
AIAA-94-1249-CP

THE GROUND VEHICLE MANAGER'S ASSOCIATE

Gary R. Edwards, Robert H. Burnard, William L. Bewley, and Bruce L. Bullock
ISX Corporation

4353 Park Terrace Drive, Westlake Village, California 91361
Phone: 818-706-2020 Email: gedwards@isx.com

Abstract

Manager's associate systems enable users
to indirectly manage semi-autonomous
agents to support collaborative, mixed-
initiative human-computer problem solving.
MAX is a software framework for building

manager's associate systems. It provides an
architectural model, a domain-independent
software structure, tools, and reusable

components for building domain-specific
elements of systems used by managers to
develop, execute, and analyze task plans for
agents. This paper presents an overview of
MAX and describes its first application: a
ground vehicle manager's associate system
for the management of robotic vehicles
exploring a simulated planetary surface.

Introduction

The WIMP user interface (Windows - Icons -
Menus - Pointing Device) was introduced by
Xerox's Alto and Star and popularized by the
Apple Macintosh almost 15 years ago.
These products were followed by several
generations of new personal computer

products, each improving hardware and
software functionality but not extending the
standard WlMP direct manipulation interface

concepts. Recently, a number of papers
have appeared suggesting that a new
generation of user interfaces is coming that

will feature semi-autonomous agents that
perform intelligent functions for the user. 1, 4,
6, 7, 9, 10, 12 Alan Kay, for example,
distinguishes between manipulation
interfaces and management interfaces and
suggests that the interface of the future will
enable users to indirectly manage agents,
not directly manipulate objects, s Similarly,
Dave Smith argues that we need delegation
interfaces which support delegation of tasks
to the computer, not more manipulation
interfaces. 12

The rationale for agents and agent-
management interfaces is that there are
many tasks for which direct manipulation
interfaces do not work. Such tasks are often

tedious, they may require too much of the
human's time, and they usually require
processes better performed by the
computer. Examples include searching
news and email files for information of

interest to a human reader, 6 developing
tactics plans for an overloaded fighter pilot, 3
and exploring a planetary surface through
robotic vehicles, s For tasks that can and

should be performed by the computer while
the human is doing something the computer
cannot do, agents will be needed and an
interface through which the human can
manage the agents will be required. We call
the agent management interface the
manager's associate.

The manager's associate is an extension of a
concept of human-computer interaction
derived from several years of research and
development in a variety of domains,
beginning with advanced pilot aiding in the
Pilot's Associate system. 2, 3. s An associate
.... , k, ,,-,.- :"- mixed-oyol=m =, icllui¢:_¢:_t._UII¢:IUUliOiI.IV':_,

initiative human-agent problem solving in
application domains in which the human is
unable to cope with the scale or complexity
of the problem solving situation. In such
domains human information processing can
be overloaded by very large problem
spaces, too many simultaneous activities,
and too much data, but full automation is not

possible because the task requires human
perception, judgment, or expertise. The
associate system employs models of the
task and the user to provide advanced user
support, including workload management,
error recognition and correction, adaptive

aiding, context- and user-adaptive display
management, and selective task
automation. 2

This paper describes a system called MAX, a
software framework for building manager's
associate systems. It provides an overview of
the system and then describes its
application in one domain: supervisory
management of robotic vehicles.

520

Copy right © 1993 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

The MAX Framework

Our goal in developing MAX was to leverage
the lessons learned, the experience, and
the architectures developed in the Pilot's
Associate program to build a generic system
supporting cost-effective development of
managers associate systems. This generic
system must support development of
applications in a range of application
domains, including but not limited to
avionics.

MAX is a software framework that provides an
architectural model, a domain-independent
software structure, tools, and reusable
components for building domain-specific
elements of systems used by managers to
develop, execute, and analyze task plans for
semi-autonomous agents. These elements
can be employed to support problem
assessment, focusing the user's attention
on problems of interest, developing an
effective problem-solving strategy, and
executing the problem-solving strategy
through selective task automation and
human performance assistance.

Manager's associate applications are defined
in MAX as a collection of Activities, which are
major elements of the manager's task such
as Planning, Execution, Analysis and, for
control of semi-autonomous vehicles, Tele-
Operation. These activities have
subactivities, e.g., the Planning activity can
be composed of subactivities like Assign
Objectives to Resources, Plan Tasks, and
Calculate Performance Measures. Each of
these subactivities can in turn be composed
of lower-level subactivities. For each activity,
MAX provides an Activity Manager, a Data
Process Manager, an Interface Manager, and
a Command Monitor. The Activity Manager
provides control and coordination of system
resources, while the Interface Manager
provides managed information to the user
through a graphic user interface and
provides mechanisms for the user to interact
with the system. Monitors maintain and
process state information of activity-specific
objects and domain specific data items in a
global data store. Monitors also signal alerts
which may be acted upon by the associate
system or the human manager, as
appropriate.

A primary characteristic of manager's
associate applications is that the human

needs to selectively interact with large
collections of data. These interactions
typically include:

Observing data, supported in MAX by
modeling the classes of activities the user
is involved in, locating data relevant to
those activities, and presenting activity-
specific abstractions of that data.

Monitoring data, supported in MAX by
data monitoring functions that apply rule-
based criteria to identify the state of the
data of interest to current user activities
and to signal alerts based on this state.

Selecting and applying data processing
operations. For any user activity, MAX
data handlers can be defined to select
and apply specific operations to selected
data, and can specialize the selection of
operations based on the state of the data.

Responding to alerts, supported by a
mixed initiative task management
scheme. For any alert condition, MAX can
identify candidate responses. These
responses may include:

Applying a data processing operation
Cueing a new user activity and its
supporting MAX functions
Performing specific computations to
generate additional options
Ignoring the alert condition

MAX decides how to handle an alert
condition by applying rule-based decision
models to evaluate the utility of responding
to the alert, the legality of each known
option, the utility of each legal option, and
the utility of automating the function for the
user. This process allows MAX to consider a
number of factors in deciding what options
to present to the user, whether any should
be suggested as the "best" action for the
user, or whether any options should be
automatically pursued without user
intervention. The factors that drive this
mixed-initiative reasoning include the priority
of the problems the user is facing, the user's
workload, the user's preferences for
selecting specific options, the user's
preferences for various levels of automation,
and the utility of applying specific options to
the problem at hand.

The MAX framework provides a set of
supporting software to enable and simplify

521

the construction of domain-specific
applications that exhibit these capabilities. In
its current form, the MAX framework provides
this support by defining three categories of
application developer tools:

A set of "standard" components (and
tools to define them) that can be used to
construct MAX application components
and specify their run-time interactions in a
high level representation. These include
"hooks" and tools for specifying domain-
specific interface components, data
definitions, and processing procedures,

and "hooks" to specify user tailoring of
the application's behavior.

A collection of procedural attachments to
those components that implement high
level specifications of control interactions
as low-level run time control decisions.

• A collection of "default" interface
components.

User Interface

I I = MAX Supported
Components

d

Data, At
The Right

Abstractions

Alerts _cga_:/n_se_ed U_dr _._t_,Aon_nc_ta._ns

Options

"MODE" -- Currently Active Collection

Of Ativity Frames

"Sub-Activities" Contribute Static Top-Level

Unique Data Abstractions, _ ' ,, Activity. ,, i

Interfaces,, Data _ (or ApphcaUon) ,!

Selection, Monitors_ [

Procedures, _ynamic | [Dynamic] [Dynamic]Ontions. And 1_7._ , _,:..:,.. I I c.._ A.,:..:,., I I c.a, A,.,=_=,.,
_- "" _i°""" "J l°U"- "J l J

Dynamic [Dynamic LSub[Dynamic]Sub-Activlty [Sub-Activlty
• -Activity

Control

(User.Directed
Or Selective

Autanmtion)
Domain

Specific

Operators

Data Monitors Data Search, Access Data Search, Access

Data Store

Figure 1. Run-Time Anatomy of a MAX Application

System Architecture

MAX is centered on the concept of
Activities. The application user, at any point
in time, is operating in a mode comprised of a
currently active collection of activities. Each
activity contributes interfaces, specialized
tools, data of interest, and data monitors to
the user's environment while operating in
that mode. Figure 1 illustrates the interaction
among activities, composing and maintaining
a unique combination of sub-activities at run
time to respond to both the dynamically

changing set of problems confronting the
user and the user's own direction for
reacting to those conditions.

Each activity in MAX is composed of a few
basic components, repeated as needed to
define a complete activity. These
components, along with their primary
interactions, are shown in Figure 2. The top
level MAX activity, upon activation, creates
its interface manager and data manager. The
interface manager in turn creates appropriate

522

Pdrnary-Data- IObject-Class

Data-C1sss.

Monitors

Manager

Data-Processes

Stato-Rulos

Figure 2. Anatomy of a MAX Activity Frame

instances of MAX's built-in interface objects
(windows, menus, buttons, presentations,
etc.) along with those domain-specific
interface components specified in the
activity definition.

The activity also creates a data manager,
which establishes data class monitors to
detect objects of interest in the data store.
Each object of interest found by these
monitors (either immediately or at any time in
the life of this activity) causes a data-event-
handler to be created, and a data-instance-
monitor to be established. This instance
monitor detects any changes in the object of
interest, and triggers data change events,
These in turn cause the data-event-handler
to reevaluate the object of interest, and may
cause it to either trigger associated data
processing operators, or may trigger an alert
condition. For data whose impact on the
problem may change over time rather than
over changes in value, a clock-driven event
timer is provided to re-trigger data
evaluation.

In an alert condition, an alert is asserted. The
alert in turn generates a set of possible
options to deal with that alert. Options
consist of three classes of operations: data
processing procedures; procedures that
generate new options; and invocation of
sub-activities to help the user solve the
problem. Next, the alert determines which
options are legal in the current context, and
then evaluates the utility of applying each
legal option. For the best options, the alert
also evaluates the utility of automating the
option's execution, as opposed to
presenting it for the user's consideration. In
each of these steps, "evaluating utility"
employs rule-based decision models that
consider problem characteristics, the user's
current problem solving workload, the user's
personal preferences among options and for
his desired level of automation support, and
models of the capabilities and current state
of the MAX application.

523

Implementation

MAX was developed in Macintosh TM

Common Lisp, version 2.01p3 and
Expertelligence's Action!TM, version 3.0. It
runs on a Macintosh IICI with 20MB of RAM,
an 80MB hard drive, and a 13 "or larger color
or gray scale monitor. The system can run in
other Macintosh environments, including a
Powerbook TM, with modification of the map
displays.

The GVMA

MAX is designed to support a wide range of
manager's associate applications. The
choice of the Ground Vehicle Manager's
Associate (GVMA) was made in collaboration
with NASA Ames to support a successful
demonstration of simulated planetary
exploration using IS Robotics, Inc. robotic
vehicles.*

The GVMA has three main activities, the
mission planning activity, the mission
management activity, and the vehicle tele-
operation and video survey activity. A robot
simulation activitywas also created to
provide an internal vehicle simulation that
can be executed from within the GVMA.

Monitoring the activities of all vehicles, the
system alerts the manager to events
requiring human attention, provides options
for human action, and delivers vehicle
commands that implement options invoked
by the manager. The manager monitors the
sensors and can directly control each vehicle
through the Tele-Operate activity window,
which includes a live video feed from the
vehicle. The overall activity of the vehicles is
displayed in the Mission Management
window. The GVMA observes the
performance of each activity against a
mission plan. When a situation triggers a
monitor, the GVMA displays an alert and
suggests actions to the manager through an
Alert window. If the manager invokes one of
the suggested options, the GVMA executes
the selected action. Figure 3 shows an
example in which an alert has signaled
readiness to perform a search activity at a
location on the planetary surface. At this
point, the manager can tell the system to

*IS Robotics, Inc., Twin City Office Center, Suite
6, 22 McGrath Highway, Somerville, MA 02143.

invoke the search immediately, wait for the
start time specified in the mission plan, or
wait for further direction. If the activity is
invoked, the GVMA will cause the vehicle to
proceed to the search area via the specified
waypoints.

Assessment

The GVMA demonstration showed that MAX
provides a framework for building an
associate system for managers of multiple
vehicle missions. We plan to apply MAX to
the development of manager's associate
systems in different domains in the near
future.

Using MAX, the GVMA was developed in two
person-months, including interfacing to the
robot vehicles. We did not attempt to build a
non-MAX GVMA in order to compare
development time and difficulty, but based
on our experience we believe that an
application of the complexity of the GVMA
would have required at least six person-
months if developed from scratch.

Although this suggests that MAX has value
in developing manager's associate
applications, it is not a finished product. We

,bL:--I. 81.. --_ L _n_z..n _¢ |=,,,,,t, t,,._, it was i it_lplUl ii_ u_veuoplng the
GVMA, but enhancements are required.
Facilities for configuring communications
interfaces and for developing task,
environment, and user models work, but
they are difficult to use. In addition, the
software is not as robust as it should be.
MAX supported the development of the
GVMA, but it has not been tested in a variety
of applications, and such testing will almost
certainly reveal undetected bugs. Finally,
more effort needs to be invested in
developing planning and decision analysis
functionality. The decision analysis module
works, but it is fairly primitive and decision
models are difficultto build and revise. The
current planning module requires the user to
develop plans using a very simple editor,
and there is no replanning capability.
Determining the effectiveness of the GVMA
and other manager's associates is
problematic. As noted by Sheridan, 11 the
objective function of supervisory control is
not fixed and cost and complexity make it
extremely difficult to conduct controlled
experiments in this domain. It is certainly
possible to demonstrate the superiority of
the GVMA over manual control, but

524

16:0729 5_15/199_

Mission [lapsed Time: _:£_o:_e

L Load Mission... J

I Abort]_. Quit 1

Global Alerts

Status

Currentlg One Rlert, I
Pri0ritg = 18 1

FII...ERT
Conditions

I "Search# 1,s-t "Rctiuitg Pending. IDriueTO"Search#1,s-1"Location IDeparture Scheduled Rt 60. current mission

Options
Invoke I mmediateltl
Wait ForPlannedStart |
Remindgeulater...]

I@

InuokeOptlon) [Explain Option...

'nl; ILIU© P I_lld VIUI-;

_C:TI ONI_It_L.[

..I
16:07:23 GUMR Info Pursuing Objective Search Rrea 1, SimUehlcle 1. I
16:07:23 OUHR Info "Launch SimUehicle I" -- Objective Completed. |
16:07:22 SIHU-1 to GVHR Vehicle: SIMU-1 Launching Simulation

16:07:00 GUMR Info Pursuing Objective Launch SimUehicle 1. I I|

Figure 3.

understanding the relative effectiveness of
the many forms and combinations of
associate features and behaviors is another
matter. We are investigating ethnographic
and usability inspection methodologies as
adjuncts to the methods of experimental
psychology.

Summary and Future Work

The Initiate Search Activity Alert

continue work on the system, improving it as
we use it build new applications. First steps
are enhancement of the planning and
decision analysis functionality. We are also
working with IS Robotics, Inc. to extend the
GVMA and interface it to new micro-robot
platforms.

Agents and manager's associates are
required by many important new
applications, and we will be seeing
commercial implementations of such
interfaces in the near future. The first
products will probably support information
access applications that employ agents in
storing, retrieving, manipulating, and
understanding massive amounts of
information. The management of intelligent
devices such as remote vehicles,
manipulators, and instrumentation will be
another important application. These
applications will require a manager's
associate, and we believe that cost-effective
development will require a framework like
MAX.

Acknowledqements

MAX and the GVMA were developed with
support from NASA Ames Research Center
Small Business Innovative Research
contracts. IS Robotics, Inc. supplied the
robotic vehicles, and Dr. Carl Friedlander was
responsible for developing interfaces and
on-board behavior code. Dr. David
Korsmeyer was responsible for management
of the GVMA demonstration at NASA Ames
Research Center.

References

, Card, S.K., Robertson, G., and
Mackinlay, J.D. The Information
Visualizer: An information workspace.
In Proceedings of SIGCHI '91, 1991,
181-188.

As noted in the discussion of effectiveness,
MAX is not a finished product. We plan to

2. Edwards, G.R. and Geddes, N.D.
Deriving a domain-independent

525

.

.

°

,

.

.

.

10.

11.

architecture for associate systems from
essential elements of associate

behavior. In Proceedings of the First
DARPA Workshop on Associate
Systems Technology, 1991.

Fields, C.I.. & Kushner, B.G. The

DARPA Strategic Computing Initiative.
In IEEE Proceedings of COMPCON,
1986.

Fischer, G., Grudin, J., Lemke, A. C.,
McCall, R., Ostwald, J., Reeves, B. N.,
and Shipman, F. Supporting indirect,
collaborative design with integrated
knowledge-based design
environments. Human Computer
Interaction, 7, 3, 1992, 281-314.

Geddes, N. and Hoffman, M.
Supervising unmanned roving vehicles
through an intelligent interface. In
Proceedings of SOAR '91, 1991.

Kay, Alan. User interface: A personal
view. In B. Laurel (Ed.), The Art of
Human-Computer Interface Design.
Reading, MA: Addison-Wesley
Publishing Company, Inc., 1990, pp.
191-207.

Laurel, Brenda. Interface agents:
Metaphors with character. In B. Laurel
(Ed.), The Art of Human-Computer
Interface Design. Reading, MA:
Addison-Wesley Publishing Company,

Inc., 1990, pp. 355-365.

Lizza, C. and Friedlander, C. The Pilot's
Associate: A forum for the integration of

knowledge based systems and
avionics. In Proceedings of NA ECON,
1988.

Nielsen, Jakob. Noncommand user
interfaces. Communications of the

ACM, 36, 4, (April 1993), 83-99.

Robertson, G., Card, S.K., and
Mackinlay, J.D. Information visualization
using 3D interactive animation.
Communications of the ACM, 36, 4,

(April 1993), 57-71.

Sheridan, T.B. Supervisory control of
remote manipulators, vehicles and
dynamic processes: Experiments in
command and display aiding.

12.

Advances in Man-Machine System
Research, 1, 1984, JAI Press, 49-137.

Smith, David C. Common elements in
today's graphical user interfaces: The
good, the bad, and the ugly. In InterCHI
'93 Conference Proceedings,
Amsterdam, April 1993, 470-473.

526

