KINETICS OF PHASE TRANSFORMATION IN GLASS FORMING SYSTEMS

NASA Contract: NAG8-898

Principal Investigator: Chandra S. Ray, Research Professor, Department of Ceramic Engineering and Graduate Center for Materials Research, University of Missouri-Rolla, Rolla, MO 65401. Phone: (314)341-6432

Task Objectives:
The objectives of this research were to (1) develop computer models for realistic simulations of nucleation and crystal growth in glasses, which would also have the flexibility to accommodate the different variables related to sample characteristics and experimental conditions, and (2) design and perform nucleation and crystallization experiments using calorimetric measurements, such as differential scanning calorimetry (DSC) and differential thermal analysis (DTA) to verify these models.

The variables related to sample characteristics mentioned in (1) above include size of the glass particles, nucleating agents, and the relative concentration of the surface and internal nuclei. A change in any of these variables changes the mode of the transformation (crystallization) kinetics. A variation in experimental conditions includes isothermal and nonisothermal DSC/DTA measurements. Isothermal kinetic studies yield reasonably accurate information about the mode of transformation and the activation energies of nucleation and growth, but nonisothermal measurements have several advantages. The nonisothermal measurements are easier to perform and less time consuming, and they can probe the kinetics of transformation over a different, generally higher, temperature range than is possible from isothermal methods. However, the thermoanalytical models presently used to analyze the nonisothermal kinetic data are considered to be fundamentally flawed, since they are based on erroneous assumptions for the temperature dependence of the effective rate constants, generally, resulting in misinformation about the transformation processes. This research would lead to develop improved, more realistic methods for analysis of the DSC/DTA peak profiles to determine the kinetic parameters for nucleation and crystal growth as well as to assess the relative merits and demerits of the thermoanalytical models presently used to study the phase transformation in glasses.

The present research is a part of a collaborative research program supported by NASA through two separate contracts. The experimental work is conducted at the University of Missouri-Rolla (NASA Contract NAG8-898, PI: C. S. Ray) and the theoretical work is conducted at the Washington University in St. Louis (NASA Contract NAG8-873, PI: K. F. Kelton).

Benefit or Necessity of Microgravity:
Existing experimental evidences on solidification of glass forming melts in microgravity point to the importance of investigating the kinetics of nucleation and crystallization in a more generalized and realistic way. For example, glasses prepared in microgravity are reported to be more chemically homogeneous and more resistant to crystallization than identical glasses.
prepared on earth. These results indicate that the size, number density, and distribution of nuclei, and, hence, the nucleation mechanism, are different in glasses prepared in space and on earth. To verify these apparently surprising observations, realistic thermoanalytical models as well as experimental data on phase transformation in glasses prepared in space are needed.

Results to Date:

1. Nucleation/Crystallization of Na$_2$CaO.3SiO$_2$ (NC$_2$S$_3$) Glass:

A previously developed experimental technique
which uses nonisothermal DSC/DTA and which was justified theoretically by others
was used to determine the nucleation rate-temperature like curve for the NC$_2$S$_3$ glass. In this technique, a small amount (20-40 mg) of relatively large glass particles (> 400 μm) are first nucleated in the DSC/DTA furnace at different temperatures for an arbitrarily chosen time (typically 2 to 4 h) and then heated at a selected rate (normally 15°C/min) until crystallization is complete. A plot of the inverse of the temperature at the crystallization peak maximum, 1/T$_p$, or the height of the peak at T$_p$, (δT)$_p$, against the temperature, T$_n$, at which the glass particles are nucleated, yields a curve similar in shape to that of the classical nucleation rate curve, I vs. T$_n$. The values of (δT)$_p$ and 1/T$_p$ for the NC$_2$S$_3$ glasses containing 0.1 wt% Pt, 0.5 wt% Ag$_2$O, or 2.0 wt% P$_2$O$_5$ are shown in Figs. 1 and 2 as a function of T$_n$ along with the values for the NC$_2$S$_3$ base glass, which show that unlike the lithium disilicate (LS$_2$) glass, the (δT)$_p$ and 1/T$_p$ plots as a function of T$_n$ for the NC$_2$S$_3$ glasses do not agree with each other. For a better comparison of these two plots, see Figs. 3 and 4, which are the normalized versions of Figs 1 and 2, respectively. For the LS$_2$ glass, these two plots not only agree with each other, they also agree with the I vs. T$_n$ curve for the LS$_2$ glass determined by classical method
and with the (δT)$_p$ vs. T$_n$ curve calculated through computer simulation.

As shown in Figs. 2 and 4, the plots of 1/T$_p$ vs. T$_n$ are nearly the same for all the doped and undoped NC$_2$S$_3$ glasses. The temperature range for nucleation, 545-665°C, and the temperature for maximum nucleation, ~ 595°C, determined from these plots (Figs 2 or 4) are also in excellent agreement with those for the NC$_2$S$_3$ glass determined by conventional method. These results suggest that the 1/T$_p$ vs. T$_n$ plot correctly represents the I vs T$_n$ curve for the NC$_2$S$_3$ glass, but the (δT)$_p$ vs. T$_n$ plot does not. The reason for this is attributed to an overlap between the I and U (crystal growth rate) curves for this glass, which does not occur for the LS$_2$ glass where the I and U curves are separated. If a glass is nucleated at a temperature T where the I and U curves overlap, part of the glass can crystallize and the total number of nuclei available for further crystallization can decrease. This, in turn, will decrease (δT)$_p$ at all temperatures within the region of overlap and, consequently, the temperature spread and the peak of the (δT)$_p$ curve on the temperature scale will be lower than what it would be in the absence of any overlap between I and U. On the other hand, 1/T$_p$ depends primarily on the concentration of nuclei and is independent of the previously described effect of overlap between I and U, provided the glass does not crystallize completely during nucleation heat treatment.

2. Calculation of (δT)$_p$:

To verify the above conclusion that the shape of the (δT)$_p$ vs. T$_n$ curve depends upon the overlap between I and U, calculations were made for a hypothetical glass at different degrees of overlap between two arbitrarily chosen I and U curves. The following equation

\[
(\delta T)_p = K V t \left[1 - \left(1/3\right) \pi U I U^4 \right] \quad \ldots \quad \ldots \quad (1)
\]

that relates (δT)$_p$ with I and U was developed assuming (δT)$_p$ is linearly proportional to the total number of nuclei present in the glass. Here, V is the volume of the sample, t is the time for nucleation heat treatment prior to DTA scan, and K is a constant. When there is no overlap
between I and U at the chosen nucleation temperature, the second term in eqn. 1 is zero, and the functional dependence of \((\delta T)_p\) on \(T_n\) is same as that of I on \(T_n\), such as what is observed for the LS2 glass. When I and U overlap at the temperature of nucleation, the second term in eqn.1 is no longer zero, and \((\delta T)_p\) is smaller than what it should be in the absence of overlap.

The calculated values of \((\delta T)_p\) at different degrees of overlap between I and U is shown in Fig. 5 as a function of nucleation temperature. Fig. 5 shows that the spread of the \((\delta T)_p\) vs. \(T_n\) curve on the temperature axis and the temperature at the peak maximum both decrease with increasing overlap between I and U. Comparing these curves with the experimental curves in Fig. 4, it is clear that a maximum overlap between I and U occurs for the NC2S3 glass which is doped with platinum. For the glass doped with P2O5, the overlap between I and U is even smaller than that for the NC2S3 base glass. This result suggests that P2O5 in the NC2S3 glass does not act as a nucleating agent, rather it improves glass formation in the NC2S3 glass.

3. Dependence of \((\delta T)_p\) on DTA Scan Rate:

In crystallization measurements using DTA the glass sample is scanned at different constant heating rates until it crystallizes. This means that the temperature range where nucleation can occur is scanned also at different rates, which allows the glass to be nucleated for different time prior to crystallization. Consequently, the concentration and, hence, the total number nuclei in the glass sample may be different when scanned at different rates, which may cause a change in the DTA peak height and the temperature at the peak maximum.

The effect of nucleation heating rate on the \((\delta T)_p\) was investigated using a LS2 glass. Since the nucleation temperature for LS2 glass ranges from 400 to 500°C, the glass sample was first heated at a high heating rate (~100°C/min) from room temperature to about 400°C. After stabilizing at 400°C for a brief period of time (3 to 5 min), the sample was heated to 500°C using constant different heating rates (Nucleation Heating Rate, \(\phi_n\): 0.5, 1, 2, 4, 6, 10, or 15°C/min) and then heated at a constant 15°C/min heating rate until the crystallization completed. The particle size and the amount of glass sample were kept unchanged for different measurements.

The DTA crystallization peak height, \((\delta T)_p\), for the LS2 glass obtained at a constant crystallization heating rate, 15°C/min, is shown in Fig. 6 as a function of nonisothermal nucleation heating rate, \(\phi_n\) (solid circles). The \((\delta T)_p\) decreases initially with increasing \(\phi_n\) indicating the formation of a less number of nuclei as the nucleation temperature zone for this glass is scanned at a higher heating rate. This is what is expected since with increasing heating rate, the glass is allowed to nucleate for a shorter average time, which results in forming a less number of nuclei. No appreciable change in \((\delta T)_p\) for this glass is observed when \(\phi_n\) exceeds about 3°C/min, which suggests that for a heating rate > 3°C/min an embryo in the LS2 glass does not get sufficient time to form a critical size nucleus. This critical value of \(\phi_n\) could be important for many practical reasons, since it ensures a heating rate above which no new nuclei form in a glass.

Also shown in Fig. 6 (open squares) are the values of \((\delta T)_p\) for the LS2 glass measured previously(1) by isothermal nucleation at 453°C (temperature for maximum nucleation rate) followed by crystallization at the same 15°C/min heating rate. Interestingly, the \((\delta T)_p\)-value of a sample nucleated isothermally at the maximum nucleation rate temperature for a particular time, t, is in excellent agreement with that of the sample nucleated nonisothermally at a rate that requires the same time t to scan the temperature zone for nucleation. For example, the temperature range for nucleation for the LS2 glass is ~ 75°C (425 to 500°C), and it takes ~ 150 min to scan this region at a \(\phi_n\) of 0.5°C/min. An equal amount of sample with same particle size of this LS2 glass yields nearly the same peak height when nucleated either nonisothermally at
0.5°C/rain or isothermally at 453°C for 150 min followed by crystallization at 15°C/min.

4. Nucleation Rate Curve for the LS₂ Glass by Dielectric Constant Measurements:

Since the dielectric constant of a material depends, in part, on crystallinity of the sample and, hence, upon the concentration of nuclei prior to crystallization, attempts were made to determine the nucleation rate-temperature like curve for a LS₂ glass by dielectric constant measurements. Glass samples, ~ 1 mm thick, were nucleated isothermally at different temperatures for 3 h and then crystallized at 660°C for 15 min. Both surfaces of the crystallized samples were polished with 1 μm alumina powder and then coated with gold in vacuum. The dielectric constant, ε, and the tanδ loss of the samples were measured at 1 kHz using a HP-4270 automatic capacitance bridge. Both ε and tanδ decrease initially and then increase with increasing nucleation temperature, yielding a minima at about 450°C which is close to 453°C temperature for the maximum nucleation rate of this LS₂ glass. A plot of 1/ε against the nucleation temperature is shown in Fig. 7, the shape of which closely resembles that of the classical nucleation rate curve for the LS₂ glass. This technique (measuring ε and tanδ), thus, appears to be a feasible one for determining the temperature range for nucleation and the temperature for maximum nucleation in a glass.

References:

Present and Future Work:
1. Effect of DTA scan rate on nucleation for the NC₂S₃ glass.
2. Dependence of DTA peak height and peak temperature on particle size of the LS₂ glass with and without nucleating agents.
3. Estimation of nucleation rate, I, at different temperatures from (δT)p vs. Tp plots for the LS₂ glass.
4. Study the usefulness of a recently developed technique for determining the nucleation rate-temperature like curves from dielectric constant and tanδ loss measurements using other glasses such as Na₂O.2SiO₂ and Bao.2SiO₂.

Presentation/Publication:
The following technical presentations and publications have resulted from this research.

A. Presentations:
2. C. S. Ray and D. E. Day, "Nucleation and Crystallization in Glasses as Determined by

Publications:

Fig. 1: DTA peak height for the NC₂₅S₃ glass containing different dopants as a function of Tₙ for 3 h.

Fig. 2: Inverse of DTA peak temperature for the NC₂₅S₃ glass containing different dopants as a function of Tₙ for 3 h.

For both figures: crystallization heating rate, 15°C/min; particle size, 425-500 μm; sample weight, 30 mg. ○, base glass; ●, 0.1 wt% Pt; ■, 0.5 wt% Ag₂O; ▲, 2.0 wt% P₂O₅.
Fig. 3: Same as Fig. 1, but the data were normalized with respect to those for the as-quenched, unnucleated glass.

Fig. 4: Same as Fig. 2, but the data were normalized with respect to those for the as-quenched, unnucleated glass.

Fig. 5: Calculated DTA peak height (eqn. 1) for a hypothetical glass as a function of nucleation temperature for different overlaps of I and U. The spread (on temperature axis) and the temperature at the maxima of these curves clearly decrease with increasing overlap between I and U.
Fig. 6: DTA peak height (∙, Experiment) for the lithium disilicate glass as a function of nucleation heating rate. The open squares (Reference) are the peak heights for the same glass nucleated isothermally at 453°C prior to crystallization. The time for isothermal nucleation (given at the top) is the same as what is required to scan the nucleation temperature range at a rate given by the horizontal axis for the reference point. Sample wt.: 35.9 mg, particle size: 425-500 μm, crystallization heating rate: 15°C/min.

Fig. 7: Reciprocal of the Dielectric constant at 1 kHz for a lithium disilicate glass as a function of nucleation temperature for 3 h. Crystallization temperature: 660°C for 15 min. For comparison, the nucleation rate curve for the lithium disilicate glass measured conventionally is also given.