
NASA-CR-196885

SOFTWARE REUSE ENVIRONMENT
USER'S GUIDE

Contract Number NAS5-27684
Task 117

Prepared For:.

NASA Goddard Space Flight Center
Data Systems Technology Division

Greenbelt, MD

POC: Walt Truszkowski

March 30, 1988

COMPUTER TECHNOLOGY ASSOCIATES, INC.
14900 Sweitzer Lane, Suite 201

Laurel, MD 20707

(NASA-CR-196885) SOFTNARE R_USE

ENVIRONMENT USER'S GUIOE (CompuLer

Technology Associates) _4 p

N95-10827

Unclas

G3/61 0023656

TABLE OF CONTENTS

Section

LIST OF FIGURES

LIST OF ACRONYMS

INTRODUCTION

2
2.1
2.2
2.3
2.4
2.5

THE MAIN SCREEN AND THE TOOLS PROVIDED

Top Panel: Diagram Names and the Execute Button
Second Panel: Command Groups
Third Panel: Commands

Fourth Panel: Command Arguments
Fifth (Bottom) Panel: Command Input and Output

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7

OBJECT-ORIENTED SOFTWARE SPECIFICATION

Identify Key Problem-Domain Entities
Distinguish Between Active and Passive Entities
EstablishData Flow between Active Entities

Decompose Entities (or Functions) into Sub-entities and/or Functions
Check for New Entities

Group Functions under New Entities
Assign New Entities to Appropriate Domains

4
4.1
4.2

OBJECT-ORIENTED SPECIFICATION TOOLS

The Diagram Editors
Identifying Entities in an EDFD

4.3 Checking the Entity Data Flow Diagrams
4.4 Checking an Object-Oriented Specification
4.5 Generating Object Diagrams Automatically
4.6 Subprogram and Data Structure Edit Feature

5

5.1

5.2

5.3

5.4

ASSESSING OBJECT-ORIENTED DESIGNS

What is a Good Object?
Methods of Information Hiding in Aria
The Quality Checks
5.3.1 Unencapsulated Data
5.3.2 Data Accessed from Outside the Containing Object
5.3.3 Data Updated by More than One Procedure
5.3.4 Concurrent Updates Possible
5.3.4 Mutually Recursive Procedures or Tasks in Different Objects
5.3.5 Virtual Machine Levels Crossed

Invoking the Assessor

6
6.1
6.2
6.3
6.4

THE REUSE DATABASE

Types of Reusable Products
Relationships Between Reusable Products
Attributes of Reusable Products

Navigating the Product and Keyword Networks

Page

iv

v

1-1

2-1
2-1
2-1
2-1
2-3
2-3

3-1
3-2
3-2
3-3
3-3
3-4
3-4
3-4

4-1
4-1
4-2
4-2
4-2

4-3
4-6

5-1
5-1
5-2
5-4
5-4
5-4
5-4
5-4
5-6
5-6
5-6

6-1
6-1
6-2
6-3
6-6

TABLE OF CONTENTS

(CONTINUED)

Section

7
7.1
7.2
7.3
7.4
7.5

LOCATING REUSABLE PRODUCTS

Annotating Nodes with Keywords
Selecting a Search Command
Selecting an Item to Search For
Examining the Results and Making Reuse Decisions
Returning to the Diagram Edit Session

REFERENCES

Page

7-1
7-1
7-3
7-3
7-4
7-5

LIST OF FIGURES

Figure

1-1

5-I

5-2

5-3

5-4

5-5

5-6

5-7

5-8

6-I

Overall Structure of the Reuse Environment

Coupling to Data May be Direct or Indirect
Mutual Use Indicates Tight Coupling of Objects
Mutual Recursion of Object Boundaries Indicates Undesirable Coupling
Data Structures in a Top-Level Object Diagram are Potentially Visible
to any Other Object
Data May be Insufficiently Shielded from Procedures Outside
the Containing Object
The Designer is Notified ff a Data Structure can be Updated
by More than One Procedure
Potentially Concurrent Updates are Flagged as Hazardous
The Designer May Want to Reconsider When Virtual Machine
Levels are Crossed

Product Types and Relations in the Reuse Database

Page

1-2

5-3
5-3

5-3

5-5

5-5

5-5

5-5

5-7

6-4

P&GI[IANK NOT FILMED

iv

LIST OF ACRONYMS

ADT
CTA
CTRL
DBMS
DFD
DFE
DSD
EDFD
ERD
ERDDFD

ERE
ESC
FORTRAN
IDE
OD
ODGENER
OOD
OOS
PCT
TrY

Absa'aet Data Type
Computer Technology Associates, Inc.
Control key
Database Management System
Data Flow Diagram
Data Flow Editor

Data Structure Diagram
Entity Data Flow Diagram
Entity Relationship Diagram
Entity Relationship Diagram/Entity Data Flow Diagram
Consistency Checker
Entity Relationship Editor
Escape key
Formula Translator Programming Language
Interactive Development Environments, Inc.
Object Diagram
Object Diagram Generator
Object-Oriented Design
Object-Oriented Specification
PICture diagram editor
Teletype terminal

1 INTRODUCTION

This document describes the services provided by the prototype Software Reuse
Environment, which was developed by CTA for NASA Goddard Space Flight Center,
Code 520. This is one of three guides delivered by CTA as part of the environment. The
other two guides are:

o Software Generation and Installation Guide

o SEMANTX: Defining the Schema

The Software Generation and Installation Guide describes the software source
modules that make up the Reuse Environment, with instructions on how to generate and
install an executable system from the source code.

SEMANTX: Defining the Schema describes how a reuse database is created.

Actually this guide is m__qoregeneral than the reuse database, as it describes how to
generate a SEMANTXtM database. SEMANTX is an off-the-shelf tool that we have
used to implement the reuse database. It is a product of Semantyk Systems, Inc.

The Software Reuse Environment is built upon SEMANTX as well as on the IDE
Structured Analysis Integrated EnvironmentTM. ODE is Interactive Development
Environments, Inc.) SEMANTX itself is built on top of the UnifyTM Database
Management System. To use the Software Reuse Environment you should have the
User's Manuals for SEMANTX, for Unify, and for the IDE software. CTA has provided
all of these with the environment.

You should alsohave theUser's Manual fortheObject-OrientedDesign Rule
Checker. The Object-OrientedDesign Rule Checker isa product of CTA. Itisintended

tofacilitatethedesign process,and can be used effectivelyinconjunctionwith the tools

of the Software Reuse Environment. The executableprogram and the manual are being

provided by CTA for use atNASA Goddard. While strictlyspeaking itisa separatetool,

it will appear to the user as an integrated part of the environment.

The overall structure of the Software Reuse Environment is shown in Figure 1-1.

Organization of this Guide

This guide consists of a high-level description of the environment (Section 2)
followed by more detailed discussions of specific features.

Section 2 presents the tools that are available in the environment. As you will
see, all the tools are invoked from a single unifying window by means of mouse clicks
and, in some cases, additional parameters for which you are prompted. The emphasis in
Section 2 is on what tools are available, how they are invoked, and the typical way in
which you would use them.

In Section 3 we describe the Object-Oriented Specification (OOS) methodology,
which we recommend as a way of describing software requirements in this environment.
The Software Reuse Environment is intended for reuse of products throughout the
development lifecycle, from specification through coding and testing. By using OOS, the

1-1

User Interface and Diagram Editors

f

IDE
SLructured

Analysis
Environ-

ment

Reuse

Tools
Tools for locating and evaluating

reusable products

f

Storage and classification
of reusable products

SEMANT)
Database

Uni y
DBMS

J

Tables and information
management functions

Figure 1-1: Overall Structure of the Reuse Environment

analyst can specify requirements in a manner that facilitates future reuse. Because of the
form that an Object-Oriented Specification takes, developers can easily understand what
is available in the Reuse Database.

In Section 4 we explain how to use the tools that support OOS. This topic is
covered in more detail than it was in Section 2. The key activities described in this
section are checking the specification for consistency and completeness, and annotating
the specification to automatically generate a design.

In Section 5 we describe the Design Quality Assessor. This tool can help you
ensure adequate standards for software placed in the Reuse Database.

Section 6 covers the Reuse Database itself. We describe what types of products
are stored in the database, the different relationships that can hold between products, and
the means available for classifying products. To enter either products or classification

keywords into the Reuse Database we use the SEMANTX tool. This procedure is
described in the SEMANTX User's Guide, and is not covered in this document.

Finally, in Section 7, we describe how you can search for reusable products
directly from the IDE diagram editors. Through this feature, reuse becomes an integrated
part of the specification and design process. The basic sequence of activities is to
annotate the diagram objects with keywords, initiate a search for candidate reusable
products, view the attributes of the candidate products, navigate the database for possibly
better choices, and select one or more products for reuse.

The Software Reuse Environment is a prototype, and both the software as well as
this User's Guide are intended to evolve. We welcome comments and suggestions on
how the environment and/or the documentation can be improved.

1-3

2 THE MAIN SCREEN AND THE TOOLS PROVIDED

The tools of the Reuse Environment are invoked from a main screen called the

IDEtool screen. To bring this screen up, enter the following command at your keyboard:

IDEtool

The use of IDEtool is described in detail in the IDE documentation. Here, we

will touch on the main points, focusing on the features that are unique to the Reuse
Environment.

If you have entered the command shown above, you will see that the IDEtool
screen consists of 5 panels, layed out vertically one on top of the other. In the following
subsections we explain the function of each panel.

2.1 Top Panel: Diagram Names and the Execute Button

The top panel serves two main purposes:

o To enter a diagram file name, with appropriate directory qualifications

o To invoke tools by means of the Execute button

A key point to remember about the Execute button is that nothing happens until
you click it! You must do this each time you execute a command.

You can also turn "Help Mode" on and off using the Help Mode button. In Help
Mode, clicking any other field on the screen (or hitting the RETURN key in a text field)
causes a Help window for that field to be displayed. You stay in Help Mode until
clicking the Help Mode button again. While in Help Mode you cannot execute
commands or even set up commands. (Setting up commands is discussed in the next few
Subsections.)

2.2 Second Panel: Command Groups

The second panel lets you select a "command group." The principal groups are
those associated with the different types of diagrams, i.e., there is a group of commands
for Data Flow Diagrams (click the icon labeled DFE---Data Flow Editor), for Entity-
Relationship Diagrams (click ERE), and for Picture diagrams (click PCT). There are
other command groups that do not apply directly to a type of diagram. These are
represented without icons, on the right-hand side of the panel. For our purposes, the most
important one is labeled "Reuse Database."

2.3 Third Panel: Commands

Notice that when you change your selection of a command group, the contents of
the third panel change. The third panel shows you the commands that are available in the
currently selected command group. Let us summarize the commands that are most
relevant to the Reuse Environment:

2-1

Under DFE we have the following commands:

o Edit Entity Data Flow Diagram

o Check Object-Oriented Specification

o Generate Object Diagrams

"Edit Entity Data Flow Diagram" differs from the command just preceding it,
"Edit Data Flow Diagram," by giving you access to the Reuse Database. (This is
discussed in Section 7.) Data Flow Diagrams (DFDs) are just what you are familiar with
from Structured Analysis. Entity Data Flow Diagrams (EDFDs) are a variation intended
to be used in Object-Oriented Specification (OOS).

"Check Object-Oriented Specification" invokes an OOS consistency checker.
"Generate Object Diagrams" is a command you can use to create a fast approximation

to a design, automatically, on the basis of your OOS. These tools are described in
Sections 4.1 and 4.2, respectively.

In the ERE group we have the following commands:

o Edit Entity Relationship Diagram

o Check Object-Oriented Specification

"Check Object-Oriented Specification" is, therefore, available under both DFE
and ERE. This is because an OOS consists of both Entity Relationship Diagrams (ERDs)
and EDFDs. The checker exists to ensure that the two types of diagrams are consistent
with each other. Consult Section 4 for more on this.

Picture (abbreviated as PCT) is the general-purpose diagram editor. Using it you
can create pretty much any kind of engineering diagram you wish. It provides a wide
variety of icons and arc types, and does not enforce any syntactic rules. In the Reuse
Environment we use Picture to draw Object Diagrams. Under PCT we have the
following commands:

o Edit Object Diagram

o Check Object-Oriented Design

o Assess Object-Oriented Design

"Edit Object Diagram" is similar to "Edit Diagram," which immediately
precedes it in this group. The difference is that "Edit Object Diagram" provides some
additional options, such as decomposing procedures and state objects (Section 4.3) and
searching for reusable objects (Section 7).

"Check Object-Oriented Design" causes the OOD Rule Checker to be invoked.
The rule checker can help you achieve a complete and consistent set of Object Diagrams.
"Assess Object-Oriented Design" activates the Design Quality Assessor. This tool is
described in Section 5.

2-2

Finally, under Reuse Database (on the right-hand side of the second panel) we
have these commands:

o Navigate Products

o Navigate Keywords

o List Product Arctypes

o List Keyword Arctypes

o Show Detail

o Post-Search Options

The Navigation and ListArctype commands arc used toexamine thecontentsof
the Reuse Database. The Show Detail command lets you look at the attributes of a

product in the Reuse Database. These attributes describe the product in some detail, and
point you to additional information. See Section 6 for more on these commands.

The Post-Search Options command is intended for use only after activating a
search of the Reuse Database from one of the diagram editors. If you invoke the Post-

Search Options at any other time they will simply not do anything (feel free to try,
though). These options allow you to examine the results of a search, and to select one or
more products for reuse in a specification or design. The correct use of the Post-Search
Options is described in Section 7.

2.4 Fourth Panel: Command Arguments

As you select different commands, the contents of the fourth panel may change.
In this panel you are prompted for any arguments required by the command you just
selected.

Be sure to hit the RETURN key after entering a text argument. And remember,

nothing happens until you click Execute in the top panel.

2.5 Fifth (Bottom) Panel: Command Input and Output

The bottom panel acts as a TrY screen for the command you invoke. It works
just as if you had typed the command in reponse to an Operating System prompt.

Any screen output of the command will appear in this bottom panel. In addition,
if the command prompts you for more input, you should enter that input in this bottom
panel. Be sure to move the mouse cursor into the panel before typing.

You should acquire the habit of checking this panel each time you execute a
command. Look for any status, error, or other messages that may be issued by the

program you have invoked.

2-3

3 OBJECT-ORIENTED SOFTWARE SPECIFICATION

This section describes a method of analyzing requirements for object-oriented
software. The method is intended to flow smoothly into the Object Diagram design
method, and from there into programming with Ada. Our method is intended to serve as
an alternative to Structured Analysis when the use of an Object-Oriented Design method
is foreseen.

We assume that the analyst who is using this method has available a textual
statement of requirements for a software system. Ideally, the analyst would already have
distilled the requirements statement into a database of discreet, trackable requirements.
This is not necessary for the method we describe here, but it is highly advisable. The
steps described below are a method for understanding and articulating the
implications of the original requirements (whether in text or database form).

Structured Analysis is the specification method most widely used in Code 500.
Structured Analysis is a method of articulating functional requirements. The transition
from a Structured Analysis specification to Object Diagrams can be awkward. The
criteria for grouping functions in Object-Oriented Design are quite different from those
used during Structured Analysis. In Structured Analysis, each process bubble represents
a transformation of inputs to outputs, and decomposition consists of asking what steps are
involved in this transformation. The constituent steps, however, may operate on entirely
different data abstractions. If this is the case, then from an object-oriented viewpoint the
sub-operations belong in different objects, with a chain of messages effecting the
sequence of operations.

The Object-Oriented Specification method involves creating a hierarchy of Entity
Data Flow Diagrams (EDFDs) within the context of an Entity-Relationship model. Each
active entity is represented as a process in an EDFD. Each passive entity is represented
as a data flow. Lower level EDFDs decompose each active entity either into subentities
or into functions performed by the entity.

The specification method consists of seven steps:

1. Identify key problem-domain entities.

2. Distinguish between active and passive entities.

3. Establish data flow between active entities.

4. Decompose entities (or functions) into sub-entities and/or functions.

5. Check for new entities.

6. Group functions under new entities.

7. Assign new entities to an appropriate domain.

Steps one through three are, in principle, performed once. We may, however,
backtrack at any time to reconsider these steps. Steps 4 through 7 should be iterated until
the desired level of detail is reached.

3-1

3.1 Identify Key Problem.Domain Entities

Identification of the "right" problem-domain entities is crucial to the
development of a stable design. There is no hard and fast way to def'me what is and what
is not a problem-domain entity. Part of the analysis process is to assess the consequences
of including (or not including) potential problem-domain entities. Ask the following
questions:

o Is every known functional requirement met by one of the entities?

o Is the internal state of the system adequately represented by the states of the
entities?

Chapter I of Jackson's book System Development [2] discusses these issues in detail.

A heuristic procedure for identifying the problem-domain entities is suggested by
Grady Booch in the first edition of his book, Software Engineering with Ada [3]. The
procedure is to create a list of the key nouns and noun phrases from the original (textual)
statement of requirements. Such a list may give you a first approximation of the
problem-domain entities. You should take this heuristic with a grain of salt, however.
Booch even omitted the procedure from the second edition of his book. In a typical
requirements specification there wiU be many, many nouns that are completely irrelevant
to the problem-domain entities. You must therefore be highly selective when examining
the specification for key nouns.

A more realistic variation on this approach would be to locate the nouns and noun
phrases in the requirements database (if there is one). A requirements database distills
the original textual statement into a trackable set of requirements, in a form that is less
verbose than the original statement. In performing such distillation, engineering
judgment and selection are applied to the original statement. The chances of your
identifying significant nouns from the requirements database are therefore greater than if
you were to use the original requirements statement as your source.

A still more manageable approach draws on techniques from Structured Analysis.
Process names in Structured Analysis are typically of the form "verbobject," e.g.,
monitor._status, control_payload, validate commands. The nouns in such names refer to
problem-domain entities. As a heuristic p/'ocedure, you may want to draw a Context
Diagram and a level-0 Data Flow Diagram in order to determine the problem-domain
entities by this "verb noun" method. These diagrams will not be part of the Object-
Oriented Specification. They serve only as guides to help you in identifying entities.

Draw an Entity-Relationship (ERD) diagram to record the problem-domain
entities and their inter-relationships. The IDE Entity-Relationship Editor allows you to
draw such diagrams interactively. You may also want to create an Entity Dictionary,
which is analogous to the Data Dictionary in Structured Analysis. For more information
on this approach, refer to the paper by Stark and Seidewitz, "Towards a General Object-
Oriented Ada Lifecycle" [4].

3.2 Distinguish between Active and Passive Entities

We derme active and passive entities as follows:

3-2

An active entity is anentity whosefunctionsyou want to considerin the
specificationphase. A passiveentity is one whosefunctions you do not
want to consider until the design phase.

This is a little different from the definition you might expect. Intuitively you
might expect us to define an active entity as any entity that performs functions on other
entities. A passive entity would be any entity that has functions performed on it. This is
not far from the definition we use, but it is not exactly the same. The main point to
remember is that active entities will be represented by process bubbles in the Entity
Data Flow Diagrams, while passive entities will be represented as data flows and/or
data stores.

3.3 Establish Data Flow between Active Entities

In this step we draw a top-level Entity Data Flow Diagram (EDFD). EDFDs are
similar to the Data Flow Diagrams with which you axe familiar from Structured Analysis,
but the interpretation of the diagrams is different.

In an EDFD, the process bubbles represent either entities orfunct/ons. A function
is simply a transformation of inputs to outputs, as in Structured Analysis. An entity may
perform one or more functions, i.e., it may transform inputs to outputs, but it also has an
internal state which evolves, in time, as a result of inputs received.

Create a level-0 process for each top-level active entity in the Entity-Relationship
model. Passive entities should appear as data flows or data stores. The ERD does not
explicitly distinguish between top-level and lower-level entities, so if you have not
already made this distinction you will have to do so now. Typically, your ERD may
show relationships with names like "contains" or "includes." This is an indication that
that "contained" or"included" entity should appear in some lower-level EDFD, rather
than at level 0.

3.4 Decompose Entities (or Functions) into Sub-entities and/or Functions

Steps 4 through 6 form the heart of the specification method. When we perform
Step 4 the first time, we are decomposing a top-level EDFD which consists of active
entities and data flows. Some of the data flows are passive entities. We now decompose
each active entity in this diagram into subentities andlorfunctions. The subentities are
entities out of which the larger entity is composed. The functions (if there are any) are
performed by the entity being decomposed. You should differentiate between entities
and functions by placing an asterisk in front of the name of an entity.

In subsequent passes through this step you will be decomposing both entities and
functions. You can decompose an entity into subentities and/or functions. Functions,
however, may be decomposed only into subfunctions.

In identifying functions, consider what the entity does. Ask again (as you did in
Step 1) whether every known functional requirement of the system can be met by one or
more of the functions identified. A heuristic approach, similar to that described in Step 1,
may be used to identify functions. In this case, instead of locating the nouns in the
requirements specification, you can locate the verbs and verb phrases. Some of these
verbs will refer to functions that the system is supposed to perform. We emphasize, once

3-3

again,thatjudgmentis requiredin selecting the significant verbs from the original
requirements specification. Typically, such judgment and selection are exercised when
creating a requirements database from the original textual specification.

If, in Step 1, you identified the subjects and/or objects of these verbs as problem-
domain entities, you should now associate the functions with the corresponding problem-
domain entities (subject or object of the verb).

3.5 Check for New Entities

At each stage of decomposition, you should STOP and ask whether any new
entities are implied by the functions you have introduced. We recommend using the
"verb object" heuristic procedure, which was described in Section 3.1. Put all function
names_nto the form "verb_object," and examine these names for "objects" not

previously identified. Data stores and data flows should also be considered as potentially
representing passive entities. Ask yourself whether the data store or data flow is
significant enough to include in the Entity-Relationship model.

If you discover new entities that should be included in the specification, you then
have to decide where to place them. You may, for example, replace a function
(introduced in Step 4) by a new entity. The function might then be placed one level
down, below the new entity. We do not recommend any specific guidelines for placing
the new entities, except to note that you may have to reorganize your diagrams at this
point. It is in this step and the next that you should consider such issues as strength
and coupling, visibility, and the quality of entity abstractions.

3.6 Group Functions under New Entities

If you have introduced new entities in Step 5, you must now identify all the
functions performed by (or on) the new entities. This is how you ensure a faithful
representation of the entities of the system. This feature, which we caUfunctional
completeness, is characteristic of the object-oriented approach. It provides object-
oriented specifications (and subsequent designs) with stability under evolving functional
requirements. By including all functions performed by an entity, whether they are
immediately required or not, you increase the chances of being able to respond to future
functional enhancements with minimal respecification and redesign. You also increase
the probability that the components developed will be reusable in other systems.

3.7 Assign New Entities to Appropiate Domains

This last step is intended to help you manage the complexity of proliferating
entities. We recommend that you assign each new entity (introduced through Step 5) to
some _o_n _ho doma_ may be new. If your Entity-Relationship model is becoming
complex, you may want to represent each domain in a separate ERD. This will prevent
the original ERD (which represents the application or problem domain) from growing too
large to visualize. The set of ERDs, taken together, provides a comprehensible view of
the entities of the system.

You may find it helpful to consider different levels of entity domains. For
example, the following list describes a hierarchy of types of domains. This is a kind of

3-4

"virtual-machine" hierarchy, in so far as higher-level domains use the domains at lower
levels:

1. Application Domains

2. Technology Domains

3. Computer Science Domains

4. Execution Models

5. Execution Domains

During the specification phase you will probably be concerned only with an
application domain and, possibly, some technology domains. Some examples of
technology domains are Communications, Database Management, Signal Processing, and
Graphics. As you approach the design phase you may begin to address classes of
algorithms and implementation approaches. When this happens, you may want to
identify the Computer Science Domains that will provide the conceptual repertory for
these decisions.

3-5

4 OBJECT-ORIENTED SPECIFICATION TOOLS

The Object-Oriented Specification tool set consists of five tools:

o Entity-Relationship Editor (ere)

o Data Flow Editor (dfe)

o Entity-Relationship Diagram/Entity Data Flow Diagram consistency checker
(erddfd)

o Object Diagram Generator (odgener)

o Object Diagram Editor (picture)

o Object Diagram Subprogram and Data Structure Edit Feature (picture option)

The ere, dfe, and picture programs are part of the IDE Structured Analysis

Integrated Environment, and are documented in the [DE User's Manual. CTA has
developed the programs erddfd and odgener, as well as the Subprogram and Data
Structure Edit Feature.

4.1 The Diagram Editors

As you read in Section 3, an Object-Oriented Specification consists of one or
more Entity-Relationship Diagrams (ERDs) and a hierarchy of Entity Data Flow
Diagrams (F.DFDs). To edit an ERD, do the following:

1. Select the ERE icon in the second panel of the IDEtool screen

2. Enter the name of the diagram you want to edit in the fast panel

3. Select "Edit Entity Relationship Diagram" in the third panel

4. Click the "Execute" button in the fast panel

Alternatively, you earl enter

ere filename

to invoke the editor directly from the Operating System prompt, without IDEtool.

To edit an EDFD, do the following:

1. Select the DFE icon in the second panel of the IDEtool screen

2. Enter the name of the diagram you want to edit in the fast panel

3. Select "Edit Entity Data Flow Diagram" in the third panel

4. Click the "Execute" button in the fast panel

4-1

You may also invoke this editor directly, by entering

dfe filename

but if you do this you will not be able to access the Reuse Database from the editor (see
Section 7). The same will be true if you select' 'Edit Data Flow Diagram" instead of
"Edit Entity Data Flow Diagram" in the IDEtool third panel.

4.2 Identifying Entities in an EDFD

According to the OOS method, described in Section 3, we need to be able identify
the entities in an Entity Data Flow Diagram (EDFD). We do this by means of a naming
convention. The name of each entity (whether a process or a data flow) is prefixed with
an asterisk (*).

For example, an entity with the name spacecraft in the Entity-Relationship
Diagram (ERD) would appear in some EDFD (probably the level-0 EDFD) as a process
with the name *spacecraft. In the EDFD below *spacecraft there might appear
subentities, such as *platform and *sensors. Both platform and sensors would also
appear as entities in an ERD. The EDFD below *platform might contain functions such
as monitor_sensor_status and control_envelop.

Passive entities are represented as data flows. For example, if an entity named
sensor data appears in an ERD, then there should be some data flow with the name
*sens_ data in some EDFD.

m

4.3 Checking the Entity Data Flow Diagrams

Before checking the mutual consistency of the ERDs and EDFDs, you should
probably check the consistency of the EDFDs themselves. To check a single diagram do
the following:

1. Select the DFE icon in the second panel of the IDEtool screen

2. Enter in the first panel the name of the EDFD that you want to check

3. Select "Check Data Flow Diagram" in the third panel

4. Click the "Execute" button in the f'LrStpanel

To check an entire EDFD hierarchy use the same procedure but select "Check
Decomposition" instead of "Check Data Flow Diagram."

The DFD rule checker is part of the IDE tool set, and is documented in the IDE
User Manual.

4.4 Checking an Object-Oriented Specification

The consistency checker developed by CTA focuses on the relationship between
the ERD and the EDFDs. Wiu'le the OOS method described in Section 3 advocates

4-2

drawing multiple ERDs (one for each pertinent domain), the OOS rule checker currently
supports only a single ERD. The name of the ERD and the name of the level-0 EDFD
shold be identical except for their extensions, i.e.,

filename.ere and filename.dfe

The consistency checker applies the following rules to the ERD and the EDFD
hierarchy:

o Each entity in the ERD must appear in some EDFD

o Each entity in an EDFD must appear in the ERD

o If two entities are related in the ERD, then they must be related in the EDFDs
as follows:

- If both entities are active, i.e., they are represented as EDFD processes,
then either one is a subprocess of the other, or there is a dataflow
between them.

If one entity is a process and the other is a dataflow, then the dataflow
must either be contained in the process, or be an input or an output of the

process.

You can invoke the OOS checker as follows:

1. Select either the ERE or DFE icon (second panel)

2. Enter in the first panel the name of the ERD without the extension ".ere"
(this should be the same as the name of the level-0 EDFD without its
extension)

3. Select the command "Check Object-Oriented Specification" (third panel)

4. Click the "Execute" button (fast panel)

You can alSO invoke the OOS checker directly from the Operating System

prompt, without IDEtool, by using the following command line:

erddfd erd_name dfd_name

In this case erd name and dfd name may be different, and the f'de name
extensions (' '.ere" and-".dfe' ') may _e included or omitted.

4.5 Generating Object Diagrams Automatically

The specification phase ends when entities and functions have been decomposed
to an appropriate level The Object Diagram Generator may then be used to cream,
automatically, an initial set of Object Diagrams based on the specification. These Object
Diagrams constitute a fast cut at a design that meets the specification. See reference [5]
for an introduction to the Object Diagram methodology.

4-3

Before applying the Object Diagram Generator to a hierarchy of EDFDs, you
must annotate the EDFDs with certain design information as follows:

o Use a pound sign (#) to identify independent threads.

For each function that runs as an independent thread, place a pound sign in front
of the function's label. For example:

#monitor sensor status

Do not annotate entities with the pound sign. Remember, entities are those
processes whose labels begin with an asterisk.

o Use an ampersand (&) to identify reusable or replaceable functions.

A function is reusable, for example, if it occurs under several entities. If two
functions appearing under different entities appear to be similar, consider
whether they might be realized by the same (reusable) function. You may also
wish to consider whether a function could be reused in other systems.

A function is potentially replaceable if 1) the function depends heavily on the
computer environment or on other information that is prone to change, or 2)
the implementation of the function is likely to change, with the interface to the
function staying the same.

Place the ampersand in front of the function's label. For example:

&createsfdu

Do not annotate entities with an ampersand.

o Use a question mark C?") to indicate that the direction of control flow is
opposite to the direction of a data flow. For example,

?sensor data

indicates that the recipient of sensor data initiates the data transfer, not the
sender. If the question mark is orm'tted, the default assumption is that control
flow and data flow are in the same direction.

o Use an asterisk to identify instances of Abstract Data Types (ADTs).

Place the asterisk at the beginning of the dataflow or data store'slabeL

You may now execute the Object Diagram Generator. An Object I_.'agram will
be created for the level-0 EDFD, and for each EDFD whose parent process Is an entity
(i.e.,annotatedwith an asterisk).The EDFD annotationsare used to determine how the
processes, data stores, and data flows will be translated into Object Diagram items. The
translation rules are as follows:

o Entities (identified by an asterisk) become proper objects.

o Data stores become state objects.

4-4

o Concurrentfunctions (identified by the pound sign) become tasks.

o Nonconcurrent functions (i.e., no asterisk and no pound sign) become

procedures.

Two objects will be connected by a control flow if their corresponding processes
are connected by data flows. If the data flow and control flow axe in the same direction,
then the data flow becomes an input parameter to the called object; otherwise, the
dataflow becomes an output parameter of the called object.

Each ADT becomes a proper object in the level-0 Object Diagram. Each object
that accesses the ADT will be connected to the ADT by an arrow. (For the Object
Diagram Generator, an object "accesses" the ADT if the original process, from which
the object was created, is either a source or destination of the ADT dataflow.) These
arrows may be "off-edge." If so, additional arrows are generated to connect the objects'
ancestors to the ADT.

The "provides" clause of each object is created on the basis of the object's input

and output parameters. A procedure object provides one item, namely itself, with the
appropriate input and output parameters. A state object provides itself. A task provides
an entry for each subfunction that communicates to outside of the task. A proper object
provides those procedures, entries, and states that are required to accept/generate the
object's input/output parameters.

The "uses" clause of each object is generated on the basis of 1) the arrows
emanating from the object, and 2) the "provides" clauses of the objects at the other end.
The items used are determined by the parameters passed between the two objects.

Reusable functions (identified by the ampersand) arc all moved into a single
level-0 object---a "library package"--- to ensure that they are potential visible to any
object that needs them. An arrow is drawn to the service package from each object that,
prior to the move, was an ancestor of a reusable function. For each such arrow, the
"uses" clause of the former ancestor is updated accordingly.

The Object Diagrams generated automatically are only a rough draft of a design.
Exception handling must still be added. Components may have to be moved to improve
the design quality or to better address the requirements. The entries of tasks may have to
be changed: the generator can only guess at this. The eventual design may not
correspond to the decomposition of the EDFDs. The Quality Assessor, described in
Section 5, can provide advice on refining the design.

To invoke the Object Diagram Generator, do the following:

1. Select the DFE icon (second panel)

2. Enter in the first panel the name of the level-0 EDFD

3. Select the command "Generate Object Diagrams" (third panel)

4. Click the "Execute" button (first panel)

You can also invoke the Object Diagram Generator with the following command
line:

4-5

odgenerfilename

wherefiletumu_ identifies the level-0 EDFD, with or without the ".dfe" extension. The
name of the top-level Object Diagram will be the name as that of the level-0 EDFD, but
with the extension ".pet" instead of".dfe." The name of a sub-Object Diagram is the
name of the object it decomposes, followed by the ".pet" extension.

4.6 Subprogram and Data Structure Edit Feature

The Object Diagram Generator maps EDFD entities (identified by an asterisk) to
proper objects. Functions that are immediately below an entity are mapped to procedure
or actor objects, i.e., to the bottom of the Object Diagram hierarchy. Functions at lower
levels of the OOS are not mapped into the Object Diagrams at all. These functions are
not part of the object-oriented view of the system. They are subfunctions of the
procedures and actors provided by the objects.

The Subprogram Edit Feature provides a way to view and edit the subfunctions of
Object Diagram procedures. Each procedure can be "pushed" or"exploded" into a
DFD that represents its functional decomposition. If such a DFD was part of the
specification, it is retrieved by the Subprogram Edit Feature. If not, a new DFD is
created.

The Subprogram Edit Feature enables you to view (and edit) the subprogram
hierarchy beneath an Object Diagram procedure. The Data Structure Edit Feature
provides a similar capability for state objects. You can view and edit the data structures
of which each state object is composed.

Both features are accessed through the options item in the PICture menu. This
menu is displayed by holding down the fight mouse button with the mouse cursor inside
the Object Diagram. The options item is selected by moving the mouse cursor to the
item, and then sliding the mouse cursor to the right (this is the 'walking menu' feature of
PICture). An options menu then appears. The options menu contains an item called
push; when selected, this menu item invokes the Subprogram and Data Structure Edit
Features. The push item is selected by moving the mouse cursor to the item, and then
releasing the fight mouse button.

Do not confuse the push item in the options menu with the push item on the
PICture command panel. They serve analogous purposes, but they invoke different
editors. The PICture (i.e., standard) push cause PICture to be invoked on a lower-level
diagram. The push in the options menu causes either the Data Flow Editor or Data
Structure Editor to be invoked.

When you select push from the options menu, you will be prompted to select a
symbol from the Object Diagram. You should select either a procedure symbol (i.e., a
rectangle) or a state symbol (parallel lines). The symbol is selected by clicking the left
mouse button with the mouse cursor positioned within the symbol.

Depending on whether the selected symbol is a procedure or a state, either the Data
Flow Editor (for procedures) or the Data Structure Editor (for states) will be invoked.
The name of the diagram (DFD or DSD) is obtained by appending '.dfe' or '.dse' to the
label of the selected symbol. For example, if you select a procedure labeled
verify_constraints, the Data Flow Editor will be invoked on a diagram called

4-6

verify_constraints.dfe. If a state object labeled parameter_database is selected, the Data
Structure Editor will be invoked on a diagram called parameterdambase.dse.

4-7

5 ASSESSING OBJECT-ORIENTED DESIGNS

This section describes a tool for evaluating object-oriented designs. The tool
assumes a design expressed as a hierarchy of Object Diagrams [5]. The need for an
automated quality assessor stems from the following reasons. First, it is often difficult to
decide what constitutes a "good" object. As designers we need testable criteria for
deciding how to group procedures and data. Secondly, applying such criteria manually to
the design of a large system is prone to error. There are too many interfaces to be
coordinated.

Our approach to quality assessment is to flag undesirable design constructs. For
convenience, we distinguish between three levels of severity:

O Questionable: The design construct may be appropriate (even necessary)
within the context of your design---but you should adopt it only after you have
considered its drawbacks and evaluated the trade-offs.

0 Undesirable: The design construct should be changed. It is potentially harmful
to the reliability, maintainability, or reusability of the software, and there is
almost always a more effective way to accomplish the design goal.

o Hazardous: The design construct is undesirable and introduces a high risk to
reliability.

The constructs flagged by the quality assessor fall into two categories:

1. Weak abstractions

2. Inadequate informationhiding

Abstraction quality addresses the question of what is a good object. Information

hiding refers to the protection of data from improper use.

5.1 What is a Good Object?

During the specification phase we thought of objects as entities that occurred
naturally in some domain, e.g., the application domain, a technology domain, or a
computer domain. This view is equally valid for software design, but at this more
detailed level the following more precise definition is often useful:

An object is a data structure together with procedures that act on the data,
such that the procedures are tightly coupled to the data and are not tightly
coupled to anything else.

To build complex objects (i.e., objects within objects), simply substitute "previously
defined object" for' 'data."

With this definition of "object," the question of "good" objects reduces to

def'ming "tight coupling." It is simple to define tight coupling between procedures and
data: a procedure is coupled to the data it accesses; tight coupling occurs when the
access is direct, as opposed to access through some other procedure. For example, in

5-1

Figure5-1,ProcedureA andProcedureB are both coupled to the Data_Structure_C, but
only Procedure_B is _-ghtly coupled to 13ata_Structure_C.

It is not as easy to define tight coupling between procedures, but there are some
clear-cut cases. Two objects, for example, are coupled if one uses the other. The
coupling is tight if the two objects use each other, as in Figure 5-2, or, more generally, if
there is a "uses" cycle containing them both. The coupling is even tighter if two
procedures within the two objects call each other, i.e., are mutually recursive (Figure 5-
3). In such cases there is clearly something wrong with the design. This is an example of
how the technical definition of "object" can lead to automated quality assessment
criteria.

5.2 Methods of Information Hiding in Ada

We single out information hiding as an assessment criterion because designers
traditionally do not hide enough information. The legacy of languages less structured
than Ada---starting with FORTRAN, in which all shared variables are globally visible---
has fostered a style of design and programming in which visibility is the default.
Thoughts of future requirements may, for example, lead us to suspect that some day we
will need to access a certain variable or procedure, even though there is no such need
today; so we make it visible to all of the software. Object-oriented design is a more
systematic approach to accommodating future needs. In OOD we structure the software
so that potentially needed information is placed in the external interface of an object; the
information is not actually visible to another unit of software until the unit explicitly
declares such a requirement---in Ada, by means of the "with" statement.

Information hiding in Ada refers primarily to the distinction between the external
interface and the internal content of an object. The external interface, which consists of
callable procedures, type declarations, and visible variables, is all that is known to users
of the object. In Ada the external interface is defined by means of a package
specification. Procedures and variables that axe defined within the object (i.e., the
package body) but not within the external interface (the package specification) are
inaccessible from outside the object.

Data encapsulation is a form of information hiding in which variables are
shielded from improper access. All access to the variables occurs through a set of
procedures within the encapsulating object. In Ada this is typically accomplished
through private types. The variable itself may be declared and referenced outside the
object, but the data type of the variable is known only by a "meaningless" name. The
variable's subfields, therefore, cannot be altered or even examined in detail except by

calling one of the privileged procedures.

Generics are another means of hiding information. When the encapsulating
package is defined to be generic, even the "privileged" procedures--those within the

package---are ignorant of the data type on which they axe operating. Th_ey must operate
in a uniform manner that works correctly regardless of the data type. This is one way to

prevent improper use of the internal structure of data.

5-2

provides:
-Procedure_l
u$¢$:

-Proccdu__.2

Procedure_.2

-__2
ulc, s:

-l_m_,3

-_ Data_3v

Figure 5-1: Coupling to Data May be Direct or Indir_t

Objc_t_A

P_c,ede_.A_l

Pr_d__A._

provides:
-__A_I
-Proccd__A..2
uses:

-obga-n
• Ptoced__B 1

1
Figure 5-2: Mutual Use Indicates Tight Coupling of Objects

pmvide,:
-l_x_r_..B_l

-__B_2

-Obje_.A

¢U_p_m__n_e..l_ l

decompcmdon of Objec_.._

-P_re..A_l

-ObNt_.B

Figure 5-3: Mutual Recursion Over Object Boundaries Indicates Undesirable Coupling

5.3 The Quality Checks

From the criteria discussed in Section 5.1 and 5.2 we have extracted a handful of

quality checks. This section describes the specific constructs searched for, and diagnostic
messages issued.

5.3.1 Unencapsulated Data

Data structures that occur in a top-level Object Diagram are by definition not
encapsulated. When the Quality Assessor encounters such a structure, as illustrated in
Figure 5-4, it issues the following message:

Diagram: top_level_diagram_name
State object "Data_C" has no parent
and can be accessed by ALL other objects.

Severity level: Undesirable.

5.3.2 Data Accessed from Outside the Containing Object

Figure 5-5 illustrates another case of insufficient data encapsulation. The Quality
Assessor's response is as follows:

Diagram: diagram_name
State object: "Data B 1"
Accessed by procedure "Procedure A 1"
Accessed by procedure "Procedure B 1"
Severity level: Questionable.

5.3.3 Data Updated by More than One Procedure

Access control issues can arise even when data structures are encapsulated. For
example, should more than one procedure be able to update the data? The quality
assessor will flag as questionable any such instances, as in Figure 5-6:

Diagram: diagram_name
State object: "Data 3"
Altered by procedure "Procedure_ 1"
Altered by procedure "Procedure_2"
Severity level: Questionable.

5.3.4 Concurrent Updates Possible

In Figure 5-7, two program units that update the same data are capable of running
concurrently. Such cases are flagged as hazardous.

Diagram: diagram_name
State object: "Data 3"
Altered by task "Ta_k 1"
Altered by procedure '-rProcedure 2"
Severity level: Hazardous.

5-4

Data_C

Figure 5-4: Data Structures in a Top-Level Object Diagram are Potentially Visible to any Other Object

objm__

0_ Deta_B_l

Figure 5-5: Data May be Insufficiently Shielded from Prtx:edm_ Outside the Containing Object

Pt_aalm¢_l

lXovidca:
-Proceda_ 1
USe41:

-Daa_3 [write]

Dam-3

provides:
__2
U:

-Din._3

Figure 5-6: The Designer is Notified ff a Data Stracmre can be Uixiated by Mote lhan One Procedure

-Dstw3 [write] Dam_3 ate,:
-Data..3 [write]

ccemdm:
-D.m_3

Figure 5-7: Potentially Concurrmt Updates are Flagged u Hazardotm

5.3.5 Mutually Recursive Procedures or Tasks in Different Objects

As we noted above, the construct illustrated in Figure 5-3 (above) suggests that
the objects have not been well thought out. The Quality Assessor issues the following

diagnostic:

Procedure "Procedure A 1" within diagram "diagram_name 1" and
procedure "Procedure B 1" within diagram "diagram_name 2"
use each other.

Severity level: Undesirable

5.3.6 Virtual Machine Levels Crossed

A questionable form of coupling occurs when one object uses another object
which is more than one virtual machine level down from the first object. An object is

assigned a virtual machine level according to 1) the set of objects it uses, and 2) the set of
objects that use it. For example, if two objects use each other then they are at the same
virtual machine level. If one object uses another object, but there is no "uses" chain in

the opposite direction, then the "using" object is assigned to a higher virtual machine
level than the "used" object. In the purest virtual machine hierarchy, objects at each
level would use only objects at the next lowest level. Exceptions to such an arrangement
are flagged by the assessor as questionable. For example, the assessor will flag as
questionable a configuration of three objects A, B, and C in which A uses B and both A
and B use C (Figure 5-8). If C happens to be a library unit (i.e., a highly reusable
package) then this usage is probably acceptable. In any case---library unit or not---the
designer should make a conscious decision:

Diagram: diagram_name
Object: "Object_A" on vm level 3 uses
object: "Object C" on vm level 1.
Severity level: Questionable.

5.4 Invoking the Assessor

The invoke the assessor select the PCT icon in the second panel of the IDEtool

screen. Enter the name of the top-level Object Diagram of the design you want to assess.
Select Assess Object-Oriented Design in the third panel, and then click Execute in the top

panel: The output from the Assessor will appear in the bottom panel.

Before invoking the Assessor you should first make sure your Object Diagrams
are consistent. The Assessor behaves unpredictably with an inconsistent set of Object
Diagrams. To check the consistency, proceed as above but instead of Assess select Check
Object-Oriented Design in the third panel. The output from the checker will appear in

the bottom panel.

5-6

Level 1
Object_A 1 Obje_-'t_B

Objea_C

1

1

Level 2

Level 3

Figure 541: The Designer May Want to Reconsider When Virtual Machine Levels ate Crossed

6 THE REUSE DATABASE

In this section we discuss the structure and contents of the Reuse Database.

Understanding this structure will assist you in performing the following activities:

o Analyzing an application domain to identify typical systems, components, and
variations---the framework for reuse

o Developing reusable products, or refining products to make them reusable

o Classifying and storing reusable products

The database contains descriptions of reusable products. These products may be
entire systems or subsystems, or individual components. Reuse is not limited to the
source code or executable modules. Documentation, specifications, test plans, test

results, etc. are all aspects of the software product and can all be reused. By "reuse" we
do not necessarily mean integrating a product "as is" into your system. Reuse may
simply consist of modeling your work on a previously existing product.

The Reuse Database consists of two semantic networks:

o obnet: the object network

o keynet: the keyword network

A semantic net_vork consists of nodes and arcs (or, if you prefer, entities and

relationships). Different types of arcs represent different kinds of relationships between
nodes. Two nodes may be connected by several arcs---each of a different type---
indicating that the two nodes are related to each other in several different ways.

Obnet nodes represent reusable products. Keynet nodes are just keywords. The
keywords are used to classify and describe the reusable products. The two networks are
linked by means of associations between keywords and obnet nodes. The keywords and
associations together provide afaceted classification scheme, in which there are several
"dimensions" or "facets" by which a reusable product may be classified.

6.1 Types of Reusable Products

Reusable products (i.e., obnet nodes) may be of different types. The Reuse
Database currently supports the following product types:

o System

o Object

o Task

o Method

o Data Structure

6-1

o Exception

Reuseof anentiresystem is a reasonable possibility during the earlier phases of
development, e.g., during requirements analysis. Typically this form of reuse involves
modeling a new system on an existing system. We consider this a form of reuse whether
or not you choose to incorporate some components of the old system directly into the
new one.

Objects are the basic element of Object-Oriented Specification and Object-
Oriented Design. We sometimes refer to objects as "entities." (We tend to use
"entity" during the specification phase and "object" during the design phase.) Do not
confuse "objects" with obnet nodes! An object is represented in Ada as a package; in
the database it is represented as one type of obnet node, but there are other types of obnet
node as well (i.e., system, task, method, etc.)

The term method is taken from Smalltalk. For our purposes---since we are
primarily concerned with Ada software---a method is either a procedure, a function, or a
task entry. Similarly, tasks, data structures, and exceptions are to be understood in the
sense of Ada. The reason we include exceptions is so that you can fully represent the
information contained in an Object Diagram by means of nodes and arcs in the obnet.

6.2 Relationships Between Reusable Products

The following arc types are available in the obnet:

o System contains Object

o Object contains Object

o Object contains Task

o Objectprovides Method

o Object provides Data Structure

o Object uses Method

o Object uses Data Structure

o Object handles Exception

o Taskprovides Method

o Task uses Method

o Task uses Data Structure

o Task handles exception

o Method raises Exception

o Method handles Exception

6-2

o Method uses Method

o Method uses Data Structure

These arc types are all based on the Object Diagram methodology [5].

presents the same information in the form of an Entity-Relationship Diagram.

Figure 6-1

6.3 Attributes of Reusable Products

Each reusable product has a set of attributes, which depends on the type of

product. The following attributes are currently def'med in the Reuse Database:

o System att_dbutes:

: Application category

Target system

Project

Version

Programming language

Reference

o Object attributes:

- Applicationcategory

- Target system

- Project

- Version

- Programming language

- Size (bounded, undounded, or limited)

- Access (protected,sequential,guarded, controlled,multiple,or multi-

guarded)

Conc_cy (operationconcurrence or objectconcurrence)

- Type

- Iterator(yesorno)

- Managed (yesor no)

- Priority(yesor no)

6-3

Figure 6-1: Product and Relationship Types in the Reuse Database

- Balking (yes or no)

- Reference

o Method attributes:

- Application category

- Target system

Project

- Version

Programming language

Concurrency (operation concurrence or object concurrence)

Reference

o Data Structureattributes:

Applicationcategory

Target system

Project

Version

- Programming language

- Reference

The attributes Size, Access, Concurrency, lterator, Managed, Priority, and
Balking are taken from the taxonomy of Ada components developed by Grady Booch and
refined by Edward V. Berard.

The Reference attribute is intended to serve as a pointer to additional
documentation about the product. For example, it may contain the name of a system and

directory containing the product's source code and related documents.

You can displaythe attributesof a product inthe Reuse Database as follows.

FirstselectReuse Database inthe second panel of theIDE main screenby positioning
themouse cursorinthisselectionand then clickingtheleft-handmouse button. Then

selectShow Detailin the thirdpanel (againwith the left-handmouse button).Notice that

you are now prompted fortwo arguments inthe fourthpanel. One argument isthe name

of the product whose attributesyou wish to see. Type thisname in where thecaret
indicates,thenhitRETURN. The otherotherargument isthe typeof theproduct,and

here you simply selectthe appropriatetypeby clickingthemouse on your selection.
Then move the mouse cursorup tothe top panel and clickExecute. The attributesof the

product willbe displayedinthe bottom panel.

6-5

6.4 Navigating the Product and Keyword Networks

Navigation is a means of browsing the contents of the Reuse Database. We call it
"navigation" because you can move from product to product, or from keyword to
keyword, by traversing any of the relationships ("arcs") that are represented in the
database. By navigating the database you can get a sense of what reusable products are
available, and of the categories into which they are classified (by means of keywords).

Another reason for navigating is as a follow-up to an automated search for
reusable products. The automated search process is described in Section 7. The
automated search may turn up products that are almost, but not exactly, what you are
looking for. By examining other products that are "similar" or closely related to the
located products, you may find something that better meets your requirements. For
example, you may not have used the best keywords to describe the product you are
looking for; or you may interpret the keywords differently from the person who created
the database. By navigating through related keywords you may find a more accurate
description of the product you want.

The navigation commands work as follows. You first select a product or keyword
to start navigating from, and a type of relationship (an "arc type") to navigate over. You
can use the commands List Products Arctypes and List Keyword Arctypes (in the third
panel of the IDEtool screen) to see what arc types are available to be navigated over.

When you have selected a starting product or keyword, and an are type, and you
then execute the appropriate Navigate command (in the third panel of the IDEtool screen)
the environment will display the neighborhood of the selected item (product or keyword)
with respect to this are type. The display is in graphical form. The neighborhood
consists of all "parents" and all "children" of the selected item. A parent is an item that
has an arc (i.e., a relationship)from itself to the selected item. A child is an item that has
an arc from the selected item to itself. The neighborhood of an item, in short, consists of
the item's closest relatives.

We use PICture, IDE's general-purpose diagram editing tool, to display the
neighborhoods. The fast time you select Navigate Products or Navigate Keywords
within an IDEtool session, PICture will automatically be invoked to display the
neighborhood. When you are finished navigating, if you plan to stay in the IDEtool
session, do not quit PICture. Instead, just close the window in which it is running: that
way, PICture will continue running but it will not clutter up your screen. The next time
you select Navigate Products or Navigate Keywords, the following message will appear
in the bottom panel of the lDEtool window:

Activate PICture to view neighborhood.

To view the neighborhood, simply open the window in which PICture is running;
then click the left-hand mouse button on the Load command in the top panel of PICture.
This will cause the new neighborhood display to be loaded.

The advantage of leaving PICture running in the background, as just described, is
that you do not have to wait for PICture to be re-executed every time you want to
navigate. Executing PICture involves loading the program into memory, which takes up
considerable time.

6-6

Navigation consists of moving from neighborhood to neighborhood in order to
visualize the contents of the database. There are two ways you can move from
neighborhood to neighborhood:

o Stepwise

o Jumping

In stepwise navigation, you select any item in the current neighborhood, and
display its neighborhood. In other words, a parent or child of the central item in the
current neighborhood becomes the central item of the new neighborhood. The previous
central item will be one of the parents or children in the new neighborhood. To move
stepwise to a new neighborhood, do the following:

1. Pop up the editor menu by depressing the right-hand mouse button

2. Move the mouse downward until the Options command is highlighted

3. Slide the mouse to the fight until the Options menu pops up

4. Slide the mouse down until the option Neighborhood is highlighted

5. Release the fight-hand mouse button

You will be prompted with the following message:

Please select node for new neighborhood.

in the upper left-hand comer of the PICture window. In response to this prompt, crick the
left-hand mouse button on the item that you want to make into the new central item. You
will see the message

Executing nbrhd

in the upper left-hand comer. When this message gets replaced by the message

nbrhd completed

click the left-hand mouse button on the Load command in the top PICture panel. The
new neighborhood will then be displayed. Remember, you must click Load to display
the new neighborhood. This is a consequence of our using PICture as the mechanism for
displaying the neighborhoods (it is not really the intended use of PICture).

To jump to an entirely different neighborhood, which may have no overlap with
the current neighborhood, simply replace the name of any item in the current
neighborhood with the name of the new item, to whose neighborhood you wish to jump.
Do this by placing the mouse cursor inside the item whose name you are replacing (it can
be any circle-node in the diagram), using the DELETE key to erase the current name, and
then entering the new name. Hit the ESC key to terminate the new name. When you
have finished entering the new name, click the left-hand mouse button on Store in the top
PICture panel. Clicking Store/s essential for the new name to be "recorded." Then
execute the Neighborhood option, as described above, selecting the node that you have
just changed to be the center of the new neighborhood.

6-7

At any point during the navigation of reusable products you can display the
attributes of the products in the current neighborhood. The attributes are recorded in the
text annotations of the nodes in the diagram. To view the annotation, depress the right-
hand mouse button to pop up the PICture menu, and slide the mouse down until Text is
highlighted. Then slide the mouse to the left until a second menu pops up. Then slide
the mouse down until Show Text is highlighted. Now let up the right-hand mouse button.
A message in the upper left-hand comer of the PICture window will prompt you to select
the node whose text you wish to see. You should click the left-hand mouse button on the
node representing the reusable product whose attributes you want to view. The attributes
will then pop up next to the node. To hide the attributes again, simply click the left-hand
mouse button again on the same node.

The displays you see during navigation are of neighborhoods with respect to a
specific arc type. The arc type is identified in the middle of the display, next to the
central node. At any time during navigation, you can change the arc type to another
arc type. To do this, simply edit the are type label, i.e., move the mouse cursor to the
label until a gray arrow appears pointing to the label; use the DELETE key to erase the
characters of the old are type label, and then enter the new arc type. Use the ESC key to
terminate the new are type label. Then click the left-hand mouse button on Store in the

top PICture panel. You must click Store to have the new arc type recorded. Otherwise
it will not take effect.

After you hit Store the new arc type is recorded, but the display remains the same

until you request a new neighborhood. Subsequent neighborhoods will display parents
and children with respect to the new are type. If you want to keep the central node the
same, but display its neighborhood with respect to the new arc type, just select the
Neighborhood option as described above; then click on the central node as the item
whose neighborhood you want to see.

6-8

7 LOCATING REUSABLE PRODUCTS

This section describes how to search for reusable products. In our scenario you
do not access the Reuse Database directly (of course you can if you want, in which case
you should consult the SEMANTX User Guide). Instead, you initiate automated
searches from a diagram edit session. You can initiate a search from any of the following

diagrams:

o Entity-Relationship Diagrams (ERDs)

o Entity Data Flow Diagrams (EDFDs)

o Object Diagrams (ODs)

The steps of the search process are 1) annotate the diagram nodes with keywords,
2) select a search command, 3) select an item to search for, 4) examine the results of the
search and make corresponding reuse decisions, and 5) return to the diagram edit
session.

7.1 Annotating Nodes with Keywords

The nodes within the diagrams can be annotated with textual descriptors. To
create or edit the descriptor of a node, press down the right-hand mouse button with the
mouse cursor positioned outside of all nodes. This causes the command menu to pop up.
While still holding down the right-hand button, mouse the mouse cursor down to the
command labeled Text. Now (still holding down the righ-hand button) move the mouse
directly to the right until another menu appears next to (and a little below) the menu
containing Text. Move the mouse down to the line that says Edit text in this second
menu. Now let up the right-hand button, move the mouse into the node whose descriptor
you wish to create or edit, and click the left-hand button. Notice that a small colon (:)
appears just outside the node you have selected. This colon is the prompt to enter text
into the descriptor. Move the mouse to the prompt, and enter the text with which you
want to annotate the node.

You can also annotate the diagram as a whole by editing the diagram's text

descriptor field. This is done in the same way that you edit a node's text descriptor, with
the following exception: After you 1) select text from the edit menu, 2) slide the mouse
to the right, and 3) select Edit text from the secondary menu, you should 4) click the
left-hand mouse button with the cursor outside of all nodes (instead of clicking it on a
node). This will initiate an edit of the diagram's text descriptor.

You can bring up a full-screen editor to facilitate moving around the text and
making changes. To do this, type in CTRL-e. You will observe the message Executing
Pipetool in the upper right-hand corner of the diagram window. In a few seconds a new
window will pop up with the full-screen editor (on UNIX systems this is typically the vi
editor, although you can change this). When you have finished editing the descriptor,
save it using the ordinary editor command and then exit the editor (for example, in vi you
would type in :wq followed by RETURN). Do not destroy the window in which the
editor appeared (the IDE editors become flaky if you do this); instead, just bring the
diagram window to the front again by clicking the left-hand mouse button on its border.
If you like, you can close the window that contained the editor.

7-1

The automated search for reusable products is based on keywords. You place
these keywords in the descriptor of a diagram node. The keywords are the means by
which you describe (or specify requirements for) the reusable product for which you are
looking.

The form in which you specifykcywords isas follows:

Keywords:

iteml => keywordl
item2 => keyword2

item3 => keyword3
etc.

where spaces and tabs may be placed anywhere between words. We call this a keywords
clause, and one or more such clauses can appear anywhere in the node descriptor. Each
item should be the name of either the diagram node itself or of an item (i.e., a procedure,
function, task entry, or data structure) that is provided by (or contained in) the node. An
item may have several keywords, in which case you simply enter multiple lines with the
same item name. You may leave out "item =>" in which case

- /_,yword

is assumed to be a keyword describing the node itself. In fact, the item is only relevant to
Entity-Relationship and Object Diagrams, not to Entity Data Flow Diagrams. In an ERD
or an OD, the syntax for provided (and contained) items is as follows:

Provides:
- method1
- method2
etc.

and
Contains:
- datal
- data2

etc.

Like the keywords clauses, any number of "provides" and "contains" clauses
can appear anywhere in a node descriptor in an Entity-Relationship or Object Diagram.

NOTE: Currently there is an annoying inconsistency between the diagram-

based tools and the schema of the Reuse Database. The dial_ram-based tools,
including the search commands, distinguish between "provides" (which is
used for procedures and task entries) and "contains" (which is used for
data, i.e., states). This notation is now obsolete, and we should use
"provides" for all such items, i.e., procedures, task entries, and data. That is
how the Reuse Database schema is defined. ("Contains" in the Reuse
Database refers to sub-systems or sub-objects, not to data elements.) Until
the diagram-based tools are updated, however, you should use "contains"
for data items in the diagrams, and "provides" for procedures and task
entries.

7-2

7.2 Selectinga SearchCommand

You can now pointto thenode and, through a simple mouse click,tellthe

environment to "find me one of these." Do thisas follows. Press down the right-hand

mouse buttonso thatthe diagram editormenu appears. While keeping the right-hand

buttondown, move the move down the menu untiltheitem calledOptions ishighlighted.

Now move thc mouse tothe right.A second menu---the menu of options---willpop up
next to,and a littlebelow, the firstmenu. Move the mouse down thissecond menu until

one of the Scarch4 ("Search for") optionsishighlighted.The specificSearch4 option

you should choose dcpends on the typeof product you are looking for.The following

Scarch4 optionsare available:

From Entity Relationship Diagrams:

o Search4system

o Search4entity

o Search4method (a "method" is a procedure or function provided by an entity)

From Entity Data Flow Diagrams:

o Search4system

o Search4entity

o Search4function

From Object Diagrams:

o Search4system

o Search4class (i.e., a class of objects)

o Search4object

o Search4method

o Scarch4data

7.3 Selecting an Item to Search For

When you have highlighted the appropriate Search4 option, release the fight-hand
mouse button. In all cases except Search4system, the following prompt will appear in the
upper left-hand comer of the edit window:

Please select node for Search4type

where type depends on the specific Search4 option you selected. In response to this
prompt, select the node that represents the product you are looking for.

7-3

If you selected Search4system you will not be prompted to select a diagram node.
Instead, the search will be based on the keyword annotation of the diagram as a whole.

If you selected Search4method or Search4data, specifying the diagram node is not
sufficient to tell the environment which method or data structure to search for. An entity
in an ERD can provide several methods; an object in an OD can provide several methods
and contain several data structures. In these cases, a new window will pop up with a
display of the provided methods (or the contained data structures), and you will be
prompted to enter the name of the method or data structure to search for.

7.4 Examining the Results and Making Reuse Decisions

After you have initiated the search, you must transfer from the diagram window
to the IDE main window (click the left-hand mouse button on the border of the IDE main

window). Now just wait for the following message to appear in the bottom panel of the
IDE main screen:

Okay to invoke post-search options.

This message means that the search is completed. You are then ready to examine
the results of the search and to follow up the search based on the suitability of the
products that were located. Move the mouse to the second panel and click the left-hand
button on Reuse Database. Then move to the third panel and click on Post-Search
Options. You now have the following options:

o List Located Products

o List Keywords Used

o Reuse Product

o Add Keyword

o End Search

List Located Products shows you the results of the search. A list of all products
having one or more of the keywords you specified is displayed in the bottom panel. To
get more information about any of these products, you earl display its attributes---how to
do this was described at the end of Section 6.3. Displaying the attributes of a product
will take you out of Post-Search Options, but you can return to Post-Search Options at
any time (in fact, you must return to Post-Search Options in order to end the search and
return to your diagram edit session).

List Keywords Used displays a list of the keywords that were used in the search.
This may be helpful especially ff the diagram node annotation contained keywords for
many different items: only some of these keywords will apply to the item for you are
looking for.

When you select Reuse Product under Post-Search Options, you will be prompted
for the name of the product that you want to reuse. This can be one of the products
located through the search, but it does not have to be. There is no automated verification
that the product you specify actually resides in the Reuse Database. The effect of this
option is to cause a "Reuses" clause to be placed in the descriptor of the node from

7-4

which the search was initiated (or, in the case of Search4system, in the diagram's

descriptor). In other words, this is a way of automatically recording the decision to reuse
a certain product. You may reuse as many products as you wish. The syntax of the
Reuses clause is similar to that of the Keywords clause, i.e.,

Reuses:

item1 => product1
item2 => product2

etc.

The item in this case will be the same item you selected when initiating the
search.

Add Keyword operates in a manner similar to Reuse Product except that, in this
case, a new Keywords clause will be added to the node descriptor (or diagram

descriptor).

7.5 Returning to the Diagram Edit Session

To end the search process you must select the End Search option. This signals
the diagram edit session that the search (and postsearch) is over and that editing can .
resume. If you added any keywords during Post-Search, you may want to initiate another
search for the same item, using the additional keywords as a more freely tuned

description of the desired product.

7-5

REFERENCES

[11

[2]

[3]

[4]

[5]

Bailin, S.C. and Moore, J.M. An Operational Concept of Software Reuse.
Computer Technology Associates, Inc., Document Number 330-3015068-87-02a.
June, 1987.

Jackson, M. System Development. Englewood Cliffs: Prentice Hall, 1983.

Booch, G. Software Engineering with Ada, second edition. Addison-Wesley, 1987.

Stark, M. and Seidewitz, E. "Towards a General Object-Oriented Ada Lifecycle,"
Proceedings of the Joint Fourth Washington Area Ada Symposium/Fifth National
Conference on Ada Technology. March 1987.

Seidewitz, E. and Stark, M. General Object-Oriented Software Development.
NASA GSFC Software Engineering Laboratory SEL-86-002. August 1986.

