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1. INTRODUCTION

A fundamental problem in the study of the terrestrial

middle atmosphere is to calculate accurately the local heating
due to the absorption of solar radiation. Knowledge of the

heat budget is essential to understanding the atmospheric
thermal structure, atmospheric motions, atmospheric
chemistry, and their coupling. The evaluation of heating rates
is complicated (especially above the stratopause) by the fact
that the heating is not a simple one-step process. That is, the
absorbed solar energy does not all immediately appear as heat.

Rather, substantial portions of the incident energy may ap .pear
as internal energy of excited photolysis products (e.g., O(1D)
or O2(lA)) or as chemical potential energy of product species
such as atomic oxygen. The ultimate disposition of the

internal and chemical energy possessed by the photolysis
products determines the efficiency and thus the rate at which
the middle atmosphere is heated. In studies of the heat budget,
it is also vitally important to consider transport of long lived
chemical species such as atomic oxygen above - 80 km. In

such cases, the chemical potential energy may be transported
great distances (horizontally or vertically) before undergoing a
reaction to release the heat. Atomic oxygen influences the
heating not only by reactions with itself and with 02 but also
by reactions with odd-hydrogen species, especially those
involving OH [Mlynczak and Solomon, 1991a].

Consequently, absorbed solar energy may finally be converted
to heat a long time after and at a location far from the original
deposition.

The purpose of this paper is to examine the solar and
chemical heating processes and to present parameterizations
for the heating efficiencies readily applicable for use in

numerical models and heat budget studies. In the next two
sections the processes relevant to the heating efficiencies for
ozone and molecular oxygen will be reviewed. In Section 4
the processes for the exothermic reactions will be reviewed
and parameterizations for the heating efficiencies for both the

solar and chemical processes will be presented in Section 5.

2. CALCULATION OF THE SOLAR HEATING
EFFICIENCIES FOR OZONE

In this section we develop the formalism for evaluating
the heating efficiencies for absorption of solar ultraviolet

radiation by ozone. Ozone is dissociated through the
absorption of ultraviolet and visible radiation in three bands;
the Hartley band (200-300 nm), the Huggins band (310-350
nm), and the Chappuis bands (450-850 rim). The Hartley

band is the most significant in terms of heating rate above the
stratopause, while all three bands are very important in the

middle and lower stratosphere and the troposphere. Excited
photolysis products are generated only by photolysis in the

Hartley band. As discussed below, this fact implies that the

heating in the Huggins and Chappuis bands occurs at unit
efficiency.

Ozone is dissociated by absorption in the Hart.Icy band
into one of two "channels"

03 + hv _ O(ID) + O2(1A) (1)

O3 + hv _ O(3P)+ 02C3,v.,,u) (2)

The "channel" corresponding to Eq. 1 is called the singlet
channel in reference to the spin state of the excited oxygen
photolysis products. By analogy, the "channel"
corresponding to Eq. 2 is called the triplet channel, since triplet
oxygen species are formed. Note that the molecular oxygen in

the triplet channel may be produced in a vibrationally excited
form [Slanger et al., 1988], hence the script u in the notation.

We define the heating efficiency at a given altitude in
general terms as the difference between the energy available
for heat and the energy lost due to airglow emission, relative to
the energy available for heat. That is,

 -E0-
e = (3)

_-E b

where Ev is the energy of the incident solar photon, Eb is the
energy required to break the chemical bonds of ozone, and E_

is the energy lost by radiative emission (airglow). The
quantity (Ev - Eb) is the energy immediately available for heat.
As a consequence of this definition, any heating process in
which there is no radiative loss (i.e., E_ = 0) will have an
efficiency of 1.0 as is assumed for the triplet channel of ozone

photolysis.
The quantum yields for the singlet and triplet channels

are about 0.9 and 0.1, respectively, indicating that the singlet
channel is by far the dominant pathway for ozone photolysis.
The detailed processes by which the singlet and triplet
channels relax are discussed in Mlynczak and Solomon,
[1991b] and in Mlynczak and Solomon [1992]. In general,
some of the O(ID) energy is converted to internal energy of

02, forming 02(IT.), which then radiates. Loss from 02(IA)
is also quite significant. Based on the work of Harris and
Adams [1983], we conclude that energy transfer from O(ID)
to N2 to CO2 followed by emission by C02 at 4.3 p.m is only
a minor source of energy loss below 100 km.
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Before discussing the efficiency calculations we must
fn'st consider the disposition of the chert, radiated by O2(IA)
and O2(11_). If sufficient optical mass is present, radiative

energy lost from the volume in which the excited species was
generated may be absorbed in another other volume some
distance away. In such instances, the net gain or loss of

photons must also be determined to calculate the local heating.
Based on calculations of the escape function [e.g., Andrews et

al., 1987] we find that all radiation emitted by O2(IA) and

02(15`) either escapes to space or is absorbed in the dense
amaosphere with negligible heating upon absorption.

Under steady-state conditions, it is relatively
straightforward to show that the heating efficiency is virtually
independent of the quantum yield, the ozone concentration,
and the photolysis rate. In fact, the efficiency is dependent

only on the kinetic and spectroscopic parameters describing the
relaxation of the excited species and on the energies of the

photons radiated by O2(1A), O2(lY-), the incident photon

energy, and the dissociation energy. This fact will be very
important when developing parameterizations of the heating
efficiency for use in numerical models.

The heating efficiency for the Harfley band is presented
in Figure 1. Below about 50 km, the efficiency is equal to one
implying that all internal energy is generated in the singlet
channel is locally quenched to release heal
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Fig. 1 The heating efficiency of the Hartley band of ozone.

3. HEATING _CIENCIES FOR THE PHOTOLYSIS
OF MOLECULAR OXYGEN

We mm now to the heating efficiencies associated with
the photolysis of molecular oxygen which is dissociated
through the absorption of solar ultraviolet radiation in four
systems, the I-Ierzberg system, the Schumann-Runge bands,
the Schumann-Rungc continuum, and the Ly.man-alpha band.
Only photons in the Schumann-Runge conunuum and in the

Lyman-aipha band are sufficiently energetic to .l_0duce excited
atomic oxygen upon dissociation, with one O(_D) atom aria
one O(3P) atom being produced per each photolysis event
[Brasseur and Solomon, 1986] in each system. For the
altitudes under consideration (z < 115 km), radiative loss from

O(1D) is negligible [Harris and Adams, 1983]. Consequently,

the only mechanism by which the heating efficiency can be

Lyman-alpha
Continuum.

reduced is by energy transfer to radiatively active species. The
O(ID) energy generated by 02 photolysis will undergo energy
transfer processes identical to that for the O(]D) generated by

03 photolysis. Energy can be lost by emission from O2(IY.),
02(.a), and C02(001).

Shown in Figures 2 and 3 are the heating efficiencies
for both the Schumann-Runge continuum and the Lyman-

alpha band. In both cases illustrated here, it has been assumed
that there is negligible loss from emission by CO2. These

figures demonstrate that very little energy is lost when Lyman-
alpha radiation dissociates molecular oxygen in the region
where such dissociation is significant (80-100 km), the

efficiencies being greater than about 94%. The heating
efficiency in the Schumann-Runge Continuum is smaller than

in Lyman-alpha band even though both systems produce the
same excited photolysis product O(]D). This apparent
contradiction is due to the fact that the amount of energy

immediately available for heat (Ev - El)) is larger in the case of
photolysis than in the Schumann-Runge
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The heating efficiency of the Schumann-Runge
continuum of molecular oxygen.
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The heating efficiency in the Lyman-alpha band of
molecular oxygen.
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4.HEATINGDUETOEXOTHERMICCHEMICAL
REACTIONS

As discussed above, not all of the absorbed solar
energy appears as heat in the atmosphere but rather substantial
portions of the incident energy are converted to chemical form.
This chemical energy is realized as heat during exothermic
reactions which take place subsequent in time and potentially
far away in space from the location of the initial photon
deposition.

Using the constituent concentration fields calculated by
the Garcia and Solomon two dimensional model [Garcia and
Solomon, 1983; 1985] we have calculated the potential heating
rate in Kelvin per day for seven exothermic reactions identified

[e.g., Mlynczak and Solomon, 1991a] as being responsible
for depositing substantial amounts of heat in the terrestrial
middle atmosphere. The latitudinal distribution of the total

chemical potential heating from these reactions (at equinox) is
shown in Figures 4 and 5. From Figure 4 it can be seen that
exothermic reactions are important from the lower stratosphere

to the lower thermosphere. Below 60 km, the heating is due
almost entirely to the reaction of O and 02 which forms ozone.

Above 60 km, all reactions contribute to the heating. The
chemical heating at night (Figure 5) shows a strong contrast to

the daytime heating rate. First, there is virtually no chemical
heating below - 80 km because of the disappearance of atomic
oxygen and atomic hydrogen. Secondly, the chemical heating
above 80 km is much larger at night owing to the increase in
ozone which fuels the fast reaction with atomic hydrogen.

The heating rates in Figures 4 and 5 represent the
maximum possible heating based on the model constituent

concentrations and reaction rates. The actual heating may be
much less than the potential heating rate if any of the reaction
products are radiatively active and excited to any extent by the
reaction. Chemiluminescent emission is a significant source of

energy loss from the atmosphere, particularly in from
vibrationally excited OH and possibly from vibrationally
excited 03 [Mlynczak and Solomon, 1991a; Mlynczak 1991].
The energy loss associated with chemiluminescent emission is

analogous to the airglow loss discussed for direct solar heating
in that it effectively reduces the heating efficiency of the
individual reaction.
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5. HEATING EFFICIENCY PARAMETERIZATIONS

We conclude with a parameterization of the heating
efficiencies for the three solar heating processes and the two
chemical reactions with potentially significant

chemiluminescent emission. For sol_ heating, the efficiencies
are virtually independent of the photolysis rate and of the
absorber (i.e., 0 3 or 02) concentration. The chemical heating
efficiency is virtually independent of the reactant
concentrations and of the rate of reaction. In both cases, the

calculated efficiency depends strongly on the kinetic and
spectroscopic parameters which describe the removal of
energy from from the excited product molecules. The rates

and mechanisms of energy removal are reasonably well known
for the quenching of OOD), 02(tA), and O2(IZ) so that the

solar heating effieiencies are calculated with a high degree of
confidence. In addition, Mlynczak and Solomon [1991b]
demonstrated good agreement between calculated efficiencies

and those inferred from airglow observations. The quenching
rates and mechanisms of vibrationally excited OH and 03 are

not nearly as well known as are the rates for the oxygen
species formed in photolysis events. Consequently, there is
uncertainty in the efficiencies which we recommend for the
exothermic reactions. The recommended efficiencies are based

upon using the latest quenching rates that have been measured

in laboratory and reported in the literature.
We have parameterized the heating efficiency in the

Hartley band of ozone as a function pressure by fitting a fifth
degree Chebyshev polynomial to the efficiency curve shown in
Figure 1. The efficiency on a given pressure surface between

10 .4 mb and 1.0 mb can be accurately calculated by the
following expression

£(x) = CO + ClX + C2x2 + C3X3 + C4X4 + C5x5 (4)
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where the parame_r x is defined by

(logl0 p + 2)
x = (5)

2

and p is in rob. The values of constants co through c5 are
0.75985, 0.29536, 0.13921, - 0.17906, - 0.07893, and
- 0.05123, respectively. Calculations of the efficiency using
these equations agree with the efficiencies calculated from the
detailed kinetics to within 0.5 percent at all pressure levels

within the indicated range. The evaluation of the efficiency
using this parameterization requires about 15 floating point

operations per pressure level, roughly 2.5 times less the
number of operations required for direct evaluation using the
detailed kinetics. For reference, the efficiencies at 10 -4, 10-J,

10 -2, 10 -1, and 100 mb are 0.6526, 0.6627, 0.7598, 0.9166,

0.9876, respectively.
For photolysis of molecular oxygen in the Schumann-

Runge continuum, Mlynczak and Solomon [1991b] showed
that the heating efficiency is about 0.87 between 95 and 110
km considering only radiative loss from O2(1_) and O2(1A).
This initial calculation was based on an estimated Schumann-

Runge continuum photon at 150 nm. We have revised our
recommended efficiency using an actual calculation of the

mean photon wavelength (172 nm t in addition to incorporating
the Harriss and Adams [1983] O(D) thermalization vrof'de to

account for CO2(001) loss. We now recommend an efficiency
of 0.78, constant with altitude, between 85 and 110 km.

It suffices to simply use a constant efficiency of 0.93 at

all altitudes in order to parameterize the heating efficiency of
Lyman-alpha radiation. This approximation results in an error
of less than 0.01 K/day in the Lyman-alpha heating rate and an
error of less than 1% in the total heating rate at any altitude.

Based on the recent determinations of the quenching
rates of OH by 02 [Dodd et al., 1991], the Einstein
coefficients of Nelson et al. [1990], and the reaction rate of

OH(l) with O, [Spencer and Glass, 1977], we recommend a
heating efficiency of 0.6, constant with altitude over the 80-
100 km region, for the reaction of atomic hydrogen with
ozone. The efficiency can approach 0.65 to 0.80 if the rate
constants derived from OH airglow observations are employed

(e.g., those utilized in Lopez-Moreno et al., [1987]). It is a
fact that laboratory measurements of the OH quenching rates
(e.g., Streit and Johnston, 1976 and Dodd et al., 1991) are

generally much smaller than those inferred from airglow
measurements. It is also quite likely that interactions between

atomic oxygen and vibrationally excited hydroxyl are very
important in determining the overall heating efficiency.
However, rate constants for such processes are unknown.

The situation is similar with regard to the quenching of
vibrationally excited ozone. There have been two different
models used in the analysis of ozone limb emission data

[Solomon et al., 1986; Rawlins, 1985]. The Rawlins model
has a very strongly quenched ozone molecule, while

quenching is very weak in the Solomon et al. model.
Application of these two models yields much different heating
efficiencies [Mlynczak, 1991]. In order to be consistent with
our recommendations above, we recommend a unit heating

efficiency for the reaction of atomic and molecular oxygen to
form ozone. This is based on the laboratory work of Rawlins

and Armstrong, [1987] which showed that only about 25% of
the available chemical energy is converted to internal energy of
ozone, most of which is quenched to release heat.
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