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SUMMARY 

The flux-integral method is a procedure for constructing an explicit, single-step, forward-in­

time, conservative, control-volume update of the unsteady, multidimensional convection­

diffusion equation. The convective-plus-diffusive flux at each face of a control-volume cell 

is estimated by integrating the transported variable and its face-normal derivative over the 

volume swept out by the convecting velocity field. This yields a unique description of the 

fluxes, whereas other conservative methods rely on nonunique, arbitrary pseudoflux­

difference splitting procedures. The accuracy of the resulting scheme depends on the form 

of the sub-cell interpolation assumed, given cell-average data. Cellwise constant behaviour 

results in a (very artificially diffusive) first-order convection scheme. Second-order 

convection-diffusion schemes correspond to cellwise linear (or bilinear) sub-cell 

interpolation. Cellwise quadratic sub-cell interpolants generate a highly accurate convection­

diffusion scheme with excellent phase accuracy. Under constant-coefficient conditions, this 

is a uniformly third-order polynomial interpolation algorithm (UTOPIA). 



-_. _ .-._-

THE FLUX INTEGRAL 
-

Consider the cell-average value of the transported scalar, 4>, at a reference (central) cell, C. 

In two dimensions, an exact, single-step, explicit update can be written for the "new" 

(superscript +) cell value: 

using standard index and compass-point notation . Note that this is strictly conservative in 

1 that the east-face convective-pIus-diffusive flux of cell C, at (i,j), is identical to the west­

face flux at (i+ 1,]); similarly for the north- and south-face fluxes. In (1), the west-face 

flux, for example, is given by 

(2) 

where the angle-brackets represent time-averages over At, and, assuming (for convenience) 

a uniform square mesh of side h, the west-face normal-component Courant number is 

c = .xw 
(3) 

and the west-face nondimensional diffusion parameter is written in terms of the (scalar) 

diffusivity, Dw, as 

a = w 

with analogous defmitions for the south face. 

(4) 

The convective contribution in (2) is equivalent to the total "mass" of 4> swept 

through the west face along particle paths (or streamlines, in steady flow) over M. In 

principle, one could trace the particle paths backwards to the earlier time-level, for each 

face. This is shown, schematically, in Figure 1. Then the (exact) purely convective 

contribution is equivalent to integrating 4>(x,y) at the earlier time-level over the area (or 

volume, in three dimensions) swept out by the particle paths: 

(czw 4>w ) = J J 4>(x,Y) d(x/h) dry/h) (5) 

PPA 

where PP A stands for particle-path area. 
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The flux-integral method now approximates (5) by replacing the particle-path area by 

the flux-integral parallelogram (PIP) by assuming the convecting velocity field to be locally 

constant (in both space and time) in the vicinity of the face in question. This is shown in 

Figure 2; note that the parallelogram is defined by the local (space-time-averaged) Courant 

number components, Cxw and Cyw (taken as both positive in the case shown). The flux-integral 

convective approximation is thus 

{cxw ¢w) = f f ¢(x,y) d(x/h) dry/h) (6) 
PIP 

A similar approximation for the diffusive contribution results in 

- h / (Y. (0<1») = - O:w
h f f 0<1> d(x/h) dry/h) (7) 

\ w ox w Cxw oX 
PIP 

where (Y.w is an appropriate average. If the sub-cell behaviour at the earlier time-level, 

4> (x,y) , were known in complete detail, (6) would represent ail exact flux due to pure 

convection by a constant velocity field. For non-zero diffusion, it turns out that (7) 

represents the diffusive flux to third order - provided the sub-cell behaviour is known in 

enough detail. The major task in the flux-integral method is thus an interpolation problem: 

Given a set of cell-average values, 

estimate sub-cell behaviour in an accurate 

(and, ideally, shape-preserVing) manner, 

while observing the cell-average constraint: 

f J 4>(x,Y) d(x/h) dry/h) = ¢ for all cells 

ceU 

with an analogous formula in three dimensions. 

(8) 

For constant-density flow, the face-normal component Courant numbers used in 

constructing the flux-integral parallelograms should satisfy a discrete continuity equation for 

each cell: 

(9) 
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Since the area of a flux-integral parallelogram is proportional to the face-normal Courant 

number component (e.g. , the shaded area in Figure 2 is c;rwh2
), an initially constant scalar 

field will remain constant everywhere (to machine accuracy). This can be seen in Figure 3, 

where the sum of the "inflow areas" equals the sum of the "outflow areas" (irrespective 

of the local individual face-transverse Courant number components). 

In the following sections, a number of different sub-cell interpolants are explored. 

A cellwise constant interpolant (locally equal to the cell average) results in a (very 

artificially diffusive) first-order convection scheme; modelled physical diffusion is absent, 

to a consistent order. This is not a viable scheme for practical CFD calculations. But, 

because of its simplicity, it is instructive to explore the flux-integral method in this case. 

Bilinear downwind-weighted sub-cell interpolation results in a two-dimensional analogue of 

the Lax-Wendroff scheme [1]. A cellwise quadratic interpolant over each cell generates a 

convection-diffusion scheme that is formally third-order accurate under constant-coefficient 

conditions. These three methods are briefly compared using the well-known "rotating hill" 

test problem. 

FIRST-ORDER CONVECTION 

Fluxes will be calculated for the west face of cell C. Entirely analogous fluxes for the south 

face can be written down using appropriate (x,y) permutations. Unless otherwise noted, the 

Courant number components will be taken as both positive. Referring to Figure 4, the west­

face convective flux integral corresponding to (6) is seen to consist of three parts 

(10) 

where II is the integral over the rectangular area, 1246, in cell W; 12 is over the triangular 

area, 123, in cell W; and 13 is over a similar triangular area, 456, in cell SW. Assuming <P 

to be cellwise constant (equal to the respective cell average), the integrals in (1) are 

proportional to the respective areas times the local cell-average value. This gives 

FIRST-ORDER FIM: 

(11) 

or, on rearrangement, 
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(12) 

The term in square brackets can be considered to be the effective average convected face 

value. Note that it consists of the one-dimensional, first-order upwind (' 'donor-cell' ') value, 

¢w, modified by-a transverse-gradient term proportional to the transverse Courant number 

component at the face. It should be clear how the formula changes for other combinations 

of signs of Cxw and cyw. To a consistent order, there is no (Physical) diffusive flux, since 

cellwise constant behaviour implies a zero-gradient within each cell. 

Substituting (12), and the analogous formula for FLUx,., into (1) gives an overall 

(constant-coefficient) convective update equation: 

¢~ = ¢c - Cx (¢c - ¢w) - cy (¢c - ¢J 

(13) 

This is identical to a semi-Lagrangian update [2], using bilinear interpolation around the 

departure point, collocated at node values: ¢c' ¢w' ¢sw' and ¢s (located at the centroids 

of the respective cells). [For cellwise constant, linear, or bilinear interpolants, node values 

are equal to the respective cell-average values. This is not the case for higher-order 

interpolants.] 

Using an appropriate upwinding strategy for other convecting velocity directions, it 

is not hard to show that the. von Neumann stability condition for this scheme is given by a 

square region in the (cx ' cy) plane: 

Icx / < 1 and (14) 

SECOND-ORDER METHODS 

Second-order convection-diffusion methods result from assuming cellwise linear or bilinear 

sub-cell behaviour. In this case, it is convenient to introduce local, normalised coordinates 

in cell W: 

and 

~ = x _ (i - 1) 
h 

7J = Y -j 
h 

5 
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as shown in Figure 5. Note that the central cell, C, is located at (i,j). The top of the flux­

integral parallelogram is represented by 

C 
17top(~) = 0.5 + ~ (~ - 0.5) 

C;z;w 

(17) 

A general bilinear sub-cell interpolant within cell W takes the form 

(18) 

The cell-average constraint, (8), implies 

(19) 

The slope-constants, C2 and C3 , and the twist-constant, C4 , can be chosen in a number of 

different ways. For example, a two-dimensional analogue of Fromm's method [3] results 

from choosing 

(20) 

(21) 

and 
C = 0 4 

(22) 

Note that this represents a symmetrical distribution with respect to cell W, independent of 

velocity direction. Upwind or downwind weighting can also be used. In the interest of 

brevity, only one scheme will be considered here in detail. This is based on downwind­

weighted bilinear interpolation. For example, throughout cell W, the interpolant is 

collocated (for c;z;w, Cyw > 0) at node values: tPc ' tPN' and tPNW (in addition to tPw). This 

turns out to be a two-dimensional generalisation of the Lax-Wendroff method. For positive 

Courant number components, the interpolant within cell W is 

6 
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- - - - -
tP(~, 1]) = tPW + (tPC - tPW) ~ + (tPNW - <l>W) 1] 

- - - -
+ (<I>N - <l>NW - <l>c + <l>W) ~ 1] (23) 

with a corresponding normal gradient, within cell W, 

o¢ = 
o~ 

- - - - - -
(<I>c - ¢W) + (<I>N - ¢NW - ¢c + ¢W) 1] (24) 

Using local, cell-centered coordinates, similar formulae hold for each cell; in particular, cell 

SW formulae can be obtained from (23) and (24) by shifting all indexes "south" by one unit 

in (16), (23), and (24). 

As before, the convective flux integral is split into three geometrically distinct parts. 

In this case, 

0.5 [ }' '" (~,~) d~] d~ II = f 
0.5-c"" -0.5 

(25) 

O.S 

[¢W + (¢c - ¢W)~] d~ = J (26) 

0.5-c,.. 

= 
2 

cxw¢w + (zw ; czw)(¢c - ¢w) (27) 

When rearranged as 

(28) 

this will be recognised as the one-dimensional Lax-Wendroff flux [3]. The second (negative) 

contribution over the triangular area in cell W is 

(29) 
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Using (17), this becomes, after some rearrangement, 

- I 2 (30) 

Then, 13 is obtained from 12 by shifting all indices south by one unit. 

The diffusive flux is computed in a similar way. In particular 

- a w (a4» = - a w J J a4> d~ d7] 
a~ avg C a~ 

,XlV PIP 

(31) 

This is also conveniently split into three parts. In this case 

(32) 

which will be recognised as the classical, second-order, one-dimensional expression for the 

diffusive flux across the west face. But there are also contributions from transverse 

convective coupling. In particular, 

(33) 

and the corresponding 13 term is again obtained by shifting all indices south by one unit. 

The total west-face convective-plus-diffusive flux is then 
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BILINEAR DOWNWIND: 

FLUXw(i,j) = C,xw 

(34) 

The interesting thing about this formula is that (referring to Figure 4) every term is face­

centered in both x and y directions. In this case, the downwind-weighted sub-cell 

interpolation is "balanced" by the natural upwinding involved in the flux-integral 

calculation. The resulting convective-plus-diffusive flux is independent of velocity direction 

- just like the Lax-Wendroff method in one dimension. The overall update equation 

involves the square, nine-point stencil, centered on C. For pure convection at constant 

velocity, the update is identical to that of a semi-Lagrangian scheme using the same nine­

point stencil. 

Although the semi-Lagrangian convection scheme can be obtained from the fiux­

integral form, the reverse is not true. This is easily seen by writing out the complete update 

based on (34). Notice how the cz<c~y) term from the east-west flux difference combines with 

the cy(c;) term from the north-south flux difference. The purely convective von Neumann 

stability region is again the square, given by (14). Stability regions in the (cx , cy) plane for 

finite values of ex are discussed elsewhere [4]. 
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UNIFORMLY THIRD-ORDER POLYNOMIAL INTERPOLATION ALGORITHM 

Assuming symmetrically weighted cellwise quadratic sub-cell interpolation within each cell 

leads to a uniformly third-order polynomial interpolation algorithm for convection and 

diffusion (under constant-coefficient conditions). In a variable (but solenoidal) convecting 

velocity field, with possibly variable diffusivity, the algorithm is no longer formally third­

order accurate; however, the practical accuracy is significantly better than that of formally 

second-order schemes. Phase accuracy, in particular, is excellent - just as in the case of the 

corresponding one-dimensional QUICKEST scheme [5,6,7]. 

form: 

Within cell W, the quadratic interpolation takes the (velocity-direction-independent) 

- 1- - - - -
= cJ>w - - (cJ>c + cJ>sw + cJ>ww + cJ>NW - 4cJ>w) 

24 

(35) 

Note that this satisfies the cell-average constraint, (8). Also note that the nodal value, tPw, 

is not the same as the cell average; in fact, 

- 1- - - - -
tPw = tP(O,O) = tPw - 24 (tP c + tPsw + tPww + tPNW - 4tPw) (36) 

The x-direction gradient within cell W is 

(37) 

Convective Flux in the Absence of Diffusion 

For pure convection, the west-face flux is computed in the usual way. As perhaps, by now, 

expected, the first'component of the flux integral generates the one-dimensional (in this case, 

QUICKEST formula: 

2 

11 = czw [~ (~c + ~w) - c; (~c - ~w) - (1 - c;) (~c - 2~w + ~ww)] (38) 
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Note the appearance of the upwind-weighted normal-curvature term (resulting from the 

natural upwinding inherent in the flux integral). Integration over the respective triangular 

areas in cells W and SW introduces several cross-difference terms. The final form of the 

purely convective flux is (referring to Figure 4): 

QUADRATIC (CONVECTION): 

1 - - Czw - -
2 (<Pc + <pw) - 2"" (<Pc - <pw) 

- (1 ~ C!)(~c - 2~w + ~ww) 

FLUXw(i,]J = Czw 

+ C (J.. 
yw 12 

2 

+ Cyw (1~ - i;)(~NW - 3~w + 3~sw - ~ssw) (39) 

It is instructive to identify the role played by each of these terms. The first three 

terms represent the one-dimensional (QUICKEST) contribution; note that all the remaining 

terms contain a Cyw coefficient. The fourth term in (39) is the transverse gradient that 

previously appeared in the first-order scheme. This is, in fact, a second-order term - just 

as is the normal gradient (second term). The fifth term represents twist, an interaction 

between normal and transverse convection. The next term is a transverse-curvature 

contribution. The final two terms in (39) are actually fourth-order contributions. Dropping 

these terms does not affect the formal (constant-coefficient) third-order accuracy of the 

overall update equation. However, they do affect the stability of the scheme. Without the 
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higher-order terms, the purely convective stability region is approximately the diamond­

shaped region 

(40) 

Including these terms (that arise naturally in the flux-integral formulation) results once again 

in the square stability region given by (14) . 

Third-Order Diffusive Flux 

Applying the usual three-part-integral procedure to (37) results in the following diffusive 

flux: 

- - c - - -
(<Pc - <pw) - :; (<Pc - 2<pw + <pww) 

(41) 

The first term is the classical (one-dimensional) second-order first-difference across the face. 

The second, normal-curvature term, represents the effect of normal convection on the time­

averaged normal gradient; this is a third-order convection-diffusion cross-coupling term that 

also appears in the one-dimensional QUICKEST formula [5]. The third, twist, term 

represents the coupling effect of transverse convection; this is a (two-dimensional) third­

order term. The final term is actually a (partial) fourth-order cross-coupling term, kept, 

once again, because of enhanced stability properties [4]. 

Diffusive Contribution to the Convective Flux 

The convection-diffusion coupling terms just described represent the effects of convection 

in estimating the diffusive flux. They arise naturally in the flux-integral formulation. For 

uniformly third-order consistency, one also needs to estimate the analogous cross-coupling 

effects of diffusion on the convective flux. Because of the assumed curvature in the sub-cell 

12 
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interpolation, diffusion changes the value of ¢ over fl.t as it is being convected through a 

particular cell face. As shown in [8], this change is given by (Q/2)Tfl¢. Performing the 

usual three-part flux-integral calculation leads to an additional diffusive contribution to the 

convective flux of the form 

+ Czw 

(42) [
(4)c ~ 2¢w ~ ¢ww) ~ (¢s = 2¢sw + ¢sww) ] 

+ (¢NW - 3¢w + 3¢sw - ¢ssw) 

_ exwcyw 
4 

which must be added to (39) to give the total convective flux. The convective-plus-diffusive 

flux at the west face is thus the sum of (39), (41), and (42). A von Neumann stability 

analysis of the constant-coefficient overall update algorithm [4] shows that the useful region 

in (cz , cY' ex) space is given, as a minimum, by the "cylinder": 

I c I <1, 0 < ex < 0.25 (43) 

Reference [4] also describes a simple and inexpensive (vectorisable) up winding strategy 

based on the "generic stencil" technique, using FORTRAN functions NINT and SIGN. 

CONVECTIVE TEST PROBLEM 

The three schemes described here have been applied to the rotating Gaussian hill problem 

under purely convective conditions (ex =0). Details of the mesh, time-step, and other 

parameters are given in Reference [4]. Figure 6 shows the initial state in a superfine-grid 

rendering. The cell-average initial data is shown in Figure 7. Figure 8 shows the first-order 

results after one (anticlockwise) rotation. The "Lax-Wendroff' cell-average results are 

shown in Figure 9, with a close-up of the peak region, showing the sub-cell behaviour, in 

Figure 10. Figures 11 and 12 give the corresponding UTOPIA results. As mentioned 

before, the first-order scheme is far too artificially diffusive to even be considered for 

practical application. As in one dimension, the Lax-Wendroff-type scheme is excessively 

dispersive, showing significant phase-lag errors in the' 'wake". By contrast, UTOPIA has 

good accuracy and excellent phase behaviour, just as in the one-dimensional case [5,7]. 
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Extensive other studies of purely convective and convective-diffusive test-problems 

at a number of grid-refinements have consistently shown the superiority of UTOPIA. Not 

surprisingly, it is more accurate than lower-order schemes. It is also more expensive - per 

mesh point calculation. The important conclusion, however, is that, for a prescribed 

accuracy, UTOPIA can be used on a much coarser mesh (with a concomitantly larger time­

step) - the overall cost is then much lower than that of lower-order schemes. 

CONCLUSION 

The flux-integral method is a powerful technique for estimating convective-plus-diffusive 

fluxes in a strictly conservative formulation of an explicit, single-step update formula for the 

multidimensional convection-diffusion equation. The assumption of locally constant 

convecting velocities near each control-volume face means that the formal accuracy of the 

convection terms is at most second order - e.g., the convecting velocity field could be 

staggered in time by 1l.tl2 with respect to transported scalars. Variable diffusivity would 

typically be lagged, and therefore only first-order accurate in time. 

accuracy is enhanced by using higher-order sub-cell interpolation. 

However, spatial 

Under constant-

coefficient conditions, an Mh-order sub-cell interpolation leads to an (N+ l)th-order accurate 

convection-diffusion scheme - in both space and time. 

Cellwise constant sub-cell interpolation leads to an unworkable (artificially diffusive) 

first-order convection scheme. Cell wise linear or bilinear interpolants generate second-order 

convection-diffusion schemes. Downwind-weighted bilinear interpolation gives a multi­

dimensional analogue of the Lax-Wendroff scheme. However, because of the unsymmetrical 

weighting of the interpolant, this leads to a highly dispersive convection scheme with strong 

phase-lag errors - just as in one dimension. Cellwise quadratic interpolation (independent 

of velocity direction) leads to a very accurate convection-diffusion scheme with excellent 

phase behaviour. Under constant coefficient conditions, this is a uniformly third-order 

polynomial interpolation algorithm (UTOPIA). Since highly accurate solutions can be 

obtained on relatively coarse grids, UTOPIA is much more cost-effective than lower-order 

methods. 
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Because fluxes are estimated directly, (for a given sub-cell interpolation) the flux­

integral method produces unique formulae for the fluxes. This is in contrast to other 

methods that have been used to construct conservative multidimensional convection (or 

convection-diffusion) schemes. For example, Ekebjrerg and Justesen [9] developed a 

nominally thinf-order, two-dimensional convection-diffusion scheme by successive 

elimination of truncation error terms arising from a lower-order scheme. The 

nonconservative single-step explicit update was then rewritten in a conservative pseudojlux­

difference form. But the pseudofluxes chosen by Ekebjrerg and Justesen are not unique; 

except for fIrst-order (and some simple second-order) schemes, there is, in general, no 

unique way of rewriting a nonconservative update in a conservative flux':difference form [4]. 

Recently, Rasch [10] has used, as a starting point, a (constant-coeffIcient) third-order 

semi-Lagrangian convection scheme, and then rewritten the update in conservative form. 

Recognising the nonuniqueness problem, Rasch uses weighting parameters to generate a 

family of possible pseudoflux-difference algorithms. For certain choices of the weights, the 

(purely convective form of the) Ekebjcerg-and-Justesen scheme can be retrieved. For other 

weights, Rasch's convection scheme is equivalent to (the convective part of) that used by the 

present authors in Reference 8; this is also the form used by Rasch. For still other choices 

of the weights, a nominally third-order convective flux equivalent to (39) - but with the last 

two (higher-order) terms removed - can be obtained. The conservatively rewritten semi­

Lagrangian approach does not generate diffusive fluxes. 

In a very recent manuscript, LeVeque [11] has used a technique for purely convective 

flows similar, in some respects, to the flux-integral method described here. For a constant 

convecting velocity fIeld, LeVeque's Method V is a ten-point third-order two-dimensional 

convection scheme. This is the minimum number of points needed for third-order accuracy. 

The overall convective update is equivalent to the semi-Lagrangian scheme used as the 

starting point for Rasch's method; it is also equivalent to that of Ekebjcerg and Justesen. 

LeVeque's Method VI is equivalent to the purely convective portion of the flux-integral 

method developed here; i.e., (39). LeVeque does not consider diffusive fluxes. 
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For simplicity, the present paper has been confined to two dimensions. It should be 

clear that the flux-integral method generalises to three dimensions in a straight-forward 

manner. The technique can be used with even higher-order sub-cell interpolation 

(presumably using velocity-direction-independent interpolants in order to minimise 

dispersion); however, higher-order diffusive-diffusive and convective-diffusive cross­

coupling terms appear to be quite complex. Further research is needed to extend the method 

to larger time steps. Finally, it should be pointed out that shape preservation in the sub-cell 

interpolation automatically results in a positivity-preserving conservative multidimensional 

formulation - thus obviating the need for ad hoc flux-limiter constraints. This is an area of 

current research. 
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Figure 1 Schematic of particle paths flowing into the west face of cell C. 
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Figure 2 The flux -integral parallelogram in the vicinity of the west face of cell C; 

cxw , Cyw > o. 

18 

------- ----_ .. _ ---



'- "-- - -- '--, --- -- -~-

Figure 3 Flux-integral parallelograms on each face of cell C. 

j- - - - i - - - -j 
I 

I NW I N 
I - I 
I ' 2 '1 I 

r- ---1- -- ----j---, 
I I 1"'1 I I 
I WW I I.: I E I 
I I '4 I I 
'----1- ---i----, 

I 5 I 

I, SWW I SW I SiS E : 
: ' I I I L 
~---I- --:----j----

I SSW I SS I 
I , I I 
l ____ I ____ l 

Figure 4 Twelve cells in the vicinity of the west face of cell C; c,%, c, > O. 
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Figure 5 
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Definition of local normalised coordinates within cell W. 
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Figure 6 Initial Gaussian distribution shown on a very fine grid. This is also the exact 

(purely convective) solution after an integral number of rotations; 

4>mu = 1.000. 
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Figure 7 
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Initial state of cell-average values, shown as a two-dimensional histogram on 

the computational grid; 4Jmax = 0.991. 
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Figure 8 
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Solution after one (antic1ockwise) rotation for the first-order method. In this 

case, the histogram of cell-average values also represents the cellwise constant 
- -

sub-cell interpolation. <Pmax = 0.152; <Pmm = 0.0. 
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Figure 9 
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Solution of cell-average values after one rotation using the second-order 

convection scheme; 4>mu = 0.787; 4>_ = -0.149. 
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Figure 10 

, .0 

Close-up of the downwind-weighted bilinear sub-cell interpolation in the peak 

region, showing discontinuities across cell faces; tPmax = 0.823; 

<Pmm = -0.176. 
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Figure 11 
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Solution of cell-average values after one rotation using the purely convective 

form of UTOPIA; 4>max = 0.804; 4>mm = -0.008. 
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Figure 12 

1.0 

0.8 

Close-up of the quadratic sub-cell interpolation in the peak region, showing 

(small) discontinuities across cell faces; cPmax = 0.810; cPmm = -0.010 (not 

shown). 
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