Effect of Climate on the Storage and Turnover of Carbon in Soils

Final Technical Report for NASA - NAG 5 1840

Susan Trumbore
Dept. of Earth System Science
University of California
Irvine, CA 92717-3100

Oliver Chadwick
Geology Group
Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, CA 91109

Ronald Amundson
Dept. of Soil Science
108 Hilgard Hall
University of California
Berkeley, CA 94720

Benny Brasher
Soil Survey Investigations
National Soil Survey Center
Lincoln, Nebraska 68508
Executive Summary

Climate is, in many instances, the dominant variable controlling the storage of carbon in soils. It has proven difficult, however to determine how soil properties influenced by climate, such as soil temperature and soil moisture, actually operate to determine the rates of accumulation and decomposition of soil organic matter. Our approach has been to apply a relatively new tool, the comparison of 14C in soil organic matter from pre- and post-bomb soils [Trumbore, in press (appended)], to quantify carbon turnover rates along climosequences. This report details the progress made toward this end by work under this contract.

1) We have completed studies of carbon turnover rates from sites located along elevation gradients in Hawaii and the western Sierra Nevada mountains in California. Elevation gradients were chosen as the most effective way to study climate influences on soils as they are constant in the soil forming factors of parent material and topography, but differ in vegetation and climate. Two manuscripts from this phase of the work are attached (one in preparation, summarizing both transects, and one in press in Ecology) have resulted from this study. One of these manuscripts (attached: Climate controls on soil carbon turnover), summarizes both climosequences, and the implications for response of soil carbon storage or release accompanying a temperature change, and serves as a summary of this research and its implications for the role of soils in the global carbon cycle.

2) We have completed a thorough study of the efficiency of different physically- and chemically-based fractionation methods at separating soil organic matter into pools which turn over on annual, decadal and centennial-millennial time scales. A preliminary manuscript summarizing this work (to be submitted to Radiocarbon) is also attached.

3) A separate modeling study to understand the controls of the 14C-content of soil carbon dioxide was undertaken by Yang Wang, a postdoctoral researcher on this project. Two papers published from her work are attached. In addition, three graduate students and one undergraduate student at UCI have received part-time support from this grant.
Summary of Publications from this project:

Trumbore, S. E., O. A. Chadwick, and R. Amundson, Climate controls on soil carbon dynamics from climosequence studies, for submission to Global Biogeochemical Cycles, ms appended.

Climate Control of Soil Carbon Dynamics

Susan E. Trumbore1, Oliver A. Chadwick2, Ronald Amundson3

1 Dept. of Earth System Science, University of California, Irvine, CA 92717-3100
2 Geology Group, Jet Propulsion Laboratory, 4800 Oak Grove Drive Pasadena, CA 91109
3 Dept. of Soil Science, 108 Hilgard Hall, University of California, Berkeley, CA 94720

ABSTRACT

Climate acts as one of the major controls of the storage and turnover of carbon in soils [Jenny, 1949; Jenkinson et al, 1991; Schimel et al, in press]. We investigated the importance of climate in determining the dynamics of soil organic matter by measuring carbon and14C in organic matter from soils spanning the range of elevations in the western slope of the Sierra Nevada National Forest, near Fresno, California. These soils form a 'climosequence', a series of soils which are similar to one another in soil forming properties such as parent material, soil age, and topography (relief, slope, sun angle), but experience different climate [Jenny et al, 1949]. The amount of soil organic matter in detrital and soil A horizon layers increases with elevation along this transect, primarily reflecting increases in the amount of low density and hydrolysable organic matter fractions (fast cycling carbon pools). Turnover times of these fast-cycling pools, derived from modeling the increase in14C in SOM since the end of atmospheric weapons testing in the early 1960's, show a marked decrease with increased elevation (decreasing temperature). The observed relation between temperature and organic matter turnover for the Sierra transect soils is similar to that observed in Histosols from an elevation transect in Hawaii [Townsend et al., in press]. Extrapolating this relation to predict the transient response of fast-cycling soil organic matter to a global temperature decrease of 1°C, we estimate a potential increase in the storage of carbon in fast-cycling pools of up to 1.3 PgC in one year.
INTRODUCTION

Much of the uncertainty in recent assessments of the global carbon budget stems from the inability to measure directly the influence of the terrestrial carbon reservoirs. Soil organic matter (SOM) contains roughly two thirds of terrestrial carbon, two to three times more carbon than is present as CO$_2$ in the atmosphere [Schlesinger, 1977; Post et al., 1981; Eswaran et al., 1993]. One of the difficulties of understanding soil organic matter is that it consists of a complex mixture of compounds that accumulate and decompose at rates varying from months to millennia. The question of most importance to determining the role of soils in the global carbon cycle is how much of this mixture exchanges with atmospheric CO$_2$ on timescales of decades and less. Recent work using carbon isotopic approaches [O'Brien and Stout, 1978; Harkness et al., 1986; Balesdent et al., 1987; Scharpenseel et al., 1989; Trumbore et al., 1989; Vitorello et al., 1989; Jenkinson et al.; 1992; Trumbore, 1993; Harrison et al., 1993; Townsend et al., in press], observations of carbon inventory changes in soils following land cover changes [Parton et al., 1987; Schimel, 1986; Davidson and Ackerman, 1993] and ecosystem modeling approaches [Jenkinson and Raynor, 1977, Parton et al., 1987; Van Bremen and Feijtel, 1990; McGuire et al., 1992; Potter et al., 1993; Schimel et al., 1994], has demonstrated that more than half of the soil organic matter in the upper 20-30cm of soils has turnover times of less than 100 years. Thus it is important to investigate carefully how the abundance and turnover time of these rapidly cycling components of SOM are controlled by such factors as vegetation, climate, soil texture and landform characteristics.

Although SOM is an inhomogeneous mixture with a continuum of turnover times ranging from days to millennia, it is more tractable to model the soil by lumping components in to pools which turnover on annual (active pool), decadal to centennial (slow pool) or centuries to millennial (passive pool) timescales [Parton et al., 1987; Schimel et al., 1994]. The problem of quantifying soil organic matter dynamics then becomes one of determining the sizes and turnover times of these three pools, and understanding the physical and chemical bases underlying these divisions. Fast pools (mostly active plus some slow) determine the magnitude of annual carbon losses by decomposition, and thus at steady state will equal annual carbon inputs by detritus [Jenkinson et al., 1991; Schimel et al., 1994]. 14C, the radioisotope of carbon (half-life = 5730 years), is useful in separating fast (active+slow) from passive carbon pools in soil organic matter.
The 14C content of SOM collected before 1960 primarily reflects the influence of passive soil organic matter, in which carbon has resided in the soil long enough for significant radioactive decay. Passive pools may be isolated from bulk soil organic matter using physical and chemical fractionation procedures [Paul et al., 1964; Campbell et al., 1967; Martel and Paul, 1974; Goh et al., 1976, 1977, 1984; Scharpenseel et al., 1968a,b; 1984; Trumbore et al., 1989, 1990; Trumbore and Zheng, submitted]. The incorporation of 14C produced in the early 1960's by atmospheric thermonuclear weapons testing ('bomb' 14C) into soil organic matter during the past thirty years provides a direct measure of the amount of slow+active soil organic matter [Trumbore, 1993; Townsend et al, in press, O'Brien and Stout, 1984; Harrison et al., 1993]. A time-dependent modeling approach is used to link 14C measurements of soil organic matter sampled prior to 1960 with that of contemporary samples. A large increase in 14C content over the past thirty years indicates that significant portions of the soil organic matter are exchanging carbon with atmospheric CO$_2$ on decadal and shorter timescales. A comparison of 14C in pre- and post-bomb soils also provides the best means to test the usefulness of various operationally defined separation procedures.

METHODS

Figure 1 shows the location of the Sierra Nevada climosequence, first described by Jenny et al. [1949]. Temperature and precipitation changes with elevation for the sites are summarized in Table 1, together with a description of vegetation and soil carbon inventories. Mean annual temperature decreases with elevation according to the atmospheric lapse rate. Precipitation increases rapidly to about 1000 m, then levels off. Most of the precipitation at higher elevations falls as snow. Vegetation also changes dramatically with elevation, from annual grasses in the Sierra foothills to pine forests at high elevation. Although we will summarize modeling results in terms of temperature controls on decomposition, it should be noted that other variables, such as the structure of vascular carbon inputs to the soil and precipitation also vary along the transect.

Soils sampled in 1958-1962 as part of the California Vegetation Survey were available from the archive at UC Berkeley. The samples were stored air-dry in sealed glass Mason jars. No samples of detritus were archived. We used the original field notes and topographic map locations to find and re-sample the same sites in 1992. Additional data on litterfall and detrital mass measured along the same climosequence are reported in Jenny et al [1949], although no data were available for elevations below 4000 m.
Soil carbon and surface detrital inventories were determined from %C and bulk density measurements (corrected for gravel contents of up to 35% at high elevation in soil A horizons). Per cent carbon data were determined by CO$_2$ evolution on *in vacuo* combustion at 900°C with cupric oxide wire. 14C analyses were made by Accelerator Mass Spectrometry at the Center for AMS, Lawrence Livermore Laboratory, Livermore, California [Southon et al., 1992] from the purified CO$_2$. Graphite targets for AMS measurement were prepared using the sealed-tube, zinc reduction method modified from Vogel [1992]. 14C data are reported as Δ^{14}C, the per mil difference in 14C/12C ratio between the sample and an absolute standard (oxalic acid decay-corrected to 1950; Stuiver and Polache, 1977). δ^{13}C values used to correct for mass-dependent fractionation effects were assumed to be -25‰ for all samples.

Soil organic matter was separated by density into fractions less and greater than 2.0 g/cc using sodium polytungstate [Trumbore, 1993; Trumbore and Zheng, in preparation]. The low density fraction consists of relatively undecomposed vascular plant matter and a small quantity of charcoal. The dense fraction (>2.0 g/cc) is predominantly mineral associated organic matter. Further treatment of the dense fractions (>2 g/cc) with a sequence of acid-base-acid (0.5N HCl; 0.1 N NaOH- Na; hot 6N HCl) isolated a residue which was always depleted in 14C compared to the starting material. This residue was assumed to represent the Δ^{14}C value and minimum carbon content of the passive pool. We report carbon inventory and 14C data for low density (LF) fraction, the hydrolysable organic matter with density >2.0 g/cc (HYD; calculated by mass balancing C and 14C between the untreated dense fraction and the residue), and the hydrolysis residue (RES) in Table 2.

RESULTS

Changes in carbon inventory and 14C with elevation are summarized in Table 1 (litter), Table 2 (soil A horizon) and Figures 2a, b. The total amount of carbon in both litter and mineral soil A horizons increases substantially with elevation. The exception to this is the Chiquito soil (highest elevation), which showed evidence of surface erosion (rills and collection of detritus upslope of fallen tree trunks). Figure 2a compares the carbon inventory in surface detritus measured in this study with the data reported by Jenny et al. [1949].

The inventory of carbon in the soil A horizons (Figure 2b) equaled or was less than that in surface detritus at all elevations. Most of the increase in total
carbon inventory with elevation is due to increases in the low density (LF) and hydrolysable components (HYD). The amount of residual carbon after hydrolysis of the dense fraction in acids and bases (RES) is highest in the Musick soil, which also has the greatest clay content of any of the transect soils.

One of the assumptions implicit in our comparison of 14C in pre- and post-bomb soils is that all organic matter pools have remained at steady state over the past 30 years. The carbon inventory data given in Table 1 and Figure 2b are for 1992 soils. Differences of carbon inventory between 1959 and 1992 profiles in mineral associated organic matter are less than 10% of the 1992 values for 3 of the 5 soils. The Chiquito, 1959 and Shaver, 1959 dense fractions had higher inventory than 1992 values by 100% and 65% respectively. Differences in LF inventory between 1959 and 1992 samples (which vary by less than 50% of the 1992 values in all cases) may be due to differences in sampling and in the treatment of samples prior to storage (for example, by selective removal of larger roots). The fractional distribution between hydrolysable and nonhydrolysable components was the same for both soils, though total inventory of dense material differed between 1959 and 1992 soils. We assume the carbon isotopes within each modeled component (LF, HYD, RES) will be independent of the relative amount of the component present, making spatial heterogeneity less important within a soil unit than the relative mix of LF, HYD and RES components.

Detrital Layers

Jenny et al [1949] report litterfall data based on one year of litter collections at the sites above 1200 m elevation along this transect. Turnover times calculated by dividing carbon inventory by annual litterfall [Jenny et al., 1949], ranged from 8 to 115 years, and showed significantly faster turnover for deciduous than evergreen detritus (see Figure 3). As litterfall data were not available for the sites sampled in 1992, we assumed litter could be approximated as a homogeneous pool with a single average turnover time. We then compared the 14C content observed in homogenized litter in 1992 to values predicted for a single pool at steady state with varying turnover times [see Harrison et al., 1993]. The measured 14C data are compared in Figure 4a, with 1992 14C values predicted using the turnover times derived for the detrital layers measured by Jenny et al. [1947]. Good agreement between the two approaches and data sets is observed at mid-elevations, while at high elevations, the detrital layer in the 1992 Chiquito soil is probably affected by erosion (which causes an underestimate of turnover time). Turnover times for detritus based on 14C will
include the residence time of needles and branches on trees (which may be up to several years for evergreens at high elevations).

Soil A Horizons

Figures 4b, 4c, and 4d show the 14C increase between 1959 and 1992 for A horizon LF, HYD and RES fractions. Fractions with slowest turnover are expected to have the least 14C initially, and the smallest increase in 14C over the past 30 years. Based on these criteria, the RES fraction has the longest turnover time (and will be used in modeling as representing the passive pool). Low density carbon (LF; Figure 2b) shows the largest increase between 1959 and 1992 (the Fallbrook soil was collected in 1962. The 14C values for atmospheric CO$_2$ in the 1950's and in 1992 (and therefore plant carbon fixed during these years) are indicated on Fig 4b by arrows at roughly -25% and +140% [Stuiver and Quay, 19xx; Camargo, in preparation]. 14C values of LF in archived soils were less than the 14C content of the atmosphere in the 1950's (which shows the effect of dilution with 14C-free fossil-fuel derived CO$_2$; Suess,), indicating the presence of some inert or passive fraction (most probably charcoal, see below). 14C values in 1992 LF generally decrease with elevation, ranging from slightly above present-day atmospheric values in the Fallbrook soil (lowest elevation) to below-1992 values at higher elevations. Fast turnover of LF at the low elevation site (Fallbrook) is evidenced by the presence of significant amounts of bomb 14C in the 1962 archived soil. 14C values in the hydrolysable dense organic matter (HYD fig 4c) are intermediate between RES and LF fractions.

Models

A three-component model was used to determine the distribution and turnover rates of carbon in active, slow and passive components needed to reproduce the observed increase in 14C for density <2.0 and >2.0 fractions [described in detail in Townsend et al., in press; Trumbore et al., in preparation]. Turnover times in the model were constrained to be one year for the active pool, and by the observed 14C content of the RES fraction in archived soils for the passive pool. The amount of RES carbon was also used to set the minimum size of the passive pool. The turnover time of the slow pool was then adjusted until both archived and 1992 14C values were matched. An additional constraint (which limited the amount of active SOM to close to zero everywhere but in the Fallbrook soil) was the total annual carbon flux through the soil. One estimate for this is obtained from the above-ground litterfall data of Jenny et al [1949], which ranged from 80 to 160 gC m$^{-2}$ a$^{-1}$ (1300 to 3000m elevation). A second estimate
was derived using the relation of temperature, precipitation and CO$_2$ flux from Raich and Schlesinger (1991). We assumed 50% of the total soil respiration, or roughly 200-300 gC m$^{-2}$ a$^{-1}$ as calculated using Raich and Schlesinger (1991) for these soils, was due to CO$_2$ released by decomposition.

We modeled LF (density <2.0) and HF (density >2.0 g/cc) fractions separately, as each contained slow and passive components. We derived total turnover times for active, slow and passive pools by adding together the amount of active, slow or passive carbon in LF with that in HF, and dividing the sum for each pool by the sum of annual carbon flux through it (calculated by summing contributions to the total flux (amount/turnover time) from active, slow and passive components of LF and HF). As only the Fallbrook soil showed a significant amount of carbon in the active pool, and to facilitate comparison with results from other locations and models (see below), active+slow pool turnover times were combined in the same matter. The results are summarized in Table 3.

The modeling of the LF fraction was complicated by the presence of charcoal. As there were no fires at these sites between 1959 and 1992 collections, any charcoal present in the soil will contain pre-bomb carbon, which serves to dilute 14C content of vascular plant remain components of LF. Visual inspection of the LF material revealed charcoal, but no attempt was made to quantify what proportion of the total carbon was in this form. In order to match both 1959 and 1992 LF 14C values, between 5 and 15% of the carbon was required to be inert, with 14C values of -50%. Large amounts of active carbon (constrained as having one year turnover) were precluded by the high inventories of carbon in low density fraction, coupled with the knowledge that carbon inputs are probably of the order of 5% or less of LF carbon inventories.

The dense fraction 14C content could be modeled reasonably well using the abundance and 14C content of the RES fraction as representing the passive pool. The HYD fraction was then nearly all in the slow pool. Turnover rates in the HF slow pool were equal to or slightly greater than those in the LF slow pool for the same soil.

The turnover times for combined active+slow A horizons are plotted with surface detrital values in Figure 3. Fast cycling components of A horizon soil organic matter show an increase in turnover time with elevation similar to that observed in surface detritus.
The utility of the physical and chemical fractionation procedures at separation of SOM directly into active, slow and passive constituents is assessed in Table 3. The sum of active +slow carbon inventory is 77 to 98% of the sum of LF + HYD. Thus LF+HYD is a good predictor of the amount of active+slow carbon in these soils. This is not true for other soils, such as Histosols, which do not show large differences in 14C on fractionation (Goh et al., 1977, 1984; Trumbore and Zheng, submitted).

Discussion

Figure 5a plots the turnover times of the active plus slow pools from the Sierra Nevada climosequence against mean annual temperature. The results from another elevation-based climosequence on Histosols in Hawaii [Townsend et al, in press] are also shown, along with a datum representing an Oxisol from the Amazon Basin, Brazil [Trumbore et al., in preparation]. Although these soils differ widely in vegetation cover, precipitation, and soil parent material, the strong relation between turnover time of the combined active + slow pools and temperature demonstrates that it is a strong controlling factor on the dynamics of carbon in soils, as argued in recent modeling and data-based studies [Jenkinson et al; 1991, McGuire et al., 1992; Buol et al., 1993; Potter et al., 1993; Schimel et al., 1994]. Litter turnover times derived from 14C for the Sierra soils also show a relation of decomposition to temperature similar to (or steeper than) that for soil A horizon active+slow pools (see Figure 3).

The carbon inventory contained in active+slow pools in these soils is plotted in Figure 5b. At each site, the active +slow carbon makes up more than 60% of the total carbon in the soil A horizon, and carbon inventory within each climosequence is inversely related to temperature. The slopes derived from the two climosequences are similar (excluding the Chiquito soil in the Sierra transect), although the absolute amount of carbon is much greater in the Hawaii climosequence soils.

The temperature relation to carbon abundance and turnover in active + slow pools observed in these regional scale elevation gradient studies are compared in Figures 5a and 5b with results derived from global ecosystem models [Potter et al., 1994; Schimel et al; 1994]. The carbon inventory and turnover rates of active+slow soil carbon pools derived from the CASA model [Potter et al., 1994, and Potter, personal communication, 1994], averaged into
10° latitude bands, are plotted using small cross symbols. The model-derived turnover times are a less strong function of mean annual temperature than the climosequence-based relation. Exponential fits to the climosequence (+Brazil soil) data give the following relation between turnover time and mean annual temperature (MAT):

\[\text{Turnover}(A+S) = 74 \times \exp(-0.074 \times \text{MAT}) \] (1),

while a fit to the model-generated points is:

\[\text{Turnover}(A+S) = 41 \times \exp(-0.0546 \times \text{MAT}) \] (2).

The importance of soil organic matter and detrital pools in sequestering or releasing carbon given a temperature change may be estimated using equations (1) and (2), and the estimates of carbon storage by latitude taken from Potter et al [1994]. We assume that a transient temperature change, such as a decrease in MAT caused by a large volcanic eruption, will act to slow carbon losses from soil by decomposition, while leaving carbon inputs unchanged. The transient (one year of forcing) response of the global active+slow carbon pools is then estimated using the data in Table 4 for carbon inventory, and using turnover times calculated using equations 1 and 2:

\[\Delta \text{(carbon storage)} = \text{Inputs} - \text{Outputs} = \frac{C \text{ inventory}}{\text{turnover(MAT)}} - \frac{C \text{ inventory}}{\text{turnover(MAT-1)}} \]

The data used for this calculation (Table 4) are lumped into 5 latitude bands, with distribution of land area by latitude derived from Potter et al. [1994].

The results for both the climosequence and model-derived relations for turnover vs. MAT show the potential for one-year storage of 1.2 to 1.3 Pg of carbon in active+slow pools of soil A horizons with a 1°C decrease in MAT. The largest changes in soil carbon storage occur at low latitudes (high MAT). Change in the carbon inventory in any given soil would be undetectable (<3% of A horizon inventory). Further storage would presumably occur in surface detrital layers, which have a similar or steeper response of turnover rates to MAT (Fig 3). These calculations ignore some important complicating factors, such as a probable slowing of carbon inputs.
to the soil by vegetation at lowered MAT, and feedbacks between slowed decomposition and plant productivity (Schimel et al., 1994). In addition, the climosequences studied integrate long-term adjustment of ecosystems to climatic conditions, and transient responses may not be predictable from climate sensitivity derived from these data. However, they serve to illustrate that changes in MAT can potentially cause a globally important transient response by storing or releasing carbon from active+slow carbon pools. This response may provide a partial explanation for a slowing of the rate of atmospheric CO₂ increase in 1993, associated with global cooling following the eruption of Mt. Pinatubo [NOAA Climate Atlas, 1993].

Conclusions

Temperature is major control on the dynamics of organic matter which turns over on decadal and shorter timescales in soil A horizons. The relationship derived for turnover time vs temperature from climosequence studies is more sensitive to mean annual temperature changes than a relationship derived from the CASA global ecosystem model [Potter et al., 1994, Schimel et al; 1994].

The data presented here represent only two climosequences, from soils with very different vegetation, precipitation and temperature. Although more data are needed to provide a better understanding of climate controls on carbon turnover in soils, the data presented here demonstrate the usefulness of the climosequence approach. In particular, a better understanding of controls on carbon turnover in tropical soils is needed, as the response there is most sensitive. Comparison of the highest temperature points from climosequences in Figure 5a suggests considerable textural or vegetation controls may be important in these soils.

Fractionation of soil organic matter, while not a perfect indicator of the distribution of turnover times, is useful indicator of which physical portions of the soil organic matter are more labile and more refractory. In the Sierra transect sequence, low density and hydrolysable mineral-associated organic matter made up the active and slow pools (with the exception of charcoal present in the low density fraction), while the residue left after hydrolysis of mineral-associated organic matter in acids and bases provided a reasonable estimate for the size and turnover time of passive soil organic matter (once again, with the exception
of charcoal). These fractionation procedures appear to be most useful in soils with sandy or silty parent material; clay dominated soils, such as the Hawaii climosequence soils, do not show large differences in 14C among these particular fractionation methods [Townsend et al., in press; Trumbore and Zheng, in preparation].

References Cited

Cambardella and Elliott,

NOAA Climate Atlas, 1993

Schimel, D. S., Carbon and nitrogen turnover in adjacent grassland and cropland ecosystems, Biogeochemistry, 6, 239-243.

controls over storage and turnover of carbon in soils, submitted to Global Biogeochemical Cycles.

Stuiver, M. and P. D. Quay,

Figure Captions

Figure 1. Location of Sierra Nevada Transect in Fresno County, CA. Approximate locations of the 5 soils on the elevation transect are also shown.

Figure 2. Carbon inventory in surface detrital (litter) layers (Fig. 2a), from this study and from Jenny et a [1947]. Figure 2b. Carbon inventory changes with elevation for the bulk A horizon soil organic matter (total), fractions with density <2.0 (LF), and hydrolysable (HYD) and nonhydrolysable components of the fraction with density >2.0 g/cc.

Figure 3. Changes in detrital layer turnover time with elevation along the Sierra transect. Turnover times from data in Jenny et al [1947] (squares) were calculated by dividing the detrital inventory by the annual litterfall (both were assumed to have the same %carbon). Turnover times for 1992 Sierra transect litter were determined from the 14C content of homogenized litter, assuming that litter may be represented using a single turnover time and is at steady state (Fig 4a). Estimated turnover times for A horizon active+slow components (derived later) are shown for comparison.

Figure 4. Comparison of carbon-14 contents for organic matter fractions isolated from Sierra Nevada transect soils (1950's and 1992). Negative Δ14C values indicate that carbon in a given fraction has had sufficient time to undergo radioactive decay (half-life of radiocarbon is 5730 years), while positive values
indicate the presence of bomb-produced 14C. Lowest initial 14C values and the smallest increase in 14C over the past 30 years are observed in the RES fraction; highest initial 14C and greatest 14C increase occur in the LF fraction.

Figure 5a. Estimated turnover times in active+slow pools (see Table 3) from modeling of 14C increases in density $<$2.0 (LF) and density $>$2.0 fractions. Data from a similar elevation transect study in Hawaii [Townsend, Ph.D. dissertation, and Townsend et al., 1994 in press], and a single datum representing carbon dynamics derived from 14C and carbon flux measurements in the eastern Amazon basin [Trumbore et al., in preparation; Camargo et al., in preparation]. Crosses (identified in the legend as GLOBAL) are derived from results of the CASA global ecological model [Potter et al., 1994; and Potter, pers. comm.]. Curve fits used for equations 2 and 3 in the text are also shown. Figure 5b. Carbon inventory in active+slow pools for the same soils and model results. These represent $>$50% of the total soil carbon in all cases.
Table 1. Climate and vegetation of Sierra Nevada study sites

<table>
<thead>
<tr>
<th>Soil</th>
<th>Elevation m</th>
<th>Temp °C</th>
<th>Precip mm</th>
<th>Litter gC m⁻²</th>
<th>Vegetation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fallbrook</td>
<td>470</td>
<td>17.8</td>
<td>31</td>
<td>637</td>
<td>annual grasses, blue oak</td>
</tr>
<tr>
<td>Ahwahnee</td>
<td>730</td>
<td>15.0</td>
<td>69</td>
<td>1456</td>
<td>blue oak, canyon live oak, manzonaita, red bud, poison oak</td>
</tr>
<tr>
<td>Musick</td>
<td>1240</td>
<td>11.7</td>
<td>94</td>
<td>4340</td>
<td>ponderosa pine, incense cedar, sugar pine, white fir, bear clover manzanita.</td>
</tr>
<tr>
<td>Shaver</td>
<td>1780</td>
<td>8.9</td>
<td>102</td>
<td>5042</td>
<td>white fir, ponderosa pine, sugar pine</td>
</tr>
<tr>
<td>Corbett</td>
<td>1950</td>
<td>8.0</td>
<td>106</td>
<td>5590*</td>
<td>white fir, ponderosa pine, sugar pine</td>
</tr>
<tr>
<td>Chiquito</td>
<td>2890</td>
<td>3.3</td>
<td>127</td>
<td>2389*</td>
<td>sierra junpier, western white pine, lodgepole pine</td>
</tr>
</tbody>
</table>

* affected by surface erosion.
Table 2. Carbon inventories and 14C in fractionated soil organic matter.

<table>
<thead>
<tr>
<th>Soil</th>
<th>depth of A1</th>
<th>clay %</th>
<th>ALF gC m$^{-2}$</th>
<th>HYD gC m$^{-2}$</th>
<th>RES gC m$^{-2}$</th>
<th>Δ^{14}C LF 1959</th>
<th>Δ^{14}C LF 1992</th>
<th>Δ^{14}C HYD 1959</th>
<th>Δ^{14}C HYD 1992</th>
<th>Δ^{14}C RES 1959</th>
<th>Δ^{14}C RES 1992</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fallbrook</td>
<td>12 cm</td>
<td>10</td>
<td>747</td>
<td>480</td>
<td>60</td>
<td>+65 (1962)</td>
<td>+174</td>
<td>-23</td>
<td>+112</td>
<td>-170</td>
<td>-140</td>
</tr>
<tr>
<td>Musick</td>
<td>19 cm</td>
<td>22</td>
<td>3300</td>
<td>1203</td>
<td>597</td>
<td>-47</td>
<td>+132</td>
<td>-54</td>
<td>+31</td>
<td>-74</td>
<td>-70</td>
</tr>
<tr>
<td>Shaver</td>
<td>20 cm</td>
<td>8</td>
<td>5355</td>
<td>2075</td>
<td>159</td>
<td>-31</td>
<td>+130</td>
<td>-62</td>
<td>+98</td>
<td>-173</td>
<td>-143</td>
</tr>
<tr>
<td>Corbett</td>
<td>23 cm</td>
<td>8</td>
<td>5490</td>
<td>516</td>
<td>129</td>
<td>-32</td>
<td>+155</td>
<td>-28</td>
<td>+132</td>
<td>-116</td>
<td>-24</td>
</tr>
<tr>
<td>Chiquito</td>
<td>17 cm</td>
<td>8</td>
<td>3292</td>
<td>355</td>
<td>121</td>
<td>-40</td>
<td>+93</td>
<td>-</td>
<td>-43</td>
<td>-</td>
<td>-196</td>
</tr>
</tbody>
</table>

Soil inventory data are from 1992 collected profiles. Differences of carbon inventory between 1959 and 1992 profiles are up to less than 10% of the 1992 values, with following exceptions: Chiquito, 1959 and Shaver, 1959 dense fractions had higher inventory than 1992 values by 100 and 65% respectively. Differences in LF inventory between 1959 and 1992 samples (which vary by less than 50% of the 1992 values in all cases) may be due to the treatment of sample after air-drying. We assume steady state profiles for all models. The fractional distribution between hydrolyzable and nonhydrolyzable components was the same for both soils, though total inventory of dense material differed.
Table 3. Model results partitioning carbon into Active, Slow and Passive pools.

<table>
<thead>
<tr>
<th>Soil</th>
<th>INVENTORY gC m$^{-2}$</th>
<th>TURNOVER, years</th>
<th>A+S</th>
<th>P</th>
<th>LF+HYD</th>
<th>RES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>S</td>
<td>P</td>
<td>A+S</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Fallbrook</td>
<td>103</td>
<td>1101</td>
<td>86</td>
<td>10</td>
<td>1700</td>
<td>0.98</td>
</tr>
<tr>
<td>Musick</td>
<td>0</td>
<td>3480</td>
<td>1620</td>
<td>38</td>
<td>162</td>
<td>0.77</td>
</tr>
<tr>
<td>Shaver</td>
<td>0</td>
<td>6383</td>
<td>1206</td>
<td>50</td>
<td>744</td>
<td>0.86</td>
</tr>
<tr>
<td>Corbett</td>
<td>0</td>
<td>5215</td>
<td>920</td>
<td>35</td>
<td>1000</td>
<td>0.87</td>
</tr>
<tr>
<td>Chiquito</td>
<td>0</td>
<td>3069</td>
<td>698</td>
<td>61</td>
<td>1927</td>
<td>0.84</td>
</tr>
</tbody>
</table>
Table 4. Predicted Change in Carbon Inventory from a 1°C change

<table>
<thead>
<tr>
<th>Latitude</th>
<th>kgC m⁻² in A+S</th>
<th>MAT °C</th>
<th>Land area 10⁶ km²</th>
<th>ΔC (Pg) (eq 2)</th>
<th>ΔC (Pg) (eq 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-90 N</td>
<td>4.224</td>
<td>-5.0</td>
<td>21</td>
<td>0.058</td>
<td>0.087</td>
</tr>
<tr>
<td>60-30 N</td>
<td>3.647</td>
<td>10.0</td>
<td>36</td>
<td>0.256</td>
<td>0.294</td>
</tr>
<tr>
<td>30-0 N</td>
<td>2.331</td>
<td>24.3</td>
<td>43</td>
<td>0.556</td>
<td>0.491</td>
</tr>
<tr>
<td>0-30 S</td>
<td>2.667</td>
<td>24.2</td>
<td>29</td>
<td>0.424</td>
<td>0.375</td>
</tr>
<tr>
<td>30-60 S</td>
<td>1.003</td>
<td>27.0</td>
<td>3</td>
<td>0.020</td>
<td>0.017</td>
</tr>
<tr>
<td>Total</td>
<td>13.872</td>
<td>16.1</td>
<td>132</td>
<td>1.313</td>
<td>1.264</td>
</tr>
</tbody>
</table>

Estimates of carbon inventory and land area as a function of latitude are from Potter et al [1994] and C. Potter, pers. com, 1994. Changes in turnover time were calculated using equations 2 and 3 in the text. The calculation of change in carbon inventory equals the carbon inventory/turnover time(MAT) minus carbon inventory/((MAT-1)).
Figure 1

After Fig. 12.9, 12.10 in Jenny, 1980
This study, 14C
Jenny, oak
Jenny, pine
A horizon S+A

Turnover time, years

Elevation, m

surface erosion
Comparison of Fractionation Methods for Soil Organic Matter 14C Analysis

Susan E. Trumbore and Zheng Shuhui
Department of Earth System Science, University of California, Irvine, CA 92717

(prepared for submission to Radiocarbon)

ABSTRACT 14C measurements provide a useful test for determining the degree to which chemical and physical fractionation of soil organic matter are successful in separating labile and refractory organic matter components. Results from AMS measurements of fractionated soil organic matter made as part of several projects are summarized here, together with suggestions for standardization of fractionation procedures. While no single fractionation method will unequivocally separate soil organic matter into components cycling on annual, decadal and millennial timescales, a combination of physical (density separation or sieving) and chemical separation methods (combined acid and base hydrolysis) provides useful constraints for models of soil carbon dynamics in several soil types.

INTRODUCTION

Models describing the dynamics of accumulation and turnover of organic carbon generally recognize components of soil organic matter (SOM) which turn over on annual (active), decadal (slow), and centennial to millennial (passive) time scales [Jenkinson and Raynor, 1977, Parton et al., 1987; Van Bremen and Feijtel, 1990; O’Brien and Stout, 1978; McGuire et al., 1992; Potter et al., 1993; Schimel et al., 1994]. While these concepts have proven useful in explaining the magnitude and timing of changes in SOM following a perturbation such as land clearing for cultivation [Parton et al., 1987; Schimel, 1986; Cambardella and Elliott, Davidson and Ackerman, 1993], no recognized method now exists for determining how to apportion SOM into compartments which turn over on different time scales. To be useful for dividing soil organic matter into components useful for ecosystem modeling, a procedure must determine both the pool sizes and turnover rates.

Two methods are presently in use to partition soil organic matter into active, slow and passive pools. The first models the observed increase of 14C during the 30 years since the end of atmospheric weapons testing, using
additional constraints derived from knowledge of carbon inputs to the system [O'Brien and Stout, 1978; Harkness et al., 1986; Balesdent et al, 1987; Scharpenseel et al., 1989; Trumbore et al, 1989; Vitorello et al., 1989; Jenkinson et al; 1992; Trumbore, 1993; Harrison et al., 1993; Townsend et al., in press]. The second relies on physical and/or chemical fractionation methods to separate SOM into pools which turn over on different time scales [Paul et al., 1964; Campbell et al., 1967; Martel and Paul, 1974; Goh et al., 1976, 1977, 1984; Anderson and Paul, 1984; Scharpenseel et al., 1968a,b; 1984a,b; Trumbore et al., 1989, 1990; Trumbore et al., in preparation]. Radiocarbon measurements of pre-bomb SOM fractions are interpreted as indicative of their turnover rates. A test of the efficiency of any fractionation method at isolating a relatively homogeneous (in terms of turnover) organic matter pool is a comparison of the observed 14C increase since atmospheric weapons testing (Goh et al., 1984; Trumbore et al., 1989; Trumbore et al., in preparation). These tests have shown that, while no fractionation method is completely successful, separation of OM by density, followed by hydrolysis in 6N HCl, does result in a collection of compounds which are on average, turn over more slowly than the hydrolyzed portions of SOM [Campbell et al., 1967; Martel and Paul, 1974; Goh et al., 1976, 1977, 1984; Anderson and Paul, 1984; Scharpenseel et al., 1968a,b; 1984a,b; Trumbore et al., 1989, 1990].

This paper will summarize measurements of 14C made of soil organic matter fractionated using different physical and chemical separation methods. Both archived (pre-bomb) and contemporary soil samples have been analyzed. The implications of these data for soil carbon cycling is discussed in other publications (see Table 1 for references). This paper is in essence a 'date list' which will make the original data available to those interested in the effects of fractionation methods on the 14C content of SOM.

Summary of Fractionation Methods

All samples are sieved to remove components >2mm. Chemical and density separation procedures have been described before (Trumbore et al., 1989; Trumbore, 1993), and are summarized in Figure 1. Basically three kinds of fractionation techniques are used: separation by density, chemical extraction using acids and bases, and separation by size.

1. **Density separation.** The density separation extracts organic matter of low density (<1.6-2.0 g cm$^{-3}$) by flotation in a heavy liquid. The low density material
consists of plant matter and charcoal [Sollins et al., 1983; Spycher et al., 1983].
Dense fractions contain mineral-associated organic matter, and some microbial
cell debris [Sollins et al., 1983; Spycher et al., 1983]. In general, the low density
material turns over more rapidly than much of the soil organic matter.

2. Chemical Fractionation. Operationally defined fractionation procedures for
SOM rely on extraction using acids and bases, which are hypothesized to remove
more labile components, leaving behind more refractory (and therefore more
\(^{14}\)C-depleted) constituents. The data presented here compare the \(^{14}\)C content of
residues after hydrolysis in acid (HCl) of varying strength, and in base (NaOH or
NaOH-Na-pyrophosphate). Because the extraction of fresh plant material by
these techniques leaves a residue [Ertel and Hedges, 1984], we have chosen to
perform acid and base hydrolysis on SOM which has been separated previously
by density, and to treat only the denser portion of the soil further.

3. Size separation. Recent work has tied the dynamics of decadal-cycling SOM
to different size fractions (Cambardella and Elliott, 1993; 1994), which has led to
speculation about the role of soil aggregates in limiting the decomposition of
reactive SOM constituents by physically protecting organic matter from soil
microbial activity [Oades, 1993]. In addition, the limited measurements of \(^{14}\)C in
size fractionated organic matter available from the literature [Anderson and Paul,
1984] suggest a relationship between the size of soil-associated organic material
and stability of associated organic matter. Recently, Mayer [1994] has shown that
organic matter content is related to BET surface area in many soils and
sediments. If organic matter is protected by stabilization on clay surfaces, we
might expect it to have lower \(^{14}\)C values than organic matter which is more
available for microbial attack.

For the size separation, we used the <2mm sieved samples, without prior
density separation. We measured the \(^{14}\)C content of three size fractions: <2mm
but >63\(\mu\), <63\(\mu\) but greater than 2\(\mu\), and less than 2\(\mu\). The largest fraction was
separated by dry sieving; the fractions > and < 2\(\mu\) were separated by settling
from a suspension [Folk]. This procedure breaks apart soil aggregates.

Per cent carbon data were determined by \(\text{CO}_2\) evolution on \textit{in vacuo}
combustion at 900°C with cupric oxide wire [Buchanon and Corcoran, 1959]. \(^{14}\)C
analyses were made by Accelerator Mass Spectrometry at the Center for AMS,
Lawrence Livermore Laboratory, Livermore, California [Southon et al., 1992]
from the purified \(\text{CO}_2\). Graphite targets for AMS measurement were prepared
using the sealed-tube, zinc reduction method modified from Vogel [1992]. 14C data are reported as Δ^{14}C, the per mil difference in 14C/12C ratio between the sample and an absolute standard (oxalic acid decay-corrected to 1950; Stuiver and Polach, 1977). δ^{13}C values used to correct for mass-dependent fractionation effects were assumed to be -25‰ for all samples.

Nomenclature: We adopt a shorthand for describing the fractionation treatment experienced by a sample. The descriptors, denoted in Figure 1, are defined as follows:

BS = Bulk soil. Due the expense of AMS measurements, we often rely on measurements of the constituent fractions to derive a bulk soil 14C number by mass balance.

LD = low density fraction (less than 2.0 g/cc).

HD = Dense fraction. The density of heavy liquid used in the separation is identified by accompanying LD data.

Chemical fractionation. All chemical fractionation procedures are performed on the HD fraction, and the data associated with them refers to the residue after a given chemical separation procedure. A refers to acid hydrolysis at room temperature in 0.5 N HCl; B refers to extraction with 0.1 N NaOH- 0.1 N sodium pyrophosphate; C refers to hydrolysis in 6N HCl at 95°C. Often, we show data derived from the residue of a combination of chemical fractionation procedures: for example A+B+C refers to the residue after sequential hydrolysis in 0.5N acid, 0.1N NaOH and 6N HCl. When performing these procedures, the residue after each extraction step is rinsed thoroughly in distilled H$_2$O before moving on to the next procedure.

Samples

We present here summaries of fractionation of soils from several different types. Table 1 summarizes the source of soils, and data related to soil classification and site-specific characteristics, such as climate and parent material. References discussing the carbon cycling in these soils, or containing more information about the soils, are also listed.
Tables 2 and 3 show the carbon and 14C content of the fractionated soil organic matter. To better compare the effects of fractionation methods on the different soils, the results are also plotted in Figures 2 and 3.

Density separation

Low density components consist primarily of fine root hairs, charcoal (found in all LD fractions, but not quantified separately), and surface detritus mixed into the soil (in Oxisols BS-7, BS-9). Low density material makes up a large portion of the total soil carbon in A horizons of more coarse-textured soils and the Histosol (which had the highest total carbon content, Table 2). The 14C content of LD material is close to atmospheric 14CO$_2$ values at the time of collection in both pre- and post-bomb soils, indicating rapid turnover of this fraction.

In general, 14C values of the dense fraction (mineral associated) carbon decreased with depth in the soil, as has been previously observed (Scharpenseel et al., 1989). Bomb 14C is present in HD fraction for soils sampled in the 1990's, indicating the presence of at least some fast-cycling carbon associated with soil mineral phases.

Acid-Base hydrolysis

In the more heavy-textured soils (those excluding the Shaver soil from the Sierra Nevada, California), most of the carbon present is associated with mineral surfaces (HD fraction). Hydrolysis of the HD fraction in relatively mild acids (0.5N HCl) removes greater than 30% of the mineral-associated carbon for all soils studied (see Figure 2a). The removal is greatest in Spodic B horizons (the Michigan soils samples, B1-56 and A1-52), where more than 70% of the organic matter is solubilized in 0.5 N HCl. The carbon remaining is depleted in 14C compared to the starting dense fraction material to varying degrees (Fig 3a). Least affected are the Histosol (Hawaii) samples, most affected are the Spodic B horizons. Subsequent hydrolysis in base and strong acid removes more carbon and 14C (Fig 2b and Fig. 3 a-c). The residue after A+B+C treatments is, in all but two cases, the most depleted in 14C of any treatment. Figure 3 summarizes the difference in 14C content of residual carbon after various treatments, compared to the starting dense material (1:1 line on Figures). Use of A+B treatment (Fig 3b) removes almost as much carbon and 14C as the A+B+C treatment, while treatments using only acids (A+C; Fig 3c) do not remove as much C and 14C as treatments including a base hydrolysis step. The Histosols and Oxisols are
affected by chemical fractionation less than more coarse textured soils. The difference between unfractionated dense material and the A+B or A+B+C residues is smaller in A horizons of soils than in B horizons. This is more noticeable in profiles previously published in Trumbore et al. [1990].

Size fractionation

The results of size fractionation on splits of the same soils in which density- and chemical procedures were used are reported in Table 3. Most of the carbon in more coarse textured soils was associated with the > 63μ fraction (Figure 2b), while in heavy-textured soils (Oxisol), most of the carbon is in the fine silt and clay fractions (<63 μ). Size separations were not performed on the Histosol (Hawaii) soils; these are dominated by fine-grained material. Size-fractionation of soils did not affect 14C values as much as chemical fractionation (Fig 3d). We did not see any consistent tendency for clay-sized particles to have Δ14C values much greater or less than other size fractions, although clay fractions both enriched and depleted in 14C were observed.

Conclusions and Suggestions for a standard fractionation scheme.

The usefulness of different fractionation methods depends in part on the type of soil, in particular on soil texture (clay content). Separation by density will concentrate organic matter which turns over fast (decades and shorter timescales) in the low density fraction. In coarse textured soils with granitic parent material, such as the Shaver soil (Sierra Nevada), low density organic matter can make up the majority of the total soil carbon. The remaining HD material shows significant increase in 14C in A horizons of contemporary soils due to incorporation of bomb 14C. Chemical treatment, especially hydrolysis in acid and base, removes relatively 14C-enriched components of the dense, mineral-associated organic matter. Once again, chemical treatment is most effective in coarser textured soils, in part because more of the total carbon is removed in the hydrolysis procedure. Chemical extraction with acids and bases did not change the 14C content of Histosol organic matter, even though up to 90-95% of the original carbon was removed. This may be useful in understanding how organic carbon is stabilized in allophane soils.

Large differences in 14C content were not observed between different size fractions. Most of the carbon in coarse-textured soils is in the larger size fractions
Radiocarbon manuscript - 7

(>63μ), and probably is mostly low density vascular plant material, though 14C values indicate that this organic matter is diluted by other (mineral associated) constituents.

We suggest the most informative fractionation procedure to be used in separating soil organic matter into faster and slower cycling components combines density and chemical separation procedures. Low density organic material (except for charcoal) turns over on timescales of decades and less (see Trumbore, 1993; Trumbore et al., in preparation; Camargo et al., in preparation). Extraction of dense material with acid and base will leave a residue which can provide a minimum estimate of the size and 14C content of a passive pool in 14C modeling. This fractionation will be most useful in soils of medium to coarse texture.

Acknowledgments

This research was undertaken as part of projects funded by NASA's Terrestrial Ecology and Earth Science Programs. We are extremely grateful to John Southon, Jay Davis, and others at the Center for Accelerator Mass Spectrometry of Lawrence Livermore National Laboratory for running 14C AMS samples faster than we could write about them.

References Cited

Folk,

NOAA Climate Atlas, 1993

determinations on different humic-matter fractions, in, Proc. Symposium
on the use of isotopes and radiation in soil organic matter studies, July,

Scharpenseel, H. W., M. A. Tamers and F. Pietig, 1968b. Altersbestimmung von
Boden durch die Radiokohlenstoffdatierungsmethode: Zeitschr.
Pflanzenemernahr Bodenkunde v119, p 34-52.

Scharpenseel, H. W., H. Schiffmann and B. Hintze, 1984a: Hamburg University
radiocarbon dates III: Radiocarbon 26:196-205.

Bomb-carbon, 14C dating and 13C measurements as tracers of organic
matter dynamics as well as of morphogenic and turbation processes: The

Schimel, D. S., Carbon and nitrogen turnover in adjacent grassland and
cropland ecosystems, Biogeochemistry, 6, 239-243.

Painter, W. J. Parton and A. R. Townsend, Climatic, edaphic and biotic
controls over storage and turnover of carbon in soils, submitted to Global
Biogeochemical Cycles.

accretion at a mudflow chronosequence, Mt. Shasta, California: Ecology
v64, p 1273-1282.

Southon, J. R., J. S. Vogel, S. E. Trumbore and others, Progress in AMS

v135, p 79-87.

Stout, J. D., K. M. Goh and T. A. Rafter, Chemistry and turnover of naturally
occurring resistant organic compounds in soil: In, Paul E. A. and J. N.

363.
Stuiver, M. and P. D. Quay,

FIGURE CAPTIONS

Figure 1. Fractionation scheme used for 14C measurements.

Figure 2. Per cent of total carbon in the residues left after acid and base hydrolysis treatments of the dense fraction (Fig 2a), and after size fractionation of bulk soil (Fig 2b).

Figure 3. $\Delta^{14}C$ of HF (x axis) compared to that measured in the residue after various chemical treatments (identitifed in panels). The 1:1 line and the $\Delta^{14}C$ values for A+B+C (most ^{14}C-depleted treatment) are given on each figure for comparison.
<table>
<thead>
<tr>
<th>ID</th>
<th>Location</th>
<th>Date Collected</th>
<th>Clay content</th>
<th>Soil Order/ Horizon</th>
<th>Vegetation/ Climate</th>
<th>Parent Material</th>
<th>Depth Interval</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS-7</td>
<td>Paragominas, Brazil</td>
<td>1992</td>
<td>>85%</td>
<td>Oxisol / A</td>
<td>tropical forest</td>
<td>sediments</td>
<td>30-35 cm</td>
<td>1, 2, 3</td>
</tr>
<tr>
<td>BS-9</td>
<td></td>
<td></td>
<td></td>
<td>Oxisol / B</td>
<td></td>
<td></td>
<td>100-105 cm</td>
<td></td>
</tr>
<tr>
<td>H-13</td>
<td>Lapahoe, Hawaii</td>
<td>1992</td>
<td>ND</td>
<td>Histosol (allophane)</td>
<td>tropical pasture</td>
<td>volcanic ash (15-25 ka)</td>
<td>0-10 cm</td>
<td>4</td>
</tr>
<tr>
<td>H-15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 cm</td>
<td></td>
</tr>
<tr>
<td>NS-11</td>
<td>Shaver Lake, California</td>
<td>1992</td>
<td>7-8%</td>
<td>Ultisol / A</td>
<td>dry temperate</td>
<td>granodiorite</td>
<td>5-10 cm</td>
<td>5, 6</td>
</tr>
<tr>
<td>NS-13</td>
<td></td>
<td></td>
<td></td>
<td>Ultisol / B</td>
<td>pine forest</td>
<td></td>
<td>20-40 cm</td>
<td></td>
</tr>
<tr>
<td>OS-9</td>
<td>Shaver Lake, California</td>
<td>1959</td>
<td>7-8%</td>
<td>Ultisol / A</td>
<td>dry temperate</td>
<td>granodiorite</td>
<td>0-15 cm</td>
<td>5, 6</td>
</tr>
<tr>
<td>OS-10</td>
<td></td>
<td></td>
<td></td>
<td>Ultisol / B</td>
<td>pine</td>
<td></td>
<td>15-58 cm</td>
<td></td>
</tr>
<tr>
<td>A1-52</td>
<td>Michigan</td>
<td>1992</td>
<td><2%</td>
<td>Anspodosol / B</td>
<td>moist, cool</td>
<td>beach sand, 3ka, 10ka</td>
<td>52 cm</td>
<td>7</td>
</tr>
<tr>
<td>B1-56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>temperate forest</td>
<td></td>
<td>56 cm</td>
<td></td>
</tr>
</tbody>
</table>

References:
4. Townsend et al., in press; 5. Trumbore et al., in preparation; 6. California soil and vegetation survey
7. Barrett and Schaetzl, in press
Table 2. Results of Chemical Fractionation Procedures

<table>
<thead>
<tr>
<th>BS-C Density gC m⁻² cm⁻¹</th>
<th>LD<2.0 g/cc</th>
<th>HD(>2 g/cc)</th>
<th>A only</th>
<th>A+B</th>
<th>A+B+C</th>
<th>A+C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%C</td>
<td>Δ¹⁴C</td>
<td>%C</td>
<td>Δ¹⁴C</td>
<td>%C</td>
<td>Δ¹⁴C</td>
</tr>
<tr>
<td>BS-7</td>
<td>132</td>
<td><5%</td>
<td>1.0</td>
<td>-102.4</td>
<td>61.7</td>
<td>-195.0</td>
</tr>
<tr>
<td>BS-9</td>
<td>50</td>
<td><1%</td>
<td>ND</td>
<td>-552.0</td>
<td>72.0</td>
<td>-615.0</td>
</tr>
<tr>
<td>H-13</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>11.0</td>
<td>4.0</td>
<td>-16.3</td>
</tr>
<tr>
<td>H-15</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>4.2</td>
<td>-660.8</td>
<td>62.1</td>
</tr>
<tr>
<td>NS-11</td>
<td>462</td>
<td>91.7</td>
<td>+109.3</td>
<td>1.5</td>
<td>92.6</td>
<td>12.2</td>
</tr>
<tr>
<td>NS-13</td>
<td>98</td>
<td>73.5</td>
<td>+169.5</td>
<td>0.4</td>
<td>32.7</td>
<td>40.9</td>
</tr>
<tr>
<td>OS-9</td>
<td>383</td>
<td>85.1</td>
<td>-35.8</td>
<td>2.1</td>
<td>-36.5</td>
<td>13.0</td>
</tr>
<tr>
<td>OS-10</td>
<td>92</td>
<td>59.8</td>
<td>-30.9</td>
<td>0.4</td>
<td>-123.0</td>
<td>39.4</td>
</tr>
<tr>
<td>A1-52</td>
<td>ND</td>
<td><5%</td>
<td>ND</td>
<td>0.7</td>
<td>-148.7</td>
<td>25.6</td>
</tr>
<tr>
<td>B1-56</td>
<td>ND</td>
<td><5%</td>
<td>ND</td>
<td>1.0</td>
<td>-123.7</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Sample identification is given in Table 1. Carbon density is calculated from bulk density data and %C. ND denotes soils for which bulk density data were not available. The first fractionation procedure was separation in density <2.0 g/cc (LD) and >2.0 g/cc (Dense, HD fraction). %Ct denotes the % of total carbon in LD fractions (D% is 100-LD%). ¹⁴C was measured in LD material only when it made up a significant amount of the total soil carbon. Hawaii soils were not separated by density; the bulk data are listed in the HD column, though most of this material is probably low density. The starting material for chemical fractionation procedures was the HD fraction (>2 g/cc). Gravimetric %C data are given for this fraction (%Cgr).

Chemical procedures are as follows:
- A = residue after extraction with 0.5N HCl at 95°C for 12 hours.
- B = residue after extraction at room temperature for 24 hours with 0.1 N NaOH-0.1N Na₅P₂O₇
- C = residue after extraction with 6N HCl at 95°C for 12 hours.

Combinations of chemical procedures are shown. For example A+B denotes that the results given are for the residual organic matter following treatment with first A, then B.

%C_d is the per cent of the carbon in the original untreated dense fraction which remains after the chemical treatment. ¹⁴C data are reported as Δ¹⁴C, the per mil deviation of the ¹⁴C/¹²C ratio to the ¹⁴C/¹²C ratio of oxalic acid standard in 1950. We have assumed δ¹³C of -25‰ for the purpose of calculating Δ¹⁴C for all samples, all vegetation cover for these soils was C3 plants. The one sigma error of the ¹⁴C measurements is ± 10‰ to 15‰.
Table 3. Results of Size Fractionation Procedures

<table>
<thead>
<tr>
<th>Sample</th>
<th>(2\text{mm} > S > 63\mu)</th>
<th>(63\mu > S > 2\mu)</th>
<th>(< 2\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%C</td>
<td>%Ct</td>
<td>(\Delta^{14}C)</td>
</tr>
<tr>
<td>BS-7</td>
<td>3.9</td>
<td>10.6</td>
<td>7.6</td>
</tr>
<tr>
<td>BS-9</td>
<td>0.4</td>
<td>33.3</td>
<td>-465.8</td>
</tr>
<tr>
<td>NS-11</td>
<td>11.2</td>
<td>61.3</td>
<td>82.9</td>
</tr>
<tr>
<td>NS-13</td>
<td>0.8</td>
<td>69.5</td>
<td>11.0</td>
</tr>
<tr>
<td>OS-9</td>
<td>2.2</td>
<td>63.5</td>
<td>-54.4</td>
</tr>
<tr>
<td>OS-10</td>
<td>0.9</td>
<td>64.2</td>
<td>-108.1</td>
</tr>
<tr>
<td>A1-52</td>
<td>0.6</td>
<td>87.8</td>
<td>-128.8</td>
</tr>
<tr>
<td>B1-56</td>
<td>0.6</td>
<td>93.1</td>
<td>-113.3</td>
</tr>
</tbody>
</table>
Figure 1.

Bulk Soil (sieved to <2mm)

Sieve (63μ)

>63μ

<63μ

Suspension (clays)

Light Fraction undecayed vascular plant material, charcoal

Dense Fraction cell wall debris, mineral bound organic matter

Density Separation using heavy liquid

RESIDUE A

0.5 N HCl

RESIDUE A+B

0.1 N NaOH - 0.1 N Na₅P₂O₇

RESIDUE A+B+C

6 N HCl (hot)
Fig 2

A-ABC

\[\Delta^{14}C \text{ of fraction} \]

\[\Delta^{14}C \text{ HF} \]

AB-ABC

\[\Delta^{14}C \text{ of fraction} \]

\[\Delta^{14}C \text{ HF} \]

AC-ABC

\[\Delta^{14}C \text{ of fraction} \]

\[\Delta^{14}C \text{ HF} \]

Size vs. chemical fractionation

\[\Delta^{14}C \text{ of fraction} \]

\[\Delta^{14}C \text{ HF} \]
A model for soil 14CO$_2$ and its implications for using 14C to date pedogenic carbonate

YANG WANG, RONALD AMUNDSON, and SUSAN TRUMBORE

Department of Soil Science, University of California, Berkeley, CA 94720, USA
Department of Geosciences, University of California, Irvine, CA 92717, USA

(Received March 17, 1993; accepted in revised form July 31, 1993)

Abstract—A diffusion-reaction model for soil 14CO$_2$ is described that analyzes the 14CO$_2$ distribution in soils. It shows that the 14C content of soil CO$_2$ is not the same as that of atmospheric CO$_2$ and varies with depth depending on various factors. The most important factors affecting the 14C content of soil CO$_2$ include the 14C content of soil organic matter, the relative contribution of root respired CO$_2$ to total CO$_2$ production, soil respiration rate, atmospheric CO$_2$ concentration and 14CO$_2$ content, and soil properties such as temperature and moisture content etc. The 14C content of soil CO$_2$ not only can be a sensitive indicator of the residence time of decomposing organic matter in the soil, but also determines the 14C content of pedogenic carbonate. Our model suggests that soil CO$_2$ could be enriched or depleted in 14C relative to atmospheric CO$_2$, depending on the relative contribution of root respiration to total soil respiration and on the turnover rate of the soil organic matter contributing to the soil CO$_2$. Therefore, the initial 14C dates of soil carbonate could differ from the true ages of pedogenesis. The processes and factors considered by the model are a first step in determining whether the 14C content of soil carbonate could lead to reliable dates of pedogenesis.

INTRODUCTION

Carbon dioxide is produced by decomposition of organic matter and by root respiration in soils. As a result, CO$_2$ concentrations in soils are higher than atmospheric CO$_2$ concentrations. Diffusion is considered the major mechanism by which gases move in soils (KIRKHAM and POWERS, 1972; JURY et al., 1991). It has been previously shown that the distribution of CO$_2$ and its stable isotopic species (e.g., 13CO$_2$, 14CO$_2$) in soils can be described by a diffusion-reaction model (CERLING, 1984, 1991; SOLOMON and CERLING, 1987; CERLING et al., 1989; QUADE et al., 1989). Since the δ^{14}C value of CO$_2$ produced by root respiration is essentially the same as that of CO$_2$ produced by decomposition of soil organic matter, the δ^{14}C value of soil CO$_2$ is determined by soil respiration rate and the δ^{14}C value of soil organic matter, which is more or less constant with depth and time in a stable soil ecosystem (CERLING, 1984, 1991; CERLING et al., 1989; QUADE et al., 1989).

However, in the case of the radioactive carbon isotope (14C), the model needed to describe the 14CO$_2$ profile will be more complicated. First of all, the 14C content of CO$_2$ produced by root respiration is not necessarily the same as that of CO$_2$ derived from organic matter decomposition. While root respiration CO$_2$ can be assumed to be nearly identical with the atmospheric 14C level (DORR and MÜNNICH, 1986), the 14C content of CO$_2$ derived from organic matter decomposition may, depending on the carbon residence time in the soil, be depleted by radioactive decay or even enriched by the contribution of 14C produced in the late 1950s and early 1960s by atmospheric testing of thermonuclear weapons (bomb 14C) (DORR and MÜNNICH, 1986). In other words, the δ^{14}C value of CO$_2$ produced by organic matter decomposition should be determined by the 14C content of soil organic matter, which is a mixture of compounds with different turnover rates (TRUMBORE et al., 1990; TRUMBORE, 1993). Moreover, the δ^{14}C value of organic matter changes with depth and time (GOH et al., 1976; O'BRIEN and STOUT, 1978; TRUMBORE, 1993), suggesting that the CO$_2$ produced at different depths should have different 14C contents depending on the 14C content of soil organic matter at that depth and also on the relative contribution of root respiration to the total CO$_2$ production. HAAS et al. (1983) and THORSTENSON et al. (1983) observed lower 14C contents in respired CO$_2$ during winter time due to oxidation of older soil organic matter in the absence of significant root respiration. However, their model failed to describe the 14CO$_2$-depth profile observed in their study. DORR and MÜNNICH (1986) also observed an annual 14C variation of soil-respired CO$_2$, which they suggested is controlled by the seasonally varying contribution of root respiration and CO$_2$ produced by microbial decomposition of organic matter.

Presently, there is no adequate model describing the 14CO$_2$ distribution in soils. Previous studies on soil CO$_2$, and δ^{13}C values of soil CO$_2$, and pedogenic carbonates indicate that the CO$_2$ and carbonate in a soil system are in isotopic equilibrium. This implies that any detrital carbonate dissolved in the soil is overwhelmed by soil CO$_2$ and the isotopic composition of pedogenic carbonate is determined by the isotopic composition of soil CO$_2$ (CERLING, 1984, 1991; CERLING et al., 1989; QUADE et al., 1989; AMUNDSON et al., 1989; CERLING and QUADE, 1992). If this is the case, the 14C content of pedogenic carbonate should also be determined by 14C content of soil CO$_2$ and inherited dead carbon should not affect the age of soil pedogenic carbonate. Therefore, a better understanding of 14CO$_2$ distribution in soils would have very important implications not only in the study of organic carbon cycling in soils, but also in the application of 14C to date soil carbonate. Furthermore, the 14C content of soil CO$_2$ is an important parameter in modeling variations of atmo-
where

\[E = (\Phi^12)(R_{oa})(1 - F)\left(\frac{\delta^{14}C_{air}}{1000} + 1\right) \]

and

\[G = (\Phi^12)(R_{oa}) \cdot F \cdot \left(\frac{1 + 1000}{1000} - L + \frac{B}{2000} - L^2 + E \cdot L\right) \]

According to Cerling (1984), the steady-state solutions for diffusion-reaction equations for CO₂ and 13CO₂, with boundary conditions of \(C_1^* = C_3^* \) and \(C_1^{13} = C_3^{13} \) at \(z = 0 \), and \(\frac{dC_1^*}{dz} = 0 \) and \(\frac{dC_1^{13}}{dz} = 0 \) at \(z = L \), are as follows:

\[C_1^* = \frac{\Phi^*}{D_1^*} \left(Lz - \frac{z^2}{2} \right) + C_1^* \]

\[C_1^{13} = \frac{\Phi^{13}}{D_1^{13}} \left(Lz - \frac{z^2}{2} \right) + C_1^{13} \]

where \(C_1^* \) and \(C_1^{13} \) are CO₂ and 13CO₂ concentrations in the atmosphere; \(C_3^* \) and \(C_3^{13} \) are corresponding concentrations in the soil air; and \(D_1^* \) and \(D_1^{13} \) are diffusion coefficients for CO₂ and 13CO₂, respectively.

The diffusion coefficient for CO₂ in soil is related to that in air (\(D_{wa} \)) by

\[D_1^* = D_{wa} \phi \]

where \(\phi \) is the free air porosity in the soil, and \(\rho \) is a tortuosity factor (Kirkham and Powers, 1972; Jury et al., 1991). \(D_{wa} \) varies with temperature and pressure (Bird et al., 1960):

\[D_{wa} = D_{wa}^0 \left(\frac{P^0}{P} \right)^{1.23} \]

where \(D_{wa}^0 \) is the diffusion coefficient for CO₂ in air under standard conditions (\(T^0 = 25^\circ\text{C} \) and \(P^0 = 1 \text{ bar pressure} \)) and is taken to be 0.144 cm²/s.

Table 1: Parameters for the model soil described in the text

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>-10</th>
<th>-20</th>
<th>-30</th>
<th>-40</th>
<th>-50</th>
<th>-60</th>
<th>-70</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta^{14}C_{air})</td>
<td>10</td>
<td>40</td>
<td>70</td>
<td>100</td>
<td>130</td>
<td>160</td>
<td>190</td>
<td>220</td>
</tr>
<tr>
<td>Temperature</td>
<td>15°C</td>
<td>20°C</td>
<td>25°C</td>
<td>30°C</td>
<td>35°C</td>
<td>40°C</td>
<td>45°C</td>
<td>50°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>1 atm</td>
<td>1.5 atm</td>
<td>2 atm</td>
<td>2.5 atm</td>
<td>3 atm</td>
<td>3.5 atm</td>
<td>4 atm</td>
<td>4.5 atm</td>
</tr>
<tr>
<td>Respired CO₂ (\delta^{13}C_{air} = 26%)</td>
<td>1 atm</td>
<td>1.5 atm</td>
<td>2 atm</td>
<td>2.5 atm</td>
<td>3 atm</td>
<td>3.5 atm</td>
<td>4 atm</td>
<td>4.5 atm</td>
</tr>
<tr>
<td>Atmospheric CO₂</td>
<td>300 ppm</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Porosity factor</td>
<td>0.61</td>
<td>0.81</td>
<td>1.01</td>
<td>1.21</td>
<td>1.41</td>
<td>1.61</td>
<td>1.81</td>
<td>2.01</td>
</tr>
</tbody>
</table>

The diffusion coefficients of 14CO₂ and 13CO₂ are related by

\[\frac{D_{13}^{13}}{D_{12}^{12}} = \left(\frac{M_1 \times M_{13}^{12} \times M_1^{13} \times M_{13}^{12}}{M_1^{12} \times M_{13}^{12} \times M_1^{13} \times M_{13}^{12}} \right)^{1/2} = 1.00868 \]

Using Eqs. 6.7, and 8 and using various values of soil respiration, an atmospheric CO₂ concentration of 300 ppm, and atmospheric \(\delta^{14}C \) and \(\delta^{13}C \) values of \(-6\%\) (pre-industrial value) and 0% (pre-bomb value), respectively, it is possible to calculate \(\delta^{14}C \) (\(\delta^{14}C \)) values in soils for various conditions.

Figure 1 shows how the \(\delta^{14}C \) value of soil CO₂ varies with depth in a model soil where the \(\delta^{14}C \) value of soil CO₂ is not necessarily the same as that of atmospheric CO₂, although it has been assumed so in previous studies using \(\delta^{14}C \) to date soil carbonate. However, the present-day analytical precision at best is ±3%, and for most accelerator labs the analytical precision is ±8%. Therefore, when \(F \) is small, for example \(F = 0.1 \), the \(\delta^{14}C \) value of soil CO₂ can be considered the same as that of atmospheric CO₂.

1. The \(\delta^{14}C \) values of soil CO₂ are not constant with depth.
2. The \(\delta^{14}C \) values of soil CO₂ depend on the \(\delta^{14}C \) values of soil organic matter, soil respiration, and the relative contribution of CO₂ derived from organic matter decomposition to total CO₂ production (\(F \)).
3. When the fraction of CO₂ derived from organic matter decomposition (\(F \)) ≠ 0, the \(\delta^{14}C \) values of soil CO₂ vary continuously from the atmospheric value at the soil-atmosphere interface to more negative values at depth. Increasing the value of \(F \), the \(\delta^{14}C \) values of soil CO₂ at any depth become more negative.
4. When \(F = 0 \), the \(\delta^{14}C \) values of soil CO₂ vary continuously from the atmospheric value at the soil-atmosphere interface to more positive values at depth. This increase in \(\delta^{14}C \) values is a result of diffusion effects on the different isotopic species (Cerling et al., 1991). If the \(\delta^{14}C \) data are corrected for isotope fractionation using 13C data (i.e., \(\Delta^{14}C \) in Stuiver and Polach, 1977), this diffusion component will not be seen.

Figure 2 also shows how the \(\delta^{14}C \) values of soil CO₂ vary with soil respiration rates. It is evident that at a given value of \(F \), the higher the soil respiration, the more the \(\delta^{14}C \) values of soil CO₂ deviate from that of atmospheric CO₂.
Y. Wang, R. Amundson, and S. Trumbore

\[Y. \text{ Wang, R. Amundson, and S. Trumbore} \]

FIG. 2. Variations of the \(\delta^{14}C \) values of soil CO\(_2\) with soil respiration rates at a constant \(F \) value. The model shows that the higher the soil respiration rate, the more the \(\delta^{14}C \) values of soil CO\(_2\) deviate from that of the atmospheric CO\(_2\).

When all soil CO\(_2\) is derived from root respiration and/or decomposition of short-lived organic matter which has the same \(^{14}C \) content as the atmospheric CO\(_2\), the \(\delta^{14}C \) values of soil CO\(_2\) are relatively enriched (up to 8.5\% at 15°C) compared to \(\delta^{14}C \) values of atmospheric CO\(_2\) (Fig. 3) due to diffusion effects. The lower the respiration rate or the higher the value of the diffusion coefficient, the less enriched the \(\delta^{14}C \) values of soil CO\(_2\) are relative to the \(\delta^{14}C \) values of atmospheric CO\(_2\). When soil respiration \(= 0 \), the \(\delta^{14}C \) values of soil CO\(_2\) are the same as the \(\delta^{14}C \) values of atmospheric CO\(_2\). Additionally, considering the present-day analytical precision of ±8\% for \(^{14}C \) analysis, this diffusion effect on the \(^{14}C \) content of soil CO\(_2\) would be beyond detection.

These figures show soil \(^{14}CO_2 \) relationships for pre-industrial atmospheric conditions. To use this model to evaluate present-day soil conditions, one must change the atmospheric boundary conditions for CO\(_2\), \(^{12}CO_2 \), and \(^{14}CO_2 \). In our test of the model against empirical data given below, various \(^{14}CO_2 \) values are used, based on the reported data.

OBSERVATIONS IN SOILS

It is important to establish if the above \(^{14}CO_2 \) model is valid in soils. Presently, there are few \(^{14}CO_2 \) depth profiles available. In Fig. 4, the \(^{14}C \) data (reported as \(A^{14}C \), percent modern carbon (pmc) = \((\delta^{14}C/1000 + 1)(1 - 2*25 + \delta^{14}C)/1000 \) * 100) for soil CO\(_2\) and CO\(_2\) concentrations (data obtained in May) from site #6 in HAAS et al. (1983) and THORSTENSON et al. (1983) are plotted. The first symbol represents different sampling dates and compared to our model calculation (solid line). Since there were no \(^{14}CO_2 \) data and no CO\(_2\) production information reported in their study, we assumed that the \(^{14}CO_2 \) production is an exponential function of depth as \(\Phi_{i}^{*}(z) = \Phi_{i}^{*}(0)e^{-bz} \) with \(\frac{\partial C_{i}^{*}}{\partial z} = 0 \) at \(z = L \) (\(L = 380 \) cm was used in the model calculation), where \(\Phi_{i}^{*}(0) \) is the production of \(^{14}CO_2 \) at surface and \(b \) is a constant (we use \(b = 0.003 \) in the model calculation). We also assume that production of CO\(_2\) is an exponential function of depth in their soil as \(\Phi_{i}^{*}(z) = \Phi_{i}^{*}(0)e^{-bz} \) with \(\frac{\partial C_{i}^{*}}{\partial z} = 0 \) at \(z = L \) (\(L = 520 \) cm was used in the model calculation), where \(\Phi_{i}^{*}(0) \) is the production of CO\(_2\) at surface and \(h_d \) is the attenuation depth (we use \(h_d = 300 \) cm in the model calculation). The solution to the diffusion Eqn. 2 with the assumed production function and boundary conditions are:

\[
C_{i}^{*} = \frac{\Phi_{i}^{*}(0)(h_d)}{D_{i}^{*}} e^{-h_d/z} + C_{i}^{*} \quad (9)
\]

\[
C_{i}^{*} = \frac{\Phi_{i}^{*}(0)(h_d)}{D_{i}^{*}} e^{-L/z} + C_{i}^{*} \quad (10)
\]

FIG. 3. \(\delta^{14}C \) value of soil CO\(_2\) vs. depth for soils where all CO\(_2\) is derived from root respiration and/or decomposition of short-lived organic matter. It can be seen that the \(\delta^{14}C \) values of soil CO\(_2\) are relatively enriched compared to \(\delta^{14}C \) values of atmospheric CO\(_2\) due to diffusion effects. Figure 3 (a) shows that the lower the respiration rate, the less enriched the \(\delta^{14}C \) values of soil CO\(_2\) are relative to the \(\delta^{14}C \) values of atmospheric CO\(_2\). Figure 3 (b) shows the effect of varying diffusion coefficient on the \(^{14}C \) content of soil air.

3
where C^14 and C^13 are 14CO$_2$ and CO$_2$ concentrations in the soil; C^13 and C^13 are corresponding concentrations in the atmosphere; and L and L' are the depth of the non-flux boundaries for 14CO$_2$ and CO$_2$, respectively (the non-flux boundary is a boundary where CO$_2$ or 14CO$_2$ concentration gradient equals to zero). Other assumed parameters used in our model calculation are listed in Table 2. In their study, THORSTENSON et al. (1983) concluded that the measured 14CO$_2$ profiles cannot be readily explained with a diffusion model due to some as yet unexplained mechanisms. However, Fig. 4 suggests that our curve fits their data reasonably well, except for one datum point at the 15.9 meter depth. This point represents a groundwater CO$_2$ sample and, therefore, may be contaminated by carbon from other sources. The goodness of the fit is adequate to strongly suggest that vertical diffusion is indeed the dominant mass-transport mechanism affecting 14CO$_2$ and CO$_2$ distribution in this soil. It should be noted that δ^{13}C value of atmospheric CO$_2$ (the upper boundary condition) is greater than 0‰ (the boundary condition used in Figs. 1–3). This is because present atmospheric

14C content is elevated above natural levels by nuclear weapons testing and use.

Figure 5 compares the 14CO$_2$ and CO$_2$ data from two Oxisol profiles (a forest soil and a 17-year-old pasture soil which is a degraded forest soil) from Paragominas in Brazil (NEPSTAD et al., unpub. data) and our model calculations. The CO$_2$ samples were collected in May, 1992 by Trumbore, Davidson.
and Nepstad. The measured CO₂ respiration rates for May are 25 mmol/m²/h for the forest soil and 10 mmol/m²/h for the pasture soil. For each soil, the ¹⁴CO₂ and CO₂ data are fitted using the same set of parameters (i.e., respiration rate, diffusion coefficient, porosity, temperature, and pressure) (Table 2). The measured CO₂ respiration rate for the forest soil seems too high because it requires an unreasonably high diffusion coefficient and/or porosity to produce the observed soil ¹⁴CO₂ and CO₂ profiles. The high respiration rate reflects the decomposition of abundant litter on the forest floor which could have contributed significant amounts of CO₂ to the total CO₂ flux measured at the soil surface and higher production of CO₂ in the upper 2 meters of the soil. In our model calculation we used a value of 13 mmol/m²/h for respiration rate for the forest soil which gives a reasonable fit to both the ¹⁴CO₂ and CO₂ data. Again, vertical diffusion appears to be the dominant mass-transport mechanism affecting ¹⁴CO₂ and CO₂ distribution in these soils. However, unlike the data of HAAS et al. (1983), the ¹⁴C content of soil CO₂ is greater than present atmospheric values. Since soil CO₂ is produced by root respiration and decomposition of soil organic matter which is a heterogeneous mixture of compounds turning over at different rates, the observed ¹⁴C profiles here suggest that the fractions of soil organic matter whose turnover contribute the most to the soil CO₂ contains a considerable quantity of bomb-produced ¹⁴C.

IMPLICATIONS FOR ¹⁴C DATING OF SOIL CARBONATE

Dates from soil carbonates have been considered unreliable estimates of the age of pedogenesis because of unknown initial ¹⁴C/¹³C ratios in the carbonate and the possibility of subsequent contamination with environmental ¹⁴C (CALLON et al., 1983). Comparison of carbonate ¹⁴C ages with ¹³C ages of coexisting organic matter suggests that radiocarbon dates calculated from pedogenic carbonate in arid areas were about 500 to 7000 radiocarbon years too old (WILLIAMS and POLACH, 1969). On the other hand, radiocarbon dates of pedogenic carbonate from the sub-humid part of southeastern Australia were much younger than either the known age of deposition in which the carbonate is segregated, or the likely age of pedogenesis (BOWLER and POLACH, 1971). These discrepancies have been attributed to an initial low ¹⁴C content of soil carbonate due to the limestone dilution effect and/or secondary contamination by environmental ¹⁴C. The limestone dilution effect (BARTLETT, 1951; BROECKER and WALTON, 1959) states that soil carbonate derives half of its C from dead calcium carbonate and another half from atmospheric CO₂, suggesting that radiocarbon age of such carbonate would be about one half-life of ¹⁴C (about 5570 years) older than the true age. However, studies on soil CO₂ and ¹³C of soil CO₂ and pedogenic carbonates indicate that the CO₂ and its isotopic species in a soil system are in isotopic equilibrium. This implies that C derived from dissolving detrital carbonate is ultimately lost through isotopic exchange with soil CO₂ and isotopic composition of pedogenic carbonate is determined by the isotopic composition of soil CO₂ (CERLING, 1984, 1991; CERLING et al., 1989; QUADE et al., 1989; CERLING and QUADE, 1992). We have shown that ¹⁴C content of soil CO₂ can be depleted or enriched relative to that of atmospheric CO₂ depending on various factors. Soil carbonate formed during the early development of a soil, when ¹⁴C content of soil organic matter is about the same as that of the atmospheric CO₂, could have ¹⁴C ages younger than the true age of the pedogenesis. On the other hand, carbonate formed later on in a soil, could have ¹⁴C ages older than the true age of the carbonate precipitation. Elsewhere, we (AMUNDSON et al., 1993) explore in detail the effects of our diffusion/reaction model on carbonate ¹⁴C ages.

CONCLUSIONS

The distribution of ¹⁴CO₂ in soils can be described by a diffusion-reaction model. The ¹⁴C content of soil CO₂ varies with depth depending on many factors: the ¹⁴C content of soil organic matter, the relative contribution of root respiration to total CO₂ production, soil respiration rate, atmospheric CO₂ concentration and ¹⁴C content, soil properties, temperature, etc. Our model suggests that ¹⁴C ages of pedogenic carbonate could be older or younger than the true age of pedogenesis. While there are other factors that can also affect the ¹⁴C age of a carbonate sample (such as sample thickness, i.e., the total time required to form the sample being measured), our basic understanding of the initial ¹⁴C contents of pedogenic carbonates is the first step to critically evaluating their potential as indicators of landform age.

REFERENCES

content in a chronosequence of soils developed on aeolian sand in New Zealand. J. Soil Sci. 27, 89–100.

Processes controlling the 14C content of soil carbon dioxide: Model development

Yang Wang*, Ronald Amundson* and Susan Trumboreb

*Department of Soil Science, University of California, Berkeley, CA 94720, USA
bDepartment of Geosciences, University of California, Irvine, CA 92717, USA

(Received March 1, 1993; revised and accepted March 30, 1993)

Carbon-14 dates from soil carbonates have been considered unreliable estimates of the age of pedogenesis because of unknown initial 14C/12C ratios in the carbonate and the possibility of subsequent contamination with environmental 14C. Comparison of carbonate 14C ages with 14C ages of coexisting organic matter suggests that radiocarbon dates calculated from pedogenic carbonate in arid areas were ~ 500–7000 radiocarbon years too old. On the other hand, radiocarbon dates of pedogenic carbonate from the sub-humid part of southeastern Australia were much younger than either the known age of deposition in which the carbonate was segregated, or the likely age of pedogenesis. These discrepancies have been attributed to an initial low 14C content of soil carbonate due to the "limestone dilution" effect and/or secondary contamination by environmental 14C. The "limestone dilution" effect states that soil carbonate derives half of its C from "dead" calcium carbonate and another half from atmospheric CO$_2$, suggesting that radiocarbon age of such carbonate would be about one half-life of 14C (~ 5570 yr) older than the true age. However, studies on soil CO$_2$ and δ^{13}C of soil CO$_2$ and pedogenic carbonates indicate that the CO$_2$ and its isotopic species in a soil system are in isotopic equilibrium. This implies that the 14C content of pedogenic carbonate should be determined by 14C content of soil CO$_2$ and inherited "dead carbon" should not affect the age of soil pedogenic carbonate.

We present here a diffusion-reaction model that analyzes the 14CO$_2$ distribution in soils. Carbon dioxide is produced in soils by biological processes and is transported to the atmosphere by diffusion. The diffusion mechanism applies to its isotopic species 12CO$_2$, 13CO$_2$ and 14CO$_2$ as well. Different isotopic species of CO$_2$ react and diffuse independently of each other according their own concentration gradient and their own sources and sinks. Since the concentration of 14CO$_2$ in a soil profile is controlled by the production and decay of 14CO$_2$, and by diffusion through the soil to the atmosphere, the concentration of 14CO$_2$ can be described by a diffusion-reaction equation:

$$\frac{\partial C^{14}}{\partial t} = D^{14}_{i} \frac{\partial^2 C^{14}}{\partial z^2} + \Phi^{14}_{i} - \lambda C^{14}$$

(1)

where C^{14}_{i} represents the 14CO$_2$ concentration in the soil air (mol cm$^{-3}$); D^{14}_{i} is the diffusion coefficient of 14CO$_2$ in the soil (cm2 s$^{-1}$); Φ^{14}_{i} is the production of 14CO$_2$ in the soil (mol cm$^{-3}$ s$^{-1}$); and λ the decay constant of 14C (3.84·10$^{-12}$ s$^{-1}$). To model 14CO$_2$ information is needed regarding the production of 14CO$_2$ (Φ^{14}_{i}) in a soil. With the simplified assumption that soil CO$_2$ is primarily produced (a) by root respiration with practically no dif-