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Abstract

Planning researchers are coming to accept that plan-
ning is not sufficient for robotics. But many of them
seem to think that the concrete levels of robot control

which a planner must interface are somehow uninter-

esting or unimportant to the development of a theory

of autonomous control. On the other hand, some

robotics researchers appear to think that planning is
not even necessary for robotics, that reactive control

will be adequate for any realistic robot system. Our

thesis is that progress toward autonomous robotics

will be stunted until both camps understand that the

other plays an equally important role in the creation of

non-trivial intelligent autonomous agents. This paper
describes the role of planning and reactive control in

an architecture for autonomous agents (robots). We
posit this is necessary and sufficient. The key to our

architecture is the interjection of a "sequencing layer"
between the reactive controller needed for a robot to

survive in a dynamic environment and a deliberative

planner needed to develop a course of action to achieve

high-level user goals.

1 Past: Robotic control as a

domain for planning

Controlling an autonomous robot is mentioned in

many planning research papers as a typical domain.

But few planning researchers discuss, or even appear

to understand the practical problems of robotic

control. The following is the prototypical answer to
complaints of the more practically minded robotics

engineer: "I have captured the essence of the robot
planning problem with a representative problem in

which it is easier to present a discussion of all the

important issues. The details are unimportant."

That justification would be acceptable if there were

evidence that the details are really unimportant. But
we know from the recent spate of papers on the

complexity of planning that making planning practical
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are in the details. Abstractions into a "representative

problem" obscures the fact that classical AI planning

can only address one segment of the robot control
problem.

Robotic control from the planning researcher's

perspective is often viewed as the task of moving from

one location to another [20, 16, 3, 15, 24, 8, 14]. The
desired plan would be a sequence of movements for

the robot to carry out. Such movement plans usually

assume sensing systems capable of generating accurate
metric models of the portion of the world relevant

to the navigation task. When people got around to

building robots that could benefit from this type of

planning, they found that nearly all of the interesting

behavior could be accomplished more efficiently by the
mechanisms assumed by the planner.

The rasion d'etre of deliberative planning is the

need to reason about preconditions. It is not too

difficult to construct practical examples of why this

is necessary for an autonomous agent. If you have

more in mind for the robot than getting from here

to there, you can usually convince yourself that

you need to think about it before "heading in the

right direction" and relying on reactivity. Dealing

with complications like another agent loose in the

environment or the need to do something like repair

a broken device (so you need to gather the right tools

before you leave) are not activities a purely reactive
system can accomplish any more efficiently than a

classical planner can accomplish movement planning
in unstructured environments.

Chapman proved that planning is computationally

intractable and could not possibly be a sufficient the-

ory of intelligent behavior in a real-time environment
[5]. Others have catalogued some of the behaviors

one would need in an autonomous agent: reaction

to unforeseen events, iterative actions (e.g., traveling

down a street stopping for all the red lights), real
time projection and conditional commitment to action

(e.g., cross a busy highway [19]).
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Chapmanwasthe vanguardof the :'situated rea-

soning" approach to intelligent agents [4, 1, 6, 17].
These "reactionaries" started at the opposite end of

the control continuum from classical AI planning,

bent on showing that planning may not even be

necessary for intelligent behavior. But the problems
the reactionaries cannot address turned out to be

important to producing an autonomous agent. Among

the more obvious are the inability to employ predictive

reasoning about preconditions (check the gas gauge
before embarking on a long car trip, don't wait

until the car starts sputtering), coordinating activity

with other intelligent agents (pick up a heavy object
together), reason under uncertainty and take risk-

alleviating actions (move into the right lane well before

your exit).

Our hypothesis is that planning is necessary for
control of autonomous robots, just as situated reason-

ing or reactive behavior is necessary. The main issues

are mediating between deliberation and reaction to

produce seamless intelligent behavior, and determin-

ing the proper roles of the various components of an
intelligent agent architecture.

2 A three-layer architecture

for intelligent agents

The robot intelligence community has begun to agree
on a software architecture for "intelligent" robotic

systems [10, 18, 12, 7, 11, 23, 25]. The consensus
emerging is an architecture which incorporates both

planning and reaction. In most of the architectures

cited, there is a planning component for reasoning

about the overall mission and generating contingencies

when the mission itself is in danger of failing.

Importantly, the planner is asynchronous (but on-
line) with a real time reaction component which can

achieve the situated reasoning needed for survival and
continuous control.

While it now seems obvious there is a role for

reaction and planning in robot control, what is not
so obvious is how to mediate between the two. Our

architecture separates the general robot intelligence

problem into three interacting pieces, with the middle

piece being the key to mediation between reaction and

deliberation (see Figure 1):

1. A set of robotic specific reactive skills. For

example, grasping, object tracking, and local

navigation. These are tightly bound to the
specific hardware of the robot and must interact
with the world in real-time.

2. A sequencing capability which can differentially
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Figure 1: Generic intelligent control architecture

.

activate the reactive skills in order to direct

changes in the state of the world and accomplish

specific tasks. For example, exiting a room might
be orchestrated through the use of reactive skills

for door tracking, local navigation, grasping, and
pulling.

A deliberative planning capability to reason in

depth about goals, preconditions, resources, and

timing constraints. The planner generates rough

plans for accomplishing goals. For example, given

the task to retrieve an item and a map of a

building, the deliberative system could reason

about the interconnection of spaces and return

a plan for the robot to exit the room, follow the
hall to the left and enter the third door on the

right.

This paper focuses on the interaction of planning
and sequencing layers of this architecture. Interaction

of the sequencing system with the reactive layer of the

architecture is covered in other papers [23, 25].

3 Sequencing: caching

techniques for handling

routine activities

Reactive control addresses only the most obvious

defect of state-based planning for robots, the inability

to represent and reason about motor control in real

time. But even if provided with primitives such as

grasp, track-wall, and so on, a state-based planner will

still be unable to efficiently handle everything needed
for robot control above the level of reactions that can

be compiled into guaranteed-reaction-time primitives.
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Themostobviousproblemistheneedto doindefinite
iterationofsequencesof primitivebehaviors:

Do unitl (at robotl door5):

Put-one-foot-in-f ront-of-the-other

The problem with such sequences for a state-based
planner is they produce an indeterminate number

of states to manage. A plan is basically a proof

that some goal can be achicved with a sequence

of state transitions effected by atomic plan steps.
Planners convince themselves a goal is achievable

by constructing the whole plan. Obviously, it is
difficult to generate a complete state-transitions plan

to embody what we easily expressed by the iterative

construct above. That is the reason typical planning
representations ground out on primitives like the
following:

(Operator move

:purpose (location ?robot ?destination)

:preconditions ((clearpath ?robot ?destination)

...))

Such operators assume things which are hard to

encode as states,likekeeping away from walls and

people. They also assume indefinitesequences of

very small grain actions. Situated actionstypically

implemented inrobotsoftenmatch the statetransition

view of classicalplanning perfectlywell [13I. The

problem is two-fold. One is performance; at the

levelofabstractionprovided by situatedactionsthere

would be too many plan stepstogenerateforeven very

simple goals likemoving from within a room out into

a hallway. The second isrepresentation.No one has

developed a usefulstate-basedplannerthat can reason

about indefiniteiterationof actionsand conditional

actions.

What is needed is a layer between reactive be-

haviors and deliberative planning which allows the
planner to reason only to the level of routine activities

such as move and open-door (grasp, turn, and pull. If
that fails, push. If that fails consider another route

to the goal). In our architecture, we use Reactive

Action Packets (RAPs) to encode routine behavior as

a sequence of situated skills [22]. RAPs is a language

with a syntax similar to the syntax of classical

planning systems [10]. Like most planning systems,

the RAP system uses a library of decomposition rules

to represent sequences of behaviors to accomplish

a task. The system can quickly transform a task

into a context specific sequence of primitive actions
by caching solutions to common tasks. Unlike a

planning system's computationally expensive search
mechanisms used to decompose tasks into primitives,

the RAP system must have a solution to the given task

cached in its library or the system reports a failure.

RAPs can encode conditional and iterative sequences
of actions since there is no state-based search involved.

As is exemplified by the following example, the door is

iteratively bashed with a sledge hammer until the not

closed state is detected or simply opened if the door
is unlocked.

(define-rap opendoor

(success (not (closed ?currentdoor)))

(method

(context (doorlocked ?currentdoor))

(tl (grasp-sledge-hammer) (for t2))

(t2 (pound-door ?currentdoor)

(wait-for (not (closed ?currentdoor)))))

(method

(context (not (doorlocked ?currentdoor)))

(tl (grasp-door-handle) (for t2))

(t2 (turn-knob) (for t3))

(t3 (pull-open-door))))

While the RAP system can perform task decom-
position, it is not suited for direct interaction with

the world. The software constructs that are used

for selecting action routines, binding variables, and

so on make the system too slow for survival. Thus

the system is used in our architecture to dynamically

configure a reactive layer to handle the interaction
with the world for the current task and situation. This

allows complex behaviors to be programmed, while

relying on always-active situated skills to protect the

robot from inaction in a rapidly changing environmen-
t.

Sequencing, married to reaction, yields significantly

better task coverage than either of the two can

provide alone. Still, the combination of the sequencing

and reactive layers is not structured to perform

complicated resource allocation reasoning. Such is

typical in determining the best way to carry out a set

of tasks. Nor are these two layers good at reasoning

about the failure requirements or consequences of a

task. So where the sequencer gains in its ability to

handle routine situations (e.g., starting a car, opening

and moving through a door), it lacks the ability to
string these routine tasks together in a way that will

have the desired "global" behavior. But that happens

to be just the thing planners are good for.

4 Planning

Our view is that there is a role for state-based planning

in robotic intelligence, but it should be limited to

tasks that are not easy to specify as sequences of
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commonroboticskills. Whenplanningis necessary,
theplannershouldthinkoftheproblematthehighest
levelpossiblein orderto maketheproblemspacethe
smallestpossible.

Thus,theroleof planningisto deliberate,butonly
whennecessary.Therole of reactionis to control
real-timebehavior. The role of sequencingis to
raisethe levelof abstractionof the lowestlevelof
activitieswhichtheplannerwill concernitself.In the
process,eliminatetheneedfor state-basedplanning
ofthingswhichareeasyto encapsulateinanoperator
that groundsin an indefiniteiterationof low-level
skills. Importantly,all three layersmustoperate
concurrentlyandasynchronously.Accomplishingthis
is thekeyto makingplanningusefulina robot.

Becausethe sequencerhasa cachedsolutionto
routinetasks,theplanningsystemhastheadvantage
of buildinguponthis levelof abstractionproviding
it largergrain sizedprimitives. This easesthe
complexityof the "planningproblem"becauseit
eliminateslargenumbersofessentiallylinearplanning
problems.Ability of the RAPsystemto dealwith
iterativebehaviorgreatlysimplifiestheplanner'srep-
resentation,allowingthesimplestaterepresentation
commonto classicalplanningto sufficein most
commonsituations.

The plannerweareusingin our experimentsis
calledAP [9]. AP hasa numberof featureswhich
makeits role morecompellingthan robotplanning
typicallyexemplifiedin theplanningliterature.

Onethingmissedbyboththeplanningandrobot
controlcommunities(whiletheywerearguingover
the necessityof planning)wasautonomousrobots
generallywill be autonomousonly fromthe human
givingthemorders. Theywill not oftenbe acting
alonein their environment.Multiagentcontrolis
necessarywhenmorethan onerobot is employed
to carry out tasks,or whenmultiple robotsare
operatingindependentlyonmultipletasksinashared
environment.

AP wasdesignedto dealwith multiagentcoordi-
nation. To do this, it extendsstate-basedplanning
to reasonabout the conditionsthat hold during
actions.ThiscapabilityallowsAP to planactivities
suchas two robotscarryinga bulky object. The
followingoperatoris anexamplefromatestdomain.
Notetheplannercaninstantiatethevariables?arm-
or-robotl and ?arm-or-robot2with anythingthat
meetsthe constraints.A two-armedrobotor two
singlearmedrobotsmightbeused. Thetemporal
relation"simultaneous"imposesa non-codesignation
constrainton the agentssothat a verystrongone-
armedrobot wouldnot qualify. Othertemporal

constraintsin theplot languagewouldallowcodes-
ignation).Theseplot temporalconstraintsalsocause
theplansstepsthat instantiatetheplot subgoalsto
includeschedulinginformationthat the sequencing
layerandAP'sexecutionmonitorcanuse.

(Operator pickup-heavy-obj ect

:purpose (holding ?planner ?large-thing)

: arguments

( (?weight-of-thing

(get-value ?large-thing 'weight)))

:preconditions

((top ?large-thing clear)

(on ?large-thing ?something))

:constraints

( (can-lift ?arm-or-robot1

(* 0.5 ?weight-of-thing))

(can-lift ?arm-or-robot2

(* 0.5 ?.eight-of-thing))

:plot

(simultaneous

(grip ?arm-or-robotl ?large-thing)

(grip ?arm-or-robot2 ?large-thing))

:effects

((holding ?planner ?large-thing)

(top ?something clear)

(on ?large-thing nothing)))

Another feature of AP which makes it appropriate

for control of autonomous agents is that it can

reason about uncontrolled agents. AP was originally

developed to address multiagent adversarial domains

(AP stands for Adversarial Planner). Of course

most robot applications are not adversarial. An

uncontrolled agent might be a human operating in the

environment along with a robot, or even nature. AP

can use its adversarial reasoning capabilities as a risk

assessment mechanism to decrease the probability of

dangerous interactions with other agents.

AP includes a "counterplanning" component to

reason about how an uncontrolled agent might prevent

a plan from succeeding, either by negating a precondi-

tion or a "during condition." Problems are uncovered

and addressed by augmenting the plan with operations

which prevent the negative effects of the uncontrolled

action. This amounts to reasoning about situation-

specific preconditions, and is the way AP addressees

the "qualification problem" [21].

A typical example of this type of reasoning in a

robot application might go as follows. The robot is

assigned the task of repairing a device. In the course

of the planning process it might post a "protection
interval" on the condition that a door remain open

for the duration of some operation. Counterplanning
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mightdiscoverthatahumancouldclosethedoor,and
a wayto preventthiscouldbeto posta noticethat
thedoormustbeopenuntil furthernotice.

APhasotherfeatureswhichareneededto fullyad-
dresstherequirementsof an intelligentagent.These
include: reasoningaboutmetrictime (scheduling),
executionmonitoring,and replanning. Execution
monitoringallowstheagentusingAP to recognize
andskipplanstepsthat areovercomebyevents,and
to replanwhensomethingunexpectedoccurs(e.g.,a
doorthat shouldhavebeenleft openis closedand
locked).Executionmonitoringalsoprojectsground
truth observationsthroughthestatespacegenerated
duringplanning.Wheneverthereis a changein a
outputsituationproposition,AP'sexecutionmonitor
recheckspreconditionsandrecalculatescertain"re-
computableeffects"of subsequentplansteps.This
permitsAP to predictfailures,ratherthanwaiting
to noticethem,aswouldhappenif the agentrelied
only on situatedreasoningand sequencing.This
is obviouslysomethingthe plannershouldbedoing
outsidethe sense-actcycleof the plan executor.
In fact, AP wasdesignedfrom the beginningto
be a deliberativeprocessalooffrom the execution
environment.

ReplanninginAPiscuedbytheexecutionmonitor
whenit noticesor predictsfailures. Replanningin
AP is basedon the conceptof a "minimalrepair
wedge." AP assumesthe majority of a plan is
salvageable.The ideais to excisethe minimum
numberof planstepsdependenton the failedstep
andreplacethemwitha "wedge"of operationsthat
achievethe originalsubgoalwith alternatemeans.
Thisstrategyis bothmorecomputationallyefficient
and cognitivelyplausiblethanplanningagainfrom
scratch,which is whatmostclassicalplannersare
doomedto do.

5 Implementation Status

We have completed implementation of an interface

between a RAP-based sequencing system and a facility

for providing a set of situated skills which the

sequencer can manipulate to cause activity in the

world [22, 25]. We are now combining AP with the
RAP-based sequencer.

Shortly we expect to begin testing our architecture

on a number of problems. Questions we plan to

address include the following:

1. What activity is appropriate for planning or
sequencing layers?

2. What domains where reactivity is sufficient?

3. Are there domains where sequencing is sufficient?

4. In which domains is deliberation highly useful?

5. To what measure is the architecture beneficial

over more ad-hoc approaches?

6 Future Work

After we complete testing our architecture, we plan to

explore the architecture as a basis to incorporate in

robots certain cognitive capabilities normally associ-
ated with intelligent behavior. The first area we will

investigate is learning.

We are guided in our ideas about learning by An-

derson's ACT* model of cognition [2]. In ACT*, one

of the important uses of learning is for performance

improvement. It is hypothesized that expertise is

gained by compiling common sequences of primitive

actions into routines which henceforth take the agent

essentially no time to derive. This type of learning
can be easy in our implementation because the RAP

library can be dynamically modified. For example,

the robot could "learn" the commonly used plans for

getting places from its nominal home (e.g., to the mess

hall, the latrine). Since AP's plans are parameterized

and have syntax similar to RAPs, the system could

compress common sequences of operators into RAPs

and then add that RAPs as a planning primitive.

Thus, the next time the robot has a goal to eat dinner

it would not have to invoke the planning system to

accomplish the task of getting to the proper location.
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