TEMPERATURE DEPENDENT ABSORPTION CROSS-SECTIONS OF HNO\textsubscript{3} AND N\textsubscript{2}O\textsubscript{5}

Oliver V. Rattigan, Matthew H. Harwood, Rod L. Jones and Richard A. Cox

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK

Abstract

Absorption cross-sections for HNO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} have been measured in the wavelength region 220-450 nm, using a dual beam diode array spectrometer with a spectral resolution of 0.3 nm. The results for both compounds are in good agreement with recommended values at room temperature. However, the cross-sections of both HNO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} show a marked reduction with decreasing temperature in the range 295-233 K. The calculated photolysis rate of HNO\textsubscript{3} at the low temperatures and high solar zenith angles characteristic of the polar winter and spring is significantly lower than previously estimated.

1. Introduction

Nitric acid and di-nitrogen pentoxide are important reservoir compounds for stratospheric nitrogen oxides. Both compounds sequester stratospheric NO\textsubscript{x}, and consequently they play an important role in determining the extent to which high levels of active chlorine oxides are available for ozone destruction in the low stratosphere during polar winter-time (S. Solomon, 1990).

The release of NO\textsubscript{x} from HNO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} occurs mainly by photodissociation:

\begin{align*}
\text{HNO}_3 + h\nu & \Rightarrow \text{OH} + \text{NO}_2 \quad (1) \\
\text{N}_2\text{O}_5 + h\nu & \Rightarrow \text{NO}_2 + \text{NO}_3 \quad (2)
\end{align*}

In the stratosphere, ozone absorption strongly attenuates solar radiation in the spectral region 220-290 nm. Consequently at high altitudes (above 30 km) the photodissociation of HNO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5} is caused principally by light of wavelengths around 200 nm whereas in the lower stratosphere (below 20 km) wavelengths longer than 300 nm become more important (F. Biaume, 1973/74). It is in these spectral regions and at temperatures typical of the low-stratosphere that it is particularly important to know the absorption cross-sections of HNO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5}.

There have been few previous investigations of the cross-sections of these species. Currently recommended values (DeMore et al., 1990; Atkinson et al., 1989) are based on the work by Molina and Molina (1981) for HNO\textsubscript{3} and Yao et al., (1982) for N\textsubscript{2}O\textsubscript{5}. The recommended data for HNO\textsubscript{3} are in good agreement with the earlier results of Biaume (1973/74) and Johnston and Graham (1973) except in the long wavelength tail of the absorption where uncertainties are rather large. There are no previous reported studies of the temperature dependence of the HNO\textsubscript{3} cross-sections. Values of cross-sections for N\textsubscript{2}O\textsubscript{5} presented by Yao et al., (1982) are higher than those in the previous studies of Jones and Wulf, (1937) and Johnston and Graham, (1974). The only temperature dependent measurement of the cross-sections for N\textsubscript{2}O\textsubscript{5} is reported by Yao et al., (1982) and the data show large scatter in the wavelength region above 340 nm.

We have therefore reinvestigated the ultraviolet absorption spectra of HNO\textsubscript{3} and N\textsubscript{2}O\textsubscript{5}, with particular emphasis on the determination of the temperature dependencies of the cross-sections in the longer wavelength regions.

2. Experimental Details

Absorption cross-section measurements were made using a dual beam diode array spectrometer which has been described in detail previously (Rattigan et al., 1992). N\textsubscript{2}O\textsubscript{5} was produced by the reaction of NO (B.O.C. special gases) with ozonised oxygen, produced by the action of a discharge ozoniser (Argentox GL10) on a flow of O\textsubscript{2} (Distillers M.G.). HNO\textsubscript{3} was prepared by vacuum distillation of a 3:2 mixture of previously cooled sulphuric acid (98\%) and nitric acid (70\%) held at 273 K, into a trap cooled to 203 K. NO\textsubscript{2} (Cambrian Gases) was mixed with N\textsubscript{2} (Distillers MG) to give a sample suitable for producing NO\textsubscript{2} reference spectra in the ultraviolet.
The concentration of NO\textsubscript{2} in the mixture was established using the recommended absorption cross-sections for NO\textsubscript{2} at room temperature (DeMore \textit{et al.}, 1990).

The major impurity in the HNO\textsubscript{3} was found to be NO\textsubscript{2}. N\textsubscript{2}O\textsubscript{5} samples were contaminated with both NO\textsubscript{2} and HNO\textsubscript{3}. At low temperatures, in both cases significant association of NO\textsubscript{2} into N\textsubscript{2}O\textsubscript{4} was expected to occur and the effects of this were also taken into account. Corrections for any NO\textsubscript{2} present in the samples were performed by the scaled subtraction of NO\textsubscript{2} reference spectra, using the characteristic vibrational structure of NO\textsubscript{2} in the region above 320 nm. The effect of N\textsubscript{2}O\textsubscript{4} in samples of HNO\textsubscript{3} was taken into account by recording NO\textsubscript{2} reference spectra at each temperature at pressures as close as possible to that of the NO\textsubscript{2} present in the samples. The assumption being that the quantities of N\textsubscript{2}O\textsubscript{4} were equal in both samples.

In the experiments on N\textsubscript{2}O\textsubscript{5} the correction for N\textsubscript{2}O\textsubscript{4} was calculated at each temperature using the known equilibrium constant for the self-reaction of NO\textsubscript{2} and the measurements of NO\textsubscript{2} reference spectra at different partial pressures. The amount of HNO\textsubscript{3} impurity in the samples of N\textsubscript{2}O\textsubscript{5} was calculated using its characteristic infrared absorption bands. Subtraction of the contribution of HNO\textsubscript{3} to the ultraviolet absorbance was then performed using the values of HNO\textsubscript{3} cross-section recommended in this paper.

3. Results

Measurements of HNO\textsubscript{3} absorption spectra from 200-344 nm were made in the temperature range 238-297 K. Figure 1 illustrates the temperature dependence of the cross-section in the region 270-320 nm, using the data at 295 K, 263 K and 238 K. The spectra show a definite decline in the cross-section throughout the region, the effect being particularly noticeable near the long wavelength tail.

![Fig. 1 Temperature dependence of nitric acid absorption cross-section in the wavelength range 270-320 nm.](image1)

4. Discussion

4.1. Comparison with previous work

The HNO\textsubscript{3} absorption cross-sections measured at 294 K in the present work are in very good agreement with those values reported by Molina and Molina, (1981), Biaume, (1973/74) and Graham and Johnston, (1973) at wavelengths below 300 nm, see Figure 2.

![Fig. 2 Comparison of HNO\textsubscript{3} cross-sections at room temperature with previous measurements.](image2)
The large uncertainties in the long wavelength region are due to the difficulties involved in correction for the absorbance of NO2. The present technique provides more spectral information for making this correction, but our samples contained more NO2 than those measured by Biaume, (1973/74). Molina and Molina, (1981) did not report details of any corrections made for NO2. The consistency of the cross-sections determined here with differing amounts of NO2 gives us confidence in the values we report, which are slightly higher above 310 nm than those recommended by both the NASA (DeMore et al., 1990) and IUPAC (Atkinson et al., 1989) evaluations.

The cross-sections for N2O5 from the present work show good agreement with the values of Yao et al. (1982), Table 1. However their NO2 reference spectra were recorded on a different instrument to that which was used for the N2O5 work and the different instrument functions gave rise to a wide scatter in the results above 340 nm where spectral subtraction of NO2 must be performed. The values of Jones and Wulf, (1937) are lower than those measured here probably due to the presence of HNO3 in their samples which was not accounted for.

Data for N2O5 was collected at 295, 273, 253, and 233 K. Results from 295 and 273 are displayed in Table 1 and the agreement at both temperatures with the recommended values (DeMore et al., 1990 and Atkinson et al., 1989) is good. Analysis of results at the lowest temperatures which require correction for the presence of N2O5 has yet to be performed.

4.3 Atmospheric photolysis rates

Atmospheric photolysis rates for HNO3 were computed using the cross-section values recommended in Table 2. These calculations were carried out using the model of Lary (1991) for a range of temperatures, altitudes and solar zenith angles (SZA). The results illustrated in Figure 3, show that the photolysis rates decrease monotonically with temperature at all altitudes and SZAs, the decline is most prominent at low altitudes and high SZAs. At lower altitudes and high SZAs ozone strongly attenuates the incoming solar radiation at wavelengths below 290 nm. The remaining light intensity available for photolysis is therefore at longer wavelengths where the HNO3 cross-section shows the greatest temperature dependence.

These results indicate that the photolysis rate for HNO3 at temperatures appropriate to the low stratosphere is lower than that using the previous recommended values for the HNO3 cross-sections (DeMore et al., 1990 and Atkinson et al., 1989). Consequently, reactive chlorine released at any temperature can then be calculated from the following expression: \(\log_{10}(\sigma_T) = \log_{10}(\sigma_{298}) + B(T-298) \).

<table>
<thead>
<tr>
<th>Wavelength nm</th>
<th>(\sigma_{298}/10^{-20} \text{ cm}^2)</th>
<th>(B/10^{-3} \text{ K}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>190</td>
<td>1560.0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>661.0</td>
<td>0</td>
</tr>
<tr>
<td>210</td>
<td>105.0</td>
<td>1.09</td>
</tr>
<tr>
<td>220</td>
<td>14.1</td>
<td>1.09</td>
</tr>
<tr>
<td>230</td>
<td>5.45</td>
<td>1.52</td>
</tr>
<tr>
<td>240</td>
<td>2.44</td>
<td>1.52</td>
</tr>
<tr>
<td>250</td>
<td>1.92</td>
<td>1.52</td>
</tr>
<tr>
<td>260</td>
<td>1.86</td>
<td>1.52</td>
</tr>
<tr>
<td>270</td>
<td>1.59</td>
<td>1.52</td>
</tr>
<tr>
<td>280</td>
<td>1.10</td>
<td>1.52</td>
</tr>
<tr>
<td>290</td>
<td>0.613</td>
<td>1.95</td>
</tr>
<tr>
<td>300</td>
<td>0.243</td>
<td>2.61</td>
</tr>
<tr>
<td>310</td>
<td>0.081</td>
<td>3.91</td>
</tr>
<tr>
<td>320</td>
<td>0.017</td>
<td>7.82</td>
</tr>
<tr>
<td>330</td>
<td>0.003</td>
<td>>7.82</td>
</tr>
</tbody>
</table>

Table 2. Recommended absorption cross-sections for HNO3.
heterogeneously either on background aerosol or polar stratospheric clouds will be longer lived, and a greater ozone loss might be expected through the established mechanisms involving ClO and BrO (Solomon, 1990).

4.4 Future work

Analysis of the low temperature data for N_2O_5 will allow photolysis rates to be calculated in a similar way. Any likely effects on our understanding of the nitrogen partitioning of the atmosphere will then be considered.

5. References

