A Small Terminal for Satellite Communication Systems

by
Fuqin Xiong
Dong Wu
Min Jin

Department of Electrical Engineering
Cleveland State University
Cleveland, Ohio 44115

submitted to

NASA Lewis Research Center

Grant NCC3-201 Final Report, May 8, 1994
Contents

List of Figures 3

List of Tables 5

1 INTRODUCTION 6

2 MODEM/CODEC THEORY 10
 2.1 MODEM Theory 10
 2.1.1 BPSK (Binary Phase Shift Keying) 10
 2.1.2 QPSK (Quadrature Phase Shift Keying) 12
 2.1.3 OQPSK (Offset QPSK) 15
 2.1.4 MSK (Minimum Shift Keying) 16
 2.2 CODEC Theory 20
 2.2.1 Convolutional Encoder 20
 2.2.2 Viterbi Decoder 21

3 SYSTEM DESIGN 23
 3.1 System Specifications 23
 3.2 System Interfaces 24
 3.3 IF Frequency 25
 3.4 System Structure 26

4 TRANSMITTER DESIGN 29
 4.1 Modulator Design 29
 4.1.1 Q2334 Direct Digital Synthesizer 30
 4.1.2 Modulator Design 33
 4.2 Encoder/Decoder Design 38
 4.2.1 Parallel and Serial Data Modes 39
 4.2.2 Synchronization Status Monitor Design 40
 4.2.3 Monitoring Channel Bit Error Rate (BER) ... 42
 4.2.4 The Other Considerations 43
 4.3 D / A Converter 43
5 READER DESIGN

5.1 IF Amplifier and Bandpass Filter
5.2 Multiplier, LPF and Amplifier
 5.2.1 Multiplier
 5.2.2 LPF and Amplifier
5.3 Analog to Digital Converter
5.4 STEL-2110
 5.4.1 STEL-2110 Bit Synchronizer/PSK Demodulator
 5.4.2 Design with STEL-2110
5.5 Carrier Recovery Circuit for QPSK, OQPSK and BPSK
 5.5.1 Digital Phase Lock Loop
5.6 Msk Demodulator

6 CONTROL CIRCUITS DESIGN

6.1 Intel 80C32 Microcontroller
6.2 Variable Bit Rate Control
6.3 Configuration and Control
 6.3.1 BPSK
 6.3.2 QPSK and OQPSK
 6.3.3 MSK
6.4 Control Software

7 TEST RESULTS
List of Figures

2.1 Generalized quadrature modulator. .. 11
2.2 Generalized quadrature demodulator. 12
2.3 (a) input data stream, (b) QPSK data stream. 14
2.4 (a) QPSK and (b) OQPSK waveforms. 15
2.5 MSK waveforms. ... 17
2.6 Block diagrams of MSK (a) modulator, (b) demodulator. 18
2.7 Normalized power spectral densities for BPSK, QPSK, OQPSK and MSK. 19
2.8 Constraint length seven (k=7) convolutional encoder. 21
2.9 Q0256 coding performance. ... 22
3.1 System interfaces. ... 25
3.2 System structures. ... 28
4.1 Q2334 DDS block diagram. .. 31
4.2 The modulator circuit for BPSK, QPSK, OQPSK and MSK. 34
4.3 External control timing. .. 35
4.4 (a). Parallel data mode, (b). Serial data mode. 39
4.5 D / A converter circuit. ... 44
4.6 Power supply. ... 45
4.7 (a) lowpass filter circuit, (b) frequency response. 47
5.1 IF amplifier and BPF. .. 49
5.2 The frequency response curve of the IF amplifier and BPF. 50
5.3 Multiplier, LPF and amplifier. .. 50
5.4 The equivalent circuit for LPF and amplifier. 52
5.5 The analog to digital converter. .. 53
5.6 Block diagram of the STEL-2110. 54
5.7 Block diagram of the bit timing feedback loop system. 58
5.8 The performance related with loop gain and bandwidth. 59
5.9 Start up the chip STEL-2110. .. 61
5.10 Digital Phase Lock Loop. ... 63
5.11 MSK modulation scheme. .. 64
5.12 MSK demodulation scheme. .. 65
5.13 An example showing MSK baseband waveforms relations. 65
5.14 MSK post-detection circuit. .. 66

6.1 Intel 80C32 architectural block diagram. 69
6.2 (a) Internal memory map, (b) External memory map. 76
6.3 Flowchart ... 81

7.1 Power spectral densities of MSK. .. 88
7.2 Power spectral densities of QPSK and OQPSK. 90
7.3 Power spectral densities of BPSK. .. 92
List of Tables

4.1 Q2334 interface register address map. 32
4.2 External phase modulation offset setting. 32
5.1 The loop bandwidth with K1 and K2. 59
5.2 (a) The control factor K1, (b) The control factor K2. 60
Chapter 1

INTRODUCTION

This is a final report for the design activities supported by the NASA grant NCC3-201. The goal of this project is to design and develop a small portable terminal system for satellite communications. A multi-scheme, multi-rate modulator/demodulator (MODEM) and a convolutional-Viterbi coder/decoder (CODEC) are the main parts of this system.

Recent technological improvements are leading towards low-cost satellite communication systems that can be applied to rural communications worldwide[1][2]. Advance in signal processing and error-correction techniques allow more efficient use of the space segment by locating the sophisticated processing equipment on board the satellite[3][14]. Combined with the trend of higher power and higher frequency satellites this results in simple and inexpensive ground terminal architecture, making VSAT technology more attractive. The Advanced Communications Technology Satellite (ACTS) is certainly no exception to this general trend.

ACTS operating at Ka band incorporates most of these technological advances, Namely, higher power, higher frequency, frequency and spatial reuse using spot beams and polarization. These capabilities and facts the ACST uses beam hopping makes the development of small portable terminals very attractive to service to low population density areas, remote locations, as well as the areas where traffic is
spread geographically. Further, the efficiency and flexibility of a beam-hopping satellite system serving small and economical earth stations would also benefit developing nations.

This project is a part of designing and realizing this kind of small and economical earth stations. The research activities involved in this project include:

(1). Design of a programmable Modulator/Demodulator which can provide multiple bit rates, multiple modulation and demodulation schemes.

(2). Design of a code rate 1/2, constraint length 7 Convolutional coder/Viterbi decoder which can provide a low cost, high performance solution for FEC (Forward Error Correction) system requirement.

(3). Design of a control system for this small terminal system with one microcontroller. It can write the control code into the internal registers of the VLSI chips for proper system configuration and control. Also several required clocks are produced using this microcontroller. Another microcontroller is used to realize digital Phase Lock Loop (PLL) for carrier recovery for QPSK, OQPSK, and BPSK.

(4). Translation of this design into a prototype which was built using wire wrapping method.

(5). Debugging and trouble-shooting both hardware and software of this prototype system.

(6). Testing the transmitter and the receiver.

The MODEM can provide four kinds of modulation schemes: BPSK, QPSK, OQPSK, and MSK. Direct Digital Synthesizer (DDS) is used to generate modulation signals. Bit synchronizer/PSK demodulator (STEL-2110A) and digital Phase Lock Loop (PLL) are used to provide clock and carrier synchronization for BPSK, QPSK and OQPSK. A new type of low cost, easily realized MSK demodulator is presented for MSK demodulation. Five kinds of low bit rates ranging from 1,200 bps to 19,200 bps are employed in each kind of modulation scheme. Four different modulation schemes and five different bit rates provides us twenty different communication mode combinations. That which combination is well suited for low bit rate satellite communications will be tested through field experiments using ACTS launched by NASA in October, 1993. This is also the final purpose of this project.
The QUALCOMM Q0256 convolutional coder/Viterbi decoder VLSI chip is selected to provide low bit rate, high volume communications. Rate 1/2 and constraint length 7 convolutional coding scheme is selected. 3-bit soft-decision encoder data greatly improve the BER performance of the whole system. Only about 5.2 dB E_b/N_0 is required for 1E-6 BER performance.

Two 80C32 microcontrollers in the INTEL MCS-51 family are used in the control system and the digital PLL. Over 2,500 lines software are developed for the proper system operation, control and digital PLL calculation. An ICE-51FX emulator is used for the software developing. Selections of modulation schemes and bit rates can be done easily by switches. The control system also provides a master clock to the vocoder - the stage before the MODEM and CODEC.

Most of the system has been successfully built according to the system design requirements. The measured power spectral densities of modulated signals, BPSK, QPSK, OQPSK and MSK, under five different data rates agreed with the theoretical predictions very well. 0 BER performance was realized when signals passed through an idea channel. Realizing carrier synchronization for BPSK, QPSK and OQPSK in low bit rate situation and finding an MSK demodulation scheme suitable for low cost, small terminal are the key points in the system design and realization. Having successfully solved these problems with innovation offers several unique features to this system.

There are also some problems left. The system is not working at bit rate of 19.2 kbps for BPSK because the microcontroller which we employ doesn't have the function to generate 50% duty cycle clock. Thus, in our design, we generate a double frequency clock, then let it pass through a frequency divider to generate the required frequency 50% clock. For 19.2 kbps, we have to generate a 76.8 kbps clock for BPSK encoder use, but it is not possible for microcontroller 80C32. We can use a microcontroller which can directly generate 50% duty cycle clock or a microcontroller which can generate a 76.8 kbps clock to solve this problem. This is not a big problem.

Another problem is with MSK demodulation, only 2.4 kbps and 4.8 kbps bit rate can be successfully demodulated, but they are not robust enough. The key point here is to find or built a noncoherent robust FSK demodulator. NE564 which
we used in our system is what we can find to most suit for our system, but it still cannot give us satisfactory results.

Overall, we have meet many problem in our system realization and we have solve most of them. For QPSK, OQPSK and BPSK, the MODEM/CODEC can successfully operate at bit rate 1.2 kbps, 2.4 kbps, 4.8 kbps and 9.6 kbps. For MSK, transmitter is well working. there is a problem with the demodulator under some bit rates.
Chapter 2

MODEM/CODEC THEORY

2.1 MODEM Theory

For satellite communication, due to the nonlinear amplification of the TWTA and limited bandwidth allocation, the most efficient MODEM technique is the PSK with coherent detection. It has the desirable characteristic that the transmitted signal has a constant envelope with the information in the carrier phase transitions. Thus it is the least susceptible to the nonlinear amplification. It also has a higher bandwidth efficiency than the FSK even though the FSK is a constant envelope modulation too.

BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying) and OQPSK (Offset QPSK) are most often used PSK variations for satellite modems [4]-[8]. MSK (Minimum Shift Keying), which can be considered as an OQPSK with sinusoidal pulse shaping, was developed in recent years [9][11][12].

2.1.1 BPSK (Binary Phase Shift Keying)

BPSK is a binary signaling scheme where the phase of the carrier changes between two values separated by 180° with each new binary digit. Hence, two signals $s_1(t)$ and $s_2(t)$ are employed to represent the binary digits 1 and 0, as follows

$$s_1(t) = A \cos(2\pi f_c t + \theta), \quad (k - 1)T < t < kT$$

(2.1)
\[s_2(t) = A \cos(2\pi f_c t + \theta + \pi) = -A \cos(2\pi f_c t + \theta), \quad (k - 1)T < t < kT \quad (2.2) \]
or simply as
\[s(t) = d_k(t)A \cos(2\pi f_c t + \theta) \quad (2.3) \]
where \(f_c \) is the carrier frequency, \(\theta \) is the initial phase of the carrier, \(A \) is the carrier amplitude, \(T \) is the bit duration, and \(d_k(t) \) is the binary data stream, \(d_k(t) = \{d_0, d_1, d_2, \ldots \} \), consisting of bipolar pulses; that is, the values of \(d_k \) are +1 or -1, representing binary one and zero, respectively. The power spectral density of BPSK is shown in Figure 2.7.

![Diagram of generalized quadrature modulator](image)

Figure 2.1: Generalized quadrature modulator.

Figure 2.1 shows the generalized quadrature modulator which is applicable for BPSK, QPSK and OQPSK. For BPSK the baseband generator is not needed, and only the upper half of the modulator is required.

Figure 2.2 shows the generalized quadrature demodulator which is applicable for BPSK, QPSK and OQPSK. BPSK does not need the lower half of the circuit and combiner. The input signal is \(d_k(t)A \cos 2\pi f_c t \). The carrier recovery circuit detects and regenerates a carrier signal that is both frequency and phase coherent with the original transmit carrier. The output of the mixer is the product of the two inputs (the BPSK signal and the recovered carrier). The low-pass filter (LPF) separates the recovered binary data from the complex demodulated spectrum. The demodulation process is as follows:
Figure 2.2: Generalized quadrature demodulator.

\[Multiplier \ output = [d_k(t)A \cos 2\pi f_c t] (\cos 2\pi f_c t) \]
\[= \frac{A}{2} d_k(t) + \frac{A}{2} d_k(t) \cos 2(2\pi f_c t) \] (2.4)

After low-pass filter, the second component is filtered out. So we obtain
\[Data \ output = \frac{A}{2} d_k(t) \]
which is proportional to the original data stream we have transmitted.

2.1.2 QPSK (Quadrature Phase Shift Keying)

QPSK is an M-ary encoding technique where \(M = 4 \). Figure 2.3 illustrates the partitioning of a typical data stream for QPSK. Figure 2.3(a) shows the original data stream \(d_k(t) = \{d_0, d_1, d_2, d_3, \ldots \} \) consisting of bipolar pulses. This data stream is divided into two bit streams: (1) the in-phase stream \(d_I(t) \) for I channel, (2) the quadrature stream \(d_Q(t) \) for Q channel. This is illustrated in Figure 2.3(b).

\[d_I(t) = \{d_0, d_2, d_4, \ldots \} \quad (even) \]
\[d_Q(t) = \{d_1, d_3, d_5, \ldots \} \quad (odd) \] (2.5)

Note that \(d_I(t) \) and \(d_Q(t) \) have half the bit rate of \(d_k(t) \). A convenient orthogonal realization of a QPSK waveform, \(s(t) \), is achieved by modulating the in-phase and quadrature data streams onto a cosine and a sine carriers, as follows:
\[s(t) = \frac{A}{\sqrt{2}} d_I(t) \cos 2\pi f_c t + \frac{A}{\sqrt{2}} d_Q(t) \sin 2\pi f_c t \] (2.6)
Using the trigonometric identities, Equation (2.6) can also be written as

\[s(t) = A \cos [2\pi f_c t + \theta(t)] \]

(2.7)

The value of \(\theta(t) \) will correspond to one of the four possible combinations of \(d_I(t) \) and \(d_Q(t) \) in Equation (2.6). These values are: \(\theta(t) = \pm 45^\circ \), or \(\pm 135^\circ \).

The power spectral density for QPSK is given by [4]

\[G(f) = 2PT \left(\frac{\sin 2\pi fT}{2\pi fT} \right)^2, \]

(2.8)

where \(P \) is the average power in the modulated waveform, as shown in Figure 2.7.

The block diagram of a QPSK modulator is shown in the Figure 2.1. The baseband generator is a serial to parallel converter that is used to split data stream \(d_d(t) \) into \(d_I(t) \) and \(d_Q(t) \). The in-phase stream \(d_I(t) \) modulates the cosine function. This produces a BPSK waveform. Similarly, the quadrature stream \(d_Q(t) \) modulates the sine function, yielding a BPSK waveform orthogonal to the cosine function. The summation of these two orthogonal components of the carrier yields the QPSK waveform.

The block diagram of a QPSK receiver is shown in Figure 2.2. The input signal is directed to the I channel, Q channel and the carrier recovery circuit. The detector here is an integrate-dump circuit (or Matched filter). The QPSK signal is demodulated in the I and Q channels, which generate the original I and Q data streams.

The incoming QPSK signal can be seen from Equation (2.6) as

\[s(t) = Ad_I(t) \cos 2\pi f_c t + Ad_Q(t) \sin 2\pi f_c t \]

(2.9)

For I channel, recovered carrier is \(\cos 2\pi f_c t \), so the output of I channel is

\[I_{out} = \left[Ad_I(t) \cos 2\pi f_c t + Ad_Q(t) \sin 2\pi f_c t \right] \cos 2\pi f_c t \]

\[= \frac{A}{2} d_I(t) + \frac{A}{2} d_I(t) \cos 2(2\pi f_c) t + \frac{A}{2} d_Q(t) \sin 2(2\pi f_c) t \]

(2.10)

after LPF, second and third components are filtered out. So

\[I_{out} = \frac{A}{2} d_I(t). \]
For Q channel, recovered carrier is $\sin 2\pi f_c t$, so the output of Q channel is

$$Q_{out} = [A_{d1}(t) \cos 2\pi f_c t + A_{dQ}(t) \sin 2\pi f_c t] \sin 2\pi f_c t$$

$$= \frac{A}{2} d_{I}(t) \sin 2(2\pi f_c) t + A d_{Q}(t) - \frac{A}{2} d_{Q}(t) \cos 2(2\pi f_c) t$$

(2.11)

after LPF, first and third components are filtered out. So

$$Q_{out} = \frac{A}{2} d_{Q}(t).$$

The output of I and Q channels are fed to the bit combining circuit, where they are converted from parallel I and Q data channels to a single binary output data stream $d_K(t)$.

Figure 2.3: (a) input data stream, (b) QPSK data stream, (c) OQPSK data stream.
2.1.3 OQPSK (Offset QPSK)

OQPSK signaling can also be represented by Equations (2.6) or (2.7); the difference between the two modulation schemes, QPSK and OQPSK, is only in the alignment of the two baseband waveforms. In QPSK, the odd and even pulse streams are both synchronously aligned. In OQPSK, there is the same data stream partitioning and orthogonal transmission; the difference is that the timing of the pulse stream \(d_I(t) \) and \(d_Q(t) \) is shifted such that the alignment of the two streams is offset by \(T \). Figure 2.3(c) illustrates this offset.

In QPSK, due to the alignment of \(d_I(t) \) and \(d_Q(t) \), the phase change of the carrier during any 2T interval can be any one of the four phases 0°, ±90° and 180°. Figure 2.4(a) shows a typical QPSK waveform for the sample sequence \(d_I(t) \) and \(d_Q(t) \) shown in Figure 2.3(b).

If a QPSK modulated signal undergoes filtering to reduce the spectral side-lobes, the resulting waveform will not longer have a constant envelope and in fact the occasional 180° phase shifts will cause the envelope to go to zero momentarily. When these signals are used in satellite channels employing highly nonlinear amplifiers, the constant envelope will tend to be restored. However, at the same time, all of the undesirable frequency side-lobes, which can interfere with nearby channels and other communication systems, are also restored.

Figure 2.4: (a) QPSK and (b) OQPSK waveforms.
In OQPSK, the pulse streams \(d_I(t) \) and \(d_Q(t) \) are staggered and thus do not change states simultaneously. The possibility of the carrier changing phase by 180° is eliminated, since only one component can make a transition at one time. Changes are limited to 0 and ±90° every T seconds. Figure 2.4(b) shows a typical OQPSK waveform for the sample sequence in Figure 2.3(c). When an OQPSK signal undergoes bandlimiting, the resulting intersymbol interference causes the envelope to droop slightly in the region of ±90° phase transition, but since the phase transitions of 180° have been avoided in OQPSK, the envelope will not go to zero as it does with QPSK.

OQPSK can be used the same block diagram of Figure 2.1 and Figure 2.2 to be accomplished. The baseband generator of Figure 2.1 consists of a serial to parallel converter followed by a Q channel delay of \(T \), and a delay of \(T \) in Figure 2.2 is needed after the detector in the I channel. Furthermore, the power spectral density of OQPSK is identical to that of QPSK.

2.1.4 MSK (Minimum Shift Keying)

MSK can be thought of as a special case of OQPSK with sinusoidal pulse weighting[9][11][12]. Consider the OQPSK signal, with the bit streams offset as shown in Figure 2.3(c). If sinusoidal pulses are employed instead of rectangular shapes, the modified signal can be defined as MSK and equals

\[
s(t) = d_I(t) \cos(\pi t) \cos(2\pi f_c t) + d_Q(t) \sin(\pi t) \sin(2\pi f_c t) \tag{2.12}
\]

Figure 2.5 shows the various components of the MSK signal defined by Equation (2.12). The waveform in Figure 2.5(e) can be better understood if we use a trigonometric identity to rewrite Equation (2.12) as

\[
s(t) = \cos(2\pi f_c t + b_k(t) \frac{\pi t}{2T}) + \phi_k \tag{2.13}
\]

where

\[
b_k(t) = -d_I(t)d_Q(t) \tag{2.14}
\]

and \(\phi_k \) is the initial phase.
From Figure 2.5 and Equation (2.13), we deduce the following properties of MSK:

1. the waveform \(s(t) \) has constant envelope;
2. there is phase continuity in the RF carrier at the bit transitions;
3. the waveform \(s(t) \) can be regarded as an FSK waveform with signaling frequencies:

\[
f_{c+} = f_c + \frac{1}{4T}; \quad f_{c-} = f_c - \frac{1}{4T}
\]

Therefore, the minimum tone separation requires for MSK modulation is

\[
\Delta f = f_{c+} - f_{c-} = \frac{1}{2T}
\]

which is equal to half the bit rate. Notice that the required tone spacing for MSK is one-half the spacing, \(\frac{1}{T} \), required for the noncoherent detection of FSK signals.

The modulation and demodulation block diagrams are shown in Figure 2.6. In modulation, the serial data stream \(d_k(t) \) is converted into its even and odd bit
Figure 2.6: Block diagrams of MSK (a) modulator, (b) demodulator.

Streams, $d_I(t)$ and $d_Q(t)$, which are staggered $\frac{1}{2}$ symbol. Each symbol of $d_I(t)$ and $d_Q(t)$ is then weighted by a sinusoid signal. If the symbol weighting function $\cos(\frac{\pi t}{2T})$ and $\sin(\frac{\pi t}{2T})$ are replaced by rectangular shaping functions, MSK becomes Offset QPSK. Without staggered by $\frac{1}{2}$ symbol and sinusoidal weighting, QPSK results.

Because MSK is a quadrature-multiplexed modulation scheme, it can be optimally detected by coherently demodulating its in-phase and quadrature components separately, as shown in Figure 2.6(b).

The power spectral density $G(f)$ for MSK is given by\[4\]

$$G(f) = \frac{16PT}{\pi^2} \left(\frac{\cos 2\pi fT}{1 - 16f^2T^2} \right)^2$$

and shown in Figure 2.7.

The normalized power spectral density (P=1W) for BPSK, QPSK, OQPSK and MSK are sketched in Figure 2.7[10]. The one which has wider main-lobe has less bandwidth efficiency. The one which has higher side-lobes is more susceptible to non-linearity. Even though QPSK and OQPSK have same power spectral density, OQPSK
Figure 2.7: Normalized power spectral densities for BPSK, QPSK, OQPSK and MSK. It has better immunity to nonlinearity since it does not have 180° phase transitions like QPSK does.

It is seen from Figure 2.7 that the main-lobe bandwidth (null-to-null bandwidth) of these modulations are different (T is the bit duration):

For BPSK, \[BW_{BPSK} = \frac{2.0}{T} \]
For MSK, \[BW_{MSK} = \frac{1.5}{T} \]
For QPSK and OQPSK, \[BW_{QPSK, OQPSK} = \frac{1.0}{T} \]

As we can see, the BPSK has poorest bandwidth efficiency and immunity. The MSK has lower side-lobes than QPSK or OQPSK. This is a consequence of multiplying the data stream with a sinusoid, yielding more gradual phase transitions. The more gradual the transition, the faster the spectral tails drop to zero. MSK has the best immunity, moderate bandwidth efficiency.

All of them have almost the same bit error rate (\(P_b \) or BER) at same signal to noise ratio. That is, for coherent detection[4],

\[P_b = Q \left(\sqrt{\frac{2E_b}{N_0}} \right) \quad (2.17) \]

where \(Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-y^2/2} \, dy \), \(E_b \) is the bit energy, and \(\frac{N_0}{2} \) is the double-sided noise...
power spectral density at the receiver input.

2.2 CODEC Theory

2.2.1 Convolutional Encoder

Convolutional codes have been studied and used for forward error correction (FEC) in digital communication systems since the 1950's. A convolutional code maps a number (n) of information bits into a number (m) of single-bit codewords to be transmitted over the channel, where m>n. The ratio of n/m is referred to as the code rate.

The transformation from information bits to codewords for transmission is accomplished by a time convolution of the information data with a finite-memory windowing function commonly referred to as a generating function. In the case of the rate 1/2 code, two generating functions G₀ and G₁ are convolved with the information data stream such that each time a new information data bit is considered, the G₀ and G₁ generating functions create one output bit or codeword, respectively.

The length of the finite memory of the convolutional generating function is the constraint length of the code. Figure 2.8 shows the generating functions of the rate 1/2 and 1/3 codes implemented by the Q0256 convolutional encoder. As the diagram shows, the memory length of the encoder is that six previous bits plus the current input bit; thus, this is a constraint length seven code, commonly denoted as k=7. The generating functions of the convolutional code are identified by denoting the "taps" of each convoluting function. For the rate 1/2, k=7 code shown in Figure 2.8, the generating functions are denoted as

\[G₀ = 1111001 \quad (binary) \quad or \quad G₀ = 171 \quad (octal) \]

and

\[G₁ = 1011011 \quad (binary) \quad or \quad G₁ = 133 \quad (octal) \]

This code provides the best error correcting performance of all rate 1/2, k=7 codes[13][17].
2.2.2 Viterbi Decoder

While the implementation of a convolutional encoder is quite straightforward as shown in the previous section, the decoding of such a coded data stream at the receiving node is quite complex. In the late 1960's, Dr. A. J. Viterbi described a maximum likelihood decoding technique which greatly reduced the circuit sophistication of previous approaches.

Viterbi decoding consists fundamentally of three processes[17]. The first step in the decoder process is to generate a set of correlation measurements, known as branch metrics, for each m grouping of codewords input from the communication channel (where m is 2 for rate 1/2 codes). These branch metric values indicate the correlation between the received codewords and the 2^m possible codeword combinations.

The Viterbi decoder determines the state of the 7-bit memory at the encoder using a maximum likelihood technique. Once the value of the encoder memory is determined, the original information is known, since the encoder memory is simply the information that has been stored in the memory. To determine the encoder state, the second step in the Viterbi algorithm generates a set of 2^{k-1} (where k is
the constraint length, i.e., \(k=7 \) for the Q0256 algorithms) state metrics which are measurements of the occurrence probability for each of the \(2^{k-1} \) possible states as to the probable path taken to arrive at that particular state. These binary decision are stored in a path memory.

Step three computes the decoded output data. To do this, the path from the current state to some point in the finite past is traced back by chaining the binary decisions stored in the path memory during step 2 from state to state. The effects caused by noise to the one and only correct results are mitigated as the paths within the chainback memory converge after some history. The greater the depth of the chainback process the more likely that the final decoded result is error free. As a result, higher code rates and constraint lengths require longer chainback depth for best performance. The chainback memory in the Viterbi decoder traces the history of the previous states to arrive at the most probable state of the encoder in the past, and thus determine the transmitted data.

The Q0256 provides coding gain of 5.2 dB for rate 1/2 at \(10^{-5} \) BER shown in Figure 2.9[17].
Chapter 3

SYSTEM DESIGN

The goal of this design and development is to produce a programmable digital coder/decoder and modulator/demodulator to provide flexible data rates and multiple modulation/demodulation modes. The approach adopted is to use current VLSI chips from ASIC manufacturers such as Qualcomm and Stanford Telecomm to simplify needed circuits and get good performance. These VLSI chips can handle wide range of data rates and are programmable via a microcontroller through assembly language code.

In this chapter we will discuss some assumptions and constraints, such as system specifications, system interfaces, selection of IF frequency and system structure.

3.1 System Specifications

(1). **Coder/Decoder (CODEC)**

Code Rate: 1/2

Constraint Length: \(K = 7 \)

CODEC Scheme: convolutional encoder and Viterbi decoder;

differential encoder and differential decoder.
(2). **Modulation/Demodulation (MODEM)**

Data Rate: 1,200 bps, 2,400 bps, 4,800 bps, 9,600 bps, 19,200 bps.

MODEM Schemes: BPSK, QPSK, OQPSK, MSK.

(3). **Control**

One microcontroller (Intel 80C32) controls whole system. It can write or read control registers of the VLSI chips, communicate with the console display and provide other control signals. Another microcontroller is used in a digital Phase Lock Loop (PLL) for proper control and calculation.

(4). **Flexibility**

The MODEM/CODEC must be easily switched from one modulation mode to another and from one data rate to another.

(5). **Full-Duplex Operation Capability**

The terminal can be used as transmitter and receiver simultaneously.

3.2 System Interfaces

(1). **Transmitter Interfaces**

The input of the transmitter interfaces with a Vocoder which can provide several speech compression modes. The coming data is in serial format and is fed to the input of the encoder. After encoder the data rate is double, and becomes 2,400 bps, 4,800 bps, 9,600 bps, 19,200 bps and 38,400 bps. A master clock is created by the transmitter to synchronize the input data from the vocoder.

The output of the transmitter interfaces with a upconverter. Figure 3.1(a) shows the transmitter interfaces. The intermediate frequency (IF) signal has following specifications:

(a). IF signal frequency: $f_{IF} = 4.8\text{MHz}$.

(b). IF signal power: $P_{IF} = 0\text{~to~}20\text{dBm}$.

(c). Maximum IF bandwidth = 100KHz.

(2). **Receiver Interfaces**

The input of the receiver interfaces with two input resources: one is the downconverter signal (RF input), another is the local oscillator signal (LO input).
The LO frequency signal mixed with RF frequency signal gives the IF frequency signal. These signals have following specifications:

(a). IF signal frequency: \(f_{IF} = f_{RF} - f_{LO} = 4.8\text{MHz} \).

(b). Maximum IF bandwidth = 100KHz.

(c). LO signal frequency: \(f_{LO} = 900\sim1600\text{MHz} \) with a 1.25MHz step.
 LO signal power: \(P_{LO} = 0\sim+5\text{dBm} \).

(d). RF signal power: \(P_{RF} = -30\text{dBm}\pm10\text{dBm} \).

RF signal frequency: Depending on the downconverter.

The outputs of the receiver are the serial output data and its clock. Figure 3.1(b) shows the receiver interfaces.

3.3 IF Frequency

The selection of IF frequency \(f_{IF} \) must satisfy the following two conditions.

1. In order to make the phase continuous at bit transitions in MSK, the IF frequency \(f_{IF} \) (or carrier frequency \(f_c \)) should be chosen such that \(f_{IF} \) is integral
multiple of 1/4T, one-fourth the bit rate[9].

(2). The demodulator’s analog signal processing section is running at IF frequency \(f_{IF} \). If it is much higher than necessary, as a result, board layout becomes more critical, circuitry becomes very sensitive to component variations and stray reactances, and the performance parameters of many devices are pushed to the limit.

In our design we chose that the IF frequency \(f_{IF} \) equals to 4.8MHz. Obviously, it is the integral multiple of 1/4T and not too high so that we can handle easily.

3.4 System Structure

1. Transmitter Section

Figure 3.2(a) shows the block diagram of the transmitter section. The input signal of transmitter comes from previous stage Vocoder. After convolutional encoding in the chip Q0256 (Qualcomm Inc.), encoded signals are sent to the DDS chip Q2334 (Qualcomm Inc.) through I channel and Q channel control blocks. Our design uses the DDS to generate four different modulated signals instead of using traditional analog-generated method. DDS-generated quadrature signals have significant advantages over analog-generated quadrature signals. These include accurate 90 degrees phase shift and amplitude balance over a wide bandwidth, as well as minimal temperature and aging effect. The digital modulated signals output from chip Q2334 and go through two D/A converters. Then I and Q channel signals are combined together and go to a bandpass filter and are finally sent to the upconverter.

2. Receiver Section

Figure 3.2(b) and (c) show the block diagrams of the receiver section. Figure 3.2(b) is for BPSK, QPSK and OQPSK. After mixer the IF signal goes through an IF amplifier and gains 30~50 dB. This signal is directly fed to I and Q channels and demodulated. Output signals of the multipliers are filtered out high frequency components and further amplified. Then an A/D converter converts analog signals to 6-bit digital signals which are sent to chip STEL-2110 (Stanford Telecom). The chip STEL-2110 has three fundamental functions: (1) The bit synchronizer produces the
clock signals to drive the entire circuit as well as the sampling of the incoming signals. (2) The optimally integrated I and Q signals are used to derive a feedback signal to control a digital Phase Lock Loop (PLL) circuit for carrier tracking. This signal is connected to a microcontroller which is used for calculations and control needed by the digital PLL. (3) Integrated I and Q channel signals are also provided in soft-decision output format which is used to facilitate the inclusion of Forward Error Correction (FEC) using convolutional coding and Viterbi decoding in the system.

Figure 3.2(c) shows the block diagram of MSK. An easier realized, low cost MSK demodulator is used.

(3). Control Section

The control circuit section can offer three main features in our design. (1). It can communicate with two input switches which is used for the selections of modulation/demodulation modes and bit rates. (2). It produces all kinds of clocks for properly system operation and coding/decoding. (3) It can be used to write into or read from the control registers of the VLSI chips used in this system for proper configuration. Besides these, the control circuit also provides a lot of control signals to whole system.

An important task in this project is to develop the control code to write into or read from the internal registers of the VLSI chips for proper configuration and system control.

The control software is required to store in an EPROM at the final step.
(b). Demodulator-BPSK, QPSK, OQPSK

(c). Receiver-MSK

Figure 3.2: System structures.
Chapter 4

TRANSMITTER DESIGN

In this chapter we will discuss the design activities which include the modulator design, encoder/decoder, D/A converter and other related designs. We put the decoder design in this chapter just for easy description.

4.1 Modulator Design

The Qualcomm Q2334 Direct Digital Synthesizer (DDS) is used for the modulator to support a wide range of modulation types including BPSK, QPSK, OQPSK and MSK\[15\][16]. This technique provides fine frequency resolution and phase control, a broad bandwidth of operation, fast frequency switching, good spurious and phase noise performance, and the small size and power consumption.

DDS quadrature signals have significant advantages over analog quadrature signals, including excellent 90 degrees phase shift and amplitude balance over a wide bandwidth, as well as minimal temperature and aging effects. When DDS interfaces with a microprocessor, the intent is to make the modulator sufficiently versatile to allow easy modifications and upgrades.
4.1.1 Q2334 Direct Digital Synthesizer

The Qualcomm Q2334 contains two independent DDS functions controlled from a single microprocessor interface. This interface provides the control for the phase and frequency of the generated sine waves as well as controlling the operating mode of the device. Figure 4.1 shows the internal structure of the Q2334. The value stored in phase increment register A or B is added to the value in the phase accumulator once during each clock period of the reference frequency. The resulting phase value (from 0 to 2π) is converted to a digitized sine wave value by the sine lookup function and this digital value is output from the DDS device.

The DDS is able to generate frequencies from 0 Hz to 1/2 the reference frequency. However, the practical upper limit of the output frequency is about 40% of the reference frequency. To output a particular frequency, the associated phase increment value ΔΦ must be loaded into the phase increment registers A or B. The generated frequency \(F_G \) and reference frequency (system clock) \(F_S \) are related to the phase increment value \(ΔΦ \) by the following equation:

\[
F_G = \frac{F_S \times ΔΦ}{2^{32}}
\]

(4.1)

The frequency resolution is determined by

\[
Frequency\ Resolution = \frac{F_S}{2^{32}}
\]

(4.2)

when \(F_S = 30 \) MHz, we have the Frequency Resolution = 0.007 Hz.

Table 4.1 gives the register address map for the Q2334.

The Q2334 DDS provides the following modulation features:

(1). External Phase Modulation

External phase modulation operates as an absolute phase adjustment technique. When using this mode the phase increment value for the unmodulated input is written into PIRA. The External Phase Modulation Enable (EPME) bit in the SMC register is set to logic 1 to enable this mode. The phase offset determined by the PM EXT BITS is latched into the DDS function each time the signal PM CLK is asserted. This PM EXT BIT setting causes a phase offset in 45 degrees increments.
Figure 4.1: Q2334 DDS block diagram.
Table 4.1: Q2334 interface register address map.

as indicated in Table 4.2 without affecting the operation of the phase accumulator. Using this method we designed the BPSK, QPSK and OQPSK.

(2). Frequency Modulation

Frequency modulation is achieved by using the frequency multiplexer function that selects which PIR register (A or B) is used for accumulation in the phase accumulator function. External Multiplexer Enable (EME) bit in the SMC register is set to logic 1 to enable this mode. The signal EXT MUX controls the selection

Table 4.2: External phase modulation offset setting.
of the value stored in either PIRA or PIRB and the signal MUX CLK enables the selection made by the EXT MUX signal. The selection made by the EXT MUX signal is synchronously activated on the rising edge of the MUX CLK signal. Using this method we designed the MSK.

(3). Internal Modulation

Internal modulation requires use of the processor interface. By storing the synthesizer frequency (basic frequency without phase modulation) in the PIRA and modifying only the most 8 significant bits of the PIRB register, we can obtain a modulator up to 256 states phase modulation.

4.1.2 Modulator Design

(1). BPSK Modulator design

In this design, the external phase modulation mode and only one half of the DDS (DDS1) are used. The design steps are as following:

(a). The EPME bit in the SMC1 register (08H) is set to logic 1 to enable the external phase modulation mode. At same time, we need to disable the second part of the DDS (DDS2).

(b). The phase increment value $\Delta \Phi$ is loaded into the PIRA1 of the DDS1 to generate a unmodulated sine wave whose frequency is 4.8 MHz. According to Equation (4.1), and $F_S = 30$ MHz and $F_G = 4.8$ MHZ;

$$\Delta \Phi = \frac{4.8 \times 10^6}{30 \times 10^6} \times 2^{32} = 28F5C28F \; (Hex)$$

We wrote this value $\Delta \Phi$ to the register PIRA1 of the DDS1.

(c). From Equation (2.3) the BPSK modulated signal $s(t)$ can be represented by

$$s(t) = d_I(t) \cos(2\pi f_c t)$$

where $d_I(t)$ is the input data stream. When:

$$d_I(t) = 1 \; \text{(high)}: \quad s(t) = \cos(2\pi f_c t) = \sin(2\pi f_c t + 90^\circ)$$
According to the Table 4.2 we can see that when setting PM1 EXT BIT 0 = 0 and PM1 EXT BIT 1 = 1 the phase offset of the unmodulated sine wave will only depend on the value of PM1 EXT BIT 2, so that

PM1 EXT BIT 2 = 0: phase offset = 90°
PM1 EXT BIT 2 = 1: phase offset = 270°

Figure 4.2 shows the BPSK modulator circuit. There needs an inverter at pin PM EXT BIT 2 to make I channel coming signal satisfy the phase transition of the BPSK signal.

Figure 4.3 shows the external control timing. The signal PM CLK comes from the microcontroller and is used to control the data rate.

(2). QPSK and OQPSK Modulators Design

In QPSK design the external phase modulation mode and two parts of the DDS are used. The design steps are as following:

(a). The EPME bits in SMC1 (08H) and SMC2 (18H) registers are set to logic 1 to enable the external phase modulation mode.

(b). The phase increment value $\Delta \Phi$ is loaded into phase increment registers.
Figure 4.3: External control timing.
PIRA1 and PIRA2 of the DDS to generate unmodulated sine waves whose frequencies are equal to 4.8 MHz. According to equation (4.1)

$$\Delta \Phi = \frac{F_G}{F_S} \times 2^{32} = 28F5C28F \quad (Hex)$$

where $F_G = 30MHz$, and $F_S = 4.8MHz$.

(c). From Equation (2.6) the QPSK modulated signal $s(t)$ can be written by:

$$s(t) = d_I(t) \cos(2\pi f_c t) + d_Q(t) \sin(2\pi f_c t)$$

Because the QPSK signal can be represented as the summation of the orthogonal BPSK signals, we can design I channel and Q channel separately.

I channel: It is identical with the BPSK design. we can use the same configuration and circuit to accomplish the I channel function of QPSK.

Q channel: when

$$d_Q(t) = 1 \text{ (high)}: \quad \sin(2\pi f_c t)$$

$$d_Q(t) = 0 \text{ (low)}: \quad \sin(2\pi f_c t + 180^\circ)$$

According to the Table 4.2 we can see that when setting PM2 EXT BIT 0 = 0 and PM2 EXT BIT 1 = 0, the phase offset of the unmodulated sine wave of Q channel will only rely on the value of PM2 EXT BIT 2. So we have

PM2 EXT BIT 2 = 0 \text{ (low)}: \quad \text{phase offset} = 0

PM2 EXT BIT 2 = 1 \text{ (high)}: \quad \text{phase offset} = 180^\circ

Figure 4.2 shows the QPSK modulator circuit. QPSK has the same external control timing as BPSK shown in Figure 4.3.

OQPSK modulator is identical with QPSK modulator except there is a delay of T, the one half symbol duration, at Q channel input signal. A dual D Flip-Flop (74LS74A) is used to design this delay function.

(3). MSK Modulator Design

In MSK design the frequency multiplexer function and only one half of the DDS (DDS1) are used. The following is the design steps:

(a). The EME bit in SMC1 register (08H) is set to logic 1 to enable the external multiplex control. Meanwhile, we need to disable the second part of the DDS.
(b). There are two phase increment values \(\triangle \Phi_+ \) and \(\triangle \Phi_- \) which must be loaded into phase increment registers PIRA1 and PIRB1 of the DDS1 in MSK.

\[
\begin{align*}
\triangle \Phi_+ & = \frac{f_c}{f_s} \times 2^{32} \\
\triangle \Phi_- & = \frac{f_c}{f_s} \times 2^{32}
\end{align*}
\]

(4.3)

where \(f_+ = f_c + \frac{1}{4T} \); \(f_- = f_c - \frac{1}{4T} \) and \(\frac{1}{T} \) is the channel data rate which is double input data rate because there is an encoder with 1/2 code rate in the system.

With different data rate the \(\triangle \Phi_+ \) and \(\triangle \Phi_- \) are different. For example, if \(\frac{1}{T} = 19200 \) bps (input data rate = 9600 bps)

\[
\begin{align*}
f_+ & = f_c + \frac{1}{4T} = 4804800 \text{ Hz} \\
f_- & = f_c - \frac{1}{4T} = 4795200 \text{ Hz}
\end{align*}
\]

and

\[
\begin{align*}
\triangle \Phi_+ & = \frac{4804800}{30000000} \times 2^{32} = 29003EEA \quad (Hex) \\
\triangle \Phi_- & = \frac{4795200}{30000000} \times 2^{32} = 28EB4635 \quad (Hex)
\end{align*}
\]

If \(\frac{1}{T} = 9600 \) bps (input data rate = 4800 bps)

\[
\begin{align*}
f_+ & = f_c + \frac{1}{4T} = 4802400 \text{ Hz} \\
f_- & = f_c - \frac{1}{4T} = 4797600 \text{ Hz}
\end{align*}
\]

and

\[
\begin{align*}
\triangle \Phi_+ & = \frac{4802400}{30000000} \times 2^{32} = 28FB00BD \quad (Hex) \\
\triangle \Phi_- & = \frac{4797600}{30000000} \times 2^{32} = 28F08463 \quad (Hex)
\end{align*}
\]

(c). From Equation (2.13) the MSK modulated signal \(s(t) \) can be written by

\[
s(t) = \cos \left(2\pi f_c t + b_k(t) \frac{\pi t}{2T} + \Phi_k \right)
\]

where \(b_k(t) = -d_I(t)d_Q(t) \), and \(\Phi_k \) is an initial phase. From this Equation, we have:

- If \(d_I(t) \) and \(d_Q(t) \) are opposite, \(b_k(t) = 1 \) (high)
- If \(d_I(t) \) and \(d_Q(t) \) are same, \(b_k(t) = -1 \) (low)

The relationship between \(d_I(t) \) and \(d_Q(t) \) is the exclusive-OR function. Practically, we use an exclusive-OR gate to realize this function.

When the external multiplex control is enable we have the following features in Q2334 DDS. If the EXT MUX signal is high when the MUT CLK is asserted the
phase accumulator accumulates phase increments from the PIRB register. If the EXT MUX signal is low when the MUX CLK is asserted the phase accumulator accumulates phase increments from the PIRA register. Changing the value of the EXT MUX input therefore causes the alternation between the frequency controlled by the PIRA and the frequency controlled by the PIRB. In this way, we have to write the value of \(\Delta \Phi_+ \) into register PIRB1 to generate the first frequency and the value of \(\Delta \Phi_- \) into register PIRA1 to generate the second frequency, respectively. The output of the exclusive-OR gate is connected to the pin EXTMUX1. Following above rules, we have:

\[
d_I(t) \text{ and } d_Q(t) \text{ are opposite } \Rightarrow b_k(t) = 1 \Rightarrow \text{EXTMUX1 = high} \Rightarrow \text{PIRB1}
\]
\[
d_I(t) \text{ and } d_Q(t) \text{ are same } \Rightarrow b_k(t) = 0 \Rightarrow \text{EXTMUX1 = low} \Rightarrow \text{PIRA1}
\]

Figure 4.2 shows this design and Figure 4.3 provides the external control timing. The signal MUX CLK comes from the microcontroller and is used to control the data rate.

4.2 Encoder/Decoder Design

The Qualcomm Q0256 is used as encoder and decoder in our design[17]. The Q0256 provides:

(b). Processing data at one of four selectable code rates (1/2, 1/3, 3/4 and 7/8).

(c). Built-in synchronization capability for BPSK, QPSK and OQPSK modems and operating with either 1 bit hard-decision or 3-bit soft-decision.

(d). Two powerful techniques for monitoring synchronization status as well as performing channel bit error rate measurement.

(e). 5.2 dB coding gain (rate 1/2) at \(10^{-5} \) BER.
4.2.1 Parallel and Serial Data Modes

The Q0256 provides two kinds of data modes: "parallel" and "serial", as shown in Figure 4.4.

The Q0256 encoder produces two encoded bits with code rate 1/2 for each information input bit. When operating in the parallel data mode these two output bits are presented at C0 and C1 output pins during each period of the channel rate clock (ENCOUTCLK). In this case, the ENCOUTCLK frequency should be the same as the frequency of information rate clock (ENCINCLK). When operating with serial data mode all encoded bits are provided on the single output pin C0 at the period of the ENOUTCLK signal. In this mode, the ENOUTCLK frequency should be twice the ENCINCLK frequency.

The Q0256 decoder inputs data in either serial or parallel mode. When operating in the parallel data mode with code rate 1/2, two input codewords are provided in the R0 and R1 input pins during each period of the DECINCLK. When
operating in the serial mode, the decoder inputs all encoded data using only the R0 input pin. The relationship of the DECINCLK to DECOUCLK frequencies is the reciprocal of the relationship of the encoder ENCINCLK to ENCOUTCLK frequencies.

Design rules (code rate 1/2):

1. Parallel mode (QPSK, OQPSK and MSK)
 - ENCINCLK = ENCOUTCLK
 - DECINCLK = DECOUCLK

2. Serial mode (BPSK)
 - 2 × ENCINCLK = ENCOUTCLK
 - $\frac{1}{2} ×$ DECINCLK = DECOUCLK

4.2.2 Synchronization Status Monitor Design

The Q0256 can automatically synchronize incoming data streams to the Viterbi decoder circuit. The synchronization technique is a two-step process.

1. Detect: The decoder quality state is constantly monitored by using the "state metric normalization rate" circuit. The designer programs an "in-sync/out-of-sync" threshold for this internal circuit. The success or failure of this test for each test period is indicated on output pins 53 (INSYNC) and 52 (OUTOFSYNC).

2. Correct: The OUTOFSYNC output pin can be directly connected to the SYNCCHNG input pin. This provides a feedback path between the synchronization monitor and the synchronization correction circuit. The effects of the out-of-sync condition can be compensated for either by a timing re-alignment or by permutation of the decoder input data.

The normalization circuit consists of two counters:

- T counter measures the number of decoded bits.
- N counter measures the number of state metric normalizations.

1. **Design Rules:**
 (a) The actual number of decoded bits in the normalization test period
is

\[T \times 256 \] \hspace{1cm} (4.4)

(b). The actual number of normalizations allowed is

\[(N - 1) \times 8 + 4 \] \hspace{1cm} (4.5)

(c). The normalization rate threshold is

\[\frac{(N - 1) \times 8 + 4}{T \times 256} \] \hspace{1cm} (4.6)

where \(T \) and \(N \) are the two's complement values of the 8-bit numbers loaded into the \(T \) and \(N \) counters.

(2). Conditions:

(a). When operating with rate 1/2 coding, a normalization rate threshold of about 10% will reliably detect a loss of synchronization.

(b). The normalization measurement should detect at least 20-30 normalizations before declaring a loss of synchronization.

(3). Design:

(a). Select the number of normalizations to be detected to be approximately 50. So we set:

\[N = 7 \]

Because

\[(N - 1) \times 8 + 4 = (7 - 1) \times 8 + 4 = 52 \]

the binary value which is loaded into \(N \) counter is F9 (Hex).

(b). Because the value for the \(T \) counter must be approximately ten times the value in the \(N \) counter, we set:

\[T = 2 \]

Because

\[T \times 256 = 2 \times 256 = 512 \]
the binary value which is loaded into T counter is FE (Hex).

(c). The normalization rate threshold is

\[\frac{52}{512} \times 100\% = 10.2\% \]

It is satisfied the condition (a).

(4). Experiment results:

Through many times of experiments, We found that for different modulation modes and different bit rates, the values in N counter and T counter vary from the theoretical values for best system performance. These values are given in the software-MDCOB. Also, the procedure of loading values into the internal registers of Q0256 is fixed for proper system operation. The software MDCOB is in consistence with this fixed procedure.

4.2.3 Monitoring Channel Bit Error Rate (BER)

The on-chip BER monitor circuit consists of two accumulators acting as counters. One accumulator counts decoder input codewords. Another accumulator counts codeword errors detected by the on-chip re-encode and compare circuit. The design steps are as following:

(1). Set BER measurement period register. The loaded value is the two’s complement 24-bit binary value and is multiplied by 1000 to give the actual number of codewords to be monitored. For example, if the actual number is 10^7, the two’s complement binary value FFD8F0 (Hex) of 10^4 is loaded into addresses 0CH, 0BH and 0AH.

(2). When the BER measurement period is completed, the signal BERDONE (pin 50) goes to high for two periods of DE CoutCLK. It can be used as an interrupt status bit to microprocessor. The actual measured bit error count is found from the following formula:

\[\text{Actual Error count} = (\text{register value} - 1) \times 8 \] \hspace{1cm} (4.7)

(3). The actual symbol BER is
\[BER = \frac{\text{the measured error quantity}}{\text{the number of codewords in the test}} \] (4.8)

4.2.4 The Other Considerations

(1). The 3-bit soft-decision values can be fed to the Q0256 decoder inputs in either sign-magnitude or offset-binary notation. The selection of the input format is made via the microprocessor interface. We used offset binary format in our design.

(2). Enable the on-chip differential encoder/decoder, and data scrambling/descrambler circuits. This is also made via the microprocessor interface.

(3). The Q0256 processor interface has 4 read registers and 21 write registers. Carefully setting these registers we can configure the different operating modes for encoder and decoder.

(4). In our design, there is a mechanism that can interchange the demodulated I-channel data and Q-channel data before these data go into the decoder. This is because we found that these data need be interchanged for some modulation modes for proper operation.

4.3 D / A Converter

We selected AD9713 (Analog Devices) as the digital to analog converter[19]. The AD9713 has the following features:

1). 12-bit resolutions
2). TTL-compatible
3). Fast setting
4). 80 MSPS update rate
5). Low power consumption

Figure 4.5 shows the actual circuit that we used in our design for D/A converter.

(1). Setting the Reference
Figure 4.5: D / A converter circuit.

We used the internal reference that allows operation with a minimum of external components in our design. When using the internal reference:

a). PEOUT (pin 20) should be connected to COTLIN (pin 19);
b). COTLOUT (pin 18) should be connected to REIN (pin 17) through an 18 Ω resistor;
c). A 0.1 μF capacitor from pin 17 to -Vs (pin 15) improves setting by decoupling switching noise from the current sink base line;
d). R_SET (pin 24) should be connected to ground through a 7.8 KΩ resistor. This determines the Full-scale current out.

(2). Outputs

The switch network controls complementary current outputs \(I_{out} \) and \(I_{out}^{-} \). The current output can be converted to a voltage output by resistive loading as shown in Figure 4.5. Both \(I_{out} \) and \(I_{out}^{-} \) should be loaded equally for best overall performance.

Full-scale output current \(I_{out(FS)} \) is determined by

\[
I_{out(FS)} = \frac{Reference\ Voltage}{R_{SET}} \times 128
\]

The internal reference is nominally -1.26 V with a tolerance of ± 10%, and \(R_{SET} \) = 7.5 KΩ, so

\[
I_{out(FS)} = -20.48 \ mA
\]

The voltage which is developed is the product of the output current and the value of
the load resistor.

\[V_{\text{out(FS)}} = -20.48 \times 10^{-3} \times 50 = -1.024 \ \text{V} \]

The voltage swing will be from 0 to -1.024 V across 50 Ω resistor.

(3). Power and Grounding

Maintaining low noise on power supplied and ground is critical for obtaining optimum results with the AD9713. We separate the analog ground plane with digital ground plane, and also isolate digital power supply with analog power supply. Figure 4.6 shows this effort.

4.4 Lowpass Filter

Since this is a sampled data system, spectral components will be generated at all the frequencies \(nf_{\text{dk}} \pm f_c \), where \(n \) is an integer. \(n = 0 \) gives the carrier frequency, and the frequencies given by all other values of \(n \) are above the Nyquist frequency (half the sampling frequency). The design is made on the board for an anti-aliasing (low pass) filter at the output of the combiner to attenuate these spurious signals. This filter has up to 3 sections (7th. order), and is a pole and zero type (cauer). Cauer (elliptic) filters are recommended because of their superior characteristics[20].

The maximum cutoff frequency is given by the equation:

\[
 f_{\text{out}} = \frac{f_{\text{out}}}{1 + tr} \quad (4.10)
\]

Figure 4.6: Power supply.
where \(tr \) is the transition ratio of the filter. Assuming that about 1 dB of ripple is allowable in the passband and 55-60 dB of attenuation is required in the stop-band, a 7 pole (3 sections) filter have a \(tr \) of about 1.17, and the maximum value of \(f_{out} \) is

\[
f_{out} = \frac{f_{clk}}{1 + 1.17} = \frac{30 \times 10^6}{2.17} = 13.9 \text{ MHz}
\]

where \(f_{clk} = 30 \text{ MHz} \). Figure 4.7 (a) shows the lowpass filter circuit (50 \(\Omega \) impedance) and (b) is the frequency response of this lowpass filter.
Figure 4.7: (a) lowpass filter circuit, (b) frequency response.
Chapter 5

RECEIVER DESIGN

In this chapter, we will discuss two kinds of demodulator design, one for BPSK, QPSK and OQPSK, and another for MSK. Figure 3.2(b) and (c) show these two demodulator block diagrams.

5.1 IF Amplifier and Bandpass Filter

Mainly using the MOTOROLA MC1350 chip, this circuit combines IF amplifier and bandpass filter (BPF) together. MC1350 is a monolithic IF amplifier chip featuring wide range AGC, nearly constant input and output admittances over the entire AGC range and low reverse transfer admittance[27]. Operating at required center frequency 4.8 MHz and 3-dB bandwidth 100 KHz, this circuit can realize power gain about 45 dB (with input = 0.01 v) and has low noise and linear amplifying features. Figure 5.1 shows this circuit.

There are several points which should be noted:

(1). There are two self-resonant loops in this circuit (C_{67}, C_{68}, L_{7} and C_{71}, T_{1} with C_{68}' and C_{71}' micro-adjustment). Theoretically, it should be better to make both of these two loops resonant at center frequency. In practice, it may be discovered C_{71} and the choke T_{1} are more sensitive to the center frequency while C_{67}, C_{68} and
Figure 5.1: IF amplifier and BPF.

L7 are more related with the range of 3-dB bandwidth. When this circuit is running properly, only the loop of C71 and T1 resonates at center frequency (4.8 MHz). And increasing the value of C67 or C68, we will have narrower bandwidth.

(2). T1 is wound with #36 AWG. Its primary winding is about 10-12 turns and secondary winding about 2-3 turns. The number of primary winding turns determines the center frequency while the number of secondary winding turns is related with power gain.

(3). All the system parameters are measured with VAGC grounded for maximum power gain. The value of VAGC has little influence on the center frequency and 3-dB bandwidth.

The frequency response curve of this circuit is shown in Figure 5.2 (VAGC grounded).

5.2 Multiplier, LPF and Amplifier

The chip XR-2208 (EXAR) is used for the purposes of multiplier, LPF and amplifier as shown in Figure 5.3. The XR-2208 contains a four quadrant multiplier and an independent Op Amp[30]. The main features are maximum versatility, excellent linearity and wide bandwidth.
5.2.1 Multiplier

The multiplier section of the XR-2208 can be used as a synchronous detector. There are two input signals:

1. IF input signal V_X: IF frequency = 4.8 MHz, input power level = 0 dB (approximately).

2. Reference signal V_Y: a square wave coming from the carrier recovery...
circuit.

The differential output voltage V_d, across the pins 1 and 2, is proportional to the product of voltages V_X and V_Y applied to the inputs. The V_d can be expressed as

$$V_d \approx \left(\frac{25}{R_X R_Y} \right) (V_X V_Y) \tag{5.1}$$

where all voltages are in volts and resistors are in KΩ. R_X and R_Y are the gain control resistors for X and Y sections of the multiplier. From above, the gain constant of the multiplier section K_m can be expressed as

$$K_m = \frac{25}{R_X R_Y} \tag{5.2}$$

If $R_X = 0.4 \text{ KΩ}$ and $R_Y = 3.6 \text{ KΩ}$, we have $k_m = 6.25$. The resistors R_X and R_Y are selected so that the circuit can never become saturated.

Now, consider an IF input signal as

$$V_X(t) = V_X \sin(\omega_i t + \theta_i) \tag{5.3}$$

and the square wave reference signal from the carrier recovery circuit is

$$V_Y(t) = V_Y \sum_{n=0}^{\infty} \frac{4}{\pi (2n+1)} \sin[(2n+1)\omega_r t] \tag{5.4}$$

where ω_i is the IF frequency, ω_r is the reference signal frequency and θ_i is the phase in relation to the reference signal.

Multiplying these two terms, using the appropriate trigonometric relationships, gives:

$$V_d(t) = \frac{2K_m}{\pi} \left[\sum_{n=0}^{\infty} \frac{V_X V_Y}{(2n+1)} \cos[(2n+1)\omega_r t - \omega_i t - \theta_i]
- \sum_{n=0}^{\infty} \frac{V_X V_Y}{(2n+1)} \cos[(2n+1)\omega_r t + \omega_i t + \theta_i] \right] \tag{5.5}$$

If ω_r is close to ω_i, the first term ($n=0$) has a low difference frequency component. As ω_r is driven closer to ω_i this difference becomes smaller until $\omega_r = \omega_i$ and lock is achieved. The first term then becomes:

$$V_d(t) = \frac{2K_m V_X V_Y}{\pi} \cos \theta_i$$

Other terms are of high frequencies and are rejected by the lowpass filter.
5.2.2 LPF and Amplifier

The equivalent circuit for LPF and amplifier is shown in Figure 5.4.

![Equivalent circuit for LPF and amplifier](image)

Figure 5.4: The equivalent circuit for LPF and amplifier.

where \(R \) is the internal resistor of the XR-2208, gain \(K \) for the amplifier

\[
K = -\frac{R_f}{R + R_{in}} \approx -2
\]

and

\[
R' = \frac{R \times R_{in}}{R + R_{in}} = 2.36 \, K\Omega
\]

Let @-3dB cutoff frequency \(f_{cut} \) of the lowpass filter be 40 KHz (>38.4KHz), so

\[
C = \frac{1}{2\pi f_{cut} R'} = 1700 \, PF
\]

We chose 1500 PF~1800 PF for \(C_3 \) and \(C_4 \). If needed, the amplifier gain can be increased by changing the resistors \(R_{in} \) and \(R_f \).

5.3 Analog to Digital Converter

After synchronous detection stage, the analog signals from I and Q channels should be converted to digital signals, which are then fed to the STEL-2110 chip for further processing. We have known that the maximum inputs from I and Q channels are \(\pm 0.5 \, V_{p-p} \) bipolar analog signals, and outputs of STEL-2110 should be digital signals with offset binary format. The AD9058 (Analog Devices) is selected for the
Figure 5.5: The analog to digital converter.

Purpose of converting the analog signal to the digital signal[19]. It combines two independent high performance 8-bit analog-to-digital converters (ADCs) on a single monolithic IC. Analog input range is established by the voltages applied at the voltage reference inputs (+Vref and -Vref). The AD9058 can operate from 0V to 2V using the internal voltage reference, or anywhere between -1V to +2V using external reference.

Figure 5.5 shows the analog-to-digital converter circuit. In our design, the internal voltage reference was used for reducing the number of external components. The input range of the ADCs are positive unipolar in this configuration, ranging from 0V to +2V. The bipolar input signals are buffered, amplified and offset into the proper input range of the ADC using three low distortion amplifiers such as OP27.

We have: \text{amplifier gain} = 2 \text{ and offset voltage} = 1V.\text{ }

In this case, the bipolar ±0.5V input signals are changed into the unipolar positive 0V to +2V input signals. The output signal format is binary format (unipolar) with respect to the input signals I—I' and is offset binary format (bipolar) with respect to the input signals O—O'.

The sampling clock comes from the pin N12 (CVCK) of the STEL-2110 chip. The diode between ground and -Vs is normally reverse biased and is used to prevent latch-up.
5.4 STEL-2110

5.4.1 STEL-2110 Bit Synchronizer/PSK Demodulator

Figure 5.6 shows the block diagram of the STEL-2110. The STEL-2110 has three fundamental functions: (a) Bit timing recovery circuit, (b) Carrier tracking feedback, (c) Integrated I and Q channel output signals[21][22].

(1) Bit timing recovery circuit

The bit synchronizer portion of the STEL-2110 is a digital phase locked loop which operates by integrating the input signals in both the I and Q channels over one symbol period. This is done 3 times: in addition to the nominally “on time” integration, “quarter period early” and “quarter period late” integrations are also carried out. The difference between the early and late integrations gives an indication of the timing error, since the averaged difference will be zero when the timing is correct. This signal is passed into the loop filter which is effectively a second order filter and then used to drive a numerically controlled oscillator (NCO)
which produces the clock signals to drive the entire circuit as well as sampling the incoming signals.

The NCO has 28-bit frequency resolution and is preset to the nominal symbol frequency at the start-up. The preset data is a 24-bit word and is loaded into the 24 MSBs of the 28-bit accumulator. The data from the loop filter is added to this word so that the data from the loop filter modifies the 23 LSBs of the 28-bit phase accumulator.

In our design, this circuit provides the bit timing for all four demodulations.

(2) Carrie tracking feedback circuit

The punctual I and Q signals from the I and Q channel integrator circuits are processed in the carrier discriminator circuit. The dot and cross produce of the I and Q signals are first formed, where:

$$\text{Dot product} = I_n \times I_{n-1} + Q_n \times Q_{n-1} \quad (5.6)$$

and

$$\text{Cross product} = I_n \times Q_{n-1} - Q_n \times I_{n-1} \quad (5.7)$$

both signals are used to form the carrier discriminator functions.

In the automatic frequency control (AFC) mode, this is

for BPSK data:
- \(\text{Sign (Dot)} \times \text{Cross}\)

for QPSK data:
- \(\text{Sign (Dot)} \times \text{Cross}, \quad \text{if } |\text{Dot}| > |\text{Cross}|\)

- \(\text{Sign (Cross)} \times \text{Dot}, \quad \text{else}\)

In the phase locked loop (PLL) mode, this is

for BPSK data:
- \(\text{Sign (I) } \times Q\)

for QPSK data:
- \(\text{Sign (I}_{rot}\text{)} \times Q_{rot}, \quad \text{if } |I_{rot}| > |Q_{rot}|\)

- \(\text{Sign (Q}_{rot}\text{)} \times I_{rot}, \quad \text{else}\)

where \(I_{rot}\) and \(Q_{rot}\) are the I and Q vectors rotated by 45°.
In our design, the PLL mode is selected since it is intended for coherent
demodulation in continuous carrier systems. This function is integrated under the
control of the carrier accumulate clock (CACK) to form the discriminator output,
which is available on the 16-bit bus. The 12-bit of them is connected to a digital to
analog converter to drive a loop filter which in turn drives the frequency control of
the local oscillator. This is the method we used to design the carrier recovery circuit
for BPSK, QPSK and OQPSK. For MSK, we used the self-synchronization feature of
MSK to generate the reference carrier signals.

(3) The I and Q channel output signals

The punctually integrated I and Q channel signals are provided as the out-
puts in 8-bit soft-decision format which is used to facilitate the inclusion of forward
error correction using Viterbi deciding in the system. The 8-bit integrated outputs
are represented in offset two's complement format.

5.4.2 Design with STEL-2110

(1) Bit rate control

Addresses 12H, 13H and 14H are the bit rate control register. The 28-bit
NCO is programmed with these 3 bytes, which are loaded into the 24 MSBs of the
28-bit phase increment register. Bit 7 of address 12H is the MSB, and bit 0 of address
14H is the LSB. The formula for \(N_r \), the number programmed in the NCO, is as
follows:

\[
A_r = R_s \times S \times A_i
\]

and

\[
N_r = \frac{A_r}{f_c} \times 2^{24}
\]

where:

\(N_r \): 24 bit number which establishes the nominal A/D sample rate.
\(f_c \): NCO input clock frequency \(f_c = \frac{\text{reference clock}}{C_s} \) (after scaling the input
clock by \(C_s = 16 \)).
\(A_r \): A/D converter clock rate.
\(R_s \): symbol rate of PSK information to be demodulated.
We set:

\[f_c = \frac{30 \text{MHz}}{16} = 187500 \text{ Hz} \]

\[S_s = 4 \]

\[A_i = 1 \]

For QPSK, OQPSK and MSK (parallel mode)

\[R_s = 1200, 2400, 4800, 9600, 19200 \text{ bps} \]

For BPSK (serial mode)

\[R_s = 2400, 4800, 9600, 19200, 38400 \text{ bps} \]

The \(N_r \) has the different value with the different symbol rates. In our design, for example, if \(R_s = 9600 \text{ bps} \)

\[A_r = 9600 \times 4 \times 1 = 38400 \]

and

\[N_r = \frac{38400}{1875000} \times 2^{24} = 053E2D \text{ (Hex)} \]

The NCO is not double buffered and will immediately switch to the newly programmed frequency after any of the bytes are changed. Do not set the 24-bit data to be 000000H at any time as this will set the NCO output frequency to zero, causing the entire chip to freeze up, requiring to restart the chip.

(2) Loop gain control

Address 11H is the loop gain control register. Figure 5.7 is a simplified block diagram of the bit timing feedback loop system. The value of the loop constant \(K \) is a function of the chip setup parameters and signal input conditions. The parameters \(K_1 \) and \(K_2 \) are controlled by the loop gain control register (11H). For the case, when an AGC controls the level of the input signal the formula for \(K \) can be used as following

\[K = \frac{A \times A_i \times S_s \times T_d \times P_a^2}{8 \times N_r \times b} \] \hspace{1cm} (5.10)

where:
Figure 5.7: Block diagram of the bit timing feedback loop system.

A is defined to be the magnitude of the digitized signal into the bit synchronizer, and this strictly assumes a noiseless input.

T_d is the transition density of data. If the phase changed at every symbol transition, then T_d would be 1.0. In normal operation for a BPSK signal, $T_d = 0.5$; for a QPSK signal, $T_d = 0.75$.

P_a is the number of discriminator accumulations.

b is the scaling factor used in the pre-accumulator block, so that

\[
\begin{align*}
 b &= 1 & \text{when } & A_i = 1 \\
 b &= 2 & \text{when } & A_i = 2 \text{ or } 4 \\
 b &= 4 & \text{when } & A_i = 8 \text{ or } 16
\end{align*}
\]

Figure 5.8 is a graph illustrating a loop which was designed for a bandwidth (normalized to the data rate) of 1% with $K=1$. As K increases, the loop gain increases eventually resulting in loop instability. As K is reduced, the loop gain approaches a value of about 0.2%, but stability is maintained. The best region to operate the feedback loop, from the standpoint of transition response characteristics, is in the center, where bandwidth and gain are almost linearly related.

The loop bandwidth B_L can be determined from the following Table 5.1 and controlled by varying K_1 and K_2, given K as computed in equation (5.10).

In our design, with the following parameters:

\[
\begin{align*}
 A &= 32 \text{ (with 6-bit input)} & T_d &= 0.75 \text{ (QPSK, OQPSK and MSK)} \\
 A_i &= 1 & T_d &= 0.5 \text{ (BPSK)}
\end{align*}
\]
Table 5.1: The loop bandwidth with K_1 and K_2.

<table>
<thead>
<tr>
<th>$K \times K_1$</th>
<th>$K \times K_2$</th>
<th>B_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×2^{-3}</td>
<td>1×2^{-7}</td>
<td>0.05</td>
</tr>
<tr>
<td>1×2^{-4}</td>
<td>1×2^{-9}</td>
<td>0.025</td>
</tr>
<tr>
<td>1×2^{-5}</td>
<td>1×2^{-10}</td>
<td>0.012</td>
</tr>
<tr>
<td>1×2^{-6}</td>
<td>1×2^{-12}</td>
<td>0.006</td>
</tr>
<tr>
<td>1×2^{-7}</td>
<td>1×2^{-14}</td>
<td>0.003</td>
</tr>
<tr>
<td>1×2^{-8}</td>
<td>1×2^{-16}</td>
<td>0.0015</td>
</tr>
<tr>
<td>1×2^{-9}</td>
<td>1×2^{-18}</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

Figure 5.8: The performance related with loop gain and bandwidth.
Table 5.2: (a) The control factor K_1, (b) The control factor K_2.

$S_s = 4$ \hspace{2cm} $b = 1$ when $A_i = 1$

$P_a = 1$

The N_t has different values with different symbol rates R_s. If $R_s = 9600$ bps for QPSK, we have $K = 2^{-15}$.

By setting $K_1 = 2^{10}$ ($K \times K_1 = 2^{-5}$) and $K_2 = 2^{5}$ ($K \times K_2 = 2^{-10}$), the loop bandwidth B_L is determined from Table 5.1 to be approximately 1% of the symbol rate. Then from Table 5.2, we can determine what value will be programmed into the loop gain control register. For above setting

$$K_1 = 2^{10} \Rightarrow 1010 \hspace{0.5cm} \text{or} \hspace{0.5cm} A_{(Hex)}$$

$$K_2 = 2^{5} \Rightarrow 1001 \hspace{0.5cm} \text{or} \hspace{0.5cm} 9_{(Hex)}$$

This value $9A_{H}$ can be programmed into address 11_{H}.

(3) Start up the chip STEL-2110

It is necessary to connect RCLK (reference clock, pin N9) to ESCK (external sample clock, pin M12) and to set CKSEL (select clock, pin M1) low while loading
RESET

CKSEL

Don't care

Don't care

DATA

NCO DATA

ADDR

12H 13H 14H

WR

Figure 5.9: Start up the chip STEL-2110.

the NCO data, after power up or after any time the chip is reset with the reset pin RST, and then CKSEL can be set high as shown in Figure 5.9.

(4) Other considerations

(a) 255BCK signal (pin N11) is connected directly to CACK (pin D6) and AACK (pin R1). This signal controls the number of integrations used in the carrier tracking discriminator function and the number of integrations used in the lock detection function.

(b) BCK (pin P8) signal is synchronized to the input signal timing and is nominally a square wave. It is used as the output data clock. The falling edge of BCK corresponds to the beginning of a new symbol data period, so that the signal is low during the first half of the symbol.

(c) DC (pin H12) is connected to a control line which comes from the microcontroller. A high level on this pin causes the Q channel inputs to be delayed by one half of a symbol period. This control is intended to enable the chip to be used for OQPSK and MSK signals.

(d) APSEL (pin C14):

\[
\begin{align*}
\text{APSEL} = 1 \text{ (high)} & \quad \text{for noncoherent AFC to perform carrier tracking} \\
\text{APSEL} = 0 \text{ (low)} & \quad \text{for coherent PLL to perform carrier tracking}
\end{align*}
\]

(e) QCDD (pin E3) and BOVR (pin D14) are connected to a control line which comes from the microcontroller.
QCDD and BOVR = 1 (high) for BPSK
QCDD and BOVR = 0 (low) for QPSK, OQPSK and MSK

This setup can improve carrier tracking and the timing discrimination performances.

5.5 Carrier Recovery Circuit for QPSK, OQPSK and BPSK

We use digital Phase Lock Loop circuit to realize carrier recovery for QPSK, OQPSK, and BPSK. The block diagram of this carrier recovery circuit is shown in Figure 3.2.

In the system shown the microcontroller integrates the CARD_{15-0} signal to produce the data to program the NCO (in our design, we use DDS to act as that) which generates the local oscillator signals with variable frequencies. The BCK signal can be used to interrupt the microcontroller at regular intervals to do this at our low bit rate.

5.5.1 Digital Phase Lock Loop

We use second order digital Phase Lock Loop (PLL) to realize carrier recovery. Second order PLL can make both its output signal frequency and phase be locked with the input signal. There are two loop gains in this second order PLL. The block diagram for this PLL is shown in Figure 5.10.

The block $\frac{z^{-1}}{1-z^{-1}}$ is just the delay associated with one period in the sampling rate. Integrating the input signal CARD_{15-0} is also just the addition in digital signal processing program. The values of the two gains in our digital PLL is much difficult to calculate. We have successfully set these two values by experience for properly system operation. The values of these two gains can determine the locking range, locking speed, and locking stabability. A lot of strength has been put on the correct selection of thses two parameters.
Figure 5.10: Digital Phase Lock Loop.

DDS Q2334 is selected as the NCO. It can produce two perfect orthogonal signals which are required. The frequencies and phases of these two signals are controlled by the microcontroller according to the calculated results of our software loop filter (second order). After D/A converter, two analog carrier reference signals are with same frequencies and 90° difference phase. Note the phases of these two reference signals are 45° different from that of our demodulator input signal, one is 45° ahead and one is 45° later.

Until now, the locking range of this digital Phase Lock Loop (PLL) is not very wide. There is about 50 Hz range for 9.6 kbps bit rate and about 16 Hz range for 1.2 kbps bit rate. The locking range is mainly related to the bit rate. Because in our project, the bit rates are low so that the locking range are narrow. We have tried many ways to improve locking ranges and the above results are what we can get until now. An automatic frequency control (AFC) is needed in RF stage to reduce frequency variation in the IF signal.

Because of this narrow locking range, the carrier recovery reference frequency must be adjusted for different receivers. This is because of the frequency differences among the crystals, although the difference is relatively small compared with their own running frequency.
The realization of this carrier recovery circuit is one of the most difficult tasks in this project.

5.6 Msk Demodulator

The circuits for coherent MSK demodulation is given in Chapter 2.1.4. This demodulation scheme keeps the good bit error rate performance of MSK, but the circuits employed are hard to implement, especially in the case of low bit rate data transmission. For example, in coherent MSK demodulation, the two frequency tones of Sundel’s FSK (square of MSK signal) are so close that it is very difficult to realize the needed bandpass filter (BPF). An easier noncoherent MSK demodulation scheme is developed. Compared with the coherent MSK demodulation, the noncoherent MSK demodulation scheme preserves the good MSK attributes of continuous phase and spectral efficiency, dramatically simplifies the demodulator at some expense of BER performance degradation.

MSK can be viewed either as an OQPSK signal with sinusoidal pulse weighting or as a continuous phase FSK (CPFSK) signal with a frequency separation equal to one-half the bit-rate [32]. An MSK modulation scheme in the form of CPFSK signal with modulation index equal to 0.5 is shown in Figure 5.11.

That MSK can be viewed as CPFSK also gives us the idea to demodulate MSK signal noncoherently. After that, a post-detection circuit must be added to restore original baseband signal. The related block diagram is show in Figure 5.12.

The operation principle of this part is based on the following observation:
Figure 5.12: MSK demodulation scheme.

Figure 5.13: An example showing MSK baseband waveforms relations.

suppose, in first bit period, \(d'(t) \) is arbitrarily decided (we can do this because differential coder is used). In the second bit period, \(d'(t) \) still keeps its value in the first bit period. According to the relationship between \(b'K(t) \) and \(d'I(t) \) and \(d'Q(t) \) (e.g., \(b'K(t) = -d'I(t)d'Q(t) \)), the value of \(d'Q(t) \) in the second bit period can be decided from the known values of \(b'K(t) \) and \(d'I(t) \). Similarly, in the third bit period, \(d'Q(t) \) keeps its value in the second bit period and then \(d'I(t) \) can be decided. The decision rule for the following bit periods is the same. An example for this is shown in Figure 5.13.

A simple circuit for this post-decision part according to above decision rule is shown in Figure 5.14.
Figure 5.14: MSK post-detection circuit.

Compared with coherent and differentially coherent MSK demodulation, the bit error rate performance of the noncoherent MSK demodulation developed here is about 4 dB worse than the former and about 2 dB worse than the later [31]. But, in low bit rate communications systems, where the transmitted bit energy is relatively much larger than that in high bit rate systems, this loss in power efficiency is tolerable. In the meantime, the other attributes of MSK, such as constant envelope with continuous phase, good spectral efficiency are preserved in this easily realized demodulator because they do not rely on which demodulation scheme is used.

In our project, the key point to use this scheme is to find out good noncoherent FSK demodulator. There are several such kind of VLSI demodulator available, but only NE564 is barely suitable for our application. Because the bit rate is too low in our application, the frequency deviation is very small. Thus, the output signal is very weak. To solve this problem, we first decrease the IF frequency of the received modulated signal from 4.8 MHz to 30 KHz by multiplexing this IF frequency by a local oscillator which has a 4770 KHz frequency. This local oscillator can be replaced by the DDS in the receiver because at this time it is free from the carrier recovery circuit for QPSK, etc..
Using this method, we have successfully get the final demodulated and decoded correct result for bit rate 2.4 kbps and 4.8 kbps. But a problem exists. The MSK demodulator is not robust enough that each time when the system operates, we get to trim the related capacitor to get a correct result. For the other three bit rates, we still can not succeed. Also, because this is an analog circuit instead of a digital one, when we change bit rate, we have to change many related capacitors for proper system operation. It would be much better if we can use a digital circuit to demodulate MSK signal, but VLSI chips for such kind of digital circuit are not available in the market yet.
In this chapter we will focus our attention on: (1) serial port communication; (2) the variable bit rate control; (3) configurations and control. But first we will introduce Intel 80C32 microcontroller briefly[18].

6.1 Intel 80C32 Microcontroller

In our design an Intel 80C32 microcontroller controls the whole system using a monitor program contained in EPROM on the board. Figure 6.1 shows the architectural block diagram of 80C32 microcontroller.

The major features of 80C32 are:
1) 8-bit CPU
2) 32 I/O lines (4 I/O ports)
3) Three 16-bit timer/counter
4) Six-source interrupts with two priority levels
5) Full duplex serial port
Figure 6.1: Intel 80C32 architectural block diagram.
6.2 Variable Bit Rate Control

The Timer 2 is employed to realize the variable bit rate control in modulating process. It is configured in auto-reloaded mode. The data rate R which equals to the interrupt control rate is determined by the Timer 2 overflow rate.

\[R = \text{(bits of a symbol)} \times \frac{\text{Oscillator Frequency}}{12 \times [65536 - (RCAP2)]} \]

(6.1)

Where RCAP2 is the register pair (RCAP2H, RCAP2L) for the Timer 2 “auto-reloaded mode”.

Because there is a delay of T period in the Q channel of OQPSK and MSK, the phase transition occurs every T seconds, not 2T seconds like QPSK does. This can be seen from Figure 2.4. The OQPSK and MSK have the same formula to calculate the value of RCAP2.

For BPSK, OQPSK and MSK

\[R = \frac{\text{Oscillator Frequency}}{12 \times [65536 - (RCAP2)]} \]

(6.2)

For QPSK

\[R = 2 \times \frac{\text{Oscillator Frequency}}{12 \times [65536 - (RCAP2)]} \]

(6.3)

For example, if R=19200 bps (input data rate=9600 bps):

For BPSK, OQPSK and MSK

\[19200 = \frac{11.0592 \times 10^6}{12 \times [65536 - (RCAP2)]} \]

get

\[RCAP2 = 65536 - \frac{11.0592 \times 10^6}{12 \times 19200} = FFD0 \hspace{0.5cm} (Hex) \]

For QPSK

\[19200 = 2 \times \frac{11.0592 \times 10^6}{12 \times [65536 - (RCAP2)]} \]

get

\[RCAP2 = 65536 - \frac{2 \times 11.0592 \times 10^6}{12 \times 19200} = FFA0 \hspace{0.5cm} (Hex) \]
With different the data rate R and modulation schemes there are different values of RCAP2 which must be preset by software.

In our design we have developed an interrupt service routine T2_INT. It is used to precisely time writes to the DDS Q2334 chip to run the various modulations. Wherever the service routine T2_INT is entered, two control signals are generated. One is used to control PM1 CLK, PM2 CLK and MUX CLK pins of the Q2334. Another is used as the delay clock for the delay circuit of OQPSK and MSK. Following is the design steps:

1. Enable Timer 2 interrupt with the highest priority.
2. Load the appropriate value into register pair RCAP2 in Timer 2 with different data and modulation schemes.
3. As long as Timer 2 is overflowed, when running the system, it set up the interrupt flag automatically.
4. When CPU responds this requirement, it goes to the interrupt service routine T2_INT. The routine first clears the Timer 2 interrupt flag, and then generates two control signals.

6.3 Configuration and Control

Once a particular modulation/demodulation scheme is chosen the control software goes into the subroutines to configure that scheme.

6.3.1 BPSK

1. Set up the registers of the Q2334
 a. Calculate what will be put into Q2334 registers for carrier frequency, and load the results into phase increment registers PIRA1 (00H-03H) of the DDS1.
 b. Set up SMC1 register (0BH) of the DDS1 to enable the external phase modulation function.
 c. Set up AMC1 register (0AH) of the DDS1 to enable the on-chip Noise Reduction Circuit (NRC) function, determine the D/A converter output bits function
and output data format.

(d) Clear the registers of the second part of the DDS and the accumulators.

2) Set up the registers of the Q0256

Encoder Function:
(a) Set up the encoder control register 1 (06H) to select encoder in serial data output mode and code rate 1/2.
(b) Set up the encoder control register 2 (07H) to enable differential encoder and the V.35 data scrambler.

Decoder Function:
(a) Set up the decoder control register 1 (02H) to select the decoder in serial data input mode and code rate 1/2.
(b) Set up the decoder control register 2 (03H) to accept offset-binary format data mode in soft-decision input at R0, the differential decoder and V.35 data descrambler.
(c) Set up the decoder control register 3 (04H) to choose the Viterbi decoder algorithm use a minimum chainback path depth of 96 states or 48 states.
(d) Set up T register (08H) and N register (09H).
(e) Set up BER period input registers (0AH-0CH).
(f) Set up the reserved write registers 15H and 16H to 0.

3) Set up the registers of the STEL-2110
(a) Set up the bit rate control registers (12H-14H) to establish the nominal A/D sample rate according to different the data rate.
(b) Set up the loop gain control register (11H) to select the proper K_1 and K_2 which relate loop gain to loop bandwidth.
(c) Set up timing control register (01H) to select the number of samples per symbol, control factor P_a, the clock frequency pre-scale factor and pre-accumulation control factor.
(d) Set up mode control register (17H) to store various control parameters as shown: input data format control, loop filter input control, coherent DPSK enable, freeze data control, loop offset control and software rest.

4) Set up the control lines
6.3.2 QPSK and OQPSK

(1) Set up the registers of the Q2334
(a) Calculate what will be write into Q2334 registers for carrier frequency, and load the results into phase increment register PIRA1 (00H-03H) and PIRA2 (10H-13H).
(b) Set up SMC1 (08H) and SMC2 (18H) registers to enable the external phase modulation function.
(c) Set up AMC1 (0AH) and AMC2 (1AH) registers to enable the on-chip NRC function, determine the A/D converter output bits and output data format.
(d) Clear the accumulators.

(2) Set up the registers of the Q0256
Encoder Function:
(a) Set up the encoder control register 1 (06H) to select encoder in parallel data output mode and code rate 1/2.
(b) Set up the encoder control register 2 (07H), same as BPSK.

Decoder Function:
(a) Set up the decoder control register 1 (02H) to select the decoder in parallel data input, and code rate 1/2. Meanwhile, set bit 1 = 0 to make synchronization circuit adjust for phase ambiguities of QPSK demodulator; set bit 1 = 1 to make synchronization circuit adjust for phase ambiguities of OQPSK demodulator.
(b) Set up the decoder control register 2 (03H) to accept offset-binary format data mode in soft-decision input at R0 and R1, enable phase ambiguity automatic synchronization for QPSK and OQPSK, the differential decoder and the V.35 data descrambler.
(c) Set up the decoder control register 3 (04H), same as BPSK.
(d) Set up T register (08H) and N register (09H), same as BPSK.
(e) Set up BER period input registers (0AH-0CH), same as BPSK.
(f) Set up the reserved registers 15H and 16H to 0.

(3) Set up the registers of the STEL-2110
(a) Set up the bit rate control registers (12H-14H) to establish the nominal
A/D sample rate for QPSK and OQPSK according to different the data rate.

(b) Set up the loop gain control register (11H) to select the proper K_1 and K_2 for QPSK and OQPSK.

(c) Set up timing control register (01H), same as BPSK.

(d) Set up mode control register (17H), same as BPSK.

6.3.3 MSK

(1) Set up the registers of the Q2334

(a) Calculate what will be write into the Q2334 registers for frequencies $f_{c+} = f_c + \frac{A}{4T}$ and $f_{c-} = f_c - \frac{A}{4T}$, and load the results into phase increment registers PIRA1 (00H-03H) and PIRB1 (04H-07H) of the DDS1.

(b) Set up SMC1 (08H) register of the DDS1 to enable the external multiplex control function.

(c) Set up AMC1 (0AH) register of the DDS1 to enable the on-chip NRC-function, determine the D/A converter output bits and output data format.

(d) Clear the registers of the second part of the DDS and the accumulators.

(2) Set up the registers of the Q0256

Same as the OQPSK registers set up.

(3) Set up the registers of the STEL-2110

Same as the OQPSK registers set up.

(4) Set up control lines

6.4 Control Software

This software is designed to control the programmable small terminal for satellite communication system. It is entirely written in 8051 assembler language using Intel MCS-51 conventions. In general, high-level and system startup routines are located near the start of this program. Interrupt service routines and canned messages to the user are located at the end. Timer 1 is used to generate the serial baud rate. Timer 2 is used to time writes to the Q2334 DDS for controlling data rate.
(1) Software copy

When setting up the configurations from the console (terminal) the screen will display the contents of the registers of the three chips (Q2334, Q0256 and STEL-2110), and a menu of options for the user. Since these registers are "write only", what is actually displayed is a software copy of what was last written to the chips. The method is that we open the data block for each chips at the internal data memory of the 80C32. The space is equal to the number of registers of each chips. Whenever we write the control code into the registers of the chips, we also write the same code into the internal RAM (called for software copy). After that, when we want to know what was last written to the chips, we can simply read these control codes from their software copies.

(2) Internal and external data memory maps

Figure 6.2(a) shows the internal data memory map of the 80C32, and Figure 6.2(b) shows the external data memory map. This kind of partition of data memory can accomplish two functions:

1) use bit 5~bit 7 (3 bits) to select the chip which we want to access.
2) use bit 0~bit 4 (5 bits) to get the correct register for the selected chip.

(3) Flowcharts

Figure 6.3(a) is the main flowchart,

Figure 6.3(b) for QPSK,

Figure 6.3(c) for OQPSK,

Figure 6.3(d) for MSK,

Figure 6.3(e) for BPSK.
Figure 6.2: (a) Internal memory map, (b) External memory map.
Power on

Configure I/O ports of 80C32

Initialization: Q2334
Q0256
STEL-2110

Set freq. to phase conversion factor

Set up I/O serial port and get baud rate for serial I/O

Set up Timer 2 Interrupt

Enable serial port

Print Main Menu

Set up QPSK
Set up OQPSK
Set up MSK
Set up BPSK
Print System Informations
Stop Running

Satisfy? No Yes

Print out the setup informations

Enable Timer 2
Start running

(a) The main flowchart
Print header massage

Set up carrier frequency
4.8 MHz

Set up DDS registers of Q2334
for QPSK

Set up control lines for QPSK

Set up encoder registers of Q0256
for QPSK

Set up decoder registers of Q0256
for QPSK

Set up the registers of STEL-2110
for QPSK

Set up running status for QPSK
TST_RNING = 1

Jump out

(b) The QPSK
Print header massage

Set up carrier frequency
4.8 MHz

Set up DDS registers of Q2334
for OQPSK

Set up control lines for OQPSK

Set up encoder registers of Q0256
for OQPSK

Set up decoder registers of Q0256
for OQPSK

Set up the registers of STEL-2110
for OQPSK

Set up running status for OQPSK
TST_RUNNING = 2

Jump out

(c) The OQPSK flowchart
Print header massage

Set up carrier frequency 4.8 MHz

Set up DDS registers of Q2334 for MSK

Set up control lines for MSK

Set up encoder registers of Q0256 for MSK

Set up decoder registers of Q0256 for MSK

Set up the registers of STEL-2110 for MSK

Set up running status for MSK
TST_RNING = 3

Jump out

(d) The MSK flowchart
Print header massage

Set up carrier frequency
4.8 MHz

Set up DDS registers of Q2334
for BPSK

Set up control lines for BPSK

Set up encoder registers of Q0256
for BPSK

Set up decoder registers of Q0256
for BPSK

Set up the registers of STEL-2110
for BPSK

Set up running status for BPSK
TST_RNING = 4

Jump out

(e) The BPSK flowchart

Figure 6.3: Flowchart
Chapter 7

TEST RESULTS

7.1 Power Spectral Desities Measurement

In this part, we will show test results of the transmitter section. These test results include all measured power spectral densities of modulated signals, MSK, QPSK, OQPSK and BPSK under different data rates.

The input data to the transmitter section is from the signal generator (PM5193, PHILIPS) or the data error analyzer which can generate digital data signals with different preselected rates. The output signal from the transmitter section is directly fed to the spectrum analyzer (7L12, TEKTRONIX).

Test conditions of the spectrum analyzer.

Center Frequency: 4.8 MHz
Resolution Bandwidth: 300Hz
Video Bandwidth: 3Hz
Y Scale: Log. 10dB/div

X Scale and Frequency Span are related to modulation schemes and data rates.

(1) MSK

Figure 7.1 shows measured power spectral densities of modulated signals
MSK under different data rates. From Figure 7.1 we can clearly see that there are different X Scales (frequency/division) with different data rates. This is because with different data rates the main-lobe bandwidth (null-to-null bandwidth) of MSK is different, and equal to

\[BW_{MSK} = \frac{1.5}{T} = 1.5 \times R \]

where T is the bit duration after encoding (R=1/T). Also, we notice that spectral densities of MSK have the wider main-lobe and the lower side-lobes.

(a) Data rate = 19200 bps
The main-lobe bandwidth for this test should be

\[BW_{MSK} = 1.5 \times 19.2 \times 2 = 57.6 \text{ KHz} \]

Set the spectrum analyzer:
- Frequency Span: 200KHz
- X Scale: 20KHz/div
The power spectral density for this test is shown in Figure 7.1(a).

(b) Data rate = 9600 bps
The main-lobe bandwidth for this test should be \(BW_{MSK} = 28.8 \text{ KHz} \)
Set the spectrum analyzer:
- Frequency Span: 100KHz
- X Scale: 10KHz/div
The power spectral density for this test is shown in Figure 7.1(b).

(c) Data rate = 4800 bps
The main-lobe bandwidth for this test should be \(BW_{MSK} = 14.4 \text{ KHz} \)
Set the spectrum analyzer:
- Frequency Span: 50KHz
- X Scale: 5KHz/div
The power spectral density for this test is shown in Figure 7.1(c).

(d) Data rate = 2400 bps
The main-lobe bandwidth for this test should be \(BW_{MSK} = 7.2 \text{ KHz} \)
Set the spectrum analyzer:
The power spectral density for this test is shown in Figure 7.1(d).

(e) Data rate = 1200 bps

The main-lobe bandwidth for this test should be $BW_{MSK} = 3.6 \text{ KHz}$

Set the spectrum analyzer:

- Frequency Span: 10KHz
- X Scale: 1KHz/div

The power spectral density for this test is shown in Figure 7.1(e).

(2) QPSK and OQPSK

Figure 7.2 shows measured power spectral densities of modulated signals QPSK and OQPSK under different data rates. From Figure 7.2, we can see that there are different X Scales with different data rates. The main-lobe bandwidth of QPSK and OQPSK is equal to

$$BW_{QPSK} = \frac{1.0}{T} = 1.0 \times R$$

Also, we notice that spectral densities of QPSK and OQPSK have the narrower main-lobe and higher side-lobes than that of MSK.

(a) Data rate = 19200 bps

The main-lobe bandwidth for this test should be

$$BW_{MSK} = 1.0 \times 19.2 \times 2 = 38.4 \text{ KHz}$$

Set the spectrum analyzer:

- Frequency Span: 200KHz
- X Scale: 20KHz/div

The power spectral density for this test is shown in Figure 7.2(a).

(b) Data rate = 9600 bps

The main-lobe bandwidth for this test should be $BW_{MSK} = 19.2 \text{ KHz}$

Set the spectrum analyzer:

- Frequency Span: 100KHz
- X Scale: 10KHz/div
The power spectral density for this test is shown in Figure 7.2(b).

(c) Data rate = 4800 bps
The main-lobe bandwidth for this test should be $BW_{MSK} = 9.6 \text{ KHz}$
Set the spectrum analyzer:
- Frequency Span: 50KHz
- X Scale: 5KHz/div

The power spectral density for this test is shown in Figure 7.2(c).

(d) Data rate = 2400 bps
The main-lobe bandwidth for this test should be $BW_{MSK} = 4.8 \text{ KHz}$
Set the spectrum analyzer:
- Frequency Span: 20KHz
- X Scale: 2KHz/div

The power spectral density for this test is shown in Figure 7.2(d).

(e) Data rate = 1200 bps
The main-lobe bandwidth for this test should be $BW_{MSK} = 2.4 \text{ KHz}$
Set the spectrum analyzer:
- Frequency Span: 10KHz
- X Scale: 1KHz/div

The power spectral density for this test is shown in Figure 7.2(e).

(3) BPSK

Figure 7.3 shows measured power spectral densities of modulated signals BPSK under different data rates. From Figure 7.3, we can see that there are different X Scales with different data rates. The main-lobe bandwidth of BPSK is equal to

$$BW_{QPSK} = \frac{2.0}{T} = 2.0 \times R$$

Also, we notice that spectral densities of BPSK have the widest main-lobe and the highest side-lobes in the test.

(a) Data rate = 19200 bps
The main-lobe bandwidth for this test should be

$$BW_{MSK} = 2.0 \times 19.2 \times 2 = 76.8 \text{ KHz}$$
Set the spectrum analyzer:
 Frequency Span: 200KHz
 X Scale: 20KHz/div
The power spectral density for this test is shown in Figure 73(a).
(b) Data rate = 9600 bps
The main-lobe bandwidth for this test should be $BW_{MSK} = 38.4 \text{ KHz}$
Set the spectrum analyzer:
 Frequency Span: 100KHz
 X Scale: 10KHz/div
The power spectral density for this test is shown in Figure 7.3(b).
(c) Data rate = 4800 bps
The main-lobe bandwidth for this test should be $BW_{MSK} = 19.2 \text{ KHz}$
Set the spectrum analyzer:
 Frequency Span: 50KHz
 X Scale: 5KHz/div
The power spectral density for this test is shown in Figure 7.3(c).
(d) Data rate = 2400 bps
The main-lobe bandwidth for this test should be $BW_{MSK} = 9.6 \text{ KHz}$
Set the spectrum analyzer:
 Frequency Span: 20KHz
 X Scale: 2KHz/div
The power spectral density for this test is shown in Figure 7.3(d).
(e) Data rate = 1200 bps
The main-lobe bandwidth for this test should be $BW_{MSK} = 4.8 \text{ KHz}$
Set the spectrum analyzer:
 Frequency Span: 10KHz
 X Scale: 1KHz/div
The power spectral density for this test is shown in Figure 7.3(e).
All above test results in this chapter agree with theoretical predictions very well[10]. This means that the transmitter section and control section are working very well, and satisfy requirements of our design.
(a) Data rate = 19200 bps

(b) Data rate = 9600 bps

(c) Data rate = 4800 bps
Figure 7.1: Power spectral densities of MSK.
Center Freq. 4.8 MHz
Freq. Span 200 KHz
(a) Data rate = 19200 bps

Center Freq. 4.8 MHz
Freq. Span 100 KHz
(b) Data rate = 9600 bps

Center Freq. 4.8 MHz
Freq. Span 50 KHz
(c) Data rate = 4800 bps
Figure 7.2: Power spectral densities of QPSK and OQPSK.
(a) Data rate = 19200 bps

(b) Data rate = 9600 bps

(c) Data rate = 4800 bps
Figure 7.3: Power spectral densities of BPSK.
For tests of the receiver section, we need several instruments to assist our BER measurement. First a attenuable noise generator with output power around -20 dBm and output frequency above 4.8 MHz is needed. Also signal combiner and power meter are required for our test. Until now, we can not find the needed noise generator. We will do this part of test in the future once we have it.
Bibliography

Appendix A

The Design Circuits
Appendix B

The Firmware (Software) Listing

The firmware (software) listing is attached.
EJECT

; Equates and Memory-Mapped I/O Addresses

;***
;
Q2334_BASE EQU 00H ; external RAM address of the Q2334 register #0
Q0256_BASE EQU 20H ; external RAM address of the Q0256 register #0
S2110_BASE EQU 40H ; external RAM address of the STEL_2110 register

CONTROL EQU 60H

CLOCK BIT P3.0
MISTAKE BIT P3.1
TTI BIT P3.2
SWITCH BIT P3.3 ; begin the transmission
CLOCK1 BIT P3.4 ; indicate the transmitter running
RUN BIT P3.5

EJECT

;***
;
EJECT

;***
;
EJECT

;***

*DSEG AT 30H ; skip a byte to leave space for the DATA_BITS segment

Q2334_REGS: DS 8 ; freq. to phase increment conversion factor
F_TO_F: DS 8 ; general scratchpad area
TMP: DS 8 ; hold the 32-bit value of frequency
FREQ: DS 4 ; use for MSK
FREQ1: DS 4 ; use for MSK
FREQ2: DS 4
TTT: DS 2
TST DR: DS 1 ; currently data rate
STACK: DS 0 ; stack starts just above the data area

EJECT

;***
;
EJECT

;***
;
EJECT

EJECT

;***
;
EJECT

;***
;
EJECT
FLAG1: DBIT 1 ;indicates the bit rate low or high

;**
; Define the Interrupt Vectors
;**

CSEG ;select the code segment

ORG RESET
LJMP START ;system reset

ORG EXTI0
RETI ;external interrup 0, not used

ORG TIMER0
RETI ;timer 0 interrupt, not used

ORG EXTI1
RETI ;external interrupt 1, not used

ORG TIMER1
RETI ;timer 1 interrupt, not used

ORG SINT
RETI

ORG TIMER2
LJMP T2_INT ;timer 2 interrupt

;**
; FUNCTION: START
;**

START: CLR RUN
CLR MISTAKE
MOV IE,#00H ;ensure that all interrupt are disabled
MOV SP,#STACK ;initialize the stack
MOV PSW,#00H ;use reg. bank 0 throughout this program

LCALL INIT_Q2334 ;initialize registers of Q2334 chip
LCALL INIT_S2110 ;initialize registers of STEL_2110A chip

MOV TST_DR,#00H ;data rate=0
MOV IF,#00H ;make all interrupt low priority
SETB PT2 ;except timer2 it has highest priority
MOV T2CON,#00H ;set up timer2, but don't start it running
CLR TR2
SETB ET2 ;enable its interrupt
SETB EA

MOV FREQ,#00H ;set up f=4.8 MHZ in FREQ+0--FREQ+3
MDCOB.A51

MOV FREQ+1,#3EH ; f=4.8MHZ=00493E00H
MOV FREQ+2,#49H
MOV FREQ+3,#00H
MOV F_TO_P+4,#00H ; this is the correct freq. to phase conversion
MOV F_TO_P+3,#8FH ; factor for clock=30MHZ
MOV F_TO_P+2,#2AH ; i.e. (2^32 / clock)*2^-24
MOV F_TO_P+1,#63H
MOV F_TO_P+0,#39H

WWW1: NOP
NOP
JNB SWITCH,WWW1
CLR T1
NOP
NOP
MOV A,P1
JZ WWW3
MOV R1,#00H

WWW2: INC R1
MOV R0,A
ANL A,#01H
JNZ WWW4
MOV A,R0
RR A
SJMP WWW2

WWW3: MOV R1,#00H

WWW4: MOV A,R1 ; valid input, recover number of the selection
RL A
RL A
MOV DPTR,#JMPTBL
JMP @A+DPTR

JMPTBL: LJMP M_LOOP ; A=0, N/A
LJMP QPSK_TEST ; A=1, QPSK function
LJMP OQPSK_TEST ; A=2, OQPSK function
LJMP MSK_TEST ; A=3, MSK function
LJMP BPSK_TEST ; A=4, BPSK function
NOP
NOP
NOP

WWW: SETB TR2

$EJECT

M_LOOP: SETB MISTAKE
WWW5: NOP
NOP
JB SWITCH,WWW5
CLR MISTAKE

Page 3
LJMP START

;***
**FUNCTION: QPSK_TEST
;DESCRIPTION: This function runs the QPSK modulator/demodulator.

;***

QPSK_TEST:

MOV R4,FREQ
MOV R5,FREQ+1
MOV R6,FREQ+2
MOV R7,FREQ+3

;set up DDS registers of Q2334

MOV R0,#F_TO_P
MOV R1,#Q2334_REGS
LCALL MULT

MOV R0,#Q2334_BASE
MOV R1,#Q2334_REGS
MOV R2,#4
MOV A,@R1
MOVX @R0,A
INC R1
INC R0
DJNZ R2,QTI

MOV R0,#Q2334_BASE+10H
MOV R1,#Q2334_REGS
MOV R2,#4
MOV A,@R1
MOVX @R0,A
INC R1
INC R0
DJNZ R2,QT2

MOV R0,#08H
MOV R1,#02H
LCALL WR_Q2334

MOV R0,#18H
MOV R1,#02H
LCALL WR_Q2334

MOV R0,#0AH
MOV R1,#0EH
LCALL WR_Q2334

MOV R0,#1AH
MOV R1,#0EH
LCALL WR_Q2334

MOV R0,#Q2334_BASE+0CH
MOVX @R0,A

MOV R0,#Q2334_BASE+1CH
MOVX @R0,A

MOV R0,#0AH
MOV R1,#0EH
LCALL WR_Q2334

MOV R0,#1AH
MOV R1,#0EH
LCALL WR_Q2334

MOV R0,#Q2334_BASE+0CH
MOVX @R0,A

MOV R0,#Q2334_BASE+1CH
MOVX @R0,A
; set control lines
MOV R0, #CONTROL
MOV A, #08H
MOVX @R0, A
MOV A, #00H
MOVX @R0, A
SETB INI
CLR FLAG
LCALL GET DR
MOV R0, #15H
MOV R1, #00H
LCALL WR_Q0256
MOV R0, #16H
MOV R1, #00H
LCALL WR_Q0256
MOV R0, #02H
MOV R1, #04H
LCALL WR_Q0256
MOV R0, #03H
MOV R1, #34H
LCALL WR_Q0256
MOV R0, #04H
MOV R1, #01H
LCALL WR_Q0256
MOV R0, #04H
MOV R1, #05H
LCALL WR_Q0256
MOV R0, #08H
MOV R1, #0FCH
LCALL WR_Q0256
MOV R0, #08H
MOV R1, #0F9H
LCALL WR_Q0256
MOV R0, #0AH
MOV R1, #0FCH
LCALL WR_Q0256
MOV R0, #0BH
MOV R1, #0FFH
LCALL WR_Q0256
MOV R0, #0CH
MOV R1, #0FFH
LCALL WR_Q0256
MOV R0, #17H
MOV R1, #00H
LCALL WR_Q0256
MOV R0, #18H

; set initial condition
; FLAG=0 for QPSK
; set up data rate of timer2
; set up registers 15H and 16H to 0
; set up control register 1
; set up control register 2
; set up control register 3
; set up Normalization T count
; set up N count
; set up BER period LS byte
; BER(0CH,0BH,0AH)=0FFFF9CH for 1E+5
; BER(0CH,0BH,0AH)=0FFD8F0H for 1E+7
; set up BER period CS byte
; set up BER period MS byte
MOV R1,#00H
LCALL WR_Q0256

MOV R0,#06H ;set up control register 1
MOV R1,#04H
LCALL WR_Q0256

MOV R0,#06H
MOV R1,#06H
LCALL WR_Q0256

MOV R0,#07H ;set up control register 2
MOV R1,#30H
LCALL WR_Q0256

; set up the registers of STEL_2110A chip

MOV R0,#CONTROL
MOV A,#00H
MOVX @R0,A

MOV A,TST_DR
RL A
RL A
MOV DPTR,#JQPSK
JMP @A+DPTR

JQPSK:
LJMP OUT_QPSK ; A=0, N/A
NOP
LJMP QPSK_1200 ; data rate=1200 bps
NOP
LJMP QPSK_2400 ; data rate=2400 bps
NOP
LJMP QPSK_4800 ; data rate=4800 bps
NOP
LJMP QPSK_9600 ; data rate=9600 bps
NOP
LJMP QPSK_192 ; data rate=19200 bps
NOP

QPSK_1200:
CLR FLAG1
MOV R0,#12H ; set Bit Rate Control Register
MOV R1,#00H ; BRCR(12H,13H,14H)=00A7C6H
LCALL WR_S2110
MOV R0,#13H
MOV R1,#0A7H
LCALL WR_S2110
MOV R0,#14H
MOV R1,#0C6H
LCALL WR_S2110

MOV R0,#CONTROL
MOV A,#02H
MOVX @R0,A

MOV R0,#11H ; set Loop Gain Control Register LGCR(11H)=67H
MOV R1,#26H ; K1=(0111), K2=(0110)
LCALL WR_S2110

LJMP OUT_QPSK
QPSK_2400:
CLR FLAG1
MOV R0, #12H ; set Bit Rate Control Register
MOV R1, #01H ; BRCR(12H, 13H, 14H)=014F8BH
LCALL WR_S2110
MOV R0, #13H
MOV R1, #4FH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #8BH
LCALL WR_S2110
MOV R0, #CONTROL
MOV A, #02H
MOVX @R0, A
MOV R0, #11H ; set Loop Gain Control Register LGCR(11H)=78H
MOV R1, #37H ; K1=(1000), K2=(0111)
LCALL WR_S2110
LJMP OUT_QPSK

QPSK_4800:
SETB FLAG1
MOV R0, #12H ; set Bit Rate Control Register
MOV R1, #02H ; BRCR(12H, 13H, 14H)=029F17H
LCALL WR_S2110
MOV R0, #13H
MOV R1, #9FH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #17H
LCALL WR_S2110
MOV R0, #CONTROL
MOV A, #02H
MOVX @R0, A
MOV R0, #11H ; set Loop Gain Control Register LGCR(11H)=89H
MOV R1, #48H ; K1=(1001), K2=(1000)
LCALL WR_S2110
LJMP OUT_QPSK

QPSK_9600:
SETB FLAG1
MOV R0, #12H ; set Bit Rate Control Register
MOV R1, #05H ; BRCR(12H, 13H, 14H)=053E2DH
LCALL WR_S2110
MOV R0, #13H
MOV R1, #3EH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #2DH
LCALL WR_S2110
MOV R0, #CONTROL
MOV A, #02H
MOVX @R0, A
MOV R0, #11H ; set Loop Gain Control Register LGCR(11H)=9AH
MOV R1, #59H ; K1=(1010), K2=(1001)
LCALL WR $2110
LJMP OUT_QPSK

QPSK_192:
SETB FLAG1
MOV R0,#12H ;set Bit Rate Control Register
MOV R1,#0AH ;BRCR(12H,13H,14H)=0A7C5BH
LCALL WR $2110
MOV R0,#13H
MOV R1,#7CH
LCALL WR $2110
MOV R0,#14H
MOV R1,#5BH
LCALL WR $2110

MOV R0,#CONTROL
MOV A,#02H
MOVX @R0,A

MOV R0,#11H ;set Loop Gain Control Register LGCR(11H)=0ABH
MOV R1,#6AH ;K1=(1011), K2=(1010)
LCALL WR $2110

LJMP OUT_QPSK

OUT_QPSK:
MOV R0,#10H ;set Timing Control Register TCR(10H)=08H
MOV R1,#08H
LCALL WR $2110

MOV R0,#17H ;SET Mode Control Register MCR(17H)=81H
MOV R1,#81H
LCALL WR $2110

LJMP WWW

;***
**
; FUNCTION: OQPSK_TEST
;DESCRIPTION: This function runs the OQPSK modulator/demodulator.
;
;***
**
OQPSK_TEST:
MOV R4,FREQ ;set up carrier frequency
MOV R5,FREQ+1
MOV R6,FREQ+2
MOV R7,FREQ+3

;set up DDS registers of Q2334
MOV R0,#F_TO_P
MOV R1,#Q2334_REGS
LCALL MULT ;calculate what will be put into Q2334 register

MOV R0,#Q2334_BASE
MOV R1,#Q2334_REGS
MOV R2,#4

OQT1: MOV A,@R1
MOVX @R0, A ; put the result into the #1 of Q2334 chip
INC R1
INC R0
DJNZ R2, 0QT1

OQT2:
MOV R0, #Q2334_BASE+10H
MOV R1, #Q2334_REGS
MOV R2, #4
MOV A, @R1
MOVX @R0, A ; put the result into the #2 of Q2334 chip
INC R1
INC R0
DJNZ R2, 0QT2

MOV R0, #08H ; set up SMC register of #1(Q2334) to EPM
MOV R1, #02H
LCALL WR_Q2334

MOV R0, #18H ; set up SMC register of #2(Q2334) to EPM
MOV R1, #02H
LCALL WR_Q2334

MOV R0, #0AH ; set up AMC register of #1(Q2334) and
MOV R1, #0EH ; enable NRC and D/A = 12-bit
LCALL WR_Q2334

MOV R0, #1AH ; set up AMC register of #2(Q2334) and
MOV R1, #0EH ; enable NRC and D/A = 12-bit
LCALL WR_Q2334

MOV R0, #Q2334_BASE+0CH ; clear accumulator #1
MOVX @R0, A
MOV R0, #Q2334_BASE+1CH ; clear accumulator #2
MOVX @R0, A

; set control lines
MOV R0, #CONTROL
MOV A, #38H
MOVX @R0, A
MOV A, #30H
MOVX @R0, A

SETB INI ; set initial condition
CLR FLAG ; FLAG=0 for OQPSK
LCALL GET_DR ; set up data rate of timer2

; set up encoder registers of Q0256
MOV R0, #15H
MOV R1, #00H ; set up registers 15H and 16H to 0
LCALL WR_Q0256

MOV R0, #16H
MOV R1, #00H
LCALL WR_Q0256

MOV R0, #02H ; set up control register 1
MOV R1, #06H
LCALL WR_Q0256

MOV R0, #03H ; set up control register 2
MOV R1, #34H
LCALL WR_Q0256

MOV R0, #04H ; set up control register 3
MOV R1, #01H
LCALL WR_Q0256

MOV R0, #04H
MOV R1, #05H
LCALL WR_Q0256

MOV R0, #08H ; set up Normalization T count
MOV R1, #0FCH
LCALL WR_Q0256

MOV R0, #09H ; set up N count
MOV R1, #0F9H
LCALL WR_Q0256

MOV R0, #0AH ; set up BER period LS byte
MOV R1, #0FCH ; BER(0CH, 0BH, 0AH) = 0FFFF9CH for 1E+5
LCALL WR_Q0256 ; BER(0CH, 0BH, 0AH) = 0FFD8F0H for 1E+7

MOV R0, #0BH ; set up BER period CS byte
MOV R1, #0FFH
LCALL WR_Q0256

MOV R0, #0CH ; set up BER period MS byte
MOV R1, #0FFH
LCALL WR_Q0256

MOV R0, #17H
MOV R1, #00H
LCALL WR_Q0256

MOV R0, #18H
MOV R1, #00H
LCALL WR_Q0256

MOV R0, #06H ; set up control register 1
MOV R1, #04H
LCALL WR_Q0256

MOV R0, #06H
MOV R1, #06H
LCALL WR_Q0256

MOV R0, #07H ; set up control register 2
MOV R1, #30H
LCALL WR_Q0256

;set up the registers of STEL_2110A chip

MOV R0, #CONTROL
MOV A, #30H
MOVX @R0, A

MOV A, TST_DR
RL A
RL A
MOV DPTR, #JOQPSK
JMP @A+DPTR
JOQPSK: LJMP OUT_OQPSK ; A=0, N/A
NOPLJMP NOP NOP

OQPSK_1200:
CLR FLAG1 ; set Bit Rate Control Register
MOV R0,#12H ; BRCR(12H,13H,14H)=00A7C6H
MOV R1,#00H
LCALL WR_S2110
MOV R0,#13H
MOV R1,#0A7H
LCALL WR_S2110
MOV R0,#14H
MOV R1,#0C6H
LCALL WR_S2110
MOV R0,#CONTROL
MOV A,#32H
MOVX @R0,A
MOV R0,#11H ; set Loop Gain Control Register LGCR(11H)=67H
MOV R1,#26H
LCALL WR_S2110
LJMP OUT_OQPSK

OQPSK_2400:
CLR FLAG1 ; set Bit Rate Control Register
MOV R0,#12H ; BRCR(12H,13H,14H)=014F8BH
MOV R1,#01H
LCALL WR_S2110
MOV R0,#13H
MOV R1,#4FH
LCALL WR_S2110
MOV R0,#14H
MOV R1,#8BH
LCALL WR_S2110
MOV R0,#CONTROL
MOV A,#32H
MOVX @R0,A
MOV R0,#11H ; set Loop Gain Control Register LGCR(11H)=78H
MOV R1,#37H
LCALL WR_S2110
LJMP OUT_OQPSK

OQPSK_4800:
SETB FLAG1 ; set Bit Rate Control Register
MOV R0,#12H ; BRCR(12H,13H,14H)=029F17H
MOV R1,#02H

Page 11
LCALL WR_S2110
MOV R0, #13H
MOV R1, #9FH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #17H
LCALL WR_S2110

MOV R0, #CONTROL
MOV A, #32H
MO VX @R0, A

MOV R0, #11H
MOV R1, #48H
LCALL WR_S2110

LJMP OUT_OQPSK

OQPSK_9600:
 SETB FLAG1
 MOV R0, #12H
 MOV R1, #05H
 LCALL WR_S2110
 MOV R0, #13H
 MOV R1, #3EH
 LCALL WR_S2110
 MOV R0, #14H
 MOV R1, #2DH
 LCALL WR_S2110

MOV R0, #CONTROL
MOV A, #32H
MO VX @R0, A

MOV R0, #11H
MOV R1, #59H
LCALL WR_S2110

LJMP OUT_OQPSK

OQPSK_192:
 SETB FLAG1
 MOV R0, #12H
 MOV R1, #0AH
 LCALL WR_S2110
 MOV R0, #13H
 MOV R1, #7CH
 LCALL WR_S2110
 MOV R0, #14H
 MOV R1, #5BH
 LCALL WR_S2110

MOV R0, #CONTROL
MOV A, #32H
MO VX @R0, A

MOV R0, #11H
MOV R1, #6AH
LCALL WR_S2110

LJMP OUT_OQPSK
OUT_QPSK:
 MOV R0,#10H ;set Timing Control Register TCR(10H)=08H
 MOV R1,#08H
 LCALL WR_S2110
 MOV R0,#17H ;SET Mode Control Register MCR(17H)=81H
 MOV R1,#81H
 LCALL WR_S2110
 LJMP WWW
$EJECT

;***
**
;DESCRIPTION: This function runs the BPSK modulator/demodulator.
;
;***
**
;BPSK_TEST:
 MOV R4,FREQ ;set up carrier frequency
 MOV R5,FREQ+1
 MOV R6,FREQ+2
 MOV R7,FREQ+3
 ;set up DDS registers of Q2334
 MOV R0,#F_TO_P
 MOV R1,#Q2334_REGS
 LCALL MULT ;calculate what will be put into Q2334 register
 MOV R0,#Q2334_BASE
 MOV R1,#Q2334_REGS
 MOV R2,#4
 BT1: MOV A,#R1
 MOVX @R0,A ;put the result into the #1 of Q2334 chip
 INC R1
 INC R0
 DJNZ R2,BT1
 MOV R0,#08H ;set up SMC register of #1(Q2334) to EPM
 MOV R1,#02H
 LCALL WR_Q2334
 MOV R0,#0AH ;set up AMC register of #1(Q2334) and
 MOV R1,#0EH ;enable NRC and D/A = 12-bit
 LCALL WR_Q2334
 MOV R0,#Q2334_BASE+0CH ;clear accumulator #1
 MOVX @R0,A
 MOV R0,#Q2334_BASE+1CH ;clear accumulator #2
 MOVX @R0,A
 MOV R0,#Q2334_BASE+10H ;clear A register of #2
 MOV A,#00H
 MOV R2,#4
 BCLR_A: MOVX @R0,A
 INC R0
 DJNZ R2,BCLR_A
MOV R0,#Q2334_BASE+1AH ;clear AMC register of #2
MOV A,#0FH
MOVX @R0,A

;set control lines
MOV R0,#CONTROL
MOV A,#4DH
MOVX @R0,A
MOV A,#45H
MOVX @R0,A
SETB INI ;set initial condition
SETB FLAG ;FLAG=1 for BPSK
LCALL GET_DR ;set up data rate of timer2

;set up encoder registers of Q0256
MOV R0,#15H
MOV R1,#00H
LCALL WR_Q0256 ;set up registers 15H and 16H to 0

MOV R0,#16H
MOV R1,#00H
LCALL WR_Q0256

MOV R0,#02H
MOV R1,#05H
LCALL WR_Q0256 ;set up control register 1

MOV R0,#03H
MOV R1,#30H
LCALL WR_Q0256 ;set up control register 2

MOV R0,#04H
MOV R1,#01H
LCALL WR_Q0256 ;set up control register 3

MOV R0,#04H
MOV R1,#05H
LCALL WR_Q0256

MOV R0,#08H
MOV R1,#0FCH
LCALL WR_Q0256 ;set up Normalization T count

MOV R0,#0AH ;set up BER period MS byte
MOV R1,#0F9H
LCALL WR_Q0256 ;BER(0CH,0BH,0AH)=0FFFF9CH for 1E+5

MOV R0,#0BH ;set up BER period CS byte
MOV R1,#0FFH
LCALL WR_Q0256 ;BER(0CH,0BH,0AH)=0FFD8F0H for 1E+7

MOV R0,#0CH ;set up BER period LS byte
MOV R1,#0FCH
LCALL WR_Q0256

MOV R0,#0AH ;set up BER period LS byte
MOV R1,#0FFCH ;BER(0CH,0BH,0AH)=0FFFF9CH for 1E+5
LCALL WR_Q0256 ;BER(0CH,0BH,0AH)=0FFD8F0H for 1E+7
MOV R1, #0FFH
LCALL WR_Q0256

MOV R0, #17H
MOV R1, #00H
LCALL WR_Q0256

MOV R0, #18H
MOV R1, #00H
LCALL WR_Q0256

MOV R0, #06H ; set up control register 1
MOV R1, #05H
LCALL WR_Q0256

MOV R0, #06H
MOV R1, #07H
LCALL WR_Q0256

MOV R0, #07H ; set up control register 2
MOV R1, #30H
LCALL WR_Q0256

; set up the registers of STEL_2110A chip

MOV R0, #CONTROL
MOV A, #45H
MO VX @R0, A

MOV A, TST DR
RL A
RL A
MOV DPTR, #JBPSK
JMP @A+DPTR

JBPSK: LJMP OUT_BPSK ; A=0, N/A
 NOP
 LJMP BPSK_1200 ; data rate=1200 bps
 NOP
 LJMP BPSK_2400 ; data rate=2400 bps
 NOP
 LJMP BPSK_4800 ; data rate=4800 bps
 NOP
 LJMP BPSK_9600 ; data rate=9600 bps
 NOP
 LJMP BPSK_192 ; data rate=19200 bps
 NOP

BPSK_1200:
 CLR FLAG1 ; set Bit Rate Control Register
 MOV R0, #12H
 MOV R1, #01H
 LCALL WR_S2110
 MOV R0, #13H
 MOV R1, #4FH
 LCALL WR_S2110
 MOV R0, #14H
 MOV R1, #8BH
 LCALL WR_S2110
 MOV R0, #CONTROL
 MOV A, #47H

MOVX @R0, A
MOV R0, #11H ; set Loop Gain Control Register LGCR(11H)=78H
MOV R1, #78H
LCALL WR_S2110
LJMP OUT_BPSK

BPSK_2400:
CLR FLAG1
MOV R0, #12H ; set Bit Rate Control Register
MOV R1, #02H ; BRCR(12H,13H,14H)=02F17H
LCALL WR_S2110
MOV R0, #13H
MOV R1, #9FH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #17H
LCALL WR_S2110
MOV R0, #CONTROL
MOV A, #47H
MOVX @R0, A
MOV R0, #11H ; set Loop Gain Control Register LGCR(11H)=89H
MOV R1, #89H
LCALL WR_S2110
LJMP OUT_BPSK

BPSK_4800:
SETH FLAG1
MOV R0, #12H ; set Bit Rate Control Register
MOV R1, #05H ; BRCR(12H,13H,14H)=053E2DH
LCALL WR_S2110
MOV R0, #13H
MOV R1, #3EH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #2DH
LCALL WR_S2110
MOV R0, #CONTROL
MOV A, #47H
MOVX @R0, A
MOV R0, #11H ; set Loop Gain Control Register LGCR(11H)=9AH
MOV R1, #9AH
LCALL WR_S2110
LJMP OUT_BPSK

BPSK_9600:
SETH FLAG1 ; set Bit Rate Control Register
MOV R0, #12H ; BRCR(12H,13H,14H)=0A7C5BH
MOV R1, #0AH
LCALL WR_S2110
MOV R0, #13H
MOV R1, #7CH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #5BH
MDCOB.A51

LCALL WR_S2110
MOV R0,#CONTROL
MOV A,#47H
MO VX @R0,A
MOV R0,#11H ;set Loop Gain Control Register LGCR(11H)=0ABH
MOV R1,#0ABH
LCALL WR_S2110
LJMP OUT_BPSK

BPSK_192:
SETB FLAG1 ;set Bit Rate Control Register
MOV R0,#12H
MOV R1,#14H
LCALL WR_S2110
MOV R0,#13H
MOV R1,#0F8H
LCALL WR_S2110
MOV R0,#14H
MOV R1,#0B6H
LCALL WR_S2110
MOV R0,#CONTROL
MOV A,#47H
MO VX @R0,A
MOV R0,#11H ;set Loop Gain Control Register LGCR(11H)=0BCH
MOV R1,#0BCH
LCALL WR_S2110
LJMP OUT_BPSK

OUT_BPSK:
MOV R0,#10H ;set Timing Control Register TCR(10H)=08H
MOV R1,#08H
LCALL WR_S2110
MOV R0,#17H ;SET Mode Control Register MCR(17H)=81H
MOV R1,#81H
LCALL WR_S2110
LJMP WWW

$EJECT

;***
**
;FUNCTION: MSK_TEST
;DESCRIPTION: This function runs the MSK modulator/demodulator.

;***
**
;MSK_TEST:
MOV R4,FREQ ;set up carrier frequency
MOV R5,FREQ+1
MOV R6,FREQ+2
MOV R7,FREQ+3

;set up DDS registers of Q2334
MOV R0, #F_TO_P
MOV R1, #FREQ1
LCALL MULT ;calculate the phase increment for 4.8 MHZ
;and put result into FREQ1+0--FREQ1+3

SETB FLAG ;FLAG=1 for MSK
LCALL GET_DR ;get data rate and offset 1/4 data rate holds
;in 4 registers: R7, R6, R5, R4.

MOV R0, #F_TO_P ;calculate the phase increment for 1/4 data rate
MOV R1, #FREQ2MULT
LCALL MULT ;and put result into FREQ2+0--FREQ2+3

LCALL CALC_MSK ;calculate 2 frequencies f+ and f-, then send to
;DDS.

MOV R0, #08H ;set up SMC register of #1(Q2334)
MOV R1, #04H
LCALL WR_Q2334

MOV R0, #0AH
LCALL WR_Q2334

MOV R0, #Q2334_BASE+0CH ;clear accumulator #1
MOVX @R0, A
MOV R0, #Q2334_BASE+1CH ;clear accumulator #2
MOVX @R0, A

MOV R0, #Q2334_BASE+10H ;clear A register of #2
MOV A, #00H
MOV R2, #4
MCLR_A: MOVX @R0, A
INC R0
DJNZ R2, MCLR_A

MOV R0, #Q2334_BASE+18H ;clear SMC register of #2
MOV A, #00H
MOVX @R0, A
MOV R0, #Q2334_BASE+1AH ;clear AMC register of #2
MOV A, #0FH
MOVX @R0, A

;set control lines

SETB INI ;set initial condition

MOV R0, #CONTROL
MOV A, #0CCH
MOVX @R0, A
MOV A, #0C4H
MOVX @R0, A

;set up encoder registers of #0256

MOV R0, #15H
MOV R1, #00H ;set up registers 15H and 16H to 0
LCALL WR_Q0256

MOV R0, #16H
MOV R1, #00H
MDCOB.A51

LCALL WR_Q0256
MOV R0, #02H ; set up control register 1
MOV R1, #04H
LCALL WR_Q0256

MOV R0, #03H ; set up control register 2
MOV R1, #04H
LCALL WR_Q0256

MOV R0, #04H ; set up control register 3
MOV R1, #01H
LCALL WR_Q0256

MOV R0, #04H ; set up control register 3
MOV R1, #05H
LCALL WR_Q0256

MOV R0, #08H ; set up Normalization T count
MOV R1, #0FH
LCALL WR_Q0256

MOV R0, #09H ; set up N count
MOV R1, #0FH
LCALL WR_Q0256

MOV R0, #0AH ; set up BER period LS byte
MOV R1, #0FH
LCALL WR_Q0256 ; BER(0CH,0BH,0AH)=0FFFF9CH for IE+5
;
LCALL WR_Q0256 ; BER(0CH,0BH,0AH)=0FFD8F0H for IE+7

MOV R0, #0BH ; set up BER period CS byte
MOV R1, #0FH
LCALL WR_Q0256

MOV R0, #0CH ; set up BER period MS byte
MOV R1, #0FH
LCALL WR_Q0256

MOV R0, #17H
MOV R1, #00H
LCALL WR_Q0256

MOV R0, #18H
MOV R1, #00H
LCALL WR_Q0256

MOV R0, #06H ; set up control register 1
MOV R1, #04H
LCALL WR_Q0256

MOV R0, #06H
MOV R1, #04H
LCALL WR_Q0256

MOV R0, #07H ; set up control register 2
MOV R1, #03H
LCALL WR_Q0256

: set up the registers of STEL_2110A chip

MOV R0, #CONTROL
MOV A, #0C4H
MOVX @R0, A
MOV A, TST_DR
RL A
RL A
MOV DPTR, #JMSK
JMP @A+DPTR

JMSK: LJMP OUT_MSK ; A=0, N/A
NOP
LJMP MSK_1200 ; data rate=1200 bps
NOP
LJMP MSK_2400 ; data rate=2400 bps
NOP
LJMP MSK_4800 ; data rate=4800 bps
NOP
LJMP MSK_9600 ; data rate=9600 bps
NOP
LJMP MSK_192 ; data rate=19200 bps
NOP

MSK_1200:
CLR FLAG1
MOV R0, #12H ; set Bit Rate Control Register
MOV R1, #01H
LCALL WR_S2110
MOV R0, #13H
MOV R1, #4FH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #8BH
LCALL WR_S2110
MOV R0, #CONTROL
MOV A, #0C6H
MOVX @R0, A
MOV R0, #12H ; set Loop Gain Control Register LGCR(12H)=67H
MOV R1, #11H
LCALL WR_S2110
LJMP OUT_MSK

MSK_2400:
CLR FLAG1
MOV R0, #12H ; set Bit Rate Control Register
MOV R1, #02H ; BRCR(12H,13H,14H)=014F8BH
LCALL WR_S2110
MOV R0, #13H
MOV R1, #9FH
LCALL WR_S2110
MOV R0, #14H
MOV R1, #17H
LCALL WR_S2110
MOV R0, #CONTROL
MOV A, #0C6H
MOVX @R0, A
MOV R0, #11H ; set Loop Gain Control Register LGCR(11H)=78H
MOV R1, #89H
LCALL WR_S2110

<data rate=1200 bps
<data rate=2400 bps
<data rate=4800 bps
<data rate=9600 bps
<data rate=19200 bps

; set Bit Rate Control Register BRCR(12H,13H,14H)=00A7C6H
; set Loop Gain Control Register LGCR(12H)=67H
; set Loop Gain Control Register LGCR(11H)=78H

LJMP OUT_MSK

MSK_4800:
SETB FLAG1
MOV R0,#12H ; set Bit Rate Control Register
MOV R1,#05H ; BRCR(12H,13H,14H)=029F17H
LCALL WR_S2110
MOV R0,#13H
MOV R1,#3EH
LCALL WR_S2110
MOV R0,#14H
MOV R1,#2DH
LCALL WR_S2110
MOV R0,#CONTROL
MOV A,#0C6H
MOVX @R0,A

MOV R0,#11H ; set Loop Gain Control Register LGCR(I1H)=89H
MOV R1,#0AH
LCALL WR_S2110

LJMP OUT_MSK

MSK_9600:
SETB FLAG1
MOV R0,#12H ; set Bit Rate Control Register
MOV R1,#05H ; BRCR(12H,13H,14H)=053E2DH
LCALL WR_S2110
MOV R0,#13H
MOV R1,#7CH
LCALL WR_S2110
MOV R0,#14H
MOV R1,#5BH
LCALL WR_S2110

MOV R0,#CONTROL
MOV A,#0C6H
MOVX @R0,A

MOV R0,#11H ; set Loop Gain Control Register LGCR(I1H)=9AH
MOV R1,#0AH
LCALL WR_S2110

LJMP OUT_MSK

MSK_192:
SETB FLAG1
MOV R0,#12H ; set Bit Rate Control Register
MOV R1,#14H ; BRCR(12H,13H,14H)=0A7C5BH
LCALL WR_S2110
MOV R0,#13H
MOV R1,#0F8H
LCALL WR_S2110
MOV R0,#14H
MOV R1,#0B6H
LCALL WR_S2110

MOV R0,#CONTROL
MOV A,#0C6H
MOVX @R0,A

Page 21
MOV R0,#11H ; set Loop Gain Control Register LGCR(11H)=0ABH
MOV R1,#0BCH
LCALL WR_S2110
LJMP OUT_MSK

OUT_MSK:
MOV R0,#10H ; set Timing Control Register TCR(10H)=08H
MOV R1,#08H
LCALL WR_S2110
MOV R0,#17H ; SET Mode Control Register MCR(17H)=81H
MOV R1,#81H
LCALL WR_S2110
LJMP WWW

$EJECT

;***
; *FUNCTION: CALC_MSK
; *DESCRIPTION:This function is called to do the computations and set up the
; * DDS chip for MSK modulation.
; * (1) FREQ1 holds the 32-bit number to send to DDS for basic carrier.
; * (2) FREQ2 holds the +/- offset that must be added/substructed from
; * the basic carrier.
; * PIRA and PIRB registers will be set for MSK.
;***

CALC_MSK:
MOV R3,#00H ; address of PIRA register (DDS#1)
MOV R0,#FREQ1
MOV R1,#FREQ2
MOV R4,#4
CLR C

CM1: MOV A,@R0
SUBB A,@R1
XCH A,R1
XCH A,R3
XCH A,R0
PUSH ACC
PUSH PSW
LCALL WR_Q2334
POP PSW
POP ACC
XCH A,R0
XCH A,R3
XCH A,R1
INC R0
INC R1
INC R3
DJNZ R4,CM1
MOV R0,#FREQ1 ; put FREQ1-FREQ2 in PIRA register (fc-1/4T)
MOV R1,#FREQ2
MOV R4,#4
CLR C

CM2: MOV A,@R0
ADDC A,@R1
XCH A,R1
MOV R0,#FREQ1 ; put FREQ1+FREQ2 in PIRB register (fc+1/4T)
MOV R1,#FREQ2
MOV R4,#4
CLR C

Page 22
XCH A, R3
XCH A, R0
PUSH ACC
PUSH PSW
LCALL WR_Q2334
POP PSW
POP ACC
XCH A, R0
XCH A, R3
XCH A, R1
INC R0
INC R1
INC R3
DJNZ R4, CM2
RET

$EJECT

;**

;FUNCTION: MULT

;DESCRIPTION: The function MULT multiplies the 4-byte number in R4-R7 by the
;5-byte number pointed to by R0 (F TO P). It is assumed that the
;product will be no longer than 7 bytes. The least significant 3
;bytes are dropped, (corresponding to a divide by 2^24) and the
;remaining 4-byte number is placed in the location pointed to by
;R1.

;**

MULT:

PUSH AR0
MOV R0, #07H
MI: MOV @R0, #00H
INC R0
DJNZ R2, MI
POP AR0
PUSH AR1
MOV R1, #05H
MULT_DIG
INC R1
MOV A, R5
MULT_DIG
INC R1
MOV A, R6
MULT_DIG
INC R1
MOV A, R7
MULT_DIG
INC R1
RET

;first, zero the product space (TMP0-6)

;first, multiply by byte #1

;then, multiply by byte #2

;then, multiply by byte #3

;then, multiply by byte #4
MOV R3, #04H
LCALL MULT DIG

POP AR1 ; recover where we want to put result (TMP3-6)
MOV A, TMP+3
MOV @R1, A
INC R1
MOV A, TMP+4
MOV @R1, A
INC R1
MOV A, TMP+5
MOV @R1, A
INC R1
MOV A, TMP+6
MOV @R1, A

; FUNCTION: MULT_DIG
; DESCRIPTION: The function MULT_DIG is a general purpose multiplication routine. It multiplies a single byte by an arbitrarily large number.
; R0=location of multiplier, R1=location of product
; R2=single_byte multiplier, R3=# of bytes to multiply

MULT DIG:

PUSH AR0 ; want to return with R0 & R1 unchanged
PUSH AR1

MD1: MOV B, R2 ; get the byte we're multiplying by
MOV A, @R0
MUL AB
ADD A, @R1
MOV @R1, A
INC R1
MOV A, B
ADDCC A, @R1
MOV @R1, A
PUSH AR1
MOV A, #0

MD2: JNC MD3
INC R1
ADDCC A, @R1
MOV @R1, A
SJMP MD2

MD3: POP AR1
INC R0
DJNZ R3, MD1
POP AR1
POP AR0
RET

; FUNCTION: WR Q2334
; DESCRIPTION: The function WR Q2334 writes a new value to a port of Q2334
; R0=port number, R1=value

;;FUNCTION: WR_Q2334
;;DESCRIPTION: The function WR_Q2334 writes a new value to a port of Q2334
;;and its software copies.
;;
;;PUSH AR0
;;PUSH AR1
;ADD A, #Q2334_BASE
;MOV R0, A
;MOV A, R1
;MOVX @R0, A
;POP AR1
;POP AR0
;REtn

$EJECT

;;FUNCTION: WR_Q0256
;;DESCRIPTION: The function WR_Q0256 writes a new value to a port of Q0256
;;and its software copies.
;;
;;PUSH AR0
;;PUSH AR1
;ADD A, #Q0256_BASE
;MOV R0, A
;MOV A, R1
;MOVX @R0, A
;POP AR1
;POP AR0
;REtn

$EJECT

;;FUNCTION: WR_S2110
;;DESCRIPTION: The function WR_S2110 writes a new value to a port of STEL-2110A
;;and its software copies.
;;
;;PUSH AR0
;;PUSH AR1
;ADD A, #S2110_BASE
;MOV R0, A
;MOV A, R1
;MOVX @R0, A
;POP AR1
;POP AR0
;REtn
$EJECT

GET_DR: SETB
 NOP
 NOP
 MOV A,P1
 JZ WWW7
 MOV R1,#00H

WWW6: INC R1
 MOV R0,A
 ANL A,#01H
 JNZ WWW8
 MOV A,R0
 RR A
 SJMP WWW6

WWW7: MOV R1,#00H

WWW8: MOV A,R1
 RL A
 RL A
 MOV DPTR,#JMPDR
 JMP @A+DPTR

JMPDR: LJMP OUT_DR
 NOP
 LJMP DR_1200
 NOP
 LJMP DR_2400
 NOP
 LJMP DR_4800
 NOP
 LJMP DR_9600
 NOP
 LJMP DR_192

DR_1200:JB FLAG,DR12_1
 ;set timer2 for 1200 bps
 MOV RCAP2L,#80H
 MOV RCAP2H,#0FEH
 SJMP DR12_2

DR12_1: MOV RCAP2L,#40H
 MOV RCAP2H,#0FFH
 MOV R4,#58H
 MOV R5,#02H
 MOV R6,#00H
 MOV R7,#00H

DR12_2: MOV TST_DR,#01H
 ;TST_DR=1 (1200 bps)
 LJMP OUT_DR

DR_2400:JB FLAG,DR24_1
 ;set timer2 for 2400 bps
 MOV RCAP2L,#40H
 MOV RCAP2H,#0FFH
 SJMP DR24_2

DR24_1: MOV RCAP2L,#0A0H
 MOV RCAP2H,#0FFH
 MOV R4,#60H

;valid input, recover number of the selection
;data rate=1200 bps
;data rate=2400 bps
;data rate=4800 bps
;data rate=9600 bps
;data rate=19200 bps
;set timer2 for 1200 bps
;QPSK (1/2 R) (NOTE:TL2 &TH2)
;QPSK, MSK, BPSK (R)
;TST_DR=1 (1200 bps)
;QPSK (1/2 R)
;QPSK, MSK, BPSK (R)
MDCOB.A51

FUNCTION: INIT_Q2334

DESCRIPTION: This routine is called on reset to initialize all the registers in the DDS chip.

INIT_Q2334:

```assembly
MOV R0, #00H
MOV R1, #00H
```

OUT_DR: RET

$EJECT
ID1:
LDCALL WR_Q2334 ;fill #1 frequency registers with 0
INC R0
CJNE R0,#8H,ID1

MOV R0,#10H
LDCALL WR_Q2334 ;fill #2 frequency registers with 0
INC R0
CJNE R0,#18H,ID2

MOV R0,#08H ;clear #1, mode_ctr1 (SMC)
LDCALL WR_Q2334
MOV R0,#18H ;clear #2, mode_ctr2 (SMC)
LDCALL WR_Q2334

MOV R1,#00H
MOV R0,#0AH
LDCALL WR_Q2334 ;clear #1 AMC
MOV R0:#1AH
LDCALL WR_Q2334 ;clear #2 AMC

MOV R0,#Q2334_BASE+0CH ;clear #1, accumulator
MO VX @R0,A
MOV R0,#Q2334_BASE+1CH ;clear #2, accumulator
MO VX @R0,A

MOV R0,#Q2334_BASE+0EH ;update
MO VX @R0,A
MOV R0,#Q2334_BASE+1EH ;update
MO VX @R0,A

RET

;***
* FUNCTION: INIT_Q0256
;DESCRIPTION: This routine is called on reset to initialize all the registers.
;***
*
INIT_Q0256:

MOV R0,#04H
MOV R1,#04H
LDCALL WR_Q0256

MOV R0,#06H
MOV R1,#02H
LDCALL WR_Q0256

MOV R0,#00H
MOV R1,#00H

ID3:
LDCALL WR_Q0256
MOV R1,#00H
INC R0
CJNE R0,#0DH,ID3

RET

;***
* FUNCTION: INIT_S2110
**
DESCRIPTION: This routine is called on reset to initialize all the registers

INIT_S2110:

```
MOV R0, #S2110_BASE+00H ; set Timing Control Register TCR(10H)=01H
MOV A, #01H
MOVX @R0, A

MOV R0, #S2110_BASE+01H ; set Loop Gain Control Register LGCR(1H)=B7H
MOV A, #0B7H
MOVX @R0, A

MOV R0, #S2110_BASE+02H ; set Bit Rate Control Register BRCR(12H,13H,14H)=000000H
MOV A, #00H
MOVX @R0, A

MOV R0, #S2110_BASE+03H
MOVX @R0, A

MOV R0, #S2110_BASE+04H
MOVX @R0, A

MOV R0, #S2110_BASE+07H ; set Mode Control Register MCR(17H)=81H

MOVX @R0, A
```

FUNCTION: T2_INT

```
; DESCRIPTION: This is the TIMER2 Interrupt service routine. It is used to precisely time writes to the DDS (Q2334) chip to run the modulations. INT=1 ; for initial tim, and INT=0 ; for other times ENCCLKOUT=1 ; for no signal, and ENCCLKOUT=0 ; for signal in
```

T2_INT:

```
CLR TF2 ; clear timer2 interrupt flag
SETB RUN
SETB CLOCK1
JB FLAG1, CCC
NOP
RET
```
NOP
NOP
NOP
CCC: CLR CLOCK1
SETB CLOCK
CLR CLOCK
RETI
$EJECT
END

; end of the program
PLL.A51

$DATE(02/24/93)
$TITLE(PLL.A51, VERSION 2.0, BY DONG WU)
$OBJECT(C:\WU\PLL.OBJ)
$ERRORPRINT(C:\WU\PLL.ERR)
$PRINT(C:\WU\PLL.LST)
$XREF
$NOMOD51
$INCLUDE(REG52.INC)
$EJECT

; Equates and Memory-Mapped I/O Addresses
Q2334_BASE EQU 00H ; external RAM address of the Q2334 register #0
PMCLK BIT P3.0
MODE BIT P3.1
HOPCLK BIT P3.3
TT0 BIT P3.4
TT1 BIT P3.5

USING 0 ; inform assembler that we will use reg. bank 0

Data Byte Segment (Internal RAM)
DSEG AT 28H
Q2334_REGS: DS 8
DF: DS 8 ; area keeping for digital filter calculation
DFCA: DS 8
DFCAI: DS 8
Q2334_REGS1: DS 8
Q2334_REGS2: DS 8
DATA1: DS 1
DATA2: DS 1
STACK: DS 0 ; stack starts just above the data area

Data Bit Segment (Internal RAM)
BSEG AT 0 ; position DATA-BITS segment at address 20H
INI1: DBIT 1 ; initial flag
INI2: DBIT 1
$EJECT
; Define the Interrupt Vectors

;**
; FUNCTION: START
;**

START: MOV IE,#00H
 MOV SP,#STACK
 MOV PSW,#00H
 MOV TCON,#00H
 LCALL INIT_Q2334
 SETB IT0
 MOV IP,#00H
 SETB PX0
 JNB MODE,PL
 SJMP PP
 LJMP PLLL

PP: SETB TT0
 SETB TT1
 NOP
 NOP
 MOV A,P1
 JZ DDD3
 MOV R1,#00H

$EJECT

PAGE 2
LLL.A51

DDD2: INC R1
 MOV R0, A
 ANL A, #01H
 JNZ DDD4
 MOV A, R0
 RR A
 SJMP DDD2

DDD3: MOV R1, #00H

DDD4: MOV A, R1
 RL A
 PL A
 MOV DPTR, #TLQD
 JMP @A+DPTR

TLQD: LJMP M_LOOP
 NOP
 LJMP RATED1
 NOP
 LJMP RATED2
 NOP
 LJMP RATED3
 NOP
 LJMP RATED4
 NOP
 LJMP RATED5

RATED1: MOV Q2334_REGS, #8FH
 MOV Q2334_REGS+1, #070H
 MOV Q2334_REGS+2, #0B2H
 MOV Q2334_REGS+3, #28H
 LCALL W2
 SJMP COM

RATED2: MOV Q2334_REGS, #8FH
 MOV Q2334_REGS+1, #070H
 MOV Q2334_REGS+2, #0B2H
 MOV Q2334_REGS+3, #28H
 LCALL W2
 SJMP COM

RATED3: MOV Q2334_REGS, #8FH
 MOV Q2334_REGS+1, #070H
 MOV Q2334_REGS+2, #072H
 MOV Q2334_REGS+3, #28H
 LCALL W2
 SJMP COM

RATED4: MOV Q2334_REGS, #8FH
 MOV Q2334_REGS+1, #070H
 MOV Q2334_REGS+2, #0B2H
 MOV Q2334_REGS+3, #28H
 LCALL W2
 SJMP COM

RATED5: MOV Q2334_REGS, #8FH
 MOV Q2334_REGS+1, #070H
 MOV Q2334_REGS+2, #0B2H
 MOV Q2334_REGS+3, #28H
 LCALL W2
PLL.A51

SJMP COM

COM:
MOV R0,#08H
MOV R1,#00H
LCALL WR_Q2334

MOV R0,#18H
MOV R1,#00H
LCALL WR_Q2334

MOV R0,#0AH
MOV R1,#0EH
LCALL WR_Q2334

MOV R0,#1AH
MOV R1,#0EH
LCALL WR_Q2334

SETB PMCLK
NOP
NOP
CLR PMCLK

SETB HOPCLK
NOP
NOP
CLR HOPCLK

LJMP WWW

PLL:
MOV Q2334_REGS,#8FH
MOV Q2334_REGS+1,#0DH
MOV Q2334_REGS+2,#0F6H
MOV Q2334_REGS+3,#28HW
LCALL W2

MOV R0,#08H
MOV R1,#02H
LCALL WR_Q2334

MOV R0,#18H
MOV R1,#02H
LCALL WR_Q2334

MOV R0,#0AH
MOV R1,#0EH
LCALL WR_Q2334

MOV R0,#1AH
MOV R1,#0EH
LCALL WR_Q2334

SETB PMCLK
NOP
NOP
CLR PMCLK

SETB HOPCLK
NOP
NOP
CLR HOPCLK

Page 4
CLR
SETB
NOP
NOP
MOV A, P1
JZ DD3
MOV R1, #00H

DD2:
INC R1
MOV R0, A
ANL A, #01H
JNZ DD4
MOV A, R0
RR A
SJMP DD2

DD3:
MOV R1, #00H

DD4:
MOV A, R1
RL A
RL A
MOV DPTR, #TL
JMP @A+DPTR

TL:
LJMP M_LOOP
NOP
LJMP QPSKTL
NOP
LJMP QPSKTL
NOP
LJMP MSKTL
NOP
LJMP BPSKTL
NOP

DD:
SETB EA
SETB EX0

WWW:
NOP
NOP
SJMP WWW

$EJECT

M_LOOP: LJMP START
$EJECT

QPSKTL:
SETB TT0
SETB TT1
NOP
NOP
MOV A, P1
JZ DD31
MOV R1, #00H

DD21:
INC R1
MOV R0, A
ANL A, #01H
JNZ DD41
MOV A, R0
RR A
SJMP DD21

DD31: MOV R1,#00H

DD41: MOV A,R1
RL A
RL A
MOV DPTR,#TLQ
JMP @A+DPTR

TLQ: LJMP M_LOOP
NOP
LJMP RATE11
NOP
LJMP RATE21
NOP
LJMP RATE31
NOP
LJMP RATE41
NOP
LJMP RATE51

RATE11: MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE21: MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE31: MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE41: MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE51: MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

$EJECT

OQPSKTL: SETB TT0
SETB TT1
NOP
NOP
MOV A,P1
JZ DD32
MOV R1,#00H

DD22: INC R1
MOV R0,A
ANL A,#01H
JNZ DD42
MOV A,R0
RR A
SJMP DD22

DD32: MOV R1,#00H

Page 6
DD42:
 MOV A, R1
 RL A
 RL A
 MOV DPTR, #TLO
 JMP @A+DPTR

TLO:
 LJMP M_LOOP
 NOP
 LJMP RATE12
 NOP
 LJMP RATE22
 NOP
 LJMP RATE32
 NOP
 LJMP RATE42
 NOP
 LJMP RATE52
 NOP

RATE12:
 MOV DATA1, #20H
 MOV DATA2, #10H
 LJMP DD

RATE22:
 MOV DATA1, #20H
 MOV DATA2, #10H
 LJMP DD

RATE32:
 MOV DATA1, #20H
 MOV DATA2, #10H
 LJMP DD

RATE42:
 MOV DATA1, #20H
 MOV DATA2, #10H
 LJMP DD

RATE52:
 MOV DATA1, #20H
 MOV DATA2, #10H
 LJMP DD

$EJECT

MSKTL:
 SETB TT0
 SETB TT1
 NOP
 NOP
 MOV A, P1
 JZ DD33
 MOV R1, #00H

DD23:
 INC R1
 MOV R0, A
 ANL A, #01H
 JNZ DD43
 MOV A, R0
 RR A
 SJMP DD23

DD33:
 MOV R1, #00H

DD43:
 MOV A, R1
 RL A
PLL.A51

TLM:

LJMP _LOOP
NOP
LJMP RATE13
NOP
LJMP RATE23
NOP
LJMP RATE33
NOP
LJMP RATE43
NOP
LJMP RATE53
NOP

RATE13:

MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE23:

MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE33:

MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE43:

MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

RATE53:

MOV DATA1,#20H
MOV DATA2,#10H
LJMP DD

$EJECT

BPSKTL:

SETB TT0
SETB TT1
NOP
NOP
MOV A,P1
JZ DD34
MOV R1,#00H

DD24:

INC R1
MOV R0,A
ANL A,#01H
JNZ DD44
MOV A,R0
RR A
SJMP DD24

DD34:

MOV R1,#00H

DD44:

MOV A,R1
RL A
RL A
MOV DPTR,#TLM
JMP @A+DPTR
PLL.A51

TLB: LJMP M_LOOP
 NOP
 LJMP RATE14
 NOP
 LJMP RATE24
 NOP
 LJMP RATE34
 NOP
 LJMP RATE44
 NOP
 LJMP RATE54

RATE14: MOV DATA1,#20H
 MOV DATA2,#10H
 LJMP DD

RATE24: MOV DATA1,#20H
 MOV DATA2,#10H
 LJMP DD

RATE34: MOV DATA1,#20H
 MOV DATA2,#10H
 LJMP DD

RATE44: MOV DATA1,#20H
 MOV DATA2,#10H
 LJMP DD

RATE54: MOV DATA1,#20H
 MOV DATA2,#10H
 LJMP DD

SEJECT

CAL: SETB INIT
 PUSH Q2334_REGS+3
 PUSH Q2334_REGS+2
 PUSH Q2334_REGS+1
 PUSH Q2334_REGS
 CLR TT0
 CLR TT1
 NOP
 NOP
 MOV DF+1,P1
 SETB TT0
 CLR TT1
 NOP
 NOP
 MOV DF,P1
 MOV A,DF+1
 ANL A,#80H
 JZ W1
 MOV A,DF+1
 XRL A,#0FFH
 MOV DF+3,A
 MOV A,DF
XRL A, #OFFH
MOV DF+2, A

MOV R0, #DF+2
MOV R1, #Q2334_REGS1
MOV R2, DATA1
LCALL MULT

MOV R1, #Q2334_REGS
MOV R0, #Q2334_REGS1
LCALL AD
LCALL W2

POP Q2334_REGS
POP Q2334_REGS+1
POP Q2334_REGS+2
POP Q2334_REGS+3

MOV R0, #DF+2
MOV R1, #Q2334_REGS2
MOV R2, DATA2
LCALL MULT1

MOV R1, #Q2334_REGS
MOV R0, #Q2334_REGS2
LCALL AD1
LJMP W3

W1:
MOV A, DF+1
MOV DF+5, A
MOV A, DF
MOV DF+4, A

MOV R0, #DF+4
MOV R1, #Q2334_REGS1
MOV R2, DATA1
LCALL MULT

MOV R1, #Q2334_REGS
MOV R0, #Q2334_REGS1
LCALL SB
LCALL W2

POP Q2334_REGS
POP Q2334_REGS+1
POP Q2334_REGS+2
POP Q2334_REGS+3

MOV R0, #DF+4
MOV R1, #Q2334_REGS2
MOV R2, DATA2
LCALL MULT1

MOV R1, #Q2334_REGS
MOV R0, #Q2334_REGS2
LCALL SB1

W3:
SETB HOPCLK ; strobe HOPCLK so this setup takes affect
NOP
NOP
CLR HOPCLK
SETB PMCLK
NOP
NOP
CLR PMCLK
SETB INI2
RETI

$EJECT

W2:
MOV R0,#Q2334_BASE
MOV R1,#Q2334_REGS
MOV R2,#04H

QT1:
MOV A,@R1
MOVX @R0,A
INC R1
INC R0
DJNZ R2,QT1

MOV R0,#Q2334_BASE+10H
MOV R1,#Q2334_REGS
MOV R2,#04H

QT2:
MOV A,@R1
MOVX @R0,A
INC R1
INC R0
DJNZ R2,QT2
RETI

$EJECT

MULT:
PUSH AR1
PUSH AR2
PUSH AR0
MOV R0,#DFCA
MOV R2,#06H

W11:
MOV @R0,#00H
DJNZ R2,W11

POP AR0
POP AR2
MOV R1,#DFCA
MOV R3,#2
LCALL MULT_DIG

POP AR1
MOV A,DFCA+0
MOV @R1,A
INC R1
MOV A,DFCA+1
MOV @R1,A
INC R1
MOV A,DFCA+2
MOV @R1,A
RET

$EJECT

MULT1:
PUSH AR1
PUSH AR2
PUSH AR0
MOV R0,#DFCA+1
MOV R2,#06H

W111:
MOV @R0,#00H
INC R0
DJNZ R2, W111

POP AR0
POP AR2
MOV R1, #DFCA1
MOV R3, #2
LCALL MULT_DIG

POP AR1
MOV A, DFCA1+1
MOV @R1, A
INC R1
MOV A, DFCA1+2
MOV @R1, A
RET

SEJECT

MULT_DIG:
PUSH AR0
PUSH AR1

MD1:
MOV B, R2
MOV A, @R0
MUL AB
ADD A, @R1
MOV @R1, A
INC R1
MOV A, B
ADDCC A, @R1
MOV @R1, A
PUSH AR1
MOV A, #0

MD2:
JNC MD3
INC R1
ADDCC A, @R1
MOV @R1, A
SJMP MD2

MD3:
POP AR1
INC R0
DJNZ R3, MD1

POP AR1
POP AR0
RET

SEJECT

AD:
CLR C
MOV A, @R1
ADD A, @R0
MOV @R1, A

INC R1
INC R0
MOV A, @R1
ADDCC A, @R0
MOV @R1, A

INC R1
INC R0
MOV A, @R1
ADDC A, @R0
MOV @R1, A
INC R1
MOV A, @R1
ADDC A, #00H
MOV @R1, A
CLR C
RET

$EJECT

SB:
CLR C
MOV A, @R1
SUBB A, @R0
MOV @R1, A
INC R1
INC R0
MOV A, @R1
SUBB A, @R0
MOV @R1, A
INC R1
MOV A, @R1
SUBB A, #00H
MOV @R1, A
CLR C
RET

$EJECT

AD1:
CLR C
MOV A, @R1
ADD A, @R0
MOV @R1, A
INC R1
INC R0
MOV A, @R1
ADDC A, @R0
MOV @R1, A
INC R1
MOV A, @R1
ADDC A, #00H
MOV @R1, A
CLR C
RET

$EJECT

SB1:
CLR C
MOV A, @R1
SUBB A, @R0
MOV @R1, A
INC R1
INC R0
MOV A, @R1
SUBB A, @R0
MOV @R1, A
INC R1
MOV A, @R1
SUBB A, #00H
MOV @R1, A
CLR C
RET

$EJECT

WR_Q2334:
PUSH AR0 ; want to exit with R0 and R1 unchanged
PUSH AR1
MOV A, R1
MOVX @R0, A
POP AR1
POP AR0 ; recover R0 AND R1
RET

$EJECT

INIT_Q2334:
PUSH AR0
PUSH AR1
MOV R0, #00
MOV R1, #00
ID1: LCALL WR_Q2334 ; fill #1 frequency registers with 0
INC R0
CJNE R0, #08H, ID1
MOV R0, #10H
MOV R1, #00H
ID2: LCALL WR_Q2334 ; fill #2 frequency registers with 0
INC R0
CJNE R0, #18H, ID2
MOV R1, #00H
MOV R0, #00H
LCALL WR_Q2334 ; clear #1, mode_ctrl1 (SMC)
MOV R1, #18H
MOV R0, #00H
LCALL WR_Q2334 ; clear #2, mode_ctrl2 (SMC)
MOV R1, #00H
MOV R0, #00AH
LCALL WR_Q2334 ; clear #1 AMC
MOV R1, #00H
MOV R0, #1AH
LCALL WR_Q2334 ; clear #2 AMC
MOV R1, #00H
MOV R0, #0CH
LCALL WR_Q2334 ; clear #1, accumulator
MOV R1, #00H
MOV R0, #1CH
LCALL WR_Q2334 ; clear #2, accumulator
MOV R1, #1FH
MOV R0, #0EH
LCALL WR_Q2334 ; update
MOV R0, #1EH
LCALL WR_Q2334 ; update
POP AR1
POP AR0
RET

$EJECT
PLL.A51

END ;end of the program