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Accuracte calculations on the bond length, dipole moment and harmonic

frequency of CO are presented, using large basis sets and high levels of electron

correlation. The geometric structure, forceconstants and binding energies of

Cr(CO)6 and Cr(CO)5 are computed using large basis sets and high levels of

electron correlation. The molecule O + is studied, using large basis sets and high

levels of electron correlation, including CASSCF, CASSI and CASPT2 methods.

Binding energies, geometries and frequencies are computed. Symmetry breaking is a

particular problem for the antisymmetric stretch, which is addressed using the

CASSI method. The symmetry breaking problem in O + has also been studied using

the Brueckner coupled-cluster method. This gives results in good agreement with

CASSI. A multi-region numerical integration scheme is investigated for use in

Density Functional Calculations. This scheme is found to give comparable results to

a widely used scheme based on the Euler-Maclaurin technique.



• "Bond length, dipole momentand harmonic frequencyof CO', L. A. Barnes,

B. Liu and R. Lindh, J. Chem. Phys., 98, 3972-3977, (1993)

A detailed comparison of some properties of CO is given, at the modified

coupled-pair functional (MCPF), single and double excitation coupled-cluster

(CCSD) and CCSD(T) levels of theory (including a perturbational estimate

for connected triple excitations), using a variety of basis sets. With very large

one-particle basis sets, the CCSD(T) method gives excellent results for the

bond distance, dipole moment and harmonic frequency of CO. In a

[6_ 5p 4d 3f 29 lh] + (ls lp ld) basis set, the bond distance is about 0.005 ao

too large, the dipole moment about 0.005 a.u. too small and the frequency

about 6 cm -1 too small, when compared with experimental results.

• "Structure and energetics of Cr(CO)_ and Cr(CO)5", L. A. Barnes, B. Liu and

R. Lindh, J. Chem. Phys., 98, 3978-3989, (1993)

The geometric structure of Cr(CO)6 is optimized at the modified coupled-pair

functional (MCPF), single and double excitation coupled-cluster (CCSD) and

CCSD(T) levels of theory (including a perturbational estimate for connected

triple excitations), and the force constants for the totally symmetric

representation are determined. The geometry of Cr(CO)5 is partially

optimized at the MCPF, CCSD and CCSD(T) levels of theory. Comparison

with experimental data shows that the CCSD(T) method gives the best



results for the structures and force constants, and that remaining errors are

probably due to deficiencies in the one-particle basis sets used for CO. A

detailed comparison of the properties of free CO is therefore given, at both the

MCPF and CCSD/CCSD(T) levels of treatment, using a variety of basis sets.

With very large one-particle basis sets, the CCSD(T) method gives excellent

results for the bond distance, dipole moment and harmonic frequency of free

CO. The total binding energies of Cr(CO)6 and Cr(CO)5 are also determined

at the MCPF, CCSD and CCSD(T) levels of theory. The CCSD(T) method

gives a much larger total binding energy than either the MCPF or CCSD

methods. An analysis of the basis set superposition error (BSSE) at the

MCPF level of treatment points out limitations in the one-particle basis used

here and in a previous study. Calculations using larger basis sets reduce the

BSSE, but the total binding energy of Cr(CO)8 is still significantly smaller

than the experimental value, although the first CO bond dissociation energy

of Cr(CO)_ is well described. An investigation of 3s3p correlation reveals only

a small effect. The remaining discrepancy between the experimental and

theoretical total binding energy of Cr(CO)6 is probably due to limitations in

the one-particle basis, rather than limitations in the correlation treatment. In

particular an additional d function and an f function on each C and O are

needed to obtain quantitative results. This is underscored by the fact that



even using a very large primitive set (1042 primitive functions contracted to

300 basis functions), the superposition error for the total binding energy of

Cr(CO)_ is 22 kcal/mol at the MCPF level of treatment.

c_+,, R. Lindh and L. A. Barnes, J. Chem."The fraternal twins of quartet "-'4 ,

Phys., 100, 224-237, (1994)

Eleven stationary geometries of quartet O + have been studied by ab initio

methods. The geometries were optimized at the CASSCF level of theory and

the energies were calculated by the CASPT2 method, using DZP, TZ2P,

ANO[5s4p2d] and ANO[6s5p3d2f] basis sets. The rectangular and

trans-planar structures are found to be the most stable, with an energy barrier

to conversion between the two at the threshold of dissociation. Both have a

delocalized hole and are stable relative to separated 02 and O + by 11.0 and

11.5 kcal/mol for the rectangular and the trans-planar structure, respectively,

compared with the experimentally deduced energy in the range of 9.2 to 10.8

kcal/mol. The adiabatic ionization potentials of 04 and 02 are computed to

be 11.67 and 12.21 eV, while experimental values are 11.66 and 12.07 eV,

respectively. The vibrational frequencies have been computed for all degrees of

freedom at the CASSCF level of theory. Symmetry breaking is found to be a

particular problem in the computation of the antisymmetric stretch frequency

for the delocalized structures at the CASSCF level of theory. Attempts to



rectify theseproblemsusingthe RASSCFmethod leadsto additional

difficulties, but further analysisyields insight into the symmetry breaking and

problemswith earlier calculations. Finally, a non-orthogonalCI calculation

basedon the interaction of localizedCASSCFwavefunctionsusing the CASSI

method leadsto a balancedtreatment of the antisymmetric stretch which is

freefrom symmetry breaking. The study explains the four most prominent

absorptionfrequenciesobservedin the partially unassignedIR spectrum of O+

isolated in solid neonasthe antisymmetric OO-stretch, and the combination

band of the symmetric and antisymmetric OO-stretchof both the rectangular

and trans-planar structures.

• "Symmetry Breaking in O+: an application of the Brueckner Coupled Cluster

Method", L. A. Barnes and R. Lindh, Chem. Phys. Lett., 223, 207, (1994)

A recent calculation of the antisymmetric stretch frequency for the rectangular

structure of quartet O + using the QCISD(T) method gave a value of

3710 cm -1. This anomalous frequency is shown to be a consequence of

symmetry breaking effects, which occur even though the QCISD(T) solution

derived from a delocalized SCF reference function lies energetically well below

the two localized (symmetry-broken) solutions at the equilibrium geometry.

The symmetry breaking is almost eliminated at the CCSD level of theory, but

the small remaining symmetry breaking effects are magnified at the CCSD(T)



level of theory so that the antisymmetric stretch frequency is still significantly

in error. The use Brueckner coupled cluster method, however, leads to a

symmetrical solution which is free of symmetry breaking effects, with an

antisymmetric stretch frequency of 1322 cm -1, in good agreement with our

earlier calculations using the CASSCF/CASSI method.

"A multi-region integration scheme", L. A. Barnes, work in progress (to be

published)

In this preliminary report, a multi-region radial integration is compared to the

recently proposed method due to Handy et aI.. Preliminary results for small

systems indicate that the new integration scheme is generally comparable to

and sometimes better than that of Handy et al., although this conclusion is by

no means firm. Work for larger systems is continuing.
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Introduction

Recently, Peel [1] reported ab initio calculations on some high symmetry isomers of quar-

tet O + using the singles and doubles quadratic configuration interaction method with a

perturbational estimate of connected triple excitations (QCISD(T)) [2]. For the rectan-

gular structure, he obtained an antisymmetric stretch frequency of 3710 cm -l, which he

noted was "unphysical', but nevertheless was used to give a large zero-point correction

to the energy of this isomer.

Previously [3], we had carried out a detailed study of several structures of quartet O +, com-

puting amongst other things vibrational frequencies, relative energies and isotopic shifts.

The methods used included complete active space self consistent field (CASSCF) [4],

restricted active space self consistent field (RASSCF) [5], a second order perturbation

method based on a CASSCF reference function (CASPT2) [6] and a non-orthogonal CI

method based on non-orthogonal CASSCF or RASSCF solutions (the complete/restricted

active space state interaction (CASSI/RASSI) method [7]), using large generally con-

tracted atomic natural orbital basis sets. These methods gave good results and prompted

a new analysis [8] of the experimental vibrational spectrum of O +, which supported our

assignment. Of particular importance for the current work is our detailed analysis of

symmetry breaking effects in the calculation of the antisymmetric stretch frequency for

quartet O +. We showed that spurious frequencies for quartet O + were due to symme-

try breaking effects due to the competition between localized and delocalized structures

-- we refer the reader to our original work [3], where we also give many references to

earlier work on symmetry breaking. In our case, the symmetry breaking effects were re-

solved through the use of the CASSI method, allowing the two non-orthogonal "localized"

CASSCF wavefunctions to interact and give the correct qualitative form for the potential

energy surface.

On the basis of the form of the potential curve for the antisymmetric stretch around

the equilibrium point for the rectangular structure, Peel [1] concluded that no symme-

try breaking effects were evident at the QCISD(T) level of theory. In the first part of

this work we demonstrate that this is incorrect: symmetry breaking effects are entirely

responsible for the anomalous antisymmetric stretch frequency of 3710 cm -1. For con-

sistency, we use the same methods as in Ref. [1] -- QCISD(T) calculations based on an

unrestricted Hartree Fock (UHF) reference function and a 6-31G* basis set. The geometry

(Roo=1.186/_, RCM=2.378 _) was also taken from Ref. [1]. Roo is the intra-fragment

O-O bond distance, RCM is the inter-fragment bond distance (the distance between the

center of masses of the two fragments). The rectangular structure is illustrated in Fig. 1(a),

which also shows Roo and RCM.

Following this, we give the results of calculations at the CCSD(T) level of theory (singles

and doubles coupled-cluster plus a perturbational estimate of the effects of connected

triples excitations [9]). The geometry is reoptimized and from the computed potential

curves and frequencies it is evident that symmetry breaking effects also occur at the

CCSD(T) level of theory. Brueckner coupled cluster theory [10]-[15] has previously been

used to treat symmetry breaking effects at the coupled cluster level of theory [16]. We

2



have applied this approach to the rectangular structure of quartet O +, using Brueckner

coupled cluster calculations which include a perturbational estimate of the effects of con-

nected triples excitations (BD(T)) [14], with semi-canonical orbitals [17]. Since we are

interested in the qualitative nature of the results, rather than strictly quantitative results,

we continue to use the 6-31G* basis set and UHF reference function, rather than the larger

generally contracted basis sets of our earlier study [3]. We note that in the CCSD(T) and

BD(T) calculations, all electrons are correlated, whereas in the QCISD and QCISD(T)

calculations, the ls core electrons were not correlated.

The calculations were performed with the ACES II i suite of programs using IBM RISC

SYSTEM/6000 computers at NASA Ames Research Center.

Results and Discussion

As discussed in detail in our previous work [3], the symmetry breaking in O + is mani-

fested by the existence of a delocalized solution, which exhibits D2h symmetry, and two

localized solutions exhibiting C2. symmetry which are mirror images of each other, having

equal energies at the symmetric (D2h) point. The structures are illustrated in Fig. 1, with

Fig. l(a) showing the symmetric geometry, and Figs. l(b) and (c) showing the two symme-

try broken localized solutions. In each case, the shorter O-O bond distance corresponds

closely to the bond distance of O +, whereas the longer bond distance corresponds closely

to the bond distance of 02 [3]. Thus the positive charge is localized on the bottom 02

unit in Fig. l(b), and on the top 02 unit in Fig. l(c). The symmetry breaking vibrational

mode is the intra-fragment antisymmetric stretch w_, and this is illustrated in Figs. l(b)

and (c) by the arrows.

In Table I, we give the total energies of the different solutions at the UHF, QCISD and

QCISD(T) levels of theory. Comparing the total energy at the QCISD(T) level with

that given in Ref. [1], we see that the results of Ref. [1] are based on the delocalized

reference function. It is interesting to compare the energy differences of the delocalized

and localized solutions at the various levels of theory. At the UHF and QCISD levels

of theory, the localized solution is below the delocalized solution by about 3 kcal/mol.

However, at the QCISD(T) level of theory, the localized solution is more than 7 kcal/mol

higher in energy than the delocalized solution. Thus it seems that the D2h structure is

favoured at the highest level of theory.

To understand the origin of the spurious frequency at the QCISD(T) level of theory, we

have computed the energy as a function of the antisymmetric stretch coordinate (see

IACES IIisa computationalchemistrypackageespeciallydesignedforcoupledclusterand many body

perturbationcalculations.The SCF, transformation,correlationenergyand gradientcodeswerewritten

by J.F.Stanton,J.Gauss,J.D. Watts,W. J.Lauderdaleand R. J.Bartlett.The two-electronintegrals

are takenfrom the vectorizedMOLECULE code ofJ.AlmlSfand P. R. Taylor.ACES IIincludesa

modifiedversionofthe ABACUS integralderivativesprogram,writtenby T. Helgaker,H. J.Jensen,P.

J¢rgensen,J.Olsen,and P.R. Taylor,and thegeometryoptimizationand vibrationalanalysispadmge

writtenby J.F.Stantonand D. E. Bernholdt.



also Refs. [1] and [3]). The results are presented in Figs. 2-4, where we have used the

same scales in order to facilitate comparison of the different curvatures resulting from

the different methods. The delocalized solution is given by Edel and the two localized

solutions are given by E_ and Eb in each case. Also given in Figs. 3 and 4 are curves at

the CCSD, CCSD(T), BD and BD(T) level of theory, which we discuss later. Using the

notation of Figs. l(b) and (c), AR is defined as R1-R2.

The behaviour of the energy at the correlated level of theory is driven by the behaviour

of the UHF energies, given in Fig. 2. The delocalized solution lies above the localized

solutions, and as we follow the antisymmetric coordinate, the delocalized solution rapidly

approaches the localized solutions, until at AR_-,0.0185 1_ the localized and delocalized

solutions merge. Thus the QCISD and QCISD(T) energies are constrained by this fact

-- the delocalized energy and one of the localized energies (depending on whether the

distortion is positive or negative) must be equal at AR_0.0185 1_. In Fig. 3, we see that

at the QCISD level of theory the energies are significantly better in the sense that the

localized solution energies are much flatter (tending towards delocalized solutions). In
this case the flatness of the localized solutions means that the delocalized solution is

driven down in energy in order to meet the constraint of equal energy at AR_0.0185 /_,

leading to an imaginary frequency at the QCISD level of theory. At the QCISD(T) level of

theory (Fig. 4) the delocalized solution is well below the localized solution, and so is driven

rapidly upward to meet the equal energy constraint, resulting in the very large 3710 cm -1

frequency. Thus the QCISD method does not entirely overcome the inherent problems

with the UHF reference function, and the triples perturbation correction is unable to

overcome the residual problems with the QCISD method. We note that we found similar

problems with the CASPT2 method, which was not able to overcome the problems of a

localized CASSCF reference function [3].

In Tables II and III we present the results from the CCSD(T) calculations. From the

energy separations, we see that while the UHF separation is very similar to that given in

Table I (which has a slightly different geometry), the CCSD and CCSD(T) separations

are very different to those at the QCISD and QCISD(T) levels of theory. The delocal-

ized and localized solutions are very close in energy at the CCSD level of theory, and

unlike the QCISD results the localized solution is above the delocalized solution. As for

the QCISD(T) results, the perturbational triples correction increases the separation be-

tween the delocalized and localized solutions at the CCSD(T) theory when compared with

CCSD, although the effect is much smaller than the QCISD and QCISD(T) difference.

We note that one difference between the QCISD and CCSD calculations was that the Is

core electrons were excluded from the calculations at the QCISD and QCISD(T) levels of

theory, whereas they were included in the calculations at the CCSD and CCSD(T) levels

of theory. To check whether this difference has any effect on the symmetry breaking at the

QCISD/QCISD(T) level of theory, we also computed the separation between the delocal-

ized and localized solutions at the symmetric point including the Is electrons using these

methods. The separations are barely different from the original results, so we conclude

that removing the core ls electrons from the QCISD calculations is not the cause of the

large difference between the CCSD/CCSD(T) and QCISD/QCISD(T) results.

In Figs. 3 and 4 we present the CCSD and CCSD(T) potential curves for the antisymmetric



stretch, which may be comparedwith the QCISD and QCISD(T) curveson the same
figures. The behaviour of the UHF referencefunction energiesaround the CCSD(T)
equilibrium geometryfor the antisymmetric stretch is very similar to that given in Fig. 2
around the QCISD(T) equilibrium geometry,sowemaydiscussthe CCSDand CCSD(T)
curves in the same light as the QCISD and QCISD(T) curves. Thus the CCSD and
CCSD(T) energieshave similar constraints to the QCISD and QCISD(T) energies--
irrespectiveof the separationat AR=0 (the symmetric geometry), at AR_0.0185/_ the

delocalized and one of the localized energies must be equal. Inspection of the curves shows

that this is so. However, the most striking difference between the CCSD and QCISD

curves comes from the fact that the curves at the CCSD level are much closer together,

so that this constraint has only a small effect on the antisymmetric stretch frequency at

the CCSD level of theory. In fact, the antisymmetric stretch frequency at the CCSD level

of theory is a very reasonable 1220 cm -1 (at the CCSD equilibrium geometry), which is

to be compared with a value of around 1500i cm -1 at the QCISD level of theory. Overall,

we see that the CCSD approach has almost eliminated the symmetry breaking effects.

As discussed above, the addition of the perturbative triples correction increases the sep-

aration between the delocalized and localized solutions at the symmetric point, and this

is evident in Fig. 4. Thus the delocalized curve at the CCSD(T) level is more affected

by symmetry breaking than the CCSD curve, although this effect is much smaller than

that found with the QCISD(T) method. Thus the antisymmetric stretch frequency at

the CCSD(T) level is 1922 cm -1, compared with 3710 cm -1 at the QCISD(T) level of

theory. The origin of this difference is quite evident from the potential curves -- it is the

large difference in separations at the symmetric point. The other remarkable feature of

the CCSD(T) potential curves is the near coincidence of the two localized curves, which

is again quite different to the QCISD(T) results. Thus the CCSD(T) approach is quite

close to removing the symmetry breaking effects, but is still not able to overcome the

small deficiencies evident at the CCSD level of theory.

The geometry at the CCSD(T) level (Table III) is very similar to that found at the

QCISD(T) level of theory [1], and for the most part the frequencies are quite similar to

those given in Ref. [1]. The exceptions are the antisymmetric stretch w5 (discussed above)

which changes from 3710 to 1922 cm -1, and the (inter-fragment) antisymmetric stretch

we which is reduced from 595 to 97 cm -1. The CCSD(T) value for w6 is in accord with our

earlier results [3] and the results for the trans-planar structure [1, 3]. Thus it seems that

the QCISD(T) value for w6 is significantly too high also. Considering Fig. 1, the mode w6

may be envisioned in an analogous way to ws, except that the distortion occurs along the

RCM direction instead of the Roo direction. Thus it is possible, though less likely (due

to the large inter-fragment bond distance RcM), for symmetry breaking effects to occur

for w6 also. This would involve localization on the left and right sides of O + rather than

the top and bottom, which occurs for wh. However, we have not investigated this in any

detail here.

The results at the BD(T) level of theory are given in Table IV. The geometry optimized

at the BD(T) level of theory is the same as that of the CCSD(T) level of theory (which

was constrained to have D2h symmetry, whereas the BD(T) calculation was not), and

the BD(T) energy is also very similar to the CCSD(T) energy. To investigate whether

5



symmetry breaking effectsare still presentat the BD(T) level of theory, we haveagain
plotted the energyasa function of the antisymmetric distortion, and the resultsaregiven
in Figs. 3-5.

As we sawpreviously, the behaviourof the correlatedmethods wasconstrained by the
behaviourof the referencefunction. In Fig. 5 wegive the Bruecknerreferencedetermi-
nant energyand the UHF energyfrom which the Bruecknercalculation was initiated.
Beforediscussingtheseresults,weemphasizethat the comparisonbetweenthe Brueckner
referencedeterminant energy and the UHF energy is not rigourous since the Brueck-
ner referencedeterminant is a product of the correlated calculation. Nevertheless, it is

enlightening.

The UHF solutions of Fig. 5 are (qualitatively speaking) a subset of those given in Fig. 2.

The curve is discontinuous because we varied AR with a larger stepsize than for Fig. 2,

and the SCF converged to solutions on different potential curves at different points, rather

than the solution on the same potential curve as in Fig. 2. The character of the UHF

orbitals is of course very different for the different potential energy surfaces, varying from

delocalized to localized on the top of the molecule or localized on the bottom of the

molecule, and this variation is reflected in the energies. In contrast to this, the Brueckner

reference energy is very smooth despite the large changes in the UHF orbitals from which

it began, indicating that the Brueckner approach is not affected by the starting orbitals.

At the symmetric point we have also verified that the Brueckner method is independent

of the starting orbitals -- whether localized or delocalized UHF orbitals are used, the

Brueckner approach leads to the same symmetric (delocalized) solution. Thus there is only

one solution at the Brueckner level of theory. This behaviour is in accord with previous

studies [16] using the Brueckner approach for other systems which exhibit symmetry

breaking.

At the BD and BD(T) levels of theory (Figs. 3 and 4) we see that the antisymmetric

stretch is very smooth and gives a positive frequency, which is 1322 cm -1 at the BD(T)

level of theory (Table IV). It is interesting to compare the different curvatures for the

different methods in Figs. 3 and 4. It is evident that the CCSD and CCSD(T) curvatures

are much closer to the BD and BD(T) curves than are those from QCISD and QCISD(T).

We note from our previous study [3] that there is a significant basis set effect for the

antisymmetric stretch frequency. At the CASSI level using a TZ2P basis set, the an-

tisymmetric stretch was 1271 cm -1 whereas an ANO[5s4p2d] basis set gave a value of

1259 cm -1 and an ANO[6sSp3d2f] basis gave a value of 1296 cm -1. Considering the fact

that the BD(T) approach should give a larger proportion of the dynamical correlation

energy than our earlier frequency calculations at the CASSCF/CASSI level of theory, the

agreement between the BD(T) frequency and our earlier values is very good. Thus the

BD(T) results are very encouraging and in a large one particle basis this method should

give very accurate results. In our earlier work [3] we showed that the dipole derivative at

the CASSI level of theory was unphysically high. It would be of some interest to compute

this quantity at the BD(T) level (in a large one particle basis) to determine whether a

more reasonable dipole derivative would be obtained.

In Table IV we also give the symmetric stretch frequencies at the BD(T) level of theory.



Given the agreementbetweenthe geometriesat the CCSD(T) and BD(T) levelsof theory,

it is not surprising that the symmetric stretch frequencies are very similar for the two

methods (and also in good agreement with the CASSCF results [3]). These results also

support our earlier isotopic substitution analysis [3], where we used the CASSCF frequency

for the symmetric stretch and the CASSI frequency for the antisymmetric stretch.

To conclude, the antisymmetric stretch of quartet O + is significantly affected by symmetry

breaking. As we discussed previously [3], it is necessary to properly account for this before

a reliable frequency can be obtained. In the current work we have shown in detail how the

previous Ill antisymmetric stretch frequency at the QCISD(T) level of theory is affected

by symmetry breaking so that any analysis of the relative energies of the rectangular

and trans-planar structures which includes zero-point corrections based on this frequency

must be significantly in error. The CCSD approach gives significantly better results

than QCISD, almost eliminating the symmetry breaking effects. However, the small

remaining symmetry breaking effects are magnified at the CCSD(T) level of theory, so

that the antisymmetric stretch is still affected significantly at the CCSD(T) level. The

Brueckner coupled-cluster method (BD(T)), however, eliminates the symmetry breaking

effects entirely, giving a single symmetric solution with an antisymmetric stretch frequency

in good agreement with our earlier result at the CASSCF/CASSI level of theory [3]. This

must make the BD(T) approach the method of choice for very accurate calculations when

symmetry breaking is a potential problem and more than just a few electrons must be

correlated.
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Table I: Total energies(in Hartree) and energydifferences(in kcal/mol) of quartet O+ at
the rectangular (D2h)geometry,for the delocalizedand localizedsolutions. The geometry
is taken from the QCISD(T) calculationsof Ref.[1] (Roo=1.186 /_,RcM=2.378 /_)

Method Edd Eloc I AE

UHF -298.7398444 -298.7439668 2.59

QCISD -299.4774306 -299.4830304 3.51

QCISD(T) -299.5050169 -299.4933392 -7.33

Table II: Total energies (in Hartree) and energy differences (in kcal/mol) of quartet O + at

the rectangular (D2h) geometry, for the delocalized and localized solutions. The geometry

is from the CCSD(T) approach, given in Table III

Method E_l Elo¢ [ AE

UHF -298.7406630 -298.7447092 2.54

CCSD -299.4838322 -299.4832236 -0.38

CCSD(T) -299.5127862 -299.5107674 -1.27



Table III: Total energy (in Hartree), geometrical parameters (in _,) and frequencies (in

cm -_) of quartet 0 + at the rectangular (D2h) geometry, using the CCSD(T) approach.

E

Roo

RCM

to3(blg)

-299.5127862

1.1846

2.3751

1713

271

372

175

1922 _

97

This frequency was computed as a finite difference of energies, since the symmetry

breaking effects lead to spurious results from the automatic finite difference of gradients

approach of Aces II (which used different UHF solutions at different points of the finite dif-

ference procedure). However, the automated approach was used for the other frequencies,

including w6 (which was also computed by finite difference of energies as a check).

Table IV: Total energy (in Hartree), geometrical parameters (in h) and frequencies (in

cm -_) of quartet 0 + at the rectangular (D2h) geometry, using the BD(T) approach.

E

Roo
RcM

-299.5127780

1.1846

2.3751

1713

270

1322
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Figure captions

Figure 1: Schematic structures of rectangular O +. (a) The symmetric structure (D2h

symmetry). (b) The bottom localized structure (C2_ symmetry). (c) The top localized

structure (C2_ symmetry). The antisymmetric stretch mode _5 is illustrated

schematically with arrows.

Figure 2: UHF energies (around the QCISD(T) equilibrium geometry) as a function of

the antisymmetric stretch coordinate for the rectangular structure of O +. E_ is given by

_, Eb is given by + and Eaei is given by D.

Figure 3: QCISD, CCSD and BD energies (around the QCISD(T), CCSD(T) and

BD(T) equilibrium geometries, respectively) as a function of the antisymmetric stretch

coordinate for the rectangular structure of O +. The QCISD energies E_ are given by _,

Eb are given by + and Edel are given by o. The analogous CCSD energies are given by

x, A and *, respectively. The BD energies are given byo. For clarity, the CCSD energies

are offset by -0.005 Hartree, whereas the BD energies are offset by -0.01 Hartree.

Figure 4: QCISD(T), CCSD(T) and BD(T) energies as a function of the antisymmetric

stretch coordinate for the rectangular structure of O +. The QCISD(T) energies E,, are

given by _, Eb are given by + and Eael are given by D. The analogous CCSD(T)

energies are given by x, A and *, respectively. The BD(T) energies are given bye. For

clarity, the CCSD(T) energies are offset by 0.0025 Hartree.

Figure 5: UHF and Brueckner determinant reference energies as a function of the

antisymmetric stretch coordinate for the rectangular structure of O +. The UHF energies

are given by O and the Brueckner determinant reference energy is given by +
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A multi-region radial integration
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Abstract

In this preliminary report, a multi-region radial integration is compared to

the recently proposed method due to Handy et al.. Preliminary results for small

systems indicate that the new integration scheme is generally comparable to

and sometimes better than that of Handy et al., although this conclusion is by

no means firm. Work for larger systems is continuing.
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1 Introduction

There is recently a great deal of interest in the testing and application of Density

Functional techniques for use in molecular calculations. The complicated functional

forms used in this theory preclude analytical integration, so that numerical methods

must be used. Recently, Handy et a/.[1] proposed a radial integration based on the

Euler-Maclaurin summation giving good results for a number of systems. However,

it is worthwhile investigating other methods since for accurate calculations many

quadrature points are required in general, even with the Euler-Maclaurin technique.

In addition, on problem with the Euler-Maclaurin scheme is that there is little control

over the location of additional quadrature points. For example, this scheme is very

efficient for atoms, but in a molecular context additional points are required for an

integration which is comparable to the atomic case. These additional points should

ideally be placed in the valence region. However, with the Euler-Maclaurin scheme

points must be placed throughout the entire region. This problem is bypassed with

a multiregion integration.

The advantage of the multiregion integration is the control of the placement

of additional quadrature points in the molecular situation. In general, we determine

an accurate quadrature for the constituent atoms or small molecular fragments. In

the molecular situation we then only need to add points to the valence region(s), and

increase the accuracy of the angular quadrature, in order to be able to produce an

accurate molecular quadrature. One disadvantage of the multiregion integration is

a possible increase in errors due to the accumulation of errors from the individual

regions.

Here we investigate the efficiency of a multi-region integration similar to that

previously proposed by Te Velde and Baerends [2] and also Thakar [3]. One difference

in the current work is the use of a change of variables due to McLean and Yoshimine [4]

which allows for e_cient placement of the quadrature points by mapping the region

[a, m, b] onto the region [-1, 0, 1], where a and b are the endpoints of the region, and

m is any point between a and b. This mapping takes the form

x = cl + c_(1 + 8)/(1 - _t).

The constants cl, c2 and /_ are completely determined by the mapping a -4 -1,

rn -4 0, and b -4 1. This mapping may be used for all ranges except the doubly

infinite range (-c¢, oo), providing appropriate limiting forms axe used for special cases.

The regions used here are based on the atomic charge density, in a spirit similar



to that used by Thakar [3]. However, rather than using a general rule based on the

atomic number by which to determine the regions, we use the atomic charge density

directly. The function v2 * p(r) is generated numerically, and analysed for maxima,

minima and points of inflection. In general, the regions we define are based on these

points, in particular the points a and b map onto two minima in the charge density,

and the point m maps onto the maximum in between these. These three points define

a shell, and the mapping ensures an optimal distribution of quadrature points in the

region. Generally we have one region for each shell, with the valence shell being split

into an inner and outer parts at the point of inflection of the valence shell (see also

Thakar), and the innermost (core) region into two at the first point of inflection.

Although this scheme may seem somewhat complicated, in fact it is straightforward

to generate the required regions and tabulate them for any atom.

For the inner regions we use a standard Ganss-Legendre quadrature, whereas

for the outer region we use a shifted Gauss-Laguerre scheme based on the weight

function e -_r, where a is related to the highest occupied MO eigenvalue (or the IP)

by a = 2(VZ-Z_ (see also Thakar [3]).

The other details of the integration are very similar to that proposed by

Handy et al. [1]. We use a product scheme for the angular integration identical

to that of Handy et al., including the use of the angular crowding parameter K0. The

single center integration scheme of Becke [5] is used, but we use the cutoff function

due to Handy et al., with standard Bragg-Slater radii.

We consider three systems here - Ne, Cu and CO. We compare the Euler-

Maclaurin to the current multiregion integration for all four systems. We consider

integration of the total charge density only here, at the SCF level of approxima-

tion, since Handy et al. [1] showed that this gives a good indication of the overall

performance of an integration scheme. For Ne, we use the Dunning [6] [5s4p] con-

tracted Ganssian basis set. For carbon and oxygen we use the correlation consistent

polarized valence triple zeta (cc-pVTZ) basis sets of Dunning. For Cu we use a

(20s 15p 10d 6f 4g)/[6 + ls 5 + lp 4d 2f lg] basis set derived from the large primi-

tive set of Partridge [7], contracted by Bauschlicher using the atomic natural orbital

(ANO) approach. The C-O bond length is 2.2 a.u. in all cases.

The calculations were carried out using the Seward integral program and the

Sweden SCF program on the Cray YMP-C90 at NASA Ames research center.



2 Results and Discussion

For Ne atom, the results for the Euler-Maclanrin integration are given in Table 1.

We give the number of points used in the radial integration, the number of points

including those discarded due to the radial cutoff (in parentheses), the radial factor

mr (Handy et al. [1], Eqn. 6), and the total error in the integrated charge density.

Our results for this are very similar to Handy et al., as expected, with a very accurate

radial integration attained with 72 radial points. In Table 2, we give the results from

the multiregion integration, with the number of points in each region given. In region

5 we also indicate the number of points including those discarded due to the radial

cutoff, in parentheses. Overall, more radial points are required for the multi-region

integration, although the integration is still accurate. For example, if one used a

value for rat in the Euler-Maclaurin integration which was not optimal, then the

results could be worse than for the multi-region integration.

In Table 3, we give the results for the integration of Cu atom in a large ANO

basis set, for three different numbers of radial points. One trend to be noted is that a

higher mr value is needed for Cu than Ne as more radial points are added, and more

radial points are needed to achieve a similar absolute accuracy. As noted by Handy et

aI. this is because the numerical integration only gives a certain relative error rather

than absolute error in the integration. We note that for Cu atom (481) it is necessary

to integrate out a long way (22 a.u.) due to the very diffuse nature of the 48 orbital,

and that sometimes a higher value of m, can be necessary than that recommended

than Handy et al. to obtain optimum results.

The multi-region results of Tables 4 and 5 compare quite well with the Euler-

Maclaurin results, although again it seems that more points are necessary for the

multi-region scheme, depending on the mr value used for in the Euler-Maclaurin

scheme. We note that the inner regions for the multi-region scheme are very compact,

due to the higher atomic number in this case, and that quite a few radial points are

necessary to describe the density accurately in this compact region. However, this

does not necessarily translate to a lot of points in a molecular calculation, since the

number of angular points needed in the inner regions is much smaller than in the

valence regions.

Finally we consider the CO molecule (Tables 6-8). We use the same num-

ber of angular points in for the Euler-Maclaurin and the multi-region integrations

(n0=42, n_=84), and the same Bragg-Slater radii in each case (rc=1.32281 a.u.,

ro=1.13383 a.u.). Overall, it seems that it is possible for the Euler-Maclaurin scheme



to outperform the multi-radial scheme if the right values of rn_ and m u (the angular

factor [1]) are chosen. However, these differ significantly from the "standard" values

recommended by Handy et al., m_=2 or 3 and m_,=10 or 11. For these values, we

see that the multi-region scheme is either equivalent to or better than the Euler-

Maclaurin scheme in efficiency. Another interesting point from Tables 6 and 8 is that

it is not just the total number of radial points which is important, but also the spread

of these points along r, as this affects the total number of points through the angular

factors. For example, the spread of radial points in the Euler-Maclaurin scheme is

approximately linear on a logarithmic scale, apart from the very short and long range

regions. Changing the factor rn_ changes the slope of this logarithmic plot, so that

for higher values of mr there are more points in the core region and more points in

the long range regions, leading to fewer points overall, since there are fewer angular

points in the core region and the long range points are discarded due to the radial

cutoff. Thus for the Euler-Maclaurin scheme, very different total numbers of points

are realized for m,=3 versus m_=4, even though the nominal number of radial points

is the same in each case.

For the multi-region scheme, two sets of results are presented for CO (Table 8),

differing in the number of points in the valence and outer regions, and with the total

number of points being very comparable to the best results found for the Euler-

Maclaurin scheme. One advantage of the multi-region scheme is that we are able to

take a set of integration parameters from a similar atom (for example, those for Ne in

this case), and then place more radial points in the valence and outer valence regions

in order to attain higher accuracy. This can be seen to be an effective way to add

points for CO.

Overall, it seems that neither integration scheme is clearly superior in the

molecular situation, based on the current results. More and larger systems need to

be studied in order to establish whether the multi-region integration scheme proposed

here is significantly better to the widely used Euler-Maclanrin scheme of Handy et

al.[1]
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Table 1: Euler-Maclaurin integration of Neatom (rm_.=15.0a.u.)

nr mr Ap(r)

66(70) 1 3.0x10 -s

56(70) 2 3.1x10 -1°

50(70) 3 8.8x10 -l°

47(70) 4 7.1x10 -7

94(100) 1 6.6x10 -6

72(100) 2 9.1x10 -13

80(100) 3 3.8x10 -11

67(100) 4 9.1x10 -11

Table 2: Multiregion integration of Ne atom (rma.=15.0 a.u.)

1 2

n_(region) Total n,

3 4 5

10 15 12 16 3(3) 56(56)

15 20 24 24 11(16) 94(99)

Ap(r)

5xlO -9

lxl0 -x2



Table 3: Euler-Maclaurinintegration of Cu atom (rm_=22.0 a.u.)

47(64) 2 6.0xl0-6
43(64) 3 6.4x10-s
40(64) 4 7.6x10-6

71(96) 2 5.2x10-9
64(96) 3 1.4x10-1°
60(96) 4 4.4x10-1°

95(128) 2 6.5x10-9
86(128) 3 4.9x10-12
80(128) 4 1.1xl0-13
77(128) 5 1.1xl0-1°

Table 4: Regionsfor Cu atom (a.u.)

a m b

1 0.000 0.005 0.010

2 0.010 0.038 0.077

3 0.077 0.170 0.380

4 0.380 0.630 0.940

5 0.940 2.500 6.000

6 6.000 -- 22.000



Table 5: Multiregion integration of Cu atom (rm_,=22.0a.u.)

n, (region) Total n,. Ap(r)

1 2 3 4 5 6

15 15 15 10 20 15(9) 84(90) 2.2x10 -9

20 15 15 10 20 11(20) 91(100) 6.7x10 -u

25 20 20 15 25 11(20) 117(130) 1.4xlO -12
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Table 6: Euler-Maclaurin integration of CO molecule (n0=42,

radbs=1.32281,1.13383 a.u. n¢=84, rm_=15.0 a.u.). Note: same value of m u and mT

used for C and O.

nr Ngrid mr rn u Ap(r)

132,134 (192,192) 60902,62666 3 10 1.3xlO -9

132,134 (192,192) 60902,62666 3 11 3.0xlO -1°

132,134 (192,192) 60902,62666 3 12 2.8x10 -11

132,134 (192,192) 60902,62666 3 13 9.8x10 -m

132,134 (192,192) 60902,62666 3 14 2.5x10 -'_

148,150 (192,192) 87162

148,150 (192,192) 87162

148,150 (192,192) 87162

148,150 (192,192) 87162

148,150 (192,192) 87162

148,150 (192,192) 87162

88926 2 I0 2.1xlO-'°

88926 2 II 8.7xi0-I'

88926 2 12 3.9xi0-"

88926 2 13 2.2xi0-11

88926 2 14 1.6xlO-11

88926 2 15 1.7xlO-I'

124,125 (192,192) 47228,48110

124,125 (192,192) 47228,48110

124,125 (192,192) 47228,48110

124,125 (192,192) 47228,48110

124,125 (192,192) 47228,48110

4 11 8.7x10 -9

4 12 5.4x10 -9

4 13 1.8xlO -9

4 14 5.2x10 -1°

4 15 1.5xlO -9
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Table 7: Regions for CO molecule (a.u.)

a m b

C

1 0.00 0.025 0.05

2 0.05 0.17 0.63

3 0.63 1.27 1.90

4 1.90 4.0 6.0

5 6.0 -- 15.0

0

1 0.0 0.02 0.04

2 0.04 0.12 0.41

3 0.41 0.83 1.37

4 1.37 4.0 6.0

5 6.0 -- 15.0
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Table 8: Multiregion integration of CO molecule (rmax=15.0 a.u.)

n_(region) Total n_ Ng_ia mu Ap(r)

1 2 3 4 5

15 20 24 24 7(16) 90(99) 58078,56944 12 3.0xlO -9

15 20 24 24 7(16) 90(99) 58078,56944 13 1.OxlO -'°

15 20 24 24 7(16) 90(99) 58078,56944 14 1.4xlO -9

15 20 24 24 9(24) 92(107) 59842,58708 13 8.3x10 -n

15 20 24 24 11(32) 94(115) 61606,60472 13 8.3xi0-n

15 20 24 32 9(24) I00(I15) 66898,65764 13 5.7xI0-n

15 20 24 40 9(24) 108(123) 73954,72820 13 l.OxlO-"

15 20 24 40 9(24) 108(123) 73954,72820 12 1.4xlO-n

15 20 24 40 9(24) I08(123) 73954,72820 14 1.2xlO-"
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