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ABSTRACT 

Many numerical studies of flows that involve complex geometries are limited by the 

difficulties in generating suitable grids. We present a Cartesian boundary scheme for 

two-dimensional, compressible flows which is unfettered by the need to generate a 

computational grid and so it may be used, routinely, even for the most awkward of 

geometries. In essence, an arbitrary-shaped body is allowed to blank out some region 

of a background Cartesian mesh and the resultant cut-cells are singled out for special 

treatment. This is done within a finite-volume framework and so, in principle, any 

explicit flux-based integration scheme can take advantage of this method for enforcing 

solid boundary conditions. For best effect, the present Cartesian boundary scheme 

has been combined with a sophisticated, local mesh refinement scheme, and a number 

of examples are shown in order to demonstrate the efficacy of the combined algorithm 

for simulations of shock interaction phenomena. 

IThis research was supported by the National Aeronautics and Space Administration under 

NASA Contract No. NASl-19480 while the author was in residence at the Institute for Computer 

Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton , VA 

23681. 
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1 INTRODUCTION 

Of the three basic strategies that have been employed to compute flows with complex 

geometries, the Cartesian boundary approach has received the least attention; in con~ 

trast, both the unstructured mesh approach (e.g. [1] and the composite body-fitted 

grid approach (e.g. [2]) have large followings. This lack of attention is surprising given 

its conceptual simplicity. Admittedly, a number of obstacles have to be overcome so 

as to produce a working scheme, but this is also true of the other two approaches. 

For example, it is very difficult to automate the process of generating composite grids 

for genuinely complex geometries, and the resultant inter-grid boundaries complicate 

the method of flow solution[3]. Similarly, there is evidence to suggest that the un

structured grid approach is slightly at odds with the requirements of the flow solver. 

For example, for strong shock waves, unstructured grid schemes suffer larger phase 

errors than do structured grid schemes[4]. 

In this paper, we present a general purpose Cartesian boundary method for com~ 

puting shock interactions that involve complex geometries. It will become clear that 

this method relies more on sophisticated logic than on sophisticated mathematics. 

Indeed, the biggest drawback of the Cartesian boundary approach, and one which 

will always act to limit its following, is the fact that there is no concise recipe. The 

method relies on being able to handle exceptions and is therefore much more verbose 

than sayan unstructured grid method. In part, this explains why most Cartesian 

schemes only work for stylized geometries where the necessary logic is greatly reduced 

and the development costs are low. The strength of the present method lies in its 

ability to cope with truly arbitrary geometries. 

Space does not permit us to provide an adequate survey of existing Cartesian 

boundary schemes, and so the following references, whilst not completely exhaustive, 

should suffice to indicate research activity in this area[5]-[19]. Where appropriate, 

direct references will be made to some of these works in the main text. Moreover, 

since a detailed description of our scheme has already appeared in the literature[17], 

here we only elaborate on those aspects of the scheme which appear to have caused 

some confusion. Therefore we recommend that this paper be read in conjunction with 

the original article so that it does not appear disjointed. 

The rest of this paper is as follows. In the next section, we outline certain com

ponents of our Cartesian boundary scheme, and we endeavour to reveal the obstacles 

that shaped them. For practical purposes, any Cartesian boundary scheme must 

be combined with some form of local mesh refinement . Otherwise, the background 
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mesh would in general require an inordinate number of cells just to unambiguously 

determine the input geometry. In Section 3, we present our preferred form of mesh 

refinement - the Adaptive Mesh Refinement (AMR) algorithm[20]. Following which, 

in Section 4, examples are given to demonstrate the efficacy of the present com

bined Cartesian boundary-mesh refinement scheme for investigating shock interaction 

phenomena. Finally, in Section 5 some conclusions are drawn concerning Cartesian 

boundary schemes. 

2 CARTESIAN BOUNDARY SCHEME 

We first reconsider the seemingly innocuous problem of determining which cells of the 

background mesh are blanked out by the input geometry. Then we re-examine the 

method by which we overcome the stability problems due to the presence of arbitrarily 

small cut-cells. Finally, we outline how our method can be extended to cope with 

moving bodies 

2.1 Geometric Considerations 

The first step in any Cartesian boundary scheme is to determine which mesh cells lie 

inside, outside or on the solid boundaries specified as input. The sophistication of this 

step will largely determine the performance of the overall algorithm. The simplest 

strategy is to approximate the boundaries by a series of steps, thus there are only 

two types of cells: solid cells which lie wholly inside a body, and uncut cells which 

lie wholly outside a body. Unfortunately, this simple strategy does not work well in 

general, because the corrugations along the approximation to a curved boundary will 

inevitably cause acoustic disturbances which pollute the flow solution. However, Falle 

& Giddings[lO] have shown that the introduction of some viscosity can restrict such 

disturbances to a narrow boundary layer, and so this method should not be rejected 

out of hand. We elected to allow cut-cells, thus solid boundaries . are approximated 

by a series of straight line segments. This approach requires us to find the actual 

intersection points between the background grid and the input geometry, by tracing 

its outline. Superficially this task seems straightforward. But, if due care is not 

taken, round-off errors will cause problems such as an intersection point being missed 

or duplicated. 

Although such problems are rare, a robust scheme must prevent them from ever 

happening or at least ensure that nothing untoward occurs as a result . We elected to 
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dispense with round-off error altogether and developed a procedure that would find 

the intersection points relative to a discrete lattice using only exact operations[17]. 

Thus complete control is exercised over the process of determining the intersection 

points and so no point can ever be missed or duplicated. On the other hand, Rice[21] 

attempted to overcome round-off problems by basically employing tolerances when 

making floating point comparisons. This solution results in too many restrictions on 

the input geometry (see [21]) and, in our opinion, is inelegant. It may even be slightly 

dangerous in that it is not machine independent. For example, consider what might 

happen if the intersection points are found using a heterogeneous parallel computing 

system. If an intersection lies in the vicinity of a processor partition boundary, it is 

conceivable that only one of the affected nodes will find the intersection and so there 

will be an inconsistency. Admittedly, corrective action could be taken by some fix

up procedure, but this would introduce the unnecessary overhead of inter-processor 

communication. In general, it is far better to circumvent problems than to attempt 

to cure them when they occur. 

Once all the intersection points are found, they must be collated so as to determine 

the nature of the cut cells. For simplicity, we elected to handle only the three basic 

types of cell formed from the intersection of a single straight line segment, which 

together with the four possible orientations gives the twelve types of cut-cell shown 

in Figure 1. Note that we do not allow corners to occur within a cell. 

A B c o E F 

a b c d e r 

Figure 1: Basic types of cut-cell. 

Since there is no limit to the number of intersections that might occur for a given 

cell, its type is generally determined from its first and last intersection points as shown 

in Figure 2. Under normal circumstances, a cell having more than two intersection 

points merely indicates that the mesh is too coarse to resolve the input geometry 

properly, in which case, we locally refine the mesh so as to get a better representation 

of the boundary. 

In certain circumstances, say near cusps, some cells are found to be degenerate 

and a blunting procedure is applied in order to remove the degenerate cells from the 

boundary representation, see Figure 3.1. Here the degree of blunting is excessive and 
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o 
Type-A Type-C 

Figure 2: Collation of intersection points . 

could be reduced by introducing further cell-types but this would further complicate 

what is already a fairly busy scheme. Instead, as shown in Figure 3.2, we employ 

local mesh refinement to reduce the blunting to an acceptable level. 

(1) (2) 

Figure 3: Local mesh refinement is used to control the blunting of sharp corners. 

This blunting procedure has come in for some criticism since it is perceived to alter 

the input geometry[22]. But, if it is used in conjunction with local mesh refinement , 

any alterations are on a scale so small as to be masked by the inherent dissipation of 

a shock-capturing scheme. In effect, numerical diffusion results in a small separation 

bubble to round off any singularity in the input geometry. Thus our blunting pro

cedure, if used sensibly, has minimal affect on the flow solution, and results given in 

Section 4 substantiate this claim. Besides, at a more philosophical level, one could 

argue that if such alterations did matter , no simulation could ever hope to reproduce 

an experiment since no very sharp corner is precise in its manufacture. But this 

runs against common experience and so imperceptible alterations do not matter: any 

discretization is but an approximation to the input geometry. 

As will be shown in Figure 11 , our two-dimensional Cartesian boundary scheme 

is able to handle arbitrary geometries, automatically. Yet we have not attempted to 

extend the method to three-dimensions, simply because the task of determining the 
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cut-cell types will dominate proceedings, and our interests are of a more fluid dynam

ical nature. The simplest strategy would be to produce some surface triangulation of 

the object of interest and compute the intersections with the Cartesian mesh triangle 

by triangle. But unless the triangles are much smaller than the smallest mesh cell 

used for the computation, this strategy will prove unsatisfactory because one will 

just resolve the triangular facets and not the true surface geometry. Moreover, with a 

local refinement scheme it may not be possible to predict ahead of time how small the 

smallest cell will be. Melton et aI.[14] have adopted the only sensible approach and 

are using a commercial CAD package to provide the correct surface representation. 

However, such packages are usually proprietary and are therefore difficult to obtain 

for research purposes. 

Whereas Melton et aI. are using a surface representation and are laboriously 

developing the machinery to compute the grid intersection points themselves, we 

would advocate using a solid modeller based on a Polygonal-Map octree[23]. Such 

modellers could provide the cut-cell information directly. In effect, they represent an 

object by a number of cuboidal elements, maintaining the precise surface geometry 

of each element. If the elements were made small enough, say to match the size 

of mesh cell needed for a fluids computation, the nature of most cut-cells would 

follow immediately. Although, a blunting procedure might have to be applied so as 

to remove certain degenerate elements as is done in two-dimensions. Given such a 

package the extension of our Cartesian boundary scheme to three-dimensions would 

be straightforward. 

2.2 Stability Considerations 

Since cut-cells can be arbitrarily small, a Cartesian boundary scheme must address 

the stability problems caused by having disparate cell sizes. For steady-state compu

tations, De Zeeuw & Powell[19] have demonstrated that straightforward local time

stepping is sufficient to ensure stability. On the other hand, unsteady flow compu

tations require a more sophisticated strategy. For example, Berger & Le Veque[6] 

utilized a large time-step generalization of Godunov's method which keeps track of 

individual waves as they move across the mesh. This scheme does not suffer an ex

plicit restriction on the size of stable time step and so very small cut cells can be safely 

integrated at the time step used to integrate uncut cells. As an al ternative, Pember et 

aI.[15] redistribute part of the computed updates for small cut cells to neighbouring 

cells, following certain rules which ensure stability. As yet another alternative, we 
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(1) (2) 

Figure 4: A merging strategy is used to remove small cells. 

employ a cell merging technique which is a generalization of the method employed 

by both Clarke et al.[8J and by Chiang et al. [7J . Ultimately, whatever method is 

chosen, it must work in the most general of cases, otherwise it negates the principal 

motivation for developing a Cartesian boundary scheme: the promise of being able 

to handle arbitrary geometries in a completely automatic fashion . 

To see how our approach works in the simplest case, consider Figure 4.1. Suppose 

an update is computed for each cell using a one step finite-volume scheme. The 

updates to the conserved variables, tl Wa and tl W b, may be written 

tlt tlt 
tl Wa = -V- 2: F .A and tl W b = - v, 2: F .A , 

a faces a b faces b 

where Va and \!b are the volumes of the cells, and F is the flux acting through the 

face A . If the time step tlt is based on the size of the uncut cell b, the solution within 

a will be unstable. To ensure stability, the updates for the two cells are replaced by 

some fraction of their volume-weighted average. Since the volume weighted average 

is equivalent to the update that would have been computed for the composite cell 

shown in Figure 4.2, 

Va tl W a + \!btl W a 

Va + \!b 

tlt 
- V- 2: F .A , 

c faces c 

the appropriate fractions are (Va';V
b
) for cell a and (Va~Vb) for cell b. Thus, effectively 

we would have a grid that contains the cell c instead of the two cells a and b. Although 

this merging process inevitably reduces the accuracy of the integration scheme at solid 

boundaries, Coirier & Powell [9] have shown that it does not affect the global accuracy. 

Also, if needs be, the local loss in accuracy can be recovered using mesh refinement. 

The generalization of this method rests on finding a set of lists, where each list 

identifies a group of cells that need to be merged together so that certain small cut-

-------
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cells do not cause instabilities, see [17] for the details. Note that a list can contain 

several cells, but no one cell appears in more than one list. The cut-off point for 

determining whether a cell is small or not is completely arbitrary. In practice, we 

have found that cells larger than half the size of an uncut cell do not cause problems 

and so are not deemed to be small. Note that our procedure is just a convenient 

method for computing updates for awkward shaped cells from a small number of 

fixed cell-types for which the update is well defined and easily coded. 

For example, a type-A cell has just three sides. The flow solution in such a cell can 

be reconstructed using the method proposed by De Zeeuw & Powell[19]. Following 

which, it is a straightforward matter to compute the three fluxes acting on these 

faces, using one's favourite upwind scheme. Note, as is common practice, the flux for 

the boundary face is computed by reflecting the normal momentum at the wall. The 

cell-update then follows trivially to be used later on by the cell merging procedure. 

Given that no one cell appears in more than one combination list, our integration 

procedure is conservative. 

2.3 Extension to Moving Bodies 

The next logical step in the development of our Cartesian boundary scheme is its 

extension to moving bodies. Like most components of the scheme this extension is 

simple in concept, but awkward to implement in a foolproof manner, and our own 

efforts have been stymied by other research commitments. Nevertheless, we outline 

the strategy that we have devised[24] and note that it is basically the same as that 

devised by Bayyuk et al.[5]. Whilst the strategy is clear, certain implementation 

details need to be ironed out. 

Consider a body which is moving relative to a background Cartesian mesh, say 

in a north westerly direction. Figure 5 shows some of the changes that a cell might 

undergo during a time step from tn to tn+l. If the cell has the same type at the end 

of the time step as it did at the start, the cell may be integrated trivially using the 

following finite-volume discretization 

v n+1w n+1 = vnwn -!:1t L Fn.A - (0,0, O,p)t(vn+l - vn). 
faces 

Here vn and V n+1 are the volumes of the cell at the start and end of the time step 

!:1t. W is the conserved variable vector per unit volume, and Fn is the flux through 

a face whose average area is A over the course of the time step. Similarly, p is the 

average pressure which acts on the solid boundary and so the last term is effectively 

. -------
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the work done by the boundary displacing a volume of fluid (vn+l - vn). Difficulties 

only arise if the cell changes type during the time step as is the case for three of the 

examples in Figure 5.1. 

(1) 

x 

B-B B-r A-Solid 

(2) 

~ ~ 
Figure 5: If a body moves, individual cells may change type. 

The solution trick is to find groups of cells such that the type for the group 

remains constant over the time step as shown in Figure 5.2. Then the above finite

volume discretization may be applied straightforwardly to the composite cell. To see 

how this may be implementated in the general case consider Figure 6. Figure 6.1 

shows the outline of some body at the start and end of a time step. Figure 6.2 shows 

two curves C1 and C2 which are the external hulls of those cells which are cut at either 

tn or tn+l . If the body is non-deformable, these curves cannot cross. The problem of 

finding suitable combination groups is reduced to connecting up C1 and C2 along the 

co-ordinate lines as shown in Figure 6.3. In this case, Figure 6.4 shows the resultant 

groups. Some of these combination groups may then have to be merged with other 

cells, as in the previous section, to ensure stability. 

Although the above procedure is straightforward, it has proven difficult to code 

in a manner that matches the generality of the rest of the algorithm. Moreover, it 

has certain inherent limitations that some may find objectionable. For example, the 

procedure to find the combination groups is not unique. Consider the case where a 

planar piston is moving at 45° to the mesh, see Figure 7. If care is not taken, the 

combination groups could alternate between running vertically and running horizon

tally. This would result in information propagating along the face of the piston at 

non-physical speeds. Bayyuk et al.[5] identify some other weaknesses. 

Although the extension to moving bodies clearly has some weaknesses, the early 

results are encouraging and we feel this approach is worth persuing, especially given 

the the exciting new applications that it would open up. 
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(1) (2) 

(3) (4) 

Figure 6: Strategy for finding groups of cells whose type remains constant when a 

body moves. 

Figure 7: Problems could arise, if combination cells alternate in orientation. 

3 THE AMR ALGORITHM 

The Adaptive Mesh Refinement (AMR) algorithm is a general purpose scheme for 

integrating systems of hyperbolic partial differential equations. It attempts to reduce 

the costs of integration by matching the local resolution of the computational grid to 

the local requirements of the solution being sought. The foundations of the algorithm 

lie with the work of Berger & Colella[25], but the derivative outlined here is due to 

Quirk[20J. 

The AMR algorithm employs a hierarchical grid system. In the following, the 

term 'mesh' refers to a single topologically rectangular patch of cells and the term 

'grid' refers to a collection of such patches. At the bottom of the hierarchy a set of 

coarse mesh patches delineates the computational domain. These patches form the 

I 
~---
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grid Go and they are restricted such that there is continuity of grid lines between 

neighbouring patches. This domain may be refined locally by embedding finer mesh 

patches into the coarse grid Go. These embedded patches form the next grid in the 

hierarchy, Gt . Each embedded patch is effectively formed by subdividing the coarse 

cells of the patches that it overlaps. The choice for the refinement ratio is arbitrary, 

but it must be the same for all the embedded patches. Thus, by construction, the 

grid Gt also has continuity of grid lines. This process of adding grid tiers to effect 

local refinement may be repeated as often as desired, see Figure 8. 

From stability considerations, many numerical schemes have a restriction on the 

size of time step that may be used to integrate a system of equations. The finer the 

mesh, the smaller the allowable time step. Consequently, the AMR algorithm refines 

in time as well as space. More but smaller time steps are taken on fine grids than 

on coarse grids in a fashion which ensures that the rate at which waves move relative 

to the mesh (the Courant number) is comparable for all grid levels. This avoids the 

undesirable situation where coarse grids are integrated at very small Courant numbers 

given the time step set by the finest grid's stability constraints. 

-
plan view 

perspective view 

Figure 8: The AMR algorithm employs a hierarchical grid system. 

---- _.- ---- -~ -----
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The field solution on each grid is retained even in regions of grid overlap and so all 

grid levels in the hierarchy coexist. The order of integration is always from coarse to 

fine since it is necessary to interpolate a coarse grid solution in both time and space 

to provide boundary conditions for its overlying fine grid. The various integrations at 

the different grid levels are recursively interleaved to minimize the span over which 

any temporal interpolation need take place. Periodically, for consistency purposes , it 

is necessary to project a fine grid solution on to its underlying coarse grid. Figure 9 

shows the sequence of integration steps and back projections for a three level grid 

{Go, G1 , G2 } with refinement ratios of 2 and 4. 

INTEGRATION TIME STEP PROJECTION ADAPTION 

Go ~t 

G1 6.t/2 

4xG2 4x!::J,/8 

G2 -+ G1 

G2 

G1 6.t/2 

4xG2 4x!::J,/8 

G2 -+ G1 

G1 -+ Go 

G2 

G1 

Figure 9: Grid operations are recursively interleaved (to be read from top to bottom). 

The integration of an individual grid is extremely simple in concept. Each mesh is 

surrounded by borders of dummy cells. Prior to integrating a grid, the dummy cells 

for every mesh patch in the grid are primed with data which is consistent with the 

various boundary conditions that have to be met. Each mesh patch is then integrated 

independently by an application dependent, black-box integrator that never actually 

sees a mesh boundary. Thus, in principle, any cell-centred scheme developed for a 

single topologically rectangular mesh can form the basis for the integration process. 

In general it is necessary to adapt the computational grid to the changes in the 

evolving flow solution and so the grid structure is dynamic in nature. Monitor func

tions based on the local solution are used to determine automatically where refinement 

needs to take place so as to resolve small scale phenomena[20] . For example, Figure 10 

shows several snapshots taken from the simulation of a shock wave diffracting around 

~----~~~~--
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a corner. Each snapshot shows the outlines of the mesh patches which go to make 

the finest grid. This grid clearly conforms to the main features of the flow, namely 

the diffracted shock front and the vortex located at the apex of the corner. Although 

the changes in grid structure shown here are dramatic, many adaptions have taken 

place between each frame. A large number of small grid movements occurs because 

the adaption process dovetails with the integrations process, see Figure 9. Note that 

the adaption always proceeds from fine to coarse so as to ensure that there is never 

a drop of more than one grid level at the edge of a fine grid to the underlying coarse 

grid. A grid adaption essentially produces a new set of mesh patches which must 

be primed with data from the old set of patches before the integration process can 

proceed. Where a new patch partially overlaps an old patch of the same grid level, 

for the region of overlap, data may be simply shovelled from the old patch to the 

new patch. In regions of no such overlap, the required field solution is found by 

interpolation from the underlying coarse grid solution. 

(1) (2) 

(3) (4) 

Figure 10: The AMR algorithm employs a dynamic grid system. 

In a typical application the finest grid will contain several hundred mesh patches. 

Thus, the mesh patch is a sufficiently fine unit of data for efficient parallelism. The 

parallel AMR algorithm[26] is implemented using a Single Program Multiple Data 
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(SPMD) model. Each processing node executes the basic serial algorithm[20] in iso

lation from all other nodes, except that at a few key points messages are sent between 

the nodes to supply information that an individual node deems to be missing, that is 

off-processor. For example, during the integration of a grid, the only point at which a 

processor needs to know about other processors is during the priming of the dummy 

cells. Whereas in a serial computation all data fetches are from memory, for a parallel 

computation some are from memory and some necessitate receiving a message from 

another processor. Each time the grid adapts, the algorithm generates a schedule of 

tasks that have to be performed so as to prime correctly the dummy cells of a given 

grid. If running in parallel, this schedule is parsed to produce a schedule of those 

tasks that necessitate off-processor fetches. At which point, individual processors 

can exchange subsets of their fetch schedules, as appropriate, so that every node can 

construct a schedule of messages that it must send out at some later date. Thus, 

the priming process is carried out in two phases. First, all the local data fetches are 

performed as for the serial case. Second, each node sends out the data that has been 

requested of it. The node then waits for those data items it has requested. For each 

incoming message it can readily determine from its own schedules what to do with 

the off-processor data, and so the order in which messages arrive is unimportant. The 

adaption process and the back projection of the field solution between grid levels also 

necessitate sizeable amounts of communication, these are handled in a similar fasmon 

to the priming of the dummy cells. 

The problem of load balancing the AMR algorithm rests on determining the best 

distribution of the new patches amongst the processing nodes before the new field so

lution is interpolated from the old field solution. Currently, this is done using heuristic 

procedures[27] which bear strong similarities to classical 'Bin Packing' algorithms[28] 

with the added complication that they must account for the communication costs of 

data transfer between nodes. 

The main advantage of the AMR algorithm is that the processing within a patch 

can proceed largely without knowledge of the method of parallelization or knowledge 

of the treatment of mesh boundaries, and so it is extremely simple to change the 

basic method of flow integration. Thus the present Cartesian boundary scheme can 

utilize the algorithm more or less directly. Except that there is a small amount of 

additional book keeping to account for the fact that some groups of combination 

cells may straddle more than one processor. But this complicat ion is not great and 

introduces very little data traffic. 

------ -- --- .--- ----
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4 RESULTS 

All the simulations reported in this section were done by integrating the Euler equa

tions using the present Cartesian boundary scheme in conjunction with the finite

volume method described in [17J . Each computation was performed in parallel on a 

cluster of five Silicon Graphics workstations (Indigo 2, MIPS 4400). 

In order to demonstrate that our scheme can cope with arbitrary two-dimensional 

geometries, we have computed the interaction of a planar shock wave, Ms = 1.5 

and I = 1.4, with the logo' AMR @ ECCOMAS 94'. Although this example is 

unashamedly gratuitous it serves to demonstrate the capabilities of the scheme. The 

whole exercise from conception to completion took just seven hours and involved no 

special intervention on our part. Figure 11 shows a schlieren-type snapshot from this 

simulation. The background Cartesian mesh was nominally equivalent to a uniform 

mesh of 1920 by 600 cells and so the flow field is well resolved and many fundamental 

shock interaction phenomena are clearly visible. 

Whilst spectacular, given the impossibility of verifying the results, this simulation 

is rather meaningless. Therefore, on a more serious note, we present two schlieren

type images from a simulation of the focusing of a weak shock wave, Ms = 1.2 

and I = 1.4, by a parabolic reflector, see Figure 12. These images compare well 

with experiment (see, Figures 3 (a) and 3 (f) of [29]) and so the integrity of the 

simulation is beyond doubt. In this case, although the geometry is relatively simple, 

a topologically uniform body-fitted grid would be severely distorted. Since such 

distortions could have an adverse affect on the quality of the simulation, it follows 

that a Cartesian boundary scheme need not be reserved for geometrically complex 

problems. 

To investigate the potential vagaries of the blunting procedure which is applied to 

sharp corners, we have simulated the diffraction over a knife edge of a Ms = 1.5 planar 

shock wave. This flow gives rise to a vortex sheet which emanates from the tip of the 

knife edge[30J. Figure 13 shows a sequence of schlieren-type images for various stages 

in the development of the vortex sheet. Frames 1-5 were taken from a computation 

for which the knife edge was blunted. The computation was then repeated with the 

knife edge positioned so that it was not blunted, see Figure 14. Qualitatively, the 

differences in the two solutions are minor; c.f Frame 5 (with blunting) and Frame 6 

(without blunting). 

Generally speaking, a fluid dynamicist would be more concerned about the validity 

of simulating a viscous phenomena inviscidly. Consequently, although the solution is 

---.--- - ----
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Figure 11: The algorithm can cope with arbitrary geometries: flow around 'AMR @ 

ECCOMAS 94'! 

---- ------ .. _- .. - .. ---
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Figure 12: Two schlieren-type snapshots from the focusing of a weak shock wave. 

~-- ------ ----
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(1) (2) 

(3) (4) 

(5) (6) 

Figure 13: Evolution of a vortex sheet due to a shock wave diffracting over a knife 

edge. 

-- - -~-~- -------- - - .. _---
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Figure 14: The tip of the knife edge with and without blunting. 

sound, one should be careful in attaching too much credence to the minutiae at late 

times in the simulation since these are controlled by vestigial numerical diffusion and 

will thus vary from scheme to scheme. Indeed, for the vortex produced by a Ms = 1.5 

shock wave diffracting around a 90° corner, the variations in structure with changes 

in numerical scheme are far greater than the changes here due to blunting[31]. 

5 CONCLUSIONS 

While a Cartesian boundary-cum-mesh refinement approach can undoubtedly pro

duce spectacular results, it must be realized that there is no concise recipe for suc

cess. Consequently, we feel that the high development costs will continue to act as 

a deterrent and so limit the popularity of this approach. Nevertheless, if maximum 

resolution is sought, the advantages of the present scheme far outweigh its develop

ment costs. Moreover, since the basic machinery is not tied to anyone integration 

scheme and it forms a reliable framework that can be readily exploited by a variety 

of applications, the effective costs are to some extent diminished. As they are every 

time the method is used, simply because there are no longer any grid generation costs 

to worry about. 

It is also worth noting that a Cartesian boundary scheme becomes more efficient as 

the resolution of the computation increases, because the cut-cells occupy an increas

ingly smaller volume in space and therefore introduce less of an overhead. Moreover, 

a Cartesian scheme does not distort the mesh in sensitive parts of the flow field, as 

someti'mes happens with body-fitted grids to the detriment of the computed solution. 

Finally, despite its logical complexity we have demonstrated that the present 

scheme can exploit parallel computing engines efficiently and so it is not likely to 

be overtaken by advances in computer architectures which would make it redundant. 



- ------ -- - -- - ---
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