.05

s!28.10n

12921.2

150277.0

1111.0

3.01

s!28.5n

13073.7

151689.0

1126.8

2.59

s!28.0

13966.0

171006.0

1140.6

2.02

s!28.5

13108.0

152730.0

1125.0

3.81

S128.10

12811.7

152012.0

1079.7

2.99

S128.15

11687.1

151603.0

900.9

3.81

4.4.2 MACE Filter for High-Contrast SLM

The filter was designed by considering the High-Contrast operating curve for

filter SLM. The input images were constrained by the Amplitude-Only operating

characteristic. Seven training images from the space shuttle database were used for

filter synthesis. The correlation plane statistics for the training images are listed

in Table 4.12. Figure 4.23 gives a typical three-dimensional plot of the output

correlation plane when the filter was correlated with a training image (s!28.15).

The correlation magnitude values are shown with respect to pixel numbers in the

two-dimensional plane. The maximum magnitude occurs at the origin (65,65).

The filter was correlated with all the images available in the shuttle and airplane

databases. The correlation outputs for all the images are shown in Figure 4.24. The

correlation outputs for the shuttle images are represented with a D and the airplane

images are represented with x.
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Table 4.12. Correlation Statistics for High-Contrast SLM Constrained Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

3580.5

14712.9

871.3

2.68

s!28.10n

3916.

15285

1003.

2.65

8

.9

6

s!28.5n

3880.2

15877.9

948.3

2.88

s!28.0

4206.

23099

9

.5

766.18

2.55

s!28.5

3946.7

16341.9

953.2

3.07

s!28.10

3992.

15887

1003.

2.98

5

.9

3

sl28.15

3694.7

15767.

865.8

2.9

0

96

32
64

32

128

128

Figure 4.23. The Output Correlation for the High-Contrast SLM Con-

strained Filter
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4.4.3 MACE Filter for Highly-Coupled SLM

The filter was designed for the Highly-Coupled LCTV operating curve. As

done before, the input images were constrained by the Amplitude-Only operating

characteristic. Seven training images from the space shuttle were used for filter

synthesis. The correlation plane statistics for the training images are listed in Table

4.13.

4.5 Comparison of SLM Constrained Filters

Figure 4.25 illustrates the correlation response at the origin for filters de-

signed using various combinations of SLMs at the input and filter plane of the

correlator. The filters were designed using seven training images from the space

shuttle database. The simplex method was used for the filter's design. All the

images from the space shuttle database were used for the correlation purpose.

Table 4.13. Correlation Statistics for Highly-Coupled SLM Constrained Filter

Image

Peak

Energy

PCE

PSR

s!28.15n

3460.5

12436.2

962.9

2.76

s!28.10n

3860.6

12901.5

1155.2

3.45

s!28.5n

3859.9

13315.5

1118.9

4.12

s!28.0

4173.4

17579.8

990.7

2.49

s!28.5

3885.2

13740.2

1098.6

4.19

sl28.10

3815.6

13693.8

1063.2

4.12

sl28.15

3814.1

13608.0

907.4

3.81
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In the Figure 4.25, the filter names are abbreviated with SLM's names; for

example, the filter name 'Amp_Cpl2' reveals that the filter was synthesized by as-

suming an Amplitude-Only input SLM and a Highly-Coupled filter SLM. Similarly,

the name 'Hi_Ph' tells that the filter design assumed High-Contrast and Phase-

Mostly SLMs at the input and filter planes respectively. The filter designed with

Phase-Mostly SLMs at both input and filter planes gives the highest correlation

values at the origin compared to the other SLM combinations tried in this report.

Figure 4.26 shows the Peak to correlation energy (PCE) variations with re-

spect to the in-plane rotated shuttle images. The filter designed using an Amplitude-

Only input SLM and a Highly-Coupled filter SLM gives the best PCEs compared

to other filters. The Phase-Mostly SLM constrained filter in the presence of Phase-

Mostly SLM gives the lowest PCEs.

In Chapter 3, three different techniques were discussed for the design of

SLM constrained MACE filter. The filters designed using these techniques are now

compared with Minimum Euclidean Distance (MED) mapped filter. Figure 4.27

illustrates the correlation response at the origin for High-Contrast SLM constrained

filters (with Amplitude-Only input SLM) designed using four different methods.

It is to be observed that the MED mapped filter was obtained by mapping an

unconstrained MACE filter (but all the training images were passed through an

Amplitude-Only input SLM) on to the filter SLM operating curve using MED con-

cept. The unconstrained MACE filter was initially designed with the specified origin

value of 3256.1 (the correlation value at the origin obtained for High-Contrast SLM

constrained filter in the presence of Amplitude-Only input SLM).
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Figure 4.28 gives the PCE ratios for a High-Contrast SLM constrained filter

in the presence of Amplitude-Only input SLM. Four methods were used for the filter

design. The simulated annealing, simplex, and Hooke and Jeeves methods give very

similar performance.

The filter design techniques based on the simplex method and the Hooke

and Jeeves method use a relaxation-based iterative technique to get equal values

at the correlation plane origin for all the training images. Figure 4.29 illustrates

the correlation response for training images when the images were correlated with

a High-Contrast SLM constrained filter ( in the presence of Amplitude-Only input

SLM) designed with and without the relaxation technique. Figure 4.30 shows the

PCE ratios for a filter designed with and without the relaxation technique.
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4.6 Noise Analysis

The LCTV SLM's operating curves were used for the design of simplex based

MACE filters. The performance of these filters were studied when the input image

was corrupted by zero mean Gaussian noise.

A space shuttle image was added with zero mean, Gaussian noise to obtain

images with different signal-to-noise ratios (SNRs). Figures 4.31 through 4.34 show

images with 30dB, 20dB, lOdB, and OdB SNRs, respectively. These images were

used to evaluate the filters designed with different input and filter SLMs operating

characteristics. The correlation plane statistics of various filters, for images shown

in Figures 4.31, 4.32, 4.33, and 4.34, are given in tables 4.14, 4.15, 4.16, and 4.17,

respectively. The Figure 4.35 gives a typical three-dimensional plot of the output

correlation plane when the Phase-mostly SLM constrained filter was correlated with

the shuttle image (Figure 4.34). The filter names are abbreviated with SLM's names

as done in the previous section. Figure 4.36 shows average values at the origin

when shuttle images with different SNRs are correlated with a High-Contrast SLM

constrained filter (Amplitude-Only input SLM is assumed). It is to be noted here

that ten different seed values are used for the generation of noise for each image

(for a particular SNR) and the average correlation value is used for the plot. Figure

4.37 illustrates the standard deviation of the value at the origin.
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Figure 4.31. The shuttle image with 30dB SNR

Figure 4.32. The shuttle image with 20dB SNR
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Figure 4.33. The shuttle image with lOdB SNR

Figure 4.34. The Shuttle image with OdB SNR
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Table 4.14. Correlation Statistics for Space shuttle image with 30dB SNR

Filter

Peak

Energy

PCE

PSR

amp-cp!2

2599

8138

830.

2.7

.9

.2

5

amp-hi

3233.7

16903.7

618.6

2.52

amp-ph

12723.7

177043

914.4

1.87

hi-cp!2

5462.7

37338.0

799.2

2.87

hi-ph

23988.5

1307350

440.2

1.89

ph-ph

107072

122385000

93.67

1.89

Table 4.15. Correlation Statistics for Space shuttle image with 20dB SNR

Filter

Peak

Energy

PCE

PSR

amp-cp!2

2577.7

8315.8

799.0

2.53

amp-hi

3181.3

19760.8

512.2

2.44

amp-ph

12569.3

185701

850.7

1.86

hi-cp!2

5376.6

41157.6

702.4

2.99

hi-ph

23581.7

1399940

397.2

1.85

ph-ph

104680.1

122199000

89.7

1.83

Table 4.16. Correlation Statistics for Space shuttle image with lOdB SNR

Filter

Peak

Energy

PCE

PSR

amp-cp!2

2487.0

10073.6

614.0

2.1

amp-hi

2959.8

47189.2

185.6

2.1

amp-ph

11965.7

268011

534.2

1.8

hi-cp!2

5048.7

79517.9

320.5

2.6

hi-ph

22213.2

1763370

279.8

1.74

ph-ph

95817.9

122122000

75.2

1.7
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Table 4.17. Correlation Statistics for Space shuttle image with OdB SNR

Filter

Peak

Energy

PCE

PSR

amp-cp!2

1377.6

164576

11.53

1.13

amp-hi

2031.1

323821

12.73

1.1

amp-ph

9629.4

1091050

84.9

1.42

hi-cp!2

3738.8

540092

25.88

1.1

hi-ph

16920.2

4761660

60.1

1.37

ph-ph

60899.0

125763000

29.48

1.32

100

50
50

100

Figure 4.35. The Output Correlation for the shuttle image with OdB SNR

when correlated with amp-ph filter
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4.7 The Simplex-based MACE Filter's Performance for Out-of-Plane

Rotated Images

The Phase-Mostly SLM constrained MACE filter (Amplitude-Only SLM in

the input plane) was synthesized using the simplex method. Seven out-of-plane

rotated truck images (Figure 4.38) of size 64 x 64 were used for the study. Initially,

all the seven images were converted to 128 x 128 by appending them with zeros.

Then six images were used as the training images for the filter. A typical three-

dimensional plot of the output correlation plane is given in Figure 4.39, when the

filter was correlated with a non-training image. The correlation plane statistics for

all seven images are listed in Table 4.18. The seventh column of Table 4.18, gives

the correlation statistics for non-training image.

Table 4.18. Correlation Statistics for Out-of-Plane Rotated Truck Images

Image

Peak

Energy

PCE

PSR

image 1

74475.8

19102900

290.4

2.8

image 2

74513.5

19354300

286.9

2.7

image3

74637.9

19390000

287.2

1.58

image4

74613.4

19598300

284.1

2.8

image5

74562.8

18724900

296.9

2.4

imaged

74311.9

19589900

281.9

2.9

image?

44359.2

18862100

104.3

1.7
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4.8 A Study on Computation Time

In this report, three different methods were used to design a realizable

MACE filter. They are: (1) simplex method, (2) Hooke and Jeeves method, and

(3) simulated annealing-based optimization. The filters were designed for different

characteristics of LCTV SLM. A SUN SPARC station 2, a unix-based workstation

running on a 40.2 Mhz CPU clock frequency, was used for the simulation study. For

a filter with seven training images of size 128 x 128 pixels, the simplex method-based

filter synthesis takes about 10 minutes, Hooke and Jeeves method takes about 24

minutes, and the simulated annealing-based method takes about 65 minutes. For

all the above three methods, Amplitude-only and Phase-mostly characteristics were

assumed for SLMs at input and filter planes, respectively.

4.9 Summary

This section presented the simulation of SLM-constrained MACE filter for

various input and filter SLM characteristics. It was found that the distortion toler-

ance and discrimination ability of the filter was satisfactory. The constrained filter

for Phase-mostly SLM in the presence of Amplitude-Only SLM gave the highest

peak value at the origin but the filter with Phase-mostly SLMs at both filter and

input planes gave the lowest Peak to correlation energy (PCE) in the correlation

plane. The simplex-based MACE filter's performance was compared with MACE

filters designed using Hooke and Jeeves method and simulated annealing-based opti-

mization. The filters designed with the simplex method generally gave better PCEs

than MACE filters based on other two methods. But the simulated annealing-based

filters gave better Peak to Side lobe (PSR) ratios. The simplex-based filter design

took less computer time compared to the other two methods.



CHAPTER 5

SUMMARY AND RECOMMENDATIONS

The research work leading to this report involved the design of a realizable,

distortion-invariant filter which can be used in an optical pattern recognition system

which uses two SLMs, one at the input plane and the other at the filter plane. This

filter can be implemented on available spatial light modulators (SLMs) which exhibit

arbitrary operating characteristics.

5.1 Discussion

Three different techniques were discussed in Chapter 3 for the design of a re-

alizable MACE filter. They are: (1) simplex method, (2) Hooke and Jeeves method,

and (3) simulated annealing-based optimization. The filters based on Simplex and

Hooke and Jeeves methods maximized the sum of peak to correlation energies for

all the training images. The filter based on simulated annealing optimization min-

imized the average correlation energy while maintaining the specified value at the

correlation plane origin. The performance of the filter was evaluated for different

LCTV operating characteristics. The simulation results were presented in Chapter

4.

The filter for Phase-mostly SLM at the filter plane gave maximum correlation

intensity at the origin in the presence of Amplitude-Only SLM at the input plane.

But, this filter gave poor PCEs in the presence of Phase-mostly SLM at the input

plane.

93
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Generally the simplex method-based filter design gives better PCE's com-

pared to the other two methods. But the SLM-constrained MACE filters, designed

using simulated annealing-based optimization, give better peak to sidelobe ratio

(PSR) compared to niters designed using simplex and Hooke and Jeeves methods.

The simplex method-based filter synthesis takes about 10 minutes of computer time,

Hooke and Jeeves method takes about 24 minutes, while the modified simulated

annealing-based filter design takes about 65 minutes.

5.2 Recommendations

The computation time can be reduced if the objective function is modified

to include the conditions for getting equal correlation peaks at the origin for all

the training images. It is expected that the modified objective function will reduce

the number of iterations during the filter design. This report involved the design

of SLM-constrained filters for maximizing the sum of PCEs. The above design can

be modified to maximize the SNR, PTE, or Intensity. While the metrics namely

Intensity, SNR, PCE, and PTE are important measures for the filter, they do not

directly describe the recognition/detection performance of a correlation filter. Re-

cently, Vijayakumar et al. [39] used two more direct performance measures, the

probability of detection (Po) and the probability of false alarm (PFA), for compar-

ing matched spatial filter with phase-only filter. These performance measures may

be used for evaluating the SLM constrained MACE filters. Juday and Rajan [10]

reported that some adjustment is possible on the LCTV SLM operating curve. So

research should continue to select the optimum LCTV curve which will maximize a

given metric.

Synthetic estimation filters (SEFs) are used to estimate the orientation of an

object. Embar and Rajan [40] designed SEF's using a minimum average correlation
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energy concept. They reported that the SEF based on MINACE filter gives accurate

estimation of the angle of rotation of an object. The approach adopted in this report

work can be used for the design of realizable synthetic estimation filters.
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APPENDIX A
SOURCE LISTINGS

* Program : slm-macel.f. *

* Purpose : Implements SLM constrained composite MACE filter; *
* considers both input and filter SLMs (LCTV). *
* *

* Algorithm : Uses Simplex or Hooke and Jeeves method for 2D *
* Optimization. *

* Uses Juday's method for MED mapping. *
* *

* Author : Ramakrishnan, R. Date: July'94 *
* *

* Version : 01 *

*
*
*
*

N—> size of the image
P—> No. of training images

beta —> damping factor

Q—> No. of discrete values in SLM operating curve
S—> Image Spectrum Matrix

SW-> Prewhitened Image Spectrum
in_slm(Q) —>Input SLM
slm(Q) —>Filter SLM

grain —> size of drive array (needed for mapping)
range —> max mag range for search in the complex plane

drive(grain,grain) —> Array containing premapped values

Declarations

integer*2 M,N,L,P,Q,i,j ,u,v,tr_num,K, grain, opt

parameter(N=128)
parameter(P=7)

parameter(Q=256)
parameter(L=N*N)
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parameter(grain=127)

character*12 filel,name,file2,in_slm_name,fil_slm_name
character*12 res,map_name
integer*2 iimg(N,N),count,drive(grain,grain),count1
real mag(Q),ph(Q),c(P),alpha,ENERGY(P),a(P),Da(P),SS(L),Pi
real PCE(P),Tot_PCE,max_PCE,err,range
real h_plus_real, h_plus_imag,dist,this_dis
complex cimg(N.N),cfimg(N,N),S(L,P),SW(L,P),H(L),HM(L)
complex in_slm(q),slm(Q).ORIGIN(P).filter(N.N),HH(N,N)
complex gain.beta
integer*2 HI.LO.G.FE.PS.BS

real SIM(3,2),X(2),XH(2),XG(2),XL(2),XO(2),XR(2),XC(2)
real F(3),FH,FL,FG,FO,FR,AL,BE,GA,step,Sl,S2,XE(2).FEE
real Y(2),B(2),PP(2).FI.FB

common M
M=N

c Initializations

tr_num=P
alpha=0.99
max_PCE=0.0
Pi=3.14159
count=0
range=60.0

do i=l,L
SS(i)=0.0

enddo

5 format(a!2)

25 format(f22.19)

*******************************************************

5000 print*, ' '
print*, ' '
print*, '************** MAIN MENU ******************

print*, ' '
print*, ' Simplex Method of Optimization'

print*, ' '
print*, 'Size of the training images : ',N,' *',N
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print*, 'Grid size for Filter SLM map: '.grain,' *',grain
print*, 'Magnitude range for search (G):'.range
print*, 'Input SLM :', in_slm_name
print*, 'Filter SLM:', fil_slm_name
print*, 'Final Filter:', file2
print*, ' '
print*, ' '
print*, '1. Read Input SLM '
print*, ' '
print*, '2. Read Filter SLM'
print*, ' '
print*, '3. Read 2D plane to Filter SLM map'
print*, ' '
print*, '4. Create 2D plane to Filter SLM map (if you'
print*, ' pressed option 3, option 4 is not needed)'
print*, ' '
print*, '5. Perform Filter Synthesis '
print*, ' '
print*, '9. Exit'
print*, ' '
print*, 'Select the option : (1,2,...9)—>'
print*, ' '

read(*,*) opt

go to (5010,5020,5030,5040,5050,5060,5070,5080,5090),opt

* Read the input SLM constraint file

5010 print*, ' '
print*, 'Enter input SLM file (eg. amponly.slm) —>;

read(*,5) in_slm_name
print *,'Reading ',in_ s lm_name
print*,' '

open(unit=ll,file=in_slm_name,status='old')
do i=l,Q

read(ll,25) mag(i)

enddo
read(ll,*)

do i=l,Q
read(ll,25) ph(i)

enddo
close(unit=ll)
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* Convert SLM polar values to complex format
do i=l,Q

in_slm(i)=cmplx(mag(i)*cos(ph(i)),mag(i)*sin(ph(i)))
enddo
go to 5000

* Read the filter SLM constraint file

5020 print*, ' '
print*, 'Enter filter SLM file (phasmost.slm) —>'
read(*,5) fil_slm_name
print*,'Reading ',fil_slm_name
print*,' '

open(unit=ll,file=fil_slm_name,status='old')

do i=l,Q
read(ll,25) mag(i)

enddo
read(ll,*)

do i=l,Q
read(ll,25) ph(i)

enddo
close(unit=ll)

* Convert SLM polar values to complex format

do i=l,Q
slm(i)=cmplx(mag(i)*cos(ph(i)),mag(i)*sin(ph(i)))

enddo

go to 5000

Read the map

5030 print*, ' '

print*, 'Enter map name to read (eg. phasmost.mpp)'
read(*,5) map.name

open(unit=ll,file=map_name,form='unformatted',status='old')
read(ll) drive
close(unit=ll)

go to 5000
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* Hap the 2D plane on filter SLM operating curve using MED

5040 print*, ' '
print*, 'Performing mapping..wait'

do k= 1, grain- 2
do j=l,grain-2

h_plus_real=to_value(k,grain,range)
h_plus_imag=to_value(j.grain,range)

dist = 100.0 * range
do i=l,Q

this_dis=cabs((cmplx(h_plus_real,h_plus_imag))-slm(i))
if (this_dis .It. dist) then

dist=this_dis
drive(k,j)=i

endif

enddo
enddo

enddo

print*, 'Do you want to store the map ? (say y or n)'
read (*,5) res

if (res .eq. 'y' .or. res .eq. 'Y') then
print*, 'Give name to store the map (eg. xxxx.mpp) '
read(*,5) name

open(unit=ll,file=name,form='unformatted',status='unknown')
write(11) drive
close(unit=11)

endif
go to 5000

5060 go to 5000
5070 go to 5000
5080 go to 5000

* Get name to store the filter

5050 print*, ' '

print*, 'Which method to use for optimization ?'
print*, ' '
print*, ' '

print*, ' 1. Simplex Method'
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print*, ' 2. Hooke ft Jeeves Method'
print*, ' '

print*, ' Option (1 or 2) ?'

read(*,*) opt
print*, 'Enter Name for Final Filter (eg. xxxx.fil)'
read(*,*) file2
print*, ' '
print*, 'How I am constructing MACE in the presence of

print*, ' input SLM '
print*, ' '

Read initial a values

print*, 'Initial a values'
print*, ' '
filel='weight'
open(unit=ll,file=filel,status='old')
read(ll,*) (a(i),i=l,tr_num)
write(*,*) (a(i),i=l,tr_num)

close(unit=ll)

Read desired response at origin

print*, 'Desired c values'
print*, ' '

filel = 'des_peak'
open(unit=ll,file=filel,status='old')
read(ll,*) (c(i),i=l,tr_num)
write(*,*) (c(i),i=l,tr_num)

close(unit=11)

* open training images list file, get fourier transform

* and calculate average image spectrum.
* S —> a matrix; each column is the Fourier spectrum of

* one training image
* SS—> Average image spectrum vector
* SW—> Prewhitened image Spectrum

* in_slm—> maps the image spectrum on input SLM op-curve

print*, 'Training images'
print*, ' '

v =1
filel='train.img'
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open (unit=ll,f ile=f ilel,status=' old' )

10 read(ll,5,end=15)name
print* , name

call get int 1 (iimg, name)

do i=l,N
do j=l,N

enddo
enddo

call tdfft(1.0,cimg,cfimg)

u =1
do i=l,N

do j=l, H
S(u,v) = cfimg(i.j)
SS(u) = SS(u) + (cabs(S(u,v)))**2

u =u+l
enddo

enddo

v =v+l
go to 10

15 close (unit =11)

Prewhiten each training image spectrum by spectral envelope

do v=l,tr_num

do u=l,L
SH(u,v)=S(u,v)*tr_num/SS(u)

enddo

enddo

Synthesis unconstrained MACE

print*, '
print*, 'Synthesizing unconstrained MACE filter ...'

print*, ' '

do 150 k=l,100

do u=l,L
H(u)=(0.0,0.0)

do v=l,tr_num



109

H(u)=H(u)+a(v)*SW(u,v)
enddo

enddo

* Get value at origin.

do v=l,tr_num

ORIGIN(v)=(0.0,0.0)
do u=l,L

ORIGIN(v)=ORIGIN(v)+S(u,v)*(conjg(H(u)))
enddo

enddo

* Get new a(i)'s

change=0.0
do i=l,tr_num

err=c(i)/c(1)-(cabs(ORIGIN(i))/cabs(ORIGIN(l)))
Da(i)=alpha*c(l)*err
change=change+abs(Da(i))

enddo

if (change .It. l.e-6) go to 160

do i=l,tr_num

a(i) = a(i)+Da(i)
enddo

150 continue

160 print*, 'Converged: No. of Iterations :', k
print*, 'values at origin :'

write(*,*) (cabs(ORIGIN(i)),i=l,tr_num)
print*, ' '

print*, 'Final a(i) values :'

write(*,*) (a(i),i=l,tr_num)
print*, ' '

print*, ' '

print*, ' '

c print*, 'Do you want to store the ideal MACE ? (say y or n)'

c read (*,5) res

c if (res .eq. 'y' .or. res .eq. 'Y') then
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c print*, 'Give name to store the ideal MACE filter '

c read(*,5) name

c k=0
c do i=l,N

c do j=l,N

c k=k+l

c HH(i,j)=H(k)

c enddo

c enddo

c open(unit=ll ,f ile=name,form='unf ormatted' ,status='unknown' )

c write(ll) HH

c close(unit=ll)

c endif
******************IDEAL MACE DESIGN OVER *********************

count=0

if (opt .eq. 2) go to 221

******************Two D search in complex plane***************

print*, 'Synthesizing constrained MACE filter ...'

222 print*, 'Count=' .count

********************************************************

* Nelder and Mead's method of optimization *
* *
* *
********************************************************

print*, 'SIMPLEX METHOD OF OPTIMIZATION...'

* FE — > No. of times the function was called

FE=0

* Initial Simplex coordinate (one vertex)

SIM(1,2)=0.0

Step length

step=5.0
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setup first Simplex around initial point
do i=2,3

do j=l,2
if (j .eq. (i-1)) then
SIM(i,j)=SIM(l,j)+step
go to 370
endif

370 enddo
enddo

Values for alpha, Beta, Gamma

AL=1.0
BE=0 . 5
GA=2.0

Find function values at three vertex

do i=l,3
do j=l,2

enddo
gain_beta=cmplx(X(l) ,X(2) )
call f unc (gain_beta , Tot_PCE ,H , L , tr_num, a , SW , HM ,

$ slm.Q, ORIGIN, ENERGY, S.PCE.P.FE, grain, drive, range)
F(i)=Tot_PCE

enddo

* Find greatest and lowest function values and corresponding
* points

620 FH=-l.e20
FL=l.e20
do i=l,3

if(F(i) .gt. FH) then
FH=F(i)
HI=i
endif
if(F(i) .It. FL) then
FL=F(i)
L0=i
endif

enddo
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* Find second greatest value and point
FG=-l.e20

do i=l,3

if(i .eq. HI) go to 800

if(F(i) .gt. FG) then
FG=F(i)

G=i
endif

800 enddo

do j=l,2
X0(j)=0.0
do i=l,3

if (i .eq. HI) go to 910
XO(j)=XO(j)+SIM(i,j)

910 enddo
XO(j)=XO(j)/2.0

XH(j)=SIM(HI,j)
XG(j)=SIM(G,j)

XL(j)=SIM(LO,j)
enddo

do j=l,2
X(j)=XO(j)

enddo

gain_beta=cmplx(X(l),X(2))
call func(gain_beta,Tot_PCE,H,L,tr_num,a,SW,HM,

$ slm.Q,ORIGIN,ENERGY,S.PCE.P.FE,grain,drive,range)

1120 FO=Tot.PCE

* Reflection follows

do j=l,2
XR(j)=XO(j)+AL*(XO(j)-XH(j))

X(j)=XR(j)

enddo

1220 gain_beta=cmplx(X(l),X(2))
call func(gain_beta,Tot_PCE,H,L,tr_num,a,SW,HM,

$ slm.Q,ORIGIN,ENERGY,S.PCE.P.FE,grain,drive,range)
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FR=Tot_PCE

print*, 'Reflection: Total PCE', -Tot.PCE

* If FR < FL EXPANSION

if (FR .It. FL) go to 1300

* If FR > FL and FR > FG test FR and FH

* otherwise replace XH by XR

if (FR .gt. FG) go to 1600

go to 1520

* Expansion follows

1300 do j=l,2

XE(j)=GA*XR(j)+(1-GA)*XO(j)

X(j)=XE(j)

enddo

gain_beta=cmplx(X(l),X(2))

call func(gain_beta,Tot_PCE,H,L,tr_num,a,SW,HM,

$ slm,Q,ORIGIN,ENERGY,S,PCE,P.FE,grain,drive,range)

FEE=Tot_PCE

if (FEE .It. FL) go to 1440

go to 1520

1440 do j=l,2

SIM(HI,j)=XE(j)

enddo

F(HI)=FEE

print*, 'Expansion: Total PCE ',-Tot_PCE

* Test for convergence is at 2060

1500 go to 2060

1520 do j=l,2

SIM(HI,j)=XR(j)

1560 enddo

F(HI)=FR

* print*, 'Reflection:'
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go to 2060

1600 if(FR .gt. FH) go to 1700

do j=l,2
XH(j)=XR(j)

enddo

F(HI)=FR

Contraction follows
1700 do j=l,2

XC(j)=BE*XH(j)+(l-BE)*XO(j)
X(j)=XC(j)

enddo

gain_beta=cmplx(X(l),X(2))
call f unc (gain_bet a , Tot _PCE , H , L , tr_num , a , SW , HM ,

$ slm, Q, ORIGIN, ENERGY, S, PCE, P.FE, grain, drive, range)

FC=Tot_PCE

if(FC .gt. FH) go to 1920
do j=l,2

SIM(HI,j)=XC(j)
enddo

F(HI)=FC
print*, 'contraction: Total PCE ' ,-Tot_PCE
go to 2060

Simplex reduction follows
1920 do i=l,3

do j=l,2

enddo
gain_beta=cmplx(X(l) ,
call f unc (gain_beta , Tot _PCE , H , L , tr_num , a , SW , HM ,

$ slm.Q, ORIGIN, ENERGY, S, PCE, P.FE, grain, drive, range)

F(i)=Tot_PCE
enddo
print*, 'Reduction:'
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* Test for convergence follows
2060 Sl=0.0

S2=0.0

do i=l,3
Sl=Sl+F(i)
S2=S2-fF(i)*F(i)

enddo

SIG=S2/3.0-S1*S1/9.0

if (SIG .It. l.e-10) go to 2220
go to 620

2220 print*, 'Real and Imag parts in complex plane'
print*, XL(1),XL(2)
print*, 'No.of function calls in optimization :',FE
print*, ' '

*************** Held ft Mead optimization over ***********

* Now use Relaxation algorithm to stabilize the origin values

111 write(*,*) 'Relaxation tech. to get equal values at origin'
write(*,*) ' '

* Find out the number of times map_fil was called

count1=0
* Synthesize SDF

gain_beta=cmplx(XL(l) ,XL(2))

do 250 k=l,50
do u=l,L

H(u)=(0.0,0.0)
do v=l,tr_num

H(u)=H(u)+a(v)*SW(u,v)*gain_beta
enddo

enddo

* Get realizable filter using MED method

call map_fil(H,HM,s1m,L,Q,grain,drive,range)
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countl=countl+l
Get value at origin

do v=l,tr_iuun

ORIGIN(v)=(0.0,0.0)
ENERGY(v)=0.0
do u=l,L

ORIGIN(v)=ORIGIN(v)+S(u,v)*(conjg(HM(u)))

ENERGY(v)=ENERGY(v)+((cabs(S(u,v)))**2)*(cabs(HM(u)))**2
enddo

enddo

do i=l,tr_num
PCE(i)=((cabs(ORIGIN(i)))**2)/(ENERGY(i))

enddo

write(*,*) 'ORIGIN:',(cabs(ORIGIN(i)),i=l,tr_num)

write(*,*) 'ENERGY:', (ENERGY(i),i=l,tr_num)
write(*,*) 'PCE:', (PCE(i),i=l,tr_num)

* Get new a(i)'s

change=0.0

do i=l,tr_num
err=c(i)/c(l)-(cabs(ORIGIN(i))/cabs(ORIGIN(l)))
Da(i)=alpha*c(l)*err
change=change+abs(Da(i))

enddo

write(*,*) 'Da:',(Da(i),i=l,tr_num)

print*, 'CHANGE :', change

write(*,*) '

if (change .It. l.Oe-2) go to 260

do i=l,tr_num

enddo

250 continue

260 print*, 'No. of times fn. calls in relaxation :',countl
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if (count 1 . eq. 1) go to 270

count=count+l

if ((count .It. 3) .and. (opt .eq. l))go to 222

if ((count .It. 3) .and. (opt .eq. 2))go to 221

go to 270

*****************Reiaxation algorithm converged********************

******************jwo D search in complex plane***************

221 print*, 'Count=' .count

* Hooke ft Jeeve method of Optimization
*
*

* Starting coordinate for search in complex plane

* XI — > real part

* X2 — > Imag part

* FE -> No of times the function is called

print*, 'HOOKE ft JEEVE OPTIMIZATION...'

X(l)=1.0

X(2)=0.0

FE =0

* Step for coordinate movement

step=5 .0

* Initialize

do i=l,2

PP(i)=X(i)

B(i)=X(i)

enddo

gain_beta=cmplx(X(l)
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call f unc (gain_bet a , Tot _PCE , H , L , tr_num , a , SW , HM ,
$ slrn.Q, ORIGIN .ENERGY, S.PCE.P.FE, grain, drive , range )

FI=-Tot_PCE
print*, 'Total_PCE' ,-Tot_PCE
write(*,*)

* Set Flag for basepoint search
PS=0
BS=1

f Elplore about basepoint
J=l
FB=FI

200 X(j)=Y(j)+step
gain_beta=cns>lx(X(l),X(2))
call func(gain_beta,Tot_PCE,H,L,tr_num,a,SW,HM,
$ slm.q, ORIGIN, ENERGY, S.PCE.P.FE, grain, drive, range)

if(-Tot_PCE .gt. FI) go to 280

X(j)=Y(j)-step
gain_beta=cmplx(X(l),X(2))
call f unc (gain_beta , Tot _PCE , H , L , tr_num, a , SW , HM ,
$ slm.Q, ORIGIN, ENERGY, S.PCE.P.FE, grain, drive, range)

if(-Tot_PCE .gt. FI) go to 280

go to 290

280 Y(j)=X(j)

290 gain_beta=cmplx(X(l),X(2))
call f unc (gain.beta , Tot.PCE , H , L , tr.num , a , SW , HM ,
$ slm, Q, ORIGIN, ENERGY, S.PCE.P.FE, grain, drive, range)

FI=-Tot_PCE
print*, 'exploration step', -Tot_PCE
write(*,*) ( X(i),i=l,2)

if(j .eq. 2) go to 360
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go to 200

* If function is increased then pattern move
360 if (FI .gt. FB) go to 540
* But if exploration was about a pattern point and
* no increase was made change base at 420

if ((PS .eq.l) .and. (BS .eq. 0)) go to 420
* otherwise reduce step length at 490

go to 490

* Change Base point
420 do i=l,2

PP(i)=B(i)

enddo

gain_beta=cmplx(X(l),X(2))
call f unc (gain.beta , Tot_PCE , H , L , tr_num , a , SW , HM ,
$ s 1m , Q, ORIGIN, ENERGY, S.PCE.P.FE, grain, drive, range)

BS =1
PS=0
FI=-Tot_PCE
FB=-Tot_PCE
print* , ' Base change ' , -Tot_PCE
write(*,*)

go to 200

* decrease the step length
490 step=step/10.0

print*, 'contract step length'
if (step .It. 1.0 e-02)go to 700

go to 200

* do pattern move
540 do i=l,2

PP(i)=2*Y(i)-B(i)

X(i)=PP(i)
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enddo

gain_beta=cmplx(X(l) ,
call f unc (gain.beta , Tot.PCE , H , L , tr_num, a , SW , HM ,
$ slm , Q , ORIGIN , ENERGY , S , PCE , P , FE , grain , drive , range)

FB=FI
PS=1
BS=0
FI=-Tot_PCE

580 print*, 'Pattern move' , -Tot.PCE
write(*,*)X(l),X(2)

j=l
go to 200

700 print*, 'Maximum found at'

write(*,*)PP(l) ,PP(2)

print*, 'Max. Total PCE', FB
print*, 'No. of function evaluation', FE

XL(1)=PP(1)
XL(2)=PP(2)
go to 111

***********Hoo]te 4 Jeeves search is over*************************

Print final a values

270 print*, 'Final a values'
print*, ' ---------------- '
write(*,*) (a(i) ,i=l,tr_num)

u=0
do i=l,N

do j=l,N
u=u+l
filter(i,j)=HM(u)

enddo
enddo

call kpint2(filter,file2)
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go to 5000

5090 stop
end

************************subroutines start here********************

subroutine func(gain_beta,Tot_PCE,H,L,tr_num,a, SW.HM,
$ slm.Q,ORIGIN,ENERGY,S.PCE.P.FE,grain,drive,range)

integer*2 tr_num,L,Q,P,FE,grain,drive(grain,grain)
real Tot_PCE,a(tr_num),ENERGY(tr_num),PCE(tr_num).range

complex H(L),SW(L,P),gain_beta,HM(L),slm(Q).ORIGIN(P),S(L,P)

* Synthesize SDF

print*, ' '

do u=l,L

H(u)=(0.0,0.0)
do v=l,tr_num

H(u)=H(u)+a(v)*SW(u,v)*gain_beta
enddo

enddo

* Get realizable filter using MED method

call map_fil(H,HM,slm,L,Q,grain,drive,range)

* Get value at origin and correlation plane energy and PCE

do v=l,tr_num
ORIGIN(v)=(0.0,0.0)

ENERGY(v)=0.0
do u=l,L

ORIGIN(v)=ORIGIN(v)+S(u,v)*(conjg(HM(u)))

ENERGY(v)=ENERGY(v)+((cabs(S(u,v)))**2)*(cabs(HM(u)))**2

enddo
enddo

do i=i,tr_num
PCE(i)=((cabs(ORIGIN(i)))**2)/(ENERGY(i))

enddo
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write(*,*) 'ORIGIN:',(cabs(ORIGIN(i)),i=l,tr_num)
write(*,*) 'ENERGY:', (ENERGY(i),i=l,tr_num)
write(*,*) 'PCE:', (PCE(i),i=l,tr_num)

Calculate Total PCE

Tot_PCE=0.0
do i=l,tr_num

Tot _PCE=Tot _PCE+PCE(i)
enddo

-ve sign needed for optimization routine

Tot_PCE=-Tot_PCE
FE=FE+1

return
end

* Subroutine mapping

* H—>unrealizable filter

* HM->mapped (realizable) filter

subroutine map_fil(H,HM,slm,L,Q,grain,drive,range)

integer*2 L,Q,i,k,kk,grain,drive(grain,grain)

real range

complex H(L),HM(L),SLM(Q)

do i=l,L

k=nint(to_index(real(H(i)),grain,range))
kk=nint(to_index(aimag(H(i)),grain,range))

HM(i)=slm(drive(k,kk))
enddo

return

end
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*
* Function to convert array index to value

function to_value(index,grain,range)

integer*2 index,grain
real range
to_value=range*(2.0*index-grain+l)/(grain-3.0)

return

end

* Function to convert value to array index

function to_index(value,grain,range)

integer*2 grain
real range,sign,value,amag_lim

if(value .gt. 0.0)then
sign=1.0

else
sign=-1.0

endif

amag_lim=sign*aminl(abs(value) ,range)

to_index=(amag_lim/range)*1.0*((grain-3)/2)+(grain-1)/2

return
end

Subroutine to read an integer array

SUBROUTINE GETINT1(ARRAY, ARRAYNAME)

COMMON N
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INTEGER*2 ARRAY(N,N),N

CHARACTER*12 ARRAYNAME

OPEN(UNIT=8,FILE=ARRAYNAME,FORM='UNFORMATTED',STATUS='OLD')

READ(8) ARRAY

CLOSE(UNIT=8)

RETURN

END

* Subroutine to store a complex array

SUBROUTINE KPINT2 (ARRAY, ARRAYNAME)

COMMON N

INTEGER* 2 N

COMPLEX ARRAY (N,N)

CHARACTER* 12 ARRAYNAME

OPEN (UNIT=8 , FILE=ARRAYNAME , FORM= ' UNFORMATTED ' , STATUS= » UNKNOWN ' )

PRINT *,' '

PRINT *,' Saving the file ' //ARRAYNAME

WRITE (8) ARRAY

CLOSE (UNIT=8)

PRINT *,'File transfer completed'

PRINT *,' '

RETURN

END

SUBROUTINE TDFFT(D, ARRAYIN, ARRAYOUT)



125

C*****************************************************************

c
C
C
C
C
C

C
C
C

C

C

C
C
C

C
C

A subroutine to index an array and call the one -dimensional
Fast Fourier Transform, SUBROUTINE FFT, for each column and then
each row of the array.

Arguments:

D > r Direction of the transform: 1 . = forward
-1. = inverse

ARRAYIN > ca The two-dimensional array to be transformed.
ARRAYOUT < ca The two-dimensional transformed array.

N i Dimension of the array [COMMON]

COMMON N

INTEGER*2 N
INTEGER*2 R, C
REAL D
COMPLEX ARRAYIN(N.N), ARRAYOUT(N,N), B(1024)

DO 60 C = 1, N
DO 20 I = 1, N

B(I) = ARRAYIN(C, I)
20 CONTINUE

CALL FFT (D, B)
DO 40 I = 1, N

ARRAYOUT(C, I) = B(I)

40 CONTINUE

60 CONTINUE
DO 160 R = 1, N

DO 120 I = 1, N

B(I) = ARRAYOUT(I, R)
120 CONTINUE

CALL FFT (D, B)
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DO 140 I - 1, H
ARRAYOUT(I, R) =

140 CONTINUE
160 CONTINUE

RETURN
END

SUBROUTINE FFT(DIR, VEC)

c
C A Fast Fourier Transform from Digital Signal Processing
C by Oppenheim and S chafer.
C

C

C
C Arguments:
C
C DIR > r The direction of the transform: 1. = forward

C -1 . = inverse
C VEC <> ca The one dimensional transform array.
C

C
C N : i The number of points in the transform (must be an
C integer power of 2) .
C
C [COMMON]
C
C******************************************************************

COMMON N

INTEGER* 2 N
INTEGER NV2, NM1 , M, MT
REAL DIR
COMPLEX VEC(N), U, W, T

M = 0
5 M = M + 1

MT = 2**M
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IF (MT .HE. N) GO TO 5
NV2 = N/2
NM1 = N - 1
J = 1
DO 30 I = 1, NM1

IF (I .GE. J) GO TO 10
T = VEC(J)
VEC(J) = VEC(I)
VEC(I) = T

10 K = NV2
20 IF (K .GE. J) GO TO 30

J = J - K
K = K/2
GO TO 20

30 J = J + K
PI = 3.141592653589793
DO 50 L=l, M

LE = 2**L
LEI = LE/2
U = CMPLX(1.,0.)
W = CMPLX(COS(PI/FLOAT(LE1)), -DIR*SIN(PI/FLOAT(LEI)))
DO 50 J = 1, LEI

DO 40 I=J, N, LE
IP = I + LEI
T = VEC(IP)*U
VEC(IP) = VEC(I) - T

40 VEC(I) = VEC(I) + T
50 U = U*W

IF (DIR .EQ. 1.) GO TO 70
DO 60 I = 1, N

VEC(I) = VEC(I)/REAL(N)
60 CONTINUE
70 CONTINUE

RETURN
END
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* Program : slm-mace2.f *
* *

* Purpose : Implements SLM constrained MACE filter; *

* considers both input and filter SLMs (LCTV) *
* *

* Algorithm : Uses simulated annealing based optimization *
* *

* First author: Khan, A. *
* *

* Updated by : Ramakrishnan, R. Date: July' 94 *
* *

* Modifications : 1. Routines to accept input SLM *
* 2. Instead of Phase perturbation, now *
* SLM's drive perturbation *

* 3. New Objective function *
* 4. Initial mapping of ideal filter values *
* by MED mapping instead of Equi-phase *

* mapping *

* Version : 02 *

C
C = Definitions of some important variable names

C
C
C N,M == NxN or MxM are the Image/Filter dimensions.

C

C L == Total no. of pixels in the Images ( i.e. = NxN).

C
C KKK == Number of training Images.

C
C iter == Maximum number of iterations permitted.

C
C ased.bsed,sed == Contain the seed values for use in the random
C No.generation function.These seed values are actually
C generated using the 'secnds' function in FORTRAN (i.e. it depends
C on the real clock time) .

C

C vail == User-specified peak-values for Class I

C
C kl == Constant used in the Penalty functions for the constraints
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C of the objective function.
C

C XX == The adjacent columns of this array contain the real and
C imaginary
C dmat == Array of dimension 4096. Contains the average of the
C (magnitude)**2 of all the training Image vectors.

C

C cst == Array of dimension 4096x2. Contains the SLM-contraints in
C two columns representing the phase and magitude respectively.

C
C drv_old == Array of dimension L. It contains the temporary values
C of the drive of the filter pixels during optimization.

C
C drv.new == Array of dimension L. It will contain the final drive
C values of the pixels of the optimized filter.
C

C objf == Contains the value of the objective function resulting

C from a successful perturbation of a variable during an iteration
C of the optimization process. The function 'computefn' also
C nreturns the value of the objective function in 'objf.
C NOTE: A single iteration
C consists of going through every variable (filter pixel).

C Ofcourse, at the end of the optimization 'objf will contain

C the finalobjective function value.

C
C FF == Dimension 2. Used to store the temporary values of the

C objective function as a result of a perturbation.
C

C objo == Contains the value of the average correlation plane
C energy.
C nobjo == Used to store the temporary value of the corr. plane
C energy as a result of the perturbation of filter pixel drive

C value.

C
C con == Array of dimension KKKx2 .Holds the real and imaginary

C parts of the Corr peak constraints as the two entries of
C each row.
C ncon== Array of dimension KKKx2. Holds the temporary values of

C the above constraints.
C
C min_drv == array of dimension L. (see below for explanation)

C
C minobjf == Contains the least value of the objective function
C obtained during the optimization. After every iteration, the
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C value in 'objf is
C compared to 'minobjf'. The smaller of the two values is

C retained in
C 'minobjf'. The corresponding drive values of the filter pixels
C are stored in the array 'min_drv'. This is done by calling
C SUBROUTINE REG.

C
C At the end of the optimization, if the value of the objective
C function in
C 'minobjf' is smaller than the final value of the objective
C function in 'objf
C then, the values from 'minX' are moved to 'X' and these are

C considered the

C optimal phase values of the filter.
C
C

integer *2 H.LC
integer mm, one em, r

integer NN,M,L,KKK,iter,devl
integer sed,ased,bsed,pp, count

integer accept .attempt

real sedl , sed2, sed3, minobjf ,thi ,nobjo,nobjol ,objol .bstobjf
parameter(M=128)
parameter(L=M*M)

parameter(KKK=7)
parameter (LC=256)

integer *2 ipint(M.M)
integer drv_new(L) ,drv_old(L) ,drv_min(L) ,drv_bst(L)

real perc.dmat (L) ,FF(2) ,min,max,oldf

real ipr(M.M) ,XX(L,20)
real mag(LC) ,ph(LC)

real vail ,w,tempO,nconl(KKK,l)

real randnuml , randnum2 , prob , t emp
complex ipc(M,M),ipf (M,M),filt(L),filtl(M,M),slm(LC)

complex in_slm(LC)
real objo.objf ,xi,xr,txi,txr,con(KKK,2) ,ncon(KKK,2)
character* 12 filenamel ,f ilename2,f ilenameS ,name

common N

devl=6

sedl=40000.0
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sed2=50000.0

sed3=90000.0

pp = 0

accept = 0

attempt = 0

NN = 0
oncem=0

mm=0

12 format(a!2)

13 format(f22.19)

C Generate the seed values for use in the random no. generation

function 'RAN'

ased=abs(2*(int(secnds(sedl)))+l)

sed=abs(2*(int(secnds(sed2)))+l)

bsed=abs(2*(int(secnds(sed3)))+l)

iter = 5000

w=2.0

* Get desired value at origin

print*, 'Give desired value at origin'

read(*,*) vail

* Read input SLM

print*, 'Enter input SLM file name—>'

read(*,12) name

open(unit=2,file=name,status='old')

do i=l,LC

read(2,13) mag(i)

end do
read(2,*)

do i=l,LC

read(2,13) ph(i)

end do

close(unit=2)

* CONVERT SLM POLAR VALUES TO COMPLEX FORMAT
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do i =1,LC
in_slm(i)=cmplx(mag(i)*cos(ph(i)),mag(i)*sin(ph(i)))

enddo

C 'images4.na' contains the names of the training images which will
C be read one after another. The real and imaginary part of the
fourier
C transformed images are stored as columns of the array XX. The
magnitude
C squared values of the fourier transformed image pixels are
computed
C and stored in ' dmat ' .

f ilenamel= ' train_img '

open(unit=ll ,f ile=f il enamel ,status='old')
32 read(ll,12,end=900)filename2

print*, 'reading . . . ' , filename 2

call getintl(ipint ,f ilename2)

do i=l,N
do j=l,H

ipc (i , j ) =in_slm(ipint (i , j ) +1 )
end do

end do
call tdfft(1.0,ipc,ipf)

do i=l,N
do j=l,N

XX(jj .mm) = real(ipf (i,j))
XX(j j ,mm+l) = aimag(ipf ( i . j))
dmat(jj) = dmat ( j j )+(XX(j j ,mm)**2)+(XX(j j ,mm+l)**2)

end do
end do
mm=nim+l
go to 32
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C Take the average of all the elements of 'dmat'.

900 do i=l,L

dmat(i)=dmat(i)/(float(KKK*L))

end do

C Read the SLM-constraint data file into the array 'cst'.

print*, 'Enter filter SLM file name — >'

read(*,12) name

open(unit=2 ,f ile=name , status=' old' )

do i=l,LC

read(2,13) mag(i)

end do

read(2,*)

do i=l,LC

read(2,13) ph(i)

end do

close (unit=2)

* CONVERT SLM POLAR VALUES TO COMPLEX FORMAT

do i =1,LC

slm(i)=cmplx(mag(i)*cos(ph(i)) ,mag(i)*sin(ph(i)))

enddo

C Determine the starting points for the optimization.

C Here the starting SLM drive values for the filter pixels are

those obtained

C from the previously solved Composite MACE filter mapped on

Realizable SLM

C curve using Equilidian distance concept.

C 'GETCMP' is an unformatted-read routine which reads the complex

filter

C into an array 'filtl'.

print*, 'Enter ideal MACE filter name—>'

read(*,12) name
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call getcmp(filtl.name)

print*, 'Enter output filter name—>'

read(*,12) filenames

* MAP THE FILTER ON SLM CURVE AND CREATE DRIVE ARRAY

print*, 'Performing mapping ... wait'

k=0

do i =1,N
do j =1,N

max=9999999.

k=k+l

do r=l,LC

min=(cabs((filt1(i,j)-slm(r))))

if (min .It. max) then

max=min

drv_old(k)=r

endif

enddo

enddo

enddo

C Evaluate the cost function with the initial guess. The routine

'camputefn'

C evaluates the objective function value at the given points of the

filter

C pixel values.

* objo —> Correlation plane Energy

* objf —> Objective function

* objol—> Penalty function

72 format(lx,68('-'))
print 72

print*, ' '

print*, 'Initial Values'

print*, ' '

print*, 'Specified Peak Value at Correlation centre->',vall

call computefn(L,KKK,XX,drv_old,dmat,slm,w,vall,objo,objf,

$ con,objol)

bstobjf=objf

do i =1,L

drv_bst(i)=drv_old(i)



135

enddo

420 minobjf=objf
do i =1,L

drv_min(i)=drv_old(i)
enddo

if Concern.ne.0)then

perc=((oldf-objo)/oldf)*100.0
oldf=objo
if(perc.le.(2.0))then

count=count+l

else
count=0

end if
else

oldf=objo

end if

C The initial value of the temperature 'tempO' is got from the
starting value
C value of the objective function 'objf.
C 'tempO' does not change during the entire run of the
optimization. The

C temperature parameter which is updated as the iterations progress
is 'temp'.

C Here some data files are also created.

FF(l)=objf

tempO=objf/2.0
temp=tempO

print*, ' '

print*, 'Start Temperature :',temp

print*, ' '

if(count.ge.3)go to 500
oncem=oncem+l

C **** The optimization iterations begin here.
***********************

write(devl,*)' PERFORMING OPTIMIZATION !! PLEASE WAIT'
write(devl,*)' '
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do i=l,iter
do j=l,L

pp=pp+l

C Generate a random no. to determine whether a positive or
C negative perturbation be caused for each variable (filter SLH
C drive value).

randnuml=ran(ased)
if(randnuml.le.0.5)then

drv_new(j)=drv_old(j)+l
if((drv.new(j)).gt.LC)then

drv_new(j)=LC
end if
else

drv_new(j)=drv_old(j)-l
if((drv_new(j)).It.1)then

drv_new(j)=l
end if
end if

C The new objective function value due to the perturbation is
computed here. ThC value is stored in FF(2). The old value of the

objective function is stored iC FF(1) . NOTE: Here the entire
objective function is not evaluated. Rather the
C change in the old objective function value caused by the

perturbation is
C computed.

* txr —> Real part of old realizable filter
* xr —> Real part of new realizable filter

txr=real(slm(drv_old(j)))
txi=aimag(slm(drv_old(j)))

xr=real(slm(drv_new(j)))
xi=aimag(slm(drv_new(j)))

* Get New Correlation Energy due to 1 pixel perturbation

* Subtract old and add new energy

* Eav = (cabs(XH))**2
* nobjo —> new energy after perturbation

nobjo=objo-(dmat(j)*(txr**2+txi**2))+(dmat(j)*

$ (xr**2+xi**2))
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* Now calculate Correlation peak at origin ( conjg(X)H = C(0))
* ncon(ii.l) — > Real part of peak
* ncon(ii,2) — > Imag part of peak

mm=0
do ii=l,KKK

ncon(ii,l)=con(ii,l) + (XX(j,iran)*(xr-txr))
$ +(XX(j ,mm+l)*(xi-txi))

ncon(ii , 2)=con(ii ,2)+(XX( j ,mm) * (xi-txi) )
$ +(XX(j,mm+l)*(txr-xr))

* Absolute Peak value at center

nconl(ii,l)=sqrt(ncon(ii,l)**2+ncon(ii,2)**2)
nnn=inin+l

end do

nobjol=0.0

* Calculate Penalty Function
do ii=l,KKK
nobjol=nobjol + w*abs(nconl(ii,l)-vall)

end do

* New Objective function (Eav + penalty fn)
FF(2)=nobjo+nobjol

C If the new objective function value (i.e. due to the
perturbation) is smaller
C than the current value then the perturbation is accepted, and the
objective
C function value 'objf ' is updated along with all the variables
used to
C to compute it. For an accepted perturbation the counter 'accept'
is
C incremented.

if (FF(2).lt.FF(l))then
FF(1)=FF(2)
objo=nobjo
do ii=l,KKK

con(ii,l)=ncon(ii,l)
con(ii ,2)=ncon(ii ,2)

end do
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objf=FF(2)

drv_old(j)=drv_new
accept=accept+l

go to 701
end if

C If the perturbation results in an increase in the objective

function value
C it will only be accepted with a certain probability, computed in
the variable

C 'prob' below. Again if this perturbation is accepted then the
objective
C function value 'objf' is updated along with the variables used to
compute it.

* As temperature falls prob reduces. So acceptance rate reduces

thi=(FF(2)-FF(l))/temp

if(thi.ge.80.0)then
thi=80.0

elseif(thi.le.0.000001)then
thi=0.0

end if
prob=l.O/(1.0+exp(thi))

if((i .eq. 1) .and.(j .eq.l))

$ print*, 'Start Probability =',prob

randnum2=ran(bsed)
if(randnum2.It.prob)then

FF(1)=FF(2)

objo=nobjo
do ii=l,KKK

con(ii,l)=ncon(ii,l)
con(ii,2)=ncon(ii,2)

end do
objf=FF(2)

drv_old(j)=drv_new(j)
accept=accept+l

go to 701

end if

701 if(objf.It.minobjf) then

drv_min(j)=drv_old(j)

minobjf =objf
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endif

* Do perturbation for next pixel

end do

* After perturbing all the filter pixels now proceed to ....

C ********** Updating the Temperature parameter **********

C If the no. of accepted pertubations >= lOxL then update the

temperature

C parameter 'temp', and proceed. Initialize the counter 'attempt',

'accept'.

if(accept.ge.10*L)then

temp=((0.90)**i)*tempO

accept=0

pp=0

attempt=0

end if

C If the no. of attempted perturbations (without acceptance) is >=

lOOxL then

C update the temperature parameter and make a note of this fact by

C by incrementing the counter 'attempt'.

if(pp.ge.100*L)then

temp=((0.90)**i)*tempO

accept=0

PP=0
attempt=attempt+1

end if

C If the above has occured thrice continously, then terminate the

optimization.

C This is the convergence test. If so then branch to 200.

if(attempt.ge.3)then
print*, 'Converged due to attempt3'.attempt

attempt=0
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accept=0
go to 200

end if

if(temp.le.(1.OE-15))then
print*, 'Converged due to temperature3',temp

attempt=0

accept=0
go to 200

end if
* Go for next perturbation (one perturbation = 4096 pixel

perturbation)
779 end do

C If the convergence criterion is not met after 'iter' iterations,

then quit
C the program. ( This so that the program does not get into an

endless loop).

write(devl,*)' '
write(devl,*)' **************************** '

write(devl,*)' ERROR ERROR ERROR '
write(devl,*)' **************************** '

write(devl,*)' '
write(devl,*)' No convergence after ',i,' iterations'

go to 500

200 write(devl,*) ' '
write(devl,*)' ********************************* '

write(devl,*)' Converged after ',i,' iterations'
write(devl,*)' '

write(devl,*)'RESULTS:'
write (devl, *)' '

write(devl,*)' '
print*, 'End Temperature :',temp

call computefn(L,KKK,XX,drv_min,dmat,slm,w,vail,obj o,objf,

$ con.objol)

print 72
print*, ' '
if (objf .It. bstobjf) then
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bstobjf =objf
do i =1,L

drv_bst(i)=drv_min(i)
drv_old(i)=drv_min(i)

enddo
else

do i=l,L

drv_old( i)=drv_bst(i)
enddo
end if

C The optimization is repeated with increased values of the
constraints
C penalty violation constants 'W

if(oncem. ne.20)then
w=w+2.0

print*, 'Start Values for Next Iteration'
print*, ' '

call computefn(L,KKK,XX,drv_old,dmat,slm,w,vall,objo,objf,
$ con.objol)

go to 420

end if

C Using the drive values of the filter pixels from the array
'drv.bst'
C and compute the complex filter pixel values.
C Store these complex filter pixel values in the array 'filt'.

500 print*, 'Finish due to count=' .count
do i=l,L

filt (i)=slm(drv_bst (i) )
end do

C Arrange the filter from a vector form into a matrix form.

jj=0
do i=i,N

do j=l,N

end do
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end do

C Save the final filter in a file for future correlations

call kpint2(filtl,filenames)

C Write the final value of the objective function and constraints,

print*, ' '

print*, 'Final Values'

print*, ' '

call computefn(L,KKK,XX,drv_bst,dmat,slm,H,vall,objo,objf,

$ con.objol)

stop

end

subroutine computefn(L,KKK,XX,drive,dmat,slm,w,vall,objo,

$ objf,con.objol)

***

C This routine calculates the value of the objective function, the

C value of the correlation energy plane, and value of the

constraints.

C XX is a 2 dimensional array containing the real part of the

C elements of the reference image in the first column and the

imaginary

C parts of the elements in the second column.

C L (input)

C XX (input array) == Each of the columns correspond to the real

and imaginary

C part of each of the fourier trandformed

images.

C W (input) == as defined in the main program.

C vail, (input) == as defined in the main program.

C objo,objf (output) == corr. plane energy value, and the objective

function

C value respectively.

C con (output array) == Real part of the constraints at the origin
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of corr
C plane.
C
C

integer*2 LC
integer L,KKK,i,j.drive(L)
parameter(LC=256)
real XX(L,20),w
real objo.objf,objol,con(KKK,2),dmat(L),conl(7,l)
real rlf,imf,vall
complex slm(LC)

objo=0.0
objol=0.0
objf=0.0

* con(i,l)—> Real part of correlation peak
* con(i,2)—> Imag part of correlation peak

do i=l,KKK
con(i,l)=0.0
con(i,2)=0.0

end do

* objo —> Energy

* objol —> Penalty fn
* objf —> Merit fn = Energy + Penalty fn

* Calculate Energy in the Correlation plane
do j=l,L
rlf=real(slm(drive(j)))
imf=aimag(slm(drive(j)))

objo=objo + (dmat(j)*(rlf**2+imf**2))

nun=0
do i=l ,KKK

mm=mm+l
con(i,l)=con(i,l) + ( ( X X ( j ,mm)*rlf ) + (XX(j ,mm+l)*imf))
con(i,2)=con(i,2) + ( ( X X ( j ,inm)*imf ) - (XX( j ,ntm+l)*rlf))
nnn=itinH" 1

end do
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end do

print*, 'Energy=', objo

* Get absolute value of Peak
do i=l,KKK
conl(i,l)=sqrt(con(i,1)**2+con(i,2)**2)

enddo

* Get the sum of weighted deviations from the specified value
* (Penalty fn.)

objol=0.0
do i=l,KKK

objol=objol + w*abs(conl(i,l)-vail)
end do

* Objective function (Energy + Penalty fn.)
objf=objo + objol

* Show results
print*, ' '
print*, 'Objective function value=',objf
print*, 'Correlation Plane Energy=',objo
print*, 'Penalty function value =',objol
print*, 'Correlation Peaks at origin are:'
print*, ' '

do i=l,KKK
print*, 'Image',i, sqrt(con(i,l)**2+con(i,2)**2)

end do
print*, ' '

return
end

SUBROUTINE GETINT1(ARRAY, ARRAYNAME)

COMMON N

INTEGER*2 ARRAY(N,N),N

CHARACTER*12 ARRAYNAME

OPEN(UNIT=8,FILE=ARRAYNAME,FORM='UNFORMATTED',STATUS='OLD')
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READ(8) ARRAY

CLOSE(UNIT=8)

RETURN
END

SUBROUTINE GETCMP (ARRAY , ARRAYNAME)

C********** ******************************************************
*******
C********** ******************************************************

c
C A routine to read a complex N by N array. The data is stored
in
C the 'UNFORMATTED' form to speed the file transfer. The array
data
C is read by starting with the upper left element of the array
C and proceeding across to the upper right. The rows are
C incremented downward so that the last element in the data
file
C is the lower right element of the array.
C
C
C****************************************************************
*******

C
C Arguments:
C
C ARRAY < la Integer array.
C ARRAYNAME > ch File name (name.ext)
C
C N : i Dimension of the array [COMMON]
C
C***** ***********************************************************
*******
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COMMON N
INTEGER*2 N
COMPLEX ARRAY(N.N)
CHARACTER*12 ARRAYNAME

OPEN(UNIT=8,FILE=ARRAYNAME,FORM='UNFORMATTED',STATUS=' UNKNOWN')

PRINT *,' '
PRINT *,'Reading the file '//ARRAYNAME

READ(8) ARRAY

CLOSE(UNIT=8)

PRINT *,'File transfer completed.'
PRINT *,' '

RETURN
END

SUBROUTINE KPINT2 (ARRAY, ARRAYNAME)

C****************************************************************

c****************************************************************
*******

c
C A routine to save an complex N by N array. The data is

stored in
C the 'UNFORMATTED' form to speed the file transfer. The array
data
C is stored by starting with the upper left element of the
array
C and proceeding across to the upper right . The rows are
C incremented downward so that the last element in the data

file
C is the lower right element of the array.
C
C
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C
C Argument s:
C
C ARRAY > ia Integer array.
C ARRAYNAME > ch File name (name.ext)
C
C N : i Dimension of the array [COMMON]
C

COMMON N
INTEGER*2 N
COMPLEX ARRAY(N,N)
CHARACTER*12 ARRAYNAME

OPEN(UNIT=8,FILE=ARRAYNAME,FORM='UNFORMATTED',STATUS='UNKNOWN')

PRINT *,' '
PRINT *,'Saving the file '//ARRAYNAME

WRITE(8) ARRAY
CLOSE(UNIT=8)

PRINT *,'File transfer completed'
PRINT *,' '

RETURN
END

SUBROUTINE TDFFT(D, ARRAYIN, ARRAYOUT)

C****************************************************************

C****************************************************************
*******

C
C A subroutine to index an array and call the one-dimensional
C Fast Fourier Transform, SUBROUTINE FFT, for each column and
then
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C each row of the array.
C

C

C
C Arguments:

C
CD > r Direction of the transform: 1. = forward
C -1. = inverse
C ARRAYIN > ca The two-dimensional array to be transformed.
C ARRAYOUT < ca The two-dimensional transformed array.
C
C N : i Dimension of the array [COMMON]
C
C****************************************************************
*******

COMMON N

INTEGER*2 N
INTEGER*2 R, C
REAL D
COMPLEX ARRAYIN(N.N), ARRAYOUT(N,N), B(1024)

DO 60 C = 1, N
DO 20 I = 1, N

B(I) = ARRAYIN(C, I)
20 CONTINUE

CALL FFT (D, B)
DO 40 I = 1, N

ARRAYOUT(C, I) = B(I)
40 CONTINUE
60 CONTINUE

DO 160 R = 1, N
DO 120 I = 1, N

B(I) = ARRAYOUT(I, R)
120 CONTINUE

CALL FFT (D, B)

DO 140 I = 1, N
ARRAYOUT(I, R) = B(I)

140 CONTINUE
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160 CONTINUE
RETURN
END

SUBROUTINE FFT(DIR, VEC)

c****************************************************************

c****************************************************************
*******

c
C A Fast Fourier Transform from Digital Signal Processing
C by Oppenheim and S chafer.
C
C
C****************************************************************
*******

C
C Arguments:
C
C DIR > r The direction of the transform: 1. = forward
C -1 . = inverse
C VEC <> ca The one dimensional transform array.
C
C
C N : i The number of points in the transform (must be
an
C integer power of 2) .
C
C [COMMON]
C

*******

COMMON N

INTEGER* 2 N
INTEGER NV2, NM1 , M, MT
REAL DIR
COMPLEX VEC(N), U, W, T
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M = 0
5 M = M + 1
MT = 2**M
IF (MT .HE. N) GO TO 5
NV2 = N/2
NM1 = N - 1

J = 1
DO 30 I = 1, NM1

IF (I .GE. J) GO TO 10
T = VEC(J)
VEC(J) = VEC(I)
VEC(I) = T

10 K = NV2

20 IF (K .GE. J) GO TO 30
J = J - K
K = K/2
GO TO 20

30 J = J + K

PI = 3.141592653589793
DO 50 L=l, M

LE = 2**L
LEI = LE/2
U = CMPLX(1.,0.)
W = CMPLX(COS(PI/FLOAT(LE1)), -DIR*SIN(PI/FLOAT(LE1)))
DO 50 J = 1, LEI

DO 40 I=J, N, LE

IP = I + LEI
T = VEC(IP)*U
VEC(IP) = VEC(I) - T

40 VEC(I) = VEC(I) + T
50 U = U*W

IF (DIR .EQ. 1.) GO TO 70
DO 60 I = 1, N

VEC(I) = VEC(I)/REAL(N)
60 CONTINUE
70 CONTINUE

RETURN
END




