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ABSTRACT

The family of shear flows comprising the jet, wake, and the mixing layer are subjected
to perturbations in an inviscid, incompressible fluid. By modeling the basic mean flows as

parallel with piecewise linear variations for the velocities, complete and general solutions to the

linearized equations of motion can be obtained in closed form as functions of all space variables
and time when posed as an initial-value problem. The results show that there is a continuous

as well as the discrete spectrum that is more familiar in stability theory and therefore there can
be both algebraic and exponential growth of disturbances in time. These bases make it feasible

to consider control of such flows. To this end, the possibility of enhancing the disturbances
in the mixing layer and delaying the onset in the jet and wake is investigated. It is found

that growth of perturbations can be delayed to a considerable degree for the jet and the wake

but, by comparison, cannot be enhanced in the mixing layer. By using moving coordinates,
a method for demonstrating the predominant early and long time behavior of disturbances in

these flows is given for continuous velocity profiles. It is shown that the early time transients
are always algebraic whereas the asymptotic limit is that of an exponential normal mode.

Numerical treatment of the new governing equations confirm the conclusions reached by use of

the piecewise linear basic models. Although not persued here, feedback mechanisms designed
for control of the flow could be devised using the results of this work.

1This work was supported by the National Aeronautics and Space Administration under NASA Contract No.

NASl-19480 while in residence at the Institute for Computer Applications in Science and Engineering (ICASE),
NASA Langley Research, Hampton, VA 23681-0001.
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1 INTRODUCTION

Classical hydrodynamic stability theory has been successful in demonstrating how any particular
shear flow must be unstable. For the class of flows where the fluid can be taken as inviscid

there are a variety of results from both theoretical and experimental investigations. Indeed, the

corroboration between the two pursuits is quite strong and has led to a reasonable understanding
of the problems. There are, however, still significant needs. The determination of whether or not

a flow is stable or unstable has been ascertained by the use of normal mode or traveling wave

analysis for the linearized equations of motion. This technique is tantamount to computing
a discrete spectrum of eigenvalues. Unfortunately, even this approach has been limited in

that the effort has concentrated on determining if there is at least one unstable eigenvalue.

The remaining eigenvalues (persumbly infinite in number), including all those that are stable,
must be known in order to consider any initial-value problem. In addition, the continuous

spectrum, if it exists, must also be included for any general specification. The determination

of an unstable eigenvalue only ignores transient dynamics in favor of the asymptotic state. In
other words, the flow is unstable regardless of how perturbations are imparted. If one desires to

understand how to influence any shear flow, it is clear that the origin and the transients must be
examined. Traditional means of solution of the governing equations where a separable normal

mode traveling wave is introduced is not a profitable means of accomplishing this task. The

difficulties lie with the fact that the principal equation (Rayleigh equation) used in the inviscid
problem is not self adjoint and therefore does not allow classical Sturm-Liouville means for

calculations. To include three-dimensional effects requires solving yet another equation (Squire

mode equation) and it too is not of standard form. Including a viscous fluid in the investigation
(requiring the Orr-Sommerfeld equation) could lead to a singular perturbation problem, making
for still more complications. The question, then, is how to obtain a reasonable solution for a

workable model that will permit a general treatment of initial-values.
The class of free shear flows that occur without the influence of solid boundaries can be

analyzed in an inviscid fluid because, unlike the boundary layer prototype, viscous effects tend to

cause damping rather than instability, i.e., any eigenvalue is decreased in magnitude by viscosity.

The inviscid fluid approximation allows for the removal of one of the major complications cited
above. In addition, it permits the analysis to be made with a parallel flow assumption. An

introduction of separable solutions for all the dependent variables in the form of traveling waves

usually follows. This procedure is fine so long as every eigenvalue and eigenfunction are known,
particularly the ones that are damped since this information is crucial to the transient dynamics.

The continuous spectrum remains omitted with this type of solution.

An alternative approach to the initial-value problem is that due to Kelvin (1887) and later
by Orr (1907a,1907b). This method involves a change of the independent variables from a

Cartesian to a moving frame. As a result, in this frame, there is no critical layer that has so

complicated normal mode calculations. The method can be used for any profile but is most
amenable to ones that are piecewise linear. The modeling of the mean velocity in this manner

in no way loses any of the important qualitative information and, it will be seen, all of the early
and asymptotic temporal behavior can be captured. The fact that a growing normal mode

occurs for small values of the wave number (large scales when compared to the scale of the flow
field) is also where the piecewise linear profile is best valid. Of course, this approximation is not

without its negative aspects (only a finite number of normal modes are possible, e.g.) but, the
fact that the problems have also been done numerically when cast in terms of normal modes,



any misinformation from this part of the solution can be eliminated by comparison. In short,

the advantage gained outweighs the difficulties and this will be demonstrated.
Work that has been done by direct numerical simulation of these flows using the full Navier-

Stokes equations usually introduces the most amplified normal mode to initiate the dynamics.
Experimentalists have used various devices to attempt to enhance or delay disturbances based on

the normal mode frequencies. Neither of these studies was concerned with how any disturbances

had their origins. In a somewhat general way, it is assumed that the standard linear theory
provides this data. In the case of the mixing layer prototype, Bun and Criminale (1994) have

shown that this reliance can be misleading. In fact, this work demonstrated that no growing
normal mode is needed at all to achieve the well-known roll up process that is observed in this

flow. It was possible to do this because the origin and the transient temporal dynamics are
known explicitly. The same procedure can be used for the jet and wake family. The natural

query for any case is whether or not this part of the flow can be manipulated in such a way

as to enhance or delay perturbations as may be desired. This topic is the central issue of this

paper.

2 BASIC GOVERNING EQUATIONS

The fluid is taken as inviscid and incompressible with the basic flow parallel, U = U(y), V =
W = 0. Then, the linearized equations of motion can be written as

Ou Ov Ow

0--_+ _yy . _z = 0, (1)

Ou uOU dU Op
0-7+ ax+_v+_=0, (2)

Ov u Ov Op
-b7+ a +_=0, (3)

and

Ow U Ow Op-_ + a_ + -5-;z=o. (4)
On using the transformation of variables given by T = t, _ = x - Ut, _ = y, ( = z and the
Fourier transformations defined with respect to _ and ( as

////_((_; _; 7; T) = v(_, _, (, T)ei(_4+'_¢)d_d(, (5)
OO Oo

equations (1) to (4) become

0_

- i(,_ +_) +_ + i,_TV,_=o, (8)
O_
O--T+ v,_,- i_p =o, (7)

0_, Of,
-_ + -_q + iaTU, Tp = O, (8)

and
O_
OT i7_ = O, (9)
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respectively, with Uv = dU/dT].
The Squire transformation, written as

a_+7_ : 5_ (10)

- + = (11)

where 5 = (a2 + 72)1/2, combined with operations on (7) to (9) enables us to obtain the pair

of equations (cf. Criminale and Drazin 1990)

0-_A_ = 0 (12)

0_
_-_ = sin CU,_ (13)

where

_2 ___ _ 2_r_2 ¢r2A = _ + 2iaTU,,...i 52 - _ i _ (14)

and sin ¢ = 7/5. It is clear that the solutions of (12) and (13) combined with continuity and
the Squire transformation are equivalent to solving (6)-(9). Likewise, i5can be determined from

(9). In either case, solutions of the equations are subject to initial conditions and the restriction
of boundedness as y _ :t:oo. It should be noted that the fact that the mean velocity has been

assumed as only a linear function of y has been explicitly incorporated into the derivation of

(12), (13) and (14).
The prototypical family of free shear flows are depicted in figure 1. As can be seen, the jet

and wake can be combined to form one principal family while the mixing layer stands alone.
In each case, the solutions of the governing equations must be solved in regions. Then, at the

interfaces where the piecewise hnear velocities join, the solutions are required to be matched.

As pointed out by Criminale and Drazin (1990), the matching requires both _ and iv to be
continuous in an inviscid fluid. In terms of _, the pressure becomes

02_ O_

- 52fJ - O_OT + iaTU'7-_ + 2iaU,_. (15)

If the length scale, H, is used together with the time scale, a, then the equations can be

non-dimensionalized. Then, both (12) and (13) can be considered non-dimensional. By allowing
that A_ = fl(y) at time, T=0, then the equation

a2T2U ) _0-----_ + 2iaT U'7 (52 + = a(_)
(16)

must be solved in order to obtain the generic solutions for _. On using the change of variable

• __
_(_?,T) = V(_,T)e-"_T_ 7, (17)

equation (16) becomes

• __
02___V _ 52V = _(_)e,_T _ ,7. (18)
&?2

The general solution of (18) combined with (17)is



= [A(T)e a'7 + B(T)e-a'_]e -i_T'_v -4-Vp(ZI,T) (19)

where Vp is the particular solution obtained by solving the equation

=A lr=0. (20)

The specific cases of the jet-wake and the mixing layer can now be considered.

3 JET-WAKE

The mean flow velocity, with zI = y/H, is taken as

Uo 7]>1

Uc + ar/ O<r/<l (21)
U0?)= Uc-a_ -1 <_<0

Uo _/< -1

where, for the triangular jet profile, Uo = 0, Uc = 1, a = -1; for the wake profile, Uo = 1,

Uc = 1"- Q, a = Q with Q a measure of the wake deficit. On substituting the above mean flow

into equation (19), we see that the general nondimensional solution for either the jet or wake

is given by

{ A(T)e -a(v-1) 77> 1

(B(T)e _'7+ C(T)e-a'7)e -i_T'7 + vl,p(_],T) 0 < 71< 1 (22)
5 = (n(T)e a'l + E(T)e-a")e i_'T'l + v2,p(,],T) -1 < rl < 0

F(T)ea('7+1) r]< - 1

plus the appropriate solution for i5 determined from equation (15). Here, we have taken the

particular solution Vp to be non-zero inside the jet-wake region (Vp = Vl,p for 0 < _]< 1 and
vp = V2,p for -1 < r]< 0) and zero outside. The unknown functions of time A(T),.--, F(T) are
determined by requiring continuity of 5 and i_ at the interfaces. On making the matching the

result is a linear ordinary differential system in time, namely

i- 1 L:" _--_R_7+ 2"(0)=6 (23)
X=

where

R e-2a e-2a -- 2 e-25 -- 2 , (24)
250 e-2a 1 - 25

:F = [B D E] T , f= If1 f2 f3] T , (25)

and (') = dd--(_T.Once B, D, and E have been determined, the other functions can be found by
means of the following relations:

A = (Be _ + Ce-a)e -i_'T + vl,p(1,T), (26)

C = D + E - B + v2,p(O,T) - vl,v(0, T), (27)

E = (De -a + Eea)e -i_'T + v2,p(-1,T). (28)



We note here that the solution to equation (23) is independent of the particular profile under
consideration; the choice of a jet or wake is only obvious when the solution is transformed back

to physical space.

The homogeneous solution of (23) (f = 0) is the usual normal mode solution, with the

eigenvalues determined from the matrix R. This solution will also dominate for large time even
when fis present because of the exponential behaviour.

The essential points in treating an initial-value problem in flows of this type have been

presented by Drazin and Reid (1981). In summary, any arbitrary description at time T = 0 will

be a function of x, y, z (or _, _/,( in the transformed system). On using the Fourier transforms,
the dependence is then on the wave numbers _,q, and q. The solutions of the perturbation

problem indicates that there will be a sum of discrete eigenmodes and an integral of a continuous
eigenspectrum that can be used to represent the prescribed initial function. The solutions
obtained by use of the piecewise linear model provides all of this information explicitly.

The number of eigenvalues in the piecewise linear model is essentially proportional to the

number of connections used for the basic velocity profile and hence, in the limit of a continuous

profile, there would be an infinite number of modes. The qualitative behaviour of the modes
is the same as that known from numerical computations using a continuous U(y), particularly
the fact that there is an unstable mode for the interval 0 < 5 < 5c. The differences between

the modeled and the continuous U(y) are primarily (a) the value of (_c for the modeled profile

is somewhat less than the neutral equivalent for the continuous U(y); (b) the modeled U has
neutral solutions for all _ > Oc whereas no eigenvalues have been found using the continuous U

for 5 > 5c (cf. Betchov and Criminale 1967). The first point is not significant but the second

restricts the validity to the range of small values of 5. But, even here, it is this region where
the dynamics has salient interest.

There is maximum exponential growth for a mode in the interval 0 < 5 <: 5c. The eigen-

function corresponding to this mode is symmetric in _1.These facts provide the clues needed to

manipulate the initial designation. Enhancement requires a symmetric variation in _?whereas
delay suggests an asymmetric variation initially. At the same time it should be noted that,

unless a feedback mechanism is added, exponential temporal growth of a symmetric variation
can not be prevented altogether but only delayed.

3.1 SYMMETRIC DISTURBANCES

For symmetric initial conditions we solve the following equation to obtain the particular solution

Prescribing iN_ at T = 0 is effectively prescribing vorticity. Moreover, symmetric (or asymmet-

ric) A_ will result in a symmetric (or asymmetric) initial _. On using (29),

vv = ao [a(T)e iz°v + b(T)e -iz°n] (30)

where

-1 -1
. , b(T) = (31)

Note that Vl,v and v2,_ in (22) can now be determined by using the conditions U,_ = a for
0<q< 1 and Un=-afor0<q< 1.
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The system (23) is now solved numerically using a fourth-order Runge Kutta scheme. All

calculations were computed in double precision. In each case reported here and in the following
subsection, the magnitude of D was always larger than the magnitude of either B or E. For this

reason only graphs of [D I are given. In figure 2 we plot ]D I as a function of time with € = 0,
flo = (2n - 1)7r/2 and for various values of a. This choice of/30 ensures that the particular

solution vanishes at r/ = -!-1 and is taken as a convenience. The values of a corresponds to
the neutral mode, the maximum growth rate mode and its subharmonic from the normal mode

analysis. As n is increased from 1 to 10, we see that the exponential growth is slightly delayed,

suggesting that symmetric initial disturbances do not significantly alter the transient behaviour.

3.2 ASYMMETRIC DISTURBANCES

For asymmetric initial conditions we solve the equation for the particular solution

A_ = flo [€{z°"- €-iz°v] (321
which results in

vp = _o [a(T)e 1_°'7+ b(T)e -iz°'] (33)
where

-1 1

a(T) = [/_o+ c_U_.T] 2 , b(T) = (34)
I.

Note that vl,p a;nd v2,p in (22) can now be determined by using the conditions U,1 = rr for
0<7/< 1 and U,_=-afor0<7/< 1.

The system (23) is again solved numerically using a fourth-order Runge Kutta scheme. In
figure 3 we plot IDIas a function of time with ¢ = 0, fl0 = nTrand for various values of _. The
choice of rio ensures that the particular solution vanishes at ,] = 4-1. The values of c_corresponds
to the neutral mode, the maximum growth rate mode and its subharmonic from the normal
mode analysis. Each sub-figure should be compared to the corresponding sub-figure for the
symmetric initial disturbance and special attention should be paid to the scales of each graph.
As n is increased from 1 to 10, we see that the exponential growth is significantly delayed,
suggesting that asymmetric initial disturbances can alter the transient behaviour. The maxima
obtained here for early time are due to the 'Orr or venetian blind effect' and is manifested in the
choice of initial conditions being periodic in 7/. Mathematically, an inspection of the coefficient
b(T) in (31) or (34)can be seen to be the origin both here and in the symmetric initial value.

4 MIXING LAYER

The mean flow velocity for the nlixing layer is taken as

1 71>1
U(,1) : ,] -1 < ,1< 1 (35)

-1 ,1 < -1

and we have set a = 1 for convenience. Substituting the above mean flow into equation (19),
we see that the general nondimensional solution is given by



{ A(T)e-a('7-1) rI > 1

= (B(T)e _''7+ C(T)e-_"7)e -ic'T'7 + vv(_,T ) -1 < r/< 1 (36)

D(T)ea('l+l) 7I < - 1

plus the appropriate solution for i5 determined from equation (15). Here, we have taken the

particular solution to be non-zero inside the mixing layer region and zero outside. As in the

previous example, the unknown functions of time A(T),. •., D(T) are determined by requiring
continuity of _ and/_ at the interfaces. On making the matching the result is a linear ordinary
differential system in time, namely

• is ! L =0 (37)_= -_-_R_ + 25
where

R= [ 1-25 e-2_ ] (38)-e -25 25- 1

_, -" [B C]T , f--[fl f2] T , (39)

and (') = dd-_T.Once B and C have been calculated, the other functions can be found by means
of the following relations:

A = (Be _'+ Ce-_)e -i_'T + Vp(1,T), (40)

D = (Be -_ + Ce_)e i_T + vv(-X,T). (41)

The homogeneous solution of (37) is the usual normal mode solution, with the eigenvalues
determined from the matrix R. This solution will also dominate for large time when f'is present.

As in the previous example, we consider the two special cases of symmetric and asymmetric
initial disturbances. The particular solution is the same form as in the jet-wake case. The

system is again solved numerically using a fourth-order Runge Kutta scheme. In each case

reported here, the magnitude of B was always larger than the magnitude of C. For this reason

only graphs of [B[ are given. For the symmetric case, the magnitude of B is plotted in figure
4 as a function of time with € = 0,/30 = (2n - 1)_r/2 and for various values of a. Likewise,
for the asymmetric case, the magnitude of B is plotted in figure 5 as a function of time with

€ = 0, fl0 = n_r and for various values of a. The values of a correspond to the neutral mode,

the maximum growth rate mode and its subharmonic from the normal mode analysis. In both
cases, as n is increased from 1 to 10, we see that the exponential growth is delayed, suggesting

that high wave number initial disturbances (whether it be symmetric or asymmetric) may delay
the eventual rollup.

5 CONTINUOUS PROFILE ANALYSIS

As stated there is no problem in using the moving coordinate transformation when the basic

profile is a continuous function of the transverse variable y. As before, the transformation from
the Cartesian to the moving frame is given by

T=t, _=x-U(y)t, 7/=Y, (=z, (42)

but now both the equations and the operator must be amended. The same two equations for

the perturbation quantities can be obtained in exactly the same manner and they become



0
0--_A_ + i6 cos CUnn_ = 0 (43)

0_
0--T = sin ¢U,7_ (44)

with the operator, A, now defined as

02 0 52 _ 52 cos2 ¢T 2U;2+ i5 cos CTU,,,,. (45)A = -- + 2i6cos
Oy2 ¢T U'7-fly

It is clear that the problem is more complex than that of the constant shear basic profile.
Solutions are still subject to the initial and boundary conditions.

Equation (43) could be numerically integrated and these results should be compatible with
what has been predicted using the piecewise linear profiles. At least, qualitative agreement

should be forthcoming. In lieu of actually doing the numerics here, an analytical procedure can

be explored. The basis for the method is due to the fact that the major results for the dynamics

of the perturbations of free shear layers occurs for small values of the radial wave number, &

(or a if the problem is taken as two-dimensional). Thus, a regular perturbation expansion can
be made as _ = _o + av] + a2v2 + "• ". Substitution of this series into equation (43) generates

the set of equations

0 (02 o,
OT --_2 ) = 0 (46)

o._f(O02_,_= _icos¢{20y2 " (Un_o)+ T (2U,7--_- + U,T,_o)) (47)

for the first two orders. The following observations can be made. First, the lowest order

equation (46) is independent of any influence from the mean velocity profile and can be solved
in a straight forward manner. Then, the Vo solution will be time-independent unless it is
assumed that there is continuous or time dependent driving in equation (46).

On accepting the time-independent solution for _o, the 0(5) equation can be reduced to

0 (02Vl '1 = -2icos¢_(u,, o) (48)
and, immediately,

°2 1- 2icosCT (g, 0) (49)0r/2

where 02_]/0y 2 = 0 at T=0. The full solution for _] is

_1 = Vo + By - 2i cosCT/U, ff;ody
(50)

where Vo and B are constants. But, B = 0 by the boundary conditions and therefore

"01 = go - 2i cos CT / U,7_ody.
(51)

It is clear from this series that only algebraic terms in T will be generated regardless of

the influence of the mean profile in the successive equations. Thus, the early period motion

is purely algebraic. As time increases the series is no longer valid as can be seen from the
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operator (45). The implication is that a new time scale must be invoked in order to have a
viable expansion. In fact, on allowing 2_ = _T, then the large time behavior can be evaluated.

It can be readily seen that the operator will lose only the &2 term in the expansion with
the new time scale. Therefore, the new series for _ is _ = v0 + _2vl + _4_2 +"" and the lowest
order equation is

0.__v0 + i cos CUnn_o = 0 (52)OT

where _ =/k + 52. In effect, (52) is the full equation and it would seem that there is little to

be gained by the small _ expansion. Interestingly enough, this is not the case and implications

from the full equation can be found without actually resorting to the solution.
By considering the transformation

~

= Y(,], _')e -iT¢°scU('), (53)

the full equation can be rewritten as

o {(o2v -
_ - 62V)e-iTc°scU(n)}+ icosCUnnVe-iTc°s¢v(n)= 0. (54)

Then, if(54)isexpandedand V isLaplacetransformedto removethetimedependence,then

Is - ia cos CU(T/)][ - a2121 + i cos CUn,,I? = G(r/) (55)

where V" is the Laplace transform of V and G(_) is an initial value. This equation is another way
of expressing the Rayleigh equation that is dominant in inviscid fluid dynamic stability theory.

Consequently, a growing exponential solution can be expected to dominate asymptotically in
time.

A final remark should be made with regard to the use of the moving coordinate transfor-

mation. Heretofore, small wave number expansions have been used to solve the Rayleigh (or
Orr-Sommerfeld) equation but a nonuniformity in the spatial variable y must be treated. Here,

this is not a problem as has been shown throughout. Instead, it is time that must be scaled

and this makes for an added facility in the investigation.

5.1 NUMERICAL SOLUTION

In this subsection the numerical solution to the full equation (43) is presented for both the

Bickley jet (UQ/) = sech'2_/) and the mixing layer (U(_) = tanhy). It is first convenient to
introduce the transformation

- V(_, T)e -{_'Tc°scU(n), (56)

so that the full equation (44) can be rewritten as

0

{O'V _ - i6 cos€U(,7){ - a'y} + i6 cosCUn,,y = 0. (57)OT
Note that € can be scaled out by an appropriate transformation in time. This equation is to
be solved subject to appropriate initial conditions. Here, we take

9



v(n,o)=cos(8on)e-'' (58)
for symmetric disturbances, or

Y(,],O) = sin(8o,l)e -n2 (59)

for asymmetric disturbances, where 8o is some wave number.
The partial differential equation (57) was solved numerically by the method of fines. The

spatial derivatives were center differenced and the resulting system was integrated in time by a
Runge Kutta scheme. All calculations were done in double precision. The results were checked
for convergenceby increasing the number of mesh points and varying the region in r/over which
the differencing was done.

Results for the Bickley jet are shown in figures 6 and 7. In the top portion of each figure
the maximum of the magnitudes of the real and imaginary part of V (denoted by the solid and
dashed curves, respectively) are plotted as a function of time. In the bottom portion of each
figure the real and imaginary parts of V (denoted by the solid and dashed curves, respectively)
are plotted as a function of r/at the last integrated time step shown in the corresponding top
portion. The results shown in figure 6 correspond to the case of the symmetric initial disturbance
(58), and the results shown in figure 7 correspond to asymmetric initial disturbances (59). In
each case we have taken 80 = 1, ¢ = 0 and _ = 1. Note that these results are qualitatively
similar for those of the piecewise linear profiles shown in figures 2 and 3, respectively. We are
therefore lead to the conclusion that an asymmetric initial disturbance can significantly delay
the eventual exponential growth, and that this feature is insensitive to either the actual jet
profile or the form of the initial disturbance taken. Although not done here, similar conclusions
can be expected for the wake.

Results for the mixing layer are shown in figures 8 through 10. The nomenclature is the
same as in the previous set of figures. The results shown in figure 8 correspond to the case of the
symmetric initial disturbance (58), and the results shown in figure 9 correspond to asymmetric
initial disturbances (59). In each case we have taken 80 = 1, ¢ = 0 and 6_= 0.396. For the
80 _ O(1) wave number values, the time at which exponential growth becomes evident are
similar. Figure 10 shows results for the asymmetric initial disturbance but at a higher wave
number, namely, 80 = 107r. Note that the higher wave number delays somewhat the eventual
exponential growth, thereby delaying the rollup of the vortices. These results are qualitatively
similar to those for the piecewise linear profile shown in figures 4 and 5, respectively. We
therefore are lead to the conclusions that symmetric or asymmetric initial disturbances with
O(1) wave numbers do not significantly alter the eventual exponential growth while for larger
wave numbers the exponential growth is delayed, and that these features are insensitive to
either the actual mixing layer profile or the form of the initial disturbance taken.

6 EFFECT OF THREE-DIMENSIONALITY

The perturbation problem is complete when all components of the fluctuation velocity and the

pressure are known. As noted, by using the Squire mode equation (13) for _ together with

the dominant equation (12) for _, this task is accomplished when the solutions of these two
equations are obtained. In this way, not only can all disturbance quantities be derived from

these two variables, but the effects of obliquity in the field are ascertained. It is not sufficient

to use the Squire's theorem from stability analysis since this theorem is only valid for separable

I0



normal modes. The presence of the continuous spectrum in the initial-value calculations requires
further scrutiny.

Some effects due to the Squire theorem are, of course, present in the representation. This

can be seen directly by examining the equation for 9. Except for the angle € = 7r/2, the

implications of obliquity can be inferred. Note that, in the equation for 9, if T is replaced by
the new time T _ = T cos €, then € no longer appears. Thus, any angle where 0 < ¢ < _r/2, the

temporal behavior of _ mirrors that of ¢ = 0 (7 = 0) except that it responds more slowly and
with a decreased amplitude, depending on the value of cos€. The role of the other velocity

components fi, @ (or fi, @) must, however, be viewed with some caution since these quantities
retain an explicit dependence on €.

Unlike the governing equation for 9, the one for @ cannot suppress the angle €. On the
other hand, this equation can be integrated at once to give

]o= W0(r/) + sin CU,, _(r/, T')dT' (60)

where W0(r/) = _(r/, 0). In general it can be concluded that any exponential dependence on T

from _ will remain exponential for _ whereas algebraic dependence on T will result in a raising
of the power of T.

When ¢ = _'/2, then it can be shown that _ no longer is a function of T (cf. Ellingsen and
Palm 1975) and can be written as _ = _o(r/). The solution for _ for this case is simply

= Wo(r/) + TU,7_o(r/) (61)

indicating that only a linear algebraic variation is possible.

On returning.to the expressions for the Squire transformation (10) and (11), inverting and
using continuity for fi, then

_icos+[1°+ ][5 0r/. i cos CTU,_ - sin ¢_ (62)

[1 09 ]= -isin¢ [_ + icosCTU,7_ + cos¢_ (63)

is found for the velocity components that are in the plane perpendicular to 9. The fact that

the solutions for _ are proportional to the factor e-i_Tv as given by (56) reduces the above
relations to

,_ _ i COS_bOV -iaTU
t_ 0r/e - sin ¢_ (64)

and

(v- isin¢OVc-i'_TU + cos¢_ (65)
5 0r/

The extreme limits of € = 0 and ¢ = w/2 contain interesting information. First, for ¢ = 0,

_ i OV e_iocTv (66)
a Or/

if, = if, = W(r/) (67)

and the temporal behavior is effectively the same as that deternlined for b in that only the
phase variation is involved and not the amplitude.
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When € = _r/2, the limits are

= = + (6s)

= _ i OV i 0_o (69)
"_071 _/ 0,1"

Here, the results are quite different, namely (a) only a simple algebraic variation is present and
that is only for one of the velocity components; (b) the rate for the linear increase in _ depends

upon the location in y since the slope for the T dependence is the function v0(y). As has been

noted by others, this kind of behavior augurs for formation of streaks and can be expected to
be quite predominant at the locations where _0(_) has its largest values.

The overall effect of any disturbance will depend more realistically on a variety as well as

many wave numbers, reflecting the initial distribution. The infinite wave train used in the
assumption that the vorticity was periodic in x and z used here is but a simplistic limit of more

rational distributions, such as finite wave packets, for example. Nevertheless the dynamics as
outlined will control the subsequent development.

7 CONCLUSIONS

Free shear flows in an incompressible inviscid fluid, consisting of the prototypical jet, wake,

and the mixing layer, have been investigated subject to the influence of small perturbations.

Instead of using the techniques of classical stability analysis for this purpose, the approach has
both posed and solved the complete initial-value problem. Consequently, the full range of the

dynamics, including the early transient and the asymptotic fate of any disturbance becomes
known. In turn, this information provides a basis by which the flow can be manipulated and

the possibility of enhancement or delay of the perturbation field can be considered.
The initial-value problem has been considered heretofore but not generally with the premise

of requiring full details. The principal reasons for this lack is that of the mathematics; the
physical problem is well posed. Specifically: (a) the governing equations are not of the self-

adjoint variety and (b) both a discrete and a continuous spectrum of eigenvalues must be known
in order to make any arbitrary initial prescription. Otherwise an expansion would be severely

limited. Thus, classical normal mode solutions are not useful here since only the discrete

spectrum results. Use of Laplace transforms (cf. Gustavsson 1979) will, in principle, enable
this task to be accomplished but the necessary inversions in order to find the temporal behavior
are formidable.

This work has as its starting premise the use of moving coordinates. Then, by knowing

that classical theory has shown that there are exponentially growing solutions (and therefore

unstable) for small values of the wave numbers, a modeled mean flow is taken by using piecewise
linear variations for the velocity together with an expansion scheme using continuous profiles.
The results indicate that the early time behavior is always algebraic (and due to the continuous

spectrum) and the asymptotic fate follows that due to an exponentially growing normal mode
(discrete spectrum). Closed form solutions can be obtained as functions of all space variables
and time. Effects due to three-dimensionality can also be addressed.

The benefits of the moving coordinate transformation not only demonstrates the type of

variation for both early and long times but has the additional benefits that (1) solutions can be
found that do not have spatial nonunifor,nity, and (2) there are no critical layers. Instead, it
becomes a two-time problem. The results of the calculations indicate that perturbations in the

12



jet-wake family can be delayed to a considerable degree but not altogether eliminated without

a feedback mechanism. At the same time, any delay in the mixing layer is modest indeed. In
the other extreme, trying to enhance the mixing layer dynamics is likewise futile unless one

uses perturbations of finite amplitude. The explanation seems to rests with the basic flows per
se. The jet-wake can be visualized as a pair of counter-rotating vortices, one above and one

below the center line with no vertical velocity on the center line. A perturbation velocity in

this direction that is nonzero at this location (symmetric v) tends to destroy this configuration

as time goes on and the two vortices merge to form one downstream. Naturally, an asymmetric
v has an opposite effect and the state with two vortices is prolonged. The mixing layer picture
is that of only one vortex and therefore has a nonzero vertical velocity at the center line at

the outset. For this reason, an asymmetric v is not at all influential and one that is symmetric
can only enhance the process if it is of large enough amplitude and at the correct frequency
corresponding to unstable modes.

Finally, direct numerical integration of the partial differential equation derived by use of

the moving coordinates was done and it was demonstrated that all of the predictions made by
the piecewise linear basic profiles are qualitatively correct. It is suggested that the use of this
novel equation may well benefit exploration of other shear flows particularly when attention

is directed towards initial value problems. Moreover, it is this equation that can be the basis
when contemplating flow control or other salient mechanisms such as receptivity.
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9 FIGURE CAPTIONS

Figure 1. Schematic of family of free shear flows.

Figure 2. Plot of ]DI versus time T for symmetric initial disturbance with € = 0, flo =

(2n- 1)7r/2 and (A) a = 1.832744 (neutral mode), (S) _ = 1.22 (maximum), and (C)
a = 0.61 (subharmonic).

Figure 3. Plot of IDI versus time T for asymmetric initial disturbance with € = O, _o = n_r/2

and (A) a = 1.832744 (neutral mode), (B) _ = 1.22 (maximum), and (C) _ = 0.61
(subharmonic).

Figure 4. Plot of IBI versus time T for symmetric initial disturbance with € = 0, _0 =

(2n- 1)_'/2 and (A) a = 0.639232 (neutral mode), (B) _ = 0.396 (maximum), and (C)
a = 0.198 (subharmonic).

Figure 5. Plot of [BI versus time T for asymmetric initial disturbance with € = O, _o = n_r/2
and (A) a = 0.639232 (neutral mode), (B) a = 0.396 (maximum), and (C) _ = 0.198
(subharmonic).

Figure 6. (A) Plot of the maximum magnitudes of real (solid) and imaginary (dashed) parts of
V as a function of time T for symmetric initial disturbance for € = 0, _ = 1 and flo = 1.

(B) Plot of real (sond)and imaginary (dashed) parts of Y as a function of 7/at T = 20
for¢=0and_0 =1.

Figure 7. (A) Plot of the maximum magnitudes of real (solid) and imaginary (dashed) parts
of V as a function of time T for asymmetric initial disturbance for € = 0, _ = 1 and

fl0 = 1. (B) Plot of real (solid) and imaginary (dashed) parts of V as a function of y at
T=198for¢=0andf10 = 1.

Figure 8. (A) Plot of the maximum magnitudes of real (solid)and imaginary (dashed) parts
of V as a function of time T for symmetric initial disturbance for ¢ = 0, _ = 0.396 and

fl0 -- 1. (B) Plot of real (solid) and imaginary (dashed) parts of Y as a function of 7/at
T= 17.6 for¢=0and_o = 1.

Figure 9. (A) Plot of the maximum magnitudes of real (solid)and imaginary (dashed) parts
of V as a function of time T for asymmetric initial disturbance for € = 0, a = 0.396 and

fl0 = 1. (B) Plot of real (solid)and imaginary (dashed) parts of Y as a function of 7/at
T=15.4for¢=0andf10 =1.

Figure 10. (A) Plot of the maximum magnitudes of real (solid) and imaginary (dashed) parts
of V as a function of time T for asymmetric initial disturbance for € = 0, _ = 0.396 and

fl0 = 1. (B) Plot of real (solid) and imaginary (dashed) parts of V as a function of y at
T=58for¢=0andflo= 10_r.
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Figure 6. (A) Plot of the maximum magnitudes of real (solid) and imagi-
nary (dashed) parts of V as a function of time T for symmetric initial
disturbance for € = 0, a = 1 and fl0 = 1. (B) Plot of real (solid) and
imaginary (dashed) parts of V as a function of *1at T = 20 for ¢ = 0
and/30 = 1.
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