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Abstract

This paper describes ControlShell, a next-generation

CASE "framework" for real-time system software de-
velopment. ControlShell's well-defined structure, graph-
ical tools, and data management provide a unique

component-based approach to real-time software gener-

ation and management. ControlShell is designed specif-
ically to enable modular design and implementation of
real-time software. By defining a set of interface specifi-
cations for inter-module interaction, ControlShell pro-
vides a basis for real-time code development and ex-

change.

ConlrolShell includes many system-building tools, in-
cluding a graphical data flow editor, a component data

requirement editor, and a state-machine editor. It also
includes a distributed data flow package, an execution

configuration manager, a matrix package, and an object
database and dynamic binding facility. ControlShell is

being used in several applications, including the control
of free-flying robots, underwater autonomous vehicles,
and cooperating-arm robotic systems.

This paper presents an overview of the ControlShell

architecture, and details the functions of several of the
tools.

1 Introduction

Motivation System programs for real-time command
and control are, for the most part, custom software.

Emerging operating systems [1, 2, 3, 4, 5] provide
some basic building blocks--scheduling, communica-
tion, etc.--but do not encourage or enable any struc-

ture on the application software. Information binding
and flow control, event responses, sampled-data inter-
faces, network connectivity, user interfaces, etc. are all
left to the programmer. As a result, each real-time sys-
tem rapidly becomes a custom software implementation.

With so many unique interfaces, even simple modules
cannot be shared or reused.

An effective real-time framework must create a pro-

gramming environment that facilitates sharing and reuse
of real-time program modules. At a minimum, this re-

quires providing interface specifications and data trans-
fer mechanisms. The framework must also provide ser-

vices and tools to combine modules and build systems
from reusable components. Finally, the framework must

meet the many challenges unique to real-time comput-
ing. For example:

• Real-time code must be able to react to external

temporal events.

• The real-time execution environment is fundamen-
tally multi-threaded and asynchronous.

• Real-time systems are usually composed of several

different layers of control, each with different char-
acteristics. For instance, strategic-level command
and low-level servo control must be blended into a

smoothly-operating system.

• Real-time systems must handle changing condi-

tions, often requiring switching between drastically
different modes of operation.

• Real-time systems are often physically distributed.
In the simplest case, an operator control station
may be remotely situated. More complex systems

are comprised of many interacting distributed real-
time and non-real-time subsystems.

All these challenges must be efficiently and smoothly
handled by the architecture.

1.1 ControlShell's Solutions

Component-Based Design ControlShell is specifi-
cally designed to address these issues. ControlShell pro-
vides interface definitions and mechanisms for building

real-time code modules. ControlShell also provides basic
data structure specifications, and mechanisms for bind-

ing data with routines and specifying data-flow require-
ments. These two critical features make simple generic
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packages(knownascomponents) possible. ControlShell
systems are built from combinations of these compo-
nents.

An extensive library of pre-defined components is pro-
vided with the system, ranging from simple filters and

controllers to complex trajectory generators and mo-

tion planning modules. New or custom components are
easily added to the system via the graphical Compo-

nent Editor (CE). The Component Editor allows simple
specification of data interchange requirements. Code is
automatically generated to permit instancing the new

component into the system.

Graphical CASE System-Building Tools Con-
trolShell also provides a set of powerful development
tools for building complex systems. Building a system is
accomplished by connecting components within a graph-

ical Data Flow Editor (DFE). The data flow editor re-
solves the system data dependencies and orders the com-

ponent modules for most efficient execution. Radical
mode changes are supported via a "configuration man-

ager" that permits quick reconfiguration of large num-
bers of active component routines.

Real-time systems also require higher-level control
functions. ControlShell's event-driven finite state ma-

chine (FSM) capability provides easy strategic control.
The state machine model features rule-based transition

conditions, true callable sub-chain hierarchies, task syn-
chronization and event management. A graphical FSM

editor facilitates building state programs.

Real-Time System Services To provide support

for real-time distributed systems, ControlShell includes
a network connectivity package known as the Net-

work Data Delivery Service (NDDS). NDDS provides
distributed data flow. It naturally supports multiple

anonymous data consumers and producers, arbitrary
data types, and on-line reconfiguration and error recov-

ery.
ControlShell also offers a database facility, direct sup-

port for sampled-data systems, a full matrix package,
and an interactive menu system. Figure 1 presents
an overview of the ControlShell toolset and design ap-

proach.

2 Relation to Other Research

There are two quite different issues in real-time software

system design:

• Hierarchy (what is communicated)

• Superstructure architecture (how it is communi-
cated)

Several efforts are underway to define hierarchy speci-
fications; NASREM is a notable example [6]. Control-

Shell makes no attempt to define hierarchical interfaces,

\
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Figure 1: ControlShell Design Process

The ControlSheJJ system designer uses the many powerful

tools, system services, and prebuilt //brary components to
construct a modular system.

but rather strives to provide a sufficiently generic soft-
ware platform to allow the exploration of these issues.
As such, this work takes a first step--defining the ar-

chitecture superstructure (control and data flow mech-

anisms).
Several distributed data-flow architectures have been

developed, including CMU's TCA/X [7, 8], Rice Uni-
versity's TelRIP [9], and Sparta's ARTSE [10]. These

provide various levels of network services, but do not
address repetitive service issues or resolve multiple data-

producer conflicts in a symmetric robust "stateless"
architecture as does the ControlShell NDDS system

(see [11] for details). Also, they are not integrated
within a general programming system.

Recently, more sophisticated programming environ-
ments have begun to emerge. For example, ORCAD [12]
and COTS [13] are specialized robotics programming
environments. Two commercial products, System Build
with AutoCode from Integrated Systems, Inc. [14], and
SIMULINK with C-Code Generation from the Math-

Works, Inc. [15] are sophisticated control development
environments. They offer easy-to-use rapid control sys-

tem prototyping. They are not, however, architec-
tures well suited to developing complex multi-layer dis-
tributed control hierarchies.

Implementation Experience ControlShell evolved
from many years of research with real-time control sys-
tems. It was first developed for use with a multiple-

arm cooperative robot project at Stanford University's
Aerospace Robotics Laboratory[16, 17, 18]. From this

start, ControlShell spread to become the basis for more
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than20researchprojectsinadvancedcontrolsystemsat
Stanford.Amongthesewereprojectsto studythecon-
trol of flexiblestructures,adaptivecontrol,controlof
mobilerobots(includingmultiplecoordinatedrobots),
andhigh-bandwidthforcecontrol[19,20,21,22,23,24].
Morerecently,afewindustrialsitesandtwoNASAcen-
tershavebegunexperimentingwith ControlShell ap-
plications [25, 26]. ControlShell is now being jointly

developed by Stanford University and Real-Time Inno-
vations, Inc. It is supported under ARPA's Domain-

Specific Software Architectures (DSSA) program.
This continuous migration from specific, working ap-

plications to wider spectrums of use is the key to usable

generality. These applications continue to drive Control-
Shell's growth. To our knowledge, ControlShell is the
only integrated framework package combining transpar-
ent networking, component-based system description, a
state machine model, and a run-time executive.

3 Run-Time Structure

Some of the major system modules are shown in Fig-

ure 2. As shown in the figure, ControlShell is an open
system, with application-accessible interfaces at each

level. The figure is organized (loosely) into data and
execution hierarchies.

At the lowest layer, ControlShell executes within the
VxWorks real-time operating system environment. The

simple base class known as CSModules is the building
block for most executable constructs. Organizations of
these modules, into lists, menus, and finite state ma-
chines form the core executable constructs. Users build

useful execution-level atomic objects called components
by defining derived classes from CSModules and bind-

ing them through the on-line data base to data matrices
from the CSMat package. High-level graphical editors
speed component definition, data flow specification and

state machine programming. Network connectivity is
provided by NDDS for all application modules.

4 Data Flow Design

Many real-time systems contain sampled-data subsys-
tems. Here, we define a "sampled-data" system as any
system with a clearly periodic nature. Common exam-

ples (each of which have been implemented under Con-
trolShell) are digital control systems, real-time video im-

age processing systems, and data acquisition systems.
Each of these is characterized by a regular clock source.

Providing an environment where sampled-data pro-
gram components can be interchanged is challenging.

These programs have routines that must be executed
during the sampling process, routines to initialize data
structures (or hardware) when sampling begins, and per-
haps to clean up when sampling ends. Further, many
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Figure 2: Run-Time Structure

ControlShell's open architecture provides many powerful ser-

vices, while allowing application code free access to the un-
derlying structures.

routines are dependent on knowledge of the timing pa-
rameters, etc. Although they may interact--say by pass-

ing data--sampled-data program components are often
relatively independent. Requiring the application code

to call each module's various routines directly destroys
modularity.

4.1 Components

The component is the fundamental unit of reusable data-
flow code in ControlShell. Components consist of one or

more sample modules derived from CSModules. Sample
modules have several pre-defined entry routines, includ-
ing:

Routine When executed

execute

stateUpdate

enable

disable

startup

shutdown

timingChanged
reset

terminate

Once each sample period

After all executes are done

When this module is made active

When it is removed from the active
list

When sampling begins
When sampling ends
When the sample rate changes
When the user types "reset", or calls
CSSampleReset
When the module is unloaded

Thus, a motor driver component might define a
startup routine to initialize the hardware, an execute
routine to control the motor, and a shutdown routine

to disable the motors if sampling is interrupted for any

reason. In addition, if any of its parameters depend on
the sampling rate, it may request notification via a tim-
ingChanged method. By allowing components to attach
easily to these critical times in the system, ControlShell

defines an interface sufficient for installing (and there-

fore sharing) generic sampled-data programs.
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Building Components: The Component Editor

An easy-to-use graphical tool called the component edi-

tor (CE) assists the user in generating new components
and specifying their data-flow interactions. The com-

ponent editor defines all the input and output data re-
quirements for the component, and creates a data type
for the system to use when interacting with the com-

ponent. The tool contains a code generator; it auto-
matically generates a description of the component that
the Data-Flow Editor can display (see below), and the

code required to install instances of the component into
ControlShell's run-time environment.

4.2 Execution Lists

An execution list is simply a dynamically changeable, or-

dered list of sample modules to be sequentially executed.
The active set of modules on a list can be changed any-

time. In fact, lists may drastically change their contents
during system mode changes.

Execution lists may be sorted to provide automated

run-time execution scheduling to resolve data dependen-
cies. More specifically, the modules are sorted so that
data consumers are always preceded by the appropriate

data producers (see Figure 3). The system uses the spec-
ifications of the data flow requirements for each compo-
nent to sort the dependencies and order the list. A side
benefit of the sorting process is the error-checking that

is performed to insure consistent data flow patterns.

Sample

It

_=.(A2DRead)_
positions,velocities

-_Controller(

torques

Figure 3: Dependency-Sorted List

Dependency-sorted execution fists provide automatic run-
time sorting by data dependencies.

Sample Habitats ControlShell provides a named
sampled-data environment, known as a sample habitat.

A sample habitat encapsulates all the information and
defines all the interfaces required for sampled-data pro-
grams to co-exist. It also contains routines to control

the sampling process. For example, a module installed

into a sample habitat can query its clock source and
sample rate, start and stop the sampling process, etc.

Each sample habitat contains an independent task
that executes the sample code. The task is clocked by

the periodic source (such as a timer interrupt). Special
components are provided to interface between habitats,

allowing multi-rate controller designs.

4.3 Building Systems: The DFE Editor

Building systems of components is made simple by the
graphical Data-Flow Editor (DFE). The DFE reads de-

scription files produced by the component editor, and
then allows the user to connect components in a friendly

graphical environment. It allows specification of all the
data connections in the system, as well as reference

inputs--gains, configuration constants and other param-
eters to the individual components. An example session
is depicted in Figure 4.

Figure 4: Data-Flow Editor

The data-now editor builds collections of components into

an executing system.

5 Configuration Management

Complex real-time systems often have to operate under

many different conditions. The changing sets of condi-
tions may require drastic changes in execution patterns.

For example, a robotic system coming into contact with
a hard surface may have to switch in a force control al-

gorithm, along with its attendant sensor set, estimators,
trajectory control routines, etc.

ControlShell's configuration manager directly sup-
ports this type of radical behavior change; it allows en-

tire groups of modules to be quickly exchanged. Thus,
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differentsystempersonalitiescanbeeasilyinterchanged
duringexecution.Thisisa greatboonduringdevelop-
ment,whenanapplicationprogrammermaywish,for
example,to quicklycomparecontrollers(SeeFigure5).
It isalsoofgreatutility inproducingamulti-modesys-
temdesign.Byactivatingthesechangesfromthestate-
machinefacility(seebelow),thesystemisabletohandle
easilyexternaleventsthat causemajorchangesin sys-
tembehavior.

Configuration Hierarchy The configuration man-
ager essentially creates a four-level hierarchy of module
groupings. Individual sample modules form the low-

est level. These usually implement a single well-defined
function. Sets of modules, called module groups, com-

bine the simple functions implemented by single mod-
ules into complete executable subsystems.

Each module group is assigned to a category. One
group in each installed category is said to be active,

meaning its modules will be executed. Finally, a config-
uration is simply a specification of which group is active
in each category.

The user (or application code) can then easily switch
controllers by changing the active module group in the

"controller" category.

Now suppose further that the controllers require a
more sophisticated sensor set. A category named "sen-

sors" may also be defined, perhaps with module groups
named "endpoint" and "joint". The highest level of the

hierarchy allows the user to select an active group from
each category, and name these selections as a configu-
ration. Thus, the "JointPD" configuration might con-
sist of the "joint" sensors and the "PD" controller. The

"endptLQG" configuration could be the "endpoint" sen-
sors and the "LQG" controller.

Category and Group Specification This subdivi-
sion may seem complex in these simple cases. However,

it is quite powerful in more realistic systems. It has

been shown to be quite natural in applications rang-
ing from a vision-guided dual-arm robotic system able
to catch moving objects [16] to flexible-beam adaptive

controllers [27].

Assigning modules to groups and groups to categories
is made quite simple with the ControlShell graphical
DFE editor's "configuration definition" window, shown
in Figure 6. New categories are added with the click

of a button. To create a module group, the user sim-
ply names a group, and then clicks on the modules in

the data-flow diagram that should belong to that group.
The blocks are color-coded to relate the selections back
to the user.

Figure 5: Configuration Manager

Configurations can be swapped in or out under program or

menu control. This provides flexible run-time reconfigura-

tion of the execution structure.

Example As a simple example, consider a system

with two controllers: a proportional-plus-derivative con-
troller named "PD", and an optimal controller known
as "LQG". Suppose the PD controller requires filtered

inputs, and thus consists of two sample modules: an in-
stance of the PDControl component and a filter compo-
nent. These two components would comprise the "PD"

module group. The "LQG" controller module group
may also be made up of several components. Both of
these groups would be assigned to the category "con-
trollers".
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Figure 6: Configuration Definition

Configurations are easily defined within the DFE graphical

in terrace.
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6 Finite State Machines

A real-time system in the real world must operate in
a complex, event-driven environment. With only a se-

quential programming language, the burden of manag-
ing and reacting to events is left to the programmer.

The Finite State Machine (FSM) module is designed

to provide a simple strategic-level programming struc-
ture that also assists in managing events and concur-

rency in the system. The FSM module combines a

non-sequential programming environment with natural
event-driven process management. With this structure,
the programmer is actively encouraged to divide the
problem into small, independently executing processes.

To utilize the FSM module, the programmer first
describes the task as a state transition graph. The

graph can be directly described within ControlShell's
graphical FSM editor (see Figure 7). Each transition--

represented by an arrow in the graph--specifies a start-
ing state, a boolean relation between stimuli that causes
the transition, the CSModule to be executed when the

transition occurs, and a series of "return code-next
state" pairs that determine the program flow.

The FSM model is quite general; it supports rule-

based transition conditions (reducing the number of
states in complex systems), true callable sub-chains of
states (so libraries of state subroutines can be devel-

oped), wild-card matching (so unexpected stimuli can
be processed), global matching (allowing easy error pro-
cessing), and conditional succession (so state programs

may easily branch). Transitions are specified as boolean
relations of three types of stimuli: transient, latched,
and conditional. Transient stimuli have no value, and
exist only instantaneously. Latched stimuli also have

no value, but persist until some transition expression
matches. Condition stimuli have string values; they per-

sist indefinitely and thus represent memory in the sys-
tem. Thus, the transition condition "Object = Visible

AND Acquire" might cause a system to react to an ac-
quisition command from a high-level controller. Provid-

ing these three stimuli types allows combination of both
"system status" and "event" types of asynchronous in-
puts into easily-understood programs.

The FSM module takes advantage of the atomic

message-passing capability of modern real-time kernels
to weave the incoming asynchronous events into a single

event stream. Any process can call a simple routine to
queue the event; the FSM code spawns a process to ex-
ecute the resulting event stream. The result is an easy-
to-use, yet powerful real-time programming paradigm.

7 Data Control and Binding

Most data in a ControlShell application is embodied
in CSMais. A CSMat is a named matrix of floating-

point values. Each row and column of the matrix op-

Figure 7: Finite State Machine Editor

State transition graphs allow easy ¢isualizatJon of multi-step

operations; this example is a (simplJtied) program to catch a

moving object with a duM-arm manipulator.

tionally contains a field name and a units specification.
A complete real-time matrix mathematics utilities pack-
age is included. Components may combine multiple CS-
Mats into structures for efficient reference and parame-

ter passing.
The entire control hierarchies are created and bound

to the correct data objects at run-time. The system

is built from the graphically-generated description files
produced by the DFE and FSM editors. This dynamic

binding paradigm is very powerful--it combines the con-
venience of automatic system building with the flexibil-

ity of a dynamically changeable system. Thus, it pro-
vides the features of a full code generation without the
pre-compiled inflexibility.

To support this dynamic binding, ControlShell incor-

porates a "linking" database facility. All instances of
each data object (such as CSMats)--and each control

construct (such as execution lists)--are entered into the
database upon creation. The database allows "refer-
ence before creation" semantics for many object types;

if a requested object is not in the database (i.e. it does
not exist), an incomplete (e.g. zero-sized) object will

be created by the database itself. This capability allows
considerable flexibility at run-time; modules may, for in-
stance, specify dependencies on data sets that do not yet
exist, etc. Verification routines insure that the system

is consistent before actual "live" execution begins.

8 Network Connectivity

ControlShell is integrated with a network connectiv-

ity package called the Network Data Delivery Service
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(NDDS) [ll]. NDDS is a novel network-transparent 
data-sharing system. NDDS features the ability to han- 
dle multiple producers, consumer update guarantees, 
notifications or “query” updates, dynamic binding of 
producers and consumers, user-defined data types, and 
more. 

The NDDS system builds on the model of information 
producers (sources) and consumers (sinks). Producers 
register a set of data instances that they will produce 
and then “produce” the data at their own discretion. 
Consumers “subscribe” to updates of any data instances 
they require. Producers are unaware of prospective con- 
sumers; consumers are not concerned with who is p r e  
ducing the data they use. Thus, the network configura- 
tion can be easily changed as required. NDDS is a sym- 
metric system, with no “special” or “privileged” nodes 
or name servers. All nodes are functionally identical and 
maintain their own databases. The routing protocol is 
connectionless and “quasi-stateless1” ; all data producer 
and consumer information is dynamically maintained. 
Thus dropped packets, node failures, reconfigurations, 
over-rides, etc. are all handled naturally. 

This scheme is particularly effective for systems (such 
as distributed control systems) where information is of 
a repetitive nature. NDDS is an efficient, easy-to-use 
distributed data-sharing system. Figure 8 illustrates the 
use of NDDS within a cooperating-arms robot system 
(see [24]). 

4 1  

Figure 8: 
NDDS provides a network ”backplane”. Each module can 
easily share data with any other module. The individual 
connections are handled transparently by the system. 

Network  D a t a  Delivery Service 

‘The databases a t  each node cache some state for efficiency, 
but all information decays over time. 

9 Conclusions 
This paper has presented a brief overview of the ca- 
pabilities of the ControlShell system. ControlShell is 
designed-first and foremost-to be an environment 
that enables the development of complex real-time sys- 
tems. Emphasis, therefore, has been placed on a clean 
and open system structure, powerful system-building 
tools, and inter-project code sharing and reuse. 
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