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Abstract

Based on experience with real-time image sequence

processing systems in the application areas of vehicle dock-

ing, road vehicle guidance, AGV's on the factory floor,

aircraft landing approaches and of dynamical grasping of

free floating objects in space with remote control from the

ground including long delay times, an efficient, distributed,

expectation- as well as object-based general dynamic vision
system architecture has been developed. Parallelization is

structured according to physical objects, the characteristics

of which with respect to 3-D shape, motion behavior, visual

appearance and all other significant properties in the task

context are represented internally in generic form. Both
differential representations for state estimation as well as

behavior control, and integral ones for mission planning,

mission control and monitoring are being used. References

to detailed reports on all application areas mentioned are
given.

Introduction

The sense of vision is the predominant source of infor-

mation for intelligent motion control in biological systems;

why has it been missing in technical systems almost entirely

until very recently? There are at least two basic reasons:

First, human visual capabilities are well developed, and

similar real-time performance on the technical side requires

computing capabilities not nearly available until about a

decade ago; the data flow in a color video signal is of the
order of magnitude 107 Bytes per second (10 MB/s) while

clock rates of computers are between 10 and 100 MHz.

Assuming 10 to 100 operations per data point (or 'laicture

element') in the image (this will be abbreviated in the sequel

as 'pel' or 'pixel') it is immediately seen that many parallel

processors are needed for real-time performance just for the

image sequence processing part, let alone dynamic scene

understanding, control computation and mission monitor-
ing.

The second reason is, that -unlike in biological systems-

digital image processing started from static single image

evaluations as in remote sensing applications. Until the early

80ies, when researchers from the field of control engineer-

ing moved into this newly developing field of image se-
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quence evaluation, the approach to this field has been domi-

nated by 'quasi-static' thinking; time has been introduced

through the backdoor by differencing between images and

starting from so-called 'optical flow' informatiorL

However, from linear systems theory in the field of

trajectory reconstructionbased on noise corrupted measure-

ments, recursive estimation techniques have been known

since the early 60ies ] which allow to substitute knowledge

about the real-world processes to be observed for missing
or poor-quality data. These so-called 'dynamical models'

represent temporal dependencies explicitly as side con-

straints for data interpretation during process evolution over

time. Exploiting these constraints systematically in conjunc-

tion with spatial shape characteristics resulted in increased

image sequence processing efficiency by orders of magni-
tude.

This is due to the fact that temporal predictions using the

dynamical models allow to control both assignments of
image regions to parallel processors and the extractions of

features by special algorithms in limited search regions

depending on the situation encountered; all of this is geared

to objects of specific classes for which corresponding

generic knowledge is represented in 'object processor

groups'. This leads to efficient local communication struc-
tures and to a modular system design 3.

At UniBwM this approach has been applied to half a
dozen different guidance and control tasks. It becanle well

known in the field of visual guidance for autonomous land

vehicles where surprising performance levels have been

achieved with very moderate computing power. Over the

last several years the approach has enjoyed increasingly

widespread use worldwide; there are many variants do-

cumented in the literature and their number is increasing
rapidly 4-13

In this paper, a survey is given on the general method as

it presently stands at UniBwM. The following section co-

vers tlie method proper featuring the basic ideas like 4-D

representation, orientation towards physical objects, expec-
tations and prediction error feedback as well as the central

role the Jacobian matrices play for the relationship between

image features and object state components; with increasing

numbers of sensors and of objects in the scene analysed, the

management scheme of the perception system had to
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becomecapableofdealingwithocclusions,partialobserva-
bilityduetoaspectconditionsandwithmodelswitchingon
topofthebasicdistinctionbetweeninitialisationandtrack-
ingphases.

Theapplicationstomobilerobotsdiscussedinasurvey
fashion,followingthisdisplayofthemethod,are:rendez-
vousanddocking(planarreactioncontrolledsatellitedock-
ing,andspatialautonomouslandingapproachesofaircraft),
surfacevehicleguidancewithlocalreactions(roadrunner
includingobstacleavoidanceor'intelligentcruisecontrol')
andglobalmissioncontrol(landmarknavigationbothonthe
factoryfloorandonanoutsideroadnetwork).

ThedynamicalgraspingexperimentduringSpacelab
missionD2inMay1993concludesthisapplicationsurvey;
withsensorsandtherobotarmaseffectoronboardtheSpace
ShuttleColumbia,,andwith the computers on the ground this

teleoperated ('remotely brained') system has achieved the
first capture of a free-floating object in space by delayed

visual feedback (5.8 seconds !).

The 4-D approach

The 4D approach to dynamic machine vision exploits

dynamical models in the form of state transition and control

effect matrices for sampled data systems with cycle times

as multiples of the basic video cycle time (20 ms in Europe,

16 2/3 ms in the USA); the recursive
state estimation methods well

known in systems dynamics for

smoothing both process ,and meas-
urement noise are combined here

with 3-D shape representations of

objects through well visible edge

features and with perspective pro-

jection of these spatial edge ele-

ments into the image plane. The

corresponding Jacobian (sensitiv-

ity) matrix of feature positions inthe

image plane with respect to changes

in object-state components in 3-D

space is used for bypassing the ill-

posed nonlinear problem of direct

perspective inversion. Instead, the

least squares Kalman filter algo-
rithm for noise reduction indirectly

also performs this inversion in a suf-
ficiently accurate approximate man-

ner, recovering the third dimension

(depth) lost during perspective pro-

jection, by temporal continuity conditions in conjunction

with the dynamical model used for prediction.

Due to the relatively high temporal frequency of 12.5 to
25 Hz for image sequence interpretation, the underlying

linearizations of all nonlinear relationships are sufficiently

good; only the last image of the sequence needs be worked

with, thereby avoiding storage and retrieval problems with

previous ones. This enormously alleviates the data handling

problem; no optical flow needs be computed. However, the

spatial velocity components are obtained by smoothing

numerical operations.
This prediction error feedback scheme for each object

leads to a serve-maintained internal representation duplicat-

ing all essential aspects of the real-world subprocesses being

individually observed and analysed. The integral interpreta-

tion in 3-D space and time has led to the name '4-D ap-

proach'. Figure 1 shows the resulting block diagram for a

single imaging sensor and multiple objects besides the own
vehicle to be controlled.

In parallel to the real world (shown in the upper left
block) with motion processes happening in 3-D space and

time, an internal representation, also in 3-D space and time

but limited to the most essential aspects for tile actual task

at hand, is built up in the interpretation process by prediction

error feedback ('internally represented world' in upper right

block of fig. 1). There is a fundamental difference between

the initialisation plmse when a new object is being dis-

covered, and the tracking phase when temporal continuity

conditions yield a good guideline for understanding the

evolution of the dynamical scene observed. The basic ideas
will be discussed in turn.
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Fig. 1: Basic prediction error feedback scheme for single object
and multiple imaging sensor

Basic ideas

Five essential elements constitute the base of the ap-

proach during continuous observation of a moving object
(tracking phase):
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Edge element features: The most basic element to effi-

cient image sequence processing in a steadily changing
environment is to fully exploit the difference between data

and information. A uniformly grey image contains the same

amount of data as a page with text and pictures from com-

plex scenes; however, in the former case a human observer

completely describes the information content by two words:

'uniformly grey', while for the latter one he may have to talk

for several minutes in order to convey at least the most

essential aspects. If the image would contain two differently

colored areas with a curved boundary, the most economical

way of capturing the information content in a symbolic

description would be to formulate the boundary between the

colored regions by the geometry of a line (straight segments

or curves with given curvature along the arc length) and by

specifying the homogeneous areas by two color symbols;

again, the information exhaustively describing the image

can be coded in orders of magnitude less data as compared
to the pixels involved. Using tangent direction information

and points of discontinuity (corners) seems tobe an efficient

coding scheme for boundaries in an image. Supposedly, this
is the reason behind nature having developed thecapability

of doing just this in some of the high performance biological

vision systems (striate cortex in V1).

Looking for dark-to-bright transitions (or vice-versa)

irrespective of the absolute brightness level or spectral in-

formation content makes these systems less dependent on

threshold values and thus more robust. Confining these

tangent direction measurements to closely spaced discrete

points in the image plane yields a natural discretisation

allowing to construct both smooth curves from assumed
linear changes of curvature along arc length in a differential

geometry interpretation (corresponding to third order poly-

nomials in Cartesian space over not too large arc lengths)

and sharp comers when tangent directions are far apart even

though their centers are closely spaced 14 . By these tangents

(edge elements) any shape can be represented by corre-

sponding feature groupings; in a multiple scale concept,

mask operators for feature extraction can detect dark-to-

bright transitions on several scales thereby allowing object

detection and characterization with different resolutions; for

example, for many practical purposes in vehicle guidance it

is sufficient to characterize obstacles by the encasing rec-

tangle or box. In bifocal vision with different focal lengths

evaluated simultaneously, this gives an easy choice for
either fast tracking or more precise shape determination.

Therefore, the family of ternary edge feature extractors

as shown in fig. 2 is used as the predominant image process-
ing tool in the context of the 4-D interpretation scheme; it

has been developed over a decade of work in real-time

dynamic scene understanding 15"17. The mask parameters

are dynamically controlled by the object recognition process

taking the 4-D representation and perspective mapping into

account, thereby realizing a fast feedback loop from high-

level interpretation to low-level feature extraction; it is

especially this feature which makes the tracking phase so
efficient.

at=/.--; i=O,...,nL-2; nL=3,5,9,17
nlrl

Fig. 2: Operator family for edge feature extraction

Representation in 3-D space and time directly: No basic

representations are performed in the image plane; at the

earliest time possible it is tried to jump from a feature

distribution supposed to belong to a single object to an

object hypothesis in 3-D space and time. Since perspective

projection is the link between spatial shape, relative orien-

tation as well as position, and the shape in the 2-D image

plane, always both object shape and aspect conditions have

to be hypothesized in conjunction. Shape invariants of mov-

ing rigid bodies are in 3-13 space and not in the image plane;

simple motion descriptions also are more easily encountered

in 3-D space than in the image plane where both motion and

shape together yield relative image feature distribution from

frame to frame. In addition, motion behavior in 3-D space

may be as characteristic for an object as its shape; this leads.
to the third essential element:

Orientation towards physical obiects: Knowledge about

the real world is attached to objects which serve for struc-

turing complex scenes. Similar properties or shapes lead to

the definition of object classes characterized by generic

forms and functions; other attributes may be appended

depending on the task at hand (e.g. color, texture). For

subjects, defined as objects with the capability of self-in-
itiated locomotion 18, stereotypical motion characteristics

may give independent cues to recognition besides static

shape. In general, the centroid of features from an object

yields information for translational motion, while rotational

motion and shape may be derived from systematic changes
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of feature positions around the centroid, that is from dif-

ferences between feature positions in the image.

Once an object and its motion has been recognized, the

continued observation can be made much more efficient by
file fourth basic element:

Expectations and prediction error feedback: The dy-
namical model of a process (e.g. a moving rigid body) may

be given to first order by the vector difference equation

x[(k+l)zq =A(k) x[kT] + B(k)u [_cZq+ v[kT], (I)

where x is tile state vector of dimension n, k is the time index

for the actual state, T is the cycle time, A is the state

transition matrix (n.n), B the control effect matrix (n.r), u

the r-vector of control variables, and v represents process
noise with covariance matrix Q. Predictions, of course, arc

made disregarding the noise term. After prediction the time

index k is increased by 1 and from the predicted state x* in

combination with the shape description the features to be

measured in the next image are obtained from applying the

forward perspective projection equations; for this purpose,

first, the spatial positions and orientations of edge elements

have to be computed by combining position and angular
orientation of the body-fixed coordinate system having its

origin at the object center with the shape description in these
coordinates.

Then, the perspective mapping equations containing all

...... ,,.., ,,,,,, ,,,ta_,,,ns between '_" v,,uy-x,A,._, ,_,,_ u,,.
camera coordinate system (in x*) as well as the camera

parameters p have to be applied to all well visible edge

features in order to obtain the predicted (horizontal and

vertical) feature positions in the image:

y* = h(x*,p) , (2)

where dim. (y) depends on kind (edge or comer) and number

of features. It is assumed that the error between predicted
(y*) and actually measured feature positions (y) is so small

that a linear approximation to eq.(2) captures the essential

part of the dependencies between y and x:

del_y= y- y* =dh(x*,p)/dx*.(x- x*) = C.del_x, (3)

where C is the Jacobian matrix of all first order partial

derivatives linking state component changes to feature shifts

in the image plane. Because of the richness in information

contained in this matrix and the central role it plays in the
4-D approach, it will be discussed below as the fifth basic
element.

The actual measurement data y from feature extraction

will be corrupted by measurement noise w (both from the

video signal and from image processing); this noise is
assumed to be unbiased and white with covariance matrix R

so that the measurement model may be written

y = h(x,p) + w. (4)

In order to adjust the internal 4-D representation to the

process being observed in the real world, prediction error
feedback is used according to the recursive estimation tech-

niques 19 derived from the Kalman filter 1 and its exten-
sions 21. The new best estimate for the relative object state
A

x is obtained by adding to each predicted state component

weighted elements depending on the measured prediction

error; the weights are deternfined by the so-called Kalman

gain matrix K (or its equivalents in the sequential scheme

discussed below) taking the noise characteristics Q and R

(confidence in both the underlying process model and the

measurements) into account:

?c=x* +K.(v-y*). (5)

Note that no special provision is made for perspective

inversion; the least squares core of the algorithmic proce-

dure for computing the elements of K takes care of perspec-

tive inversion hidden in the prediction step and the Jacobian

matrix C. Gain computation is not detailed here for brevity;
because of occlusions, varying aspect conditions and pertur-

bations in the imaging process, the length of the measure-

ment vector will change steadily. In order to accomodate this

easily, the measurement update is made sequentially for

each component; this also saves computing time and has

been a standard feature of the 4-D approach from the begin-
ning 21.

From tiffs possibility it can be seen immediately that an

update of all state components can be made from just one

single measurement input; this may look like magic for

people grounded in direct perspective inversion. Though

this capability is true - substituting knowledge about the real

process for missing data -, too few measurements over an

extended period of time will lead to drifts in some state
components poorly observable from this measurement, or

due to model errors as compared to the actual process

observed. However, in spite of this fact the value of this
property based on the 4-D model can hardly be overesti-

mated for bridging short periods with insufficient measure-

ments for what cause soever. Even periods without any

measurements may be bridged by pure predictions (vanish-

ing second term on right hand side of eq. (5)).

An important point resulting from prediction is the ca-

pability to efficiently direct image processing by confining

attention to smaller subareas of the image, and by providing
information on wlfich algoritluns may be most economical

in the next image (e.g. mask orientation for edge element

extraction).

Central role of the Jacobian matrix: Wfinsche 2] de-

veloped methods for exploiting the entries into the Jacobian
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matrixfor otherpurposesbeyondsimplerecursivestate
estimation.Whencomputingpowerislimited,thereusually
aremanymorefeaturesavailablefor extractionandstate
estimationthancanbehandledbythesystemavailableor
fromaprice/ performance point of view; in this situation it

is very essential to be able to automatically select the most

rewarding set of features yielding best estimation results in
limited time. The entries into the Jacobian matrix, balanced

for poorly compatible units for the state variables (like

positions in meters and ,angles in degrees), allow to concen-

trate computing power for image evaluation in those areas

of the image and onto those features by which best accuracy
is achieved.

Small values of elements in the balanced Jacobian indi-

cate that the corresponding state component hardly effects

the corresponding feature position; ff an entire column has

small values this means that the corresponding state compo-

nent hardly affects any measurement quantity; therefore, it

can not be expected that this state component can be re-

covered accurately from the values measured. Likewise, if
an entire row has small entries this feature is almost constant

and independent of state changes; this feature is not well

suited for updating the state vector and may well be elimi-
nated from further processing.

For example, for a rectangular box looked at along a

center line almost parallel to four edges (so that the image
is a rectangle) it is not possible to recover the exact viewing

angle because of the cosine-effect involved. If the size of the

box (width, height and length) has to be determined in

addition to the relative state, the dimension in viewing

direction, of course, cannot be recovered; If the box is turned

by 90 ° this size component is well determinable now while

another one, now pointing in viewing direction, canno more

be iterated. In the general case, the actual aspect conditions

determine which state components or shape parameters can
be observed and which ones have to be frozen until the

corresponding entries in the Jacobian matrix become large

enough again. This determines the perception strategy and

-management.
In summary it can be stated that the efficiency in image

sequence understanding by the 4-D approach is due to the

frequent bottom-up and top-down traversal of the repre-

sentation hierarchy; this is done each cycle of rather short

duration so that the correspondence problem is not too hard.

The linear differential models allow to tap well proven

system theory. However, this only works for the continuous

tracking phase.

Initialisation versus tracking

It is almost impossible to say something meaningful in

general to the initialisation problem since it depends very

much on the task domain and on the knowledge available to

the "_....... For this reason, '_-_u,,._,cking e,,as,.'_"_ ¢*'-,,......or,,_,.,_,,,;r'_
task domains has been developed first; as expected, once

this capability has been available to a certain extend, it
turned out to be relatively easy to jump from feature aggre-

gations discovered in an initial search phase (with very low

cycle times) to an object hypothesis for which the tracking

capabilities are given 22. If stable tracking can be established

and the prediction crrors converge below certain thresholds

it is claimed that a motion process involving an object of the
class inshantiated has been discovered; if this is not the case

the hypothesis is rejected and a new one has to bc tried until

the set available is exhausted. Surprisingly _an4y cases can
3

be handled successmlly by this procedure ; however,

many unresolved problems remain, especially when occlu-
sions are involved.

Again, for certain task domains like vehicle recognition

on highways, many of these problem situations have been

resolved by creating the capability to recognize partially

occluded objects, even those appearing from full occlusion
like in lane changes of one of hvo vehicles in front25; since

only partial nfformation is accessible in these cases, model

based recognition involving knowledge about nomml sizes
of objects, about part hierarchies and about likely motion
states is essential.

One often hears the call for more systematic bottom-up

hypothesis generation in the initialisation phase; this, of
course, would be nice to have. However, considering the

discrepancy in computing power required for Otis type of

initialisation in a somewhat complex realistic scene, and the

one needed lateron for the tracking phase it is conjectured

that - even in the long run - the approach of jumping to

(maybe several parallel) hypotheses relatively early and

then do a critical evaluation over time exploiting 4-D models

may be a sensible way to go. More experience in several task
domains is necessary in order to answer this question in a

solid way.

The 4-D solution for complex tasks

The basic principles discussed above for the single sen-

sor, case carry over to multiple objects and multi-sensor

systems 23'24. A general scheme for these types of complex

real-time systems is given in fig.3.

As in the single object, single sensor case there is just

one unifying mental representation for recognizing the situ-

ation and for controlling action; however, for each object
observed there is a specific process (presently implemented

on a dedicated group of processors) with access to a corre-

sponding knowledge base for this object class. In this
knowledge base generic background knowledge is stored;

besides physical properties with respect to motion (the

elements of the dynanfical model) specific properties with

respect to the different measurement processes are stored.
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Fig. 3: Multi-sensor, multi object recognition scheme by prediction error feedback

The figure shows provision for four types of sensors, two
imaging ones on a pan and tilt viewing direction platform,

and two other sets, one for inertial data about the egomotion

(lowest group in center) and one for other conventional

sensors like odometer, tachometer, steering angle, throttle

setting, brake pressure and range sensors or the like.

The inertial sensors may directly feed dynamical models

for separating egomotion from visually observed relative

motion with respect to another object. Otherwise, vision

does allow this separation only when besides tiffs object also

a third, static one canbe observed simultaneously; accuracy

and robustness may be much poorer without inertial data.

For measurement signal interpretation, a Jacobian ma-

trix has to be computed for each pair of object and sensor,

in figure 3 tiffs is indicated by the vertical arrows to the

diagonal block in the lower right center.

Contrary to the conventional sensors, image sequence

evaluation may yield measurement data on several objects

in parallel; in fact, one of the difficulties in machine vision

is the assignment problem of features extracted to objects in

the scene. Grouping image sequence processing according
to objects observed, as in the 4-I) approach, therefore,

requires a perception management subsystem shown also in

the lower right center. Tlfis is an area of actual research and

development; good solutions to this problem will be crucial

for high performance machine perception systems.
In order to further decouple real-time fast and s,'ffe

control from slower activities for situation recognition, two

different time scales for image sequence interpretation have

been introduced in our system. Besides the fast tracks for

estimation of relative position, one each for each object of

relevance, based on rather few features per object and work-

ing at 25 Hz inthe new TIP-system, there is one subsystem,
attention controlled from the higher levels, which runs at

about 5 Hz and is capable of recognizing objects on a more

detailed level; specialists for recognition of typical road
vehicles 25 (trucks, vans, passenger cars) and of moving

humans 26 (walking, running, bicycling and arm waving) are

under development.

Perception management

Vision and inertial measurements do have nice com-

plementary properties: Vision incurs long delay times be-
tween data collection and object state estinaation in general

(100 to 300 ms typically, both in biological and in technical

systems). In addition, because of the signal integration in the-

basic sensing clement, motion blur will occur in the image

during faster rotation, yielding rate signals derived from

image sequences unreliable; on the other hand, inexpensive
inertial sensors may yield rather accurate rate signals with

almost no time delay. These inertial sensors become expens-

ive when provision has to be made for low drift rates (long

term stability). Combining inertial sensors with vision

allows to build a flexible system with good overall proper-

ties: viewing direction may be stabilized by controlling the

platform with the negative angular rate from an inertial
sensor, thereby improving the conditions for image evalu-

ation. Visual fixation of the viewing direction onto a well

visible set of stationary features allows to solve for the

inertial drift problem.
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Inbifocalvision,twocamerasaremountedfixed
• _lata v _, tv _.,a_i_ vui_,x vxA a _c _vx_uvl _zaLtvh'n't) WIUl

one wide angle lens for a large viewing angle covered

and one tele-lens for high resolution capability within
a subarea of the wide angle image, there is a need for

viewing direction control in a saccadic mode in addi-

tion to the smooth pursuit mode for object tracking:

If the tele camera tracks an object, and in the wide

angle image a new object of higher interest is dis-

covered, viewing direction should be changed as fast

as possible in order to center the new object in the

tele-image. With the viewing direction control plat-
form developed 27 a 20° saccade can be performed in

about 150 ms; during this fast turn of four evaluation

cycles (4.40 ms = 160 ms) no useful information can

be derived from the blurred images. Therefore, within

these periods the internal representations have to be

updated according to the 4-D model exclusively; only
after slowdown below a certain angular rate in the

vicinity of the coordinates aimed at, image feature

extraction will start again with new predicted posi-
tions and search ranges. Via a status bit this informa-

tion is broadcast to all 'object processes' together

with the actual viewing direction.

Another important point in perception manage-

ment on the object level is handling of occlusions. It
is not yet clear, how much of this should be done on

the 'object process' level and how much on the situ-

ation level; both have to deal with the problem in

parallel. On the situation level (upper right comer in
fig.3) the semantics in the task context have to be

taken into account; on the lower object level the

problem is to decide in each evaluation cycle which
features belong to which object, how this attribution
affects relative state estimation and what is the most

likely separation line between the two objects.

In addition, during this process the question has

to be answered which state variables and which shape par-

ameters are presently observable; the interpretation models

have to be adjusted correspondingly. Especially the relative

viewing angle (in azimuth) of vehicles ahead changes ob-
servability frequently in typical highway traffic situationsaS;

the problem of vehicle length estimation has already been
referred to above.

supervision

mode

selection

direct

feedback

Inteilil_ent control

The own body carrying the camera is now always repre-
sented as an object of the real world (number 1 in fig.3, lower
right). Since Newtohian motion is of second order in each

degree of freedom the state vector also contains all velocity

components in 3-D space; this allows state vector feedback

for achieving some goal function in an optimal way. Figure
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4 shows the general scheme adopted in the 4-D approach to

intelligent autonomous systems based on state feedback for

fast reactive counteraction to perturbations and event-trig-
gered feed-forward control adaptation to a new situation,

both managed by knowledge based situation assessment and

behavior selection; by purpose, this is not called behavior

planning since the generic, well proven behavioral capa-

bilities are available (or may be leamed in more advanced

versions) and are just invoked with the right set of par-

ameters. The actual control laws, of course, are specific to
the task at hand.

The rest of the paper gives a survey on the different

application areas to which the 4-D approach has been suc-

cessfully applied; it is grouped according to the task fields:

Rendez-vous and docking, surface vehicle guidance, and

dynamical grasping in 3-D space.
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Rendez-vous and docking

Most of the methodical developments of the 4-D ap-

proach have been performed by Wuensche 29 on tile single

sensor, single object problem of controlling planar motion

in three degrees of freedom of a tabletop aircushion vehicle

with reaction jet control relative to another 3-D body (satel-

lite model plant in the laboratory). The real-time system has

been controlled by a VAX 750 combined with a custom-
made 8-bit image sequence processing system BWl 2. The

system performed a self-calibration of the horizontal mount-

ing direction of the camera relative to a docking rod for final
mechanical fixture. All six state variables relative to the

docking partner of known polyhedral shape, and the vertical

mounting direction of the camera have been estimated con-

tiniuously by tracking four comer features. Which ones of
the usually eight visible features should be selected for

tracking in order to achieve optimal accuracy of relative

position estimated, has been decided by the system itself
exploiting the entries into the Jacobian matrix. While the

usage of modified Kalman filters has found very wide

acceptance in the vision community in the meantime, the
more detailed exploitation of the information in the Jacobian

matrix does not seem to have been appreciated correspond-

ingly.

A somewhat different type of rendez-vous with one

relative state component (horizontal speed) appreciably dif-

ferent from zero (about 200 km/h in the actual example

flown) is the landing approach of an ,aircraft; in this spatial
maneuver the number of state variables is doubled to twelve

and there are four ,analog control variables instead of the

three discrete ones with the satellite. Large perturbations

may occur due to wind gusts; therefore, inertial sensors (rate

and position gyros as well as accelerometers) have been

important for robust recognition of the relative position to
the runway over the last 1 to 2 Km during approach. For

initalisafion, signals from a Differential Global Positioning
System DGPS have been used 3°'31. Thus, the guidance

system may be classified as multi-sensor, single object

(besides the own body, of course).

The system has been developed over a period of more
32

than a decade , starting from simple all-software-simula-

tions. Lateran, in moving base simulations (three rotations)

with computer generated imagery and the real sensor and

computer hardware in the real-time loop, fully automatic,

on-board autonomous landing approaches (including side-

winds and gusts) until touch down have been demonstrated;

this type of flight simulator for machine vision autopilots
seems to be the only one in operation up to now.

Real flight experiments have been performed in 1991

with a twin turbo-prop aircraft DO 128 of the University of

Braunschweig; the human pilot was in control, but the

perception system estimated the complete state vector at a
rote of 16 Hz.

In the meantime, the hardware base for the system has

been changed to transputers and a bifocal can_era arange-

ment; new flight experiments are planned for spring 94.

Surface vehicle guidance

Contrary to the developments in the US-DARPA ALV

program, without having knowledge about these activities
at all, we started from a behavioral approach based on the

4-D method for continuous vision processes. No higher

level AI-components have been involved on our side in-

itially; the system was capable of recognizing local road
environments and of reacting in such a way that certain

predescribed behavioral parameters like speed, offset from
a line or maximum lateral accelerations were observed. The

capability of performing (elements of, or full) missions

developed over time on this base.

Local reactions for motion control

Road runner: Taking the guideline model for the con-

struction of high-speed roads as the essential knowledge

component for recognizing a road recursively while driving

on it, a substantial gain in efficiency for image sequence
processing has been realized _. Mysliwetz ..... extended
this to robust road recognition, including the general case of

hilly terrain, by applying the 'Gestalt'-idea -known from

psychology- to road shape recognition from a large number

of (approximate) tangent elements. In the classification
scheme discussed, this work till the end of the 80ies be-

longed to the single sensor, single object group. For more

demanding real world applications, especially high speed

driving, it turned out that a combination of cameras with

both small and large focal length, termed 'bifocal vision', is
desirable; this combination has been in use for years, but

with separate signal evaluation for different objects mad

purposes. Recently, the signals from both cameras have

been used for recognizing the one object road in a joint
evaluation 35 ('two sensors, one object'- case; upper central

part in fig.3).

Intelligent cruise control: Adding to this lane keeping

capability the one for obstacle recognition, relative state
estimation and relative state control _3'24, within the same

framework of event-triggered feedback and feed-forward
behavior selection as shown in fig.4a, remarkable perfor-

mance sufficient for driving on 'Autobalmen' in normal
traffic situations has been achieved 24.

The reactive feedback scheme (lower level in fig.4a) is used
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FnrrPnliving:
lane-andspeed-keepingwithspeedadjustedto
horizontalcurvaturesuchthatapresetlateralac-
celerationlevelisnotexceeded;
convoydrivingbehindanothervehiclewithdis-
tancedependingonspeeddriven(2secondsrole);
thisincludes'stop& go'drivingintrafficjamasa
specialcase.

Theevent-triggered feed-forward scheme (upper level in

fig.4a) provides the capabilities for:

- transition from the unconstrained cruise, lane keep-

ing mode to the convoy driving mode (including

stop in front of an obstacle);

- lane changing to left and right. (At present, the
human driver has to check whether the intended lane

is free; in response to an inquiry he triggers the lane

change by hitting a key on the board.)

More than 2 000 km have been travelled autonomously in

normal Autobahn-traffic since September 1992 with the two
vehicles VaMoRs of UniBwM and VITA of our industial

partner Daimler-Benz.

These results on the two lower levels of fig.4b are

achieved essentially with differential representations and

local considerations; a different situation occurs when glo-

bal points of view in a task context come into play. The
upper level in 4a (the medium one in 4b) forms the transition

from strict, local reactive control to global mission perfor-
mance.

Global performance (mission control)

The result of an application of a stereotype feed-forward

control time history is a state change with roughly predict-

able differences between initial and final conditions; this

so-called 'maneuver element' may be labeled by a symbol

and stands for the finite state transition as an integral repre-

sentation of this control sequence (e.g. 'lane change': Sanae

driving conditions except for a lateral offset of one lane

width).

Maneuver elements may be generic by specifying some

parameters which modify the control sequence; for

example, lane change may be specified as smooth or rough

by fixing the maximum lateral acceleration limit in an

otherwise structurally fixed control sequence; this is equi-

valent to specifying the maneuver time allowed. On the

Autobahn, all navigation is done by proper lane changes and

lane following; this makes mission performance rather
simple. Besides the well structured environment, this was

one of the reasons for choosing Autobahn-driving as the first
field of application for practical machine vision at the end
of the 70ies.

When the capability of reading traffic and navigation

clone nn tl_e kl_tnh.nhn i¢ .rldarl fr_the existing system, ,hie
goal will be achieved.

Landmark navigation on the factory floor is much more
demanding, though in case of failures the damage possible

is much less because of the low speeds driven. Taking doors,

well visible features on workbenches and other rectangular

markers with special height-to-width ratios as landmarks,

the suitability of the 4-D approach for real-time visual

landmark navigation has been demonstrated in 1991 with
moderate computing performance available 36 with an AGV

in a laboratory environment and in a factory hall.

Driving on road nets with an automobil in an autono-

mous mode performing an abstractly defined mission is the

most demanding task demonstrated, though yet far from

robust real-life applicability. The system shown schemati-

cally in fig.5 is in the final stage of development for this

3D-sbipe

Cl_lem

Ddver/Operator

Interflce

' II Ii 1Vlewhlg Sllu&[[on

d2glt_l n in.lysls

I I I

Dynamic Dalabase J

talk

pertomllnce

(32 Bit)

object rlllbld

dlUl ixchlln_l

4D object

recognition (32 Bit)

Image procelllng
feltUnl

eXlnlCtion (16 Bit)

• Bifocalcamerapair: tele,wide anglewithactiveviewingdirection
control

• Object-related,intelligentlycontrolledfeatureextraction

• Recognitionof movingobjectsexploitingspatio-temporal
models (4D)

• Situationanalysisin task context(AI-Aspects)

Fig. 5: Transputer based system for autonomous
mission performance

purpose: the lower line of blocks is formed by object-spe-

cific processor groups each consisting of 16-bit processors

for feature extraction and 32-bit processors with floating

point units for recursive state estimation; usually, these

groups work on separate areas of the image for which they
make their ownpredictions. Occlusions have to be dealt with

in cooperation between such processor groups.

All object related data are exchanged via a dynamic data

base (DDB) which always contains the most recent esti-

mates of object states and parameters. The higher levels of
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thesystemshownabovetheDDBincorporatesituation-and
control-specificknowledgeforfmdingthebestbehavioral
modeintheactualsituation.Bothfastreactingstatefeed-
backcontrollawsandeventtriggeredfeedforwardcontrol
timehistories(asdiscussedforlanechangingbutalsofor
turningoffontoacross-road)maybeapplied.Alandmark
navigationcomponenthasbeenaddedontopofthisforfully
autonomousmissionrealisation37.

Thesystem,inadifferentmodeofoperation,mayalso
beusedformonitoringandwarningwhenthehumandriver
isincontrolofthevehicle38.

Dynamical grasping in 3-D space

Quite a different application of the 4-D approach has

been demonstrated in May of 1993 during the Spacelab

mission D2 with the Space-Shuttle Columbia. One of the
experiments on board was the RObot Teclmology E__X_pXeri-

ment ROTEX of DLR, Germany; in this set of tasks under

the direction of G.Hirzinger one of the tasks was to grasp an

object freely floating in space in a confined workcell for
safety reasons. The relative position between the object and

the six-degree-of-freedom robot arm was to be determined

from a camera in the hand of the robot; one of the difficulties

was that the computers for visual interpretation and control

had to be on the ground. Due to the routing via three
geostationary satellites and quite a few groundstation com-

Idut_ib tix_ Itlltt_U tlClti_ tllttC ilUJll lltt_ilbUl_itlt_ItL 121_I11_ UIILII

the control signal derived from these data again arrived on

board the Spacelab was around six seconds!

This-time delay has been compensated by exploiting the

dynamical models for the object to be caught and for the

robot arm. On May 2nd, 1993, this maneuver has been

performed by 'remotely-brained machine vision' automat-

ically after initialisation of visual tracking by a human
operator 39.

Conclusions

The development of the 4-D approach to dynamic ma-

chine vision continues to be successful. Spatio-temporal

models oriented towards physical objects together with the

laws of perspective projection in a forward-mode (and as

approximate linear relationships between the states, or par-

anleters of the physical objects and the features by which

these objects may be visually recognized) are the core
elements of the method. The spatio-temporal models as

invariants for object recognition also serve for integrating

multi-sensor)' measurement data.

By prediction error feedback an internal symbolic 4-D

representation of processes in,Jolving these objects is being

maintained allowing situation assessment and longer term

predictions.

For specific tasks, behavioral capabilities can easily be

realised by state feedback or feed-forward control. The

internal feedback loops from state prediction to measure-

ment activities in the image plane make interactions be-

tween the higher and lower processing levels very efficient.
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