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PROJECT OVERVIEW:

This final report for Project JOVE (NASA Contract NAG8-149)
presents the results of work performed. Efforts under this
contract involved a research component, an education component,
and an outreach component.

Early on, the research effort under JOVE was concerned wifh
identifying specific research activities of interest to both the
principal investigator and NASA technical interests. In the work
of this principal investigator, the research efforts were
concerned with the behavior of fluid dynamics in a microgravit§
environment; in particular, the free surface/interface behavior of
fluid configurations. Earlier work centered on the behavior of
"slab" configurations. More recent efforts have looked at the
finite 1length fluid column behavior under forcing. It is
emphasized that the multiplicity of research tasks Qas considered
to be open-ended (ie., there’s always more research to be done).

Indeed, part of the égenda of the JOVE project has been to
involve more university researchers in research of interest to
NASA. To this end, it was understood that the principal
investigator would seek additional sources of funding. The
proposals which were written to do this are 1listed in the
following chapter on Project Accomplishments.

A new focus for Year 4 of the JOVE project was the effort to
identify practical applications of free surface fluid mechanics
which would have applications in microgravity fluid mechanics or
be relevant to another aspect of the NASA mission and be also of

some commercial interest. The thrust was to seek not only novel



application. area(s) in which research would contribute to the
technology, but also to identify problems which are accessible via
a fully computational fluid dynamics methodology. This 1is a
departure from the previous JOVE efforts, which involved primarily
theoretical formulations. The results of this investigation are
listed in Section A of this volume of the final report.

Research results on the interface shape and stability of the
slab configuration are given in the additional volume 1labeled
"SUPPLEMENT I ---- INTERFACE BEHAVIOR OF A MULTI-LAYER FLUID
éONFIGURATION SUBJECT TO ACCELERATION IN A MICROGRAVITY
ENVIRONMENT". (This volume is essentially the thesis work done by
a graduate student who was supported by the contract, and who
received a masters degree in mechanical engineering.)

With regard to the research investigations which focused on
the interface behavior of the fluid cylinder in microgravity, the
results may be perused as follows. The problem of the response of
a finite length fluid column to forcing along the longitudinal
axis of the column was accomplished via Laplace transform
techniques. This work is presented in Section B of this volume of
the final report. The results of the investigation on the
interface stability of an infinite length fluid column subject to
periodic accelerations oriented perpendicular to the longitudinal
axis of the column are found in Section B also.

Nonlinear behavior was taken into account in one of the
investigations of finite length fluid column interface behavior in
microgravity. In this case, the focus was on the nonlinear
corrections to the normal modes of free oscillation of the finite

length fluid column. It was not necessary that the fluid column be-



restricted to the slender column 1limit case. The analysis was
inviscid and incompressible, and the perturbations were assumed
irrotational. Also, the disturbances were restricted to those
which are axisymmetric. Additional details and results on this
problem are found in "SUPPLEMENT II ---- NONLINEAR EFFECTS ON THE
NATURAL MODES OF OSCILLATION OF A FINITE LENGTH INVISCID FLUID
COLUMN". This is in another spiral volume of the final report.
(This volume is essentially the first draft of the dissertation of
a Ph.d. student who has been supported by the JOVE contract.)

With regard to the problem of the interface stability of the.
finite length fluid column subject to both periodic disturbances
and a static acceleration oriented normal to the longitudinal axis
of the column, the full theoretical formulation of the problém,
including the static deformation, has been made. The numerical
investigation is underway, and when finished, results will be
submitted for publication. A discussion may be found in Section C
of this volume of the final report.

The educational efforts of this program have involved the
instruction and supervision of graduate students ( 2 masters level
and 1 ph.d 1level), and the teaching of a graduate course
specialized to include free surface/interface behavior in
microgravity. These will be listed in the JOVE accomplishments. A
syllabus for the graduate class is attached in Section E of this
volume of the final report.

The outreach efforts of this project consisted primarily of
lectures/talks given to the general public. However, one of the
outreach events involved a "workshop style" presentation to middle

school-junior high age girls. The workshop introduced the girls to



the world of an aerospace engineer, and involved some hands-on
demonstrations of flight principles. Spacecraft and microgravity
were part of this. (The workshop was co-sponsored by the WV
chapter of the Association for Women in Science (AWIS) , the WV
Dept. of Education--Office of Sex Equity, the AAUW, and the

Southern West Virginia Community College).



JOVE ACCOMPLISHMENTS
RESEARCH:

REFEREED JOURNAL ARTICLESVPUBLISHED:

(1.) M.J. Lyell, "Fluid column stability in the presence of
periodic accelerations", AIAA Journal, Vol. 31, p. 1519-21, 1993.

(2.) M.J. Lyell, "Axial forcing of a finite 1length 1liquid
column", Phys. Fluids , Vol. 3, p. 1828-31, 1991.

(3.) M.J. Lyell and M. Roh, "The effect of time-dependent
accelerations on interface stability in a multi-layered
configuration", AIAA Journal, Vol. 29, p. 1894-1990, 1991.

Manuscript in Preparation: to be submitted to Physics of Fluids
by Sept. 30, 1994, entitled, "Nonlinear corrections to interface
shape and oscillation frequencies of a finite 1length inviscid

liquid column in microgravity", by M.J. Lyell and L. Zhang.

OTHER PUBLICATIONS:

(1.) M.J. Lyell and L.Zhang, "On the nonlinear dynamics of liquid
bridges", Proceedings, 12th U.S. National Congress of Applied
Mechanics, 1994. (Conference held in Seattle, WA, in June, 1994.)
(2.) M.J. Lyell, "Interface stability of a fluid column subject to
periodic acceleration oriented normal to the longitudinal axis of
the column", presented at the World Space Congress, held
Washington, D.C., Aug. 1992, PAPER NUMBER IAF-92-0914.

(3.) M.J. Lyell, "Interface stability of a liquid column in the
presence of periodic accelerations oriented normal to the

longitudinal axis", Bull. Am. Phys. Soc., Vol. 37, 1992.



(4.) M.J. Lyell and M. Roh, "Instabilities in a multi-slab fluid
configuration due. to time-dependent acceleration normal to the
fluid-fluid interface in a microgravity environment", 29th AIAA
Aerospace Science Conference (held Jan., 1991, Reno, NV),

AIAA PAPER 91-1019.
(5.) M. Roh and M.J. Lyell, "Investigation of Interface in a

Multiple Layer Slab Configuration--Utilizing WVNET Computational

Resources", WVNET Conference 1990 Proceedings, p. 27-39, 1990.



TEACHING:

GRADUATE STUDENTS:

(1.)

(2.)

(3.)

Ms. L. Zhang

Ph.d. Candidate, MAE

Research Area: fluid mechanics/non-linear oscillations.
Dissertation Topic: Nonlinear corrections to the natural
oscillations of a finite length inviscid liquid column in
microgravity.

Anticipated graduation date: Dec. 1994.

Ms. K. Perkins

MSAE Candidate

Research Area: Fluid mechanics , ferrofluids, free surfaces.
Thésis topic: Wave dynamics in ferrofluids.

Anticipated degree date: Dec. 1995.

Mr. Michael Roh

MSME Degree awarded May, 1991.

Research area: Fluid mechanics.

Thesis topic: Stability of fluid layer configurations subject
to time-varying acceleration with application to microgravity

fluid mechanics.

COURSES

(1.)

MAE 399 --SPECIAL TOPICS GRADUATE CQURSE

entitled "Fluid dynamics of free surfaces/ interfacial
fluid mechanics" .

Course formally taught to 1 student in Fall semester, 1993.
Syllabus for this course in Section E of this volume of the

final report.



OUTREACH: --

(1.) Event:

(2.) Event:

(3.) Event:

wOrkéhop and Question and Answer Panel.

March, 1994 , at WV Southern Community College,
Williams, WV.

65-80 participants (middle school-junior high girls).
workshop on "Up, up, and Away, The World of an

Aerospace Engineer".

Lecture/ film / handouts

Oct., 1991, at Cheat Lake Junior HS, Morgantown (Cheat
Lake area) , WV.

80 participants.

handout on space suit designs.

Invited speaker at Sigma Xi meeting.

Dec., 1990, at Marshall Univ., Huntington, WV.

25-30 participants.

"general lecture"'to audience with diverse scientific

backgrounds.
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SECTION A



Investigation of Potential Research Topics of
Scientific and Commercial Interest Relevant to
Microgravity Fluid Mechanics



Abstract

The goal of this project 1is to investigate new areas of
research pertaining to free surface-interface fluids mechanics
and/or microgravity which have potential commercial applications.
This paper presents an introduction to ferrohydrodynamics (FHD),
and discusses some applications. Also, computational methods for
solving free surface flow problems are presented in detail. Both
have diverse applications in industry and in microgravity fluids
applications. Three different modeling schemes for FHD flows are
addressed and the governing equations, including Maxwell's
equations are introduced. In the area of computational modeling of
free surface flows, both Eulerian and Lagrangian schemes are
discussed. The state of the art in computational methods applied
to free surface flows is elucidated. 1In particular, adaptive grids

and rezoning methods are discussed.
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Chapter I
Overview

The goal of this project was' to investigate new areas
pertaining to microgravity which have potential commercial
applications. The two topics studied for this project were state
of the art computational methods for solving free surface flow
problems and ferrohydrodynamic free surface flows.

Free surface and interface flows do indeed have many
commercial applications in diverse areas. These include crysta}
growth, melting and solidification, capillary flows, wave
propagation, and metal and glass forming processes.

Ferrohydrodynamics deals with fluid dynamics that occurs in a
magnetic_ fluid as a result of an applied magnetic field. A
ferrofluid is a colloidal suspension of solid magnetic particles in
a typically Newtonian parent liquid. These fluids also have many
applications, including rotary shaft seals, cooling processes, and
sink-float separation processes.

A number of interesting phenomena are exhibited by magnetic
fluids in response to applied magnetic fields. These include a
normal field instability, in which a pattern of spikes appears on
the fluid surface. Also, in thin layers of ferrofluid, there
exists the spontaneoﬁs formation of labyrinthine patterns. In
rotary fields, a body couple is generated which is manifested as
anti-symmetric stress. In addition, ferrofluids with temperature-

dependent magnetic moment allow for enhanced convective cooling.
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Ferrohydrodynamics is a fairly new area of study, since the
onset of research iﬁ this field began in the 1960s. There is still
much to be discovered in this area, and linking ferrofluids with
free surface flow problems can lead to many interesting new
developments.

Chapter II of this paper gives a brief introduction into
ferrohydrodynamics. This section also discusses some of the many
applications involving ferrofluids.

There are three primary modeling schemes which are appropriate
in analyzing ferrofluid motion--(1l) restriction to inviscid flow,
(2) viscous flow with a symmetric stress tensor, and (3) viscous
flow with a non-symmetric stress tensor. Situations are given in
which each scheme would be applicable. In addition, the main
governing equations for ferrofluid motion in each modeling type and
the equations for 'the magnetic field conditions (including
Maxwell's equations) are included in the discussion.

Chapter III discusses state of the art computational méthods
for solving free surface flow problems. Found in this chapter is
a discussion on Eulerian and Lagrangian computational methods for
solving free surface problems, with several examples given in
detail. Also discussed is the efficacy of finite differences
versus finite element formulations.

Chapter IV gives conclusions regarding this project.
Suggestions are provided for future research ideas arising from the

investigation of free surface flows and ferrohydrodynamics.

A2



Chapter 1II

Introduction to Ferrohydrodynamics

Ferrohydrodynamics (FHD) deals with the mechanics'of fluid
movement that is influenced by an applied magnetic field. 1In FHD,
there is usually no electric current flowing in the fluid, as
opposed to magnetohydrodynamics (MHD). (In MHD flows the body force
acting on the fluid is the Lorentz force that results when electric
current flows at an angle to the direction of an applied magnetic_
field). A ferrofluid is a colloidal suspension of solid magnetic
particles in typically a Newtonian parent liquid such as kerosene.
In a true ferrofluid, the colloid suspension never settles out
because the particles are small enough (3-15 nm) that thermal
agitation keeps them suspended. In addition, particles are coated
with a dispersant that provides for short range repulsion and
prevents agglomeration of the particles. A typical ferrofluid
contains 10% particles per cubic méter and is opaque to visible
light. Ferrofluids are not found in nature, but are the result of
laboratory synthesis. Ferrofluids retain their fluid nature even
in intense magnetic fields (Rosenweig, 1985, and Cowley and
Rosenweig, 1967).

The body force in FHD flows is due to a polarization force.
This requires that the magnetic particles in the ferrofluid align
in the presence of an applied magnetic field. The particles in a
colloidal ferrofluid have an embedded magnetic moment. When the

magnetic field is absent, these particles are randomly oriented,
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and the fluid has no net magnetization. When ordinary field
strengths are applied, thermal agitation partially overcomes the
tendency of the dipole moments to align with the applied field.
However, as the magnitude of the magnetic field increases, the
particles become more aligned with the direction of the field. 1In
the presence of very intense magnetic fields, the particles may
align completely, and the magnetization is said to be saturated.
Applications of ferrofluids are diverse. These include zero
leakage rotary shaft seals used in computer disk drives, vacuum
feed throughs, and pressure seals for compressors and blowers.
Also widely available are liquid cooled speakers that use drops of
ferrofluid to conduct heat away from the speaker coils. In the
medical field, the use of a magnetic field can direct the path of
a drop of ferrofluid in the body, which allows for the directing of
drugs to a target site. 1In addition, ferrofluids can be employed
as a tracer of blood flow in non-invasive circulatory measurements.
In other areas, high Qolumes of ferrofluids are utilized in.sink—
float separation processes that use the artificial high specific
gravity imparted to a pool of ferrofluid subjected to a magnetic
field. This process is used to separate scrap metals and is also
used to sort diamonds. Ferrofluids are also being considered as a
possible candidate for ink in high-speed, silent printers.
Modeling of physical problems which involve ferrofluids

typically utilize on of three modeling approaches:

1) inviscid flow
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2) viscous flow with a symmetric stress tensor

3) viscous flow with a non-symmetric stress tensor.

Inviscid flows

This approach is utilized when there exists no shearing
stresses in the flow. This is the case when flow configurations
have no bulk motion or when the flow is irrotational (Cowley and
Rosenweig, 1967). Such problems include wave motion on a surface
and/or the study of interfacial processes.

The governing equations for these flows include:

The Continuity equation

V-u=0 (2.1a)
The Momentum equation
ou | 1 .. '
-éE+u-Vy=—FP + o MV H (2.1b)

where u is the velocity vector, y, is the magnetic permeability of
free space, P' is the modified pressure, M is the magnitude of the
magnetization of the fluid, M, and H is the magnitude of the
magnetic field vector applied to the fluid, B. The modified

pressure P' is given by

"
P*=P(p,.T) *+ by fox (V‘SL:)H,TdM+PoLMdH (2.2)

P* = P(p,T) + P, + P,

The magnetostrictive pressure is given by P,, and the fluid magneto

AS



pressure by P, .
If the flow is irrotational, the velocity can be expressed in
terms of the potential,¢, with

u =V (2.3)
Substitution of this expression for the wvelocity into the

continuity equation leads to the Laplace Equation

W¢=o (2.4)

The magnetic field is governed by Maxwell's equations, which.

are the following:

0B

a2 (2.5)

VxE-=-

where E is the electric field and B is the magnetic induction field

which is defined as

B=y, (H+ M (2.6)

and

M=(p-1)H (2.7)

where p is the magnetic permeability of the fluid.

V'D=pt (2.8)

where D is the electric displacement and p, is the free charge due

to electricity.
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92 (2.9)

va:ifl+§E'
where J, is the electric current.
Op
W, = - F£L (2.10
V-J, 3¢ )
V-B=0 (2.11)

If there is no electric field/electric current, then Maxwell's

equations reduce to:

VxH=0 (2.12)

(2.13)

It follows that with B proportional to B, or for uniform M,

V-H=0 (2.14)

Since the magnetic field is irrotational, B can be expressed

as

A7



H=-Vy (2.15)

where ¥ 1is the magnetic field potential. Substitution into

equation 2.14 yields

V2§ =0 (2.16)

Typical boundary conditions at an interface and/or free
surface include:
The Kinematic Condition
The kinematic condition relates the interface deflection to
the motion of the adjacent fluid. When the surface position
changes with time, the location of the interface can be represented

as
z=2y(x, y; t)

If a Monge function is defined by Fe(x, y, z; t)é Z - Zo(x, y; t),

then the kinematic equation at the interface is

oFe oFe

W+1_11-VFe=7F+gz-VFe=O (2.17)
Normal Force Balance

. 1 | . 1

P1+-2-p°M:1=Pz+—2-|.loM:2+OV'ﬁ (2.18)
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where subscripts 1 and 2 denote fluid properties above and below
the interface. The surface tension of the interface is denoted by
g. The outward normal to the interface is given by mn =
VFre/ | VFe|

Also, other boundary conditions which depend on the
configuration of the problem are needed. These involve constraints

on the magnetic field and fluid variables.

Viscous flows with a symmetric stress tensor

When considering viscous flows with M and B collinear, the
viscous stress tensor, T, is symmetric. A ferrofluid will always
have a symmetric stress tensor if it is superparamagnetic, which
means the solid particles instantaneously align with the magnetic
field (¥ and B are collinear). The equation for the viscous stress

tensor is given by

d 0 d
T=-Pdy+n (Elg . %‘f’ + 511“5%) (2.19)

The equation for the magnetic stress tensor is

T, = - [f:pa(%‘!),,edﬁ+% Mo H?18,, + By H, (2.20)

Flow configurations involving incompressible viscous fluids
and a symmetric viscous stress tensor are governed by the

A9



continuity equation and the conservation of momentum equation as
well as Maxwell's equations. In this case, the conservation of

momentum equation is given by

Dy _ _ q a(UM)
P5e * Ve + pg + n VP u - V[y, fo [ o 14,0 dH] (2.21)
+ BMVH

The equation assumes that the flow is incompressible and isothermal
with constant viscosity,n. Here, 0 is the temperature of the fluid
and v= p*. Also, the body force term of gravity is included in
equation (2.21) and also could be included in equation (2.1b) if so
desired.

Additional boundary conditions arise at the interface/free
surface for viscous flow problems. .These include the continuity of
the tangential velocity components at the interface and the

implementation of a tangential stress balance at the interface.

Viscous flows with a non-symmetric stress tensor

Up to this point, the magnetization M has been collinear
with the magnetic field, Jg,, which is the case in static
equilibrium. If superparamagnetism in the ferrofluid is obtained,
collinearity is an adequate assumption, because the direction of M

rotates freely within the magnetic particle. Conversely, in
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paramagnetic fluids, the particles in the fluid have a magnetic
moment that is iocked to the orientation of the particle. If g
changes direction, M responds by particle rotation, which is a much
slcwer process because it is resisted by fluid viscous-drag torque.
The result constitutes a body couple of uM x H. Vhen this body
couple 1is present, the wviscous stress tensor is no longer
symmetric.

This phenomenon occurs in several cases. For example, if a
beaker of magnetic fluid is subjected to a rotating magnetic field,
a non-symmetric stress tensor will result. In addition, any flow
that possesses vorticity and is subject to a steady magnetic field
will have some degree of antisymmetric stress present. Also, this
phenomenon occurs in cases in which a steady field is imposed on a
ferrofluid moving across a stationary flat plate. The result in
this third case is that the velocity in the fluid in the boundary
layer adjacent to the platé becomes coupled to the field. The
boundary flow is ‘rotational, tending to reorient the magnetic
particles of the ferrofluid in the magnetic field. Thus relative
rotation of particles and the carrier liquid results. However, if
the field is parallel to the plate and perpendicular to the flow,
there is no coupling, because the particles can rotate freely with
their axes parallel to the field direction.

A system may not only exchange linear momentum with its
surroundings, but it can also exchange angular momentum. The rate -
of linear momentum gained from the surroundings is accounted for by

the body force PF. In addition, the surroundings may transmit
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angular momentum through a body couple, G. A surface traction

exists

t,= AT (2.22)

per unit area of the surface, (where T is the fluid's stress
tensor), which is either accumulated within. the system, or is
~removed to the surroundings as linear momentum. The surroundings
also exert on the surface of the(system a couple g, per unit area.

Let L denote the total local density of angular momentum.

Then L, is written

L=Ixu+sa (2.23)

where r x u is the external angular momentum and g is the internal
angular momentum, or spin. The spin field describes the rotation
of the magnetic particles in the ferrofluid and the viscous fluid
that is entrained by the particles.

Coupling exists between internal and external forms of angular
momentum. The integral form of the equation balancing the total

angular momentum is

—ﬁ%fvp(a +qu)dV=fV(pG+z+ pE) dV +

(2.24)
[ lca+ 2 x £)ds
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¢, accounts for the presence of a surface-couple density acting on

the surface, and is expressed by the following:

cp=A-(Ice+Jc,+Kkc,) =A-¢ (2.25)

The expression in parentheses is the couple stress tensor ¢. This
couple can arise from viscous diffusive transport of internal
momentum.

Thus, the differential equation governing the change in total

angular momentum is

D — .
R(£+;+u)—pﬁ+zxpf+v c+ (2.26)
rx (VD) +a
where
A=eijkéiTjk
€, = +1 if ijk = 123, 231, or 312

-1 if ijk = 321, 132, or 213

0if i =3, i=%k, orj=k
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Chapter III
Computational Methods For Solving

Free Surface Flows

Free surface flows can be divided into three main areas: (lf
those concerned with wave motion on the surface, (2) bulk fluid
motion in a configuration which involves a free surface, and (3)
interfacial processes on the two-dimensional free surface itself:
Solid boundaries can further complicate the configuration, giving
rise to finite domain problems involving both free and fixed
boundaries.

Computational solutions techniques will change, depending on
whether the flow is viscous or inviscid, steady or unsteady, and
whether the analysis is linear or nonlinear.

The governing equations for free surface/interfacial flow

problems include:

The Continuity equation

% ,v.o4-
3¢ +V-pu=0 (3.1a)

or

Vu=0 (3.1b)

in the case in which the fluid is incompressible.

Al4



Conservation of Momentum equation

p(%+u'Vu)=—VP+pg+p.Vzu (3.2)

for viscous, incompressible flows. If the flow is inviscid, the

| last term on the right side of the equation is absent.

Boundary Conditions for inviscid flows
1. If the flow is inviscid, the normal velocity components at an
interface must be equated.

2. The normal force balance for free surface flows is
Ap=0V'1A (3.3)

where n is the unit outward normal to the interface, o is the
surface tension and AP denotes the difference in pressures of the

fluids above and below the interface.
P=P-pR - LV V- pgz (3.4)

onz =1+n1
where ¢ is the velocity potential obtained from uw = V ¢, and g is

the shape of the interface.

3. The Kinematic Condition

Define Fe = z - q(x,y,t), then

—— +Uu*VFe =0 (3.5)



This ensures that particles on an interface remain on the

interface.

Boundary Conditions for Viscous Flows

1. Velocity components corresponding to upper and lower regions
must be equated.

2. The kinematic condition (the same equation as for inviscid
flows) .

3. A normal and tangential stress balance must be utilized.
If the configuration of the problem is temperature dependent,'

then the Conservation of Energy equation must also be utilized.
pcp-%% =kV8O (3.6)

where @ is the temperature, k is the thermal conductivity of the
fluid, and ¢, is the specific heat of the fluid at constant
pressure. Note that contribution from viscous heating and any
potential thermal source have been neglected

These above equations illustrate in general the System which
must be solved. However, additional thermal and fluid boundary
conditions specific to the particular configuration would be needed
in order to formulate the problem properly. Once formulated, the
problem would be solved via techniques of computational fluid
mechanics.

From the literature search, a database was formed by culling

articles published in Journal of Computational Physics and

International Journal of Numerical Methods in Fluids and further
references obtained from selected journals. This database is
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included in the report as Appendix E. From these references, it
was determined that the type of computational grid used in free
surface problems can be either Eulerian or Lagrangian in nature.
In an Eulerian grid, the cells remain fixed in the domain of the
problem and fluid movement through the cells is tracked. In
contrast, Lagrangian grids have cells that move along with the
fluid so that the same cell in the mesh is associated with the same
fluid element. The choice of using either method is application
specific and both configurations are widely used.
Eulerian Methods |

It has also been discovered that Eulerian methods can be
further divided into three categories:
1. Fixed Grid Methods
2. Adaptive Grid Methods
3. Mapping Methods

In the fixed grid method, the grid does not change in the
domain of the problem. Finite difference methods have been mainly
used for fixed grids because these are predominantly utilized for
the simplest types of flow configurations. The two basic ways of
tracking the interface are surface tracking methods (Marker and
Cell) and volume tracking methods (Volume of Fluid). These methods
are detailed in Appendix A and B.

Surface tracking involves specifying a set of marker particles
on the surface. The particles move according to the governing
equations of the flow--usually the Navier-Stokes equations and the

continuity equation. In volume tracking, however, each interface

A 17



cell is speéifiedAby a fractional volume of fluid in the cell. A
function is defined that denotes which cells have fluid, which ones
are partially filled, and which ones are empty. The surface cells
are those that are adjacent to empty cells.

In general, the moving interface does not coincide with a grid
line in fixed grid methods. In this case, special book-keeping
procedures must be included in the algorithm in order to handle
this. It is difficult to calculate the position of the interface
accurately.

Some advantages to using fixed grids are:

1. It is possible for interfaces to undergo large deformations
with little loss of accuracy. |
2. It is straightforward to handle multiple interfaces.

Adaptive grid methods involve moving meshes where the motion
of the grid is linked to the deformation of the interface. They
are still considered Eulerian because the domain remains fixed.
These methods are much more versatile in that either steady or
unsteady flow can be handled. The main reasons for using adaptive
grids are:

1. The grid can be moved in the interior of the solution domain
so that local accuracy can be attained, if desired.

2. In moving boundary problems, the grid can conform to geometry
changes in the problem.

Finite elements are preferred for adaptive grids because they
are more efficient in handling complex geometrical configurations.

A disadvantage of this method is that if there are large
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distortions in the free surface, the grid can become twisted,
causing the solution to the field variables to be highly difficult.

Further exposition of adaptive grids can be found in Appendix

In the mapping method, an unknown, irregularly shaped flow
domain 1is transformed onto a fixed and regularly shaped
computational domain. By utilizing this technique, it becomes
fairly easy to obtain a finite difference mesh for which boundaries
coincide with mesh lines. The mapping function is an explicit
unknown and must be determined along with the field variables:
However, it is quite difficult to determine, in the general case,
what the appropriate mapping function is. Appendix D presents some
details on mapping methods for the specific problem of a bubble
moving in an unbounded liquid. |
Lagrangian Methods

Lagrangian methods are well suited for free surface problems
because they allow material interfaces to be specifically
delineated and precisely followed. In addition, interface boundary
conditions can be easily applied.

Lagrangian methods can be categorized in two ways:

1. Strictly Lagrangian methods
2. Lagrangian methods with rezoning

In strictly Lagrangian methods, the computation grid topology
is fixed and it moves along with the fluid. Clearly, these cases
should only be used for limited evolution times so that mesh

tangling does not occur.

Al9



A well known Lagrangian scheme of type 1 is a method proposed
by Hirt et al (1970), referred to as LINC (Lagréngian
Incompressible). This technique is used for transient two-
dimensional flow of viscous and incompressible free surface
configurations. This method employs a finite volume discretization
with quadrilateral cells. Positions, velocities, and body
accelerations are defined at the vertices. The pressures and
stress tensors are stored at the center of each cell. The pressure
of a given cell is derived by the constraint that the volume of
each cell remains constant when vertices are moved to a different’
position. As a result, a Poisson-like equation is developed.

Lagrangian methods with rezoning are introduced when the
computational mesh become severely distorted. In this case, a new
mesh is developed and information from the old mesh is transferred
to the new one. Typically, this procedure calls for a Lagrangian
phase followed by a rezoning phase where mesh points are moved to
the prescribed positions. If rezoning occurs at every time step,
the process is called continuous rezoning. However, if rezoning
occurs after many time steps, but before the mesh becomes tangled,
the process is called general rezoning.

Rezoning of the Lagrangian boundary vertices simplifies
further the treatment of strongly distorted interfaces. This
involves tangential rezoning, which equalizes the spacing of
vertices along an interface, and normal rezoning, which eliminates
the interface distortion that cannot be resolved with the employed

grid structure. Newer Lagrangian methods can track an interface
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through large distortions with the use of rezoning even with
surface tension effects included.

A further issue raised in the literature concerns the efficacy
of finite difference techniques versus finite element methods. It
is noted that the choice of method depends on the configuration of
the problem. Finite differences are preferred when fixed grids and
mapping methods are employed. Finite elements, however, are more
suited to moving boundary problems where adaptive grids are used.
Also, finite elements are more efficient when complicated

geometries of the flow exist.
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Chapter IV

Conclusions and Recommendations

The combination of the topics of ferrohydrodynamics and free
surface fluid dynamics proves to be highly relevant to commercial
research applications. There also exists a considerable amount of
new computational methods for solving free surface fluid mechanics
problems, which could be utilized in ferrohydrodynamic
applications. ‘

The area of ferrohydrodynamics is a relatively new area of
fluid mechanics. Use of ferrofluids allows for control of the
fluid configuration by the applied magnetic field. This has both
current and potential applications in a terrestrial environment as
well as a microgravity environment.

It is recommended that future work in this area focus on the
formulation of specific research problems which are scientifically
important and whose results would be of interest to industry.

It is anticipated that future proposals will be written in

this area.
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Appendix A

The Marker and Cell Technique

This method is used for problems involving time dependent
motion of viscous, incompressible fluids in a two-dimensional
configuration. The fluid can be bounded in part by walls of an
irregular box or by lines of reflective symmetry. Initial and
boundary conditions are supplied.

The solution methodology utilizes primarily finite difference
approximations applied to Naiver-Stokes equations. The dependent.
variables are pressure and two velocity components.

The finite differences apply to space and time. The region is
divided into small rectangular cells where field variables are
given by single, average values. Time changes are represented by
a sucession of field variables separated by small increments of
time.

The complete velocity field in known at the beginning of the‘
cycle. The coordinates of the marker particles are known (these
show which regions have fluid and which do not). The pressures are
found such that the rate of change of velocity divergence vanishes
everywhere. The two components of acceleration are found,
multiplied by time, incremented per cycle, and the change in
velocity is added to the old values. The marker particles are
moved according to the velocity components. Adjustments are made
for passing marker particles across cell boundaries( Velocity

modifications are made when a cell, previously full, is emptied, or
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vice versa. The marker particles do not participate in the
calculation, but they do show fluid element trajectories and
relative position of £fluids.

The equations utilized are

Continuity

du ov _
.a_x+3)—’—0 (A.1)

and

Conservation of Momentum

ou , du® , duv , OP _
%+W+_a7+.é;-v(v3u)+gx (A.2a)

where, here, P is the ratio of pressure to constant density. The
fluid is divided into small regions with local fiéld variables.
They are given indices i and j which count cell center positions
along the horizontal and vertical directions.
Cell boundaries are labeled with 1/2 integer values of
indices. The rectangular cells have dimensions of 8x and 8y.
Superscripts are used to number the time cycle and 8t is the

time increment per cycle.
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The finite difference approximations for the continuity and

momentum equations are

+1 2_ 2
4 (ug )%= (upg, )%+ (ug s 5 1) (Ve ga1)

5t ( )(bx
U, 1 ,,1)\VvV, 1 .1
1‘-511-5 1—2-:13

8y
*Ui2,y7 20y (A.3)

_ Oetird) Vadiag) ” Crgsg) Wig gy
- 3x
(Vi,'j)z - (‘Q,jq)z
8y
Viu,j#% + V1-1,j¢%

*y 8x2
+ Vi,j-%-z Vi,j#-i (A.4)

2)
dy?
+ P1,7 = Py g
8y

-2 Vi,j0—;

Vil
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Define

(U,,1 ,-U,_1,) (V, ;,a -V, . 1)
i AN SR (A.5)

0x oy

So the continuity equation is

Di,j= 0 (A.6)

From the momentum equations we obtain

D{"} - Dy 4 --0, - Pioy,g* Py, 2Py
3¢t 1.4 8x?
_ Py 4t Py -2 P
dy? (A.7)
oy (Deeag *Diay* 2Dy
- 8x?
4 DPi,gs1 * Dy, gy — 2 Lh,j)
dy?

n+l

We want D; y to disappear for every cell at the end of a cycle.

This leads to

Prog * Puag "2 Py, Puga * Py "2 805 oL p 0 (as)
dx3 dy? ‘
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where

R, ;= - Thd
117011 " 3¢ V! ax? (a.9)

and

Qi,j = (Uiq, )2 + (U.i-l j)z -2 (Ui,j)z + (Vi,jq)z + Vilj_l)z -2 Vi,j
2{(U;,2 ,2)(V, 1 1) + (U_2 . 1)(V,_1 , 1)]

[( ) ( ) ( ) ( )]
2 -U,. 1 1 V,.1 + (U V
+ i*—z’j*"i 1"2"-"% 1'%’1*% 1'%'1"21:

0x 8y

(A.10)

First, R;; is found for every cell, then P, ; is obtained for

the cells. PFinally, the new velocity components are found from the
momentum equation.

To account for the free surface, the new position of the
surface must be calculated. This calculation can be done because
of the cbordinate system of marker particles which follow the
motion of the elements throughout the fluid. The marker particles
are placed in cells with fluid, and they move with the 1local
velocity. Cells with no marker particles are said to have no fluid
in them and cell with marker particles that are adjacent to empty
cells are called surface cells.

Boundary Conditions

There two types of walls: free slip and no slip walls. For

a free slip wall, normal velocity reverses and tangential velocity

remains the same. However, for a no slip wall, the opposite is
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true. Also, in a free slip wall the pressure is

P/ =P+ gx bx (A.ll)

for a vertical wall, and

A3
1]

Pz g, dy (A.12)

for a horizontal wall.

For a no slip wall,

P'=p +tg, 8xz (2;::1) (A.13)
for a vertical wall, and
P'=P g, by 1(2;;1) (A.14)

for a horizontal wall.

At the free surface, D = 0 for surface cells. The pressure
boundary condition is derived from either the disappearance of the
normal stress component or from equating it to the appiied external

pressure.



Appendix B

The Volume of Fluid (VOF) Method

This method involves the introduction and use of a function F
that has a value of one at any point occupied by a fluid and zero
otherwise. The average value of F in a cell represents the
fractional volume of the cell occupied by the fluid. Cells with
values between one and zero must contain a free surface. The
normal direction of the boundary lies in the direction in which F
values change most rapidly.

The time dependence of F is governed by the equations

oF ,  OF

—— —_—
I u \ 4

OF _
I =0 (B.1)

dy

F moves along with the fluid, and it is the partial differential
equation analog of the marker particles. 1In this-case, F is a flag
identifying cells containing flﬁid.

The method follows a region of fluid rather than surfaces,
has minimum storage requirements, and there are no problems with

intersecting surfaces.

If the flow is incompressible, then the conservation of mass

equation

ou . dv _
x +Fy. 0 (B.2)

must be implemented. If limited compressibility is desired, then
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1 opP du ov

'ngﬁ;* B + =0 (B.3)

-
will hold, where C is the speed of sound in the fluid.

For specificity, consider the conservation of momentum
equation to be given by the Naiver-Stokes equations.

Discrete values of dependent variables, including F (the
fractional volume of fluid) are used in the VOF technique. The
free surface cells are the ones which contain a nonzero value of F
and have empty cells neighboring them.

There are three steps for advancing a solution through one
increment of time, 8t. First, approximations of the Naiver-Stokes
equations compute the first guess for new time level velocities
using initial conditions or previous time-level values for all
advective, viscous, and pressure accelerations. Secondly, the
pressures are adjusted in each cell and consequent velocity changes
are added to velocities computed in the first step. This is done
to satisfy continuity. Finally, F must be updated to denote new
fluid configurations. These steps are repeated to advance a
solution through any desired time interval. At each step, boundary
conditions are imposed at all mesh and free surface boundaries.

This method improves on the old MAC method by using a more
accurate form of the continuity and momentum equations. In MAC,
continuity and momentum equations were combined so that the
convective flux term could be written in divergence form (Vu u
instead of w - Vu ). This ensured conservation of momentum in the
difference approximations. This does not, however, ensure accuracy
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in a variable mesh. It is better to use the form for advective
flux.

An iterative process is used to adjust velocities and
pressures in each cell in order to satisfy continuity. In each
cell with fluid, the pressure is changed to either push out fluid
or to bring it into the cell. This must be dome in a number of
passes through the mesh. In cells containing a free surface, the
pressure is assumed to be specified. The surface cell pressure is
set equal to the value found by linear interpolation between the
pressure at the surface and a pressure in the fluid. '

In the VOF technique, the boundary of the surface cells is
approximated by a straight line through the cell. The slope of the
line is determined and it is moved across the cell to a position

that intersects the known amount of fluid in the cell.

A31



Appendix C

Adaptive Grid Methods

Adaptive grid methods involve moving meshes where the motion
of the grid is linked to the movement of the interface. To
demonstrate this process, consider the problem solved by Cuvelier
and Driessen (J. Fluid Mech., 1986) in&olving the thermocapillary
free boundaries in crystal growth. The governing equations are the
Naiver-Stokes equations coupled with the heat equation. Boundary
conditions include the normal and tangential stress conditions,'
continuity of thermal flux, conservation of wvolume, and the
condition that the normal component of velocity is zero at the free
surface. The goal of this problem is to find the shape of the free
boundary, ¢, a velocity vector, u, and a pressure field that
satisfies all of the equations describing the configuration. The

boundary condition that is relaxed is

(oh Re)2 g, == - B, ¢ : (C.1)

sl

which is the normal force condition. Oh is the Ohnesorge number,

equal to

Oh = _F_1
(Po Yo L)?

Re is the Reynolds number, equal to

Lup,
m

Re =
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Bo is the Bond number, equal to

g py L?
Yo

Bo =

An auxiliary problem is defined by finding the solution
{u,p, T} satisfying all of the remaining boundary conditions. The
relaxed boundary condition is used to adjust the function ¢.

The function ¢ will now be compared with the free boundary of
the static. problem, ¢.. If ¥ = ¢ + ¢., then ¥ satisfies the

following equation

(—2 __y/+B® -6
— ¥ = (C.2)
[1+ ¢% 7
¥ (0) = ¥(1) = 0
with G given by
G = - (Oh Re)? (a,(pyu)) - f: 0, (pyu) dx;
1 1 ¢ - o, (C.3)

"R TR,

1+ 717

The algorithm is based on the following: the free boundary ¢
is iteratively approximated by a sequence ¢°, ¢!,...¢' defined by
(1) ¢°=¢" the static free boundary

(ii) assume ¢!, ¢?, ... are known
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(iii) solve the auxiliary problem with ¢*; the solution is denoted
by {u', p', T'} |
(iv) Solve problem (2) with G! = G(¢!,ut ,p* ,T)

The solution is denoted by ¥'.

(v) ¢ = ¢. + ¥

The auxiliary problem is nonlinear, so it must be solved

iteratively. The Newton Raphson method is used to linearize the

nonlinear terms.
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Appendix D
Mapping Methods

Mapping methods make it possible to transform an irregularly
shaped flow domain into a fixed, regularly shaped computational
domain. This makes it easy to implement a finite difference mesh
for which the boundaries coincide with a mesh line. This method
also maintains a sharp resolution of the interface.
The general algorithm for mapping methods is as follows:
1. The governing equations of the flow are introduced and

boundary conditions are implemented.
2. An equation for the surface is set up. This is regarded as

an unknown function.
3. The equations are non-dimensionalized.
4. The coordinate transformation occurs. This solves the
problem of the difficulty of having an implicit unknown function
of the surface. It also insures that the boundary lies on a
coordinate line. The governing equations and the boundaries are
solved under the assumption that the surface is now a known
function. Next, the pressure is restored on the basis of the
calculated stream function of velocity function. When all of the
other functions are known, the calculation of the original free
surface is the final step. |

An example of this method is given by Christov and Volkov
(J. Fluid Mech., 1985) in their study of the steady viscous flow

past a stationary, deformable bubble.

A 35



Consider an unbounded volume of viscous incompressible liquid
having a velocity U. at infinity. There is a resting bubble in
the flow.

The 2-D Naiver-Stokes equations in spherical coordinates are
introduced in a stream function-vorticity formulation.

The first boundary condition states that at infinity, liquid

moves with a uniform velocity U. in the z direction.

P(r, 6)-—% U, r? sin?%0 (D.1la)

£-0 at r-= (D.1b)

The other boundary conditions are

.1 2 gin2g - IV
Y(r, 0) > U, r? sin20 41|:V.(1 + cosf) x

(D.2)
f1- exp(fg—'(l - cos@))]

§(r, 9)*-5“—‘,:;-8-1‘?(1+—I—V6-)exp[-rv£'(l-cosﬂ)] (D.3)

g = acceleration due to gravity, V = volume of the bubble

r = R(0)
(D.4)
Let the equation of the surface be
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Next, the equations are non-dimensionalized. Because r =
R(0) is unknown, many obstacles arise in solving the problem. To
overcome this problem, the coordinate transformation takes place.

The transformation used to simplify the problem is

1
(s}

r=mR(O) , 6 (D.5S)

These are substituted into all the equations. A Finite

difference method can now be used to solve for the function R(0).
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Appendix E

Database of Articles Collected
Pertaining to Free Surface Flow

Free Surface Flow During the Filling of a Cylinder,

Abdullah, Z. and Salcudean, M. International Journal for Numerical
Methods in Fluids. vol. 11, p. 151-168, 1990.

Key words:

Free surface flows Filling of molds Flow Visualization
Mathematical modeling Control wvolume method

A High Resolution Godunov-Type Scheme in Finite Volumes for the 2D
Shallow-Water Equations, Alcrudo, Francisco and
Garcia-Navarro, Pilar. International Journal for Numerical Methods
in Fluids, vol. 16, p. 489-505, 1993.

Key words:

Two-dimensional modeling Finite volumes MUSCL approach

Upwind differencing

Numerical Solution of the Generalized Serre Equations with the
Maccormiack Finite Difference Scheme, Antunes Do Carmo, J.S, Seabra
Santos, F.J. and Almeida, A.B. International Journal for Numerical
Methods in Fluids, vol. 16, p.725-738, 1993.

Key words: :

Serre equations Maccormack's Method Solitary Waves

Sudden releases

Flair: Flux Line-Segment Model for Advection and Interface

Reconstruction, Ashgurz, N., and Poo, J.Y. Journal of
Computational Physics, vol. 93, p. 449-468, 1991.
Key words:

Cell volume fraction approach Line segments Capillary forces

Adaptive Zoning for Singular Problems in Two Dimensions
Brackbill, J.U. and Saltzman, J.S. Journal of Computational
Physics, vol. 46, p. 342-268, 1982.

Winslow's method Adaptive mesh

A Continuum Method for Modeling Surface Tension, Brackbill, J.U.,
Kothe, D.B., and Zemach, C. Journal of Computational Physics, vol.
100, p. 335-354, 1992.

Key words:

Surface tension Fluid interfaces Continuum method
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Modelling the Initial Motion of Large Cylindrical and Spherical
Bubbles, Bugg, J.D. and Rowe, R.D. International Journal for
Numerical Methods in Fluids, vol. 13, p. 109-129, 1991.

Key words:

Bubbles Finite difference 1Initial motion

Application of a Vortex Method to Free Surface Flows

Chen, Liyong and Vorus, William. International Journal of Numerical
Methods in Fluids, vol. 14, p. 1289-1310, 1992.

Key words:

Vortex method Free surface flows Body-wave interactions

Numerical Investigation of the Steady Viscous Flow Past a
Stationary Deformable Bubble, Christov, C.I. and Volkov, P.K.
Journal of Fluid Mechanics, vol. 138, p. 341-364, 1983.

Key words:

Moving Boundaries Coordinate transformation Steady Viscous
Deformable bubble

Explicit Streamline Method for Steady Flows of Non-Newtonian
Matter: History Dependence and Free Surfaces, Chung, S.G. and
Kuwahara, K. Journal of Computational Physics, wvol. 104, p.
444-450, 1993.

Key words:

Finite difference method Non-Newtonian matter History dependence
Free surface

An Orthogonal Mapping Technique for the Computation of a Viscous
Free-Surface Flow, Cliffe, K.A., Tavener, S.J., and Wheeler, A.A.
International Journal for Numerical Methods in Fluids, vol. 15, p.
1243-1258, 1992.

Key words:

Free surface Viscous flow Finite element method

Orthogonal mapping

Thermocapillary Free Boundaries in Crystal Growth, Cuvelier, C.,
and Driessen, J.M. Journal of Fluid Mechanics, wvol. 169, p. 1-26,
1986.

Key words:

Two-dimensional flow Thermocapillary flow Steady Crystal
growth Finite element method
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A Newton's Method Scheme for Solving Free-Surface Flow Problems,
Dandy, David S. and Leal, Gary L. International Journal for
Numerical Methods in Fluids, vol. 9, p. 1469-1486, 1989. '

Key words:

Bubble Intermediate Reynolds number Newton's method

An Efficient Surface-Integral Algorithm Applied to Unsteady Gravity
Waves, Dold, J.W. Journal of Computational Physics, vol. 103, p.
90-115, 1992.

Key words:

Unsteady motion Two-dimensional flow Cauchy's integral theorem
Numerical instabilities

Three-Dimensional Streamlined Finite Elements: Design of Extrusion
Dies, Ellwood, Kevin,R, Papanastasiou, T.C. and Wilkes, J.O.
International Journal for Numerical Methods in Fluids, vol. 14, p.
13-24, 1992.

Key words:

Streamlined Finite elements Extrusion Free surface flows

Die design Three-dimensional flows Three-dimesional finite
elements

Consistent vs. Reduced Integration Penalty Method for
Incompressible Media Using Several 0ld and New Elements,
Engleman, M.S. and Sani, R.L. International Journal for Numerical
Methods in Fluids, vol. 2, p. 25-42, 1982.

Key words:

Penalty Method Incompre551b1e flow Reduced quadrature

Finite elements

Finite Element Method for Time-Dependent Incompressible Free

Surface Flow, Frederiksen, C.S. and A.M. Watts. Journal of
Computational Physics, vol. 39, p. 292-304, 1981.

Key words:

Finite element method Time dependent flow Vertically moving

plate Circulation in rectangular channel

Flux Difference Splitting for Open-Channel Flows,

Glaister, P. International Journal for Numerical Methods in Fluids,
vol. 16, p. 629-654, 1993.

Key words:

Shallow-water equations Subcritical and supercritical flows
Open channels



A Finite Difference Technique for Solving the Newtonian Jet Swell
Problem, Han, Chin-Tsu, Tsai, Chin-Chin, Yu, Tsai-An, and Liu,
Ta-Jo. International Journal for Numerical Methods in Fluids, vol.
15, p. 773-789, 1992.

Key words:

Finite difference method Newtonian jet swell

Lagrangian Finite Element Method for Free Surface Navier-Stokes
Flow Using Fractional Step Method, Hayashi, Masahiro, Hatanaka,
Katsumori, and Kawahara, Mutsuto. International Journal for
Numerical Methods in Fluids, vol. 13, p. 805-840, 1991.

Key words: :

Finite element method Lagrangian description Fractional Step

Navier-Stokes equations Linear interpolation Free surface

Numerically Induced Phase Shift in the KdV Soliton

Herman, R.L., and Knickerbocker, C.J. Journal of Computational
Physics, vol. 104, p. 50-55, 1993.

Key words:

KdV equation Finite difference Phase shift Perturbation theory

Vol.ume of Fluid (VOF) Method for the Dynamics of Free Boundaries,
Hirt, C.W. and Nichols, B.D. Journal of Computational Physics, vol.
39, p. 201-225, 1981.

Key words: _

Fractional volume of fluid Incompressible Finite difference

A Lagrangian Method for Calculating the Dynamics of an
Incompressible Fluid with Free Surface, Hirt, C.W., Cook, J.L., and
Butler, T.D. Journal of Computational Physics, vol. 5, p. 103-124,
1970.

Key words:

Transient flow Viscous Incompressible Lagrangian coordinates

The Effect of Surface Contamination on Thermocapillary Flow in a
Two-Dimensional Slot, Homsy, G.M. and Meiburg, E. Journal of Fluid
Mechanics, vol. 139, p. 443-459, 1984.

Key words:

Insoluble surfactants Steady thermocapillary flow

Interfacial tension Lubrication theory
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The Numerical Solution of the Thin Film Flow Surrounding A
Horizontal Cylinder Resulting from a Vertical Cylindrical Jet,
Hunt, Ronald. International Journal for Numerical Methods in
Fluids, vol. 14, p. 539-556, 1992.

Key words:

Thin film flows Free boundary problems Parabolic equations

Numerical Methods for Tracking Interfaces, Hyman, James M. Physica
12D p. 396-407, 1984.

Key words:

Front tracking Interface tracking Surface tracking Volume
tracking

Numerical Solution of the Eulerian Equations of Compressible Flow
by a Finite Element Method Which Follows the Free boundary and the
Interfaces, Jamet, P. and Bonnerot, R. Journal of Computational
Physics, vol. 18, p. 21-45, 1975.

Key words:

Eulerian equations Compressible flow Finite elements

Finite Element Method for Shallow Water Equation Including Open
Boundary Condition, Kodama, Toshio, Kawasaki, Tomoyuki, and
Kawahara, Mutsuto. International Journal for Numerical Methods in
Fluids, vol. 13, p. 939-953, 1991.

Key words: ,

Finite element method Shallow water equations Open boundary
Parameter identification Tokyo Bay

A Total Linearization Method for Solving Viscous Free Boundary
Flow Problems By The Finite Element Method, Kruyt, N.P., Cuvelier,
C., Segal, A., and Van Der Zanden, J. International Journal for
Numerical Methods in Fluids, vol. 8, p. 351-363, 1988

Key words:

Navier-Stokes equations Finite element method Viscous flow
Free boundary flow

Turbulent Free Surface Flow Simulation Using a Multilayer Model,
Lai, C.J. and Yen, C.W. International Journal for Numerical Methods
in Fluids, vol. 16, p. 1007-1025, 1993

Key words:

Multilayer model Free surface Recirculating flow

Curvilinear co-ordinates Non-staggered grid Depth correction
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Variational Formulation of Three-Dimensional Viscous Free-Surface
Flows: Natural Imposition of Surface Tension Boundary Conditions,
Lee-Wing Ho and Anthony T. Patera. International Journal for
Numerical Methods in Fluids, 1991.

Key words:

Curvature Finite Element method Free surface flow
Navier-Stokes equations Spectral element method Surface tension
Three-dimensional Variational form Viscous incompressible Zlow

Die Design: An Implicit Formulation for the Inverse Probler,
Legat, Vincent, and Marchal, Jean-Marie. International Journzl for
Numerical Methods in Fluids, vol. 16, p. 29-42, 1993.

Key words: -

3D extrusion Moving boundaries Die design Remeshing

Finite elements Free surfaces

An Efficient Three-Dimensional Semi-Implicit Finite Element Scheme
for Simulation of Free Surface Flows, Li, Y.S. and Zhan, J.M.
International Journal for Numerical Methods in Fluids, vol. 16, p.
187-198, 1993.

Key words:

Three-dimensional Finite Element Free surface flows

A General Numerical Method for the Solution of Gravity Wave
Problems. Part 1l: 2-D Steep Gravity Waves in Shallow Water,
Liao, S.J. International Journal for Numerical Methods in Fluids,
vol. 12, 727-745, 1991.

Key words

Non-linear gravity waves Velocity potential

Transformation from non-linear to linear

Finite Element Simulation of Flow in Deforming Regions,

Lynch, Daniel and Gray, William, Journal of Computatlonal Physics,
vol. 36, p. 135-153, 1980.

Key words :

Finite element technique Multidimensional flow ‘Moving boundaries
Galerkin's method

A Finite Element Analysis of A Free Surface Drainage Problem of Two
Immiscible Fluids, Masatake Mori and Makoto Natori International
Journal for Numerical Methods in Fluids, vol.9, p. 569-582,
1989.

Key words:

Flow analysis Free surface problem Finite element method
Blast furnace
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A Consistent Boundary Element Method For Free Surface Hydrodynamic
Calculations, Medina, Daniel E., Liggett, James A., Birchwood,
Richard A., and Torrance, Kenneth E. International Journal for
Numerical Methods in Fluids, vol. 12, p. 835-857, 1991.

Key words:

Boundary element Free surface Hydrodynamic

A Computational Method for Simulating Transient Motions of an
Incompressible Inviscid Fluid with a Free Surface, Nakayama,
Tsukasa. International Journal for Numerical Methods in Fluids,
vol. 10, p. 683-695, 1990.

Key words:

Boundary element method Taylor series expansion Water waves

The solution of Viscous Incompressible Jet and Free-Surface Flows
Using Finite-Element Methods, Nickell, R.E., Tanner, R.I., and-
Caswell, B. Journal of Fluid Mechanics, vol. 65, p. 189-206, 1974.
Key words:

Finite element Viscous Incompressible Steady flow

Galerkin formulation Stress singularities

Two-dimensional Sloshing Analysis By Lagrangian Finite Element
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SECTION B



Interface Response of the Finite Length Liquid Column
to Longitudinal Forcing
and
Interface Stability of the Infinite Liquid Column

to Forcing Normal to the Column Axis



Axial forcing of an inviscid finite length fluid cylinder

M. J. Lyell

Department of Mechanical and Aerospace Engineering, West Virginia University,

Morgantown, West Virginia 26506-610]

(Received 8 August .1990; accepted 7 March 1991)

Current interest in microgravity materials processing has focused attention upon the finite
fluid column. This configuration is used in the modeling of float zones. In this Brief
Communication, thé incompressible inviscid finite length fluid column is subjected to an axial,
time-dependent disturbance. The response of the fluid system and the resulting interface
location are determined via Laplace transform methods.

The presence of vibrations will affect the fluid dynam-
ical environment in which materials processing occurs. Ex-
periments performed on Spacelab D1 investigated the ef-
fect of g-jitter on the stability of finite fluid columns. It was
found that long columns are particularly sensitive to resid-
val accelerations and impulses.' The analytica! effort has
been concerned with the axial forcing of slender liquid
bridges.”® In these analyses, a one-dimensional “slice”
model has been used. Such a restriction is invalid in the
situation in which the liquid column is not slender, yet
whose height and radius are within the static stability lim-
its for fluid columns. The work of Sanz®’ has addressed the
problem of the unforced modes of oscillation of a nonslen-
der finite fluid column.

In this work, the problem of the axially forced finite
fluid column is investigated, with the axial forcing consid-
ered periodic in time. The analysis is linear, inviscid, in-
compressible, and axisymmetric. It utilizes Laplace trans-
form techniques. The direction of the imposed body force
is taken parallel to the longitudinal axis, and in the nega-
tive ¢, direction. The undisturbed column is cylindrical,
and is surrounded by an inert gas.

Quantities will be nondimensionalized as follows:

R =1x, w,"rt'=t. Rwdi=u, pw}Rzﬁ'=p. (1)

and R is the radius of the column. The forcing frequency is
w;. Pressure and velocity fields are indicated by p and u,
respectively. The density of the column is given by p. A
tilde indicates dimensionless quantities.

- Equations are to be rendered nondimensional through
the use of (1). This results in

Veu =0, (2a)

du o

37+u-Vu= —Vp—Frg(t)e, (2b)
and the nondimensional interface equation is

fe=r—1—=Fr f(z1) (2¢)

with f(z,t) representing the functional form of the pertur-
bation to the interface. The tildes have been dropped for
convenience. The nondimensional parameter Fr is a
Froude type number, and is given by (Go/Rw}). 1t is taken
to be a small parameter. Pressure and velocity are ex-
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panded in terms of Fr about a state of zero mean motion.
This results in the linearized system of governing equations

Veu =0, {3a)
3(Vé) .
5 = — VP —slne, (3b)

with u = Vé. For definiteness, g(¢) is chosen to be sin{r).

The boundary conditions at the upper and lower disks
are that the normal component of the velocity be zero.
Also, an anchored triple-contact line assumption at both
disks will further restrict the interface behavior. These are

d¢ d¢

=z =%z =0, (42)
= 1=-A

S(A)=f(— A =0. (4b)

The constant A acts as a slenderness parameter, and is
given by (L/2R). As the fluid is incompressible, volume
must be conserved, and so

A
f Sf(z,1)dz=0. (4c)
—A
Because of axisymmetry
0 w
u| =0 & =0. (4d)
r=0 r=0

At the fluid column/inert gas interface, both the kine-
matic and normal force balance conditions must be im-
posed. These are given by

L, w0
() (1) o

and are evaluated on r =1 (Ap indicates the change in
pressure across the interface). The nondimensional param-
eter By is given by (pR’w}/y). Gamma denotes the surface
tension. Note that Egs. (4¢) and (4f) have been linearized
[and are at O(Fr)).

Both the system of equations (3) and the boundary/
interface conditions (4) are Laplace-transformed with re-
spect to time. The time dependence is replaced by a pa-
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rameter 5. The initial velocity perturbation is taken to be
zero. The initial position of the interface is taken to be that
of the undisturbed cylindrical column £, = 1. This is real-
istic for the case of a zero mean gravity, which is the case
in the present investigation. This yields

Uz =P —[1/(2 +1)]e, (%a)
SF=~a—’. (55)

The upper-case representation indicates the Laplace trans-
formed variables.
The velocity potential is found to be

S(rzs)= 2| A (Mo kor)coslk (z = A)), 6)

with k, = (n7/2A). Here, 4,(s) indicates the unknown

coeflicients and J, represents the modified Bessel function.
Use of the kinematic condition yields

sF= Y ALk (k)coslk,(z+A)] on r=1. (7a)
aml

However, use of the normal force balance condition yields
a forced ordinary differential equation for F(z5) at r= 1,

g+ F= ((?%Ti) 2+ BoK(s)

+ Z. BysA($)]olk)cosk,(z + A)).
(™)

Note that s appears as a parameter. Also, K(s) is a con- -

stant of integration. The solution of Eq. (7b) is
F(z,3) =a(s)cos(z) + b(s)sin(2)

+ BoK(s) + (z?%) 2

el sA(sMo(k,)cos{k(z+ A)]
+2 "’( YA ) '

(7e)

Both forms given for F(z.5) must be consistent, and

must allow for the remaining boundary conditions to be

satisfied. In order to determine the forms of the coefficients

*a(s)" and “b(s)," it is advantageous to expand the func-

tions sin(z), cos(z), and (2) im terms of cos{k,.(z
+ A)]. These are found in the literature;*’

Az =[2sin(AV/ANS/[(1 = ki) ksod (ksr)
= Boly(kya)$))a(s).

2cos(A) " -2 s
toer=| (55 w0+ () ()

-k, )
X (—_krz:—_")] (Dz,.-|)-'.

mel

(8)

(9

with

Dl.olgl(l -kzz-.|)kl.0lll(kho|)
= Bolg(kym . 1)

The conservation of volume requires that
a(s)[sin(A)/A] + BoK(s) =0. (10s)
Finally, the anchored triple-contact line condition is

 imposed. This yields a forced set of algebraic equations in

the coefficients “a(s)" and “b(s).” of the form

(all)a(s) + (al2)d(s) =cl, (10b)

(a21)a(s) + (a22)b(s) =c2,
with all1=a2l, a22= — 412, and c2= — cl, and with
sin(A) 2sin(A)
y +2 ( n )
x o  Bololkia)
aag ({1~ ;;.)Dzul )

(al2)= - sin(A) + & (2 °°;(M)

< Bolo(K1m 1)
m=0 [(l-ﬂ;ol)olnoll '

(all)=cos(A) -

(10d)

X (10e)

2
(cl)=((73:°|—)') A [l + (11)
S Bololkyn 1)
x .go (;z.unz-u)] ' (10

and with

Dy=[ky(1 = KD, (k,) - Bolo(k,)$).
It is found that

a(s) =0 and b(s) =(cl/a12). (10g)

Recall that the expression for 4,, contained the factor
a(s). Thus 4,,, will be identically zero, and only the odd
modes will contribute to the motion. This reflects the na-
ture of the forcing, i.e., “2” is an odd function with respect
to the mean plane between the disks.

The form of the Laplace-transformed perturbation in-
terface F(z,5) is given by

. 1
F(zs)=b(s)sin(2) + By (m) 2z

+ i $A o 1(9) Bofy( Ky . 1 )OS [ K20 o 1 (2 +A)]

u-kinol) ’
(an

with the 4,,, ., as previously determined. Taking the in-
verse Laplace transform of Eq. (11) will yield the expres-
sion for f(z.1).

In order to gain insight into the form of the perturba-
tion interface in the presence of a periodic body force di-
rected along the longitudinal axis of the column, the series
will be severely truncated. Only one term in each series will
be retained. The inversion will then be done analytically.

m=0

(10c)



e T

g 01ed -
0.61 RN
0.011 < AN
0.609 i NN
0.0a7 ’ .
0.0G5 {
0.0011 \ —_——
0.061 L N ~—" ~
-0.061 -~ ——
-6.003
-0.005 \ /
-0.007 AN 7'
-0.009 N .
-0.011 N
-0.013
-0.015 ey ———r———tr—r—1——1—+—
-1.0 -08 0.6 -0.4 -0.2 00 02 0.4 06 0.8
z
-==-e 225

T —03

——-1.25

FIG. t. Deformation f(z,1) versus time. for time = 0.25, 1.25, 2.25, 3.25.
B, =0.50 and A =0.75,

Then

S(z,0) =sin(2)b(t) + By(z)sin(z) + cos{k,(z + A)]
y ( —~2cos A

l b inh —7))d
m) (a J; (r)sinhfa(r — 7)])dr

2B,
+bm) +005[kn(z+/\)l(m)

x( f' sin(7)sinh[a(t —7))dr+ a sin(t)) ,
° (12)
with

al=

(kl(l‘kf)ll(kl)

= -lb .
By ) S0= )

, and B*6*=a’

s=li+ (ZcotanA
B Al - Z|))

The inverse Laplace transform for F(zs) [see Eq.
(11)] was taken numerically for different values of (By,A).
Graphical results are presented in Fig. 1. for the case
(B, =05, A=075) at successive (nondimensional)
times of 0.25, 1.25, 2.25, and 3.2S. The maximum value of
f(z,1) at each of these times is 0.0019, 0.0145, 0.0131, and
0.002, respectively. The value of the parameter A indicates
that the column is not slender. Note the sinusoidal form of
the interface deformation. This is observed for the case of
the axially directed forcing.!

The equation for F(z,s) [Eq. (11)] can be viewed as a
transfer function. Setting s=iw, values of F may be plotted
in frequency space. This is done, and the results are shown
in Fig. 2 for A =2.60, B;=1.00, and A =125 with
By =1.00 and 2.00. The curve for the slender column
(A = 2.60) may be compared with a similar type graph
found in Ref. 4 (Fig. 3 in that work). It is seen that a spike
in both graphs occur about the resonant frequency at
o = 0.34. The long column is shown to be sensitive to
lower-frequency disturbances (w < 1), as indicated by the
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FIG. 2. Transfer function F(z*,0), 2* = — A/2 for the cases (A = 2.60.
B,=1.00), (A =125 B;=1.00), and (A =125, B, =200).

relatively large functional values [for F(z,5)] in this work
and in Ref. 4. Note that the numerical value of F(z*,w)
(with z* = — A/2) compares well with that of the defined
transfer function perturbation amplitude in Ref. 4.

It was found that nonslender columns are not similarly
sensitive to these low-frequency disturbances. This is
shown graphically in Fig. 2 for A = 1.25, B, = 1.00, and
By = 2.00. Note the low numerical values of F(z*w) as
compared with that of the case A = 2.60, B, = 1.00.

The work of Sanz® determined the nondimensional
natural frequency @, of the fluid column for a range of A
values. In that work, time was nondimensionalized by
(pR3/¥7)"2. It can be shown that this results in the follow-
ing equivalence (w}/wl,) = By(1/ ®1x).

The perturbation interface was determined (numeri-
cally) in a number of cases for which the (By,A) values
corresponded to eigenvalues of the unforced system. In
these cases, the inviscid finite length fluid column was
found to be very sensitive to forcing.

Various orders of magnitude for the vibration level
have appeared in the literature.® The range of interest of
parameter B, can be constructed for fluid cylinders of a
given density and radius. The interface shape can be ob-
tained for specific values of By and A.
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Fluid Column Stability in the Presence
of Periodic Accelerations
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Introduction

HE foat z0n¢ configuration is used in crystal growth. It
may be modeled as a liquid column held by susface ten-
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1on forces beiween two end 3k Un the case of crystal
growth, the therma! and solutal fields as well as those of
velocity and pressure are needed 1o characterize the physics. A
compeiling reasan for crystal growth experiments ia & micro-
gravity environment such as that onboard the Space Shuttle is
that buoyancy forces are greatly reduced.' How ever, this envi-
ronment is not quiescent due to the presence of impulse type
disturbances (rom small thruster firings as well as those lrom
periodic vibrations. Given certain “‘environmental** condi-
tions, such as the presence of a periodic accelerazion field, it is
possible that a fluid dynamical instabulity would develop. This
would adversely effect the crystal growth.

The crystal growth environment cannot be separated from
the fluid dynamiss of the liquid column. This latter topic is
the focus of the present work. The question of column inter-
face stabdility in the presence of a periodic acceleration field
having a component normal to the longitudinal axis of the
isotheemal cylinder is investigated. The fluid column is taken
to be infinite in length. Floquet theory is used in the stability
investigation.

Previous work has determined the natural osciilations of the
liquid column. This work was done first for the case of the
infinite column? and later for the finite length case. In the
latter work, both axisymmetric and nonaxisymmetric oscilla-
tions were considered.’¢ Results for the infinite length case
were found 10 be good approximations to those for the finite
length column, both numerically and with regard to trends.

Interface behavior of the finite length liquid column in the
presence of time-dependent forcing has been investigated for
lht case in which the forcing was panllel to the longitudinal

axis of the column.’® The investigations coasidered the
colm behavior subject (0 a sin(r) forcing for both the invis-
cid case of genersl aspect ratio (withia static stability limits?)
853 the viicous case in the slender columa Limie.*

The problem of interface sability of the fluid columa in the
presence of a periodic acceleration field that has & component
. normal to the longitudinal axis of the columa has not deen
" investigated. Previous work has considered the interface sta-
bifity of a highly idealized infinite siad-like configuration in
the presence of & periadic acceleration field oriented normal to
the interface.” Interestingly, this study was motivated by ex-

" periments in microgravity.

Use of the infinite leagth configuration in this stability
study results in a simplification in that the standard boundary
conditions at the solid end disks are not applied, and the focus
1emains on the interface stability. If an extension of this work
10 the finite length coafiguration is of interest, Floquet analy-
sis would be sppropriate, although the implementation would
e more complicated,

Formulatios
The basic configuration is that of aa infinite fluid columa of
circular cross section, The fluid is incompressidie, and the
surrounding medium is of negligidle density. Perturbations
mukawuhmmmhmum

(lincarized
The frequency of the pesiodic forcing fs denoted by wy.
Pressure and velocity fields are givens by p and &, nondimen-
sionalized as follows:
Rez “u'ist Rub=s sRyPp=p (1)
Tildes indicate nondimensional quantities.
The continuity and Euler equations are thes

94.0 (ll)
%u-h--w-rrmf)éw-mq »)
with Fr © (Go/R}) s Froude type nsmber. Go is the ampli-

tude of the periodic acceleration field. The fuactional form of
the time-dependens forcing is selected 10 be 20s(s).



The mean state is one of zero velocity, however, the mean
pressure is time dependent. Consider a wave-like perturbanion
propagating on the interface. The governing equations (or the
perturbation are developed as follows. Expand in the small
perturbation parameter ¢

B = Puam b P G=ew=ed )

Substitution of Eq. (3) into Eqs. (2) yields the mean sysiem
VPmmeam = = Fr cos(t) W {(1 ~ r)sind] (4)

{with the parameter Fr of order one) and the (order ¢) pertur-
bation equations

vie=0 (53)
L))
at

The spatial dependence of the velocity potential can be deter-
mined via solution of Eq. (5a), which is

-vp (Sb)

&lr, 0, 2, t) = LA ()M a(kr)exp(ikz)exp(im@) (6)

I, is the mth modified Bessel function. Clearly, the solution
involves a superposition of the azimuthal modes.

1t is through the boundary conditions that the free interface
can be determined and the stability characteristics investi-
gated. Let the equilibrium interface be given by

Fear—1—ed, 2 t)=r-1-eLC(t)exp(ikz + im8) (1)

The kinematic condition and the normal force balance at the
free interface must be satisfied. In addition, the requirement
of conservation of mass, which reduces to & conservation of
volume condition, must hold.

The linearized kinematic condition (at order ¢) is

- i +u,=0 (8a)
ot
at r = | with u, = 3¢/dr. This results in
2(%)exp(ikz +imb)= 2[1.(k)l ' A (1)exp(ikz + im0) (8b)

The normal force balance requires that the difference in
pressute across the interface be equal to the curvature mult-
plied by the surface tension force. In nondimensional form,
this is given by

BoxA(p.‘...,i-gp)-v.- (9.)

with & = 9Fe/1vFel. Bo is the nondimensional parameter
(pR%w}/y), with y the surface tension and p the density. At
order ¢, the linearized form of this interfacial condition can be
expressed as

9+ 9, + 9 + (Bo cos(r) sin Oy = Bo(%%) (%)

Fr, required to be of order one, has been set equal to unity-
The subscripts indicate partial differentiation. This yields

(1 - m? - k%) + Bo cos(¢) sin 8} x C(t)exp(ikz + im®)
= LA (1) alk)explikz + im8) (%)

The sin & dependence can be re-expressed as an exponﬂ"‘i‘I
function. Then

CaltXl - m? - k%) + (E‘;)(-l) cos()|Ca - 1(1)

dA,
- Cauailt)l = Bo’n(k)(_d'-)

B6

and arir sihas mr colp-p onvuty Lse of Bqy (8zj ane
(9J) yields a nonautoromous second-order equation in Calt),
with mode coupling (as indicated by the subscripts m)

Ca-l(1 -m?-k!)/Bo)ilu/la)Ca
= (1572 1€OS(UN = i)[Ca- ) = Ca. (1)) (10)

Keep in mind that cos(r) can be rewritten in exponential form.
ft is at this juncture that Floquet analysis is applied. For
convenience, let Eo(t) = [dCa{r)/dt]. Then take

(Calt), EntiN) = £7° {Cory Emid X explh + ] (1)

The constant coefficients C..; and E,,; are unknown. The
Floquet exponent is denoted by the eigenvalue X, which is in
general a complex number, and which is also unknown. The
nonautonomous differential system is thus transformed into a
homogeneous algebraic system for (Ca ;. En ;) with the un.
known parameter (cigenvalue) A. If Real(A) is greater than
zer0, the interface of the cylindrical column is unstable to the
growing wave-like perturbation. Of course, the milieu in
which this disturbance is propagating includes the periodic
base state pressure.

Use of Eq. (11) in Eq. (10) (rewritten as two first-order
modes) yields the infinite algebraic system given by

\ +il)Cai = Eni (12a)
A +iEp, = [(1 = m* — k))/(BO)(e/14)Cn,

+(Vla/1aX = iXCoa-1i-1+ Ca-tien

meld-1" -ol.lol) (le)

Note that the harmonic modes (indicated by /) as well as the
azimuthal modes (indicated by m) are coupled to both their
preceding and sucgessive modes.

Several remarks are in order concerning the truncation.
Once the truncation in m is done, the number of azimuthal
modes that contribute are fixed. It is to this truncated system
that Floquet analysis is actually applied. To obtain numerical
values for ), it is necessary to truncate the number of harmonic
modes in time, i.e., the range of / values. The eigenvalue
problem is, therefore, a problem of the truncated system.

Results

The results pertain to the eigenvalue solutions of system
(12a) and (12b). NAG library routines were used in determin-
ing the cigenvalues. Truncation values of L = {15], that is,
-1551<18, and M = 14 were found to be sufficient. Wave
number values ranged from &k = 0.10 to & = 3.00. The parame-
ter Bo was varied from 0.01 to 10.00.

For k < 1.0, the interface is unstable to the wave-like pertur-
bation in the presence of a mean periodic acceleration field

-
r—
o

-

4 f —+—c=
i 09 1.0 1% 20 2% @ !

Fig. 1 Stadility disgram: the stabllity of the coafigurstios to wave-
Hike perturbations for & range of Bo parameter values vs wave suraber
& Is shown, The cross-haiched ares indicates unstable regions ln which
disturbances are growing in time. The remainiag area cosresponds to
that of the marginal stadlity state.
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over the range of Bo values cons:dered. (Note that this rarge
encompasses four orders of magmiude; see Fig. 1.)

As ki3 increased, such that 1.00 s k 5 1.20, the interface
remains unstable to the perturbation for the two larger Bo
values, equal to 10.00 and 1.00. However, marginal stability
(Real(h) = 0] ensues at the smaller Bo values. A decrease in Bo
can be interpreted physically as an increase in the surface
tension. So, as the surface tension increases, the restoring
force is sufficient to result in marginal stability over this range
of wave numbers.

Perturbations corresponding to the larger wave numbers
(smaller wavelengths) that were considered, 2.0 sk < 3.0,
were found not to grow in time for 80 = 0.01-1.00. That is,
instability {with Real(A)> 0] of the interface to perturbations
of these larger wave numbers (and smaller wavelengths) occurs
only for Bo = 10.00; otherwise, Real(A\) = 0. An alternative
physical interpretation to that involving a variation in surface
tension for differing Bo values can be developed. Since Fr was
taken 1o be unity, u} (the forcing frequency) is proportional to
Go, the amplitude of the periodic acceleration field. Utilizing
this relation in the definition for Bo yields Boa(Go/y). For
fixed surface tension (and, of course, density and column
radius) values, an increase in Bo would result from an increase
in forcing amplitude. It is at the highest such amplitude con-
sidered that the interface was found 10 be unstable [with
Real(\) > 0] to the perturbation.

It is noted that the range of Bo values used corresponds to
values of Go and wythat would be of interest in a microgravity
environment for certain ranges of surface tension values.
(Roughly, 10- ¢, S GO S 1034y, and 0.5 Hz < wy< S Hz
for y values of 1-100 dynes/cm.)
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SECTION C



Finite Length Liquid Column Stability
in the Presence of a Periodic
Acceleration Field Oriented Normal
the Longitudinal Axis



BACKGROUND -.

There have been several studies of both forced and free
oscillations of fluid cylinders. In previous studies which
incorporated forcing into the problem formulation, the forcing has
been directed parallel to the 1longitudinal axis of the fluid
column. Although those problems are highly relevant, another
important problem is the case of forcing directed so as to have a
component perpendicular to the longitudinal axis.

Therefore, this investigation addresses the stability of the
fluid column interface in the presence of an acceleration fielq
which is directed perpendicular to the longitudinal axis of the
column. Moreover, this periodic acceleration field gives rise to a

periodic pressure field as the base state.

APPROACH

The analysis is linear and inviscid. Governing equations are
those of conservation of mass and  momentum. The
nondimensionalization is chosen to be such that the acceleration
field forcing term will balance the mean pressure field. The mean
pressure field gradient will then be found to depend on both time
(t) and theta (the angular dependence).

The solution for & is obtained in the standard fashion. It is
a solution to Laplace’s equation, and since it has been listed in
previous reports, it will not be repeated here.

In the solution, there is a dependence of the mean pressure

field on theta; it is this not possible to consider disturbances



which are strictly even or odd in theta. Thus, an additional
summation should be present, with exp(im@&) the functional form in
theta.

In the case of the finite length column, the velocity normal
to the end disks must be zero. Also, the anchored triple contact
line condition is imposed at each of the end disks.

At the free interface, the kinematic condition and the normal
force balance must be imposed. The normal force balance will
contain a term which represents the presence of the forcing, and
it will multiply the free surface perturbation, which itself is a
dependent variable. '

Thus, the normal force balance will be non-autonomous due to
the presence of the sinusoidal forcing function, and a "sino"
factor will be introduced, reflecting the mean pressure form.

The goal is to obtain ordinary differential equations in time.
The stability of such a system can then be investigated.

Ideally, the z and 8 dependencies could be eliminated. For
example, the z-dependence could be eliminated via introduction of
a set of expansiéns in z which would satisfy the anchored triple
contact line conditions. This is essentially a galerkin method
approach, and would require use of the orthogonality properties of
the selected expansion functions.

The previous difficulties associated with the presence of
theta have been overcome. Elimination of theta results in an
infinite system of ordinary differential equations with respect to

time. Inspection of this infinite system reveals that the even and

C2



odd azimuthal modes are coupled.

It was realized during the implementation of these
considerations that the original basic formulation did not allow
for the static deformation of the column, independent of any
wave-like perturbation on the surface. That 1is, the first
formulation does not reflect the physical reality as closely as it
must.

This was remedied in recent work. The incorporation of the
static deformation into the formulation is now complete. This
has had the effect of adding coupling between the longitudinql
modes as well as the azimuthal modes.

Floquet theory 1is then utilized to transform the system of
differential equations into an infinite set of algebraic equations
in a parameter, (lower case) lambda. This parameter is the
eigenvalue. Determination of the eigenvalues will give the
stability results; if, for all A, Real(A) < 0, then the‘system is
stable. The case of marginal stability is given by Real(A) = 0.
This determination of the eigenvalues must be aone numerically. In
order to effect the numerical investigation, the system must be
truncated.

In principle, the finite length and infinite 1length column
stability cases could both be done in this manner. However, the
computer system which is being utilized has restrictions on memory
and running time which is making the solution of the finite
problem difficult.

The aforementioned solution method involves the generation of

C3



a large matg}x representing the truncated system, with an assumed
Fourier representation in time. The truncations to the solutions
are done in the summations representing the solution form in 6, z,
and time, t. For 1low frequency forcing ; the number of terms
required to for the temporal truncation can be prohibitive. Such a
matrix can grow so large that it 1is difficult to utilize an
eigenvalue solver due to computer 1limitations. An alternative
method is sought.

It is noted that the matrix which is generated is much less
sparse than it would be if static deformation did not contribute.

Such an alternative method 1is 1in the process of being'
implemented. This involves retaining the derivatives in time; ie,
assuming no fourier expansion in time, and constructing a
fundamental matrix which represents the system (itself truncated
in indices corresponding to 6 and z). The eigenvalues of this
fundamental matrix are related to those of the system, allowing
for calculation of those of the system. Construction of the
fundamental matrix proceeds vié integration of the system for
suitably chosen sets of independent initial conditions to the end
of the first forcing period. The solution vector represents a

column vector in the fundamental matrix.

Ch



SECTION D



Publications



Axial forcing of an inviscid finite length fluid cylinder

M. J. Lyell
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Current interest in microgravity materials processing has focused attention upon the finite
fluid column. This configuration is used in the modeling of float zones. In this Brief
Communication, the incompressible inviscid finite length fluid column is subjected to an axial,
time-dependent disturbance. The response of the fluid system and the resulting interface
location are determined via Laplace transform methods.

The presence of vibrations will affect the fluid dynam-
ical environment in which matenials processing occurs. Ex-
periments performed on Spacelab D1 investigated the ef-
fect of g-jitter on the stability of finite fluid columns. It was
found that long columns are particularly sensitive to resid-
val accelerations and impulses.! The analytical effort has
been concerned with the axial forcing of slender liquid
bridges.”* In these analyses, a one-dimensional “slice™
model has been used. Such a restriction is invalid in the
situation in which the liquid column is not slender, yet
whose height and radius are within the static stability lim-
its for fluid columns. The work of Sanz*’ has addressed the
problem of the unforced modes of oscillation of a nonslen-
der finite fluid column.

In this work, the problem of the axially forced finite
fluid column is investigated, with the axial forcing consid-
ered periodic in time. The analysis is linear, inviscid, in-
compressible, and axisymmetric. It utilizes Laplace trans-
form techniques. The direction of the imposed body force
is taken parallel to the longitudinal axis, and in the nega-
tive ¢, direction. The undisturbed column is cylindrical,
and is surrounded by an inert gas.

Quantities will be nondimensionalized as follows:

RX=x, of =1, Rufi=v, pwiR%p=p, (n

and R is the radius of the column. The forcing frequency is
;. Pressure and velocity fields are indicated by p and u,
respectively. The density of the column is given by p. A
tilde indicates dimensionless quantities.

Equations are to be rendered nondimensional through
the use of (1). This results in

Vu=0, (2a)

du "

-a—‘+n-Vu= —~Vp—Frg(t)e, (2b)
and the nondimensional interface equation is

fe=r—-1—Frf(21) (2¢)

with f(z,t) representing the functional form of the pertur-
bation to the interface. The tildes have been dropped for
convenience. The nondimensional parameter Fr is a
Froude type number, and is given by (Go/Rw}). It is taken

to be a small parameter. Pressure and velocity are ex-
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panded in terms of Fr about a state of zero mean motion.

_This results in the lineanzed system of governing equations

Ve =0, (3a)
(V) N
e a1 (30)

with u = V¢. For definiteness, g(¢) is chosen to be sin(r).

The boundary conditions at the upper and lower disks
are that the normal component of the velocity be zero.
Also, an anchored triple-contact line assumption at both
disks will further restrict the interface behavior. These are

ad IR '

az| = Vs az — Vs ( a)
t=A =~ A

J(AD =f(—= A)=0. (4b)

The constant A acts as a slenderness parameter, and is
given by (L/2R). As the fluid is incompressible, volume
must be conserved, and so

A
J. f(z.0)dz=0. (4c)
-A
Because of axisymmetry
0 Jw
u, =0, & =0. (4d)
r=0 rul

At the fluid column/inert gas interface, both the kine-
matic and normal force balance conditions must be im-
posed. These are given by

——5:2+ 3—:=0, (4¢)
(3 (G 1)

and are evaluated on 7 =1 (Ap indicates the change in
pressure across the interface). The nondimensional param-
eter By is given by (pR’w}/r). Gamma denotes the surface
tension. Note that Egs. (4¢) and (4f) have been linearized
{and are at O(Fr)]. '

Both the system of equations (3) and the boundary/
interface conditions (4) are Laplace-transformed with re-
spect to time. The time dependence is replaced by a pa-
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rameter s. The initial velocity perturbation is taken to be
zero. The initial position of the interface is taken to be that
of the undisturbed cylindrical column f, = 1. This is real-
istic for the case of a zero mean gravity, which is the case
in the present investigation. This yields

sU= —VP—[l/( + 1)]e, (5a)

o
sF=—.

o (Sb)

The upper-case representation indicates the Laplace trans-
formed variables.
The velocity potential is found to be

S(rzs)= 2 An(s)olkr)coslk,(z + A)], (6)
1

n=

with k, = (n7/2A). Here, 4,(s) indicates the unknown
coefficients and J; represents the modified Bessel function.
Use of the kinematic condition yields

CsF= Y, AJ(s)kJ\(k)cos[k,(z+ A)] on r=1. (7a)

However, use of the normal force balance condition yields
a forced ordinary differential equation for F(z,s) at r = 1,

#F B,
5;+F=((—.‘_,—_‘—_T))z+BoK(s)

+ X By, () o(k,)cos[k,(z + A)).

(7b)

Note that s appears as a parameter. Also, K(s) is-a con-
stant of integration. The solution of Eq. (7b) is

. F(z,5) =a(s)cos(z) + b(s)sin(z)

B,
+ BoK(s) + (E’Toﬁ) 2z
sA () o(k,)cos[k, (2 + A))
()

3

(7¢)

Both forms given for F(z,s) must be consistent, and
must allow for the remaining boundary conditions to be
satisfied. In order to determine the forms of the coefficients
“a(s)" and **b(s),” it is advantageous to expand the func-
tions sin(z), cos(z), and (z) in terms of cos[k,(z
+ A)). These are found in the literature;%’

Arm=[2sin(A)/ AN/ [ (1 = K} ) Kyl 1 (K3m)
~ Bolo(kym)s*}}a(s), (8)
2 cos(A) -2 s
Az,"* I=[(—A—) Sb(S) + BO (—A—-) (m‘)
(1- kgm + l) 1
X (—p—“ (D3, y) ™, 9
2m+ )

with

1829 Phys. Fluids A, Vol. 3, No. 7, July 1991

Dlnq:l:[(l _kim.l)kzmolll(klmol)
— Bololkam . 5],

The conservation of volume requires that

a(s)[sin(A)/A] + BoK(s)=0. (10a)

Finally, the anchored triple-contact line condition is
imposed. This yields a forced set of algebraic equations in
the coefficients “a(s)” and “b6(s),” of the form

(all)a(s) + (al2)b(s) =cl, (10b)
(a2l)a(s) + (a22)b(s) =c2, (10c)

with gll1=a2l, a22= —al2, and c2= — ¢l, and with

in(A 2sin(A
(all)=cos(A)—sm( )+s’( sin ))

A A

S Bololkym
(a12)= —sin(A) + ¢ (2°°;(A))
. ks,
X &, ((lfig::nolz)ﬂ.r (10e)
(cl)=( 5o )A [1+ (2‘2)
“+n Al
y o Bololkym, i) ' (100
m=0 (7‘2m+lDln+l)
and with
Dy=[k (1 = k)1, (k) — Boly(k,)s).
It is found that
a(s)=0 and 6(s) =(cl/al2). (10g)

Recall that the expression for A,, contained the factor
a(s). Thus 4,,, will be identically zero, and only the odd
modes will contribute to the motion. This refiects the na-
ture of the forcing, i.¢., “Z” is an odd function with respect
to the mean plane between the disks.

The form of the Laplace-transformed perturbation in-
terface F(z,s) is given by

1
F(2,5) =b(s)sin(2) + By (m) z

o SAym . 1(5)Bolo(kym o 1)cOS[Kym o 1(2 4+ A))
+ 2

m=0 (lﬁk§m+l) '
(1)

with the 4,,, , ; as previously determined. Taking the in-
verse Laplace transform of Eq. (11) will yield the expres-
sion for f(z.1).

In order to gain insight into the form of the perturba-
tion interface in the presence of a periodic body force di-
rected along the longitudinal axis of the column, the series
will be severely truncated. Only one term in each series will
be retained. The inversion will then be done analytically.
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FIG. 1. Deformation f(2.1) versus time. for ime = 0 25, 1.25, 2.25, 3.25.
B,=0.50and A =0.75.

Then
f(z.1) =sin(2)b(t) + By(z)sin(1) + cos[k (z + A)]
—2cos A ' .
x (m) (a J; b(r)smh[a(t - 7))d1’
X A 2B,
+b(l))+COS[ 2+ )](a_ﬂpl)
x( f sin(r)sinh[a(t—7)}dr+a sin(t)) ,
° (12)
with
k(1 = kD1 (ky) '
2 _ = -1
wt= () b= ),

2cotan A
2 _ 262 _ 2
6—[1+(—P—Ml_ I))], and f°6° = a‘.

The inverse Laplace transform for F(z,s) {see Eq.
(11)] was taken numerically for different values of (Bg,A).
Graphical results are presented in Fig. 1. for the case
(By=0.5, A=0.75) at successive (nondimensional)
times of 0.25, 1.25, 2.25, and 3.25. The maximum value of
f(z,t) at each of these times is 0.0019, 0.0145, 0.0131, and
0.002, respectively. The value of the parameter A indicates
that the column is not slender. Note the sinusoidal form of
the interface deformation. This is observed for the case of
the axially directed forcing.!

The equation for F(z,s) [Eq. (11)] can be viewed as a
transfer function. Setting s=iw, values of F may be plotted
in frequency space. This is done, and the results are shown
in Fig. 2 for A=2.60, By=1.00, and A =1.25 with
By =1.00 and 2.00. The curve for the slender column
(A = 2.60) may be compared with a similar type graph
found in Ref. 4 (Fig. 3 in that work). It is seen that a spike
in both graphs occur about the resonant frequency at
o = 0.34. The long column is shown to be sensitive to
lower-frequency disturbances (w < 1), as indicated by the
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F1G. 2. Transfer function F(z°.0). 2* = — A/2, for the cases (A = 1 %]
8,=1.00), (A =125 B,=100), and (A = 1.25, B, = 2.00).

relatively large functional values [for F(z,5)] in this work
and in Ref. 4. Note that the numerical] value of F(z*.w)
(with z2* = — A/2) compares well with that of the defined
transfer function perturbation amplitude in Ref. 4.

It was found that nonslender columns are not similarly
sensitive to these low-frequency disturbances. This is
shown graphically in Fig. 2 for A = 1.25, By, = 1.00, and
By = 2.00. Note the low numerical values of F(z%w) as
compared with that of the case A = 2.60, By = 1.00.

The work of Sanz® determined the nondimensiona’
natural frequency @ ,,, of the fluid column for a range of A
values. In that work, time was nondimensionalized by
(pR*/7)'. It can be shown that this results in the follow
ing equivalence (w¥/wl,) = Bo(1/81,,).

The perturbation interface was determined (numeri
cally) in a number of cases for which the (BgA) value
corresponded to eigenvalues of the unforced system. I:
these cases, the inviscid finite length fluid column wa
found to be very sensitive to forcing.

Various orders of magnitude for the vibration leve
have appeared in the literature.® The range of interest o:
parameter B, can be constructed for fluid cylinders of ¢
given density and radius. The interface shape can be ob-
tained for specific values of B, and A.
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critical to loads evaluation studies as fineness ratio, Reynolds
aumber, and comer rounding considerations. Note the favor-
able comparisoa between the current steady-state data for the
two elevation limit cases, HE -0 and HE — o, with earlier
results. %1% Apparently the influence of boundary-layer
buildup (8,0, =0.5in.70.0127 m) on measured CD results is
*ssmall’’ as demonstrated by the favorable agreement of the
low HE data with established splitter-plate results. Also, the
effects of vortex shedding (evidenced by the presence or ab-
sence of periodicity in the CDB data), as already discussed and
reviewed by Bearman® and Vickery,!! can be seen to play a
major role in maintaining low base pressures Cthigh CDB) at
high elevation (HE/H = 6, Fig. 2b) and low CDB at low
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tlevation where base scavenging due 10 vortex shedding is
substantially reduced (HE/H = 0.25, Fig. 2a).

Because of the sensitivity of base pressure to the vortex
shedding phenomena, investigators have pointed out that re-
duction in base drag can be achieved by modest geometric
changes that interfere with the vortex generating mechanism.
Such configuration modifications include fineness ratio.’ cor-
ner rounding,? splitter-plate length,*? trailing-edge spoiler,’?
and surface proximity (current results). Note, for example, the
onset at late time of periodicity in the CDB signal at HE/
H =6 in Fig. 2b (the vortex shedding ‘‘signature’’) and the
absence of any periodicity for the data for HE/H = 0.25 (e g..
Fig. 22). Since the drag ‘‘beat’’ frequency is typically twice
that of the corner shedding frequency,'® an estimate can be
made as to the Strouhal number (S) for the current study

S =nrH/u,
where A represents the Strouhal frequency ( = 0.5 x drag peri-
odicity), H the model height, and u, the local freestream
velocity. The computed value so derived is seen to be some-
what higher (0.15) than previous measurements (0.13) (Ref.
3). The onset of CDB periodicity is also consistent with the
observed increase in base drag as would be expected since base
scavenging is controlled by the establishment of the von
Kirman vortex street.’
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Introduction

HE float zone configuration is used in crystal growth, It
may be modeled as a liquid column held by surface ten-
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sion forces between (wo end disks. In the case of crystal
growth, the thermal and solutal fields as well as those of
velocity and pressure are needed to characterize the physics. A
compelling reason for.crystal growth experiments in a micro-
gravity environment such as that onboard the Space Shuttle is
that buoyancy forces are greatly reduced.' However, this envi-
ronment is not quiescent due to the presence of impulse type
disturbances from small thruster firings as well as those from
periodic vibrations. Given certain ‘‘environmental’’ condi-
tions, such as the presence of a periodic acceleration field, it is
possible that a fluid dynamical instability would develop. This
would adversely effect the crystal growth.

The crystal growth environment cannot be separated from
the Nuid dynamics of the liquid column. This latter topic is
the focus of the present work. The question of column inter-
face stability in the presence of a periodic acceleration field
having a component normal to the longitudinal axis of the
isothermal cylinder is investigated. The fluid column is taken
to be infinite in length. Floquet theory is used in the stability
investigation.

Previous work has determined the natural oscillations of the
liquid column. This work was done first for the case of the
infinite column? and later for the finite length case. In the
latter work, both axisymmetric and nonaxisymmetric oscilla-
tions were considered.>* Results for the infinite length case
were found to be good approximations to those for the finite
length column, both numerically and with regard to trends.

Interface behavior of the finite length liquid column in the
presence of time-dependent forcing has been investigated for
the case in which the forcing was parallel to the longitudinal
axis of the column.’* The investigations considered the
column behavior subject to a sin(?) forcing for both the invis-
cid case of general aspect ratio (within static stability limits?)
and the viscous case in the slender column limit.¢

The problem of interface stability of the fluid column in the
presence of a periodic acceleration field that has a component
normal to the longitudinal axis of the column has not been
investigated. Previous work has considered the interface sta-
bility of a highly idealized infinite slab-like configuration in
the presence of a periodic acceleration field oriented normal 10
the intecface.” Interestingly, this study was motivated by ex-
periments in microgravity.

Use of the infinite length configuration in this stability
study results in a simplification in that the standard boundary
conditions at the solid end disks are not applied, and the focus
remains on the interface stability. If an-extension of this work
to the finite length configuration is of interest, Floquet analy-
sis would be appropriate, although the implementation would
be more complicated.

Formulation

The basic configuration is that of an infinite fluid column of
circular cross section. The fluid is incompressible, and the
surrounding medium is of negligible density. Perturbations
are taken to be irrotational. The analysis is linear and inviscid,
with the nondimensionalized governing equations those of
continuity and conservation of momentum (linearized Euler).

The frequency of the periodic forcing is denoted by wy.
Pressure and velocity fields are given by p and u, nondimen-
sionalized as follows:

Rt=x w'i=t Refi=u pRuPp=p (1)
Tildes indicate nondimensional quantities.
The continuity and Euler equations are then
V-i=0 (22)
a—“.+ﬁ- Ph= -9p-Freos(NV[(1-7sin8)  (2b)

N

with Fr = (Go/Ru}) a Froude type number. Go is the ampli-
tude of the periodic acceleration field. The functional form of
the time-dependent forcing is selected to be cos(f).
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The mean state is one of zero velocity; however, the mean
pressure is time dependent. Consider a wave-like perturbation
propagating on the interface. The governing equations for the
perturbation are developed as follows. Expand in the smali
perturbation parameter ¢
d=sew=¢ve

P = Pauanm + P (3)

Substitution of Eq. (3) into Eqs. (2) yields the mean system

P Pemcan) = - Fr cos{t) P {{1 = r)sind) (%)

(with the parameter Fr of order one) and the (order ¢) pertur-
bation equations

vipg=0 (Sa)

V)
at

The spatial dependence of the velocity potential can be deter-
mined via solution of Eq. ($3), which is

=-Vp (5b)

&(r, 8, 2 1) = LA (1) (kr)exp(ikz)exp(im8) )]
14 is the mth modified Bessel function. Clearly, the solution
involves a superposition of the azimuthal modes. ’

It is through the boundary conditions that the free interface
can be determined and the stability characteristics investi-
gated. Let the equilibrium interface be given by

Femr-1-egd 2z t)mr-1-eLC@)explikz + im8) ()

The kinematic condition and the normal force balance at the
{ree interface must be satisfied. In addition, the requirement
of conservation of mass, which reduces to a conservation of
volume condition, must hold.

The linearized kinematic condition (at order ¢) is

o
by +u,=0 (8a)

at r = | with u, = 3¢/9r. This results in
2(%?)exp(ikz +imf) = E[I.(k)] ‘A ()exp(ikz + im@) (8b)

The normal force balance requires that the difference in
pressure across the interface be equal to the curvature multi-
plied by the surface tension force. In nondimensional form,
this is given by

(%92)

with & = 9 Fe/19Fel. Bo is the nondimensional paramete!
(pR%a}/y), with y the surface tension and p the density. Al
order ¢, the linearized form of this interfacial condition can b¢
expressed as

Bo X A(Putesn) + L) =V -2

9b)
] (

Fr, required to be of order one, has been set equal to unity:
The subscripts indicate partial differentiation. This yields

3 + 0y + 9 + [Bo cos(t) sin O]y = 30(3_2)

L((1 - m? - k%) + Bo cos(1) sin 8) x C(1)exp(ikz + im¥)
= LA (1) (k)explikz + im6) %)

The sin 0 dependence can be re-expressed as an expoﬂﬂ“i‘l
function. Then

CaltXl -m2 -k + (g-;)(-l) cos(f)[Ca - 1(1)

dA,
= Cuoi() = Bol.(k)(—-a-’—) o4
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and azimuthal mode coupling occurs. Use of Eqs. (8b) and
(9d) yields a nonautonomous second-order equation in Ca(f),
with mode coupling (as_indicated by the subscripts m)

- [(} - m? = k2)/B0)1a/1a)Ca
= (1072l )cos(tX = i)[Ca . (1)} = Ca . (1)) (10)

Keep in mind that cos(r) can be rewritten in exponential form.
it is at this juncture that Floquet analysis is applied. For
convenience, let E,4(1) = [dC,(1)-dt). Then take

(Calt), Ea(D) = L,2% [Cass Emid X expl(N+il}] (1)

The constant coefficients C,; and E,; are unknown. The
Floquet exponent is denoted by the eigenvalue A, which is in
general a complex number, and which is also unknown. The
nonautonomous differential system is thus transformed into a
homogeneous algebraic system for (Ca i,
known parameter (eigenvalue) A. If Real()) is greater than
zero, the interface of the cylindrical column is unstable to the
growing wave-like perturbation. Of course, the milieu in
which this disturbance is propagating includes the periodic
base state pressure.

Use of Eq. (11) in Eq. (10) (rewritten as two first-order
modes) yields the infinite algebraic system given by

A +il)Cpt = Ea: (12a)
N+ iDEp; = (1 -m? - k3)/(BO)(/a/1a)Ca:

+ (UMK =~ iNCuri-1 ¥+ Ca-tite

(12b)

Note that the harmonic modes (indicated by /) as well as the
azimuthal modes (indicated by m) are coupled to both their
preceding and sucowuve modes.

Several remarks are in order concerning the truncation.
Onmce the truncation in m is done, the number of azimuthal
modes that contribute are fixed. It is to this truncated system
that Floquet analysis is actually applied. To obtain numerical
values for )\, it is necessary to truncate the number of harmonic
modes in time, i.c., the range of / values. The cigenvalue
problem is, therefore, a problem of the truncated system.

~Castt-1=Casiser)

Results

The results pertain (o the eigenvalue solutions of system
(12a) and (12b). NAG library routines were used in determin-
ing the eigenvalues. Truncation values of L = 1151, that is,
-15< <13, and M =14 were found to be sufficient. Wave
number values ranged from & =0.10 to & = 3.00. The parame-
ter Bo was varied from 0.01 to 10.00.

For k < 1.0, the interface is unstable to the wave-like pertur-
bation in the presence of & mean periodic acceleration field

3 /////////////////
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Fig. 1 Stadility dlagram: the stabiity of the configuration to wave-
Hike perturbatioas for s range of Bo parameter values vs wave sumber
& Is shows. The cross-hatched ares lndicates unstable regions [a which
disturbances are growing is time. The remaining ares corresponds to
that of the margiasl stabllity state.
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over the range of Bo values considered. (Note that this range
encompasses four orders of magnitude; see Fig. 1.)

As k is increased, such that 1.00 s k < 1.20, the interface
remains unstable to the perturbation for the two larger Bo
values, equal to 10.00 and 1.00. However, marginal stability
{Real(\) = 0] ensues at the smaller Bo values. A decrease in 8o
can be interpreted physically as an increase in the surface
tension. So, as the surface tension increases, the restoring
force is sufficient to result in marginal stability over this range
of wave numbers.

Perturbations corresponding to the larger wave numbers
(smaller wavelengths) that were considered, 2.0 sk 3.0,
were found not to grow in time for Bo = 0.01-1.00. That is,
instability [with Real(A) > 0} of the interface to perturbations
of these larger wave numbers (and smaller wavelengths) occurs
only for Bo = 10.00; otherwise, Real(\) = 0. An alternative
physical interpretation to that involving a variation in surface
tension for differing Bo values can be developed. Since Fr was
taken to be unity, u} (the forcing frequency) is proportional to
Go, the amplitude of the periodic acceleration field. Utilizing
this relation in the definition for Bo yields Boa(Go/y). For
fixed surface tension (and, of course, density and column
radius) values, an increase in Bo would result from an increase
in forcing amplitude. It is at the highest such amplitude con-
.sidered that the interface was found to be unstable (wuh
RealO))O] to the perturbation.

It is noted that the range of Bo values used corresponds to
values of Go and w, that would be of interest in a microgravity
environment for certain ranges of surface tension values.
(Roughly, 10~ %8s S GO S 10- g0y, and 0. Hz<w < S Hz
for 4 values of 1-100 dynes/cm.)
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d = inner diameter of inner nozzle
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Iffect of Periodic Accelerations on Interface Stability in a
Multilayered Fluid Configuration

M. J. Lyell® and Michael Roht
West Virginia Universiry, Morgantown, West Virginia 26505

The lacreasing number of research opportunities In 8 microgravity environmeat will benefit ot only foo.
damental studies in luid dynamics, but also technological spplications such as those involving materials pro-
cessing. la partkutar, fuid configurations that lnvolve fluid-Nluld Interfaces would octur In a variety of exper-
Imental iovestigations. This work Investigates the stabilily of a configuration tovolving Nuid-Nuid interfaces in
the presence of a time-dependent (periodic) forcing. The fluid configuration is multilayered and infinite in extent,
The analjsls Is finear and Inviscid, and the acceleration vector bs oriented perpendicular 1o each interface. A
Floquef analysis ks employed, and the resulting algebralc elgensystem s truncated. Nondimensional parameters
appear in the algebrake system. A oumerical study Is performed to elucidate the reglons of nstability and the
effect of parameter variation on the fluid configuration stabiity.

Nomenclature
A.B = matrices representing final system
A(f) = time-dependent coefficient, nondimensional
Bo = nondimensional parameter, = {p, HG/y)
Fe = equilibrium interface, nondimensionalized
Fr = nondimensional parameter, = [G A Hw))]
G, = peak value of forcing, dimensional
2(1) = forcing term. nondimensionalized
H = height of middle slab, dimensional
k = wave number of perturbation, nondimensional
4 = outward pointing unit normal to interface
p = pressure field, nondimensionalized
¥ = velocity field, nondimensionalized
t = (ime, nondimensionalized
y = surface tension
A = Floquet exponent, eigenvalue
p = density
& = velocity poteatial, nondimensionalized
w, = frequency of periodic acceleration (forcing)

Subscrips

1 = (finite) middie layer fluid region of height H
Il = upper layer (unbounded) fluid region

III = lower layer (unbounded) fluid region

2 = upper interface

3 = lower interface

Superscrips

(:) = differentiation .
() = unit vector (¢.g., &, &, ¢,, A or part of vector defi
. nition (e.g.. f)

() = dimensional quantities
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Introduction

URRENT interest in microgravity materials processing

has focused attention upon certain relevant aspects of

fluid mechanics in this environment. In particular, 2 number

?l materials processing applications involve fluid-fuid inter-
aces.

The eavironment onboard the Space Shuttle is not strictly
2 microgravity environment. Rather, residual accelerations
exist that could affect any ongoing materiaks science or space
processing experiments. A recent summary' indicates that
accelerations include those in the {frequency range of <10 Hz,
with acceleration levels ranging from 10-%g,, , to 1077 ¢, ..
In addition 1o periodic forcing, residual accelerations may be
of impulse type, due o such causes as stationkeeping ma-
neuvers and astronaut motion.?

This work investigates the effect of periodic accelerations
oa the interface stablity of an idealized fluid configuration.
The fluid configuration is multilayered and infinite in extent
(see Fig. 1). The accelerations are periodic about a zero mean
g level and are oriented normal (in the ¢, direction) to each
interface.

Previous work has investigated the stability of a single planar
free surface subject 1o periodic forcing in the direction per-
pendicular to the interface.>* These studies were both done

regioall py g

region [l po. s
# = density of subscripued region
@ = poiential function of subscripted regica
T = suface wension of subscripeed Interface

Fig. 1 Multlayer fluid configuration geometry schematic.
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eguation that giveised ihe nme v dent A= rude clihe
disturbance T2y ecre atle 13 mile statemens SSvter” °g
the iaterface «o.% iy Lised en d=can ruatherarcal picp-
eries of Math.cs ejuatons. The case of a rectazjular con-
taines has been adlressed recemly,® and the results evtended
into the nonlinear teg me. Bothof these investigations utilized
an invicid analyss

The effect of viscosity on the stability properties has beea
studied recently in 1leahzed inficite or semi-infinite config:
urations that had one N.id-NMuid interface.’® Again, the pe-
podic forcing was directed normal to the interface. One the-
oretical investigation »as done assuming a zero mean g level
and penains 10 the mictogravity eavironment.® Results sere
obtained for different regions of parameter space, and some
stability boundaries were deiermined. . o

The present nork will study the stability of an idealized
multiple-layer fluid configuration that is infinite in the ¢, and
2. directions (as well as unbounded in the ¢, disection) and
s subjected to periodic forcing oormal to each interface. The
height of the middie layer is finir=. In general, the denities
in cach region differ, as do the surface tension values at the
upper and lower interfaces. The analysis is linear and inviscid.
A Floquet analysis is employed. Details of the analysis are
presented in the next secton. ) )

The configuration is idealized, as was the case is previous
work. However, the use of nondimensional pasameters ia the

stability investigation will enable tseads to be discerned and

parametes regioas (of instability) to be identified.

Equation Development

Geverning Equatiens o ool

The goveming equations are those of conservation of mass
and mo‘:benluz agpﬁed t0 an inviscid and incompressible
fluid, and are

¢-a=0 )

o{(B) e eu)--0r-stwere. @

The time-dependent body force term is indicated in Eq. Q).
G, rcptaentp:lhe peak value of the acceleratioa due 10 the
periodic forcing. The function g(w/) is periodic and will be
takea to be a cosine functioa. The fluid system s lincarized
about a state of zero mean motion, and quadnatically small
terms (aftes expansion in a small parameter ¢) are neglected.

Use of nondimensionahizations
2=Hz, i=w't ()
& = Huya, =il (3®)

yields .
V-2=0 @

@ - GG o

tes Fr = (G/Hew,") is taken 10 be roughly of order
m&"uﬁfie;aﬁmﬁuuuﬂum@m
(Also,,kexpandedimobot}um_nndpmul:amw
tridution.) A potcnﬁal(‘f;mt}g t‘ ;:‘ !‘ :q::.b: d;s‘::
bstitution into Eq. (§) yrelds LI .
zau(io::?uc takes 10 be wavelikc in the (sy) plane. That s,

they are osciltaory. The tesulting differential equations (is 0

Shazessived atte = tfe Lrrer anfiazrreg  tatanie'd

& =ideila)e ooy -dtany e -l))  (Ga)

&, = iCl erg(-doil ey ts o wn]) (6%)

S = L00) expld:)) esptiils » my]) (&)

Note that A, B. C. and D are time-dependent coeflicients.
The wave number kis gven by VIF + ).

Equaticns representng the upper and lower equilibrium
interfaces are

Fey =2 =1 = ¢ E(1) exp(lls + myD m
Fe, =z = « ) exp(ills + my]) ®)

Note that £ and F are timedependent coefficients. Thus, for

example, the functional form of the perturbation 1o the meaa

interface at 2 = 0 is given by the espression £l exp({lx +

::y]). At this stage, the time-dependent coefficients are up-
nowns.

Boundary Conditions

The kinematic condition, shich bolds at each inte.face,
requires that

(‘—f- +e-VFea0 ©a)

After linearization, only the #, velocity composest will coa-
tnbute. This results ia ’

EW) + A CU)e*=0 oa 2=} (9%)
-AD+kD() =0 o z=0 (%¢)

In addition 10 the kinematic condition, the sormal coea-
ponent of the velocity is continuous across an interface, which

yields
()-C

el (10a)
(%) - (%‘) o0 220 (100
o
A() e ~ B(1) = - C(0) on 2=}

A(r) - B(r) = D©)

The remaining boundary coadition is the (Enearized) normal
force balance across an interface. In sondimensiosal form, it
[

oa 29 t-

(Bo/Fr)(Ap) = V- 4 (11)

The unit vecior 4 is the Enearized owtwasd poisting normal
1o the interface. After substitution, Eq. (11) yields

{(Iow = 21Vo.) Fre() E() - (o/p)IAG)e + BU)e-2)
+ (0P )C()e") = (FiBoRE) oa 2=1
(12s)
{don = Pl )Fre() ) ¢ (Wp A + BN}

= (Pu/p)D(1)} = (FriBo )R} oa 2=0
12

pa
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with
8o, = (p,. i G/v))
Bo, = (p,. H" Gv))
Fr = GJ(Hw/)

The term y,(y,) indicates the surface tension at the upper
(lower) interface.

Final System of Equatlons

Through the utilization of Eqs. (10c) and (10d), the C(¢)
and D(1) coefficients can be eliminated 10 yield the following
system:

A (=301 + p)(1 + oy + P} €
+ B(1) {3px = (1 + oy + o)) et
+ E() 3(pa = DAL + pyy + 0y)) Fred)
= (Fr1Bo,) k* E(1) (13a)
AW B - eV + py + Pl
+ B() 31 + pu)(1 + py + Py}
+ A (31 = po V(1 + par + )} Frg(t)

= (Fr/Bo,) k* F{1) (13b)
E() = k{A(1) & - B(r)e"?) (13¢)
F) = KA(Q) - B} (13d)

with pyy = (pr/p) and py, = (Pm’Qt)-
The governing system of equations has been reduced to

four ordinary differential equations (in time) with noncoa-
stant coefficients and with four unknowns. It remains 1o de-
termine the stability of this system for various values of the
parameters Fr, Bo,, Bo,, pyy, Py, and k. As was mentioned
previously, g(1) is chosen to be cos(i). ]

Floquet theory can be applied to system (13). Let the time-
dependent coefficients be expressed as

AWBOLEQLFDL = X {ALBLE.F)e~ed (14)

The system of four ordinary differential equations in time
is now re-expressed as an infinite algebraic system, with the
Floquet exponent appearing as another parameter. That is,

A+ in){-31 +8,)/(1 + 9y +pu)l AL
+e (A +in){}on = 1V/(1 + py + 0:)} B,
= (FriBo )k E, + {3(py — IN1 + py

+ pu ) (F)(E,., + E,.)) =0 (15a)
(A +in){3(1 — p)(1 + py ¢ Pl Aa
+ (A +in){3(1 + p5, )1 + py + 95)} B,
- (FriBo,)) k*F, + {3(1 = py )1 + px + £31)}
X(Fr/2AFo-y 4 Fau)) =0 (15b)
(A +in)E, + ke*B,~ket A, =0 (15¢)
(\+in)F, + kB, - kA, =0 (15d)
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The value ¢f A varies from -x= to =. Thre infinite set of
Lomogenec.s equations can be written in mainx form as

w"(d)—xnf=o (1€3)

or

Adt=\8¢

The latter representation is in the form of a generalized &-
genvalue problem. The Floquet exponent A serves as the e
genvalue. The infinite columa vector £ contains (A,.B8,.E,.F)".
For details conceming the form of matrices 4 and B, ard
column vector £, see the Appendix.

The sign on the Floquet exponent/eigenvalue X indicates
the stability. If A is a positive value, then the disturbance w<il
grow and the interface configuration will be unstable. As tbs
is a linear analysis, no information can be obtained concernizg
the finite amplitude (nonlinear) form of the configuration.
Numerical methods are used to determine the value of A for
different values of the parameters. These are discussed in the
next section along with various results,

(1)

Results

Comments oa Numerical Method

The linear algebraic system given by Eqs. (16) is truncated.
Results are presented for a truncation value of & = 25|, which
involves a system of 204 equations. This resulting system forms
a generalized eigeavalue prodlem, with the matrices 4 and
B having complex entries. At this level of truncation, both
4 and B are sparse.

Eigenvalue techniques were used to determine \ values.
An IMSL routine (DGVLCG), based on an LZ algorithm,*
was utilized. In particular, we are interested in the value of
the largest Real()), which gives the fastest growing mode. i
Real()) is positive, the perturbation is growing exponentially.
Hence, the fluid configuration is then unstable with respect
to the perturbations in the presence of the unsteady periodic
acceleration (forcing) field. _ .

Several checks were made to insure that the eigenvalues
obtained were corsect. Higher truncations yielded the sarme
largest Real(A) value. As an additional check, the generalized
eigenvalue problem was reformulated as a standard eigen-
vajue problem of the form (8'4 — A D £ = 0 and the &
genvalues of this new system were determined. This was done
by utilizing an alternate IMSL routine (DEVLCG) based ca
a different aumerical algorithin. Again, the values of Real(d)
were in agreement with those obtained previously. As a final
check, a limit case was run (for various parameter values).
The value of Bo, was set to infinity, which is equivalent to
setting the surface tension at the upper interface to zero. la
additioon, the densities in regions I and I were set to the same
value. This limit case represents the one interface case. The
actual one interface case was developed separately. Resuls
obtained from using the two interface system (and code de-
veloped for it) in the aforementioned limit case and from
solving directly the one interface system agreed quite closely.

Discussion of Results

A parametric study was performed to investigate the effects
of variation in Bo,, Bo,, Fr, and the density ratios with wave
number. Because of space limitations, a subset of results that
were obtained are piesented. (These are illustrative and typ-
ical.) In cach case, if the periodic forcing function g(f) were
to be set to zero, and with the mean gravity level zero, the
configuration would be stable to the wave-type small amph-
tude disturbances. That is, the interface would simply osal-
late. It is only with the forcing, and in the indicated parameter
regions, that instability does result.

The values of the wave numbers vary betweea 0.10 and
$.00. Although not all results are presented, the investigatioa
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considered Bo, valves of (1.0, 0.1, 0.01, 0.001). The values
of Bo, were set equal to Bo,, or were twice those of Bo, in
different studies.

Figures 2-10 show graphs of Real(\) vs wave number for
various values of Bo,, Bo,, Fr, p,,, and p,,. Note that Real(A)
is the largest eigeavalue and represents the fastest growing
(unstable) wave if positive. Regions for which Real(A) s 0
are indicated by being set equal 1o 2ero in the graphs. That
is, the value of Real(A) < 013 not of interest,

In Figs. 2-7, the effect of Bo, and Bo, on stability for
different Fr and densily ratos is elucidated. 1o Fig. 2, Bo, is
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set equal to Bo, for the density ratios p,y = 1.0 and p,, =
0.001225 and for Fr = 5.00. The unstable wave number region
is broadest for the largest Boy(Bo,) values. As Bo(Bo,) is
decreased, the unstable wave number region shrinks to en-
compass fewer k values and tends toward the lower k region.
For low Bo,(Bo,) values, this two interface configuration is
unstable to the Tonger wavelength disturbances in the presence
of periodic forcing. The effect of a decrease in Fr, keeping
the other parameter values the same, is seen in Fig. 3. The
range of unstable wave numbers broadens, with smaller wave-
lengths falling into the unstable region. -
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The dersity ratios indicated in Figs. 4 and $ pertain 1o a
gas-liqud-gas configuration As was the situation in the pre-
ceding two figures, the broadest range of unstatle wave num-
ber values occurs for the largest Bo.(Bo,) value. As Fris
decreased, the unstable wave number band encompasses larger
values (corresponding to smaller wavclength disturbances).
Inspection of Fig. § shows a slight separation in unstable wave
number bands necar k = 2.175. This k value falls into an
unstable region at the smaller Fr value given in Fig. 4. Note
that the configuration represented in Figs. 4 and § is stable
when Bo.(Bo,) is 0.001. That is, Real(A) > 0 only for the
larget Bo,(Bo,) values in the indicated k ranges.

The effect of Bo, not equal to Bo, on the configuration
stability is shown in Figs. 6 and 7 (for the given values of Fr
and density ratios). In Fig. 6, the Bo values are equal. This
is changed in Fig. 7, with Bo, twice Bo,. Physically, the in-
crease of Bo, while keeping Fr fixed can be interpreted as a
change (decrease) in the surface tension value at the lower
interface. The predominant effect is to broaden the range of
unstable wave numbers for each set of Bo,, Bo, values. Note
that the aumerical value of the real part of the Floquet ex-
ponent X is increased for Bo, twice the value of Bo.. indicating
a faster growing “fastest growing™ disturbance at the lower
Bo, values.

In Fig. 8, the cffect of holding the (Bo;.Bo,) values fixed
(for the specified density ratios) and varying Fr is shown. As
Frisdecreased, the range of unstable wave numbers increases.
Physically, this can be interpreted as a decrease in configu-
ration stabilily with respect to the wavelike disturbances for
somewhat larger frequencies of the periodic forcing.
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Fig. 8 Effect of Fr oa stabillty: p,, = 1.00; py, = 0.00121; B, =
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The height of the finite middie slab s 2 physical qua=y
that appears in both the Bo and £r ra-dimensioral param.
cters. In particular, Frisinversely propastional to the he ght,
whereas Bo depends on the square of the height. Anincrese
in height H implies a decrease in Fr and an increase in Bo.
As was seen in Figs. 2-7, the region of instability in wave
number space becomes larger as Bo increases. From Fig. 8,
it is seen that the broadest region of instability (with respect
to k) corresponds to the smallest Fr values. It is anticipated
that an increase in H will result in an unstable configuration
foc a broader range of k values. This is borne out in Fig. 9.
Results are presented graphically for the case G, = (10-¢
Scern) Wy = 0.1 H2, and y; = v, = 50 dynes/cm. In addition,
py = 08andp, = 1.2.

The effect of density ratio ditference on stability is pre-
sented in Fig. 10. Values of p,, and p,, represent the density
ratios of the upper and lower regions to that of the middle
layer, respectively. Among cases indicated, the largest mag-
nitude difference in the density ratios s {py, — ps, = 9). This
corresponds to the case having the largest range of unsiable
wave numbers. Note that all three cases belong to a family
with p;; = 1.0. In addition, the case in which both density
ratios were set to 1, indicating equal densities in all three
regions, was addressed. Under the action of periodic forcing.
lack of density differences among the layers resalts in lack of
instability,

The wave number at which the subbarmonic occurs is plot-
ted in Fig. 11 for a range of Fr values at the indicated Bo
values and density ratios. It is seen that there is a shift of the
subharmonic to lower wave numbers as Fr increases, i.e., as

the forcing frequency decreases.
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Stability boundaries of Fr vs k are plotted in Figs. 12 and
13. (Recall that Fr is inversely proportional to the square of
»,.) This is done for configurations of different density ratios
(as indicated by the different area fill patterns). Moreoves,
on cach graph, multiple values of Bo,,Bo, are represented.
The unstable regions are indicated by the rectangular flled
regions. No meaning is ascribed to the width of the rectangles.

Conclusions

The chect of periodic accelerations on the stability of a
multilayersed, two interface, unbounded fluid system has been
studied using Floquet analysis. In addition to the wave sum-
ber, five parameters appear in the problem: Bo,, Boy, Fr, pyy,
and p,,. Fr is inversely proportional to the square of the fore-
ing frequency, and Bo,(Bo,) is inversely proportional to v{y,).

Several trends were discerned in the parameter study. For
fixed density ratios p,, and p,;, as well as fixed Fr, the range
of unstable wave numbers increases as Boy(Bo,) increases. If
it is only the parameter Fr that is varied, it is found that the
range of unstable wave oumbers increases as Fr is decreased.
(Note that the variation in Fr values is very limited.) Physical
interpretation of these trends has been presented in the pre-

ceding section.

A]!iough the comparison is not presented graphically, the
multilayered fluid system was found to be, in general, more
unstable than the one interface fluid configuration. That is,
the range of unstable wave numbers is smaBler in the one
interface case. In particular, the greatest contrast was in the
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low k region. This conclusica was determined through cea-
sideration of a imit case thatinvolved setting Bo, 10 1nfiz.cy
and p,, 10 I in order 1o study the effect of having only one
interface using the code developed for the two interface con-
figuration. In this way, the paramelen are consistent in both
problems.

In the stability boundary diagrams of Figs. 12 and 13, the
rectangular filled regions indicate instability. It is clear that,
over the indicated range of Bo.(Bo,) and Fr values, the con-
figuration is generally unstable at lower wave numbers (k <
1). An exception is the gas-liquid-gas configuration (pg = py,
= 0.001225) at lower Fr values. Note also that the repons of
instability are punctuated by stable regions for the range of
Bo values and all but the highest Fr value.

The configuration used in this study was idealized. In an
actual space processing application, the fluid configuration
would not be infinite in extent. Boundary conditions pertinent
10 the specific application would have to be taken ioto ac-
count. Nevertheless, the results obtained in this study can be
used in a qualitative manner whea considering a specific ma-
terials processing geomeury.

For example, it has been determined that the multilayered
fluid system is, in general, unstable over a broader range of
k values than the one interface fluid configuration. This bas *
implications for a float zone processing technique in which
the fluid cylinder is multilayered. Akso, the investigation into
the important subharmonic case shows that it occurs at wave
numbers that increase with decreasiog Fr values. That is, in
the more unstable Fr range, the subharmonic (Floquet ex-
ponent A = §) will occur at smaller values of the perturbation
wavelength. A materials processing fluid configuration then
could be susceptible to instability due 10 small wavelength
fluctuations in the presence of periodic forcing. The pondi-
mensional idealizef system bas been studied over the range
of parameter values relevant to 2 microgravity eaviroament
(including the Space Shuttle), as can be seen from the Intro-
duction. Configurations involving fluids of specific interest
¢an be investigated at greater length using this methodology.

Appendix
The form of the column vector 2 is given by

= (- . ~E.-|'Fg-uA.-p’c-hEﬂFvAnlBﬂ' ¢
The form of matrix B is given by

..=1 0 0
o-1 0  0.....
0 0-1 {pn = 1V(1 4 poy)}e~>
0 0 {(py ~ My +1)} -1

J'(AD

-----

(A2)
The form of matrix 4 is given by

al = (1 +py +pn) a2=(1-p, )1 +py)
ad=(1 =Pl +py) al = (1 +p)
aS = (1 + py), Bl = (Fil)e~'a2
B2 = (Fr3Bok'e~'alad, @3 = (in)e-Za2

BA = (Fri2)e~'a2, BS = (Fri)ad ORIGINAL PAGE ¢
OF POOR QUALIT
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p6 = —(Fr3Ba)’allas, BT = (in) ad
(33. = (Fr)al
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Abstract
With the increasing opportunities for research in a
microgravity environment, there arises a need for
understanding fluid mechanics under such conditions. In

particular, a number of material processing configurations
involve fluid-fluid interfaces which may experience
Rayleigh-Taylor type instabilities due to external forcing.
Ultimately, the stability of a multi-layer fluid configuration
in a microgravity environment subjected to periodic residual
forcing,both periodic and non-periodic, is of interest. This
forcing may result from various sources, including equipment
vibrations and space station maneuvers.

An initial parametric study was performed to investigate
the effects of steady forcing due to gravity; in particular,
the limit case as gravity goes to zero. Solution of the
linearized Euler and continuity equations and imposition of
appropriate interface conditions yields a dispersion relation.
This was solved using a root finder routine from the IMSL
library. The numerical results are presented graphically

“using SAS/Graph via CMS.

The utilization of a well-integrated system of

computational resources is essential for this research.

Introduction

The presence of gravity on earth is so omniprésent a

phenonena that its effects often are not realized. In
particular, gravity-induced problems arise in manufacturing
processes (ie.buoyancy-driven convection in liquids,

contamination from vessels that contain samp}gs, and induced
stresses that cause defects in crystals). An idealized
laboratory would be free of gravity "contamination®.

(In Proceedings of the 1990 WUNET User Conference
WV Network for Educational Telecomputing
Morgantown, WV )
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The effect of gqravity has been greatly reduced |in
low-gravity aircraft flights and drop tubes which provide
short periods of microgravity, sufficient for some research,
but certainly too brief for most processing experiments. The
advent of extended spaceflight has dramatically increased the
opportunities for long-duration research and development in a
microgravity environment. Space manufacturing can eliminate
the gravity-induced problems which are experienced in a
terrestrial environment.

The growth of crystals as electronic materials has not
reached theoretical performance limits due to defects caused
in part by gravity. During the spacelab missions, scientists
were able to monitor crystal growth through each stage of its
formation. In earth-grown crystals, it can be observed where
the seed crystal stops and the new growth begins. The
introduction of such a defect was not detected in space due to
the lack of gravity-induced convection.'®

The absence of <convection is also pertinent ¢to
metallurgical manufacturing. A. microgravity environment
provides greater understanding of how liquified metals diffuse
through each other prior to solidification. Such knowledge is
important for the production of improved and novel alloys.

Containerless processing makes possible the production of
much improved glasses and ceranmics. In such a process, the
sample is suspended and manipulated by acoustical and
electromagnetic forces without the contamination of a
container. Large samp}ga can only be dealt with in a
microgravity environment.

Biological processing also benefits from space. lLarge,
pure crystals allow analysis of many unknown protein
structures which are essential to the design of nev and
improved drugs. There is also effort towards the separation
and purig}ﬁation of biological substances for pharmaceutical
purposes. '

In the absence of gravity, fluid behavior which might
normally be hidden by gravity-driven flows in a terrestrial
environrment, can be observed and analyzed. Drop and fluid
column dynamics in microgravity permit experimentation of
basic fluid physics theories.

The environment of board space shuttle is not strictly a
microgravity environment. Rather, residual accelerations
exist which could affect any ongoing natorials‘?cience or
space processing experiments. A recent summary ° indicates
that accelerations include those in the frequency range of one
to _ ten hertzhd vith acceleration 1levels ranging from
lo-s‘q“rtl to 10 "*gertn. In addition to periodic forcing
(g-jitter), residual accelerations may be of impulse type, due
to fuc'h causes as station-keeping maneuevers and astronaut
motion.
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Most processes involve fluid dynamics, and {n particular,
fluid interfaces. This study does not investigate a specitic
process per se, but instead considers the stability of fluiad
interfaces. :

Previous work on fluid interfaces in a microgravity has
focussed predominantly of the application of fuel slosh in
tagks. Most recently, this has included work due to Hung et
al; which considered g-jitter in a slosh tank. A brief
review of earlier work,3 as well as an extension of the
efforts, was given by Gu. These investigations all {nvolved
1iquid in a container of specified shape with a free surface.

The stability of a single planar free surface subject to
periodic forcing in the dir;gtion perpendicular to the
interface has been investigated™ . Both studies were done {n
a 1-g ambient environment and required the use of a container.
In the work of Benjamin and Ursell®, the container was
cylindrical in shape. The analysis led to a Mathieu equation
which governed the time-dependent amplitude of the
disturbance. They were able to make statements concerning the
interface stability based upon known mathematical properties
of Mathieu equations. The case of 3 rectangular container has
been addressed recently bu Gu et al”, and the results extended
into the nonlinear reginme. Both of these investigations
utilized an inviscid analysis.

Viscous effects of the stability properties has been
investigated recently in idealized infinite or semi- qtinite
configurations which had one fluid-fluid interfaces.™ The
forcing was periodic and directed pe;pendicular to the
interface. The work of Jacqmin and Duval assumed a zero mean
g-level and pertains to a microgravity environment. A Floquet
analysis was applied to the fluid systea for the case of
sinusoidal forcing. S '

A multi-layer fluid c?ntiguration analysis has been
performed by Lyell and Roh. The investigation considers a
two-interface configuration in which the middle layer of
finite height is situated between two semi-infinite layers of
fluid. The analysis is inviscid and incompressible. A zero
mean g-level serves as the base state for the study.
Two types of time-dependent forcing are investigated, each
simulating real microgravity environment accelerations
(namely, g-jitter (periodic) and short-duration impulse
(non-periodic)).

Prior to investigating the time-dependent forcing on the
multi-layer configuration, an analysis was performed for the
case of a constant gravitational field. This particular
investigation is the subject of this paper.
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Problem Description and Equation Developnent

Flufd configuration stability in the presence of constant
acceleration fields {s {investigated. The 1limit cases of
1*gesrth  and O*gesrtn  are studied, as well as various
intermediate values. Lunar gravity can be approximated by
0.16%Gearth. The O%*gerth state will ultimately serve as a
basis for investigating the effects of residual accelerations.

The configuration to be considered is comprised of three
horizontal fluid 1layers. No rigid boundaries are present.
The layers extend to infinity in the horizontal direction.
The top and bottom layers are considered to be semi-infinite
in nature, while the middle layer has a finite height. The
geometry of the figure is given by Figure 1.

The three fluids are considered quiescent; their mean
velocities respectively equal zero. The fluids are immiscible
and will be taken as inviscid and incompressible. Surface
tension 1is a property of the interfaces. A normal mode
approach to the perturbation is assumed. In a normal mode
approach, the disturbance (or perturbation) is assumed to be
wavelike. If the wave grows, the fluid system is said to be"
unstable to the disturbance (perturbation). If the wave
decays, the fluid system is stable to the perturbation. This
is mathematically represented as follows:

ikx .(-1kcat) .(kc!t)

n = §e (1)

where 70 = interface shape
€ = amplitude
k = wave number
C," real component of propagation speed

c,= imaginary component of prop. speed

A positive value of ¢, will cause growth of the perturbation;
and hence, the fluid system will be unstable.

Two cases are investigated:

CASE 1: air/silicone oil/water (region 2/region 1l/region 3)
(stable configuration in terrestrial environment)

CASE 2: air/water/air "
(unstable configuration in terrestrial environment)

The parameters to be varied include heighﬁ of middle slab
(h), wave number of the perturbation (k), and the value of the
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constant gqgravitational acceleration (g). The propagation
speed of the perturbations can be calculated for different
parameter conditions. A positive value of the {maginary
component of the propagation speed will {ndicate an
instability on the fluid systen.

The governing equations of imcompressible fluid mechanics
are the continuity equation and the conservation of momentum
equation. The analysis is inviscid and linear. Linearization
is done about a state of zero mean motion. The following
linearized equations govern fluid behavior.

veu = 0 (2)

du .
p— = - + pge (3)
at

where u = velocity field
p = pressure

It is straightforward to solve these equations for both
the velocity field and pressure. (A velocity potential
formulation is utilized in the solution.)

The dispersion relation is obtained by applying three
boundary conditions at each interface. These three conditions
are: (1) the kinematic boundary condition, which states that
a particle of fluid which is at some point on the surface will
always remain on that surface, (2) the matching of the normal
component of the velocity across each interface, and (3) the
normal force balance across each interface.

The boundary conditions are applied to the governing
equations, and via manipulation, a dispersion relation is
obtained. It is given as follows: '

o

kh 4

(p1+p3) (p1+p2)02 + (pz'pl) (pl-Pa)] C

.
+ {(p1+p3)( g(pz-pl)-12k) + (pl*pz)( g(pl-p3)-73k)} ezkh

+ (Py=py) ( f(Py=py)+ 7,K) + (py-p3) ( E(Pz'Pﬂ‘n")] c?
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+ [{( g(py=p4) =7,k) ( E(pz-pl)-rzk)} 2K

+ g(pz'p1)"2k)( E(PJ°PI)‘1JK)] = 0 (4)

Thus, this propagation speed, c, is the solution of a
fourth order polynomial. It is also the eigenvalue of the
stability problem which is posed by equations (2) and (3)
together with the associated interface conditions. The
propagation speed is a complex number, ¢ = c_+ ic .

An imaginary component equal to zero implies a neutral
disturbance. If its value is less than zero, the exponential
ternm decays in time, and the system remains stable. However,
if this imaginary component, S, is positive, the exponential

term grows in time, resulting in an instability. _

A limit case which is analytically tractable can be
obtained from the full dispersion relation for the special
case in which the ratios of the top and bottom densities to
the middle density are negligibly small.For such cases, the
configuration will remain stable if the following inequality
holds true:

13)3 . e 2 B, )
g or — , — ¢
N P, ' P,

The scope of this study is to analyze the four
previously stated cases under various parameter conditions.
That is, by allowing the parameters to vary over a specified
range, the roots of tha dispersion relation can be calculated
and, hence, interface stability can be determined. The
parameters that are considered are the height of middle
layer,the wave number, and the value of the gravitational
constant. For our ultimate purposes, we are most interested in
the case in which the time-independent gravitational body
force is zero. .

For a nmore d‘eatailed description of the equation
development, see Roh.
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Utilization of WVNET Resources

The numerical solution and graphical representation of
this analytical problem requires a well-integrated host of
computer resources. The CMS system was accessed via WVNET on
a VT320 terminal. A remote sight at the Engineering Sciences
puilding was used.

The dispersion relation was solved numerically using the
DZPORC routine of the IMSL library. The DZPORE routine makes
use of the Jenkins-Traub three-stage algorithm’, in which the
roots are computed one at a time for real roots and two at a
time for complex conjugate pairs. As the roots are found,
the real root or quadratic factor is removed by polynomial
deflation.

Two options were explored for graphing the results.
Initially the data was downloaded to a diskette via Kermit,
which in turn was plotted using lLotus/123 graphics package on
a Zenith DS computer. While the output was satisfactory, it
was inconvenient and time-consuming to change terminal sites.

The second, and preferred, option was to access CMS
directly through a WVNET line connected to a MacIntosh II PC.
This was accomplished via VersaTerm and VersaTerm Pro
communications. The program calling IMSL routines was run as
simply as with a VT320. The data was then transferred to a
SAS/Graph routine emulating TEK4014 device, which presented
the results graphically. The plots were converted to MacDrav
files from which hardcopies were obtained. The advantage to
this option is the one-terminal site capabilities.

The numerical results for the time-dependent forcing also
accessed several routines from the IMSL library. One
solution, in the case of periodic forcing, involved the
eigenvalues of a very large complex matrice systenm. An
enormous amount of storage space was required for computation.
Temporary disks had to be accessed"to provide the necessary
space. Details can be found in Roh. ‘

Results and Conclusions

The fourth order polynomial (in <¢) has four roots.
Because of the nature of the dispersion relation, the roots
were generated in pairs. That is, for any given solution,
there exist two pairs of roots, where each pair consists of
the positive and negative values of a number. Physically, for
real roots, this means the perturbation may propagate in
either the positive or negative direction. For imaginary
_ roots, it implies an instability will occur since these roots
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occur in complex conjugate pairs. If all the roots are real,
the system will be stable.

Figure 2 shows the four roots of the dispersion relation
for Case 1 (air/silicone oil/water). The roots are plotted
over a range of gravity ratios (g/Qesrtn) from 0 to 1.0. As
might be expected, this case is stable for all parametric
conditions. (Note that the non-zero roots are exclusively
real.) A less dense fluid above a more dense fluid is stable
to small perturbations in the presence of a constant
gravitational level.

Figqure 3 show the dispersion solution for Case 2. For
certain gravity ratios, the presence of a positive imaginary
root is revealed, which implies an unstable configuration.
This behavior is expected since the configuration has a more
dense fluid above a less dense fluid.

Since an instability depends solely on the presence of
positive imaginary roots, the subsequent figures will display
these particular roots exclusively.

The effect of wave number, (k), on configuration stability
is elucidated in Figure 4. As k values increase, the
configuration becomes more stable. Thus, since k is inversely
proportional to wavelength, the configuration is unstable to
long wavelength perturbations. The restoring force required
to maintain stability is greater in the 1long wavelength
regime. Note that all cases are stable at O0#*gertwn, The
results of Case 1 do not appear since the configuration is
stable for all parameter space.

From Pigure 5, it is tempting to conclude that the middle
slab height,(h), has no effect on the stability of the
configuration. This conclusion is valid for values of h which
are considerably 1larger than the wavelength (inversely
proportional to k). However, as h approaches the order of the
wavelength, the effect of the sladb height becomes apparent
(see Figure 6). The fastest growing instabilities are
associated with configurations with the smallest middle layer
heights.

The limit case (eq. 5) sipulates a liquid layer situated
between two layers of a gas, and its accuracy can be verified
by comparing it to Figure 4. According to (eq. 5), for Case 2
(air/water/air), and h=icm, the instability should originate
at g/Geertn=0.073 fOr k=1, at g/Gesrtn=0.294 for k=2, and at
g/Gesrth=0,.661 for k=3, The results from Figure 4 confirm
these values.

It is seen that in the case of zero gravity, each
configuration remains stable. Although we might expect
Rayleigh-Taylor type instabilities for Case 2, there is no
body force which would drive the density difference;hence, the
system will remain stable.

This zero gravity state has been taken as the base state
for the time-dependent studies. As previously stated, the
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presence of g-jitter or manuever type short-duration impulses
will play an important role in ‘}ho stability of
multi-interface configurations (see Roh).
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Copy of Course Syllabus:MAE 399



MAE 399: FREE SURFACE AND INTERFACE FLUID MECHANICS

1. REASON FOR REQUEST FOR MAE 399

The student (Ms. K. Perkins) requires knowledge of free surface fluid mechanics.
Moreover, it is necessary that the student learn this material during Fall Semester 1993,
This course has information that the student will need to know even before being told of her
thesis problem. No other MAE class covers the material which will be taught in this

directed study class. As the material has a large mathematical component as well as
demanding interdisciplinary fluid physics, it is felt that a structured class is necessary.

The student will be working on a thesis topic in the area of free surface flows in a
microgravity environment. The topics covered in this class will provide some (not all!) of
the necessary background knowledge.

2, NARRATIVE DESCRIPTION
PREREOQUISITES

Co-current registration in MAE 411,
Background of MAE 104 and
Co-current registration in MATH 317.

DESCRIPTION OF COURSE

This is a course in free surface fluid mechanics. It includes both invisicid and viscous
flows. The treatment will be equation-based, with both analytical formulations as well as
pertinent numerical method approaches to be covered. The conservation of mass, momentum
and energy equations will underline the work, of course. In the case of the inviscid
formulations, the topics covered will involve traveling surface waves. If the geometry is
finite (and the fluid is containerized), the focus will be on standing waves. For the viscous
fluid formulation, many practical problems will involve a thermal field and/or a
concentration gradient. The analytical formulation becomes much more complex.
Marangoni flows become very important, and will be investigated.

Some of the physico-chemical aspects of the free surfaces will be introduced, beyond
the basic concept of surface tension. Concepts such as excess surfactants, absorption and
descfnion, and reaction at the interface will be introduced. This will necessitate the
introduction of the diffusion equation (for mass) as another pertinent governing equation.
The description of the free surface as an interface will be introduced, along with such
concepts as surface viscosity, etc.

The application of free surface flows in microgravity will be covered, also. This will
include liquid column (flog¢ zone) applications, planar configurations involving Marangoni
flows, and a brief introduction to drop dynamics.

Finally, the current state of the art in the computational approaches to resolving wave
motion on the interface/free surface and in the determination of bulks flows with a free
surface will be elucidated.

El

ORIGINAL PAGE 18
OF POOR QUALITY



3, TOPICAL COVERAGE

1. Free Surface Inviscid Flows

A. Goveming Equations -Inviscid Flows
Boundary/Interface Conditions: General

B. Wave Motion - Linearized Problem
Formulations/Linearization Scheme
Dispersion Relation - Travelling Waves
Standing Waves in Finite Containers
Waves in Forced Containers (Intro)

C. Nonlinear Wave Motion, Solutions

II. Free Surface Flows/Viscous Effects
A. Extension of Governing Equations
Discussion of Restriction to a Newtonian Fluid and Alternative
B. Boundary/Interface Conditions
C. Discussion of Physical Examples
D. Introduction to Computational Methods

IM1. Free Surface Physico-Chemical Hydrodynamics
A. Properties Beyond "Surface Tension®
B. Introduces posibilty of longitudinal waves as well as transverse waves

IV. Free Surface Flows/Thermal Fields
A. Effect of Thermal Gradient on Surface Tension
B. Marangoni Flows
C. Physical Examples, Introduction to Microgravity Applications

V. Free Surface Flows/Concentration Gradients
A. Surfactants Confined to Interface
B. Surfactants Absorbing/Desolving in the Bulk
C. Effect of Concentration Gradient on Surface Tension
D. Application/Microgravity Examples

VI Additional Computational Methods

A. Emphasis on Algorithims, Approximations Made (eg. How much does the
interface deform?)
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