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abstract

The ability of a autonomous space robot to grasp a
freely translating and rotating object is being tested in
the simulated microgravity environment aboard a KC 135
airplane. The Extravehicular Activity Helper/Retriever's
(EVAHR's) arm trajectory planner continually requires a
current estimate of the target's translational and rotational
state. The target's attitude, angular velocity and angular
acceleration define its rotational state and the target's
translational state include its position, velocity and
acceleration. Estimators have been developed based on
the extended Kalman filter (EKF) algorithm. The
KC135 microgravity environment does not have a
convenient inertial reference frame for the translational

dynamics and therefore, the translational as well as the
rotational object dynamics are described by nonlinear
equations. The estimator algorithms require intensive
mathematical computation and therefore, I860
microprocessors are used so that the software will run in
real time. Estimator design, implementation concerns
and issues specific to the KC135 environment are
discussed. Translational state estimator performance
results from simulation testing and from real-time
integrated system testing are presented.

KC135 Experiment

One of the objectives of the Automation and
Robotics Department at the Johnson Space Center is to
design and develop a free-flying autonomous space robot.
The immediate goal of the EVAHR project is to have the
EVAHR grasp a freely translating and rotating object in
a microgravity environment. This environment is
simulated in the cabin of a KC135 airplane by having
the plane fly along a parabolic trajectory. Sections of
the robot that are necessary for the experiment are bolted
to the KC135 cabin floor or are secured in some other

fashion. Included are a Robotics Research arm, an
inertial measurement unit (IMU), a vision system,

release mechanism, cages containing the I860 processors
and other computer equipment. There are two candidate

vision systems: PRISM3 (1) and the Perceptron scanner

(2). The PRISM3 position measurement rate is 20-30
Hz and the position measurement rate of Perceptron
scanner is 5 - 8 Hz.

KC135 Environment

The gravitational forces experienced in the cabin of

the KC135 change from above 1.5 g (1 g = 32.2 ft/s 2)
during "pull-up" to less than 50 mg of microgravity in

approximately 7 seconds. The microgravity
environment (less than 100 mg) lasts approximately
20 seconds; however, the microgravity period during
which the target is relatively stationary in the Robotics
Research arm's work space usually ranges from 0 to 10
seconds per parabola. This decrease is caused by the
fluctuations of up to 100 mg in the gravitational
acceleration during the microgravity portion of the
parabola. These undesired microgravity fluctuations
cause the relatively stationary floating target to fly
against the ceiling or floor of the airplane.

Another characteristic of the KC135 environment is

the usual initial fluctuation in the vertical acceleration

as the airplane enters the microgravity portion of the
flight. This is illustrated in Fig. 1. To avoid premature
target release and the resulting undesired target dynamics,
a release indicator mechanism was developed. The
vertical acceleration, the pitch rate, and the pitch
acceleration are monitored to determine the proper time
to release the target. These measurements are taken
from accelerometers and 3-axis gyroscopes. The
microgravity portions of the flight that experience
minimal pitch acceleration tend to be the better quality
parabolas.
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Relative Translational Dynamics

The KC135 cabin environment and the EVAHR

instrumentation do not provide a practical inertial
reference frame which can be utilized in modelling the
target's translational dynamics. The EVAHR
translational estimator coordinate frame, which is a

Cartesian coordinate system centered at a comer of the
IMU plate, is essentially an accelerating reference frame.
At present, the EVAHR hardware does not include a
sensor that gives position expressed in an earth reference
frame (differential GPS etc.). Double integrating the
output of the accelerometers for 1 - 2 hours without
another correcting measurement is undesirable. EVAHR
instrumentation does provide enough information to
calculate the target's acceleration relative to the robot.
There are several implicit assumptions in determining
the relative acceleration. One is that the EVAHR's and

target's gravitational accelerations are equal in magnitude.
It is also assumed that the only force acting on target is
gravity and third, the atmospheric drag acting on the
target is zero. The relative acceleration of the target with
respect to the EVAHR is given by

EaT = - EfDE X Et.OEX Er T - EO_E X Er T

-2* Ef.0EX Ev T -Ea E (1)

where

EO}E is the EVAHR's angular velocity (filtered

gyro reading)

E0tE is the EVAHR's angular acceleration

Ea E is the EVAHR's translational acceleration

(filtered accelerometer reading)

Er T is the target's position relative to EVAHR

Ev T is the target's velocity relative to EVAHR

Ea T is the target's acceleration relative to EVAHR.

For computational reasons, during each calculation
time period (iteration) the acceleration is determined
twice. The first calculation uses the target's position and

velocity estimates from the previous iteration. Next, the
position and velocity estimates are updated using the new
relative acceleration. The acceleration is then again

determined using the updated position and velocity
estimates. The relative velocity and relative position are
determined in each iteration as follows

(i) compute the relative acceleration, Ea T, based on

the target's velocity and position estimates of the
previous iteration

(ii) compute

At E
Ev T = EvpastT + _- ( a T + EapastT)

E At
Er T = rpast T +-_- (Ev T + EvpastT)

where

EapastT is the target's relative acceleration

during the last iteration

EvpastT is the target's relative velocity

during the last iteration

Erpast, I. is the target's relative position

during the last iteration

At is length of iteration interval.

(iii) recompute Ea T based on updated Ev T and

%
(iv) recompute (ii) based on updated Ea T.

(2)

(3)

KC 135 Translational EKF Filter Design

The EKF system model for the KC135 translational
state estimator may be expressed as

dx
-_ = f(x(t))+ w(t) (4)

and the measurement model may be expressed as

z k = H X(tk) + v k (5)

where

x(t) is the state vector
w(t) is a zero mean white process

vk is a zero mean white sequence.

For the EKF algorithm, the state may be written as

x(t) = x*(t) + Ax(t) (6)

where

x*(t) is an estimate of the state.

Combining equations (4) and (6), and expanding to the
first order,

dx*(t) dAx(t) f(x*(t))
dt + dt -

df_x_t))
+ _lx x(t) = x*(t) Ax(t) + w(t) (7)

Therefore, the linearized model maybe expressed as

dAx(t) df(x(t)) Ax(t) + w(t)
dt - dx Ix(t) = x*(t)

(8)
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Thestatematrixcalculationisdeterminedby

O(tk+1,tk)=I + FAt + (--_- + F 2 At2)--_- (9)

where

F df(x(t)),
= d x IX(tk)= x* (tk)

At isthetime intervalbetween tk and tk+1

This calculationisextended out to the second order.

Accuracy requirements had to be balanced against

computer computation time requirements in this

determination. The Kalman filterprocess noise

covariancematrix,Q(tk+l),iscomputed accordingto

Q(tk+I)= _(tk+ 1,tk)H a HT _T(tk+ I,tk)

+ Q(tk) (I0)

where

is a sparse matrix whose nonzero elements are
associated with the variances of the white Gaussian

noise of equation (20).

The Kalman filter error covariance matrix is propagated
according to

P(tk+l) = _(tk+ 1, tk) P(t k) _V(tk+ 1 , tk)

+ Q(tk+ 1) (11)

The state, X(tk+), is revised by the filter according to

x(tk+) -- X(tk-) + K(t k) [Z(tk) - HX(tk-) ] (12)

and the Kalman gain is given by

K(t k) = P(tk-)HT[HP(tk-)H T + R] -1 (13)

where

R is the position measurement error covariance
matrix.

Also, the Kalman filter error covariance is updated by

P(tk+)= [I- K(tk)H]P(tk-) (14)

The statevectorspecifictotherelativetranslational
state estimator is defined as follows:

I p - 3 target position components "1

v - 3 target velocity components |

x = coe'3 EVAHR gyro errors /

ct e- 3 EVAHR angular acc. errors |
a2e- 3 EVAHR accelerometer errors/

(15)

The IMU readings and the target's position and
velocity estimates, all of which have some error, must
be used to determine the target's acceleration, which is

given by equation (1). Now the measured angular
velocity and the EVAHR angular acceleration can be
written as

co = cot + 5o (16)

_t =c_ t + 8cz (17)

where

co is the vector of filtered EVAHR gyro readings

cot is the vector of true EVAHR angular velocities

_co is the gyro error vector.

ct is the vector of computed EVAHR angular
accelerations

ott is the vector of true EVAHR angular accelerations

_ic_ is the angular acceleration error vector.

Similarly, the EVAHR acceleration may be written as

a 2 = a2t + _ia 2 (18)

where

a 2 is the vector of filtered EVAHR accelerometer

readings

a2t is the vector of true EVAHR accelerations

_a 2 is the accelerometer error vector.

To form the state matrix, the time derivative of the
target's velocity error is expressed as

d_Sv

dt - ASp + B_Sv + CSco + D_itx-_a2 (19)

where

A

I col2+co2
-COo[°1"°_2

"cooco2+ct 1

7

-co lco0+a2 -co2co0-_l /

J(o22+(o02 -co2co l+Ot2

-colco2-ot0 (o02+(Ol 2
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I 0 202 -2tol 1
B = -20 2 0 200

2to1 "2°0 0

I all a21 a31 1
C = a12 a22 a32

a13 a23 a33

al I = -to lPl"to2P2

a21 = -to0P2+2to lP0-2v2

a31 = 2to2Po-tooP2+2Vl

a12 = 2toOPl-to lPo+2V2

a22 = "to2P2"tooPo

a32 = -to lP2+2to2Pl-2v 0

a13 = 2tooP2-to2Po-2vl

a23 = 2tolP2-to2Pl+2V 0

a33 = -o)0130-o) lPl

0 -P2 Pl "_O = P2 0 "P0 [

-Pl P0 0 d

Therefore, the particular EKF system model is given by

-Sp -

8v

_d 8to
dl

8a

-Sa 2 -

-0 I 0 0 0-

AB C D -I

o o -B_ o o

oo o -B o
_00 0

m

0

0

+ n 1

n 1

-n 2 -

m m

8p

8o)

8_

0 "_2- --Sa 2 -

(20)

where

p is the estimate of the target's position relative to
the EVAHR

8p= Ptrue "P

v is the estimate of the target's velocity relative to
the EVAHR

8v= Vtrue - v

1 a 3x3 diagonal matrix with the value _l1

132 is a 3x3 diagonal matrix with the value 132

n 1 is the white Gaussian noise vector whose

value is determined from gyro noise tests

and from system testing

n 2 is the white Gaussian noise vector whose
value is determined from accelerometer noise

tests and from system testing

Equation (20) has the same form as equation (8).

Rotational State Estimator

The rotational state estimator uses quaternions to

describe the target's attitude and utilizes an EKF

algorithm (3) For further information on quaternion
estimation refer to Bar-Itzhack's work (4). Bierman's U-

D factorization (5) technique was implemented to test for

improved performance. An initial difference in
performance was noted between the conventional EKF
and the U-D factorization algorithm. However, after
convergence, there was not a marked difference in

performance.

The essential difference between the rotational state
estimator intended for the earth orbit scenario and the
KC135 rotational state estimator is the definition of the
inertial reference frame. For the KC135, the inertial

reference frame for the target's attitude will be the
EVAHR's coordinate frame when the microgravity

portion of each parabola commences (t=0). The
EVAHR's attitude will be determined by integrating the

output of the gyros from the commencement time (t=0).

Results

The performance results shown in Fig. 2 are the
product of a simulation test. A program was developed
that simulates the dynamics of KC135 airplane, the IMU

sensor readings, and the dynamics of the target. The
added noise is white Gaussian noise. The Euclidian norm

error of the position vector estimate and of the position
vector measurement are shown.
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Simulation Test Results
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Testing of the Perceptron scanner is ongoing and
calibration of PRISM3 vision system is in process at the
writing of this paper. Results shown in Fig. 3 are
preliminary. For this test the target was stationary and
Fig. 3 shows the target's x-position estimate as well as
the x-position measurement. Once calibration is
complete, the values of measurement error covariance
matrix R of equation (14) will be modified.

Real-Time Test Results
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Imolementation Issues

For the arm trajectory planner software to be able to
receive the target's state at the rate of 100 Hz, the relative
translational state estimator had to be divided into a

repropagation unit and real-time propagation unit. The

repropagation unit accepts dated position measurement
inputs, compares the measurement to the appropriate
archived state, revises the state, and then repropagates the
state to present time. The updated state is passed to the
real-time propagation unit. This module replaces its
target state and Kalman filter parameters with the new
updated state and new Kalman filter parameters. The
real-time propagation unit continues to propagate the
state and appropriate Kalman filter parameters while the
repropagation unit has accepted another dated position
measurement and is revising another archived estimate.
The architecture is shown below in Fig. 4.

The estimators are implemented on Mercury 1860
processors because of their fast computation capability.
Closed form solutions were used where possible and
matrix computation decreased by taking advantage of
sparse matrices.

A sensor bias test is performed just prior to the start
of the flight, and these values are used to correct the
IMU readings. The expected IMU drift during the flight
was determined by running drift tests for a length of
time comparable to flight duration, (1 - 2 hr). The
sensor outputs are also passed through hardware and
software filters before the readings are fed into the
estimator at the rate of 100 Hz.

Summary_

The design and performance of the KC135
translational state estimator were discussed. Also

presented were issues specific to the KC135 microgravity
environment.
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