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Summary

Three terms in the Reynolds-stress equation need modeling; they are the turbulent diffusion
tensor, the dissipation rate tensor and the velocity-pressure-gradient correlation tensor. Since the
diffusion term is of higher order compared to the dissipation rate and velocity-pressure-gradient
terms, its model does not need modification in the near-wall region. Numerous high-Reynolds-
number models are available for the other two terms. There is considerable agreement on how to
improve the near-wall behavior of the dissipation rate tensor, because very near the wall viscous
diffusion exactly balances viscous dissipation. On the other hand, there is not much agreement on
the proper near-wall modeling of the velocity-pressure-gradient correlation tensor. If the near-wall
modifications are to vanish away from the wall, the high-Reynolds-number closure of the
Reynolds-stress equations should be recovered exactly. Therefore, near-wall modifications
proposed for the velocity-pressure-gradient correlation tensor would depend on the choice of the

model adopted for the pressure strain part of this term.

Near-wall modifications to the different pressure-strain models have been proposed by
various researchers. However, none has been as thoroughly tested as the proposal put forward by
Zhang (1993), who has validated the near-wall model against a wide varicty of turbulent flows
ranging from simple channel flows to compressible boundary layers at a frec strcam Mach number
greater than 10. His proposal was bascd on the Launder et al. (1975) or LRR model for the
pressure-strain term and the near-wall corrections for this model derived by Lai and So (1990). In
order to achieve good correlation with measurcments, Zhang (1993) found that an additional term
proportional to the product of the turbulent kinetic energy and the strain rate tensor was required in
the near-wall proposal of Lai and So (1990). Furthermore, the coefficient modifying this
additional term has to be made parametric in the flow Reynolds number and the free stream Mach
number and this led to three different functional forms for the coefficient depending on whether the

flow to be modeled is an internal flow, an external flow or a compressible flow. Zhang (1993)
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also found that one of the damping function required modification if adverse pressure gradient

flows were to be calculated correctly.

In this research, a near-wall second-order closure based on the Speziale et al. (1991) or
SSG model for the pressure-strain term is proposed. Unlike the LRR model, the SSG model is
quasi-nonlinear and yields better results when applied to calculate rotating homogeneous turbulent
flows. An asymptotic analysis near the wall is applied to both the exact and modeled equations so
that appropriate near-wall corrections to the SSG model and the modeled dissipation-rate equation
can be derived to satisfy the physical wall boundary conditions as well as the asymptotic near-wall
behavior of the exact equations. Two additional model constants are introduced and they are
determined by calibrating against one set of near-wall channel flow data. Once determined, their
values are found to remain constant irrespective of the type of flows examined. The resultant
model is used to calculate simple turbulent flows, near separating turbulent flows, complex
turbulent flows and compressible turbulent flows with a free stream Mach number as high as 10.
In all the flow cases investigated, the calculated results are in good agreement with data. This new
near-wall model is less ad hoc, physically and mathematically more sound and eliminates the
empiricism introduced by Zhang (1993). Therefore, it is quite general, as demonstrated by the
good agreement achieved with measurements covering a wide range of Reynolds numbers and

Mach numbers.
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I. Introduction

The need to introduce near-wall corrections to the pressure-strain term in the modeled
Reynolds-stress equation was first recognized by Rotta (1951) and later formalized by Launder et
al. (1975). Following the arguments of Rotta (1951), Launder et al. (1975) made a proposal,
which has two contributions to the near-wall effect, to account for the disturbances created in the
turbulence field by the reflection of the fluctuating pressure in the immediate vicinity of a solid
boundary. One contribution corresponded to the reflected-wall influence of the slow part of the
pressure-strain model while another contribution accounted for a similar influence of the rapid part.
The proposal of Launder et al. (1975), however, failed to satisfy the physical wall boundary
conditions for the mean velocitics and Reynolds stresses.  Consequently, some kind of wall
functions have to be invoked in the numerical solution of these modeled equations. Since then,
numerous proposals have been made to remedy this shortcoming, so that the governing equations
can be integrated directly to the wall. Among the proposals put forward, the models of Hanjalic
and Launder (1976), Prud’homme and Elghobashi (1983), Kebede et al. (1984), So and Yoo
(1986), Shima (1988), Launder and Tselepidakis (1988), Launder and Shima (1989), Lai and So
(1990) and Tselepidakis (1991) can be mentioned. Some of these models have even been validated
against complex turbulent flows. Three successful examples can be cited; these are the calculation
of a direct numerical simulation (DNS) of a fully developed turbulent flow in a curved channel by
So et al. (1991a), the curved pipe flow calculations of Lai ct al. (1991a, b) and the rotating pipe
flow modeling of Tselepidakis (1991).

A systematic evaluation of the asymptotic behavior of these near-wall second-order models
has been carried out by So et al. (1991b). The analyses were compared with the behavior of the
exact equations. Also, a comparison of the models' ability to replicate a low-Reynolds-number
plane channel flow was peformed. In addition, the models were evaluated for their ability to
predict the turbulence statistics and the limiting behavior of the structrue parameters compared to
DNS data of a fully developed turbulent channel flow (Kim et al. 1987; Mansour et al. 1988).

With the exception of the models proposed by Launder and Shima (1989) and Lai and So (1990),



none of the models examined were asymptotically correct. Although these two models perform
better than others in their predictions of the mean flow and turbulence statistics, they too fail to
reproduce the log-law correctly and under-predict the distributions of the turbulent kinetic energy,
k, and its dissipation rate, €, in the near-wall region. Also, all models examined yield a von
Karman constant, x, quite a bit different from the accepted value of 0.41.

Two discrepancies invariably show up when these models are used to calculate simple wall-
bounded flows at low bulk Reynolds numbers. One is the poor prediction of the mean velocity in
the buffer region and this leads to an inacurate estimate of k. Another is the incorrect prediction of
the near-wall dissipation rate profile and its value at the wall. These two points are very well
illustrated by the comparisons of the model calculations with the DNS data of Kim et al. (1987)
shown in Figs. 1 and 2. The DNS channel flow data was obtained at a Re; = u /v = 180 which
corresponds to a bulk Reynolds number of about 5,600. In these plots, U+ = Ulur, y* = yu/v
and e+ = ev/u?, where U is the mean axial velocity, y is the normal wall coordinate, uis the wall
friction velocity, A is the channel half width and v is the kinematic viscosity. Two model
calculations arc shown; one labeled LS is from the model of Lai and So (1990), another designated
NWLRR is from Zhang (1993) who derived the near-wall corrections based on the Launder et al.
(1975) model minus their near-wall corrections, or the commonly labeled LRR model, and solved
the € equation of So et al. (1991c) instead of that adopted by Lai and So (1990). The reason was
to improve the prediction of the near-wall behavior of €. Indeed, the prediction of £ is improved
but the calculation of the mean velocity is significantly worse than before. The NWLRR model
also gives an incorrect prediction (Fig. 3) of the flat plate boundary layer DNS data of Spalart
(1988). Among the near-wall Reynolds-stress models referred to above, not a single model can
simultaneously predict the DNS data of Moser and Moin (1987), Kim et al. (1987), Mansour et al.
(1988), Spalart (1988) and Lee and Kim (1991) correctly without having to adjust the damping
functions in the models. It seems that these poor predictions have little to do with whether the
modeled equations are asymptotically consistent. Of course, if they are not, their predictions of the

near-wall asymptotes will be very much in error. Therefore, some other factors besides asymptotic



consistency influence the predictions of the mean velocity in the buffer region and the near-wall
distribution of €.

It is argued that the incorrect prediction of the mean velocity could be attributed to the
performance of the velocity-pressure-gradient correlation model in the near-wall region.
Conventional modeling of this correlation term splits it into a pressurc-diffusion term and a
pressure-strain term. For high-Reynolds-number flows, it is argued that the pressure-diffusion
term is small compared to turbulent diffusion and can be neglected. The model for the pressure-
strain term is formulated for homogeneous, unbounded turbulent flows with high Reynolds
numbers. The presence of a wall gives risce to a reflection of the pressure fluctuations and this, in
turn, has an effect on the turbulence field. If the boundary conditions for the pressure are
homogeneous, the solution of the Poisson cquation for the fluctuating pressure consists of two
parts; a rapid part and a slow (return-to-isotropy) part. However, Mansour et al. (1988) showed
that for wall-bounded flows, the inhomogeneous pressure boundary condition introduces a third
part to this solution. This is the Stokes part and is a consequence of the wall reflection of the
fluctuating pressure.

Many researchers assumed that the Stokes part is not important compared to the slow and
rapid parts. Thercfore, it is usually neglected. However, the importance of this term in near-wall
flow modeling was recognized by Launder et al. (1975) and emphasized by Launder and
Tselepidakis (1991). The latter work adopted a recent near-wall second-order model and
introduced an additional near-wall correction to the pressure-strain model. They managed to
improve the prediction of the mean velocity; however, the calculation of the near-wall behavior of
the dissipation rate was incorrect. According to Zhang (1993), the ncar-wall prediction of the
dissipation ratc could be improved by suitably modifying the dissipation-rate equation alone, while
maintaining asymptotic consistency in the near-wall region for the Reynolds stresses. Their
NWLRR calculations showed that the predicted behavior of the dissipation rate is correct near a

wall but the calculations of the mean velocity in the buffer region is very much in error (Fig. 1).



The wall reflection correction proposed by Launder et al. (1975) has two parts; one
corresponding to the reflected-wall influence of the slow part and another corresponding to the
reflected-wall influence of the rapid part of the pressure-strain model. This latter contribution is
also referred to as the mean strain part of the near-wall effect. In a rigorous derivation of the model
for the mean strain part based on kinematic considerations, Launder et al. (1975) found that there
should be two terms in the model. The first term was related to stress production while the second
term is related to kSj;, where §jj is the strain-rate tensor. Since the second term only contributed to
the shear stress equation alone in a two-dimensional wall-bounded flow, Launder et al. (1975)
argued that it was not as important as the first term in the determination of stress anisotropy near a
wall. Consequently, the coefficient associated with the second term could be set to zero without
loss of generality.

It is precisely for the reason that the second term only contributes to the shear stress equation
that this term is expected to have an effect on the prediction of the mean velocity near a wall.
Therefore, Zhang (1993) argued for its inclusion and proceeded to modify his NWLRR model.
He labeled the modified model as LRR/WR. When the LRR/WR model was used to calculate the
DNS data of Spalart (1988), significant improvements were obtained (Fig. 3). Even then, K was
under-estimated by about 15%. However, the predicted € near the wall followed the DNS trend
closely even though the quantitative agreement was not as good. In spite of the slight
discrepancies shown at low Reynolds numbers, it can be argued that a near-wall model capable of
predicting both the mean velocity and the near-wall behavior of € fairly well has been deduced.
Zhang (1993) applied the LRR/WR model to calculate three different types of flows: internal
flows, external flows and compressible flows. Channel as well as Couttee flows were considered
in the internal flow category, while flat plate and near-separating boundary layers were calculated
in the external flow category. As for compressible flows, a wide range of free stream Mach
numbers and wall thermal boundary conditions, ranging from cooled wall to heated wall, were
cxamined. In all these comparisons, good agreement with measurements was obtained provided

that the coefficient associated with the term kS;; was made to depend on the flow Reynolds number



and Mach Number. Three different functional relations were found to be necessary; one for
internal flows, one for external flows and one for compressible flows. Furthermore, it was found
necessary to modify the damping function used to limit the extent of the influence of the near-wall
corrections for near-separating flow calculations. In essence, the damping function was made to
be dependent on a pressure gradient parameter. Physically, all these modifications are rather ad
hoc. Therefore, there is a need to continue the search for a more general and less ad hoc approach
to derive near-wall corrections to high-Reynolds-number second-order models that are valid for

different types of flows with wide ranging Reynolds numbers and Mach numbers.



II. Objectives

There are four objectives in the present research. The first objective is to search for a more
suitable model for the velocity-pressure-gradient correlation tensor to use as a base for the
derivation of the near-wall corrections. A second objective is to derive appropriate near-wall
corrections to the chosen velocity-pressure-gradient model and the associated dissipation-rate
equation. The third objective is to validate the near-wall model thus derived over as wide a range
of flow data as possible. Finally, the fourth objective is to test the model in different numerical
schemes, ranging from simple Newton iteration scheme to two-dimensional elliptic scheme to
partially parabolic three-dimensional scheme. The approaches taken to achieve these objectives are
outlined below.

Since the proposals of Rotta (1951) and Launder et al. (1975) for the slow and rapid parts of
the pressure-strain tensor, much work on pressure-strain modeling has been carried out. Their
models are essentially linear. Nonlinear models for the slow and rapid parts have been proposed,
for example, by Lumley (1978), Shih and Lumley (1985), Fu et al. (1987) and Speziale et al.
(1991). The nonlinear models of Lumley (1978) and Shih and Lumley (1985) have been primarily
developed through the use of realizability constraints while that of Speziale et al. (1991) is derived
by means of invariant tensor function theory. While the Shih and Lumley (1985) or SL model is
nonlinear in both the slow and rapid parts, the Speziale et al. (1991) or SSG model is only
quadratically nonlinear in the anisotropic tensor. Their model is formulated to be linear in the rapid
part because the energy spectra of the Reynolds stresses are linear. Speziale et al. (1992) show
that the SSG model gives the best results when it is applied to calculate a variety of turbulent flows
where DNS data are available. They have compared their results with those obtained using the
LRR model, the SL model and the Fu et al. (1987), or FLT model. Further evidence of the
superior predictive capability of the SSG model is provided by Demuren and Sarkar (1992) who
examined a number of models for their ability to calculate channel flows accurately, in particular
their ability to correctly recover the log-law and the von Karman constant, x, assuming wall

functions to satisfy the wall boundary conditions. Based on these comparative studies, it is clear



that the SSG model is capable of yielding the log behavior correctly and, therefore, is the most
suitable model to use for the derivation of asymptotically consistent near-wall corrections to the
modeled Reynolds-stress equation.

The near-wall corrections are derived by imposing the condition of asymptotic consistency in
the near-wall region. Thus, the contributions of the Stokes part are suitably accounted for and the
modeled equations are made to behave like the exact equations, at least to the lowest order of the
wall normal coordinate. Simultaneously, the exact and modeled € equation are analysed for their
near-wall behavior and new ncar-wall corrections are proposcd that are consistent with the
improvements made to the modeled Reynolds-stress equation. Thus, the new near-wall second-
order model is entirely different from the NWLLR and LRR/WR models proposed by Zhang
(1993). It is hoped that this new ncar-wall second-order model, hereafter called Present model,
will be able to mimick the ncar-wall flow as well as the log layer behavior correctly and, at the
same time, yield uniformly valid predictions for internal and external wall-bounded turbulent
flows, with and without adverse pressure gradient cffects, covering a wide range of Reynolds
numbers and Mach numbers.

Validations of the Present model arc divided into three different categories. A simple flow
category consists of internal as well as external flows where DNS data and accurate measurements
are available. Specifically, the cases chosen in this category are the channel flow DNS data of Kim
et al. (1987) and Kim (1991), the Couette flow DNS data of Lec and Kim (1991), the combined
channel/Couette flow measurements of El Telbany and Reynolds (1980, 1981), the pipe flow
measurements of Durst et al. (1993), Schildknecht et al. (1979) and Laufer (1954), the flat plate
boundary layer DNS data of Spalart (1988) and the boundary-layer measurements of Karlsson and
Johansson (1988) and Klebanoff (1954). The second category examined is simple compressible
turbulent flows where the validity of the direct extension of incompressible modeling to
compressible flows and Morkovin's (1962) hypothesis is tested. The data sets selected are the
adiabatic and cooled wall mcasurements collected by Fernholz and Finley (1977), the highly cooled

wall investigation of Kussoy and Horstman (1991) and the heated wall study of Spina and Smits



(1987). Finally, the model is tested for its ability to predict complex turbulent flows. Here, three
representative complexities are investigated. One is related to adverse pressure gradient effects and
this is represented by the experiments of Samuel and Joubert (1974). Another complexity is
associated with turbulence driven secondary motions and this is evaluated by comparing with the
fully-developed square duct flow measurements of Lund (1977) and Eppich (1982). The third
complexity tested is introduced by system rotation and this is validated against the axially rotating
pipe flow measurements of Kikuyama et al. (1983). Zhang (1993) has made calculations of most
of these cases. For those cases that Zhang (1993) has not carried out, calculations will also be
made using the LRR/WR model. This way, a complete comparison of the two near-wall models
can be made and their pros and cons can be assessed.

The ease with which the model can be used with any numerical scheme without the
introduction of any undue numerical instability is tested by implenting it into a number of different
numerical schemes to solve flow problems. For example, fully-developed flows are solved using
either a time march technique (So and Sarkar 1994) or a Newton iteration scheme (Lai and So
1990), because the governing equations can either be reduced to hyperbolic type or to ordinary
differential equations. These techniques are used to solve simple internal flow problems. A
parabolic code based on the computer program of Anderson and Lewis (1971) is used to calculate
boundary-layer flows, incompressible as well as compressible. On the other hand, a two-
dimensional elliptic code (Yoo and So 1991) is used to calculate developing flow in an axially
rotating pipe. Finally, the partially parabolic three-dimensional code of Lai et al. (1991a, b) is
modified to calculate the flow in a square duct. Therefore, the model is tested in simple as well as
complicated numerical codes. The presence or absence of numerical instabilities in these

calculations is an indication of the robustness of the model.



III. Near-Wall Turbulence Closure Based on the SSG Model

Governing equations
Incompressible turbulent flows are governed by the Reynolds-averaged equations which can

be written in Cartesian tensor form as:
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where D/Dt is the material derivative, the upper case letters denote the Reynolds averaged quantities
and the lower case letters are used to represent the corresponding fluctuating part. Here, the
Einstein summation convention is followed, U, is the ith component of the mean velocity, u; is the
ith component of the fluctuating velocity, P is the mean pressure, p is the fluid density, v is the
kinematic viscosity and x; is the ith component of the coordinates. These equations need closure
because of the presence of the Reynolds stress terms, %; ;. If a Reynolds-stress or second-order
closure is invoked, the equations governing the transport of the Reynolds stresses and the

dissipation rate of the turbulent kinetic energy are given by (So et al. 1991b)
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where £ = ¢ - ZV(ENF / 8y)2, P is the production of the turbulent kinetic energy, k and C e=0.12,
Ce1=1.50, Cgz = 1.83 are constants introduced in the modeling of the €-equation. The function &
is identically zero for flows far away from a wall and is introduced to account for near-wall viscous

effects. Its specific form will depend on the near-wall models formulated for the Reynolds-stress

equation. Therefore, only & and D], IT;, &;, which are the turbulent diffusion tensor, the velocity-



pressure-gradient correlation tensor and the dissipation rate tensor, respectively, need modeling in

(3) and (4).

Near-wall SSG model

A fairly complete review of near-wall Reynolds-stress closures has been given by So et al.
(1991b). Altogether, eight models were reviewed. The models reviewed are fairly similar in that
they are based on the LRR model and its variations. There are very little differences in the
modeling of the turbulent diffusion of Reynolds stresses because the term is of order y3. Asa
result, this term does not need near-wall correction and the model used by Launder et al. (1975) for
this term is adopted by most researchers. For high-Reynolds-number flows, the viscous
dissipation rate tensor is usually modeled by invoking the assumption of equilibrium turbulence.
This assumption cannot satisfy the no slip condition at the wall, therefore, for near-wall flows, the
high-Reynolds-number model needs correction. Different forms of the near-wall correction to this
term has been proposed by various rescarchers. However, the few differences that exist among
these proposals are not sufficiently great to cause significant discrepancies between the calculated
results. Therefore, the proposal of Lai and So (1990), derived by imposing the constraints of
Launder and Reynolds (1983), can be adopted for this term. The models for the turbulent

diffusion tensor and the viscous dissipation rate tensor can now be written as:
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where n; = (0, 1, 0) is the wall unit normal.

The major difference comes in the modeling of the velocity-pressure-gradient correlation
tensor. In most approaches, this tensor is split into two parts; a pressure diffusion part and a
pressure strain part. The pressure diffusion part is generally neglected in high-Reynolds-number

modeling. When near-wall models are devised, most researchers adopt this partition of the
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velocity-pressure-gradient correlation tensor, and seek a near-wall correction to the high-Reynolds-
number model for the pressure strain part. The pressure diffusion part is again neglected. In view
of this, the near-wall corrections devised for the pressure strain part will depend on the models
adopted for this term. Most near-wall corrections proposed are derived based on the LRR model.
The modeled terms consist of a slow part, or a return-to-isotropy part, and a rapid part which
accounts for the effects of mean strain. Although this model gives good predictions of the flow
behavior for a wide variety of simple shear flows at high Reynolds numbers, its performance for
some types of flows, such as rotating homogeneous turbulent flow, ncar-separating flow, back-
step flow, swirling flow, three-dimensional wall jet flow and simple flows at low Reynolds
numbers, is not very satisfactory (see Figs. 1 - 3). For example, swirling flow could give rise to a
stabilizing or a destabilizing effect on the flow, depending on whether the centrifugal forces created
by flow rotation or the extra strain rates, that lead to additional turbulence production, are more
pronounced. Therefore, if swirling flows are to be calculated correctly, the competing effects of
the centrifugal forces and the extra strain rates have to be accounted for in the turbulence models.
As for the effects of wall proximity near a wall, Launder et al. (1975) suggested the
following remedy. They argued that the rapid variation of the mean velocity near a wall could not
have been the only factor to affect near-wall turbulence. Instead, they suggested that the wall
proximity effects tend to increase the anisotropy of the normal stresses and diminish the shear
stress. Furthermore, the wall influence is even felt in regions where the mean strain rates are
negligible. Consequently, they proposed to modify their LRR model to include wall-proximity
effects. Through a rigorous kinematic consideration, they found that there are two contributions to
their corrections. One corresponds to the reflected-wall effects of the slow part and another to the
reflected-wall effects of the rapid part. However, their corrections fail to satisfy the physical wall
boundary conditions and are not asymptotically correct. Therefore, the resultant modeled
equations cannot be integrated directly to the wall and again some kind of wall functions have to be
invoked. Besides, their corrections give rise to a global effect even though they were supposed to

correct for wall-proximity effects. On the other hand, the proposal of Lai and So (1990) to enforce
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asymptotic consistency offers a viable altenative. Their derived functional form is similar to that
obtained by Launder et al. (1975); however, the coefficients modifying the terms are different.
The major difference is that their corrections render the modeled equations valid all the way to the
wall and there is no need to invoke wall functions for the numerical solutions of these equations.
Furthermore, if swirling and other complex flows are to be calculated correctly, the model for the
velocity-pressure-gradient correlation term should be able to account for rotational effects in the
flow. According to Speziale et al. (1991), the inadequacy of the LRR model could be attributed to
its linear behavior. Therefore, they proposed a modification which includes some nonlinear terms
in the anisotropic tensor. The result is the SSG model for the pressure strain term. Since this
model gives better prediction of rotating and other homogeneous turbulent flows (Speziale et al.
1992), the present work proposes to adopt this high-Reynolds-number model as base to derive a
near-wall model for ITj; so that wall proximity effects and pressure diffusion near a wall are
accounted for in the model.

An asymptotic approach similar to that put forward by Lai and So (1990) is used to derive the
near-wall correction to the SSG model. In order to ensure that the near-wall correction dies out far
away from the wall, a damping function based on the turbulent Reynolds number is proposed for
the near-wall correction term. Without going into details, the near-wall SSG model can be written
as:

1My = -(2Cie + CIP)by + Caelbuby - 11T 5) - i (Py - 2P )

- ﬁl(Dij - %T)‘ 5,',') - 2()/1 + %H”z)ksij + H,':" . (7)

In this form, which is written differently from that given by Speziale et al. (1991), the meanings of
the individual terms can be easily identified. The first term on the right is equivalent to Rotta's
slow part, the second term is essentially the nonlinear contribution to the slow part, the third,
fourth and fifth terms are similar to the rapid part proposed by Launder et al. (1975) and the last
term is the near-wall correction proposed to render the model regular as a wall is approached. The

unknown second-order tensors in (7) are given by:
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where 2P = P;;, IT = byby, C;=1.7,C;=4.2,C; = 1.8,C; = 1.3, 0, =(Cy+ C5)/4, ; =
(Cq-Cs)/4,7,=(2C4-3C3)/6,C3=0.8,Cy=1.25 and C5 = 0.4 are the model constants
specified by Speziale et al. (1991) and H,;-J is the near-wall correcting function which is derived to
be

1‘[,-;“ = fwl[(ZCle + Cfi’) bij - C2€(bikbkj - lnd")
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Here, f,; is the damping function and ITj; is a near-wall correction proposed to account for

e . . . P .
pressure diffusion. The final expression derived for ITj; can be written as
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Two near-wall model constants, & and ¥, are introduced and they are optimized to take on values

that would give the best prediction of the near-wall asymptotes for one particular fully-developed

channel flow. Thus determined, their values are given by a* = - 0.29 and ¥* = 0.065.

The form of (9) is very similar to that proposed by Launder et al. (1975). Three
contributions to this correction can be identified. The last term H,;’ is to account for pressure
diffusion which is traditionally neglected in high-Reynolds-number modeling and is absent from
Launder et al.’s (1975) proposal. Without this term the modeled Reynolds-stress equation could
not be balanced at a wall. The other four terms within the square brackets are essentially similar to
those proposed by Launder et al. (1975). The first two terms correspond to the reflected-wall

effects of the slow part while the last two terms correspond to the reflected-wall effects of the rapid
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part. A major difference between (9) and that proposed by Launder et al. (1975) is in the
coefficients modifying the terms and the introduction of the damping function qualifying the terms
within the square brackets. The damping function is necessary to cnsure that the effects of the
near-wall corrections are decreasing as y increases. As for the coefficients qualifying the first two
terms, they have to be identical to thosc given in the slow part of (7) to ensure that (7) will satisfy
the wall boundary conditions. Therefore, their values are exact and cannot be determined by
calibration. On the other hand, the last two terms are of higher order and are not pivotal in
determining near-wall balance. They, however, will affect stress anisotropy necar the wall.
Therefore, their coefficients are not exact and could be determind through calibration.

Since the damping function is introduced into the model to limit the extent of the influence of
the near-wall correction, it should vanish at a reasonable distance away from the wall. It is
precisely for this reason that it is very difficult to find one single damping function capable of
yielding an influence over a limited y range over a wide range of Reynolds numbers. In the course
of validating this new near-wall Reynolds-stress model, two damping functions are found to be
necessary if different types of flows covering a very wide range of Reynolds numbers are to be

predicted correclly. These damping functions are given by

fur = exp[-(%z] , (11a)
fur = expl- %—ﬂ : (11b)

where Re, = kv €is the turbulent Reynolds numberand A = 1 - (9/2)bib;; - 2bibjxbri). The
choice of the damping function depends on the flow Reynolds numbers. It is chosen so that the
damping functions will vanish in the range 100 < y* = yuy /v < 200, depending on the flow
Reynolds numbers and the type of flow considered. For example, when channel flow at Re; =
395 is calculated, (11a) is more suitable. On the other hand, when Re; is reduced to 180, (11b) is
appropriate. The same trend is also found for Couette flow, pipe flow, boundary-layer flow with

and without adverse pressure gradients, compressible flow and other complex flows. It will be
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seen later that, for most of the cases calculated, (11a) is used, whilc (11b) is only used for three
cases where the Reynolds numbers are among the lowest in all the flow cases considered.

A similar approach is used to derive the near-wall correcting function & for the £-equation.

Again, without going into details, the final result is

S -
£ = fw2( LEP +M€7-Nf—k€) , (12)

where fio = exp [— (Re, / 40)2] is a damping function to insure the disappearance of the effects of &
far away from a wall, and L, M, and N are model constants. Subsequent calculations show that
these constants should take on values given by L =2.25, M = 0.5 and N = 0.57. The modified
€ = € - 2vk/y2is introduced to cnsure proper behavior of € near a wall. Thus modeled, (3) and
(4) are valid as a wall is approached and can be used to calculate wall bounded flows where the
boundary conditions on - uu; and € are given by: - wu;=0and &, = 2v(a\ﬂ? / 8y)2 The usual no-

slip conditions at the wall are applied to the mean velocities.

Near-wall LRR/WR model

The LRR/WR near-wall model also solves (3) and (4) with the models for D,-Tj and g;; given
by (5) and (6), respectively. The differences come in C,, which is assumed to take on a value of
0.1 rather than 0.12, (7), (11) and (12). LRR/WR assumes the high-Reynolds-number LRR

model for IT;. Therefore, (7) is now given by
H,’j = -2C18b,:,' - o (Py - %5,ji)) - ﬂl (D‘J - %S’Ji)] - 2'}’1/\ S,J + H:jv , (13)

where C; = 1.5, C, =04, 0y =(8+ Cy) /11, B; =(8C,-2)/ 11, y; = (30C, - 2) / 55 and again
I'l,;’ is the near-wall correcting function required to make the modeled equation to satisfy the wall
boundary conditions exactly. According to Zhang (1993), the expression derived for 17,;’ can be

written as

= fw|2C b + ( - 5,;’) uuknknj + Uligngn; )] + 2C kS,J(kﬂ) (14)
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where a* = 0.45 and C,, is a model coefficient. The first term inside the square bracket is to
account for the reflected-wall effects of the slow part, the second term that of the reflected-wall
effects of the rapid part and the third term is to compensate for the pressure diffusion effects near a
wall. Zhang (1993) argued that the last term was required because a similar term also existed in the
original model of Launder et al. (1975) but they neglected it in its final form. The NWLLR model
is also given by (13) and (14), except that the last term in (14) is set equal to zero. In other words,
the reflected-wall effects are only partially accounted for by the C; and a* terms inside the square
bracket.

In order for this modification to work well for a wide variety of turbulent flows, Zhang
(1993) found that C,, has to take on different values, while all other model constants remain

unchanged. Three different expressions were found to be suitable, where C,, is specified by

C, = -805x103 + 5.19x10 3log Re,, , (15a)
for internal flows, it is deduced to be

Cw = Cuin = 4.14x10°3 + 3.0x 10 3log Re, (15b)
for external flows and it is given by

Cv=Cpuin-58x100%M,_ (15¢)

for compressible flows. In (15¢), C,, ;, was taken to be given by (15b) for Rey < 5,500 and to be
Cy.in = 0.0153 for Reg > 5,500. Here, Re,, is the bulk Reynolds number based on the channel
width or the pipe diameter, Reg is the Reynolds number based on the momentum thickness, M, is
the free stream Mach number and the damping function f,,; = exp [- (Re,/ 150)2] is specified by
Zhang (1993). This damping function was found to work well for all the incompressible and
compressible flow cases attempted by Zhang (1993), except the near-separating flow of Samuel
and Joubert (1974). In order to make the model work for adverse pressure gradient flows, it was
found necessary to modify the damping function by introducing a dependence on a pressure

gradient parameter. Zhang (1993) proposed a modified damping function f,,; given by
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fur = exp|-[Re,1150(1 + 0.138.)0] . (16)

where . is the Clauser parameter defined as 8, = ‘5*/1,",,)((1 P./dx). Here, x is the stream
coordinate, &* is the displacement thickness of the boundary layer, t,, is the wall shear stress and
P, is the free stream pressure. Finally, (12) is derived to be the same, except that the model
constants now take on the following values, L =2.25, M = 1.5 and N = 2.0, while the same f,,, is
assumed. In other words, both Cy, and f,,; become problem dependent. Thus modified, the

model again gives good results for the near-separating flow case.

Two-equation k-€ model

A two-equation k-€ model can also be obtained from (3) and (4) by contracting (3) and
dividing it over by 2 to yield the k-equation. If the terms resulted from the anisotropic near-wall
corrections are neglected as suggested by Lai and So (1990), the k cquation can be written as

Qi:_a_(v+ﬁgﬁ+ﬁ-e , (17)
Dty Ok/ 9x;

where oy = | is assumed, Vv, is the eddy viscosity and is defined as

2
= Cufuks (18)

In (18), €y 1s a model constant taken to be 0.096 and fyu 1s a damping function introduced to
ensure asymptotic correctness for the behavior of the Reynolds shear stress near a wall. For the

present k-€ model, £, is given by

fu = [1 4+ 3.45

e tanh(yl;) . (19)

]

It should be pointed out that the turbulent diffusion coefficient in (4) should be replaced by v,/ o,
where o, is a model constant taken to be 1.45.

The two-equation model assumes gradient transport and isotropic c¢ddy viscosity. Therefore,
it is not that suitable for complex flows which are know to give risc to anisotropic turbulence

behavior. In order to capture this particular feature without resorting to a full Reynolds-stress
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model, the anisotropic eddy viscosity proposal of Speziale (1987) could be adopted. According to

Speziale (1987), the anisotropic eddy viscosity is given by

- 2
u;uj = %k 6,_, - ZC#ka?S,-j

3 ~ ~
- 4Cp Cifi k_z‘sik Skj - ‘;‘Skl Sk i + Sy - %Skk 771 (20
£
~ 0S;; aS;; dU; oU;
where S = Yy Up—L - —= 8 - —L Si|is the frame-indifferent Oldroyd derivative
ot 0 xx 0 Xy d xi

of §;j and Cp is a dimensionless constant that assumes a value of 1.68. It should be pointed out
that the isotropic eddy viscosity formulation is recovered in the limit of Cp goes to zero.
Therefore, the above anisotropic eddy viscosity model along with the k and € equations can be
used to predict complex turbulent flows; there is no need to solve the full set of Reynolds-stress
equations. The two-equation models are included here for the sake of completeness. In this
report, only the calculations of the near-wall Reynolds-stress model are discussed. Two-equation
assessment with respect to Couette flows has been carried out by So and Sarkar (1994); other

validations will be addressed in a different report.

Modeled equations for compressible flows

The extension to compressible flows is quite straight forward if Morkovin's (1962)
hypothesis is invoked and the equations are written in terms of Favre-averaging, much like what
Zhang et al. (1993a, b) have done in extending the k-€ and the LRR/WR model to compressible
flows. For compressible turbulence, it has been suggested by Sarkar et al. (1991) that the
dissipation rate € could be decomposed into a solenoidal part and a compressible part so that € = &
+ £.. The solenoidal dissipation rate is associated with the energy cascade, therefore, it approaches
the incompressible limit correctly. In view of this and consistent with Morkovin's hypothesis
(1962), the compressible part of € is neglected in the present formulation and € is taken to be given
by & alone. Therefore, from this point on, the symbol € is taken to either mean the true dissipation
rate in incompressible flow or the solenoidal part of the true dissipation rate in compressible flows.

With these simplifications, the modeled equations are very similar to those given in (3) and (4) and

18



the incompressible models can be directly extended to compressible flows. Therefore, the
compressible modeled equations, including the mean flow equations, are given below without
derivation.

A density-weighted average is used to decompose the fluctuating quantities, besides pressure
and density, into a mass-weighted mean part and a mass-weighted fluctuating part. On the other
hand, the pressure and density are decomposed using Reynolds average, which results in a time-
averaged mcan part and a time-averaged fluctuating part. For any variable F, the mass-weighted
mean is denoted by F, the mass-weighted fluctuating part by f, the time-averaged mean by F and
the time-averaged fluctuating part by f*. The fluid density is taken to be p, the dynamic viscosity
M, the thermal conductivity k,, the specific heat at constant pressure Cp, and the gas constant is
denoted by R. In terms of these variables, the pressure p and the temperature ©, the mean

equations of motions for compressible turbulence can be written as:

%, PT)i=0 , 1)
ot
U =~ S P _
pat (pU:U); = -P - %(# Ui + WOy + Uy - mdy (22)
apcp@ + (Eﬁlépal = Qﬁ —(’7;1—); + E,’FJ + ;t,—pJ + E','jlﬂj,",‘
ot ot

+ Eij uij + pE - (l; Ein),i + (]?r @,i).i , (23)

P=pRO . @4)

where (-); denotes a gradient with respect to the spatial coordinate x;, the Einstein summation

convention applies to repeated indices, and the Reynolds stress tensor, the Reynolds heat flux

———

vector, the turbulent dissipation rate are defined as 7; = uu; , Qi = u;6 , pe = Ojj u,j ,

respectively. The mean viscous stress tensor is given by:

— ~

Oy = ‘%17 Uss 85 + 1Ty + Tja) )
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When deriving these equations, additional assumptions are made regarding the neglect of

turbulent fluctuations of dynamic viscosity, thermal conductivity and specific heat. Also,

according to Speziale and Sarkar (1991), the velocity-pressure gradient correlation term u; p:,- can

be written in the equivalent form as

uip; = -(pROT), + [FRUO) - pu; 26)

From these equations, it can be seen that, to achieve closure, models are required for the Reynolds

stress tensor T;, the Reynolds heat flux vector Q;, the pressure dilatation correlation p u;; , the
turbulent dissipation rate € and the mass flux vector u; . In the following, a near-wall Reynolds-

stress model based on the incompressible model derived above is given for 7;;, and &, while

Morkovin's hypothesis (1962) is invoked to justify the neglect of p’ u',-,,- and u; in the modeling of
supersonic turbulent flows and a constant turbulent Prandtl number, Pr, = 0.9, is assumed for the
evaluation of @;,or- Qi = - L:é = (w/ Pry) (85 / ax;) where v, is the eddy viscosity defined in
(18) with the damping function given in (19).

The compressible Reynolds-stress equation written in the same form as its incompressible

counterpart is given by:

d — ~ — T S - o~ - o~
a—(PTij) + {UkPTij),k = (“io'jk + ujo'ki),k + Cijex + ( pPtulUjx - pTplU i,k)
t
+ [T - & + (%P'u;c,k 5ij) - (@Pj + wP,) + (Wowx + wows) . @7

where

Cijkk = (Em + %P'u}c 6ij,k

, (272)
I = ’(“:PJ + ”Jp:) + %“kpk 5 (27b)
Ej = Oultjx + Opli (27¢)

are the turbulent diffusion tensor of 7;, the velocity-pressure gradient correlation tensor and the

viscous dissipation rate tensor of T;;, respectively. The last three bracketed terms in (27) arise as a
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result of compressibility and are identically zero for incompressible flows. Therefore, if
Morkovin's hypothesis (1962) is invoked, the last three bracketed terms in (27) can be neglected

and the turbulent diffusion, viscous dissipation and velocity-pressure gradient correlation terms can

be modeled as in constant-density flows. Consistent with this assumption, the term p'u; ; in (26) is

'

also neglected. Finally, the viscous diffusion term u,o)k + u}c}k « 18 approximated by (Erijk)‘k.
Thus simplified, (27) can be closed by adopting the near-wall models outlined above. It is
sufficient to write down the equations based on the ncar-wall SSG model, the corresponding
equations for the LRR/WR model can be easily deduced and are also given by Zhang (1993).

Without derivation, the models for the various terms can be generalized as:

Cije.k = [Cs I;ké(fklfij.l + Tt + Tl 1) L (28)
My =10 + 1T, 29)
gj = %Ee 8j + & . (30)

Here, I'I,; is given by the high-Reynolds-number model of Speziale et al. (1991), Hiy and 8};- are
near-wall corrections. The models for these different terms can now be written for compressible

flows as:
H,: = —(2C18 + C;F) b,’j + CzE(b,’kbkj - %I‘[ 6,]) - (P,'j - %F 8,;)
~ Cy 172
- ﬁl(D.j - %P 5:‘;) - 2()’1 + 7317 / )kStj , (31)

11 = fnl(2Cie + CIP)b; - Cot [buby - 111 5y)

+ ot (P - %ﬁ 8] + 27k s,,-] £ I 32)

Hif =-1 2‘ Eaui uk}"k”j + i(ﬂm)ﬂwi + Li(ﬁaukul}lknzni nj , (33)
3 ax ox; ox; ox; 3 O0Xpm 0x,

wo_ 2. 5. —Q(T,'j + Tpngn; + Tpngng + ninjrkmknz)] 34

& = f"‘[ e+ Py (I + 3z 12K) ’ (34)
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where P; = - (5 r,-klwlj,k + E qkﬁ;‘k) represents turbulence production of the Reynolds stresses,
k = 7,72 is the turbulent kinetic energy, b;; is the anisotropic tensor and is again given by (8a),
P =P;2, Sij = (l"/‘,;j + IHJJJ;,-)/2 and D;; = —(E fikﬁkJ + Ez'jkﬁk.,-). The damping function is
again defined by (11a) and (11b) depending on the Reynolds number of the flow, while the
turbulent Reynolds number is given by Re, = k% v &

The dissipation rate £ is assumed to be approximately equal to the solenoidal dissipation rate

whose modeled equation, similar to its incompressible counterpart, can be written for compressible

flows as:

0pE [~ =~ — — ~ pE €
_,D_ + (pe Uk).k = (uek)k + (Cgp&rk,- 8‘;) + C51§P - CQB—— + é . (35)
ot € X k k

The near-wall correcting function & can be generalized for compressible flows to give

ngwzﬁ(-LfF+M%—N£Eé> . (36)

In (36), € and £ are defined by pe = pe - 21(VK /ox,f and pe=pe - 2kl 3,
respectively, and the damping function is given by fy2 = exp [ (Re;/ 4())2}. The model constants
are all taken to be the same as those given above for the near-wall SSG model. Finally, the
boundary conditions for the mean and turbulent velocity field are given by:

Ui=k=1=0 £=2wlk/on) |, 37)

where x; is the wall normal coordinate.
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IV. Validations Against Simple Turbulent Flows

Three different types of simple turbulent flows are considered. These are fully-developed
channel and Couettc flows, fully-developed pipe flows and flat plate boundary-layer flows. The
internal flow Reynolds numbers considered range from a low of Re; = 170 to a high of Re, =
8758. This corresponds to a bulk Reynolds number of about 5,600 to 500,000. As for the
boundary-layer flows, the Reynolds number is calculated based on the momentum thickness and
free stream velocity or Reg = U,,0/ v. The range covered varies from 1,410 to 7,800. The data
include both measurements and DNS data obtained from numerical simulation. Most of the data in
the low Reynolds number range are DNS experiments, while all of the high Reynolds number
flows are selected from experimental measurements. Therefore, the simple flows invesigated vary
from very low to very high Reynolds numbers and detailed near-wall DNS data are available for
comparisons. All these flows are calculated using the Present model and the LRR/WR model
outlined in Section III. Their ability to replicate these flows is analysed and discussed below.

Whenever possible, comparisons are made by plotting the results in the form of U+ versus In
yt, kt = ku? versus y*, uv* = uv lu? versus y*, e+ = ve/u? versus y* and u', v' w' versus y+.
In the case of boundary-layer flows, some figures are plotted versus y/8, where 6 is the boundary
layer thickness. Here, u, v and w are the fluctuating velocity components along the axial or x, the
normal or y and the transverse or z directions, respectively; the prime is used to denote the rms
value of these fluctuations and the overbar is used to represent time-averaged quantities. Detailed
comparisons are made with the data whenever possible. Since €* distributions are not always
available from the data sets chosen, the plots of £* are merely to show the difference between
various model predictions and to illustrate the ability of the models to calculate a maximum €* at the
wall. In addition, the ability of the models to correctly predict the von Karman constant, k, is
assessed.

Besides comparing the mean and turbulence properties across the channel, the near-wall

asymptotes of k, uv, € u', v’ and w' are calculated in order to analyze their asymptotic
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consistency. According to So et al. (1991), k*, uv*, €*, ', v’ and w' near a wall can be

expanded in terms of y* as

k+ = apyt2 + bpy*t3 + .. , (38a)
uvt = agy*t3 + byt + ., (38b)
£+ = 2a; + 4by* + o (38¢)
w'=ay*t+byt?+ ..., (38d)
vi=ayt?+ byt + ., (38¢)
w'=a,yt + byt? + ..., (38f)

where the a;'s and b;'s are coefficients in the expansions for k+, uv*, u', v’ and w'. Therefore,
the ratio k+/e*y+2 is exactly 1/2 at the wall and (a3 + a? + a?)/ a; = 2. In all previous
calculations using the LRR/WR model (Zhang 1993), the ratios k+/ety*+?2 = 1/2 and
(a2 + ag + a2)/ a = 2 are recovered correctly. This means that the LRR/WR model is internally
consistent and asymptotically correct for incompressible internal and external flows as well as for
incompressible boundary-layer flows. Therefore, any deviation from these values is an indication

of the inadequacy of the near-wall model.

Channel and Couette flows

The governing equations for fully-developed channel and Couette flows can either be reduced
to ordinary differential equations or time dependent one-dimensional equations, therefore, they can
be solved by a number of simple numerical methods. Two standard ones are the time marching
technique used by So and Sarkar (1994) and the Newton iteration method used by Lai and So
(1990). These two techniques are used to solve the governing equations for channel and Couette
flows and they are found to give essentially the same results. Therefore, it is immaterial as to
which method is used to obtain the results shown below for channel and Couette flows.
Calculations are carried out for the DNS channel flow data of Kim et al. (1987) and Kim (1991) at
Re, = 180 and 395, respectively, for the DNS Couette flow data of Lee and Kim (1991) at Re, =
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170 and for the combined channel/Couctte flow experiments of El Telbany and Reynolds (1980,
1981) at Re ranging from 625 to 1,463. In these latter experiments, three sample flows are
selected for caleulations. They are the channel flow (y = 1), the Couette flow (y = -1) and a mixed
channel/Couette flow (y = 0.504). Since the highest Re; attempted in these calculations is only
1,463, the number of grid points required for grid independent results is found to be 54. The grid
points are distributed so that at least 5 points arc in the region bounded by 0 < y* < 10, 15 10 25
points in the region 10 < y*+ < 100, and about 25 points in the rest of the flow region.

The calculated results are summarized in Figs. 4 - 11. Each figure gives five plots plus one
table that compares the calculated x and ncar-wall asymptotes with data, whenever possible. The
von Karman constant is determined by following the procedure outlined by So et al. (1994). In
this procedure, an overlap between the inner layer and the outer layer is first determined from the
DNS data sct or from measurements. A straight line is then drawn through the overlap in semi-log
plot and the slope of the straight line yields k. Once the overlap is identified for a particular flow
case, an identical region is used to determine x from the model calculations of the same flow case.
This way, the von Karman constant is determined consistently and differences shown between
model calculations and data arc truc discrepancies. However, it should be pointed out that this way
of determining K gives risc to an error of + 0.02 for a nominal x = 0.41. The DNS channel flow
comparisons are given in Figs. 4 - 7, the DNS Couette flow results are shown in Figs. 8 and 9,
while the combined channel/Couctte flow calculations are plotted in Figs. 10 and 11. For cach
flow case, the results of the Present model are shown first. It is then followed by the results of the
LRR/WR model.

The LRR/WR model assumes (15a) for Cy,, and this gives risc to the results shown in Figs.
5, 7,9 and 11 for channel and Couette flows. These results are very similar to those obtained
using the Present model (Figs. 4, 6, 8 and 10). The x thus determined for all the flow cases
considered varies between ().38 and (0.4, compared to about .4 obtained from the data. The worst
prediction of xis given by the LRR/WR calculation for the case of channel flow with Re; = 180

(Table 5). Even then, the error is only about 7.5% which is low compared to some of the
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predictions reported by So et al. (1991b) for the same flow case. The predictions of the normal
stresses are also in good agreement with measurements (see the ¥ = 1 case in Figs. 10 and 11),
even when the flow is a mixed channel/Couette flow (y = 0.504 case in Figs. 10 and 11), except in
the near-wall region where the stress anisotropy is not repropduced correctly. It seems that the
LRR/WR model does a better job of predicting the stress anisotropy in the very near-wall region,
y+ < 10, compared to the Present model. However, its prediction of the stress anisotropy in the
region y* > 50 is not as good as the Present model. This behavior is, in general, true for all the
flow cases calculated in this study. As for the predictions of the near-wall asymptotes, both
models give essentially the same results. The asymptotic values k+/e+y+2 = 1/2 and
(a2 + a? + a2)/ a; = 2 are recovered correctly for all the cases shown here, while the calculated
ay's are in good agreement with data. In general, the channel flow calculations show that the
Present model is just as good as the LRR/WR model, which relies on a C,, that varies
parametrically with Re,, to give good predictions. However, it should be pointed out that the use
of (15a) to calculate developing channel or Couette flow could present a problem for the LRR/WR
model. More will be said about this crucial point in Section V1.

It has been argued for quite some time that conventional high-Reynolds-number turbulence
models are not suitable for calculating plane Couette flows (Henry and Reynolds 1984).
According to Schneider (1989), the reason for this can be attributed to the erroneous prediction of
the spatial distributions of k across the channel even when second-order and third-order closures
are used. A typical prediction gives a fairly uniform k across the channel; most models fail to
capture the rise to a maximum near the wall. Recently, Nisizima and Yoshizawa (1987) proposed
an anisotropic near-wall k- model while Schneider (1989) suggested the modeling of the
anisotropic behavior of the pressure diffusion term in a high-Reynolds-number Reynolds-stress
model for the calculation of plane Couette flows. Their argument is that the lack of anisotropy in
conventional models is the main source of an incorrect k prediction in plane Couetie flow
calculations. However, their models are not asymptotically consistent in the near-wall region and

their results again show that the model calculations of &, contrary to DNS data and measurements,
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still greatly under-predict the rise of & in the near-wall region. In another study on Couette flows,
So and Sarkar (1994) hypothesised that, if the modeled equations behave similarly to the exact
equations as a wall is approached, the predictions of the near-wall flow would be asymptotically
correct and this, in turn, would give rise to a much better estimate of the outer flow. In other
words, previous erroneous predictions of plane Couette flows are the result of incorrect modeling
of the near-wall flow. So and Sarkar's (1994) calculations of the DNS Couette flow of Lee and
Kim (1991) fully support their hypothesis. The Present model and the LRR/WR model do not
attempt to mimick the pressure diffusion behavior near a wall but are asymptotically correct.
Therefore, good predictions of Couette flows are expected based on the hypothesis of So and
Sarkar (1994). Indeed, this is the case as can be seen in the results shown in Figs. 8 - 11. The
rise of k near the wall is predicted by both models; however, the quantitative agreement is not as
good. This is due to an under-prediction of u', while the predictions of v' and w' are in good
agreement with measurements (see Figs 10 and 11). The true reason for the discrepancy noted in
the u' prediction may not be due to model inadequacy, but rather to the existence of roll cells in the
flow. In their paper, So and Sarkar (1994) gave a detailed discussion of the under-prediction of k
near the channel core. In view of this, it can be said that the Present model and the LRR/WR
model give equally good predictions of channel and Couette flows over a wide range of Reynolds

numbers.

Pipe flows

This set of flow cases are selected to test the models' ability to replicate Reynolds number
effects over a very wide range of Reynolds numbers. Four data sets are selected; they are the
measurements of Durst et al. (1993) at Re; = 250, the experiment of Schildknecht et al. (1979) at
Re, = 489, and the measurements of Laufer (1954) at Re, = 1052 and 8758. In terms of the bulk
Reynolds numbers, they vary from a low of 7,500 to a high of 500,000. Thus, the Reynolds
number attempted is the highest among the many test cases investigated by various researchers. In

view of the high Reynolds numbers attempted, the number of grid points required for grid
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independent results is found to be 108. For the two lowest Reynolds numbers, only a grid with 54
points is sufficient while at Re; = 8758, a grid with 250 points is required. These results are
essentially identical to those obtained using 108 grid points. Therefore, in the following
presentation, the results for the three lower Reynolds numbers are obtained with 108 grid points,
while the results for the highest Reynolds number case is obtained using 250 grid points. Again,
the plots are presented in a manner similar to those shown in Figs. 4 - 11. The calculations of the
Present model are shown first and this is followed by the comparisons of the LRR/WR model.
Comparisons of the model calculations with the four different pipe flow measurements are
presented in Figs. 12 - 19.

As the Reynolds number increases, the viscous layer becomes thinner and thinner.
Therefore, the viscous dissipation rate approaches zero faster. If the Reynolds number effects are
modeled correctly, the calculations should reflect this trend both qualitatively and quantitatively.
An examination of the results shown in Figs. 12 - 19 reveal that this trend is being reproduced
correctly by both models. At Re; = 250, €+ approaches zcro at the pipe center. As the Reynolds
number increases, the location where Re; goes to zero moves towards the pipe wall and, at Re, =
8758, e+ vanishes at a distance very close to the pipe wall, or at (! - r/R) = 0.15. The comparisons
show that the predictions of £* is in good agreement with measurements whenever they are
available from the experiments. Again, the asymptotic values of k+/e*y+2 and (a3 + a? + a2)! a;
arc calculated correctly; thus indicating that the models are asymmptotically correct for pipe flows
as well as for channel and Couette flows.

In general, the log-law is reproduced by the two models for the four flow cases examined.
The models also give a very good prediction for k (sce Tables 12 to 19) Again, the largest error is
given by the LRR/WR prediction of the Re; = 250 case. Besides this, there are other slight
differences in the model predictions. One of which is the prediction of the & distribution. Both
models over-estimate the value of k in the pipe core and under-predict k in the near-wall region for
the Re, = 8758 case (see Figs. 18 and 19). However, the LRR/WR model consistently gives a

larger error than the Present model. Also, the LRR/WR prediction of k is very much in error at
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Re, = 250 (compared Fig 12 with Fig. 13). Both models replicate the maximum k and the location
where the maximum occurs correctly. Together, these results show that the two models examined
are quite comparable in their predictive capabilitics. However, in the case of the Present model,
none of the model constants has to be altered over this wide range of Reynolds numbers
investigated. On the other hand, C,, has to take on different values depending on the flow

Reynolds numbers for the LRR/WR model. More will be said about this in Sections V and VI.

Flat plate boundary-layer flows

Three diftferent boundary-layer flows covering a Regrange of 1,410 to 7,800 are selected to
test the models’ ability to replicate simple external flows. These consist of the DNS data of Spalart
(1988) at Reg = 1,410, the detailed measurements of Karlsson and Johansson (1988) at Rey =
2,420 and the measurements of Klebanoff (1954) at Reg = 7,800. The boundary layer calculations
are carried out using the computer code of Anderson and Lewis (1971). Suitable modifications are
made to the code and to the grid distributions in order to accommodate the two near-wall Reynolds-
stress models. All calculations are found to be grid independent when they are carried out with
101 grid points or more. The comparisons are made in the region where the flow has achieved
fully-developed turbulence. Thus, inlet boundary condition effects are essentially absent in all the
results presented in Figs. 20 - 25. Unlike internal fully-developed flow calculations where Re is
specified, the boundary-layer calculations are carried out by inputting U,, the free stream velocity.
Consequently, the wall shear stress, T, is a calculated result rather than an input. The accuracy in
which this quantity, or the skin friction coefficient Cr = 21, /p UZ, can be calculated is an
indication of the predictive capability of the models. Therefore, in addition to comparing k, the
calculated and measured Cy's are also compared. These quantities together with the near-wall
asymptotes are given in Tables 20 - 25.

In this range of Reynolds numbers, the use of (11a) for f,,; is applicable for the Present
model and there is no need to switch over to (11b) even at the lowest Reynolds number examined.

On the other hand, C,, changes from case to case according to (15b) for the LRR/WR model.
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Even then, there are quite a number of differences between the two model predictions of these three
boundary-layer flows. The differences are summaried below. At low Reynolds numbers, the
Present model gives a better prediction of the flow than the LRR/WR model. This is obvious by
comparing Figs. 20 and 21. LRR/WR under-predicts the k distribution in the near-wall region and
yields a k with about 17% error compared to the DNS data (compared values in Tables 20 and 21).
Also, LRR/WR gives a lower value for £* at the wall compared to the Present model prediction and
DNS data. On the other hand, the Present model under-estimates the stress anisotropy in the near-
wall region compared to the LRR/WR model. The predictions of the LRR/WR model are much
closer to the DNS data. As the Reynolds number increases, the predictions of k¥ by the LRR/WR
model improve and essentially become identical with those given by the Present model. It is not
clear why LRR/WR over-predicts the shear stress distribution across the boundary layer for the
Re gy = 2,420 case (Fig. 23). Other than that, the overall predictions of the LRR/WR model are the
same as the Present model. For the highest Reynolds number case, Reg = 7,800, both models
under-estimate k in the near-wall region (Figs. 24 and 25), much like the predicted behavior shown
in the pipe flow case where the bulk Reynolds number is 500, 000. In general, the prediction of x
improves as the Reynolds number increases and the associated progressive thinning of the viscous
layer is being reproduced correctly by the two models. Based on these results, it can be said that
the Present model is every bit as good as the LRR/WR model, except that there is no adjustable

constant like C,, used in the LRR/WR model.
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V. Validations Against Simple Compressible Turbulent Flows

The next set of validations are carried out with simple compressible turbulent flows and is
intended to test the ability of the models to replicate the effects of compressibility under the
assumption of Morkovin's hypothesis. With this assumption, compressibility effects are
accounted for by the variation of mean density alone and the governing mean flow and Reynolds-
stress equations can be reduced to forms similar to their incompressible counterparts.
Consequently, the incompressible models can be extended to compressible flows without
modifications. In the process, the effects of compressible dissipation and dilatation are neglected.
Again, the boundary-layer code of Anderson and Lewis (1971) is modified for the present
calculations. The boundary layer is calculated to the same Reyas the experiments where
comparisons with measurements are carried out. Therefore, the results are relatively free of the
effects of inlet conditions, except for the case with the lowest Re, Since there are few turbulence
data in these experiments, the comparisons are made with the measured mean velocity, mean
temperature and Cy only. It should be pointed out that, in compressible boundary layers over
adiabatic walls, the mean temperature profiles are not measured separately. Rather, they are
interpreted from the mean velocity profiles by assuming the total enthalpy across the boundary
layer to be constant. As a result, the temperature comparisons are not very meaningful for the flow
cases with an adiabatic wall. From the measured mean velocity profiles, the von Karman constant
can be determined depending on whether the mean velocities are reduced in the standard way (So et
al. 1994) or by invoking the van Driest (1951) transformation. Two von Karman constant are
deduced and they shall be denoted as x and x,. for the standard way and the van Driest
transformation, respectively.

According to So et al. (1994), the standard law of the wall for compressible boundary layers
can be deduced by invoking Morkovin's (1962) hypothesis, the dimensional arguments of Millikan

(1939) and the assumption of an overlap between the inner and outer layers. The result is given by

t=——1 _ _ny: + B(B, M7, Pr. 39
U K(Mf,Bq,Y} ny (‘1’ ’)/’ r) ’ ( )
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where ur = (. / pu)?, yo = yuc! Vo, By = Q,.,,/(pw Cp u: g)w), M: = u./ a,, Pr, = (C, i)/ k.,
a,, is the sound speed evaluated at the wall, and y= C, / Cy is the ratio of the specific heats
evaluated at the wall. Here, the suscript w is used to denote values evaluated at the wall, Oy, is the
total heat transfer rate and k,, is the fluid thermal conductivity evaluated at the wall. The von
Karman constant x is parametric in M;, By and ywhile the intercept is not only parametric in these
variables but also the Prandtl number evaluated at the wall, Pr,,. On the other hand, according to

van Driest (1951), the law of the wall for compressible boundary layers can be written as

Uc _ 1
u—;—K—olny;;+B , (40a)
where
Y 172
U, = (-”—) dU . (40b)
0 Pw

Here, K, is the corresponding von Karman constant and U, is the transformed mean velocity
according to (40b). In (40a), again B is the intercept; however, unlike B in (39), its parametric
dependence is not entirely clear. The determination of k' and k. are compared in Table 26 where,
in addition, the measured and calculated C's are compared.

Altogether six different flow cases are selected to test the models. These are the heated wall
case of Spina and Smits (1987) where M, = 2.87 and (r:)w/ O, = 1.10, the adiabatic wall cases
collected in Fernholz and Finley (1977) where M, = 2.24, 4.54, 10.31 and 5w/ Ouw = 1.0, the
slightly cooled wall case documented in Fernholz and Finley (1977) where M, = 5.29 and éw/
0,,, = 0.92 and the high Mach number, highly cooled wall case of Kussoy and Horstman (1991)
where M, = 8.18 and 5»/ O, = 0.30. Here, O, is the adiabatic wall temperature. The results
of the model calculations and comparisons are shown in Figs. 26 - 37, while a summary of the
measured and calculated Cp, x and K are given in Table 26. Only four plots are given in each
figure. They are the standard law of the wall plot, the linear plot of the mean velocity, the van

Driest law of the wall plot and the linear plot of the mean temperature. In the linear plots, the mean
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velocity or mean temperature is plotted versus y / §,, where &, is the boundary-layer thickness
determined either from the measurements or from the calculations. Again, the Present model
calculations are given first and this is followed by the LRR/WR predictions of the same flow case.

In the following, the heated wall, adiabatic wall and cooled wall cases are discussed separately.

Boundary layers over a heated wall

The measured and calculated profiles are shown in Figs. 26 and 27, while the Cr xand x,
are compared in Table 26. It can be seen that both models give essentially the same results when
plotted in semi-log plots even though the Present model slightly over-cstimate the mean velocity in
the outer part of the boundary layer. As far as the prediction of Cris concerned, both models give
results that are within 5% of the measured C . The Present model's prediction of the mean
temperature is in error. This could be due to the fact that a constant Pr, is assumed. The same is
not true of the LRR/WR model because of the used of C,,, which was empirically made to be
parametric in both Reg and M., according to (15c). This empirical input could partially compensate
for the constant Pr; assumption. According to Sommer et al. (1992), the turbulent Prandtl number
is not constant even for incomopressible flow with heat transfer where the temperature difference is
of the order of 20°C. Therefore, there is no good reason to expect the constant Pr, assumption to
be completely valid in this case. Sommer et al. (1993, 1994) have applied their incompressible
variable turbulent Prandtl number model (Sommer et al. 1992) to calculate compressible flows
using a two-equation model as well as a Reynolds-stress model and slightly improved agreement
with measurements were obtained compared to those given by the constant Pr, assumption.
Perhaps, improved results could also be obtained if the model of Sommer et al. (1992) is used to
model the turbulent heat flux. In terms of x and x,, the agreement between calculations and
measurements is fairly good and, for this low Mach number, x and k, are determined to be
essentially the same. Their values are different from 0.41 though; x is more like 0.51 while x is
approximately 0.37 (Table 26). This means that van Driest law of the wall is not quite applicable

even for a compressible flow over a slightly heated wall at fairly low free stream Mach numbers.
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Furthermore, the asymptotic values of k*/e*y*2 and (a2 + a2 + a2)/ ay are calculated correctly;

again indicating that the models are asymptotically correct even for compressible flows.

Boundary layers over an adiabatic wall

Three cases, ranging in M, from 2.24 to 10.31, are calculated using the Present model and
the LRR/WR model. Unlike the heated wall case, where Re gy = 83,899, the Reynolds numbers at
the location where measurements are available vary from a low of 5,320 to a high of 20,797.
These values are listed in Table 26. Therefore, there might be some Reynolds number effects in
the model calculations for the case where Reg = 5,320. The comparisons between model
calculations and measurements are given in Figs. 28 - 33, where Figs. 28 and 29 show the
comparisons for the M, = 2.24 case, Figs. 30 and 31 those of the M, = 4.54 case, and finally
Figs. 32 and 33 the comparisons for the M, = 10.31 case. Calculated C, xand x;; are again listed
in Table 26 for comparisons with measurements.

At low Mach number (M, = 2.24 ), the model calculations are essentially identical and the x
and K thus determined are about the same. The calculated Cyis slightly different; the LRR/WR
model result being 4.3% higher than measurement while the Present model only over-estimates by
1.8%. As aresult, the semi-log plots of the Present model calculations of the mean velocity are in
slightly better agreement with measurements. Since the mean temperature is deduced from the
mean velocity, good agreement in the mean velocity comparison also implies the same for the mean
temperature (Figs. 28 and 29). Also, the wall temperature is calculated correctly by both models
(Figs. 28d and 29d). The LRR/WR model over-predicts Cy by about 4.7% while the Present
model under-estimates by the same percentage in the M, = 4.54 case. Therefore, in the semi-log
plots of the mean velocities, the calculations of the Present model lie above the measurements while
those of the LRR/WR model lie below the measurements (Figs. 30 and 31). When the velocities
are shown in the linear plot form, good agreement with data is obtained. At this Mach number,
there is some difference between the standard law of the wall plot and the van Driest law of the

wall plot. The k. determined from measurements deviates from 0.41 significantly once the Mach
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number reaches 4.54. Its value for the high Mach number cases is more like 0.29 rather than 0.41.
On the other hand, a x = 0.41 is obtained from the standard law of the wall plot of the same
measurements up to a Mach number of 4.54. At the highest Mach number tested, k = 0.54 is
obtained, thus showing its dependence on the Mach number. The calculated von Karman
constants are in good agreement with these values (Table 26).

At the highest Mach number tested, the semi-log plots of the Present model calculations are
not in good agreement with measurements compared with the LRR/WR results (Figs. 32 and 33).
This is due mainly to an under-estimation of Crwhich is in error by about 17%, while there is no
error in the LRR/WR prediction. When the comparisons are made in the linear plots, the
calculations correlate very well with measurements. These errors could be attributed to the neglect
of compressible terms in the modeled equations and the assumptions of Morkovin's hypothesis
and constant turbulent Prandtl number. Since the turbulent Prandtl number is known to increase
sharply as a wall is approached (Sommer et al. 1993), the incorrect estimate of C by the Present
model could be partially attributed to the constant Pr, assumption. Therefore, an improvement to
the prediction of C reould be obtained by relaxing this assumption. The reason why the LRR/WR
model gives a good prediction of Crcould be due to the empirical input in the form of C,, which
decreases as M, increases. In other words, the contributions of the term kS,-j to I'I,-;-v in (14) are
being minimized. At this Mach number, ; is significantly differcnt from 0.41. Consequently, the
data points do not follow the van Driest law of the wall. On the other hand, the standard law of the
wall with a k parametric in M, can still be used to corrclate the mean velocity. The x thus
determined is substantially larger than 0.41 (Table 26). Based on these comparisons, it can be said
that the van Driest law of the wall is perhaps most valid for compressible flows over an adiabatic

wall with low to medium Mach numbers.

Boundary layers over a cooled wall
Two flow cases are selected to test the models and they are the slightly cooled wall case

documented in Fernholz and Finley (1977) with M, = 5.29 and 6,/ ©,,, = 0.92 and the highly
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cooled wall case of Kussoy and Horstman (1991) with M, = 8.18 and éu/ O,y = 0.30. The two
cases cover medium to high Mach numbers and near adiabatic wall to highly cooled wall boundary
conditions. In general, the model calculations of LRR/WR are more accurate in terms of the
calculated G LRR/WR under-cstimates Cyslightly while the Present model under-predicts Cras
much as 14% in the M_, = 5.29 case. In view of this, the semi-log plots of the mean velocity lie
above the measured data for the M = 5.29 case (Fig. 34) and below the measured data for the M,
= 8.18 casc (Fig. 36). Again, the mean velocitics in lincar plots are in good agreement with
measurements. Perhaps, relaxing the assumption of a constant turbulent Prandtl number could
improve the prediction of Cr. The good agrecment shown between LRR/WR model results and
measurements could be attributed to the empirical function (15¢) used to evaluate C,,.

Again, the k. determined from the measurements deviate significantly from (.41 (Table 26).
Even at (:5“/ O,,, = 0.92, k. is found 10 be about 0.34. In other words, the van Driest law of the
wall cannot suitably describe the log-law region if . is taken to be 0.41. The standard law of the
wall shows that x is also dependent on the total heat flux, hence it should vary as the wall
temperature ratio decreases. Both the data and the calculations show that kis indeed decreasing as
the Mach number increases and the wall temperature ratio decreases. The errors in the predicted k¥
is larger than the other cases but this could be due to the assumption of a constant turbulent Prandtl

number which is more applicable to flows over an adiabatic wall than to flows over a cooled wall.

Concluding remarks

Altogether, these results show that van Driest law of the wall is essentially valid for
compressible flows over an adiabatic wall with fairly low free strcam Mach numbers. Even then,
K, is found to be about 0.38 rather than 0.41. Only a slight wall cooling is sufficient to change &,
to a value that is substantially smaller than 0.41. On the other hand, x is determined to be 0.41
from the standard law of the wall plots for compressible flows over an adiabatic wall up to a free
stream Mach number of 4.54. Therefore, it would seem that the standard law of the wall would be

just as valid when used to describe compressible flows.  As predicted by (38), x'is parametric in
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M, By and y. The present analysis shows that this is indeed the case. This is also true for x.
The behavior of xand . with M, and 5“/ 0,,, is reproduced fairly well by both models. For the
LRR/WR model, this is accomplished at the expense of making C,, a function of Regand M._; thus
rendering the model rather ad hoc. On the other hand, the predictive capability of the Present
model is achieved without having to alter any of the model constants, but rather by choosing an
alternate high-Reynolds-number pressure strain model where the reflected-wall effects are
accounted for properly in the model. Therefore, the Present model is less ad hoc and more
physical. Finally, it should be pointed out that the LRR/WR model has also been applied to
calculate flows over compression ramp with and without shocks by Morrison et al. (1993) and fair
agreement with measurements were obtained. Since there are no structural differences between the
LRR/WR and the Present model, one would expect the Present model could just as easily
implemented into the code of Morrison et al. (1993) to calculate compression ramp flows with and

without shocks.
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VI. Validations Against Complex Turbulent Flows

In the previous two sections, simple flows are calculated. As a result, standard numerical
algorithms such as the Newton iteration scheme (Lai and So 1990) and the two-dimensional
parabolic finite-difference code (Anderson and Lewis 1971) can be used to solve the governing
equations and the models present little or no numerical stability problems for the calculations of
these flows. On the other hand, complex flow calculations require the use of more advanced
numerical algorithms and the implementation of these models into the codes could cause numerical
instability in the computation. Therefore, the objectives of this section are two fold; one to validate
the models for complex flows and another to test the ease with which the models can be
implemented into advanced numerical algorithms without giving rise to undue numerical instability.

Three different types of complex flows are selected to test the model's ability to predict them.
The first is a flow with an adverse pressure gradient that leads to incipient separation (Samuel and
Joubert 1974). Therefore, the ability of the models to mimick near separating flow correctly is
assessed by this comparison. A second case is a fully-developed flow in a square duct at a bulk
Reynolds number of 50,000 (Lund 1977; Eppich 1982). This flow tests the models’ ability to
replicate the turbulence driven secondary cells in the cross-stream plane of the duct. The third case
is an axially rotating pipe flow (Kikuyama et al. 1983). In this flow, a superimposed vortex that
cventually develops into a solid-body rotation is present and alters the developing nature of the pipe
flow. Therefore, the models' ability to reproduce the rotational behavior of complex turbulent

flows is borne out by this assessment.

Near separating flows

The adverse pressure gradient flow is carried out using the boundary-layer program of
Anderson and Lewis (1971). Calculations start in the region where the pressure gradient is zero
and carry forward until Regreaches a value equal to that reported by Samuel and Joubert (1974) at
the start of the adverse pressurc gradient. This location is then taken to be the origin of the axial,

or x, location of the experiment. The measured free stream velocity distribution, U(x), is
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prescribed as the external boundary condition for U while the zero gradient condition is specified
for all other variables. At the wall, the boundary conditions are as discussed in Section III. As
before, 101 grid points are found to be sufficient to give grid independent results. Furthermore,
slight mismatch in Reg at the entrance to the adverse pressure gradient region has been investigated
and the results show that there are insignificant or no differences in the calculated development of
Crand Rey Consequently, the model calculations are not carried out at exactly the same Re,

Three different calculations are carried out; one using the Present model, another the
LRR/WR model while a third invokes the LRR/WR model but with . or the constant associated
with 3, set equal to zero in (16). The results of these calculations at two x locations are
summarized in Figs. 38 - 40 with the mean velocity and shear stress comparisons of the Present
model shown first (Fig. 38) and this is followed by the LRR/WR comparisons (Fig. 39). Finally,
the calculated development of Crand Reg are compared in Figs. 40a and 40b while a sample mean
velocity result of the LRR/WR model with f3, set equal to zero in (16) is shown in Fig. 40c. The
two x-locations, x = 2.87m and 3.4m, are chosen to be very near separation in order to evaluate
the models' ability to replicate near separating flows.

At x = 2.87m, both the Present model and the LRR/WR model give essentially the same
predictions (compared Figs 38 and 39) with the von Karman constant k determined to be 0.43 and
0.42, respectively. This compares with x = 0.42 determined from the measurements. The
agreement between the Present model and data deteriorates as the flow moves near separation and,
at x = 3.4m, the Present model under-predicts the mean velocity in the region near the wall while
the Cris calculated correctly (Fig. 40a). As a result, the velocity calculations of the Present model
in semi-log plot lie below those of measurements (Fig. 38c) and x = 0.46 is obtained compared to
an experimental value of 0.43. Taking the error bound in the determination of x into
consideration, it can be said that the Present model calculations of x are in fair agreement with
measurements. On the other hand, there is no such deterioration in agreement for the LRR/WR
model (Fig. 39¢) and the von Karman constant is evaluated to be kK = 0.41. As for the prediction

of the shear stress distributions at the two x locations, both models give essentially the same results
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(Figs 38e, f and 39e, f). The Present model under-predicts the shear stress in the outer region and
this under-prediction deteriorates as separation is approached; the behavior is consistent with the
mean velocity prediction shown in Figs. 38c and 38d. The deterioration noted in the prediction of
the LRR/WR model is not as severe, even though the LRR/WR model calculation of Cris slightly
under the measured value starting at x = 2.87m and continues to deteriorate as the flow moves near
separation. Therefore, the modification specified in (16) seems to improve the prediction of U but
not that of Cf. Without the modification in (16_), the LRR/WR model under-predicts U and over-
estimates Cy substantially (Fig. 40a) and this leads to a wrong calculation of the velocity profile
across the boundary layer and a x = 0.48 (Fig. 40c). Finally, the Present model under-predicts the
development of Reg compared to that given by the LRR/WR model (Fig. 40b). However, this
slight under-prediction does not seem to have much of an effect on the calculation of Cy though
(Fig. 40a).

It is obvious that (16) helps to improve the predictive capabilities of the LRR/WR model.
Therefore, if a similar expression is also implemented into the Present model, better predictions
than those shown in Fig. 38 could be expected. It can be easily shown that the coefficient of the
y*2 term in the mean velocity expansion near a wall is dependent on the streamwise pressure
gradient. Therefore, one could argue that the modeled equations should some how depend on the
streamwise pressure gradient and hence justify the use of (16). A plot of the damping function
(16) from the LRR/WR calculations indicates that f,,; vanishes in the range, 55 < y* < 100
depending on the streamwise pressure gradient. On the other hand, (16) without the 3. term from
the third model calculations yields a f,,; that goes to zero very near the wall. When (11a) from the
Present model calculations is plotted, it gives a curve that approaches zero somewhere between the
two former curves. This suggests that near-wall damping has a significant effect on the prediction
of the mean velocity. In other words, the damping functions proposed in (11) are not quite general
eneough. The proper approach is to seek another damping function where it will again approach
zero in the proper range of y* for flows with and without severe adverse pressure gradient effects.

The ad hoc modifications suggested in (16) may not be appropriate because it explicitly depends on
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B.. In conclusion, the deficiency is not in the SSG model, but rather in the proposed damping

function for the near-wall corrections.

Square duct flows

Fully-developed turbulent flow in a square duct is two-dimensional, therefore, it can be
solved by iterating in the cross-stream plane alone. However, in anticipation of the need to
calculate developing flows later, a three-dimensional TEACH-type code is used to solve the
governing equations in the square duct. Since the flow is symmetrical about the wall bisectors,
only a quadrant of the flow needs to be considered. A non-uniform grid is used to calculate the
flow in this quadrant. An iterative forward marching solution procedure is used to solve the
parabolized equations. In particular, the three-dimensional parabolic finite difference procedure of
Patankar and Spalding (1972) is employed. The convergence rate is improved by implementing
the SIMPLEC algorithm (van Doormal and Raithby 1984) into the code rather than using the
original SIMPLE algorithm (Patankar 1980). The boundary conditions arc specified as follows.
Symmetry conditions arc specified along the wall bisectors. At the walls, all the mean velocity
components and the Reynolds stresses are set equal to zero , while the dissipation rate is specified
as &, = 2v(81/7c_/ axz)z. At the inlet, essentially all variables are specified to be uniform except
near the wall. Near the wall, all variables are given as obtained from the results of a boundary
layer codc at a specificd boundary layer thickness of approximately 1 percent of the duct width.

Special attention is given to the placement of grids near the wall. A minimum of 5 grids arc
placed within y*< 5 with the first grid point at approximately y* = 1, and 15-25 grids are located in
the region 5 < y* < 100, depending on the total number of grids used. Calculations with 81x81,
121x121 and 161x161 grids have been carried out. The reason that such fine grids are required is
due to the presence of secondary cells which are absent in the case of pipe flows with and without
rotation. There are no significant differences between the calculations obtained with the 121x121
and 161x161 grids. Therefore, only the results from the 121x121 grids are presented here. The

forward step size is varied progressively from (.4 percent of the hydraulic diameter near the inlet to
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4 percent until the flow becomes fully developed. The iterations are carried out to normalized
residual sources of 10-3 for each variable. Finally, it should be pointed out that the use of (15a) for
C,, failed to yield a convergent solution for the square duct flow. Instead, (15b) has to be
specified and Re at each x location has to be evaluated to determine if Reg < 5,500. Once Reghas
reached 5,500, C,, = 0.0153 is assumed. This procedure is found to work for flow Reynolds
number as high as 250,000.

The comparisons of the Present model calculations with measurements are shown in Figs. 41
and 42 while those of the LRR/WR model are given in Figs. 43 and 44. Whenever possible, the
results are compared with measurements along the wall bisector as well as along the angle bisector.
Along the wall bisector, the normalized ordinate is given by y/a, where a is the half-width of the
square duct. The normalized ordinate along the angle bisector is denoted by y7a’, where a’ = a V2.
All velocity results are made dimensionless by the mean bulk velocity Up,. The axial velocity is
given by U while the secondary velocity by W. Among the results presented are the mean
velocities, the shear stress, uv, the normal stresses, the turbulent kinetic energy and the wall shear
along the horizontal wall, z. On comparisons, it can be seen that both models give about the same
predictions of the square duct flow. The mean U along both the wall and angle bisectors correlates
well with measurements while the calculated Reynolds stresses are in error. In general, the
calculations along the wall bisector are in better agreement with the measurements compared to
those along the angle bisector, where the turbulence statistics are over-predicted. Both models
cannot replicate the secondary velocity very well even though the LRR/WR model gives a slightly
better prediction than the Present model. This under-prediction of the secondary motion has also
been observed by Gessner and Emery (1981) and Demuren and Rodi (1984) and is found to be

quite common among the high-Reynolds number Reyolds-stress models tested.

Rotating pipe flows
The two-dimensional elliptic code of Yoo et al. (1991) is used to calculate the rotating pipe

flow experiments of Kikuyama et al. (1983). Three cases are reported and they are designated by
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Ro = 0, 0.5 and 0.83, where Ro is the rotation number defined as the ratio of the pipe
circumferential velocity to the bulk mean velocity. In this report, only the case where Ro = 0.5 is
calculated and discussed. As a check on the code, the Ro = 0 case is calculated first and this is
equivalent to calculating developing pipe flow without swirl. Two different boundary conditions at
100 diameters downstream of the inlet are specified; one is fully-developed flow at the outlet and
another is to assume the neglect of axial diffusion compared to radial diffusion. The
appropriateness of each specification is examined and the right choice made for the rotating pipe
flow calculations. Furthermore, the calculation of this simple case allows the question of grid
distribution to be investigated, the number of grid points required to be studied, and the best way
to implement the near-wall Reynolds-stress model to be explored. Since the fully-developed flow
calculations have been reported in detail above, there is no need to present this set of results again.
It is sufficient to point out that the iterations are carried out until the normalized residual sources
reduce to 10-3 for each variable. Therefore, the calculations obtained from both outlet boundary
conditions are in very good agreement with measurements and the results are essentially grid
independent when there are 56 grids in the r-direction and 51 grids in the x-direction. The grid
distribution in the r-direction follows closely that used to perform the fully-developed flow
calculations presented above. That is, 25 grids are placed within the region, 0 < y+ < 100. In the
x-direction, the grids are closely spaced near the pipe entrance. As the flow develops, the grids are
spaced further and further apart. When the flow is approaching the fully-developed state, a
spacing of several pipe diameters is not unusual. The same experiment has also been attempted by
Yoo et al. (1991) using a different near-wall Reynolds-stress model. Their conclusions on grid
spacing and grid distribution are consistent with the present findings.

Since only measurements in the developing region were reported and the locations where
they were made were far apart, only sample comparisons of the present model calculations at one
x/D location are presented in Figs. 45 and 46. When the LRR/WR model is applied to calculate the
Ro = 0.5 case, the use of (15a) for C,, failed to yield a solution but the use of (15b) yielded a

convergent solution. In this calculation, C,, is estimated according to (15b) up to C,, = 0.0153;
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thereafter C,, = 0.0153 is assumed. Therefore, this implies that (15a), which was developed based
on two-dimensional internal flows, is not suitable for developing internal flows because (15b) also
has to be assumed in the square duct flow calculation. This is an indication that the LRR/WR
model is not as general as the Present model.

The comparisons shown in Figs. 45 and 46 are between the Present model, the LRR/WR
model and measurements. Mean velocities are given first, followed by the shear stresses and then
the normal stresses in these figures. As before, the prime (') is used to denote root mean square
quantities. The mean velocities are normalized by U,,, the pipe centerline velocity, and W, = R€2,
the pipe circumferential velocity, respectively, while the Reynolds stresses are made dimensionless
by U,. Here, £2is the speed of rotation of the pipe and R is the pipe radius. The results show that
the mean velocities are very well predicted by the Present model. This means that the boundary
layer thickness and the boundary layer development along the pipe are well replicated. On the
other hand, the LRR/WR model under-predicts the boundary-layer development. This is also
evident from the comparisons shown for the Reynolds stresses. The normal stresses are
reasonably well calculated; however, the shear stresses, particularly the uw component, are poorly
predicted. In general, the shear stresses are significantly over-predicted. There are many reasons
for these discrepancies. One of which could be that the accuracy of the shear stress measurements
is not as good as that for the normal stresses, because the shear stresses are at least one order of
magnitude smaller than the normal stresses. On the other hand, the good agreement between
calculations and measurements of the normal stresses indicates that the models are replicating the
anisotropic behavior of the turbulence statistics quite well for the rotating pipe flow investigated.
In view of these results, both models can be said to be quite valid for rotating turbulent flows.
However, the good agreement of the LRR/WR model is achieved by the added empiricism
introduced in the form of (15b) for C,,, while the Present model needs no modifications for any of

the model constants.



Concluding remarks

In general, the Present model replicates the complex flows quite well and these include flow
complexities introduced by adverse pressure gradients, turbulence driven secondary motions and
flow rotation in the form of an imposed vortex. Even though the results are not as good as the
LRR/WR model in the case of near scparating flow, it can be said that the LRR/WR model
achicves the good correlation by introducing added empiricism in the forms of (15b) and (16).
Furthermore, the Present model does not need modifications for any of the complex flows and all
model constants and damping functions specified in Section III remain unchanged. In calculating
developing internal flows, it is not at all clear whether (15a) or (15b) should be specified for C, in
the LRR/WR model. For example, the results shown in Figs. 43 - 46 arc obtained by specifying
(15b) for C,,, which is meant for external flows. There is no such ambiguity for the Present model
though. Therefore, there is less empiricism introduced into the Present model and, as a result, it is
more general. Also, the Present model does not introduce any unduc complexity in the numerical

computation and no added numerical instabilities are noted in any of the flow cases examined.
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VII. Conclusions

An asymptotic analysis is carried out on the modeled and the exact Reynolds-stress and
dissipation rate equations. Near-wall correcting functions are proposed for these equations so that
they can be integrated directly to the wall. Thus, the physical boundary conditions can be satisfied
exactly and there is no need to invoke wall functions to link the properties at the first grid point to
those at the wall. Specifically, the near-wall corrections are made to the pressure strain model in
the Reynolds-stress equation and to the complete equation in the case of the dissipation rate
equation. The near-wall corrections differ depending on the pressure strain model invoked. In the
present study, the SSG model proposed by Speziale et al. (1991) for the pressure strain is adopted
and near-wall corrections to this model are deduced. This near-wall Reynolds-stress model is used
to calculate a wide variety of flows, including incompressible and compressible flows, simple
flows, complex flows and near-separating flows. The flows selected for validation include fully-
developed turbulent flows in channel and pipes, Couette flows, simple boundary-layer flows,
compressible boundary-layer flows up to Mach 10, three-dimensional flow in a square duct,
axially rotating pipe flow and boundary-layer flow subject to a near-separating adverse pressure
gradient. Besides comparing the model calculations with measurements and DNS data, they are
also compared to another set of calculations using the LRR/WR model of Zhang (1993) derived
from the LRR pressure strain model of Launder et al. (1975). In this latter model, it was found
necessary to make one of the model constant to be dependent on the flow Reynolds number and the
free stream Mach number. Furthermore, the damping function used in the model has to be
modified to depend on B, for the calculations of flows with pressure gradient effects. However,
all model constants used in the Present model are true constants and no modifications need be made
to any damping function to account for pressure gradient effects. The following conclusions can
be drawn based on this detailed study of the two models.

(1) This study shows that a rather general near-wall Reynolds-stress closure can be derived
through the application of asymptotic analysis to the exact and modeled governing

equations in the region near a wall. The resultant near-wall closure depends on the choice
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(2)

(3)

(4)

of the pressure strain model. The Present model chooses the SSG model of Speziale et al.
(1991) because of its demonstrated capability to correctly predict rotating homogeneous
turbulent flows compared to a number of pressure strain models.

The Present model and the LRR/WR model are asymptotically consistent and yield the
correct values for the near-wall asymptotes; namely, k+/e*y+2 = 1/2 and
(a2 + a? + al)/ax = 2. Furthermore, both models give a fairly correct prediction of the
von Karman constant x for the flows studied.

The two models give equally good results in their predictions of a wide variety of
incompressible flows, ranging from simple fully-developed turbulent flows to flows
through square ducts and axially rotating pipes. The flow Reynolds number covered varies
from a low of about 5,600 to a high of 500,000. For the Present model, this result is
achieved through the use of the SSG pressure strain model only. As for the LRR/WR
model, the LRR pressure strain model is used and the good predictions are obtained by
changing one of the model constant and making it parametric in the flow Reynolds number.
While this dependence presents little or no difficulty to the calculations of fully-developed
and parabolic flows, its applications to elliptic flow calculations could become
progressively difficult as the complexities of the flow increase. On the other hand, no such
difficulties are encountered with the Present model.

For incompressible flows with adverse pressure gradients, the Present model gives a
correct prediction of Crbut not so accurate a prediction of the mean velocity. The mean
velocity is under-estimated in the near-wall region. On the other hand, the LRR/WR model
calculations are in good agreement with measurements. Again, this was achieved by
making f,,; to depend on B.. When this dependence on the pressure gradient parameter is
eliminated, the LRR/WR model predictions are decidedly worse compared to the
calculations of the Present model. The reason is traced to the behavior of the damping
functions rather than the near-wall corrections derived based on these models. Therefore,

there is a need to improve on the damping function assumed for the Present model.
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5)

(6)

)

(8)

For compressible turbulent flow calculations, the Present model again gives correct
predictions of the mean velocity and temperature over the range of Mach numbers and wall
temperature ratios considered. The calculations of Cy are also correct in the low Mach
number range, except for the case where the free stream Mach number is 10.31 and for the
two cases where the wall is cooled. This could be attributed to the assumption of a
constant turbulent Prandtl number in the formulation. On the other hand, the LRR/WR
model yields uniformly good predictions for all compressible flow cases considered. This
is achieved through the empirical input of one model constant which is made parametric in
the flow Reynolds number and the free stream Mach number.

The Present model has been used in five different numerical algorithms in the course of
calculating all the test cases. They include time marching technique for the solution of
hyperbolic equations, Newton iteration technique for the solution of split boundary-value
problems, parabolic codes for the calculations of boundary-layer flows, two-dimensional
elliptic code for the solution of axisymmetric flow problems and partially parabolic three-
dimensional code for the calculations of complex internal flows. No numerical difficulties
have been encountered in any one of these calculations. Therefore, the model is quite
adaptable irrespective of the numerical scheme used.

The Present model is less ad hoc and more general compared to the LRR/WR model
because there are no adjustable constants and/or damping functions in the Present model.
Since it also gives good results in all the flow cases considered, it appears to be the near-
wall model of choice. As for the noted deficiencies in the calculations of compressible
flows, they could be partially remedied by relaxing the constant turbulent Prandtl number
assumption in the problem formulation.

The Present model can account for Reynolds number effects correctly spanning a range

from about 5,600 to 500,000 for internal flows as well as for external flows.
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