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Abstract-- The high cost involved in the retrieval and
repair of robotic manipulators used for remediating nu-
clear waste, processing hazardous chemicals, or for explor-
ing space or the deep sea, places a premium on the reli-
ability of the system as a whole. For such applications,
kinematically redundant manipulators are inherently more
reliable since the additional degrees of freedom (DOF) may
compensate for a failed joint. In this work, a redundant ma-
nipulator is considered to be fault tolerant with respect to
a given task if it is guaranteed to be capable of performing
the task after any one of its joints has failed and is locked in
place. A method is developed for insuring the failure toler-
ance of kinematically redundant manipulators with respect
to a given critical task. Techniques are developed for an-
alyzing the manipulator's workspace to find regions which
are inherently suitable for critical tasks due to their rela-
tively high level of failure tolerance. Then, constraints are
imposed on the range of motion of the manipulator to guar-
antee that a given task is completable regardless of which
joint fails.

I. INTRODUCTION

Kinematically redundant manipulators have been

proposed for use in the cleanup and remediation of nu-

clear and hazardous materials, as well as for remote ap-

plications such as deep space or sea exploration, where

repair of broken actuators and sensors is impossible and
the probability of their failure is increased due to the harsh

operating environment [2], [3]. In these situations the ex-
tra degrees of freedom of a redundant manipulator may be

used to compensate for the failed joints if the manipulator

has been properly designed and controlled. The most basic

task of a manipulator, i.e. the positioning/orienting the

end effector in the workspace, is described by the forward

kinematic equation

x -- f(0), (1)

where x E R m is the generalized vector of the posi-
tion/orientation of the end effector and 0 E R n is the

vector of joint variables. In this framework, point to point

tasks can be described by a series of end-effector positions
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to be obtained at desired times, i.e., x(ti), with a kine-

matic inverse equation

0 ----f- l(x) (2)

being solved to determine the corresponding required joint

values, 0(ti). A kinematically redundant manipulator can,
in general, satisfy an end effector positioning constraint,

x(t/), with an infinite family of joint values satisfying (2).

The underlying premise for advocating the use of redun-

dant manipulators for critical applications is that if a joint
should fail, then the redundancy of the manipulator may

permit the completion of the task. Although commercial

manipulators currently are not equipped with the neces-

sary circuitry to detect failures and apply the brakes to

any failing joint, the need for such a mechanism is well

known [12],[13]. If failed joints are locked, then, a sin-
gle joint failure reduces the number of degrees of freedom

(DOF) of the system by one, and the new kinematic func-

tions ]0 and their inverses ]-z differ markedly from the

original ones.
In [12] a method is described for designing manipu-

lators to be fault tolerant with regards to a given point

to point task. They assume that any joint may fail any-

where within its entire range of motion. A manipulator

is said to be fault tolerant with respect to a given set of

task points x(ti) only if there exist solutions to (2) for ev-
ery possible failure. With this assumption, the worst case

typically occurs when a failing joint is folded in on itself.

In the work described here, failure tolerance is achieved

by imposing constraints on the motion of all joints prior

to a failure. By judiciously selecting the specific solution

from the family of solutions to (2), the worst case need

not occur. Thus failure tolerance may be achieved with
less complex manipulator designs, and for manipulators

not originally designed with failure tolerance in mind.

An alternative to defining the manipulator's task as

a sequence of end-effector positions is to specify the end-

effector velocity profile. At the velocity le.vel, the kine-
matic equations relating the joint rates 0 to the end-

effector's velocity _ are given by

= J0 (3)

where J E R '_×n is the manipulator Jacobian matrix

which is a function of the manipulator's configuration.
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The solution for all joint rates that satisfy the desired end-
effector velocity can be represented by

= J+5: + (I - J+J)z (4)

where + indicates the pseudoinverse, (I-J+J) is the pro-

jection onto the null space, and z represents an arbitrary

vector in the joint velocity space [8]. The second term in
this equation clearly indicates that there is a family of joint

trajectories that satisfy (3). However, unlike the kinematic

function f0 relating the joint values to the end-effector's

position, the Jacobian for the failed system is easily de-

rived from the original system's Jacobian by zeroing the

column of the failed joint. Using this fact it is possible to
develop an inverse kinematic function which insures that

the manipulator will have some degree of local dexterity

after an arbitrary joint failure [7]. The measure of dex-

terity in this case is defined as the smallest singular value
of the Jacobian, a,_, so that a kinematic failure tolerance

measure, k fro, is given by

kfrn(O) = min tr,n(IJ) (5)
f=l-n

where fJ is the manipulator Jacobian matrix for the sys-

tem with its f'th joint locked. Having a large value for

kfm(O) insures that after an arbitrary joint failure the

manipulator will still be able to satisfy an arbitrary de-

sired end-effector velocity in the vicinity of the failure.
Unfortunately, this measure is inherently local in nature

and can not guarantee that the complete trajectory re-

mains feasible after the failure. However, it will be shown

that the local failure tolerance measure, kfrn(6), can be

used to guide the search for regions within the workspace
for which one can insure that the entire desired task can

be completed regardless of joint failures.

The remainder of this paper is organized as follows.

First, a method for analyzing the fault tolerance of a given
location in the workspace is discussed. Second, the con-

straints necessary to guarantee fault tolerance for a single
point are described. Third, a procedure that uses the local

measure of fault tolerance to identify candidate regions of

the workspace where critical task should be placed is dis-

cussed. Then, a method for determining the constraints

necessary to guarantee the fault tolerance of the manipu-

lator with respect to the given critical path is outlined.

II. SURFACES OF SELF-MOTION

For a kinematically redundant manipulator the fam-

ily of joint configurations satisfying (1) forms an (n - re)-

dimensional hyper-surface in the n-dimensional configura-

tion space of the manipulator [1],[6]. Joint motion con-
strained to this hyper-surface does not affect the posi-

tion/orientation of the end effector so that these hyper-

surfaces are frequently referred to as self-motion mani-

folds. The null space of the manipulator's Jacobian given

by the set of vectors satisfying (3) with x = 0 defines the
tangent plane to the self-motion manifold. As a simple

example, consider the 3 DOF planar manipulator shown

Fig. 1. A three degree of freedom planar manipulator with equal

llnk lengths.
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Fig. 2. The set of joint configurationshaving the manipulator's end-

effector at a single location form curves in the configuration space of

the manipulator. These curves are the self-motion surfaces for a 3

link planar manipulator. The self-motion surfaces for some regions

of the workspace are markedly larger than others. Points with large

self-motion surfaces tend to be more failure tolerant.

in Fig. 1 for which the self-motion manifolds are one-

dimensional curves. For this manipulator a projection of
the self-motion curves onto the 82 - 63 plane is shown in

Fig. 2. Each curve represents the family of joint variable

combinations which place the end-effector at a constant ra-

dius from the base. From the figure, it is clear that some

regions of the workspace have larger self-motion manifolds

than others. The two extremes occur at the boundary
of the manipulator's workspace, which corresponds to the

point at the origin of the configuration space, and on the
circle which is centered at the base and has a radius of 1

meter. In the first case, the self-motion surface vanishes

to a point. This fact indicates that the manipulator will

not be capable of reaching the original boundary after any
joint failure. At the other extreme, the self-motion curve

spans the entire range of joint values, even in 61 which

is not shown. This fact is significant since regardless of

which joint fails, or where it fails, the manipulator will
always be capable of tracing out the unit circle with it's

end-effector. It is interesting to note, that the local failure
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tolerancemeasure,(5),reaches its exact theoretically opti-
mal value on the self-motion surface of this globally failure

tolerant point. Also note that k fro(O) = 0 at the reach

singularity. These attributes lead to the use of k fro as a

first pass when evaluating the workspace in order to place

critical task. Clearly, when a joint fails and is locked, the

manipulator is more likely to be able to reach points with

large self-motion surfaces than those with small ones.

To guarantee that a manipulator is able to return to a

desired workspace location, one must, in general, constrain

the motion range for each of the n joints. The minimum

and maximum joint values of the ith joint, denoted 0im,.

and Oi.... respectively, can be determined from the mini-
mum and maximum values of Oi over the entire self-motion

manifold. This effectively superscribes an n-dimensional

box aligned with the joint axes around the self-motion

manifold. The size of this bounding box is an indication

of the inherent failure tolerance of the workspace point

for which it was computed. If the manipulator fails while

operating within the bounding box of a given desired end-
effector location x, then it will always be able to posi-

tion its end-effector at that point regardless of where the
end effector is located when the failure occurs. For exam-

ple, consider again the 3DOF manipulator, for which the

bounding boxes associated with the self-motion surfaces
for the three workspace points labeled A, B, and C in

Fig. 1 have been drawn in Fig. 2. Note, that although 0x
and it's associated boundaries are not shown, they need

to be considered. If the manipulator fails while within the

boundary of any one of the bounding boxes, then the ma-

nipulator will always be able to position its end-effector at

those points regardless of which joint fails. The region of
the configuration space which lies inside all three bounding

boxes is of particular interest. If the manipulator operates

within this region, then regardless of which joint fails, it

will be able to reach all three points. Unfortunately, it is

not possible to reach points B and C and stay within this
region of the joint space, however, it should be clear that

obtaining the bounding region for self-motion manifolds
reveals the potential failure tolerance of various locations

within the workspace.

Several iterative methods exist in the literature

for characterizing one dimensional self-motion curves

[1],[4],[5],[9]. For systems with two or more degrees of

redundancy an estimate of the size of the self-surface may

be obtained by using a Jacobian iteration of the form

= :l:(I - J+J)6i + J+(x* - x) (6)

where _i is a unit vector along the ith joint axis and x* is

the workspace end-effector location being evaluated. The

first term represents motion along the self-motion manifold
until the tangent to the manifold becomes orthogonal to

the joint axis direction ei. The second term is required

to compensate for any errors that are accumulated during

the iterative procedure [5]. This method is effective for
one-dimensional self-motion curves as in the 3DOF planar

case, but may yield an insufficiently low estimate for self-

motion manifolds of higher dimensions.

For a two-dimensional self-motion surface, a simple
and effective method for estimating the bounds of the self-

motion surface is to iteratively trace out a linearly increas-

ing spiral on the self-motion surface. Keeping track of the

values obtained by each joint along the spiral provides an

estimate of the bounding box containing the self-motion

surface. A non-escaping spiral, depicted in Fig. 3, has a

parameterized equation of the form

" (7)
r = 7¢

where v is the velocity along the spiral, r and ¢ are the
polar coordinates of the spiral, and 7 controls the distance

between successive rotations. Since this particular spiral

passes within a controlled distance from every point in the

plane, when it is transformed onto the self-motion surface
it will tend to fill the surface. The iterative transformation

procedure from parameter to configuration space is given

by
t_ = sin(¢)_,,_l + cos(¢)_n + J+(z* - x) (8)

where T)n-1 and vn are orthogonal unit vectors that span

the null-space of the manipulator's Jacobian evaluated at

the current configuration. The vectors vn and 9n-1 can be

computed as the singular vectors from the singular value

decomposition of J. Since 9,-1 and _ are not unique,
one must be careful to ensure that vectors chosen are the

ones nearest to those of the previous iteration. For ex-

ample, if the current singular vectors are represented by

9n-1 and _)n then once (8) is evaluated and used to up-

date the manipulator configuration, the new Jacobian will
^_ and "_ Toin general have different singular vectors vn_ 1 vn.

accurately reflect the continuous rotation of these two vec-
tors as the null space rotates, one can use the following set

of equations

where

At

v,__ 1 = ATbx + (1- A)tb2^, (9)
v. = (1- X)_l - Xd_2

(10)
= +

where _1 and d_2 are any unit vectors that span the new

null space. Note, that the sign should be examined to

select the smallest resulting rotation. An ideal algorithm

for computing the SVD that automatically calculates the

continuous rotation of the null space is presented in [11].

An illustration of this technique for mapping out a two-

dimensional self-motion surface is presented in Fig. 4.
This figure shows a three-dimensional projection of the

five-dimensional configuration space for a PUMA used in

three-dimensional positioning tasks.

III. JOINT CONSTRAINTS TO GUARANTEE FAULT TOL-

ERANCE

As was indicated in the previous section, a workspace

location, x*, may be guaranteed to be reachable regardless

of joint failures if the manipulator is constrained to oper-

ate within the associated self-motion manifold's bounding
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Fig. 3. A linearly increasing spiral passes within a controlled

distance from every point in the plane, and thus it may be used to

estimate the bounds of a 2D surface in an n-dimensional space.
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Fig. 5. The set of joint configurations for a kinematicallyredundant

manipulator that yield identical end-effector positions is a surface in

an n-dimensional space. A spiral traced out on the tangent plane

defined by the null-vectors of the manipulator's Jacobian reveals

the shape of the self-motion surface for any given point. Here, two

distinct points are shown, one having a large self-motion surface, and

one with a small one as indicated by their bounding boxes.
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box. This is evident since regardless of which joint fails,

by definition there exists at least one configuration on the
self-motion manifold associated with z* that corresponds

to the joint value at which the joint failed. Therefore,

the problem of maintaining the fault tolerance of a given
critical location reduces to that of maintaining joint limits

specified by the bounding box of the self-motion manifold

for that location. This problem was first solved in [8] by

using (4) and selecting z to result in motion away from

the joint limits. The vector z may be computed by com-

bining smooth functions so that the joint limits only effect
the manipulators motion when it is near the constraint

boundaries [10].

To maintain a high degree of fault tolerance, one

would like to locate critical task points in locations where

the self-motion manifold bounds are large. For instance
jigs and fixtures in general should not be placed near the

-0.6 ::____'_2 workspace boundaries since joint failures will render such

-0.8 34"egions unreachable. Although the tedious chore of mea-

3 suring the size of the self-motion manifolds throughout the
workspace could be done off-line, it has been found that

-t.2 2.4 03 the local measure of fault tolerance, k fro(O), is a good

Fig. 4. 3D Slice of the spiral traced out on the self-motion surface

in joint space for a PUMA 560 robot used only for positioning.

indicator of size of the self-motion manifolds.

To insure that a task defined by a sequence of crit-

ical points may be performed regardless of joint failures,

each point must be analyzed, the associated range of its
self-motion surface determined, and then the intersection

of the ranges for each point computed to determine the

required joint constraints (see Fig. 5). Finally, it must be
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verifiedthat themanipulatorisableto reacheachcritical

point while maintaining these constraints.

In summary, the following procedure is used to guar-

antee the failure tolerance of a redundant manipulator

with respect to a critical task. First, the workspace is an-

alyzed using the local failure tolerance measure (5). Sec-
ond, critical task are placed in regions of the workspace

that have high values of local failure tolerance. Third,

the bounding boxes for the self-motion surfaces associated
with each critical location are determined using the pro-

cedures outlined in section II. Fourth, the intersection of

the bounding boxes is calculated to determine the required
constraints. Fifth, each critical workspace point is checked

to determine if the manipulator is capable of positioning
it's end-effector at the desired location while maintaining

the constraints imposed by the intersection of all bounding

boxes. Finally, (4) is used with the joint limit constraints
to insure the failure tolerance of the manipulator for the

specified task.

IV. CONCLUSIONS

This paper has developed a method for insuring the
failure tolerance of kinematically redundant manipulators.

In this work, a redundant manipulator is considered to be

fault tolerant with respect to a given task if it is guaran-

teed to be capable of performing the task after any one

of its joints has failed and is locked in place. Methods

were developed for analyzing the manipulator's workspace

to find regions which are inherently suitable for critical
task due to their relatively high level of failure tolerance.

Then, the required constraints were imposed on the range

of motion of the manipulator to guarantee that a given

task is completable regardless of arbitrary joint failures.
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