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Summur_v

Three terms in the Reynolds-stress equation need modeling; they are the turbulent diffusion

tensor, the dissipation rate tensor and the velocity-pressure-g,adient correlation tensor. Since the

diffusion term is of higher order compared to the dissipation rate and velocity-pressure-gradient

terms, its model does not need modification in the near-wall region. Numerous high-Reynolds-

number models are available for the other two terms. There is considerable agreement on how to

improve the near-wall behavior of the dissipation rate tensor, because very near the wall viscous

diffusion exactly balances viscous dissipation. On the other hand, there is not much agreement on

the proper near-wall modeling of the velocity-pressure-gradient correlation tensor. If the near-wall

modifications are to vanish away from the wall, the high-Reynolds-number closure of the

Reynolds-stress equations should be recovered exactly. Therefore, near-wall modifications

proposed for the velocity-pressure-gradient correlation tensor would depend on the choice of the

model adopted for the pressure strain part of this term.

Near-wall modifications to the different pressure-strain models have been proposed by

various researchers. However, none has been as thoroughly tested as the proposal put forward by

Zhang (1993), who has validated the near-wall model against a wide variety of turbulent flows

ranging from simple channel flows to compressible boundary layers at a free stream Mach number

greater than 10. His proposal was based on the Launder et al. (1975) or LRR model for the

pressure-strain term and the near-wall corrections for this model derived by Lai and So (1990). In

order to achieve good correlation with measurements, Zhang (1993) found that an additional term

proportional to the product of the turbulent kinetic energy and the strain rate tensor was required in

the near-wall proposal of Lai and So (1990). Furthermore, the coefficient modifying this

additional term has to be made parametric in the flow Reynolds number and the free stream Mach

number and this led to three different functional forms for the coefficient depending on whether the

flow to be modeled is an internal flow, an external flow or a compressible flow. Zhang (1993)
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also found that one of the damping function required modification if adverse pressure gradient

flows were to be calculated correctly.

In this research, a near-wall second-order closure based on the Speziale et al. (1991) or

SSG model for the pressure-strain term is proposed. Unlike the LRR model, the SSG model is

quasi-nonlinear and yields better results when applied to calculate rotating homogeneous turbulent

flows. An asymptotic analysis near the wall is applied to both the exact and modeled equations so

that appropriate near-wall corrections to the SSG model and the modeled dissipation-rate equation

can be derived to satisfy the physical wall boundary conditions as well as the asymptotic near-wall

behavior of the exact equations. Two additional model constants are introduced and they are

determined by calibrating against one set of near-wall channel flow data. Once determined, their

values are found to remain constant irrespective of the type of flows examined. The resultant

model is used to calculate simple turbulent flows, near separating turbulent flows, complex

turbulent flows and compressible turbulent flows with a free stream Mach number as high as 10.

In all the flow cases investigated, the calculated results are in good agreement with data. This new

near-wall model is less ad hoc, physically and mathematically more sound and eliminates the

empiricism introduced by Zhang (1993). Therefore, it is quite general, as demonstrated by the

good agreement achieved with measurements covering a wide range of Reynolds numbers and

Mach numbers.
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I. Introduction

The need to introduce near-wall corrections to the pressure-strain term in the modeled

Reynolds-stress equation was first recognized by Rotta (1951) and later formalized by Launder et

al. (1975). Following the arguments of Rotta (1951), Launder et al. (1975) made a proposal,

which has two contributions to the near-wall effect, to account for the disturbances created in the

turbulence field by the reflection of the fluctuating pressure in the immediate vicinity of a solid

boundary. One contribution corresponded to the reflected-wall influence of the slow part of the

pressure-strain model while another contribution accounted for a similar influence of the rapid part.

The proposal of Launder et al. (1975), however, failed to satisfy the physical wall boundary

conditions for the mean velocities and Reynolds stresses. Consequently, some kind of wall

functions have to be invoked in the numerical solution of these modeled equations. Since then,

numerous proposals have been made to remedy this shortcoming, so that the governing equations

can be integrated directly to the wall. Among the proposals put forward, the models of Hanjalic

and Launder (1976), Prud'hommc and Elghobashi (1983), Kebcdc et al. (1984), So and Yoo

(1986), Shima (1988), Launder and T_lcpidakis (1988), Launder and Shima (1989), Lai and So

(1990) and T_lepidakis (1991) can be mentioned. Some of thesc models have even been validated

against complex turbulent flows. Three successful examples can be cited; these are the calculation

of a direct numerical simulation (DNS) of a fully developed turbulent flow in a curved channel by

So et al. (1991a), the curved pipe flow calculations of Lai et al. (1991a, b) and the rotating pipe

flow modeling of Tselepidakis (1991).

A systematic evaluation of the asymptotic behavior of these near-wall second-order models

has been carried out by So et al. (1991b). The analyses were compared with the behavior of the

exact equations. Also, a comparison of the models' ability to replicate a low-Reynolds-number

plane channel flow was performed. In addition, the models were evaluated for their ability to

predict the turbulence statistics and the limiting behavior of the structrue parameters compared to

DNS data of a fully developed turbulent channel flow (Kim et al. 1987; Mansour et al. 1988).

With the exception of the models proposed by Launder and Shima (1989) and Lai and So (1990),



noneof the modelsexaminedwereasymptoticallycorrect. Although thesetwo modelsperform

better thanothersin their predictionsof themeanflow andturbulencestatistics,theytoo fail to

reproducethelog-law correctlyandunder-predictthedistributionsof theturbulentkinetic energy,

k, and its dissipation rate, e, in the near-wall region. Also, all models examined yield avon

Karman constant, _c,quite a bit different from the accepted value of 0.41.

Two discrepancies invariably show up when these models are used to calculate simple wall-

bounded flows at low bulk Reynolds numbers. One is the poor prediction of the mean velocity in

the buffer region and this leads to an inacurate estimate of _¢. Another is the incorrect prediction of

the near-wall dissipation rate profile and its value at the wall. These two points are very well

illustrated by the comparisons of the model calculations with the DNS data of Kim et al. (1987)

shown in Figs. 1 and 2. The DNS channel flow data was obtained at a Re r = uzh/v = 180 which

corresponds to a bulk Reynolds number of about 5,600. In these plots, U + = U/u r, y+ = yur/v

and e + = ev/u 4, where U is the mean axial velocity, y is the normal wall coordinate, u r is the wall

friction velocity, h is the channel half width and v is the kinematic viscosity. Two model

calculations are shown; one labeled LS is from the model of Lai and So (1990), another designated

NWLRR is from Zhang (1993) who derived the near-wall corrections based on the Launder et al.

(1975) model minus their near-wall corrections, or the commonly labeled LRR model, and solved

the e equation of So et al. (1991c) instead of that adopted by Lai and So (1990). The reason was

to improve the prediction of the near-wall behavior of e. Indeed, the prediction of e is improved

but the calculation of the mean velocity is significantly worse than before. The NWLRR model

also gives an incorrect prediction (Fig. 3) of the flat plate boundary layer DNS data of Spalart

(1988). Among the near-wall Reynolds-stress models referred to above, not a single model can

simultaneously predict the DNS data of Moser and Moin (1987), Kim et al. (1987), Mansour et al.

(1988), Spalart (1988) and Lee and Kim (1991) correctly without having to adjust the damping

functions in the models. It seems that these poor predictions have little to do with whether the

modeled equations are asymptotically consistent. Of course, if they are not, their predictions of the

near-wall asymptotes will be very much in error. Therefore, some other factors besides asymptotic
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consistencyinfluencethepredictionsof themeanvelocity in thebuffer regionand thenear-wall

distributionof e.

It is argued that the incorrect prediction of the mean velocity could be attributed to the

performance of the velocity-pressure-gradient correlation model in the near-wall region.

Conventional modeling of this correlation term splits it into a pressure-diffusion term and a

pressure-strain term. For high-Reynolds-number flows, it is argued that the pressure-diffusion

term is small compared to turbulent diffusion and can be neglected. The model for the pressure-

strain term is formulated for homogeneous, unbounded turbulent flows with high Reynolds

numbers. The pre_nce of a wall gives rise to a reflection of the pressure fluctuations and this, in

turn, has an effect on the turbulence field. If the boundary conditions for the pressure are

homogeneous, the solution of the Poisson equation for the fluctuating pressure consists of two

parts; a rapid part and a slow (return-to-isotropy) part. However, Mansour et al. (1988) showed

that for wall-bounded flows, the inhomogeneous pressure boundary condition introduces a third

part to this solution. This is the Stokes part and is a consequence of the wall reflection of the

fluctuating pressure.

Many researchers assumed that the Stokes part is not important compared to the slow and

rapid parts. Therefore, it is usually neglected. However, the importance of this term in near-wall

flow modeling was recognized by Launder et al. (1975) and emphasized by Launder and

Tselepidakis (1991). The latter work adopted a recent near-wall second-order model and

introduced an additional near-wall correction to the pressure-strain model. They managed to

improve the prediction of the mean velocity; however, the calculation of the near-wall behavior of

the dissipation rate was incorrect. According to Zhang (1993), the near-wall prediction of the

dissipation rate could be improved by suitably modifying the dissipation-rate equation alone, while

maintaining asymptotic consistency in the near-wall region for the Reynolds stresses. Their

NWLRR calculations showed that the predicted behavior of the dissipation rate is correct near a

wall but the calculations of the mean velocity in the buffer region is very much in en'or (Fig. 1).



The wall reflection correction proposedby Launder et al. (1975) has two parts; one

correspondingto thereflected-wallinfluenceof theslow partand anothercorrespondingto the

reflected-wall influenceof therapidpartof thepressure-strainmodel. This latter contributionis

alsoreferredto asthemeanstrainpartof thenear-walleffect. In arigorousderivationof themodel

for themeanstrainpartbasedonkinematicconsiderations,Launderet al. (1975)foundthat there

shouldbetwo termsin themodel. Thefirst termwasrelatedto stressproductionwhile thesecond

term is relatedto kSij, where S/j is the strain-rate tensor. Since the second term only contributed to

the shear stress equation alone in a two-dimensional wall-bounded flow, Launder et al. (1975)

argued that it was not as important as the first term in the determination of stress anisotropy near a

wall. Consequently, the coefficient associated with the second term could be set to zero without

loss of generality.

It is precisely for the reason that the second term only contributes to the shear stress equation

that this term is expected to have an effect on the prediction of the mean velocity near a wall.

Therefore, Zhang (1993) argued for its inclusion and proceeded to modify his NWLRR model.

He labeled the modified model as LRR/WR. When the LRR/WR model was used to calculate the

DNS data of Spalart (1988), significant improvements were obtained (Fig. 3). Even then, tcwas

under-estimated by about 15%. However, the predicted e near the wall followed the DNS trend

closely even though the quantitative agreement was not as good. In spite of the slight

discrepancies shown at low Reynolds numbers, it can be argued that a near-wall model capable of

predicting both the mean velocity and the near-wall behavior of e fairly well has been deduced.

Zhang (1993) applied the LRR/WR model to calculate three different types of flows: internal

flows, external flows and compressible flows. Channel as well as Couttee flows were considered

in the internal flow category, while flat plate and near-separating boundary layers were calculated

in the external flow category. As for compressible flows, a wide range of free stream Mach

numbers and wall thermal boundary conditions, ranging from cooled wall to heated wall, were

examined. In all these comparisons, good agreement with measurements was obtained provided

that the coefficient associated with the term kSij was made to depend on the flow Reynolds number
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and Mach Number. Threedifferent functional relationswere found to be necessary;one for

internalflows, onefor externalflows andonefor compressibleflows. Furthermore,it was found

necessaryto modify thedampingfunctionusedto limit theextentof the influenceof thenear-wall

correctionsfor near-separatingflow calculations.In es_nce, thedampingfunction wasmadeto

bedependentona pressuregradientparameter.Physically,all thesemodificationsare ratherad

hoc. Therefore,thereisa needtocontinuethe_arch for a moregeneralandlessadhocapproach

to derivenear-wallcorrectionsto high-Reynolds-numbersecond-ordermodelsthat arevalid for

differenttypesof flowswith widerangingReynoldsnumbersandMachnumbers.
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II. Objectives

There are four objectives in the present research. The first objective is to search for a more

suitable model for the velocity-pressure-gradient correlation tensor to use as a base for the

derivation of the near-wall corrections. A second objective is to derive appropriate near-wall

corrections to the chosen velocity-pressure-gradient model and the associated dissipation-rate

equation. The third objective is to validate the near-wall model thus derived over as wide a range

of flow data as possible. Finally, the fourth objective is to test the model in different numerical

schemes, ranging from simple Newton iteration scheme to two-dimensional elliptic scheme to

partially parabolic three-dimensional scheme. The approaches taken to achieve these objectives are

outlined below.

Since the proposals of Rotta (1951) and Launder et al. (1975) for the slow and rapid parts of

the pressure-strain tensor, much work on pressure-strain modeling has been carried out. Their

models are essentially linear. Nonlinear models for the slow and rapid parts have been proposed,

for example, by Lumley (1978), Shih and Lumley (1985), Fu et al. (1987) and Speziale et al.

(1991). The nonlinear models of Lumley (1978) and Shih and Lumley (1985) have been primarily

developed through the use of realizability constraints while that of Speziale et al. (1991) is derived

by means of invariant tensor function theory. While the Shih and Lumley (1985) or SL model is

nonlinear in both the slow and rapid parts, the Speziale et al. (1991) or SSG model is only

quadratically nonlinear in the anisotropic tensor. Their model is formulated to be linear in the rapid

part because the energy spectra of the Reynolds stresses are linear. Speziale et al. (1992) show

that the SSG model gives the best results when it is applied to calculate a variety of turbulent flows

where DNS data are available. They have compared their results with those obtained using the

LRR model, the SL model and the Fu et al. (1987), or FLT model. Further evidence of the

superior predictive capability of the SSG model is provided by Demuren and Sarkar (1992) who

examined a number of models for their ability to calculate channel flows accurately, in particular

their ability to correctly recover the log-law and the von Karman constant, to, assuming wall

functions to satisfy the wall boundary conditions. Based on these comparative studies, it is clear
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that the SSGmodel is capableof yielding the log behaviorcorrectlyand, therefore,is themost

suitablemodel to usefor thederivationof asymptoticallyconsistentnear-wallcorrectionsto the

modeledReynolds-stressequation.

Thenear-wallcorrectionsarederivedby imposingtheconditionof asymptoticconsistencyin

thenear-wallregion. Thus,thecontributionsof theStokespartaresuitablyaccountedfor andthe

modeledequationsaremadeto behavelike theexactequations,at leastto the lowestorderof the

wall normalcoordinate. Simultaneously,theexactandmodelede equationareanalysedfor their

near-wall behavior and new near-wall correctionsare proposedthat are consistent with the

improvementsmadeto themodeledReynolds-stressequation.Thus, thenew near-wallsecond-

order model is entirely different from the NWLLR andLRR/WR modelsproposedby Zhang

(1993). It is hopedthatthis newnear-wallsecond-ordermodel,hereaftercalledPresentmodel,

will beableto mimick thenear-wall flow aswell asthe log layerbehaviorcorrectly and,at the

sametime, yield uniformly valid predictionsfor internal andexternal wall-boundedturbulent

flows, with and without adversepressuregradienteffects,coveringa wide rangeof Reynolds

numbersandMachnumbers.

Validationsof the Presentmodelaredividedinto threedifferent categories.A simple flow

categoryconsistsof internalaswell asexternalflowswhereDNSdataandaccuratemeasurements

areavailable.Specifically,thecaseschosenin thiscategoryarethechannelflow DNS dataof Kim

et al. (1987)and Kim (1991),theCouettcflow DNSdataof Leeand Kim (1991),thecombined

channel/Couetteflow measurementsof El Telbanyand Reynolds(1980, 1981),the pipe flow

measurementsof Durstet al. (1993),Schildknechtet al. (1979)andLaufer (1954),the flat plate

boundarylayerDNSdataof Spalart(1988)andtheboundary-layermeasurementsof Karlssonand

Johansson(1988)andKlebanoff (1954). Thesecondcategoryexaminedis simplecompressible

turbulent flows where the validity of the direct extension of incompressible modeling to

compressibleflows andMorkovin's (1962)hypothesisis tested. The datasetsselectedare the

adiabaticandcooledwall measurementscollectedbyFernholzandFinley(1977),thehighlycooled

wall investigationof KussoyandHorstman(1991)andtheheatedwall studyof SpinaandSmits



(1987). Finally, themodel is testedfor its ability to predictcomplexturbulentflows. Here,three

representativecomplexitiesareinvestigated.Oneis relatedto adversepressuregradienteffectsand

this is representedby theexperimentsof Samueland Joubert(1974). Another complexity is

associatedwith turbulencedrivensecondarymotionsandthis is evaluatedby comparingwith the

fully-developed squareduct flow measurementsof Lund (1977)andEppich (1982). The third

complexity testedis introducedbysystemrotationandthis is validatedagainsttheaxially rotating

pipe flow measurementsof Kikuyamaet al. (1983). Zhang(1993)hasmadecalculationsof most

of thesecases.For thosecasesthat Zhang(1993)hasnot cardedout, calculationswill alsobe

madeusingtheLRR/WR model. This way,acompletecomparisonof thetwo near-wallmodels

canbemadeandtheir prosandconscanbeassessed.

The easewith which the model can be usedwith any numerical schemewithout the

introductionof anyunduenumericalinstabilityis testedby implentingit intoanumberof different

numericalschemesto solveflow problems.Forexample,fully-developedflows aresolvedusing

either a time march technique(Soand Sarkar1994)or a Newton iterationscheme(Lai andSo

1990),becausethegoverningequationscaneitherbe reducedto hyperbolic type or to ordinary

differential equations. Thesetechniquesareusedto solve simple internal flow problems. A

paraboliccodebasedon thecomputerprogramof AndersonandLewis (1971)is usedto calculate

boundary-layer flows, incompressibleas well as compressible. On the other hand, a two-

dimensionalelliptic code(Yoo andSo 1991)is usedto calculatedevelopingflow in anaxially

rotating pipe. Finally, thepartially parabolicthree-dimensionalcodeof Lai et al. (1991a,b) is

modified to calculatetheflow in asquareduct. Therefore,themodelis testedin simpleaswell as

complicated numerical codes. The presenceor absenceof numerical instabilities in these

calculationsis an indicationof therobustnessof themodel.



III. Near-Wall Turbulence Closure Based on the SSG Model

Governing equations

Incompressible turbulent flows are governed by the Reynolds-averaged equations which can

be written in Cartesian tensor form as:

aUi
- o , (1)

axi

D U-_ _ 1 aP a2Ui a-_ uj
-- --- + V--

l)l P _Xi _Xj _Xj _Xj

(2)

where D/Dt is the material derivative, the upper case letters denote the Reynolds averaged quantities

and the lower case letters are used to represent the corresponding fluctuating part. Here, the

Einstein summation convention is followed, U, is the ith component of the mean velocity, u i is the

ith component of the fluctuating velocity, P is the mean pressure, p is the fluid density, v is the

kinematic viscosity and x i is the ith component of the coordinates. These equations need closure

because of the presence of the Reynolds stress terms, ui uj. If a Reynolds-stress or second-order

closure is invoked, the equations governing the transport of the Reynolds stresses and the

dissipation rate of the turbulent kinetic energy are given by (So et al. 1991b)

aXk aXk ] -T avj ujuk + nij eo+ Dij + - _

axk -_xkJ
(3)

- xs/+ ,,,uj + C lfF-ca +
(4)

where t_ = e - 2v(_)ff / _)2, F is the production of the turbulent kinetic energy, k and C e = 0.12,

Cet = 1.50, Ce2 = 1.83 are constants introduced in the modeling of the e-equation. The function

is identically zero for flows far away from a wall and is introduced to account for near-wall viscous

effects. Its specific form will depend on the near-wall models formulated for the Reynolds-stress

equation. Therefore, only _ and D r, H0, eo, which are the turbulent diffusion tensor, the velocity-
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pressure-gradientcorrelationtensorandthedissipationratetensor,respectively,needmodelingin

(3) and (4).

Near-wall SSG model

A fairly complete review of near-wall Reynolds-stress closures has been given by So et al.

(1991b). Altogether, eight models were reviewed. The models reviewed are fairly similar in that

they are based on the LRR model and its variations. There are very little differences in the

modeling of the turbulent diffusion of Reynolds stresses because the term is of order y3. As a

result, this term does not need near-wall correction and the model used by Launder et al. (1975) for

this term is adopted by most researchers. For high-Reynolds-number flows, the viscous

dissipation rate tensor is usually modeled by invoking the assumption of equilibrium turbulence.

This assumption cannot satisfy the no slip condition at the wall, therefore, for near-wall flows, the

high-Reynolds-number model needs correction. Different forms of the near-wall correction to this

term has been proposed by various researchers. However, the few differences that exist among

these proposals are not sufficiently great to cause significant discrepancies between the calculated

results. Therefore, the proposal of Lai and So (1990), derived by imposing the constraints of

Launder and Reynolds (1983), can be adopted for this term. The models for the turbulent

diffusion tensor and the viscous dissipation rate tensor can now be written as:

= -- + ujul-- + ukut , (5)
Dij OXk [ _X l _X l _X l ]]

Eij = 2E t_ij + fwl _ff [_k- t_ij + uiuj+uiuktlknJ+l + 3-dkUlujuknkni+ninjukulnknl]nknl/ 2k , (6)

where n i = (0, 1, 0) is the wall unit normal.

The major difference comes in the modeling of the velocity-pressure-gradient correlation

tensor. In most approaches, this tensor is split into two parts; a pressure diffusion part and a

pressure strain part. The pressure diffusion part is generally neglected in high-Reynolds-number

modeling. When near-wall models are devised, most researchers adopt this partition of the
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velocity-pressure-gradientcorrelationtensor,and,seek a near-wall correction to the high-Reynolds-

number model for the pressure strain part. The pressure diffusion part is again neglected. In view

of this, the near-wall corrections devised for the pressure strain part will depend on the models

adopted for this term. Most near-wall corrections proposed are derived based on the LRR model.

The modeled terms consist of a slow part, or a return-to-isotropy part, and a rapid part which

accounts for the effects of mean strain. Although this model gives good predictions of the flow

behavior for a wide variety of simple shear flows at high Reynolds numbers, its performance for

some types of flows, such as rotating homogeneous turbulent flow, near-separating flow, back-

step flow, swirling flow, three-dimensional wall jet flow and simple flows at low Reynolds

numbers, is not very satisfactory (see Figs. 1 - 3). For example, swirling flow could give rise to a

stabilizing or a destabilizing effect on the flow, depending on whether the centrifugal forces created

by flow rotation or the extra strain rates, that lead to additional turbulence production, are more

pronounced. Therefore, if swirling flows are to be calculated correctly, the competing effects of

the centrifugal forces and the extra strain rates have to be accounted for in the turbulence models.

As for the effects of wall proximity near a wall, Launder et al. (1975) suggested the

following remedy. They argued that the rapid variation of the mean velocity near a wall could not

have been the only factor to affect near-wall turbulence. Instead, they suggested that the wall

proximity effects tend to increase the anisotropy of the normal stresses and diminish the shear

stress. Furthermore, the wall influence is even felt in regions where the mean strain rates are

negligible. Consequently, they proposed to modify their LRR model to include wall-proximity

effects. Through a rigorous kinematic consideration, they found that there are two contributions to

their corrections. One corresponds to the reflected-wall effects of the slow part and another to the

reflected-wall effects of the rapid part. However, their corrections fail to satisfy the physical wall

boundary conditions and are not asymptotically correct. Therefore, the resultant modeled

equations cannot be integrated directly to the wall and again some kind of wall functions have to be

invoked. Besides, their corrections give rise to a global effect even though they were supposed to

correct for wall-proximity effects. On the other hand, the proposal of Lai and So (1990) to enforce
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asymptoticconsistencyoffers a viable alternative. Their derived functional form is similar to that

obtained by Launder et al. (1975); however, the coefficients modifying the terms are different.

The major difference is that their corrections render the modeled equations valid all the way to the

wall and there is no need to invoke wall functions for the numerical solutions of these equations.

Furthermore, if swirling and other complex flows are to be calculated correctly, the model for the

velocity-pressure-gradient correlation term should be able to account for rotational effects in the

flow. According to Speziale et al. (1991), the inadequacy of the LRR model could be attributed to

its linear behavior. Therefore, they proposed a modification which includes some nonlinear terms

in the anisotropic tensor. The result is the SSG model for the pressure strain term. Since this

model gives better prediction of rotating and other homogeneous turbulent flows (Speziale et al.

1992), the present work proposes to adopt this high-Reynolds-number mode/as base to derive a

near-wall model for/-/,_ so that wall proximity effects and pressure diffusion near a wall are

accounted for in the model.

An asymptotic approach similar to that put forward by Lai and So (1990) is used to derive the

near-wall correction to the SSG model. In order to ensure that the near-wall correction dies out far

away from the wall, a damping function based on the turbulent Reynolds number is proposed for

the near-wall correction term. Without going into details, the near-wall SSG model can be written

as:

-{2fIE + C_P_bij + C2EIbikbk j - _l-l¢_ij) - 51(eij

( . (7)

In this form, which is written differently from that given by Speziale et al. (1991), the meanings of

the individual terms can be easily identified. The first term on the right is equivalent to Rotta's

slow part, the second term is essentially the nonlinear contribution to the slow part, the third,

fourth and fifth terms are similar to the rapid part proposed by Launder et al. (1975) and the last

term is the near-wa/! correction proposed to render the mode/regular as a wall is approached. The

unknown second-order tensors in (7) are given by:
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=
= + ,

D,j +

(8a)

(8b)

(8c)

(8d)

where 2P = Pii , I7 = bijbi) , C 1 = 1.7, C 2 =4.2, C l = 1.8, C 3 = 1.3, otI = (C 4 + C5)/4, fl I =

(C 4 - C5)/4, Y1 = (2C4 - 3C3)/6, C 3 = 0.8, C 4 = 1.25 and C 5 = 0.4 are the model constants

specified by Speziale et al. (1991) and Hi7 is the near-wall correcting function which is derived to

be

1-17 : fwl [(2C1E 4- C;P_ bij - C2l_{bikbkj - _17 _ij)

+ 0_* (Pij- _"P _ij)+ 2_*k Sij]+ I1P (9)

Here, fwl is the damping function and /-/iP is a near-wall correction proposed to account for

P

pressure diffusion. The final expression derived for/7/) can be written as

-/q = --- -- V-- kt/" +

OXl _ _Xl I J OXm _ OXm ]

Two near-wall model constants, a* and y*, are introduced and they are optimized to take on values

that would give the best prediction of the near-wall asymptotes for one particular fully-developed

channel flow. Thus determined, their values are given by a* = - 0.29 and 7'* = 0.065.

The form of (9) is very similar to that proposed by Launder et al. (1975). Three

contributions to this correction can be identified. The last term Hif is to account for pressure

diffusion which is traditionally neglected in high-Reynolds-number modeling and is absent from

Launder et al.'s (1975) proposal. Without this term the modeled Reynolds-stress equation could

not be balanced at a wall. The other four terms within the square brackets are essentially similar to

those proposed by Launder et al. (1975). The first two terms correspond to the reflected-wall

effects of the slow part while the last two terms correspond to the reflected-wall effects of the rapid
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part. A major difference between(9) and that proposedby Launderet al. (1975) is in the

coefficientsmodifying thetermsandtheintroductionof thedampingfunctionqualifying theterms

within the squarebrackets. Thedampingfunction is necessaryto ensurethat theeffectsof the

near-wallcorrectionsaredecreasingasy increases.As for thecoefficientsqualifying thefirst two

terms,theyhaveto beidenticalto thosegivenin theslow partof (7) to ensurethat(7) will satisfy

the wall boundaryconditions. Therefore,their valuesareexact andcannotbe determinedby

calibration. On the other hand,the last two termsareof higherorder and arenot pivotal in

determining near-wall balance. They, however,will affect stressanisotropy near the wall.

Therefore,theircoefficientsarenotexactandcouldbedetermindthroughcalibration.

Sincethedampingfunctionis introducedinto themodelto limit theextentof theinfluenceof

the near-wall correction, it shouldvanishat a reasonabledistanceaway from the wall. It is

precisely for this reasonthat it is verydifficult to find one singledampingfunction capableof

yielding aninfluenceovera limitedy rangeoverawiderangcof Reynoldsnumbers.In thecourse

of validating this new near-wallReynolds-stressmodel,two dampingfunctionsare found to be

necessaryif different typesof flows coveringavery wide rangeof Reynoldsnumbersare to be

predictedcorrectly. Thesedampingfunctionsaregivenby

]Owl _. expl - Ret 2I tl

fwl = exp[-(-_] ,

(lla)

(lib)

where Ret = k2/v e. is the turbulent Reynolds number and A = 1 - (9/2_bijbij - 2bijbjkbki}. The

choice of the damping function depends on the flow Reynolds numbers. It is chosen so that the

damping functions will vanish in the range 100 <y+ = yur/v < 200, depending on the flow

Reynolds numbers and the type of flow considered. For example, when channel flow at Re r =

395 is calculated, (1 la) is more suitable. On the other hand, when Re T is reduced to 180, (1 lb) is

appropriate. The same trend is also found for Couette flow, pipe flow, boundary-layer flow with

and without adverse pressure gradients, compressible flow and other complex flows. It will be
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seenlater that, for mostof thecasescalculated,(1la) is used,while (1lb) is only used for three

cases where the Reynolds numbers are among the lowest in all the flow cases considered.

A similar approach is used to derive the near-wall correcting function _ for the e-equation.

Again, without going into details, the final result is

T ' (12)

= exp [-(Ret/40) 2] is a damping function to insure the disappearance of the effects ofwhere fw2

far away from a wall, and L, M, and N are model constants. Subsequent calculations show that

these constants should take on values given by L =2.25, M = 0.5 and N = 0.57. The modified

e = e - 2vk/y2 is introduced to ensure proper behavior of e near a wall. Thus modeled, (3) and

(4) are valid as a wall is approached and can be used to calculate wall bounded flows where the

boundary conditions on- uiu_i and e are given by:- uiuj = 0 and ew = 2v(_/k- / _)2. The usual no-

slip conditions at the wall are applied to the mean velocities.

Near-wall LRR/WR model

The LRR/WR near-wall model also solves (3) and (4) with the models for D_ and eq given

by (5) and (6), respectively. The differences come in C e, which is assumed to take on a value of

0.1 rather than 0.12, (7), (11) and (12). LRR/WR assumes the high-Reynolds-number LRR

model for/7_. Therefore, (7) is now given by

where C 1 = 1.5, C 2 = 0.4, a 1 = (8 + C2)/11, fll = (8C2- 2)/11, ?'1 = (30C2 - 2)/55 and again

Flier is the near-wall correcting function required to make the modeled equation to satisfy the wall

W

boundary conditions exactly. According to Zhang (1993), the expression derived for Flij can be

written as

17_j = fwlI2Cl,_bij + or* (Pij - 2_ijP'P') - -_(uiuk-----nknj + u-_nkni)] + 2Cwk Sij(k3/21, (14)
_Eyl
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where a* = 0.45 and C w is a model coefficient. The first term inside the square bracket is to

account for the reflected-wall effects of the slow part, the second term that of the reflected-wall

effects of the rapid part and the third term is to compensate for the pressure diffusion effects near a

wall. Zhang (1993) argued that the last term was required because a similar term also existed in the

original model of Launder et al. (1975) but they neglected it in its final form. The NWLLR model

is also given by (13) and (14), except that the last term in (14) is set equal to zero. In other words,

the reflected-wall effects are only partially accounted for by the C 1 and a* terms inside the square

bracket.

In order for this modification to work well for a wide variety of turbulent flows, Zhang

(1993) found that C w has to take on different values, while all other model constants remain

unchanged. Three different expressions were found to be suitable, where Cw is specified by

Cw = -8.05x10 -3 + 5.19xlO-31ogRera , (15a)

for internal flows, it is deduced to be

Cw = Cw, in = 4.14x10 3 + 3.0xlO31ogReo , (15b)

for external flows and it is given by

Cw = Cw, in - 5.8 x 10- 4M** , (15c)

for compressible flows. In (15c), Cw, in was taken to be given by (15b) for Re o < 5,500 and to be

Cw, in = 0.0153 for Re o > 5,500. Here, Rern is the bulk Reynolds number based on the channel

width or the pipe diameter, Re o is the Reynolds number based on the momentum thickness, M_, is

the free stream Mach number and the damping function fwl = exp[-(Ret/150) 2] is specified by

Zhang (1993). This damping function was found to work well for all the incompressible and

compressible flow cases attempted by Zhang (1993), except the near-separating flow of Samuel

and Joubert (1974). In order to make the model work for adverse pressure gradient flows, it was

found necessary to modify the damping function by introducing a dependence on a pressure

gradient parameter. Zhang (1993) proposed a modified damping functionfw I given by
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fw, = exp[-{Ret/150(l + O. 13Bc)} 2] , (16)

where tic is the Clauser parameter defined as fir = (&*/r_,)(dPoJd,c). Here. x is the stream

coordinate, g* is the displacement thickness of the boundary layer, rw is the wall shear stress and

P,,,, is the free stream pressure. Finally, (12) is derived to be the same, except that the model

constants now take on the following values, L = 2.25, M = 1.5 and N = 2.0, while the samefw 2 is

assumed. In other words, both C w and fwl become problem dependent. Thus modified, the

model again gives good results for the near-separating flow case.

Two-equation k-e model

A two-equation k-_: model can also be obtained from (3) and (4) by contracting (3) and

dividing it over by 2 to yield the k-equation. If the terms resulted from the anisotropic near-wall

corrections are neglected as suggested by Lai and So (1990), the k cquation can bc written as

bt - v+ +F-E , (17)

where o"k = 1 is assumed, v t is the eddy viscosity and is defined as

V, = C_f/. k2
t_ (18)

In (18), C/_ is a model constant taken to be 0.096 andf_ is a damping function introduced to

ensure asymptotic correctness for the behavior of the Reynolds shear stress near a wall. For the

present k-e model,f/j is given by

3"45]tanh(_15 } (19)--[1 +

It should be pointed out that the turbulent diffusion coefficient in (4) should be replaced by vt/(y e

where fie is a model constant taken to be 1.45.

The two-equation model assumes gradient transport and isotropic eddy viscosity. Therefore,

it is not that suitable for complex flows which are know to give rise to anisotropic turbulence

behavior. In order to capture this particular feature without resorting to a full Reynolds-stress
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model, the anisotropic eddy viscosity proposal of Speziale (1987) could be adopted. According to

Speziale (1987), the anisotropic eddy viscosity is given by

=

4 CD C_f_22 k3[SikE21 Skj- 1 Ski Ski t_ij + "ffij- 1 "ffkk t_ij) ' (20)

where Sij = -I- Uk OSij OUi Ski - Ski is the frame-indifferent Oldroyd derivative

_ _ t i_xk _ Xk i_ X_

of Sij and C D is a dimensionless constant that assumes a value of 1.68. It should be pointed out

that the isotropic eddy viscosity formulation is recovered in the limit of C D goes to zero.

Therefore, the above anisotropic eddy viscosity model along with the k and e equations can be

used to predict complex turbulent flows; there is no need to solve the full set of Reynolds-stress

equations. The two-equation models are included here for the sake of completeness. In this

report, only the calculations of the near-wall Reynolds-stress model are discussed. Two-equation

assessment with respect to Couette flows has been carried out by So and Sarkar (1994); other

validations will be addressed in a different report.

Modeled equations for cornpressible flows

The extension to compressible flows is quite straight forward if Morkovin's (1962)

hypothesis is invoked and the equations are written in terms of Favre-averaging, much like what

Zhang et al. (1993a, b) have done in extending the k-e and the LRR/WR model to compressible

flows. For compressible turbulence, it has been suggested by Sarkar et al. (1991) that the

dissipation rate e could be decomposed into a solenoidal part and a compressible part so that e = es

+ ec. The solenoidal dissipation rate is associated with the energy cascade, therefore, it approaches

the incompressible limit correctly. In view of this and consistent with Morkovin's hypothesis

(1962), the compressible part of e is neglected in the present formulation and e is taken to be given

by es alone. Therefore, from this point on, the symbol e is taken to either mean the true dissipation

rate in incompressible flow or the solenoidal part of the true dissipation rate in compressible flows.

With these simplifications, the modeled equations are very similar to those given in (3) and (4) and
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the incompressiblemodelscan be directly extendedto compressibleflows. Therefore, the

compressiblemodeledequations,including the meanflow equations,aregiven below without

derivation.

A density-weightedaverageis usedto decomposethefluctuatingquantities,besidespressure

anddensity,into a mass-weightedmeanpartandamass-weightedfluctuatingpart. On theother

hand,the pressureanddensityaredecomposedusingReynoldsaverage,which resultsin a time-

averagedmeanpart anda time-averagedfluctuatingpart. For anyvariableF, the mass-weighted

mean is denoted by F, the mass-weighted fluctuating part by f, the time-averaged mean by F and

the time-averaged fluctuating part by f '. The fluid density is taken to be p, the dynamic viscosity

/1, the thermal conductivity k t, the specific heat at constant pressure Cp, and the gas constant is

denoted by R. In terms of these variables, the pressure p and the temperature t9, the mean

equations of motions for compressible turbulence can be written as:

ap
-- + (-fiUi),i = 0 , (21)
at

ap Ui

-- + (fiUi_rj)d = --fi.i - _(#Ujd).i + [#(Uij + Ulj.i)]j - (P'Cij)j , (22)
at

apCp19 + (fiUi-fp_,i = aP - UiP_ + -uiP--_ + u'ip ) 4- _ij Ui d

at at

(23)

P = p R O , (24)

where (-),i denotes a gradient with respect to the spatial coordinate x i, the Einstein summation

convention applies to repeated indices, and the Reynolds stress tensor, the Reynolds heat flux

- _/ 'vector, the turbulent dissipation rate are defined as Igij = _iu_" , Qi = uiO , p E = uij ,

respectively. The mean viscous stress tensor is given by:

(25)
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When deriving these equations, additional assumptions are made regarding the neglect of

turbulent fluctuations of dynamic viscosity, thermal conductivity and specific heat. Also,

according to Speziale and Sarkar (1991), the velocity-pressure gradient correlation term uj P',i can

be written in the equivalent form as

ui P:i =-(-PR _9 -ffi),i -'1- (-p R _iO), i - p' U'i, i (26)

From these equations, it can be seen that, to achieve closure, models are required for the Reynolds

stress tensor "t/j, the Reynolds heat flux vector Qi, the pressure dilatation correlation p' u'i,i • the

turbulent dissipation rate e and the mass flux vector _i • In the following, a near-wall Reynolds-

stress model based on the incompressible model derived above is given for rij, and e, while

Morkovin's hypothesis (1962) is invoked to justify the neglect of p' u'i,i and -Kiin the modeling of

supersonic turbulent flows and a constant turbulent Prandtl number, Pr t = 0.9, is assumed for the

- ( )evaluation of Qi, or - Qi = - uiO = (vt I Prt) O0 1 axi where v t is the eddy viscosity defined in

(18) with the damping function given in (19).

The compressible Reynolds-stress equation written in the same form as its incompressible

counterpart is given by:

_-(-PTij} * (Uk-P_ij),k --(Uj'_;k * Uj'(Y'k---_i),k * Cijk,k * (-P_ikUj,k- PC_jkUi,k)

at

where

(27a)

(27b)

t t _ w

Eij---- (YikUj,k + (_jkUi,k , (27c)

are the turbulent diffusion tensor of "c/j, the velocity-pressure gradient correlation tensor and the

viscous dissipation rate tensor of 't/j, respectively. The last three bracketed terms in (27) arise as a
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result of compressibility and are identically zero for incompressibleflows. Therefore, if

Morkovin's hypothesis(1962)is invoked,the last threebracketedtermsin (27)canbeneglected

andtheturbulentdiffusion,viscousdissipationandvelocity-pressuregradientcorrelationtermscan

bemodeledasin constant-densityflows. Consistentwith thisassumption,the term p'ui.,i in (26) is

also neglected. Finally, the viscous diffusion term (ui_ik + u_.Cri---kkj,k is approximated by (Prijlc),k.

Thus simplified, (27) can be closed by adopting the near-wall models outlined above. It is

sufficient to write down the equations based on the near-wall SSG model, the corresponding

equations for the LRR/WR model can be easily deduced and are also given by Zhang (1993).

Without derivation, the models for the various terms can be generalized as:

,]Cijk, k = Cs p {rktrij, l + _trki, l + lYit_)k, I , (28)
,k

14'

I-lij = I-lij + Hi.) , (29)

Eij : 2-'_E _ij + E_j' (30)

* W

Here, 1-lij is given by the high-Reynolds-number model of Speziale et al. (1991), H/_ and eij are

near-wall corrections. The models for these different terms can now be written for compressible

flows as:

Hi;" = -(2C1E + C_P_bij + C2E(bikbkj - _USij ) - oc 1 {eij - _"ffc_ij)

_ + ,i ,s,, .

P 1 l_-----ir"[--OU----_] O(#OU-U-_-k_k.i ] 1 0 (].lO_kUl_k.l.i.j (33)rib =_ P--lnknj +-- + _ - ,3LOx,_ ax, l ax," -]_ax, I ax,,,_ a.,,,,,I

( 1 + 3"Cktnkn112k) J '
(34)
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whereP0 = -(P zikUj,k + P "CjkUi,k)represents turbulence production of the Reynolds stresses,

k = vii/2 is the turbulent kinetic energy, b 0 is the anisotropic tensor and is again given by (ga),

"ff = Pii/2, Sij = (Ui, j + Uj, i)/ 2 and Dij = -(-p'rikUkj + -P rjkUk.i). The damping function is

again defined by (1 la) and (1 lb) depending on the Reynolds number of the flow, while the

turbulent Reynolds number is given by Re_ = k2/re.

The dissipation rate e is assumed to be approximately equal to the solenoidal dissipation rate

whose modeled equation, similar to its incompressible counterpart, can be written for compressible

FLOWS as:

m

pe e
+ Cel _ "P - Ca --if--- + _ (35)

The near-wall correcting function _ can be generalized for compressible flows to give

_ = f w2 -P( - L £ "ff + M _-- - N _k ) (36)k k

In (36), _ and { are defined by p-e'= pe- 2_t(3ff/3x2_ and pc=-pc- 2btk/x_,

respectively, and the damping function is given by fwz = exp [- (Ret / 40}2]. The model constants

are all taken to be the same as those given above for the near-wall SSG model. Finally, the

boundary conditions for the mean and turbulent velocity field are given by:

Ui = k = r 6 = 0; e = 2 Vw{_/t)X2) 2 , (37)

where x 2 is the wall normal coordinate.
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IV. Validations Against Simple Turbulent Flows

Three different types of simple turbulent flows are considered. These are fully-developed

channel and Couette flows, fully-developed pipe flows and flat plate boundary-layer flows. The

internal flow Reynolds numbers considered range from a low of Re r = 170 to a high of Re r =

8758. This corresponds to a bulk Reynolds number of about 5,600 to 500,000. As for the

boundary-layer flows, the Reynolds number is calculated based on the momentum thickness and

free stream velocity or Re o = UooO/v. The range covered varies from 1,410 to 7,800. The data

include both measurements and DNS data obtained from numerical simulation. Most of the data in

the low Reynolds number range are DNS experiments, while all of the high Reynolds number

flows are selected from experimental measurements. Therefore, the simple flows invesigated vary

from very low to very high Reynolds numbers and detailed near-wall DNS data are available for

comparisons. All these flows are calculated using the Present model and the LRR/WR model

outlined in Section III. Their ability to replicate these flows is analysed and discussed below.

Whenever possible, comparisons are made by plotting the results in the form of U + versus In

y+, k + = k/u_ versus y+, uv + = _/u 2 versus y+, e+ = ve/u 4 versus y+ and u', v' w' versus y+.

In the case of boundary-layer flows, some figures are plotted versus y/_, where S is the boundary

layer thickness. Here, u, v and w are the fluctuating velocity components along the axial or x, the

normal or y and the transverse or z directions, respectively; the prime is used to denote the rms

value of these fluctuations and the overbar is used to represent time-averaged quantities. Detailed

comparisons are made with the data whenever possible. Since e + distributions are not always

available from the data sets chosen, the plots of e + are merely to show the difference between

various model predictions and to illustrate the ability of the models to calculate a maximum e+ at the

wall. In addition, the ability of the models to correctly predict the von Karman constant, to, is

assessed.

Besides comparing the mean and turbulence properties across the channel, the near-wall

asymptotes of k, u-Y, e, u °, v' and w' are calculated in order to analyze their asymptotic

23



According to So et al. (1991), k +, uv ÷, e +, u', v' and w' near a wall can beconsistency.

expanded in terms of y+ as

k + = aky+2 + bky+3 + ....... (38a)

uv ÷ = auvy÷3 + buvy+4 + ....... (38b)

e+ = 2a k + 4bkY+ + ...... (38c)

u' = auY ÷ + buy ÷2 + ....... (38d)

v' = avy ÷2 + bvy ÷3 + ....... (38e)

w'= awy + + bwy +2 + ....... (38f)

where the ai's and bi's are coefficients in the expansions for k +, uv +, u', v' and w'. Therefore,

the ratio k+/e+y ÷2 is exactly 1/2 at the wall and (a_ + a 2 + aw2) /ak = 2. In all previous

calculations using the LRR/WR model (Zhang 1993), the ratios k+/e+y +2 = 1/2 and

(a_ + a 2 + aw2) / ak = 2 are recovered correctly. This means that the LRR/WR model is internally

consistent and asymptotically correct for incompressible internal and external flows as well as for

incompressible boundary-layer flows. Therefore, any deviation from these values is an indication

of the inadequacy of the near-wall model.

Channel and Couette flows

The governing equations for fully-developed channel and Couette flows can either be reduced

to ordinary differential equations or time dependent one-dimensional equations, therefore, they can

be solved by a number of simple numerical methods. Two standard ones are the time marching

technique used by So and Sarkar (1994) and the Newton iteration method used by Lai and So

(1990). These two techniques are used to solve the governing equations for channel and Couette

flows and they are found to give essentially the same results. Therefore, it is immaterial as to

which method is used to obtain the results shown below for channel and Couette flows.

Calculations are carried out for the DNS channel flow data of Kim et al. (1987) and Kim (1991) at

Re r = 180 and 395, respectively, for the DNS Couette flow data of Lee and Kim (1991) at Re r =
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170 and for the combined channel/Couette flow experiments of E1 Telbany and Reynolds (1980,

1981) at Re r ranging from 625 to 1,463. In these latter experiments, three sample flows are

selected for calculations. They are the channel flow (y = ! ), the Couette flow (y = - 1) and a mixed

channel/Couette flow (y = 0.504). Since the highest Re r attempted in these calculations is only

1,463, the number of grid points required for grid independent results is found to be 54. The grid

points are distributed so that at least 5 points are in the region bounded by 0 < y+ < 10, 15 to 25

points in the region 10 < y+ < 100, and about 25 points in the rest of the flow region.

The calculated results are summarized in Figs. 4 - 11. Each figure gives five plots plus one

table that compares the calculated tcand near-wall asymptotes with data, whenever possible. The

von Karman constant is determined by following the procedure outlined by So et al. (1994). In

this procedure, an overlap between the inner layer and the outer layer is first determined from the

DNS data set or from measurements. A straight line is then drawn through the overlap in semi-log

plot and the slope of the straight line yields 1¢. Once the overlap is identified for a particular flow

case, an identical region is used to determine t¢ from the model calculations of the same flow case.

This way, the yon Karman constant is determined consistently and differences shown between

model calculations and data are true di_repancies. However, it should be pointed out that this way

of determining tcgives rise to an error of+ 0.02 for a nominal _"= 0.41. The DNS channel flow

comparisons are given in Figs. 4 - 7, the DNS Couette flow results are shown in Figs. 8 and 9,

while the combined channel/Couette flow calculations are plotted in Figs. 10 and 11. For each

flow case, the results of the Present model are shown first. It is then followed by the results of the

LRR/WR model.

The LRR/WR model assumes (15a) for Cw and this gives rise to the results shown in Figs.

5, 7, 9 and 11 for channel and Couette flows. These results are very similar to those obtained

using the Present model (Figs. 4, 6, 8 and 10). The _'thus determined for all the flow cases

considered varies between 0.38 and 0.4, compared to about 0.4 obtained from the data. The worst

prediction of _cis given by the LRR/WR calculation for the case of channel flow with Re r = 180

(Table 5). Even then, the error is only about 7.5% which is low compared to some of the
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predictions reported by So et al. (1991b) for the same flow case. The predictions of the normal

stresses are also in good agreement with measurements (see the ], = 1 case in Figs. 10 and l 1),

even when the flow is a mixed channel/Couette flow (_, = 0.504 case in Figs. l0 and 11), except in

the near-wall region where the stress anisotropy is not repropduced correctly. It seems that the

LRR/WR model does a better job of predicting the stress anisotropy in the very near-wall region,

y+ < 10, compared to the Present model. However, its prediction of the stress anisotropy in the

region y+ > 50 is not as good as the Present model. This behavior is, in general, true for all the

flow cases calculated in this study. As for the predictions of the near-wall asymptotes, both

models give essentially the same results. The asymptotic values k+/e+y +2 = 1/2 and

(a_ + av2 + aw2) / ak = 2 are recovered correctly for all the cases shown here, while the calculated

ak's are in good agreement with data. In general, the channel flow calculations show that the

Present model is just as good as the LRR/WR model, which relies on a C w that varies

parametrically with Re m to give good predictions. However, it should be pointed out that the use

of (15a) to calculate developing channel or Couette flow could present a problem for the LRR/WR

model. More will be said about this crucial point in Section VI.

It has been argued for quite some time that conventional high-Reynolds-number turbulence

models are not suitable for calculating plane Couette flows (Henry and Reynolds 1984).

According to Schneider (1989), the reason for this can be attributed to the erroneous prediction of

the spatial distributions of k across the channel even when second-order and third-order closures

are used. A typical prediction gives a fairly uniform k across the channel; most models fail to

capture the rise to a maximum near the wall. Recently, Nisizima and Yoshizawa (1987) proposed

an anisotropic near-wall k-e model while Schneider (1989) suggested the modeling of the

anisotropic behavior of the pressure diffusion term in a high-Reynolds-number Reynolds-stress

model for the calculation of plane Couette flows. Their argument is that the lack of anisotropy in

conventional models is the main source of an incorrect k prediction in plane Couette flow

calculations. However, their models are not asymptotically consistent in the near-wall region and

their results again show that the model calculations of k, contrary to DNS data and measurements,
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still greatly under-predict the rise of k in the near-wall region. In another study on Couette flows,

So and Sarkar (1994) hypothesised that, if the modeled equations behave similarly to the exact

equations as a wall is approached, the predictions of the near-wall flow would be asymptotically

correct and this, in turn, would give rise to a much better estimate of the outer flow. In other

words, previous erroneous predictions of plane Couette flows are the result of incorrect modeling

of the near-wall flow. So and Sarkar's (1994) calculations of the DNS Couette flow of Lee and

Kim (1991) fully support their hypothesis. The Present model and the LRR/WR model do not

attempt to mimick the pressure diffusion behavior near a wall but are asymptotically correct.

Therefore, good predictions of Couette flows are expected based on the hypothesis of So and

Sarkar (1994). Indeed, this is the case as can be seen in the results shown in Figs. 8 - 11. The

rise of k near the wall is predicted by both models; however, the quantitative agreement is not as

good. This is due to an under-prediction of u', while the predictions of v' and w' are in good

agreement with measurements (see Figs 10 and 11). The true reason for the discrepancy noted in

the u' prediction may not be due to model inadequacy, but rather to the existence of roll cells in the

flow. In their paper, So and Sarkar (1994) gave a detailed discussion of the under-prediction of k

near the channel core. In view of this, it can be said that the Present model and the LRR/WR

model give equally good predictions of channel and Couette flows over a wide range of Reynolds

numbers.

Pipe flows

This set of flow cases are selected to test the models' ability to replicate Reynolds number

effects over a very wide range of Reynolds numbers. Four data sets are selected; they are the

measurements of Durst et al. (1993) at Re r = 250, the experiment of Schildknecht et al. (1979) at

Re r = 489, and the measurements of Laufer (1954) at Re r = 1052 and 8758. In terms of the bulk

Reynolds numbers, they vary from a low of 7,500 to a high of 500,000. Thus, the Reynolds

number attempted is the highest among the many test cases investigated by various researchers. In

view of the high Reynolds numbers attempted, the number of grid points required for grid
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independentresultsis foundto be108. Forthetwo lowestReynoldsnumbers,only a grid with 54

points is sufficient while at Re r = 8758, a grid with 250 points is required. These results are

essentially identical to those obtained using 108 grid points. Therefore, in the following

presentation, the results for the three lower Reynolds numbers are obtained with 108 grid points,

while the results for the highest Reynolds number case is obtained using 250 grid points. Again,

the plots are presented in a manner similar to those shown in Figs. 4 - 11. The calculations of the

Present model are shown first and this is followed by the comparisons of the LRR/WR model.

Comparisons of the model calculations with the four different pipe flow measurements are

presented in Figs. 12 - 19.

As the Reynolds number increases, the viscous layer becomes thinner and thinner.

Therefore, the viscous dissipation rate approaches zero faster. If the Reynolds number effects are

modeled correctly, the calculations should reflect this trend both qualitatively and quantitatively.

An examination of the results shown in Figs. 12 - 19 reveal that this trend is being reproduced

correctly by both models. At Re r = 250, e+ approaches zero at the pipe center. As the Reynolds

number increases, the location where Re r goes to zero moves towards the pipe wall and, at Rer =

8758, e + vanishes at a distance very close to the pipe wall, or at (1 - r/R) = 0.15. The comparisons

show that the predictions of e + is in good agreement with measurements whenever they are

available from the experiments. Again, the asymptotic values of k+/e'+y +2 and (a2 + a 2 + aw2) / a_

are calculated correctly; thus indicating that the models are asymmptotically correct for pipe flows

as well as for channel and Couette flows.

In general, the log-law is reproduced by the two models for the four flow cases examined.

The models also give a very good prediction for t¢ (see Tables 12 to 19) Again, the largest error is

given by the LRR/WR prediction of the Re r = 250 case. Besides this, there are other slight

differences in the model predictions. One of which is the prediction of the k distribution. Both

models over-estimate the value of k in the pipe core and under-predict k in the near-wall region for

the Re r = 8758 case (see Figs. 18 and 19). However, the LRR/WR model consistently gives a

larger error than the Present model. Also, the LRR/WR prediction of k is very much in error at

28 ¸



Re r = 250 (compared Fig 12 with Fig. 13). Both models replicate the maximum k and the location

where the maximum occurs correctly. Together, these results show that the two models examined

are quite comparable in their predictive capabilities. However, in the case of the Present model,

none of the model constants has to be altered over this wide range of Reynolds numbers

investigated. On the other hand, C w has to take on different values depending on the flow

Reynolds numbers for the LRR/WR model. More will be said about this in Sections V and VI.

Fiat plate bounda_. -iayer flows

Three different boundary-layer flows covering a Reo range of 1,410 to 7,800 are selected to

test the models' ability to replicate simple external flows. These consist of the DNS data of Spalart

(1988) at Re o = 1,410, the detailed measurements of Karlsson and Johansson (1988) at Re o =

2,420 and the measurements of Klebanoff (1954) at Re o = 7,800. The boundary layer calculations

are carried out using the computer code of Anderson and Lewis (1971). Suitable modifications are

made to the code and to the grid distributions in order to accommodate the two near-wall Reynolds-

stress models. All calculations are found to be grid independent when they are carried out with

101 grid points or more. The comparisons are made in the region where the flow has achieved

fully-developed turbulence. Thus, inlet boundary condition effects are essentially absent in all the

results presented in Figs. 20 - 25. Unlike internal fully-developed flow calculations where Re r is

specified, the boundary-layer calculations are carried out by inputting U e, the free stream velocity.

Consequently, the wall shear stress, rw, is a calculated result rather than an input. The accuracy in

which this quantity, or the skin friction coefficient Cf = 2"cw/p Ue2, can be calculated is an

indication of the predictive capability of the models. Therefore, in addition to comparing to, the

calculated and measured Cf's are also compared. These quantities together with the near-wall

asymptotes are given in Tables 20 - 25.

In this range of Reynolds numbers, the use of (1 la) forfw 1 is applicable for the Present

model and there is no need to switch over to (11 b) even at the lowest Reynolds number examined.

On the other hand, C w changes from case to case according to (15b) for the LRR/WR model.
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Eventhen,therearequiteanumberof differencesbetweenthetwo modelpredictionsof thesethree

boundary-layerflows. The differencesaresummariedbelow. At low Reynoldsnumbers,the

Presentmodelgivesabetterpredictionof theflow thantheLRR/WR model. This is obviousby

comparingFigs.20and21. LRR/WRunder-predictsthek distribution in the near-wall region and

yields a _¢with about 17% error compared to the DNS data (compared values in Tables 20 and 21).

Also, LRR/WR gives a lower value for e + at the wall compared to the Present model prediction and

DNS data. On the other hand, the Present model under-estimates the stress anisotropy in the near-

wall region compared to the LRR/WR model. The predictions of the LRR/WR model are much

closer to the DNS data. As the Reynolds number increases, the predictions of k by the LRR/WR

model improve and essentially become identical with those given by the Present model. It is not

clear why LRR/WR over-predicts the shear stress distribution across the boundary layer for the

Re e = 2,420 case (Fig. 23). Other than that, the overall predictions of the LRR/WR model are the

same as the Present model. For the highest Reynolds number case, Re o = 7,800, both models

under-estimate k in the near-wall region (Figs. 24 and 25), much like the predicted behavior shown

in the pipe flow case where the bulk Reynolds number is 500, 000. In general, the prediction of 1¢

improves as the Reynolds number increases and the associated progressive thinning of the viscous

layer is being reproduced correctly by the two models. Based on these results, it can be said that

the Present model is every bit as good as the LRR/WR model, except that there is no adjustable

constant like C w used in the LRR/WR model.
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V. Validations Against Simple Compressible Turbulent Flows

The next set of validations are carded out with simple compressible turbulent flows and is

intended to test the ability of the models to replicate the effects of compressibility under the

assumption of Morkovin's hypothesis. With this assumption, compressibility effects are

accounted for by the variation of mean density alone and the governing mean flow and Reynolds-

stress equations can be reduced to forms similar to their incompressible counterparts.

Consequently, the incompressible models can be extended to compressible flows without

modifications. In the process, the effects of compressible dissipation and dilatation are neglected.

Again, the boundary-layer code of Anderson and Lewis (1971) is modified for the present

calculations. The boundary layer is calculated to the same Re o as the experiments where

comparisons with measurements are carded out. Therefore, the results are relatively free of the

effects of inlet conditions, except for the case with the lowest Re o. Since there are few turbulence

data in these experiments, the comparisons are made with the measured mean velocity, mean

temperature and Cf only. It should be pointed out that, in compressible boundary layers over

adiabatic walls, the mean temperature profiles are not measured separately. Rather, they are

interpreted from the mean velocity profiles by assuming the total enthalpy across the boundary

layer to be constant. As a result, the temperature comparisons are not very meaningful for the flow

cases with an adiabatic wall. From the measured mean velocity profiles, the von Karman constant

can be determined depending on whether the mean velocities are reduced in the standard way (So et

al. 1994) or by invoking the van Driest (1951) transformation. Two von Karman constant are

deduced and they shall be denoted as _¢and t¢c for the standard way and the van Driest

transformation, respectively.

According to So et al. (1994), the standard law of the wall for compressible boundary layers

can be deduced by invoking Morkovin's (1962) hypothesis, the dimensional arguments of Millikan

(1939) and the assumption of an overlap between the inner and outer layers. The result is given by

U ÷ = 1 In y_ + B (nq, Ms, )', Prw) , (39)
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where u_ = (_/pw) _a, y_ = y u, I vw, Bq = Q_,,l{p_Cpu, Ow),M¢ = u,law, Prw = (CplJ_)l kw,

a w is the sound speed evaluated at the wall, and ?' = Cp/C v is the ratio of the specific heats

evaluated at the wall. Here, the suscript w is used to denote values evaluated at the wall, Qtot is the

total heat transfer rate and kw is the fluid thermal conductivity evaluated at the wall. The von

Karman constant ris parametric in M e Bq and ),while the intercept is not only parametric in these

variables but also the Prandtl number evaluated at the wall, Pr w. On the other hand, according to

van Driest (1951), the law of the wall for compressible boundary layers can be written as

Uc _ 1 lny+w + B , (40a)
u_ too

where

U

=(/ 11'2d
Uc Jo _p-_l u (40b)

Here, _cc is the corresponding von Karman constant and U c is the transformed mean velocity

according to (40b). In (40a), again B is the intercept; however, unlike B in (39), its parametric

dependence is not entirely clear. The determination of x'and x"c are compared in Table 26 where,

in addition, the measured and calculated Cfs are compared.

Altogether six different flow cases are selected to test the models. These are the heated wall

case of Spina and Smits (1987) where M_ = 2.87 and O_' Oaw = 1.10, the adiabatic wall cases

collected in Fernholz and Finley (1977) where Moo = 2.24, 4.54, 10.31 and Ow/Oaw = 1.0, the

slightly cooled wall case documented in Fernholz and Finley (1977) where Moo = 5.29 and Owl

Oaw = O. 92 and the high Mach number, highly cooled wall case of Kussoy and Horstman (1991)

where Moo = 8.18 and O_' 6)aw = 0.30. Here, 6)aw is the adiabatic wall temperature. The results

of the model calculations and comparisons are shown in Figs. 26 - 37, while a summary of the

measured and calculated Cf, t¢ and t¢c are given in Table 26. Only four plots are given in each

figure. They are the standard law of the wall plot, the linear plot of the mean velocity, the van

Driest law of the wall plot and the linear plot of the mean temperature. In the linear plots, the mean
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velocity or mean temperature is plotted versus y/t_r, where 8 r is the boundary-layer thickness

determined either from the measurements or from the calculations. Again, the Present model

calculations are given first and this is followed by the LRR/WR predictions of the same flow case.

In the following, the heated wall, adiabatic wall and cooled wall cases are discussed separately.

Boundary layers over a heated wall

The measured and calculated profiles are shown in Figs. 26 and 27, while the Cf, i¢ and _¢c

are compared in Table 26. It can be seen that both models give essentially the same results when

plotted in semi-log plots even though the Present model slightly over-estimate the mean velocity in

the outer part of the boundary layer. As far as the prediction of Cfis concerned, both models give

results that are within 5% of the measured Cf. The Present model's prediction of the mean

temperature is in error. This could be due to the fact that a constant Pr t is assumed. The same is

not true of the LRR/WR model because of the used of C w which was empirically made to be

parametric in both Re o and Moo according to (15c). This empirical input could partially compensate

for the constant Pr t assumption_ According to Sommer et al. (1992), the turbulent Prandtl number

is not constant even for incomopressible flow with heat transfer where the temperature difference is

of the order of 20°C. Therefore, there is no good reason to expect the constant Pr t assumption to

be completely valid in this case. Sommer et al. (1993, 1994) have applied their incompressible

variable turbulent Prandtl number model (Sommer et al. 1992) to calculate compressible flows

using a two-equation model as well as a Reynolds-stress model and slightly improved agreement

with measurements were obtained compared to those given by the constant Pr t assumption.

Perhaps, improved results could also be obtained if the model of Sommer et al. (1992) is used to

model the turbulent heat flux. In terms of t¢ and 1¢c, the agreement between calculations and

measurements is fairly good and, for this low Mach number, t¢ and t¢c are determined to be

essentially the same. Their values are different from 0.41 though; _¢is more like 0.51 while 1¢c is

approximately 0.37 (Table 26). This means that van Driest law of the wall is not quite applicable

even for a compressible flow over a slightly heated wall at fairly low free stream Mach numbers.
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Furthermore,theasymptoticvaluesof k+/e+y +2 and (a_ + a 2 + a 2) / ak are calculated correctly;

again indicating that the models are asymptotically correct even for compressible flows.

Boundary layers over an adiabatic wall

Three cases, ranging in Moo from 2.24 to 10.31, are calculated using the Present model and

the LRR/WR model. Unlike the heated wall case, where Re o = 83,899, the Reynolds numbers at

the location where measurements are available vary from a low of 5,320 to a high of 20,797.

These values are listed in Table 26. Therefore, there might be some Reynolds number effects in

the model calculations for the case where Reo = 5,320. The comparisons between model

calculations and measurements are given in Figs. 28 - 33, where Figs. 28 and 29 show the

comparisons for the Moo = 2.24 case, Figs. 30 and 31 those of the Moo = 4.54 case, and finally

Figs. 32 and 33 the comparisons for the Moo = 10.31 case. Calculated Cf, _¢and _¢care again listed

in Table 26 for comparisons with measurements.

At low Mach number (Moo = 2.24 ), the model calculations are essentially identical and the 1¢

and t¢c thus determined are about the same. The calculated Cf is slightly different; the LRR/WR

model result being 4.3% higher than measurement while the Present model only over-estimates by

1.8%. As a result, the semi-log plots of the Present model calculations of the mean velocity are in

slightly better agreement with measurements. Since the mean temperature is deduced from the

mean velocity, good agreement in the mean velocity comparison also implies the same for the mean

temperature (Figs. 28 and 29). Also, the wall temperature is calculated correctly by both models

(Figs. 28d and 29d). The LRR/WR model over-predicts Cf by about 4.7% while the Present

model under-estimates by the same percentage in the Moo = 4.54 case. Therefore, in the semi-log

plots of the mean velocities, the calculations of the Present model lie above the measurements while

those of the LRR/WR model lie below the measurements (Figs. 30 and 31). When the velocities

are shown in the linear plot form, good agreement with data is obtained. At this Mach number,

there is some difference between the standard law of the wall plot and the van Driest law of the

wall plot. The t¢c determined from measurements deviates from 0.41 significantly once the Mach
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numberreaches4.54. Its valuefor thehighMachnumbercasesis morelike 0.29 ratherthan0.41.

On the otherhand, a _¢= 0.41 is obtained from the standard law of the wall plot of the same

measurements up to a Mach number of 4.54. At the highest Mach number tested, K-= 0.54 is

obtained, thus showing its dependence on the Mach number. The calculated von Karman

constants are in good agreement with these values (Table 26).

At the highest Mach number tested, the semi-log plots of the Present model calculations are

not in good agreement with measurements compared with the LRR/WR results (Figs. 32 and 33).

This is due mainly to an under-estimation of Cf which is in error by about 17%, while there is no

error in the LRR/WR prediction. When the comparisons are made in the linear plots, the

calculations correlate very well with measurements. These errors could be attributed to the neglect

of compressible terms in the modeled equations and the assumptions of Morkovin's hypothesis

and constant turbulent Prandtl number. Since the turbulent Prandtl number is known to increase

sharply as a wall is approached (Sommer et al. 1993), the incorrect estimate of Cfby the Present

model could be partially attributed to the constant Pr t assumption. Therefore, an improvement to

the prediction of Cfcould be obtained by relaxing this assumption. The reason why the LRR/WR

model gives a good prediction of Cfcould be due to the empirical input in the form of C w which

decreases as Moo increases. In other words, the contributions of the term kSij to Hi_f in (14) are

being minimized. At this Mach number, t¢c is significantly different from 0.41. Consequently, the

data points do not follow the van Driest law of the wall. On the other hand, the standard law of the

wall with at¢ parametric in M r can still be used to correlate the mean velocity. The t¢ thus

determined is substantially larger than 0.41 (Table 26). Based on these comparisons, it can be said

that the van Driest law of the wall is perhaps most valid for compressible flows over an adiabatic

wall with low to medium Mach numbers.

Boundary layers over a cooled wall

Two flow cases are selected to test the models and they are the slightly cooled wall case

documented in Fernholz and Finley (1977) with Moo = 5.29 and OJ 6)aw = 0.92 and the highly
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cooledwall caseof KussoyandHorstman(1991)with Moo = 8.18 and 19J 6)aw = 0.30. The two

cases cover medium to high Mach numbers and near adiabatic wall to highly cooled wall boundary

conditions. In general, the model calculations of LRR/WR are more accurate in terms of the

calculated Cf. LRR/WR under-estimates Cfslightly while the Present model under-predicts Cfas

much as 14% in the M,_ = 5.29 ca_. In view of this, the semi-log plots of the mean velocity lie

above the measured data for the M,,o = 5.29 case (Fig. 34) and below the measured data for the M_

= 8.18 ca_ (Fig. 36). Again, the mean velocities in linear plots are in good agreement with

measurements. Perhaps, relaxing the assumption of a constant turbulent Prandtl number could

improve the prediction of Cf. The good agreement shown between LRR/WR model results and

measurements could be attributed to the empirical function (15c) used to evaluate C w.

Again, the _¢cdetermined from the measurements deviate significantly from 0.41 (Table 26).

Even at t9,/19aw = 0.92, t¢c is found to bc about 0.34. In other words, the van Driest law of the

wall cannot suitably describe the log-law region if 1¢c is taken to be 0.41. The standard law of the

wall shows that t¢ is also dependent on the total heat flux, hence it should vary as the wall

temperature ratio decreases. Both the data and the calculations show that if is indeed decreasing as

the Mach number increases and the wall temperature ratio decreases. The errors in the predicted t¢

is larger than the other cases but this could be due to the assumption of a constant turbulent Prandtl

number which is more applicable to flows over an adiabatic wall than to flows over a cooled wall.

Concluding remarks

Altogether, these results show that van Driest law of the wall is essentially valid for

compressible flows over an adiabatic wall with fairly low free stream Mach numbers. Even then,

rw is found to be about 0.38 rather than 0.41. Only a slight wall cooling is sufficient to change _c

to a value that is substantially smaller than 0.41. On the other hand, t¢ is determined to be 0.41

from the standard law of the wall plots for compressible flows over an adiabatic wall up to a free

stream Mach number of 4.54. Therefore, it would seem that the standard law of the wall would be

just as valid when used to describe compressible flows. As predicted by (38), _¢is parametric in
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M r, Bq and y. The present analysis shows that this is indeed the case. This is also true for _'c.

The behavior of t¢and t¢c with Mo_ and 6)J 6)aw is reproduced fairly well by both models. For the

LRR/WR model, this is accomplished at the expense of making C w a function of Re o and M,,,;, thus

rendering the model rather ad hoc. On the other hand, the predictive capability of the Present

model is achieved without having to alter any of the model constants, but rather by choosing an

alternate high-Reynolds-number pressure strain model where the reflected-wall effects are

accounted for properly in the model. Therefore, the Present model is less ad hoc and more

physical. Finally, it should be pointed out that the LRR/WR model has also been applied to

calculate flows over compression ramp with and without shocks by Morrison et al. (1993) and fair

agreement with measurements were obtained. Since there are no structural differences between the

LRR/WR and the Present model, one would expect the Present model could just as easily

implemented into the code of Morrison et al. (1993) to calculate compression ramp flows with and

without shocks.

37



V I. Validations Against Complex Turbulent Flows

In the previous two sections, simple flows are calculated. As a result, standard numerical

algorithms such as the Newton iteration scheme (Lai and So 1990) and the two-dimensional

parabolic finite-difference code (Anderson and Lewis 1971) can be used to solve the governing

equations and the models present little or no numerical stability problems for the calculations of

these flows. On the other hand, complex flow calculations require the use of more advanced

numerical algorithms and the implementation of these models into the codes could cause numerical

instability in the computation. Therefore, the objectives of this section are two fold; one to validate

the models for complex flows and another to test the ease with which the models can be

implemented into advanced numerical algorithms without giving rise to undue numerical instability.

Three different types of complex flows are ,selected to test the model's ability to predict them.

The first is a flow with an adverse pressure gradient that leads to incipient separation (Samuel and

Joubert 1974). Therefore, the ability of the models to mimick near separating flow correctly is

assessed by this comparison. A second case is a fully-developed flow in a square duct at a bulk

Reynolds number of 50,000 (Lund 1977; Eppich 1982). This flow tests the models' ability to

replicate the turbulence driven secondary cells in the cross-stream plane of the duct. The third case

is an axially rotating pipe flow (Kikuyama et al. 1983). In this flow, a superimposed vortex that

eventually develops into a solid-body rotation is present and alters the developing nature of the pipe

flow. Therefore, the models' ability to reproduce the rotational behavior of complex turbulent

flows is borne out by this assessment.

Near separating flows

The adverse pressure gradient flow is carried out using the boundary-layer program of

Anderson and Lewis (1971). Calculations start in the region where the pressure gradient is zero

and carry forward until Reo reaches a value equal to that reported by Samuel and Joubert (1974) at

the start of the adverse pressure gradient. This location is then taken to be the origin of the axial,

or x, location of the experiment. The measured free stream velocity distribution, Ue(x), is
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prescribedastheexternalboundaryconditionfor U while the zero gradient condition is specified

for all other variables. At the wall, the boundary conditions are as discussed in Section III. As

before, 101 grid points are found to be sufficient to give grid independent results. Furthermore,

slight mismatch in Re o at the entrance to the adverse pressure gradient region has been investigated

and the results show that there are insignificant or no differences in the calculated development of

Cfand Reo. Consequently, the model calculations are not carried out at exactly the same Re o.

Three different calculations are carded out; one using the Present model, another the

LRR/WR model while a third invokes the LRR/WR model but with tic or the constant associated

with tic set equal to zero in (16). The results of these calculations at two x locations are

summarized in Figs. 38 - 40 with the mean velocity and shear stress comparisons of the Present

model shown first (Fig. 38) and this is followed by the LRR/WR comparisons (Fig. 39). Finally,

the calculated development of Cfand Re o are compared in Figs. 40a and 40b while a sample mean

velocity result of the LRR/WR model with tic set equal to zero in (16) is shown in Fig. 40c. The

two x-locations, x = 2.87m and 3.4m, are chosen to be very near separation in order to evaluate

the models' ability to replicate near separating flows.

At x = 2.87m, both the Present model and the LRR/WR model give essentially the same

predictions (compared Figs 38 and 39) with the von Karman constant tcdetermined to be 0.43 and

0.42, respectively. This compares with 1¢ = 0.42 determined from the measurements. The

agreement between the Present model and data deteriorates as the flow moves near separation and,

at x = 3.4m, the Present model under-predicts the mean velocity in the region near the wall while

the Cf is calculated correctly (Fig. 40a). As a result, the velocity calculations of the Present model

in semi-log plot lie below those of measurements (Fig. 38c) and t¢ = 0.46 is obtained compared to

an experimental value of 0.43. Taking the error bound in the determination of _¢ into

consideration, it can be said that the Present model calculations of 1¢are in fair agreement with

measurements. On the other hand, there is no such deterioration in agreement for the LRR/WR

model (Fig. 39c) and the von Karman constant is evaluated to be t¢ = 0.41. As for the prediction

of the shear stress distributions at the two x locations, both models give essentially the same results
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(Figs38e,f and39e,f). ThePresentmodelunder-predictstheshearstressin theouter regionand

this under-predictiondeterioratesasseparationis approached;thebehavioris consistentwith the

meanvelocity predictionshownin Figs.38cand38d. Thedeteriorationnotedin thepredictionof

theLRR/WR modelis not assevere,eventhoughtheLRR/WR modelcalculationof Cfis slightly

under the measured value starting at x = 2.87m and continues to deteriorate as the flow moves near

separation. Therefore, the modification specified in (16) seems to improve the prediction of U but

not that of Cf. Without the modification in (16), the LRR/WR model under-predicts U and over-

estimates Cf substantially (Fig. 40a) and this leads to a wrong calculation of the velocity profile

across the boundary layer and at¢ = 0.48 (Fig. 40c). Finally, the Present model under-predicts the

development of Re o compared to that given by the LRR/WR model (Fig. 40b). However, this

slight under-prediction does not seem to have much of an effect on the calculation of Cf though

(Fig. 40a).

It is obvious that (16) helps to improve the predictive capabilities of the LRR/WR model.

Therefore, if a similar expression is also implemented into the Present model, better predictions

than those shown in Fig. 38 could be expected. It can be easily shown that the coefficient of the

y+2 term in the mean velocity expansion near a wall is dependent on the streamwise pressure

gradient. Therefore, one could argue that the modeled equations should some how depend on the

streamwise pressure gradient and hence justify the use of (16). A plot of the damping function

(16) from the LRR/WR calculations indicates that fwl vanishes in the range, 55 < y+ < 100

depending on the streamwise pressure gradient. On the other hand, (16) without the tic term from

the third model calculations yields afw I that goes to zero very near the wall. When (1 la) from the

Present model calculations is plotted, it gives a curve that approaches zero somewhere between the

two former curves. This suggests that near-wall damping has a significant effect on the prediction

of the mean velocity. In other words, the damping functions proposed in (11) are not quite general

eneough. The proper approach is to seek another damping function where it will again approach

zero in the proper range of y+ for flows with and without severe adverse pressure gradient effects.

The ad hoc modifications suggested in (16) may not be appropriate because it explicitly depends on
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fic. In conclusion, the deficiency is not in the SSG model, but rather in the proposed damping

function for the near-wall corrections.

Square duct flows

Fully-developed turbulent flow in a square duct is two-dimensional, therefore, it can be

solved by iterating in the cross-stream plane alone. However, in anticipation of the need to

calculate developing flows later, a three-dimensional TEACH-type code is used to solve the

governing equations in the square duct. Since the flow is symmetrical about the wall bi_ctors,

only a quadrant of the flow needs to be considered. A non-uniform grid is u_d to calculate the

flow in this quadrant. An iterative forward marching solution procedure is used to solve the

parabolized equations. In particular, the three-dimensional parabolic finite difference procedure of

Patankar and Spalding (1972) is employed. The convergence rate is improved by implementing

the SIMPLEC algorithm (van Doormal and Raithby 1984) into the code rather than using the

original SIMPLE algorithm (Patankar 1980). The boundary conditions are specified as follows.

Symmetry conditions are specified along the wall bisectors. At the walls, all the mean velocity

components and the Reynolds stresses are set equal to zero, while the dissipation rate is specified

as Cw = 2v(Ol-k/c3x2) 2. At the inlet, essentially all variables arc specified to be uniform except

near the wall. Near the wall, all variables are given as obtained from the results of a boundary

layer code at a specified boundary layer thickness of approximately 1 percent of the duct width.

Special attention is given to the placement of grids near the wall. A minimum of 5 grids are

placed within y+< 5 with the first grid point at approximately y+ = 1, and 15-25 grids are located in

the region 5 < y+ < 100, depending on the total number of grids used. Calculations with 81x81,

121 x 121 and 161 x 161 grids have been carried out. The reason that such fine grids are required is

due to the presence of secondary cells which are absent in the case of pipe flows with and without

rotation. There are no significant differences between the calculations obtained with the 12 lx121

and 161x161 grids. Therefore, only the results from the 121x121 grids are presented here. The

forward step size is varied progressively from 0.4 percent of the hydraulic diameter near the inlet to
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4 percent until the flow becomes fully developed. The iterations are carded out to normalized

residual sources of 10-5 for each variable. Finally, it should be pointed out that the use of (15a) for

C w failed to yield a convergent solution for the square duct flow. Instead, (15b) has to be

specified and Re o at each x location has to be evaluated to determine if Re o < 5,500. Once Re o has

reached 5,500, C w = 0.0153 is assumed. This procedure is found to work for flow Reynolds

number as high as 250,000.

The comparisons of the Present model calculations with measurements are shown in Figs. 41

and 42 while those of the LRR/WR model are given in Figs. 43 and 44. Whenever possible, the

results are compared with measurements along the wall bisector as well as along the angle bisector.

Along the wall bisector, the normalized ordinate is given by y/a, where a is the half-width of the

square duct. The normalized ordinate along the angle bisector is denoted by y'/a', where a' = a f'2-.

All velocity results are made dimensionless by the mean bulk velocity U b. The axial velocity is

given by U while the secondary velocity by W. Among the results presented are the mean

velocities, the shear stress, u--_, the normal stresses, the turbulent kinetic energy and the wall shear

along the horizontal wall, z. On comparisons, it can be seen that both models give about the same

predictions of the square duct flow. The mean U along both the wall and angle bisectors correlates

well with measurements while the calculated Reynolds stresses are in error. In general, the

calculations along the wall bisector are in better agreement with the measurements compared to

those along the angle bisector, where the turbulence statistics are over-predicted. Both models

cannot replicate the secondary velocity very well even though the LRR/WR model gives a slightly

better prediction than the Present model. This under-prediction of the secondary motion has also

been observed by Gessner and Emery (1981) and Demuren and Rodi (1984) and is found to be

quite common among the high-Reynolds number Reyolds-stress models tested.

Rotating pipe flows

The two-dimensional elliptic code of Yoo et al. (1991) is used to calculate the rotating pipe

flow experiments of Kikuyama et al. (1983). Three cases are reported and they are designated by
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Ro = O, 0.5 and 0.83, where Ro is the rotation number defined as the ratio of the pipe

circumferential velocity to the bulk mean velocity. In this report, only the case where Ro = 0.5 is

calculated and discussed. As a check on the code, the Ro = 0 case is calculated first and this is

equivalent to calculating developing pipe flow without swirl. Two different boundary conditions at

100 diameters downstream of the inlet are specified; one is fully-developed flow at the outlet and

another is to assume the neglect of axial diffusion compared to radial diffusion. The

appropriateness of each specification is examined and the right choice made for the rotating pipe

flow calculations. Furthermore, the calculation of this simple case allows the question of grid

distribution to be investigated, the number of grid points required to be studied, and the best way

to implement the near-wall Reynolds-stress model to be explored. Since the fully-developed flow

calculations have been reported in detail above, there is no need to present this set of results again.

It is sufficient to point out that the iterations are carried out until the normalized residual sources

reduce to 10-5 for each variable. Therefore, the calculations obtained from both outlet boundary

conditions are in very good agreement with measurements and the results are essentially grid

independent when there are 56 grids in the r-direction and 51 grids in the x-direction. The grid

distribution in the r-direction follows closely that used to perform the fully-developed flow

calculations presented above. That is, 25 grids are placed within the region, 0 < y+ < I00. In the

x-direction, the grids are closely spaced near the pipe entrance. As the flow develops, the grids are

spaced further and further apart. When the flow is approaching the fully-developed state, a

spacing of several pipe diameters is not unusual. The same experiment has also been attempted by

Yoo et al. (1991) using a different near-wall Reynolds-stress model. Their conclusions on grid

spacing and grid distribution are consistent with the present findings.

Since only measurements in the developing region were reported and the locations where

they were made were far apart, only sample comparisons of the present model calculations at one

x/D location are presented in Figs. 45 and 46. When the LRR/WR model is applied to calculate the

Ro = 0.5 case, the use of (15a) for C w failed to yield a solution but the use of (15b) yielded a

convergent solution. In this calculation, Cw is estimated according to (15b) up to C w = 0.0153;
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thereafterC w = 0.0153 is assumed. Therefore, this implies that (15a), which was developed based

on two-dimensional internal flows, is not suitable for developing internal flows because (15b) also

has to be assumed in the square duct flow calculation. This is an indication that the LRR/WR

model is not as general as the Present model.

The comparisons shown in Figs. 45 and 46 are between the Present model, the LRR/WR

model and measurements. Mean velocities are given first, followed by the shear stresses and then

the normal stresses in these figures. As before, the prime (') is used to denote root mean square

quantifies. The mean velocities are normalized by Uo, the pipe centerline velocity, and W o = RI-2,

the pipe circumferential velocity, respectively, while the Reynolds stresses are made dimensionless

by U o. Here, 12 is the speed of rotation of the pipe and R is the pipe radius. The results show that

the mean velocities are very well predicted by the Present model. This means that the boundary

layer thickness and the boundary layer development along the pipe are well replicated. On the

other hand, the LRR/WR model under-predicts the boundary-layer development. This is also

evident from the comparisons shown for the Reynolds stresses. The normal stresses are

reasonably well calculated; however, the shear stresses, particularly the uw component, are poorly

predicted. In general, the shear stresses are significantly over-predicted. There are many reasons

for these discrepancies. One of which could be that the accuracy of the shear stress measurements

is not as good as that for the normal stresses, because the shear stresses are at least one order of

magnitude smaller than the normal stresses. On the other hand, the good agreement between

calculations and measurements of the normal stresses indicates that the models are replicating the

anisotropic behavior of the turbulence statistics quite well for the rotating pipe flow investigated.

In view of these results, both models can be said to be quite valid for rotating turbulent flows.

However, the good agreement of the LRR/WR model is achieved by the added empiricism

introduced in the form of (15b) for C w, while the Present model needs no modifications for any of

the model constants.
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Concluding remarks

In general, the Present model replicates the complex flows quite well and these include flow

complexities introduced by adverse pressure gradients, turbulence driven secondary motions and

flow rotation in the form of an imposed vortex. Even though the results are not as good as the

LRR/WR model in the case of near separating flow, it can be said that the LRR/WR model

achieves the good correlation by introducing added empiricism in the lkwms of (15b) and (16).

Furthermore, the Present model does not need modifications for any of the complex flows and all

model constants and damping functions specified in Section III remain unchanged. In calculating

developing internal flows, it is not at all clear whether (15a) or (15b) should be specified for C w in

the LRR/WR model. For example, the results shown in Figs. 43 - 46 are obtained by specifying

(15b) for C w, which is meant for external flows. There is no such ambiguity for the Present model

though. Therefore, there is less empiricism introduced into the Present model and, as a result, it is

more general. Also, the Present model does not introduce any undue complexity in the numerical

computation and no added numerical instabilities are noted in any of the flow cases examined.
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VII. Conclusions

An asymptotic analysis is carried out on the modeled and the exact Reynolds-stress and

dissipation rate equations. Near-wall correcting functions are proposed for these equations so that

they can be integrated directly to the wall. Thus, the physical boundary conditions can be satisfied

exactly and there is no need to invoke wall functions to link the properties at the first grid point to

those at the wall. Specifically, the near-wall corrections are made to the pressure strain model in

the Reynolds-stress equation and to the complete equation in the case of the dissipation rate

equation. The near-wall corrections differ depending on the pressure strain model invoked. In the

present study, the SSG model proposed by Speziale et al. (1991) for the pressure strain is adopted

and near-wall corrections to this model are deduced. This near-wall Reynolds-stress model is used

to calculate a wide variety of flows, including incompressible and compressible flows, simple

flows, complex flows and near-separating flows. The flows selected for validation include fully-

developed turbulent flows in channel and pipes, Couette flows, simple boundary-layer flows,

compressible boundary-layer flows up to Mach 10, three-dimensional flow in a square duct,

axially rotating pipe flow and boundary-layer flow subject to a near-separating adverse pressure

gradient. Besides comparing the model calculations with measurements and DNS data, they are

also compared to another set of calculations using the LRR/WR model of Zhang (1993) derived

from the LRR pressure strain model of Launder et al. (1975). In this latter model, it was found

necessary to make one of the model constant to be dependent on the flow Reynolds number and the

free stream Mach number. Furthermore, the damping function used in the model has to be

modified to depend on tic for the calculations of flows with pressure gradient effects. However,

all model constants used in the Present model are true constants and no modifications need be made

to any damping function to account for pressure gradient effects. The following conclusions can

be drawn based on this detailed study of the two models.

(1) This study shows that a rather general near-wall Reynolds-stress closure can be derived

through the application of asymptotic analysis to the exact and modeled governing

equations in the region near a wall. The resultant near-wall closure depends on the choice
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(2)

(3)

(4)

of the pressure strain model. The Present model chooses the SSG model of Speziale et al.

(1991) because of its demonstrated capability to correctly predict rotating homogeneous

turbulent flows compared to a number of pressure strain models.

The Present model and the LRR/WR model are asymptotically consistent and yield the

correct values for the near-wall asymptotes; namely, k+/£+y +2 = 1/2 and

(a_ + a 2 + aw2) / ak = 2. Furthermore, both models give a fairly correct prediction of the

von Karman constant tc for the flows studied.

The two models give equally good results in their predictions of a wide variety of

incompressible flows, ranging from simple fully-developed turbulent flows to flows

through square ducts and axially rotating pipes. The flow Reynolds number covered varies

from a low of about 5,600 to a high of 500,000. For the Present model, this result is

achieved through the use of the SSG pressure strain model only. As for the LRR/WR

model, the LRR pressure strain model is used and the good predictions are obtained by

changing one of the model constant and making it parametric in the flow Reynolds number.

While this dependence presents little or no difficulty to the calculations of fully-developed

and parabolic flows, its applications to elliptic flow calculations could become

progressively difficult as the complexities of the flow increase. On the other hand, no such

difficulties are encountered with the Present model.

For incompressible flows with adverse pressure gradients, the Present model gives a

correct prediction of Cfbut not so accurate a prediction of the mean velocity. The mean

velocity is under-estimated in the near-wall region. On the other hand, the LRR/WR model

calculations are in good agreement with measurements. Again, this was achieved by

makingfw I to depend on/3 c. When this dependence on the pressure gradient parameter is

eliminated, the LRR/WR model predictions are decidedly worse compared to the

calculations of the Present model. The reason is traced to the behavior of the damping

functions rather than the near-wall corrections derived based on these models. Therefore,

there is a need to improve on the damping function assumed for the Present model.
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(5)

(6)

(7)

(8)

For compressible turbulent flow calculations, the Present model again gives correct

predictions of the mean velocity and temperature over the range of Mach numbers and wall

temperature ratios considered. The calculations of Cf are also correct in the low Mach

number range, except for the case where the free stream Mach number is 10.31 and for the

two cases where the wall is cooled. This could be attributed to the assumption of a

constant turbulent Prandtl number in the formulation. On the other hand, the LRR/WR

model yields uniformly good predictions for all compressible flow cases considered. This

is achieved through the empirical input of one model constant which is made parametric in

the flow Reynolds number and the free stream Mach number.

The Present model has been used in five different numerical algorithms in the course of

calculating all the test cases. They include time marching technique for the solution of

hyperbolic equations, Newton iteration technique for the solution of split boundary-value

problems, parabolic codes for the calculations of boundary-layer flows, two-dimensional

elliptic code for the solution of axisymmetric flow problems and partially parabolic three-

dimensional code for the calculations of complex internal flows. No numerical difficulties

have been encountered in any one of these calculations. Therefore, the model is quite

adaptable irrespective of the numerical scheme used.

The Present model is less ad hoc and more general compared to the LRR/WR model

because there are no adjustable constants and/or damping functions in the Present model.

Since it also gives good results in all the flow cases considered, it appears to be the near-

wall model of choice. As for the noted deficiencies in the calculations of compressible

flows, they could be partially remedied by relaxing the constant turbulent Prandtl number

assumption in the problem formulation.

The Present model can account for Reynolds number effects correctly spanning a range

from about 5,600 to 500,000 for internal flows as well as for external flows.
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