
DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

COLLEGE OF ENGINEERING & TECHNOLOGY

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

ATAMM ENHANCEMENT AND MULTIPROCESSING

PERFORMANCE EVALUATION

By

John W. Stoughton, Principal Investigator

Final Report

For the period ended March 31, 1994

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant NCC1-136

Paul J. Hayes, Technical Monitor

ISD-Information Processing Technology Branch

Submitted by

Old Dominion University Research Foundation

P.O. Box 6369

Norfolk VA 23508-0369

qr
@

August 1994

_CUTIVE SUMMARY

This report constitutes the year end report for 1993 and the final report for

NASA Cooperative Agreement NCC1-136. The research described in this report

involves extensions of the ATAMM implementation issues on several fronts. One

area concerns implementation of cyclo-statically assigned processors in a truly

distributed ATAMM Multicomputer Operating System (AMOS). Research is

summarized to describe the modeling concepts, cyclo-static scheduling, distributed

AMOS testbed design, and experimental results. Another area is concerned with

investigating the sparse implementation of AMOS at the hardware level. Design,

implementation and experimental achievements are subsequently described.

The research described in this report is the subject of two masters' theses.

The cyclo-static scheduling work is reported by [ROY 93], and the hardware scale

AMOS implementation is reported by [SASTRY 94]. This report is a condensation

of the two research theses and alterations in the prose and technical presentations

of the theses have been made for clarity and brevity. ATAMM model background and

attendant cyclo-static scheduling issues are presented in Chapter One. A discussion

of the design of the distributed AMOS is presented in Chapter Two and in Chapter

Three, the distributed AMOS testbed and an example AMG experiment is discussed.

In Chapter Four, design issues relating to a hardware ATAMM based testbed are

discussed. A discussion of the implementation and experimental results are

presented in Chapter Five.

The extension of ATAMM as a strategy for cyclo-static scheduling provides the

basis for a truly distributed ATAMM Multicomputer Operating System (AMOS) [ROY

93]. To carry out the experimental validation of these concepts an ATAMM

multicomputing testbed has been developed. The testbed consists of six PC/ATs

networked using a 10 MBps peer-to-peer ethernet network. An example Algorithm

Marked Graph (AMG) was demonstrated using cyclo-static, block cyclo-static or static

scheduling policies. The execution of a graph bearing self loops, forwarded data

tokens and control buffers was performed. This particular example also

demonstrated the testbed's ability to instantiate nodes for different iterations.

2

The performance of each graph was evaluated by inspecting FDT data on the

ATAMM Analysis Tool. Performances differedslightlyfrom idealbehavior due to a

communication overhead resulting from the file management system of MS-

DOS/network software and singleethernet channel access.

The regular structure ofthe ATAMM model and the controlorganization for

AMOS suggests the applicability for imbedded fine grain multiprocessor

implementations. The research addresses the development of a low levellanguage

hardware based controlstructureforAMOS that employing data structuresat the bit

and byte level [SASTRY 94]. An ATAMM testbed is described using embedded

firmware on 68HCll microcontrollers.The controlstructureused forAMOS in this

research isbased upon a message passing model employing a contention freemodified

token ring physical layer. The testbed consistsof centralizedgraph manager and

three processors. Experiments on the evaluation of several data flow graphs are

reported using ATAMM evaluation software.

TABLE OF CONTENTS

PAGE

LIST OF TABLES ...

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER ONE CYCLO-STATIC SCHEDULING

1.1

1.2

1.3

1.4

Background ...

The ATAMM Dataflow Paradigm

Performance Analysis for the ATAMM Modelling Process

Cyclo-Static

1.4.1

1.4.2

1.4.3

1.4.4

1

1

2.

9

Model 11

Processor Requirements 12

Cyclo-static node schedule 13

Block Cyclo-Static Scheduling 15

Static Scheduling 16

1.5

CHAPTER TWO

2.1

Schedule Loop Examples 16

DESIGN OF DISTRIBUTED AMOS GRAPH MANAGER.. 23

Distributed AMOS Overview 23

2.1.1 Information Base for Distributed AMOS 25

2.1.2 "FIRE","EXECUTE" and "DONE/DATA" States 34

2.1.3 AMOS Integration 35

2.2 LAN Based Communication Layer 35

2.3 Testbed Operational Features 43

CHAPTER THREE TESTBED EVALUATION 47

3.1 User Interaction 47

3.2 Testbed and Scheduling Evaluation 47

3.2.1 Cyclo-Static Schedule Example 51

3.2.2 Block Cyclo-Static Schedule 51

3.2.3 Static Scheduling Example 56

PAGE

3.3 Testbed Communication Overhead 56

3.4 Summary ... 60

CHAPTER FOUR MICROCONTROLLER BASED AMOS 63

4.1 Introduction ... 63

4.2 Implementation of the ATAMM Model 64

4.3 The Centralized Algorithm Graph Manager 65

4.4 Message Passing Model 67

4.4.1 Token Ring Description 68

4.4.2 Token Ring Timing 68

4.5 Task Scheduling for AMOS 71

4.6 Communication System Design and Implementation 72

4.6.1 Communication Layer Overview 72

4.6.2 Communication Layer Design 76

4.6.3 Physical Layer Design 76

4.7 Design of the Graph Manager 77

4.7.1 Overview of Graph Manager and PE interaction ... 77

4.7.2 Message Format 79

4.7.3 Enhanced State Machine view of CGM 79

4.7.4 Soi_ware Design 82

4.8 Soi_ware Implementation 84

4.8.1 Graph Manager Implementation 84

4.8.2 Implementation of the State Diagram for Node

Operations 91

Simulation of Node Timings 93

Memory Utilization 93

TESTBED INTEGRATION AND EVALUATION 95

Testbed Operation 95

Timing Measuremnets 96

4.8.3

4.8.4

CHAPTER FIVE

5.1

5.2

4

PAGE

5.2.1 FDT Evaluatio 97

5.2.2 Monitor Program 97

5.3 Verification Experiment 99

5.3.1 Eight node example 99

5.4 Timing Measurements 103

5.4.1 Time to Pass Messages Around the Logical Ring.. 103

5.4.2 Software Overhead for the Graph Manager and

PEs 107

5.4.3 Measurement Imprecision 110

CHAPTER SIX CONCLUSIONS 111

6.1 Introduction .. 111

6.2 LAN Connected Distributed AMOS 111

6.3 Microcontroller Based AMOS Testbed 112

REFERENCES ... 114

LIST OF TABLES

TABLE

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

5.1

5.2

TITLE PAGE

Cyclo-Static Schedule Loops for the AMG in Figure 1.1(b) 21

Basic Connection Matrix for the AMG in Figure 2.2 28

Transpose of Connection Matrix for the AMG in Figure 2.2 29

Augmented Connection Matrix for the AMG in Figure 2.2.30 30

Scheduling Table .. 32

Initialization Table .. 32

Assignment Table ... 33

Modulo Operator Table 33

Features of Distributed and Centralized AMOS45 45

Format of the Specifications File 48

FDT File Format as Input to ATAMM Analysis Tool 50

Specifications File for the Cyclo-Static Example 52

Specifications for Block Cyclo Static Example 54

Specifications for a Static Schedule Example 57

(Table 4.10) .. 62

Static AMG Mask ... 87

Transpose of Static AMG Mask 87

Initial Data Tokens ... 89

Initial Control Tokens 89

Processor Queue Representation 90

FDT File Format as Input to ATAMM Analysis Tool 100

Event for Timing Measurement 109

6

LIST OF FIGURES

FIGURE

Figure 1.1(a)

Figure 1.1(b)

Figure 1.2(a)

Figure 1.2(b)

Figure 1.2(c)

Figure 1.2(d)

Figure 1.2(e)

Figure 1.3

Figure 1.4

Figure 1.5

Figure 1.6

Figure 1.7

Figure 1.8

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

TITLE PAGE

An Example Algorithm Directed Graph 4

An Example Algorithm Marked Graph 4

Complex Node Marked Graph (NMG) 6

Simplified Node Marked Graph (NMG) 6

Predecessor-Successor Node Relationships 7

Node Before Firing 7

Simplified Node Marked Graph (NMG) 7

Computational Marked Graph for the AMG in Figure

1.1(b) .. 8

TGP Diagam for the AMG in Figure 1. l(b) 10

R Cyclically Shii_ed Threads of a Node-Sequence in the

Loop Frame 14

Fully Cyclo-Static Schedule-Loop for the AMG in Figure

1.1(b) .. 18

Block Cyclo-Static Schedule-Loop for the AMG in Figure

1.1(b) .. 19

Static Schedule-Loop for the AMG in Figure 1.1(b) 20

Key Elements of an ATAMM Dataflow Multicomputer 24

AMG That Requires Control Buffers and Forwarded Data

Tokens .. 27

Events that Ocur in the AMOS "FIRE" State 36

Events that Occur in the AMOS "DONE/DATA" State 37

State-Machine View of Distributed AMOS Graph

Manager 38

Interaction Between AMOS States and Data Structures... 39

7

FIGURE

Figure 2.7

Figure 2.8

Figure 2.9

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 4.1

Figure 4.2(a)

Figure 4.2(b)

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

TITLE PAGE

Distributed AMOS and itsFunctional Relationship with

Standard Multicomputer Operating System Components .. 40

ATAMM Testbed Components:Processing Elements and

Local-Area-Network 41

Distributed Shared Memory, DSM, for the ATAMM

Dataflow Testbed 44

ATAMM Analysis Tool Output forCyclo-Static

Scheduling of the AMG in Figure 1.l(b) 53

ATAMM Analysis Tool Output forBlock Cyclo-Static

Scheduling of the AMG in Figure 1.l(b) 55

ATAMM Analysis Tool Output forPurely Static

Scheduling of the AMG in Figure 1.l(b) 58

FDT Events in One TGP Frame ofFigure 3.1........... 61

State Diagram of the Centralized AMOS Graph

Manager 66

Physical Topology of Token Bus 69

Logical Layout of Token Bus 69

Flow Diagram forToken Bus Operation 70

Logical Representation of the Message Passing Model 73

Hardware Representation ofthe Message Passing Model... 74

Flowchart Representation of Token Bus Operation 75

Handshaking Scheme for the Message Passing Model 78

Figure 4.8(a)

Figure 4.8(b)

Figure 4.9

Figure 4.10

Figure 4.11(a)

State Diagram for Graph Manager 80

State Diagram for Processing Elements 81

Enhanced State Machine Diagram for Graph Manager 83

Communication Layer and Subroutine Interaction for the

Graph Manager 85

An Example Algorithm Directed Graph (ADG) 86

8

FIGURE TITLE

Figure 4.11(b)An Example Algorithm Marked Graph (AMG).86

Figure 4.12

Figure 4.13

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4(a)

Figure 5.4(b)

Figure 5.5

Figure 5.6

PAGE

Flowchart for Graph Manager Operation 92

Flowchart for Processing Element Operation 94

FDT Time Marks on State Machine Diagram for Graph

Manager 98

AMG for the Eight Node Example for Experiment 3 101

TGP for the AMG in Figure 4.11 102

Analyzer Output for the AMG in Figure 4.11 104.

Analyzer Output for One TBO Frame of the AMG of

Figure 4.11 105

Overhead Increase with Increase in Number of PEs 106

Timing Measurements for Graph Manager Operation 108

9

LIST OF ABBREVIATIONS

ABBREVIATION DESCRIPTION

ADG

ADAM

AGM

AMG

AMOS

ATAMM

CAMG

CB

CMG

CCr

CP

Ctrl.

D

DAGM

F

FDT

FGDF

FU

i

IE

IF

IPC

LAN

LGDF

MIMD

NMG

N

NCO

NDO

Npz

NT

Algorithm Directed Graph.

ATAMM Data/low Multicomputer.

AMOS Graph Manager.

Algorithm Marked Graph.

ATAMM Multicomputer Operating System.

Algorithm To Architecture Mapping Model.

Centralized AMOS Graph Management.

Length ofControl Buffer on a Control Arc.

Computational Marked Graph.

CriticalCircuit.

CriticalPath.

Control.

"Done/Data" sub-node of the simplifiedNMG.

Distributed AMOS Graph Management

"Fire"sub-node of the simplifiedNMG.

Fire,Data, Time events forthe ATAMM Analysis Tool.

Fine Grain Dataflow.

Functional Unit.

Iterationnumber i.

Input Buffer Empty.

Input Buffer Full.

Inter-ProcessorCommunication.

Local Area Network. The testbeduses a 10 MBps thin-ethernet

with peer-to-peer(NovellNetWare Lite)software.

Large Grain Dataflow.

Multiple Input Multiple Data (parallelcomputers).

Node Marked Graph.

Number of AMG nodes.

Number ofControl Tokens Output.

Number of Data Tokens Output.

Number of Processing Elements required to execute an AMG.

IntrinsicNode Execution Time.

10

NCO
NDO

NpE

NT

PE

PID

PR

R

RAM-disk

RTI

SA

STRA

STRB

TBI

TBIO

TBIOLs

TBO

TBOLB

TBO_n

TCE

Tw._t

(X,Y,Z)

Number of Control Tokens Output.

Number of Data Tokens Output.

Number of Processing Elements required to execute an AMG.

Intrinsic Node Execution Time.

Processing Element.

Processor Identification Number.

Process Ready.

(i) The number of processors required to satisfy a specified

TGP.

(ii) "Resource" command used by a CAGM.

Portions of RAM of a Personal Computer configured as Disks.

The number of processors required to execute an AMG with TBO

= TBOLB.

Real Time Interrupt

Static Assignment

Strobe Line A

Strobe Line B

Time Between Inputs.

Time Between Inputs and Outputs (computing time).

Lower Bound on TBIO.

Time Between Outputs (throughput).

Lower Bound on TBO.

Minimum TBO due to overhead requirements.

Total Computing Effort.

The totalwaiting time between nodes of a node-loop.

Connection Matrix entriesof the form :(IterationIncrement on

Data Arc, Number of InitialData Tokens, Length of Control

Buffer on Corresponding Control Arc).

II

CHAPTER ONE

CYCLO-STATIC SCHEDULING

1.1 Background

The problem domain addressed by ATAMM includes Large (coarse)

Grain Data Flow (LGDF) applications that are deterministic in nature. Large

grain dataflow problems are decomposed into macro blocks of code

(instructions) that get executed whenever required data is available at input.

Of special interest are deterministic, iterative LGDF algorithms whose block

computation times are assumed to be constant.

A dataflow algorithm is represented as a directed graph in which nodes

and arcs stand for instruction blocks and their data dependencies, respectively.

Given such a decomposed dataflow algorithm, ATAMM uses a set of marked

graph models to expose its control as well as data dependencies. Using Gantt

chart representations of algorithm performance in steady state, the ATAMM

model specifies measures for throughput and computing time that form the

criteria for predicting performance based on the number of available computing

resources.

ATAMM is manifested in software as the ATAMM Multicomputer

Operating System, AMOS, which is implemented on real-time multicomputer

architectures to achieve predictable, reliable and deadlock-free performance of

LGDF computations. Earlier versions of AMOS (developed at the NASA

Langley Research Center), include the Advanced Development Module (ADM),

a four processor architecture (VHSIC) based on the Westinghouse MIL-STD-

1750A instruction set processor. Another version of AMOS has been developed

for the Generic VHSIC Spaceborne Computer, GVSC, a spaceborne four

processor breadboard also based on 1750A VHSIC processors MIELKE90].

2

In these embodiments of ATAMM, AMOS code is executed on all

processors in a multi-threaded fashion. Processor assignment is governed by

a processor queue that allows only one processor to schedule a node for

execution at a time. This scheduling is dynamic in nature and is based on the

current state of execution of the algorithm. It is necessary to redundantly

broadcast AMOS data structures and computed data across all processors of

the system. The operation of AMOS in the ADM and GVSC relies on

preserving the total graph view across every processor at all times. AMOS

operation in these systems may be termed as centralized since only one

processor at a time can supervise a node scheduling operation. The

assignment policy of a centralized AMOS with a single queue requires

processors to be homogeneous. However, a distributed heterogeneous

processing environment can be created by establishing different queues for

each class of computing resource in the system [JONES ofr SOM 93].

An alternative to the above is a static and deterministic scheduling

approach that establishes a specific mapping of nodes to processors for every

iteration of the dataflow algorithm. Motivation for this form of scheduling is

derived from observing the periodic execution behavior in deterministic LGDF

algorithms. Of interest are scheduling operations which may be distributed

among processors such that processors concurrently participate in scheduling

nodes for execution. In this sense, AMOS graph management operations such

as node scheduling and processor assignment may be performed in a

distributed manner.

1.2 The ATAMM Dataflow Paradigm

The ATAMM model provides the analytical means to integrate algorithm

dataflow with the target architecture. It is based on timed marked graphs

which are suitable for describing data and control flow events within a

computational system.

A set of three marked graphs, the Algorithm Marked Graph (AMG), the

3

Node Marked Graph (NMG) and the Computational Marked Graph (CMG)

constitute the main components of the ATAMM model [STOUGHTON88].

Given an algorithm decomposition, the Algorithm Directed Graph (ADG) is

used to describe data dependencies. An example ADG is portrayed in Figure

1.1(a).

The AMG is a marked graph representation of the ADG. Circles on the

graphs denote algorithm nodes ("chunks" of macro dataflow code). The edges

of the AMG represent data dependencies between predecessor and successor

nodes, while bullets on these edges represent the presence of data tokens.

Squares represent sources and sinks, thereby providing data entry and output

collection points.

An algorithm node is enabled for firing when it has data tokens on all

its incoming data arcs. The node fires by encumbering all input tokens,

delaying for some time interval and depositing one data token on each outgoing

edge. The AMG fuses algorithm data dependencies with the those imposed by

execution requirements fo.r the ADG. For example the AMG for the ADG in

Figure 1.1(a) is presented in Figure 1.1(b). An initial data token has been

deposited on the data edges from node two to one and node three to two, thus

satisfying the initial execution conditions for the graph.

The AMG thus represents task decomposition and data dependence

between processesin an effective fashion. Each node of the AMG is modelled

with respect to data and control activities that is the basis of the ATAMM

model. The Node Marked Graph (NMG) describes node specific activities and

data dependencies that need to be satisfied. The architecture is assumed to

have global memory for storage of data associated with each AMG edge. The

global memory is distributed or shared among the processing elements (PEs).

Each PE also contains local memory for the storage of data and the code to

execute any node of the AMG. APE must read data from global memory into

its local data container, process the data and write the data back to global

memory for accessby other Pes. An additional requirement is that global

Source Sink

Figure 1.1(a) An Example Algorithm Directed Graph (ADG).

D
Source

2.0 Relative

_ node timing

Initial J _ !_)

;Path

Figure 1.1(b) An Example Algorithm Marked Graph (AMG).

5

memory is available for output before node execution can commence. T h e

NMG portrayed in Figure 1.2(a) describes the above node activities. The NMG

specifies not only the activities to be performed at a PE but also the conditions

which enable them to be performed. The read node cannot be fired on a PE

until the processor is ready, input is available, and the output has been read

by the successor operation. Once the PE is assigned to "fire" the read

transition, it will remain assigned in order to process and write the data before

becoming available once again [JONES90].

It can be shown that the NMG depicted in Figure 1.2(a) can be

remodeled with fewer transition edges, which satisfy the necessary and

sufficient conditions for algorithm execution [TYMCHYSHYN88]. The reduced

NMG is presented in Figure 1.2(b). The reduced AMG contains "Fire" and

"Done/Data" nodes as portrayed in Figure 1.2(c). The activities pertaining to

the execution of a node are shown in Figures 1.2(d) and 1.2(e).

A fusion of the AMG and NMG marked graphs generates the

Computational Marked Graph, (CMG). The CMG is constructed by replacing

each AMG node is replaced with a NMG. The CMG built out of the AMG in

Figure 1.1(b) is shown in Figure 1.3, with initial markings [JONES90].

The presence of CMG control and CMG data edges for every AMG data

edge creates loops in the resultant CMG. Before a node in a dataflow graph

can be fired, it must have a token on every incoming edge. Consequently,

initial control tokens are needed on control edges, in order to ensure the first

time execution of all AMG nodes. The initial tokens shown in Figure 1.3 satisfy

initial control token dependencies of the graph. Note that data dependencies

are automatically satisfied as the CMG is executed.

Special dataflow execution requirements (in terms of graph features) can

also be incorporated in the CMG. For instance, in order to sustain a specific

rate of execution, additional control tokens may be needed on incoming CMG

control edges to a particular node. The presence of more than one control

tokens on CMG control edges establishes CMG control buffers. Furthermore,

6

IF

IE
/

/

DR DP
Read Write

PR

Figure 1.2 (a) Complex Node Marked Graph (NMG).

f

IE /

OE

I •

EXECUTE
>

Figure 1.2 (b) Simplified Node Marked Graph (NMG).

Figure 1.2 (c) Predecessor-Successor Node Relationships.

EXECUTE

Figure 1.2 (d) Node Before Firing.

EXECUTE

Figure 1.2 (e) Node After Firing.

A

.Q
qli

,ym

O"J

=E

r-

It.

0
_n

.C

"O
Q_

lie

m

r"

OR

qUb_

-i

E

,i,m

L.

O'J
li

LL

9

data tokens on outgoing data edges are usually generated for the current

iteration index.However for certain types of data edges (such as loops), data

tokens may need to be generated for future iterations. Such data tokens are

termed as forwarded data tokens. Iteration increments corresponding to

forwarded tokens can be marked against data edges in the CMG.

1.3 Performance Analysis for the ATAMM Modelling Process

In the ATAMM environment, the execution patterns of a given

CMG can be evaluated by using equivalent performance measurements, Time

Between Outputs (TBO) and Time Between Input and Output (TBIO). TBO is

a measure of the time interval between algorithm outputs and its inverse

indicates throughput. TBIO is an indicator of computing latency [MIELKE 88]

and [SOM 89].

The ATAMM model provides the means to match algorithm

requirements with resource availability for achieving a balance between TBIO

and TBO and also establishes the criteria for predictable performance.

Predictability is attained by maintaining an input injection rate within the

range determined by ATAMM [MIELKE90].

The stead state execution pattern may be viewed in a Gantt chard

representation termed the TGP (Total Graph Play) diagram. For example, the

TGP diagram for the AMG example of Figure 1.1(b) is shown in Figure 1.4.

The steady state resource requirement are obtained by counting the

number of concurrently active nodes in the TGP diagram. The peak resource

requirement, denoted by Rm_ , represents the maximum number of resources

necessary to execute the graph with TBIO = TBIOLB and TBO = TBOLB.

However, for insufficient resources, performance cannot reach the bounds

established by TBOLB and TBIOLB. Consequently, the resource requirement

would be different from Rm_ , if an algorithm were to be operated with

performance requirements other than TBIOLB and TBOLB.

Performance metrics for algorithm execution are time measures that

10

Total Graph Play

J

i I
0

i

i

i

i

I

i-1 I
2

I i.1
3

i

' i-1

I 4

n

I I ' I _ I
1 2 3

I

i

1

P

i
2

I
4

superscripts : Iteration number.

TCE ---3.0 + 2,0 + 2.5 + 1.5 + 3.0 - 12.
TBO - 5,0.

Figure 1.4 TGP Diagram for the AMG in Figure 1.1(b).

i
I

11

characterize various aspects of run time behavior. A unit of computer time is

defined by the product PE and one unit of execution time. For instance, the

use of four PEs over ten units of execution time indicates 40 units of computer

time. Computing Capacity, CC, is available computer time over an interval of

time T. If R resources were available over T, the Computing Capacity is R *

T units. Correspondingly, Computing Effort, CE, is defined as the units of

computer time used over the interval T. Node Time (NT) is the time to execute

a particular node. Total Node Time (TNT) is the sum of all the node times in

an algorithm. The Total Computing Effort, TCE, is denoted by the total units

of computing effort required by one processor to execute all AMG transitions

once.

The relationship between TCE, R and TBO has been discussed by SOM,

[SOM89]. That is, TBO for an algorithm marked graph operated periodically

with R processors satisfies

[TBO] > [TCE/R Processors]. (1.1)

This can be restated as,

[R Processors] * [TBO] > TCE (1.2)

or

[R Processors] *[TBO] > [TNT] * [1 Processor] (1.3)

In other words, Computing Capacity (expressed in processor time units as R

• TBO) equals or exceeds the Total Computing Effort exerted by a single

processor. The expression [TNT] represents the aggregate time span that a

single processor requires to discharge TCE units of "work".

1.4 Cyclo-Static Model

The steady state AMG execution, as characterized by the Total Graph

Play diagram, is an instantiation of the AMG over a TBO time period. Within

a TGP frame, each node of the AMG is executed once. Over M iterations,

every AMG node is executed M times, giving rise to an ensemble of node

execution traces. Of interest is the identification of one or more periodic node

12

sequences such that,

[1] each sequence represents a set of nodes containing exactly one

instance of each of the N nodes of the AMG and therefore

illustrating a single execution of every AMG node in a specific

order;

[2] nodes are selected in a time exclusive manner so as to ensure

that a node in the sequence is fired only after the completion of

the node that precedes it in the sequence;

[3] an iteration index relationship gets established between

successive nodes which ensures that while migrating from a node

to an adjacent one, the iteration index gets incremented by zero

or more; and

[4] the sequence is periodic across contiguous frames of length R *

TBO. That is, if a node in the sequence is associated with

iteration i in a given frame, it gets associated with iteration i+M

in the next frame.

Due to its periodic behavior, a node sequence forms a node loop. The

frame of length M * TBO, for which the node loop is identified, may be termed

as a loop frame. Note that for any node loop beginning with node N i in the first

TBO frame, there exists another node also beginning with node Ni in the next

TBO frame and so on for each of the TBO frames. This is to be expected since

N i is found in each of the TBO frames and thus the loop frame contains M

node loops which are periodic and cyclically shifted by TBO. Note that each

node loop identifies each node with a different index, and all nodes are selected

in the loop frame. Thus a node loop set in the loop frame is mutually exclusive

in node and index identification and collectively exhaustive in identifying all

nodes.

1.4.1 Processor Requirements

Consider again a node loop over M*TBO. After completing a node, a

processor may be required to wait to execute the next node in the schedule.

13

Over the entire schedule, the aggregate time a processor waits in order to be

assigned is termed Tw._t. Note that Tw_ t depends on the particular schedule.

The sequence length per unit time satisfies

[M * TBO] = [TNT + T,,_j. (1.4)

multiplying by a processor provides a relationship in units of computing effort

for the execution of the AMG by one processor. Hence

[M * TBO]*I Processor = [TNT + T,,.,t]*l Processor. (1.5)

Given that the AGM nodes are all executed in TBO time, then the number of

processors required to perform the equivalent effort in TBO time, for the given

schedule is obtained by dividing Equation 1.5 by TBO or

[M * Processors] = {[TNT + Twj/TBO}*I Processor. (1.6)

Thus, M processors are required per TBO time frame where M > R_.

1.4.2 Cyclo-static node schedule

Assume the existence of periodic node loops that satisfy the criteria

specified above. From the previous discussion R (R=M) processors are required

for each TBO frame. Since each TBO frame consists of M mutually exclusive

elements of node loops, then it is sufficient to map each of the R processors 1:1

to each of the node loops. The processor executes the node loop by migrating

from one node to another in the prescribed sequence and by associating nodes

with particular iteration indices. The processor repeats its cycle of execution

periodically across consecutive loop frames. Consequently, it preserves a

modulo R relationship between iterations associated with nodes. Each of the

other R-1 processors also is assigned uniquely to one of R-1 node loops.

Assigning a processor to a unique node loop guarantees that processors execute

nodes in a mutually exclusive fashion over one node frame. These concepts are

illustrated in Figure 1.5.

Furthermore, since every node that appears in a loop frame belongs to

a particular node loop, the association of R processors with R node loops also

establishes the collective exhaustiveness of the assignment process.

14

e,

z

"6

]
"6

U.

15

The assignment described above is said to be fully cyclo-static and may

be described more formally. If the schedule loop for processor 1_, k _ {0, R-l},

is periodic in R TGP frames, then processor R_ can be successively assigned to

all nodes of the AMG, once, with a period of R * TBO. If resource Rk is

assigned to node Nm, m e {0, N-l}, in TGP frame k, V k e {0, R-l}, then,

resource 1_., j e {0, R-l}, is assigned to node Nm in TGP frame k _ j. Such a

time interlocked relationship for every pair of resources {1_, 1_} and every node

Nm, for one loopframe, establishes a scheduling loop for each resource in the

system. Furthermore, if a node N_ is executed by processor Rk in iteration i,

it is executed again by processor R k in every iteration that satisfies a

modulo(i,R) relationship.

A time measure for a cyclo-static assignment can be considered by

reexamination of Equation 1.5. The processor assigned to a particular node

loop produces TCE units of work since the execution of all N nodes of the AMG

requires TCE effort. In addition, the term Twait is the sum of all inter-nodal

idle times present in the _yclo-static schedule loop and is dependent on the

specific sequence selected.

It is to be noted that Equation 1.5 resolves the dependence between

waiting time and the number of processors required. Given an AMG that

requires a computing effort ofTCE, a throughput of TBO, and a node sequence

that contributes a inter nodal wait time of Twit, R processors are necessary to

execute the schedule loop among R processors in a cyclo-static fashion.

Analogously, given TCE, TBO and a maximum resource availability of R, a

cyclo-static schedule loop should be able to provide a Tw_ t that exactly satisfies

Equation 1.5.

1.4.3 Block Cyclo-Static Scheduling

The inherent periodicity of node execution patterns in steady state,

provides the potential for other types of cyclo-static behavior. Consider a

scheduling policy using a set of schedule loops, each containing fewer than N

nodes. In order to satisfy the parallel and pipeline concurrency present in

16

steady state, the set needs to contain two or more mutually exclusive blocks

of limited node schedule loops. These blocks impose an implicit partitioning on

the AMG nodes. Consequently, a given AMG node can appear in only one block

in the set. Two or more processors could be assigned to periodically execute

a particular block in a restricted cyclo-static manner. Similar assignments of

processors to the remaining blocks of the system ensure the collective

exhaustiveness of the assignment process. However, the processors now are

scheduled to execute only those nodes that are contained in a block (as opposed

to executing every AMG node in a cyclo-static schedule). Furthermore, the

iteration numbers associated with nodes in a block bear a modulo Rb

relationship, where Rb is the number of processors assigned to execute the

block. With this scheduling policy, cyclo-static behavior is limited to executing

blocks of schedule loops rather than a single N node schedule loop.

Consequently, this form of cyclo-static behavior may be termed as block cyclo-

static.

1.4.4 Static Scheduling

For a given AMG, if R blocks of schedule loops are created, each

processor becomes solely responsible for a single schedule loop across all

iterations. This represents an extreme form of block cyclo-static scheduling,

which may be termed as static scheduling. The process is characterized by the

division of an N node AMG into R mutually disjoint partitions. In particular,

it should be noted that a fully static schedule consists of a set of R mutually

exclusive node sequences, a block cyclo-static schedule contains k node

sequences (where 1 < k < R), and a cyclo-static schedule bears only 1 node-loop

containing N nodes.

1.5 Schedule Loop Examples

Scheduling examples representing fully cyclo-static, block cyclo-static

and fully static schedule loops are presented in Figures 1.6, 1.7 and 1.8,

respectively. Schedule loops shown are with reference to the AMG of Figure

17

1.1(b), whose TGP appears in Figure 1.4. Every figure contains a "bubble

diagram" representing a cyclical loop schedule for an assigned processor. Each

node in a bubble diagram is associated with an iteration number which is

unique with respect to the same node in any other bubble diagram. Note that

the transition from a node to its neighbor may require an iteration number

change. Furthermore, each thread of the schedule loop contains a node that

is encapsulated by double lined circles. This is the initial node for the processor

assigned to execute the thread. Determination of initial nodes is done by

considering the steady state behavior of a node loop within a loop frame.

Finally, a comprehensive list of all possible N node schedule loops for the

example AMG is presented in Table 1.1 along with associated Tw.,t and R

values. Each of these loops specifies a value of Twait that requires the

utilization of 1_ processors. Rm_ is defined as the minimum number of

processors required to execute an AMG in steady state for a given TGP.

18

i

+2

i+1

i+2

Fully
Cyclo-Static

Schedule-Loop

+/ _ TCE = 3.0 + 2.0 + 2.5 + 1.5 + 3.0 = 12.

_/ _L_ Twait = 0 + 0.5 + 1 + 1.5 = 3.

P1 _ji+2Rmax* TBO =3"5=15.

\ / =TCE + Twait

i _ i+2

+2

i+2 i+ 1

i+2"-" +1

Figure 1.6 Fully Cyclo-Static Schedule-Loop for the AMG in Figure 1 .l(b).

._9

+2

i

i

i+1

+2

/+1

i i

+1

P2

Block

Cyclo-Static
Schedule-Loop

TCE = 3.0 + 2.0 ÷ 2.5 + 1.5 + 3.0 = 12.

Twait = [0 + 0.5 + 1.5]p+ [0 + 1_,2 3.

Rmax * TBO =3"5=15.

= TCE + Twait

=12+3=15.

/+1

Figure 1.7 Block Cyclo-Static Schedule-Loop for the AMG in Figure 1.1(b).

20

o

PO

i

Static

Schedule-Loop

i

P1

i

i

TCE = 3.0 + 2.0 + 2.5 + 1.5 + 3.0 = 12.

Twait = [0]p_ [1]p+ [2_,2--3.

Rmax * TBO =3"5=15.

= TCE + Twait

=12+3=15.

P0

Figure 1.8 Static Schedule-Loop for the AMG in Figure 1 .l(b).

21

Table 1.1 Cyclo-Static Schedule Loops for the AMG in Figure 1. l(b).

Node Sequence

0 1 3 2 4

0 2 3 1 4

0 2 4 3 1

01234

0 1 243

01423

0 1 432

0 2 1 3 4

0 2 1 4 3

02413

03124

03214

03 24 1

0423 1

02341

04321

01342

03142

Processors

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

4

5

5

Wwait

3

3

3

8

8

8

8

8

8

8

8

8

8

8

8

8

13

13

22

Table 1.1 Cyclo-Static Schedule Loops for the AMG in Figure 1. l(b).

19.

20.

0 3 4 2 1

0 4 1 2 3

5

5

13

13

21. 0 4 1 3 2 5 13

22. 0 4 3 1 2 5 13

23. 0 4 2 1 3 5 13

24. 0 3 4 1 2 6 18

TBO = TBOLB. 1_ processors are sufficient to satisfy the parallel and

pipeline concurrency of an AMG.

CHAPTER TWO

DESIGN OF DISTRIBUTED AMOS GRAPH MANAGER

2.1 Distributed AMOS Overview

The ATAMM Multicomputer Operating System AMOS, is a logical

interface between the dataflow graph and the multicomputer hardware. The

basic elements of the ATAMM based computer is represented in Figure 2.1.

The main components of AMOS include a variety of data structures which

translate graph and execution parameters into an AMOS readable form, a

graph manager, and a system task scheduler.

AMOS data structures represent the computational problem and the

specific dataflow execution paradigm to be satisfied. Some of these structures

are a graph connection matrix representing the AMG's data connections,

information pertaining to buffer lengths and iteration increments along control

and data arcs, initialization information etc.

The AMOS Graph Manager (AGM) performs the task scheduling

operations of the operating system. The AGM may be classified as centralized

or distributed, based on how CMG information is used during graph play. The

taxonomy pertains to either having a single task master, which concerns itself

with a composite view of the CMG at every point of execution, or having an

ensemble of logically coherent AGM pieces which are responsible only for

executing sub-partitions of the CMG. This essentially implies that a centralized

graph manager (CAGM) exists as a monolithic task scheduler of all node

activities as required to play the CMG. A Distributed AMOS Graph Manager

(DAGM), on the other hand, is partitioned into unique but logically contiguous

fragments. Each fragment monitors and executes a unique partition of the

CMG. Collectively all fragments discharge the required scheduling of the AMG.

23

24

Off-line, ATAMM Modelling Process, Problem Specification

Large-grained Performance
datafiow Specifications,

algorithm TBIO, TBO NPE

Graph Models.

/
ATAMM Multicomputer Operating System, AMOS

V

Multicompute! Architecture
Y

Figure 2.1 Key Elements of an ATAMM Dataflow Multicomputer.

25

2.1.1 Information Base for Distributed AMOS

The development of a distributed AMOS is based upon an information

base that correlates processor assignment operations, cyclo-static node

schedules and iteration index relationships. For a given AMG, a node loop

specifies a sequence of nodes that need to be executed chronologically. It also

indicates iteration increments associated with node transitions in the loop.

Thus, each cyclically shifted node loop becomes preassigned to each of the R

processors of the system. Attributes of this policy are that

[1] processors deterministically migrate from one node to another,

in the manner established by the predetermined scheduling

policy;

[2] reference iteration indices are updated while migrating from node

to node as specified in the loop sequence; and

[3] each node loop is repeated periodically, thereby maintaining a

unique modulo R relationship for the iteration indices associated

with nodes in the loop.

The benefit of this schedule policy is that processors can sequentially schedule

nodes for execution, without incurring any run-time scheduling overhead. The

collective but autonomous execution of all node loop threads results in a

conflict free execution of the AMG. The fact that a processor is made

exclusively responsible for executing a sequence of nodes periodically for

specific iterations provides a basis for a strategy for self governed and

decentralized scheduling operations for an AMOS graph manager.

When assigned to a node loop, a processor remains in a state of

continuous assignment, during which it picks up a node for execution,

operates on the node, terminates its execution, and seeks to repeat the cycle

on the next node in the schedule loop. However, this view of the assignment

policy needs to be augmented with the inclusion of dataflow operations that

satisfy the data and control dependencies of the underlying CMG. For

example, before firing a node for iteration i, a processor has to transmit control

26

tokens to predecessor nodes for a future iteration i+CB (where CB is the length

of the control buffer for a given control arc). Analogously, after completing a

node, a processor generates data tokens for successor nodes (which are

associated with the present or future iterations).

Based on the above description of node scheduling and maintenance of

graph control and data dependencies, the required pieces of information that

suffice a strategy for self governed operations directly follow. Thus each

processor needs:

[1] a view of the CMG which indicates data and control relationships

between nodes;

[2] a schedule loop which specifies which node to do next;

[3] relative iteration indices for every node in the loop;

[4] a starting node associated with an initial iteration number to

begin loop execution;

[5] information which details processor assignments for every node,

for R successive iterations; and

[6] a modulo coefficient to associate with the repeated execution of

each node in the schedule loop.

The first information element relates to a representation of the CMG

that indicates data arcs (and therefore control arcs) and special AMG features

such as control buffers and forwarded tokens relative to each node. In

reference to the example AMG of Figure 2.2, Tables 2.1 and 2.2 portray the

basic AMG connection matrix and its transpose, respectively. The features of

the augmented AMG is shown in Table 2.3.

A schedule loop pertains to a specific sequence of nodes that every

processor in the system executes. Since a processor executes a node for only a

specific modulo R iteration number, the nodes of each thread that is assigned

to a processor need to be tagged with relative iteration numbers. Threads for

a schedule loop differ not only with respect to iteration indices for constituent

nodes, but also in the node positions where assigned processors commence with

27

AMG

5 14.0 2.0

Forwarded
Data Token

For
SELF LOOP.

CMG

_ Buffer.

+ +2 +3

--_ CMG Data Arcs

-- _ CMG Control Arcs

Figure 2.2 AMG That Requires Control Buffers and Forwarded Data Tokens.

28

Table 2.1 Basic Connection Matrix for the AMG in Figure 2.2.'

0 1 2 3 4 5 6 7

0 0 0

1 0 0

2

3

4

5

6

7

0

0 0

"[] indicates the absence of an arc; 0 indicates an arc from row to column

nodes.

29

Table 2.2 Transpose of Connection Matrix for the AMG in Figure

2.2.

0 1 2 3 4 5 6 7

0 0

1 0

2 0 0

3 0

4 0 0

5

6

7

*[] indicates the absence of an arc; 0 indicates an arc from row to column

nodes.

30

Table 2.3 Augmented Connection Matrix for the AMG in Figure

2.2.'

0 1 2 3 4 5 6 7

0 0,0,1 0,0,1

1 1,1,0 0,0,1

2 0,0,1 0,0,1

3 1,1,0

4

5

6

7

* Each (x,y,z) entry indicates (data arc iteration increment, initial data tokens

on data arcs, buffer length for control arc).

31

loop execution. Consequently, a processor needs to be assigned to a starting

nodeand an initial iteration number for which it begins executing the node. A

scheduling table for the example AMG is shown in Table 2.4. The

initialization conditions for the example AMG is shown in Table 2.5.

Note that the execution of a node is accompanied by the generation of

CMG control tokens for future iterations and of data tokens for present and/or

future iterations. Accordingly, these tokens must be forwarded to processors

which execute the nodes that actually require them. Due to the mutually

exclusive but periodic execution of R unique node loop threads by R processors,

it becomes feasible to foretell the processors that are assigned to execute a

particular node for R successive iterations. Consequently, if a token is to be

generated for a particular node for a specific iteration number, it is possible to

target the token to the unique processor that will execute the node.It may be

noted that this requirement is directly related to restricting unnecessary token

movement via broadcast within a dataflow multicomputer.

For block cyclo-static or fully static scheduling policies, nodes belonging

to a particular block are associated with iterations that bear a modulo 1_

relationship, where R b is the number of processor assigned to repeat the block

in a cyclo-static manner. Consequently, the modulus coefficient Rb associated

with every node for a block cyclo-static or static schedule needs to be specified.

Observe that for cyclo-static schedules, all nodes possess a modulus coefficient

that equals R.

In order to communicate data and control tokens to successor and

predecessor nodes for specific iterations, a processor needs to know the

processor assignments of these nodes for the required iterations. This

information is relayed through an assignment table. For a given node and

iteration number, the assignment table identifies the processor that executes

the node. The example assignment table is shown in Table 2.6. The modulo-R

index relationships are defined in a modulo operator table, which specifies the

modulo number associated with every AMG node. This is shown in Table 2.7.

32

Table 2.4 Scheduling Table

Pr. Node Next Node Iter.Incr.

0 1 0

1 0 +1

2 3 0

3 2 +1

4 4 +1

Table 2.5 Initialization Table

PID Init. Node Init.Iter.

0 0 0

1 2 0

2 4 0

33

Table 2.6 Assignment Table

For a given node number and a

modulo(iteration,

operator) value, this table specifies the

processor
which shall execute the node.

Node # 0 1 2

0 0 0 0

1 0 0 0

2 1 1 1

3 1 1 1

4 2 2 2

Table 2.7 Modulo Operator Table

PID % Operator

0 3

1 3

2 3

34

2.1.2 "FIRE", "EXECUTE" and "DONE/DATA" States

The availability of data tokens (from preceding nodes) and control tokens

(from succeeding nodes) is the sole requirement that needs to be satisfied for

enabling a node for execution. Once a node is found to be enabled, it informs

its predecessor nodes of its "fire commencement" status, by transmitting

control tokens to these nodes. Information about CMG data and control

dependencies is derived from the connection matrix. In a multicomputer

system, this step translates into three sub tasks:

[1] forming a data or control token entity with appropriate source,

destination and iteration number;

[2] determining processors which are assigned to execute the

predecessor nodes for particular a value of a future iteration and

[3] invoking AMOS IPC functions to physically transmit these control

tokens to appropriate destinations (processors).The functions

described above are subsumed within the "FIRE" state in the

AMOS state diagram as shown in Figure 2.3. After executing a

node, a node is ready to transmit computed data. It repeats the

three steps, with respect to transmitting data tokens to successor

nodes (after identifying recipients and building appropriate data

token headers). These sub tasks are outlined in Figure 2.4.

With the termination of data communication, the overall execution of the

current node is concluded. Using a cyclo-static scheduling policy (AMOS data

tables), a processor determines a node that it can execute next. This function

satisfies the second design criterion of ensuring self determined scheduling

policies. Combining the operations of firing, execution, communication and

task scheduling results in a state machine view for a distributed AMOS, which

is presented in Figure 2.5. A pictorial description of the interaction between

AMOS states and the data structures identified in the preceding Section is

portrayed in Figure 2.6.

35

2.1.3 AMOS Integration

The integration of the AMOS components as generic Multicomputer

Operating System (MOS) features, lends structure to the AMOS state machine.

Briefly, the key components of a MOS are:

[1] an initialization and synchronization mechanism that ensures

orderly, lock stepped execution of all system operations;

[2] a memory manager that manages the usage of local and global

memory and ensures code and dataset protection;

[3] a communication manager to handle inter processor

communication, IPC, between multicomputer Pes;

[4] a task scheduler that schedules tasks that are ready for execution

with available processors in a manner that prevents deadlocks

and avoids abnormal program termination; and

[5] a resource manager that allocates(assigns), removes and manages

computing resources (processors) within the system;

These functional constituents have been collapsed into three principal tasks,

as shown in Figure 2.7. Correspondingly, the AMOS state machine has been

molded to concur with these task descriptions.

2.2 LAN Based Communication Layer

A testbed design objective is to ensure simple inter-connections between

processing elements and to ensure a modularity of hardware interfaces (which

allows scaling). The intent is to efficiently integrate an OS level communication

layer and the distributed graph manager requirements of AMOS.

Consequently, one suitable interconnection mechanism for an ATAMM based

system is a bus oriented environment. An easy method of achieving this across

discrete personal computers is to network them through an ethernet LAN. The

corresponding realization of the testbed hardware is portrayed in Figure 2.8.

Commercial LANs are configured to transfer files efficiently.

Consequently, AMOS message passing was performed using the file transfer

capabilities of MS DOS and network software. However, the overhead of

36

From "Done/Data", "Reset" or
"Initialization" States

AMOS - "FIRE" State.

f' Keep Testing
Node for

•'EXECUTE" State.

Figure 2.3 Events that Occur in the AMOS "FIRE" State.

37

From"EXECUTE"
State.

AMOS - "DONE/DATA" State.

with addressing (source,)
\ destination), Iteration #. J

(Processor Commu-)

TO
"EXAMINE-TABLES"

STATE.

Figure 2.4 Events that Occur in the AMOS "DONE/DATA" State.

38

e_

if)

U.

39

PID # %n Present Next Iteration
Node Node Increment

X y Z

CMG connecti0n Matri'x

Graph Connection
Matrix for Displaying
Graph Control and
Data Dependencies.

\

Processor# Initial Initial
Node Iteration #

0

Assignment Table,.

Node Present Iteration # Modulo I_,

Numbere 0 _'i

ProcessorlDs

Figure 2.6 Interaction Between AMOS States and Data Structures.

4O

8

6
0 " _

-- _._'="' Q- I_.' 8=° _ _

E .= = _®=, = _= ._,=_, __. .o _:

,-_ \ / _ -_o

(3 .'_ >
,,, o_ _._

---I
_ o ,,,o._ _==.=__

o .-. , ,.=-_ =®

0 i= =_- _ - " ':_ =
E _ -_I_

e_

0
ol

U.

4i

m

,-n

e_

42

file management is significant when one considers requisite file names, file

handles, File Allocation Table, FAT entries, directory entries and other system

data structures to be created and manipulated. Overhead time is increased

further by the use of hard drives for file storage. In order to circumvent the

serious communication delays that a true disk based file system would cause,

RAM disks are used in place of hard disks.

Processors in a multicomputing system require local memory for storing

dataflow algorithm code/data and operating system code/data. The testbed uses

the conventional RAM as local memories for individual dataflow processors.

In addition, a multicomputing system needs to possess some amount of shared

memory which is accessible by all processors, in order to achieve message

passing. One way of building a shared memory is to map portions of local

memory on individual processors onto a shared memory space, such that every

processor is granted access to these specially allocated local memories. Shared

memory configured in the above manner is termed as Distributed Shared

Memory, DSM, (an introductory discussion of which appears in

[TANENBAUM92]). Portions of a DSM which form a logically contiguous,

universal memory element, are actually distributed among processors of the

system.

DSM can be modelled in networked environments by a LAN based

system that offers a peer-to-peer operation, thus permitting individual

computers to access directories on other computers. In our implementation,

this translates into the capability of being able to access the RAM disk of every

other computer. Consequently the operations of token movements translate

into generating files that physically reside in the RAM disk spaces of

destination processors. Correspondingly, in order to test for the presence of

requisite data and control tokens (before firing a node), a processor only needs

to look into its RAM disk directory for the availability of these tokens (files).

Thus, local memory and memory for IPC are generated from a combination of

conventional RAM and memory configured as virtual disks. In sum, the RAM

43

disk implementation integrates the concepts of memory communication and

interprocessor communication. A description of the logical synapses between

testbed components and the modelling of a DSM space is presented in Figure

2.9.

A summary of comparisons between the features of a centralized and

distributed AMOS is presented in Table 2.8.

2.3 Testbed Operational Features

Features of the testbed include:

[1] The six processors of the testbed execute deterministic LGDF

AMGs containing up to eight nodes. Prior to execution, a specific

node-sequence needs to be identified for maintaining a desired

TBO (throughput) and translated to fit the information structure

of the testbed AMOS. Beyond this initial effort, testbed operation

is autonomous and independent of any supervisory control.

[2] Execution of the AMG results in natural dataflow operations with

highly diminished scheduling overhead (as compared to that

incurred during dynamic scheduling).

[3] A distributed execution of AMOS graph management strategies

is seen. Analogously, the execution of AMG nodes is also

distributed.

[4] Communication of data and control tokens is performed on a need

basis, meaning that only peer processors get involved in sending

and receiving tokens.

[5] A degree of predictability is added to the ATAMM system since

it can be predicted beforehand, which processor shall execute a

given node for a particular iteration.

[6] Block cyclo-static or fully static schedules create the opportunity

for executing LGDF algorithms in heterogeneous architectures.

4/'

i:!!i_ii: "ii!i!

iiiii ""i_i!i

0

<

0

e-

im

,m

0

t,4.

45

Table 2.8 Features of Distributed and Centralized AMOS

II Centralized AMOS II Distributed AMOS#

1

2

3

4

6

7

8

At a given instant, only one

processor can look for a

schedulable node. Scheduling

operations are considered to
be centralized in this sense.

Processors have to be

explicitly assigned for
execution via means of a

Processor Queue.

More than one processor can
schedule a node for execution.

Therefore, scheduling operations

are considered to be distributed

among numerous processors.

Processors remain in a state of

continuous assignment.

AMOS is multi threaded. AMOS is truly distributed.

Scheduling is dynamic,

thereby incurring the
overhead of run-time

scheduling.

Scheduling (i.e. a mapping of

a node to a processor) is non
deterministic and

unpredictable.

Non deterministic scheduling

requires a redundant

broadcast of messages.

Scheduling is static since it is

pre determined (during compile-

time).

The processor assignment for a

given node and iteration can be

explicitly determined.

Scheduling is highly

deterministic and predictable.

Deterministic scheduling allows

specific message ,passing

operations to be performed

between peer processors.

Message passing involves F,

D and R broadcasts, from

which implicit token
information has to be

extracted.

Assignment and scheduling

operations are disjoint. A

processor is assigned when

its PID surfaces to the top of

the queue. Scheduling

depends on the current state
of the CMG.

Atomic token passing operations

obviate the need to specially

interpret messages.

Every processor remains

continuously assigned for node

execution and schedules a node

by inspecting system tables that

aid cyclo-static scheduling.

46

Table 2.8 Features of Distributed and Centralized AMOS

#

9

Centralized AMOS

Graph partitions cannot be

handled naturally.

Distributed AMOS

Block cyclo-static or static
schedule loops allows graph
partitions to be handle.

CHAPTER THREE

TESTBED EVALUATION

3.1 User Interaction

The testbed has been designed for autonomous operation that requires

minimal user intervention. The user supplies AMOS node code and data

structures such as the graph connection matrix, node loop and an initialization

sequence. Problem specifications are listed out in a text file, which is

subsequently distributed among the processors of the system. To suit certain

aspects of experimentation, additional fields are introduced in the

specifications file. For example, information pertaining to artificial node

execution timings appear as node delays in current versions of the

specifications file. A sample format of the specifications file appears in Table

3.1. For obtaining results from experiments, methods for statistical collection

of results are necessary. The testbed reports results in three formats:

[1] Visual Display (of execution characteristics, global time etc.),

[2] A log of system activities in a text file,

[3] An FDT file in the ATAMM Analysis Tool format [JONES90].

A sample format appears in Table 3.2.

An experiment is begun with an AMG, a schedule, the subsequent

formation of a specifications file and execution. Event timing is recorded in an

FDT file for subsequent evaluation on the ATAMM Analysis Tool.

3.2 Testbed and Scheduling Evaluation

For brevity, a representation of numerous scheduling exercises on the

testbed is presented. The demonstration AMG is that as shown in Figure

1.1(b) with associated TGP as shown in Figure 1.4. Featured is a

47

48

Table 3.1 Format of the Specifications File

Entry Entry Name Description
#

1

2

3

4[a]

4[b]

5

6

7

8

Connection-

Matrix for

CMG.

LP.

Initializatio

n Table.

Scheduling
Table : Next

Node.

Scheduling
Table :

Iteration

Incr.

Assignment

Table.

Modulo

Operators.

Maximum

[8 x 8 x 3] Matrix to indicate graph data

structures. A non negative entry in the matrix

indicates the presence of an data edge from row

(predecessor node) to column (successor node).

Each (x,y,z) entry indicates that x is the

iteration increment for the corresponding

data arc, y is the number of initial data
tokens needed on the data arc and z is the

buffer length for the control arc.

Number of Logical Processors required for the

problem.

[1 x LP x 2] Matrix to indicate initial node to

Processing Element scheduling patterns. Each

(x,y) entry indicates (node number, iteration-

number).

[1 x LP] table to indicate the next node

scheduling pattern.

[1 x LP] table to indicate the iteration number

increments.

[8 x LP] table to indicate node to physical

element assignments for LP iterations.

[1 x LP] table to indicate modulo (%) values for

each node. AMOS uses these modulo values to

compute a processor ID in the assignment

table. They are the same as the number of

processors tied to a circuit.

The total number of iterations to be done.

Iteration #.

Node

Delays.

This

is the number specified in the field plus one.

The individual node execution times.

49

Table 3.1 Format of the Specifications File

9 Drive [LP * 3 characters] string table for drive letters

Letters. for the RAM disks of Pes involved in the

system.

Note : The expression [Ax B] indicates a matrix with A rows and 15 columns.

5O

Table 3.2 FDT File Format as Input to ATAMM Analysis Tool

Event TypeTime at

which

the FDT

event

occurred

[milli-

seconds]

One of

following:

Reset

Fire Node

Control In

Control Out

Data in

Process Begin

Process End

Data out

Done node

Node

Number

[NODE#]

Color

(Simplex

)

Always

1.

Processor

Identifica-

tion

Number.

[PID_#]

Iteratio

n

Number

[Iter. #]

Note : FDT Events are one of the following:

Reset : Indicates information about system reset.

Fire Node

Control Out

Control In

Data In

Process Begin

Process End

Data Out

Done Node

Halt

: Indicates time at which a node initiated execution.

: Indicates time at which control tokens were regenerated.

: Indicates time at which control tokens were read in.

: Indicates time at which data tokens were read in.

: Indicates time at which execution of node code was begun.

: Indicates time at which execution of node code was

stopped.

: Indicates time at which data tokens were generated.

: Indicates time at which a node completed execution.

: Indicates time at which a processor terminated its

activities.

51

cyclo-static schedule and block cyclo-static schedule.

3.2.1 Cyclo-Static Schedule Example

The cyclo-static schedule for the example AMG follows the schedule

shown in Figure 1.6. The specifications file for a cyclo-static schedule is shown

in Table 3.3. The scheduling policy required three processors to execute the

AMG. FDT data was recorded and the results of processing are shown

graphically in Figure 3.1. These results have been extracted from the output

display of the ATAMM Analysis Tool.

For this example, processor zero is scheduled to operate on the node

sequence 0,1,3,2,4, beginning with node zero for iteration i. Processor two is

scheduled to operate on the same sequence but it executes its initial node, node

zero, for relative iteration i+1. Similarly processor one executes its thread of

the sequence beginning with node zero for iteration i+2. This behavior of

processors can be traced out in Figure 3.1 by following the hatched blocks that

represent them. The sequence of node executions for the remaining processor

may be similarly verified. The interesting aspect of cyclo-static operation as

shown in Figure 3.1 is the mutual exclusivity and collective exhaustivity of the

scheduling process that becomes apparent. Though each processor performs

every node once in a 3 * TBO time frame, the relationship between node,

processor and iteration is unique. Consequently, this ensures a deadlock free

operation, as seen in Figure 4.1. A variation can be seen between the desired

TBO of 5 and the actual TBO of 5.879 in Figure 3.1.

3.2.2 Block Cyclo-Static Schedule

Again, the reference AMG is that shown in Figure 1.1(b) with block

cyclo-static schedule as expressed in Figure 1.7. The AMOS specifications for

a block cyclo-static schedule appear in Table 3.4. Again, three processors were

employed to execute the AMG and the execution results were recorded in a

FDT file. Results of execution are shown in Figure 3.2. Note that processor

zero executes nodes zero, one and four only in every 3 * TBO time frame. So

does processor one, but for different relative iteration numbers. However,

52

Table 3.3 Specifications File for the Cyclo-Static Example

Field II Description

Connection Matrix 1,1,1 -,-,-

-9"9" "9-9"

"9-9- "9"9-

-9"9" "9"9"

-9-9" "9"9"

"9"9" "9"9"

"9"9" "9"9-

Logical Processors 3

Initialization 0,0 290 0,1
Table

Next Node 1 3 4 2 0

Next Increment 0 0 0 1 2

0 2 1

0 2 1

1 0 2

0 2 1

1 0 2

Assignment Table

Modulo Operators 3 3 3 3 3

Maximum 9

Iteration

Node Delays 3.0 2.0 2.5 1.5 3.0 - - -

Drive Letters E: F: G:

"9"9"

"9"9"

"9"9"

-9"9-

"9"9"

"9"9"

-9"9-

53

|

O
u

(,,)

s-

O
q_

O

m0
@
I-,

I-

e

ii

54

Table 3.4 Specifications for Block Cyclo Static Example

Field Description

Connection Matrix

Logical Processors 3

Initialization 0,0 0,1 2,0

Table

Next Node 1 4 3 2 0 -

Next Increment 0 0 0 1 2 - -

Assignment Table 0 1

0 1

2

2

0 1

Modulo Operators 2 2 1 1 2

Maximum 12

Iteration

Node Delays 3.0 2.0 2.5 1.5 3.0

Drive Letters E: F: G:

-9-9-

-9-,-

-,-9-

-9-9-

-9-9-

-9-9-

-9-,-

55

A

v

56

processor two invariably switches its attention between executing nodes two

and three.

The actual TBO for the block cyclo-static scheduling example is 6.044

instead of the ideal 5. However, despite this deviation from ideal behavior, the

assignment and scheduling process is satisfied as seen from theexecution trace

in Figure 3.2.

3.2.3 Static Scheduling Example

A possible static schedule for the example AMG has been shown in

Figure 1.8. Specifications and results for a purely static schedule appear in

Table 3.6 and Figure 3.3, respectively. Note that processor zero always

performs nodes zero and one, processor one does nodes two and three while

processor two is restricted to executes node four. The actual TBO is 6.153 now.

As noted earlier this difference which can be attributed to the communication

overhead shall be accounted for in Section 3.3.

3.3 Testbed Communication Overhead

The communication overhead of the testbed is governed by several

factors. These include possible contention for network access or collisions due

to simultaneous transmissions, measurement resolution limitations to the

DOS timer's resolution of 55 ms and the observation that due to a single access

ethernet channel, communication for a node grows linearly with the number

of data interconnections that the node has with predecessor or successor nodes.

The node execution may be expressed by

Total Node Execution Time =

Ideal Node Execution Time + Communication Overhead [3.1]

where

Communication Overhead =

Time to generate control tokens + Time to consume control tokens +

Time to consume data tokens + Time to generate data tokens. [3.2]

57

Table 3.5 Specifications for a Static Schedule Example

Field Description

Connection Matrix

Modulo Operators 1 1 1

Maximum 12

Iteration

Node Delays 3.0 2.0 2.5 1.5 3.0 -

Drive Letters E: F: G:

Assignment Table 0

0

1

1

2

Logical Processors 3

Initialization 0,0 2,0 4,0

Table

Next Node 1 0 3 2 4

Next Increment 0 1 0 1 1

58

59

Minimum values for the communication components in equation 3.2 may be

quantified further as,

Minimum time to generate control tokens ---

Number of Control Tokens Output (NCO) * 55ms. [3.3]

Minimum time to consume control tokens = 1 * 55 ms. [3.4]

Minimum time to consume data tokens -- 1 * 55 ms.

Minimum time to generate data tokens =

Number of Data Tokens Output (NDO) * 55ms.

[3.5]

[3.6]

It should be noted that the above time measures are absolute

minimums. Due to contention or collisions, any of the above communication

events may need additional 55ms network activity slots. Furthermore, the

maximum size of an ethernet packet is about 1.5 KBytes. Hence tokens which

exceed this size require two or more ethernet packet transmissions. There shall

be a corresponding increase in the number of network activity slots required

to complete the communication associated with the transmission of multiple

ethernet packets. Moreover, the communication overhead increases linearly

with the number of tokens that need to be generated per node.

In Figure 3.4, the TGP frame from Figure 3.1 has been magnified

in order to display pertinent node execution and communication activities.

Execution measurements for these figures have been tabulated in Table 3.6.

These results account for the deviation from ideal behavior seen in the actual

execution activity seen in Figures 3.6.

The critical circuit (which determines TBO) in the AMG in Figure 1.1(b),

contains nodes zero and one. Consequently, TBO is determined by the

execution of nodes zero and one. The ideal TBO for this AMG is 5.0 seconds

(5000 milliseconds). Factoring in the communication overhead (determined

through using Equations 3.1 through 3.6), a minimum TBO value of 5550 ms

is expected. However, the actual TBO turns out to be 5879 ms. This

6O

difference is believed to be due to contentions which occur due to simultaneous

network access requests by peer processors. The figure of 5879 ms is derived

by adding the actual cumulative execution times for nodes zero and one, which

are 3517 ms and 2362 ms, respectively.

3.4 Summary

The distributed AMOS testbed successfully demonstrated various cyclo-

static scheduling policies including cyclo-static, block cyclo static and static

schedules. The demonstration AMG included such features as self loops,

forwarded tokens, buffers on CMG control arcs. In additional exercises not

reported herein, the testbed successfully executed AMGs requiring multiple

instantiations of nodes. The execution of an eight node AMG on six processors

demonstrated the upper operating limits of the testbed. Communication events

occurring in the testbed are quantified using lower bound expressions that

describe the minimum time a particular communication event may take.

Though more effort is needed to refine the overhead computations, the testbed

performed faithfully the underlying ATAMM model constraints. The

distributed AMOS is significant in that graph managements was performed

by only local knowledge of the graph requirements. It should also be noted

that this was the first successful attempt to implement a purely distributed

ATAMM based operating system.

61

Ox 0'_

iii!_

:::_:::

,ID

c_

_m

0_
m

LL

0

E
c_
II

LL

Dm

C
0
l-

ie

c
G_

w

I-

LL

c_

L.

0_
im

kL

62

CHAPTER FOUR

MICROCONTROLLER BASED AMOS

4.1 Introduction

An implementation an ATAMM dataflow multicomputer testbed using

embedded firmware on microcontrollers employing a dynamic task scheduling

strategy for distributed processing and presented in this chapter. Evaluation

of the testbed is discussed in Chapter Five.

The natural progression in ATAMM research has resulted in an

enhanced understanding of the ATAMM model and the simplicity of the control

structure for AMOS. The regular structure of the ATAMM model and the

control organization for AMOS has prompted this inquiry into the sufficiency

of hardware based control for AMOS. Of interest is the development of a low

level hardware based control structure for AMOS. Examining the efficacy and

the constraints of this level of embodiment may provide insight for future

implementation in imbedded wafer-scale-integrated (WSI) multiprocessors.

The testbed was designed using embedded firmware on Motorola

68HCll microcontrollers. The testbed hardware consists of three micro-

controllers (i.e processors) functioning as the processing elements and one

processor performing the function of a centralized graph manager. Algorithm

graphs are limited to eight nodes and, for purposes of control struction

evaluation, graph nodes are timed only and do not perform any data oper-

ations. The AMOS control structure is based upon a message passing model.

The bus organization is modeled after a token ring for contention free message

passing. Evaluation of the testbed is performed by analysis of the event timing

data generated by the execution of a data flow graph on the testbed.

63

64

4.2 Implementation of the ATAMM Model

The components necessary for implementation of the ATAMM model

can be divided into physical and logical components. Physical components

include:

1. a target architecture consisting of a number of processing

elements;

2. a global memory which is distributed or shared among the

processing elements; and

3. a communication network between the processing elements.

Logical components include:

1. a task scheduler to schedule node activities among the processing

elements;

2. a communication layer between the processing elements; and

3. specifications for performance in terms of desired throughput,

execution time, and the number of processing elements, R.

As previously stated, the ATAMM Multicomputer Operating System

(AMOS) is a logical interface between the dataflow graph and the target

architecture hardware. The components of AMOS include data structures

containing the dataflow graph, specified operating parameters, and a graph

manager.

The AMOS graph manager performs the scheduling operations of the

operating system and may be classified as either centralized or distributed.

A Centralized Algorithm Graph Manager (CAGM) performs graph management

by maintaining a composite view of the CMG at every point of its execution.

The Distributed Graph Manager (DAGM) concerns itself with the management

of unique partitions of the CMG distributed among the processing elements.

These partitions are unique but logically contiguous. A complete description of

distributed graph management can be found in [ROY93] and was presented in

chapters one through three of this report. An example of a centralized graph

manager used in an implementation of the ATAMM model was imbodied in the

65

Westinghouse Electric Corporation Advanced Development Module (ADM).

This type of graph manager was redundantly distributed among four

processors in order to incorporate a degree of fault tolerance.

4.3 The Centralized Algorithm Graph Manager

The components of a CAGM are the AMOS data structures and the

AMG (CMG). The graph manager uses information communicated to it by the

PEs to update the CMG. For every node in the CMG, the CAGM checks the

global memory for the presence of all required control and data tokens

necessary to execute the node. Once the CAGM finds enabled nodes it assigns

them, depending on priority if more than one node is enabled, to PEs from a

processor queue of available PEs.

A state diagram description of a redundantly distributed centralized

graph management employed in the Westinghouse ADM is shown in Figure

4.1. A functional unit (processor) starts in the idle state, and remains there

until it finds its own identification label on top of the processor queue (first in

first out). When it does, it enters the examine state and searches for enabled

nodes in the CMG data structure. After finding an enabled node it removes

itself from the top of the queue, updates the CMG, reads input data,

broadcasts an "F" command to the rest of the PEs, and enters the execute

state. The "F" command contains the updated CMG, updated processor queue,

and the ID of the PE processing the CMG node. After the completion of node

executiion, the PE writes the output data to global memory, updates the CMG,

and broadcasts the "D" command which contains the updated CMG and the

data generated by the execution of the node. Before returning to the idle state

the PE may enter a test state where it performs a self test. This provides the

means to remove a PE from the system during real time operation. If the PE

is functioning correctly it will place its ID at the bottom of the processor queue

and broadcast the "R" command with the updated processor queue to the other

PEs. The broadcast of the "F", "D", and the "R" commands provides all the

6_

i11

iii

0
i1
0
O.
0
I-
Z
0
0
O.

0

0

LU

0
LU
X
UJ

Z

o

_o
Z

0
0

W
C

C_
0

N

U

O

E

if)

67

status information necessary for the graph manager to maintain the status of

the CMG.

Since the operation of the system is asynchronous, the graph manager

must generally be interrupt driven in order to update graph status. When a

broadcast is received a processing element, is interrupted from its current

state, and enters the update state. It remains in this state long enough to

update the CMG, global memory, and the processor queue as necessary.

4.4 Message Passing Model

Message oriented systems are characterized by facilities for passing

messages among processes and for queuing messages at destination processes

until they can be acted on [LAUER79]. The message passing style of system

architecture is pertinent to real time systems and process control applications

where the applications are encoded in message blocks.

An important consideration with any message passing system is in

colision avoidence of the messages. AMOS can introduce contention for the

communication channel (bus) when two or more processing elements complete

a node operation at the same time. For instance, two processing elements

broadcasting a "D" command need access to the bus. The implementation

discussed in [ROY93] uses the IEEE 802.3 standard (CSMA/CD). In this

scheme if two stations on the bus transmit data simultaneously, a collision is

detected and the stations wait a random amount of time before transmitting

again. In theory then, a station could be shut out from transmitting for an

indefinite period of time. This type of non deterministic behavior is

undesirable in real time systems. Of interest then, is a message passing model

that is data driven and contention free to provide determinism is meeting

required real time deadlines.

A useful message passing model to eliminate contention is the IEEE

802.4 Token Bus standard [STALLINGS91] and is used as the basis of the

physical and logical layers in the present design. Physical and logical level

68

diagrams illustrating the model are shown in Figure 4.2. It is important to

note that, though physically the topology of the network is a bus, it is logically

a ring. That is, the stations are assigned positions in an ordered sequence,

with the last member of the sequence followed by the first.

4.4.1 Token Ring Description

A control packet known as the token regulates each station's right of

access. When a station receives the token, it is granted control of the medium

for a specified time. The station may transmit one or more packets and may

poll stations and receive responses. When the station is done, or time has

expired, the token is passed on to the next station in logical sequence. The

station possessing the token now has permission to transmit. Hence steady

state operation consists of alternating data transfer and token transfer phases.

A flow diagram representing this method is shown in Figure 4.3.

4.4.2 Token Ring Timing

The upper bound on the amount of time a station must wait before it

can transmit can be determined from two parameters used to analyze token

bus networks. Token holding time (THT) is the maximum time that a station

can hold the token. Token rotation time is the maximum time that a token

can take to circulate. Token rotation time can be calculated from THT at each

station and the total number of stations N, according to the following equation,

TRT = THT*(N-1). (2.3)

The primary disadvantage of a token bus network lies in the complexity

of the token bus algorithm when compared to other bus arbitration schemes

like CSMA/CD. A second disadvantage is the overhead involved under

conditions of a light load in which a station may have to wait through many

fruitless token passes for a turn to transmit.

One of the advantages of token bus is that its behavior is deterministic

and contention free. The upper bound on the amount of time a station must

wait before it can transmit is known because each station can only hold the

69

I
I

A l B

c L ol

I
I

Figure 4.2(a). Physical Topology of Token Bus.

Figure 4.2(b). Logical Layout of Token Bus.

7O

P

DATA TO SEND ? PASS TOKEN TO
SUCCESSOR

YES

SEND DATA

Figure 4.3. Flow Diagram for Token Bus Operation.

71

token for a specified amount of time. Thus, the determinism supports the

token bus as a viable and attractive alternative to the CSMA/CD bus for real

time applications.

4.5 Task Scheduling for AMOS

The main objective in the design of the testbed is to develop contention

free task scheduling for AMOS at the hardware level. The Motorola 68HCll

microcontrollers was chosen for the implementation because of availability and

their representation of a class of microcomputers that allow access to the CPU

level hardware in a transparent manner to the user. Some of the features of

multicomputer operating systems [HWANG84] that are relevant to AMOS

include:

1. an initialization and synchronization mechanism that ensures

orderly execution of all system operations;

2. a communication manager to handle interprocessor

communication between multicomputer PEs;

3. a task scheduler that schedules tasks that are ready for execution

with available processors in a manner that prevents deadlocks

and avoids abnormal program termination; and

4. a resource manager that allocates, removes and manages

computing resources(PEs) within the system.

These characteristics are readily visible in prior imbodiments of AMOS which

have been message passing in nature.

message passing operating systems

[GORSLINE86]:

.

Consistent with the design of good

are the following characteristics

.

synchronization among processes and queuing for unavailable

resources is implemented in the message queues attached to the

processes associated with those resources;

data structures that must be manipulated by more than one

process are passed by reference in messages;

1

.

.

72

no process touches the data unless it is currently processing a

message referring to them, and a process does not continue to

manipulate data afar it has passed the data to another process

via a message;

peripheral devices are treated as processes (or virtual processes)

for which control often resembles sending a message to that

device, and an interrupt from that device is manifested as a

message to some other process; and

processes operate on a very small number of messages at a time

and normally complete the operations necessitated by these

messages before looking at the message queues again.

4.6 Communication System Design and Implementation

A description of the interaction between the logical and physical

components used for implementing inter-PE communication is presented in

this section.

4.6.1 Communication Layer Overview

A representation of a system with four functional units is shown in

Figures 4.4, 4.5, and 4.6, respectively. In Figure 4.4, one of the functional

units is the graph manager and the others are assigned to node operations.

Each functional unit has a logical communication layer and two message

queues. One of the message queues is for outgoing messages and the other is

for incoming messages. The communication layer is a resident logical layer in

each functional unit that allows the functional units to communicate with one

another. The figure also shows the "hard" message passing and the "soft"

message passing aspects of the message passing model. Hard messages are

those messages being passed from one functional unit to another using

hardware. Soft message are those messages exchanged between software

processes (logical layers) in a functional unit.

A physical interpretation of the logical layer shown in Figure 4.4 is

?3

"O
0
ZE
0_
C

.m

m
rl

w

t--

lid

0
i-
0

t_
9d

C_
G_

lib

Q.

n"
m

t_
C_

M

0
.,.I

q:

lira

_3
If

LL

/

o

°
II STRA I

O
O.

O
"I-

PC(] PC7

cO

PC0 - PC7

(,3
et

o
"1"

0
Ig.

---r/j
0

"1"

7/4

G)
"0
0
_E

e-
ra
g)

t.
q)
O'J

t_
O]
G)
_Z
G)
e-

4=o

0
c-
O

m
lao

(g

e-
G)

.¢
es

IT"

¢0

"10
L-

"r"

u'i
,,i
G)
z._

:3
Z3)

m

kl.

75

IDLE <

CHECK
SEMA

N

Y

SEND
MSG

y N

SEND SEMA,
NEXT ID

Figure 4.6. Flowchart Representation of Token Bus Operation.

76

shown in Figure 4.5. PEs communicate with each other over a bus. The

analogy between the logical and physical layer is dearly seen by comparing

Figures 4.4 and 4.5. Soft message passing occurs between software processes

in the software resident in each of the PEs. Hard message passing occurs

when one PE sends a message to another PE. The Host PC shown in Figure

4.5 acts as an interface to the microcontroller.

4.6.2 Communication Layer Design

The message passing model requirements are to pass messages easily

and effectively between the functional units using a token bus. Since AMOS

operation is asynchronous, the message passing is interrupt driven. The

medium access technique chosen as a model was the IEEE Token bus standard

(802.4). While this particular implementation does not conform to the Token

bus standard in its entirety, it does follow it closely enough to use the IEEE

802.4 standard as the model.

The logical configuration of the token bus is a ring. Each PE is assigned

a unique identification number(ID). During ring initialization, one of the PEs

is granted access to the bus (ie, holds a semaphore) and can send a message

to the other PEs. The PE relinquishes control of the bus by passing the control

packet known as a semaphore with the ID of the next PE in logical sequence.

A flow diagram representing this sequence is shown in Figure 4.6. As shown

in that figure, each PE is in one of two states:

1. waiting for the semaphore, or

2. transmitting a message or sending a semaphore with the ID of

next PE.

Communication takes place in the form of alternating data and semaphore

transfers. When a PE has the semaphore it may transmit data; else it waits

for the semaphore. This constitutes the logical layer of the token bus.

4.6.3 Physical Layer Design

Translation of the logical layer into hardware was influenced by the

constraints imposed by the selection of the 68HCll microcontroUers which is

77

an eight-bit architecture. One of the major constraints was that there was

only one port available (port C) that provided full bidirectioanal asynchronous

handshaking for parallel I/O. An eight bit wide bus is formed by connecting

all port C lines from the four PEs together. This forms the network bus on

which passes all the messagetransfers from onePE to another. Each message

transfer is interrupt driven and takes place asynchronously as is illustrated in

Figure 4.7.

The use of port C also entails the use of handshaking lines STRA and

STRB and provide acknowledgement when a PE sends a message. The STRA

and STRB lines are shown in Figure 4.7. When PEA writes to port C, and

hence to the bus, it causes its STRB line to go low. The STRB line of PE A is

connected to the STRA line of the next PE (B) in logical sequence and causes

an interrupt in PE B. When B reads the bus in its interrupt service routine

(ISR), its STRB line is driven low, and causes an interrupt in the next PE in

logical sequence since B has its STRB line connected to STRA of the next PE,

and so forth. This continues until A receives an interrupt from D which serves

as the acknowledge for the messagethat A put on the bus and A can now write

to the bus again if it has a message to transmit. If not, A passes on the

semaphore with the ID of the next PE in logical sequence. Thus all messages

are acknowledged by the hardware hanskaking process.

4.7 Design of the Graph Manager

The graph manager was designed with consideration of the data

structures required to implement the state diagram of the graph manager and

attendent message passing.

4.7.1 Overview of Graph Manager and PE interaction

Graph management in this implementation of the ATAMM model is

centralized but not redundantly distributed as in the ADM version described

in Chapter Two. The most important conclusion to be drawn from this view

(.1

0
"r"

I
[.......Processing Element }

i::ill 68HCll MCU 11_ii_

" • _RAIISTRB I _iI I,,-.
=========; CO

L..

tl : L)
I-
n-
0
rl

¢0

\

¢0
*'11 0
t_ -I-

STRA :1

Pmcessin(Element

m ii

I--

0 _ =_
(_1 ml= [d

=el= ii

I
:! .:. !! :-!. _!-_=

f-

E
Q
_n

1-

8
O

O
I1,

O

7_

O
if)

C

"O

=

79

of graph management is that only one PE functions as the graph manager.

The consequences of this approach are that the PEs have to transmit and

respond only to a limited number of messages. The graph manager has to

transmit "Fire" commands and respond to "Done" commands. The other PEs

have to transmit "Done" commands and respond to "Fire" commands. To carry

out token bus management every PE has to respond to semaphores addressed

to it and transmit semaphores with the ID of the next PE in logical sequence.

State diagrams illustrating this behavior are shown in Figures 4.8(a) and

4.8(b). It can be seen that the state diagram of the centralized graph manager

described in chapter two (Figure 2.8) can be reduced to a two state diagram for

the graph manager and a two state diagram for each of the other PEs. This

reduction in states is possible since graph management duties are not

redundantly distributed and the graph manager does not take part in node

operations.

4.7.2 Message Format

The discussion of the message passing model to this point has not

addressed the format of the messages to be passed. The Motorola 68HCll is

an eight bit microcontroller and this imposes a physical constraint on the

number and the format of the messages that can be passed. Messages to be

passed are of three types, Fire, Done, and Semaphore. Fire and Done

messages have to include a processor ID (PID) and a node number while the

semaphore only has a processor ID. The command word (CWD) is restricted

to eight bits since the bus is eight bits wide. The three commands required,

Fire, Done, and Semaphore require two bits for encoding in the CWD.

Assuming a maximum of eight nodes for the purposes of this research, three

bits are required for encoding the node number. The three remaining bits are

used to encode the processor ID. This gives the testbed a capability of a

maximum of eight nodes for the graph and eight processors to execute it.

4.7.3 Enhanced State Machine view of CGM

The state diagrams in Figure 4.8 provide a top level view of the

8O

0)
¢0
C

_E

.C
t-J
cU
im

LD

0

E

im

81

LLI

q)
E

LLI
C3_
c

U
0
L_

O.
i.

0

E
L--

a

¢I)

.Q

q.

U.

82

functional aspects of the graph manager and the other PEs, but do not provide

all the information about the data structures required to implement the graph

manager. An enhanced state machine diagram of the graph manager is shown

in Figure 4.9.

The state diagram in Figure 4.9 describes the message passing activities

of the graph manager and associated data structures. On inspection of Figure

4.9, the following logical structures can be identified:

1. a static data structure containing information pertaining to data

and control edges;

2. a dynamic data structure to hold information about the current

state of execution of the graph ie, current position of data and

control tokens;

3. an outgoing and incoming message queue to hold messages from

and to the other PEs; and

4. a processor queue to hold information about the availability of

PEs for node operations.

4.7.4 Sol, ware Design

The philosophy behind the implementation of the state diagram for the

graph manager in Figure 4.9 is to develop a message passing software state

machine. The program consists of a main routine and four subroutines. The

main routine consists essentially of the communication layer discussed in

section 3.2. The graph manager consists of four subroutines that perform the

following functions:

1. Examine Graph. This subroutine examines the graph for enabled

nodes and passes a message with the enabled node number to the

Examine Processor queue subroutine.

2. Examine Processor Queue. This routine inspects the processor queue

and appends the ID of an available PE to the message passed

83

ILl
IX:

,r

L-
G)

=E
.C
Q.

Im

in

0
tim

I=

G)

m

e-.
r_

=E

(/)
"0
G)

I=
¢0

.C

1.1.1

,q.

I.L

84

to it by the Examine Graph subroutine and puts a message into the outgoing

message queue.

3. Update Graph. This routine has a message passed to it by the ISR

and it extracts the node number of the node that is "Done" and updates

the graph. It also calls and passes a message to the Update Processor

Queue subroutine.

4. Update Processor Queue. This subroutine extracts the ID of the PE

that sent a "Done" message from the message passed to it by the Update

Graph subroutine and updates the processor queue.

The interaction between these subroutines and the main communication

layer is illustrated in Figure 4.10. The message passing structure of the graph

manager facilitates a degree of modularity than is naturally incorporated in its

implementation.

4.8 Software Implementation

The software implementation of AMOS is presented in this section.

Implementation of the graph manager is examined initially followed by a

description of the resident software in each of the other PEs and the

simulation of node activities using the 68HC11's internal clock.

4.8.1 Graph Manager Implementation

Software implementation of the graph manager consists of a translation

of the data structures mentioned in the previous section into a form consistent

with the eight bit target architecture and undderlying instruction set.

The data structures identified in section 4.7.3 can be implemented by

the use of bit mapped arrays. The CMG information is representedin a set of

four connection matrices in the form of eight by eight arrays (eight bytes by

eight bits) which specify the static data edges of the CMG, the implicit control

edges, current state of data tokens on the CMG, and the current state of

control tokens in the CMG. An AMG example is shown in Figure 4.11.

Related matrices for the example is shown in Tables 4.1 through 4.5.

i-
a.

iii
I-
z
m

Ill
Z

o
=.J
..I

f_

F

F

I,i,I

,,<
u

f
._in-
,_In

u

O I

85

e-

c-

O
.1[=

i.._

o

c
o

.m

u

c

e,,
m

o
sL_

.o

"O
e-

>,,

..I
c-
o

In

u
c

1::
o
u

d

im

u.

86

Source

Source

Figure 4.1 l(a).

Initial
Token

AMG
Node

Figure 4.11(b).

Sink

An Example Algorithm Directed Graph (ADG).

2.0 Relative
node timing

Sink

An Example Algorithm Marked Graph (AMG).

87

Table 4.1 Static AMG Mask

0 1 2 3 4 5 6 7

0 1 1

1 1 1

2 1 1

3 1

4

5

6

Table 4.2 Transpose of Static AMG Mask.

0

0

1

1

2 3

2 1 1

3 1

4 1 1

5

4 5 6 7

88

Table 4.2 Transpose of Static AMG Mask.

6

7

[J indicates the absence of'an arc; 1 indicates an arc fi'om row to column'

nodes.

89

0

1

Table 4.3 Initial Data Tokens.

0

1

2 3 4 5 6 7

2 1

3

4

5

6

7

Table 4.4 Initial Control Tokens

0 1 2 3 4 5 6 7

0 1 1

1 1 1

2 1 1

3 1

4

5

6

7

9O

Table 4.5 Processor Queue Representation

Pointer Mask

0 0 0 1 0 0 0 0

Processor Mask One

1 0 0 0 0 0 0 0

Processor Mask Two

0 1 0 0 0 0 0 0

Processor Mask Three

0 0 1 0 0 0 0 0

Tables 3.1,3.2,3.3 3.4 (4.1,4,2,4.3,4.4)

91

The first one in Table 4.1 represents the data edges for the AMG of

Figure 4.11. It is constructed by row indices representing the predecessor

nodes and column indices representing successor nodes. A "1" in a cell of the

matrix indicates a data arc from row index (predecessor node) tocolumn index

(successor node) in the AMG. The transpose of this matrix in Table 4.2

represents the implicit control arcs that exist from each successor node to each

predecessor node. The current state of data and control tokens during

execution are shown in Tables 4.3 and 4.4.

A set of four single row arrays to represent the processor queue. Each

array indicates the current position of each processor in the processor queue,

with one array that is used as a pointer. The implementation of the processor

queue is shown in Table 4.5. The position of the "1" bit in the arrays indicates

the position of the PE in the processor queue. The PE on top of the queue has

a "1" in the most significant bit of the array corresponding to it. In Table 4.5,

processor one is on top of the queue as shown in Processor mask one.

Processor two is the next in the queue and Processor three is the last in the

queue.

A third array provides a message table. The exact manner in which

these arrays are used is discussed in the next section when an example CMG

is modeled for execution.

A flow chart representing the operation of the graph manager and its

relationship with the software processes in the other PEs is shown in Figure

4.12. The flow chart clearly shows the correlation of the software with the

state diagram in Figure 4.9.

4.8.2 Implementation of the state diagram for node operations

The state diagram of Figure 4.8(b) describes the activities of the

processing elements other than the graph manager. Since the graph manager

does not perform any node operations it does not include the software layer

required to perform node operations.

The PEs other than the graph manager perform all the node operations

C"

93

required to execute the CMG. The operation of the PEs assigned to node

operations follow the state diagram of Figure 4.8(b). A flow diagram for this

action is shown in Fig 4.13. Initially all PEs are in an idle state. When a PE

receives a "Fire" command and its ID the node number is decoded from the

message and it proceeds with the execution of that node which is done

asynchronously through an interrupt. When the PE receives a semaphore and

its ID, the outgoing message queue is checked for a message (Done) and puts

the message on the bus. If the message queue is empty it passes on the

semaphore with the ID of the next PE in logical sequence.

4.8.3 Simulation of node timings

The node timings are simulated by creating a data structure that

represents the node times. This data structure is distributed across all the

PEs since the scheduling of node operations is dynamic and each PE can be

scheduled for any node operation.

The 68HCll has a real time interrupt (RTI) function that can be used

to time the interval between two events, when the RTI is enabled, it requests

interrupts at a rate of 4.1, 8.19, 16.38, or 32.77 milliseconds depending on the

rate chosen. Thus, node timings corresponding to a multiple of one of these

values for node operations can be simulated. When a PE receives a "Fire"

message it decodes the node number from the message and uses it to point to

an integer value in a look up table which corresponds to the data structure

previously mentioned.

4.8.4 Memory Utilization

An important observation at this point is that the entire control

organization for AMOS was implemented with the memory available on the

68HCll microcontroller and without additional memory. The net amount of

program memory available on each microcontroller was 768 bytes, of which 742

bytes were used for the 68HCll that contained the software for the graph

manager and 560 bytes were used for each of the PEs.

94

W
..I

m

W

0
z
.1

,n-

E

.i

._c

o
0

[3.

0

m
c-
o

U.

.__
i,

CHAPTER FIVE

TESTBED INTEGRATION AND EVALUATION

5.1 Testbed Operation

The example AMG of Figure 4.11 is modeled and executed to

demonstrate the operation of the system. The AMG is represented in Tables.

4.1 through 4.4 in the form of four connection matrices. The static connections

in the AMG of the data and control edges are shown in Tables 4.1 and 4.2.

The position of the initial data and control tokens is shown in Tables 4.3 and

4.4. The desired positions of the processors in the processor queue are

specified and placed in the processor queue array as shown in Table 4.5. Next,

the node timings are placed in an array with the first position in the array

representing the node time for node zero, the second being for node one, and

so on. This completes the specification of the example AMG on the testbed and

the graph can now be executed.

Execution of the graph begins with the graph manager assigning itself

the semaphore to begin token bus operation. The graph manager then checks

the graph to find an enabled node. This is done by comparing the first row in

Table 4.1 to the first row in Table 4.4 and the first row in Table 4.2 to the first

row in Table 4.3. If the two pairs of rows have the same entries (tokens) then

that particular node, corresponding to the row index, is enabled with all data

and control tokens and is ready to be fired. After finding an enabled node, the

graph manager assigns a PE for the execution of the node and updates the

graph by consuming all data tokens and generating all necessary control

tokens. APE is assigned to a node operation by shifting all the rows in Table

4.5 to the left by one bit. The processor on top of the queue, indicated by the

processor mask that has a 'T' shifted out, is assigned to that particular node

95

96

operation. The pointer mask is used to monitor the last position in the queue.

The graph manager appends the processor ID and the node number to the

"Fire" message and places the complete command word on the bus. This

continues until all enabled nodes have been fired. When all enabled nodes

have been fired, the graph manager releases the semaphore to the next PE in

logical sequence. If this PE has been assigned to a node operation, and is

finished with that node operation, it puts a "Done" message with its ID and the

node number of the executed node. When the graph manager reads the "Done"

message it updates the graph to indicate that the node operation is complete.

The graph manager also updates the processor queue by copying the value of

the pointer mask into the processor mask corresponding to the PE that just

completed a node operation. If the PE has not completed the node operation

it passes on the semaphore with the ID of the next PE in logical sequence.

Upon reaching a terminating condition, execution of the graph is

terminated. The terminating condition, usually the completion of a number of

iterations, is specified within the graph manager routine. The graph manager

also concerns itself with data collection of execution information for the

creation of a "Fire Data Time" (FDT) file. This file is in a format compatible

with the ATAMM Analyzer [JONES90] that helps to analyze the performance

of an example graph on the testbed.

The graph manager and the PEs contain an initialization and

synchronization procedure. The graph manager communication layer is

initialized with the semaphore thus giving it control of the bus. The PEs are

initialized to start in the idle state. The graph manager then proceeds with

task scheduling and message passing in a noncontending and deadlock free

manner.

5.2 Timing Measuremnets

The testbed is designed for operation in a manner that is transparent

to the user. The user provides the dataflow graph and a node delay that is

97

equivalent to the amount of time that a node operation takes. Node delays

were used instead of actual node code and data for testing the AMOS

structure. Along with the graph information node timings are placed in an

array and distributed among the PEs. When a graph is executed, the results

are reported in the form of a FDT file for analysis using the ATAMM Analysis

Tool [JONES90].

5.2.1 FDT Evaluation

Modification of the testbed for timing measurements is done in a manner

such that the execution patterns in the form of a FDT(Fire Data Time) file can

directly be analyzed by the ATAMM Analysis Tool. The FDT file contains a

list of information pertaining to each AMOS broadcast event, in order of

occurrence, which provides a means of evaluating system performance and

graph execution. Of particular interest is the recording of the

1. time tagging of the firing of a node; and

2. time tagging of a "Done" message.

The graph manager is responsible for the firing of a node and the update of the

graph when a "Done" message is reported. Hence the graph manager events

are the reference for which AMOS communication events are time-tagged. The

position of the time marks in the state diagram for the graph manager is

shown in Figure 5.1. A monitor program resident on the host PC of the

graphmanbager is used to supervise the execution behavior of the graph, and

to collect FDT file information.

5.2.2 Monitor Program

The monitor program is essentially a serial communication program,

written in C, that extracts information from messages sent to it by the

microcontroller along the serial port and time stamps the messages.

Graph execution is started by the monitor program that sends a message to

the graph manager to begin execution. The graph manager finds an enabled

node and sends a message on the bus to the PE scheduled for execution of the

node. The graph manager also sends a message to the monitor program with

98

2

E

t/)

U.

u'i

iT.

99

node number, processor ID and command (Fire). The monitor program time

stamps the message and stores it along with an iteration count. When the

graph manager receives a "Done" message it sends a message to the monitor

program with node number, processor ID, and command(Done). The monitor

program time stamps this message and stores it.

When a terminating condition is reached, such as a final iteration count,

collection of FDT data is completed. The monitor program then converts the

FDT file data into the format specified for the analysis tool. The file format

is shown in Table 5.1.

5.3 Verification Experiment

Experiments to demonstrate dynamic scheduling and timing

measurements for various examples have been executed on the testbed. An

experiment begins with an AMG, which is specified in the form of data

structures mentioned in chapter three. The node times are also specified and

distributed to each PE. The execution of the graph results in the generation

of the FDT file which forms the input to the ATAMM analysis tool. The output

of the analysis tool is a graphical representation of the execution pattern of the

graph.

For brevity a representative experiment demonstrating the maximum

capacity of the testbed is reported herein. Details of other experiments may

be found in [SASTRY94].

5.3.1 Eight node example

An eight node AMG that requires a maximum of three processors is used

to explore the full capabilities of the testbed. The AMG for the eight node

example is presented in Figure 5.2 and the theoretical TGP is shown in Figure

5.3. From the TGP the TBO for the graph is, ideally, 3000 ms. TBO in this

case is determined by the recursive circuit node zero-node one-node four. TBIO

for this graph is calculated to be 6000 ms. The FDT file from the execution of

the graph is shown in Figure 5.4(a).

The analyzer output clearly demonstrates the full capability of the

100

Table 5.1 FDT File Format as Input to ATAMM Analysis Tool

Time at

which the

FDT event

occurred

(Milli-

seconds)

Event

Type

One of

the

following

Fire

node

Done

node

Node

Number

[NODE#

]

Color

(Simplex

)

Always 1

Processor

ID

Number

[PID_#]

Iteration

Number

[Iter.#]

Note: FDT events are one of the tbllowing:

Fire node : Indicates time at which a node initiated execution.

Done node : Indicates time at which a node completed execution.

101

q X

0

e

E

X
Q_
Q_

"0
0
e-

l-
.__
W

c-

O

!.._

.__
U.

102

F'R

li
!

m

E

m
•-4 E

E
m

.Q

im

c
m

.C

o

a.

L--

u.

103

testbed to execute an eight node graph that uses three processors. The TBO

from the analyzer output is equal to 2995 ms and the TBIO is equal to 5967

ms. The steady state behavior of the graph is in accordance with the behavior

predicted by the Design Tool. A section of the analyzer output (Figure 5.4(a)

is expanded to one TGP frame and is shown in Figure 5.4(b). The steady state

behavior of the graph and the effect of delays in the "Done" messages arriving

at the graph manager are clearly shown in the TGP frame. For example, node

five for iteration two is enabled at the completion of iteration two of node four,

but it cannot be "Fired" until iteration one for node seven is complete because

two PEs are being used for the execution of iteration two for node two and

iteration three for node zero. These delays are due to the measurement

resolution limitation of 55 ms. which is discussed in section 5.4.3,

5.4 Timing Measurements

Interprocessor communication is achieved in the testbed using a token

bus network as discussed in Chapter Four. Of interest is the overhead

incurred by AMOS using the token bus interconnection network and the

overhead incurred in the graph management.

5.4.1 Time to Pass Messages Around the Logical Ring

The time required to pass messages around the logical ring formed by

the token bus network was measured using an oscilloscope connected to the

strobe lines of one PE. With only two PEs on the bus, the first measurement

was made with one PE writing to the bus and another reading the bus. The

time for a message to be passed from one PE to another was measured to be

20 microseconds. With three PEs connected the message passing time

increased to 42 microseconds. With four PEs, the time required to pass

messages was found to be 62 microseconds. The relationship of the increase

in message passing time with the number of PEs is shown in Figure 5.5 and

appears to be linear.

104

B B

_. , ,iN

" ,_ ,_,m__.'_.'__'

-- _ i!i

[]
?_i:-

:::-2::.'

_ _ - en ";?i

i

._,_;!.:

'I""

Q

li

I,.L.

C

e-,

O
b

0

I,,,,I

n

C

IS"}

LI.

105

0
0

N

0
;m

0
Z

0
Z

0
Z

0

106

O

E

Z

3

20 40 60

Time in microseconds

Figure 5.5 Overhead increase with increase in number of PEs.

107

5.4.2 Sol, ware Overhead for the Graph Manager and PEs

Overhead introduced by the graph manager for centralized graph

management was measured by using the 68HC11's free running timing

counter. The value of the counter was read at the start and the end of a

timing measurement. The difference in the counter values was recorded and

the time calculated from this difference since the counter is incremented every

clock cycle, ie, every 500 nanoseconds.

The flow diagram for the operation of the graph manager of redrawn in

Figure 5.6 along with the timing measurements for the different sections of the

graph manager code. Recalling that all messages are interrupt driven, timings

that are shown include the time required to service the interrupt service

routine for the messages and the time required for the main routine to respond

to the soi_ messages passed to it from the interrupt service routine. Each PE

has a maximum message queue length of one, since the only message the PE

to report is a "Done". The message queue for the graph manager can have

three messages in it at any given time. This upper bound on the length of the

message queue is due to the testbed's limitation of three PEs. Thus, not more

than three nodes can be fired at any given time. The time shown for the graph

manager to check the message queue and send a "Fire" command is equal to

142 microseconds. This time is only for the graph manager to send one "Fire"

command and send the semaphore to the next PE in the logical ring. The time

required for the graph manager to send two and three "Fire" messages is

shown in an extensive list of timing measurements for the graph manager and

PE operation in Table 5.2. It should be noted that these timings stay

consistent with repeated measurements, with an error of +/- 10 microseconds

for the time for the graph manager to examine the graph and generate a "Fire"

message. This is due to the graph manager taking a different amount of time

for generating a "Fire" message for different node numbers as it would take

more time to examine the graph and find node seven enabled than it would for

node zero. An important observation to be made is that the overhead required

108

--->, = 20 microseconds

---_ =80 "

--->, = 142 " INITIALIZE

1
UPDATE PROC_Q

N
SEMA

SEND SEMA, MSG
NEXT ID

Y

220 microseconds

_N DONE/

INTERRUPT

UPDATE

PROC_Q

Y

l f

SEND
FIRE

Figure 5.6. Timing measurements for graph manager operation.

109

Table 5.2 Event for timing measurement.

Time for a PE or Graph manager to check the message on the

bus for its ID.

Time for a PE or graph manager to release the semaphore if

it has no messages to send.

Time for a PE to send a message, and release the semaphore.

Time for the graph manager to send a "Fire", check its

message queue, and release the semaphore.

Time for the graph manager to send two "Fire" commands,

check its message queue and release the semaphore.

Time for the graph manager to send three "Fire" commands,

check its message queue, and release the semaphore.

Time for the graph manager to examine the graph, find an

enabled node, assign a PE to it, and update the graph.

Time in micro

seconds.

2O

Time for the graph manager to update the graph and

processor queue on receiving a "Done".

85

145

142

225

308

225

220

110

by the graph manager is not significant when compared to the node times

considered for the experiments.

5.4.3 Measurement Imprecision

As described in Section 5.3.2, the monitor program resident in the host

PC of the graph manager is responsible for time stamping the messages sent

to it by the graph manager. Time is marked using the system clock of the PC

using a C function that gets the current time of the system. The system clock

is updated 18.2 times a second or approximately every 55 ms via an interrupt.

Thus, the precision of the time measurement for the creation of the FDT file

is approximately +/- 55 ms.

CHAPTER SIX

CONCLUSIONS

6.1 Introduction

The description of two very different and contrasting embodiments of

AMOS have been the subject of this report. On one hand is a high level

distributed LAN connected testbed employing static scheduling and distributed

graph management. The other embodiment employed microcontrollers in a

token bus using a centralized graph manager and dynamic scheduling.

Significant attrributes of the two highly contrasted embodiments of AMOS are

outlined in the following sections.

6.2 LAN Connected Distributed AMOS

Research has addressed the design, implementation and evaluation of

a LAIN based multicomputing test bed based on static task scheduling strategy

for the ATAMM Multicomputer Operating System. Features of the testbed

and implementation are summarized below.

1. Hardware for the testbec consisted of six PC-AT clones, interconnected

by a peer to peer ethernet connection. RAM disk space reduced server

overhead.

2. The distributed AMOS testbed successfully demonstrated various cyclo-

static scheduling policies including cyclo-static, block cyclo static and static

schedules.

3.' Demonstration AMGs included such features as self loops, forwarded

tokens, buffers on CMG control arcs. In additional exercises not reported

herein, the testbed successfully executed AMGs requiring multiple

instantiations of nodes. In all cases the performance results compared

111

112

favorably with performance predicted by the ATAMM Design Tool.

4. The execution of an eight node AMG on six processors demonstrated the

upper operating limits of the testbed. Communication events occurring in the

testbed were limited to the 55 ms. resolution of the internal PC timer.

5. The development of a truely distributed AMOS is significant in that

graph management was performed by each individual graph manager's local

knowledge of the graph requirements. It should also be noted that this was

the first successful attempt to implement a purely distributed ATAMM based

operating system.

6. Sol, ware for driving the distributed and related data structures were

very modest,consisting of about one thousand lines of C code.

6.3 Microcontroller Based AMOS Testbed

Research has addressed the design, implementation and evaluation of

a microcontroller based dynamic task scheduling strategy for the ATAMM

Multicomputer Operating System. Features of the testbed and

implementation are enumerated below.

1. The testbed consisted of 4 68HCll based microcontroller platforms of

which one was dedicated as a central graph manager and the other three

served as the processing elements.

2. A dynamic task scheduling strategy for distributed processing using the

ATAMM computing paradigm was implemetnted on the centralized graph

manager.

3. The testbed was developed around a message passing model which is

inherent to the AMOS structure.

4. The interconnection network employed was a token bus to provide a

contention free and deterministic basis for message passing. Contention free

task scheduling also implies that the testbed is deterministic and well suited

for the real time algorithms..

5. Analysis of dataflow graphs executed on the testbed can be done by the

113

use of the FDT file that is created when a graph is executed.

6. Memory requirements are modest, including a little over .5 Kbyte for the

graph manager and communciation layer.

7. The execution behavior of example graphs wereo predicted using the

ATAMM Design Tool. The results obtained from FDT analysis were found to

be in accordance with the predicted behavior and provided verification of the

testbed for execution of data flow graphs in the ATAMM context.

8. A timing resolution limitation of 55 ms was noted in the monitoring of

the testbed operation. However, this did not significantly alter the predicted

behavior of the testbed, given that the node times were in the order of seconds.

9. Communication overhead introduced by the use of the token bus model

was investigated by real time monitoring. These times, on the order of tens

to hundreds of microseconds would be suitable for node times in the order of

single digit milliseconds. Note that much larger node times on the order of

seconds were used in the test examples.

10. The use of a generic.eight bit microcontroller was found to be sufficient

to implement the control structure for an ATAMM based testbed. The net

amount of program memory available on each microcontroller was 768 bytes,

of which 742 bytes were used for the 68HCll that contained the software for

the graph manager and 560 bytes were used for each of the PEs.

[AGERWALA82]

[ANDREWS93]

[BABB84]

[COURT92]

[CHASE87]

[ERCEGOVAC86]

[FURTNEY93]

[GORSLINE86]

[HENNESSEY90]

[HWANG84]

REFERENCES

Tilak Agerwala and Arvind, "Data Flow Systems," IEEE

Computer, February 1982, pp.10-14.

Asa M. Andrews, CTA Incorporated, VA, Graph Entry Tool,

Version 2.5.17, 1993.

R.G. Babb, "Parallel Processing with large grain dataflow

techniques," Computer, Vol.17, July, 1984.

R.Court, "Real-time Ethernet," Computer Communications,

Vol.15, No.3, April 1992.

M.Chase, "A pipelined dataflow architecture for signal

processing: The NEC _tPD7281," in VLSI Signal Processing,

New York: IEEE Press, 1984.

Milos D. Ercegovac and Tom,is Lang, "General Approaches

for Achieving High Speed Computations," Supercomputers

Class VI Systems, Hardware and Software. S.Fernbach

(Editor), Elsevier Science Publishers B.V. (North Holland),

1986, pp.l-28.

Mark Furtney and George Taylor, "Of Workstations and

Supercomputers," IEEE Spectrum, May 1993, pp.64-68.

Gorsline, G.W. Computer Organization, Prentice Hall,

Englewood Cliffs, Inc., N.J.

John L. Hennessey and David A. Patterson, Computer

Architecture :A Quantitative Approach, Morgan Kaufmann

Publishers, Inc., CA 1990.

Kai Hwang and F.A.Briggs, Computer Architecture and

Parallel Processing, McGraw-Hill, NY, 1984, pp.732-768.

114

115

[JONES90] Robert L. Jones, III, "Diagnostics Software for Concurrent

Processing Computer Systems," M. S. Thesis, Old

Dominion University, Norfolk, Virginia, April 1990.

[JONES93] R.L. Jones, III, NASA Langley Research Center, VA,

ATAMM Analysis Tool, Version 3.1, 1993.

[LAUER79] Lauer, H.C., and R.M Needham. "On the Duality of

Operating Systems Structures." Proc. Second

International.Syrup. Operating Systems, IRIA, Oct. 1978.

[LEE87] Edward Ashford Lee and David G. Messerschmitt, "Static

Scheduling of Synchronous Data Flow Programs for Digital

Signal Processing", IEEE Transactions on Computers, Vol.

C-36, No.l., January 1987, pp.24-35.

[MIELKE88] Roland R. Mielke, John W. Stoughton and Sukhamoy Som,

"Modelling and Optimum Time Performance for Concurrent

Processing," NASA Technical Paper 4167, Grant NAG1-

683, August 1988.

[MIELKE90] R.R.Mielke, J.W.Stoughton, S.Som, R.Obando,

M.Malekpour and B.Mandala, "Algorithm to Architecture

Mapping Model (ATAMM) Multicomputer Operating

System Functional Specification," NASA Contractor Report

4339, Cooperative Agreement NCC1-136, November 1990.

[PETERSON81] J.L. Peterson, "Petri Net Theory and the Modelling of

Systems," Prentice Hall, Englewood Cliffs, NJ, 1981.

[RASMUSSEN87] R.D. Rasmussen, G.S. Bolotin, N.J. Dimopoulos, B.F.

Lewis, and R.M. Manning, "Advanced General Purpose

Multicomputer for Space Applications," Proceedings of the

1987 International Conference on Parallel Processing,

University Park, PA, USA, August 17-21, 1987, pp.54-57.

[RISHE91] N.Rishe, D.Tal, S.Navathe and S.Graham, "On Parallel

Architectures," Parallel Architectures, IEEE Computer

Society Press, Los Alamitos, CA, 1991.

[ROY93] Sudeepto ROy, "Cyclo-Static Scheduling of Large Grain

Data Flow Algorithms on a Local Area ATAMM

Multicomputing Testbed," Master's Thesis, Old Dominion

University, Norfolk, Virginia, December, 1993.

[SASTRY94]

[SCHWARTZ85]

[SOM88]

[SOM90]

[SOM93]

116

Sudhir Sastry,"Dynamic Task Scheduling for the ATAMM

Multicomputer Operating System Using Embedded

Firmware on Microcontrollers," Master's Thesis, Old

Dominion University, Norfolk, Virginia, January, 1994.

D.A.Schwartz and T.P.Barnwell III, "Cyclo-Static

Multiprocessor Scheduling for the Optimal Realization of

Shift-Invariant Flow Graphs", Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal

Processing, Tampa, Florida, 1985.

Sukhamoy Som, "Performance Modelling and Enhancement

for ATAMM Data Flow Architectures," Ph.D. Dissertation,

Old Dominion University, Norfolk, Virginia, May 1989.

S.Som, B.Mandala, R.R.Mielke and J.W.Stoughton, "A

Design Tool for Computations in Large Grain Real Time

Dataflow Architectures," Proceedings of the IEEE

Southeastcon "90, New Orleans, LA, April 1990.

S.Som, R.Obando, R.R.Mielke and J.W.Stoughton,

"ATAMM: A Computational Model for Real-Time Data

Flow Architectures," International Journal of Mini and

Microcomputers, Vol.15, No.l, 1993, pp.ll-22.

[STALLINGS91]

[STOUGHTON86]

[STOUGHTON88]

[STOUGHTON93]

Stallings, W. Computer Architecture, Macmillan Publishers.
1991.

J.W. Stoughton and R.R. Mielke, "Petri-Net Model for

Concurrent Processing of Complex Algorithms,"

Proceedings of Government Microcircuit Applications

Conference, San Diego, California, November 1986.

J.W. Stoughton and R.R. Mielke, "Strategies for

Concurrent Processing of Complex Algorithms in Data

Driven Architectures," NASA Technical Paper 181657,

Grant NAG1-683, February 1988.

Private conversations and technical exchanges with

Dr.J.W.Stoughton.

117

[TANENBAU92] Andrew S.Tanenbaum, M. Frans Kaashoek and Henri E.
Bal, "Parallel Programming Using Shared Objects and
Broadcasting", IEEE Computer, August 1992, pp.10-12.

[TYMCHYSHN88] William Robert Tymchyshyn, "ATAMM Multicomputer

System Design," M. S. Thesis, Old Dominion University,

Norfolk, Virginia, August 1988.

