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Abstract

This paper examines the application of vector quantization (VQ) to exploit both intra-band and inter-

band redundancy in subband coding. The focus here is on the exploitation of inter-band dependency. It

is shown that VQ is particularly suitable and effective for coding the upper subbands. Three subband

decomposition-based VQ coding schemes are proposed here to exploit the inter-band dependency by making

full use of the extra flexibility of VQ approach over scalar quantization. A quadtree-based variable rate VQ

(VRVQ) scheme which takes full advantage of the intra-band and inter-band redundancy is first proposed.

Then, a more easily implementable alternative based on an efficient block-based edge estimation technique

is employed to overcome the implementational barriers of the first scheme. Finally, a predictive VQ scheme

formulated in the context of finite state VQ is proposed to further exploit the dependency among different

subbands. The VRVQ scheme proposed in [29] is extended to provide an efficient bit allocation procedure.

Simulation results show that these three hybrid techniques have advantages, in terms of peak signal-to-noise

ratio (PSNR) and complexity, over other existing subband-VQ approaches [1, 2, 18, 21, 27].
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1 Introduction

Among a variety of image coding methods, vector quantization (VQ) and subband coding (SBC) have

attracted considerable interest. This is mainly due to the facts that VQ can, in theory, always achieve better

performance than scalar quantization (SQ) [3, 6, 22], and SBC has been shown to achieve high compression

ratios while maintaining good image visual quality [1, 8, 28]. Much work has been done on combining these

two methods. While many schemes use VQ to exploit the intra-band redundancy [1, 18, 21], little is done

to exploit the inter-band redundancy with some exceptions like those of [15, 27].

The advantages of VQ over SQ have been discussed elaborately in [6]. One of the disadvantages of VQ

is that it often results in blocky images like other block-based coding schemes do. Over the last many

years, various VQ techniques which aim to improve the visual quality of the reconstructed image have been

developed. Typical such techniques include classified VQ [17], variable rate VQ (VRVQ) [20, 29], subband-

VQ [1, 27], etc.. This paper examines the application of VQ in the frequency domain and shows that the

subband-VQ approach is indeed viable for image compression.

The employment of subband decomposition for image coding was first reported in the work of Woods

and O'Neil [28]. Since then much work has been devoted to subband image coding, see, e.g., [1, 2, 7, 8]. The

essential idea of subband coding is that of analyzing the original fullband signal into a set of narrowband

signals that can be encoded separately and then transmitted over communication channels. At the receiver

end, the decoded subbands will then be used to synthesize an approximation to the original signal.

It is often desirable to design analysis and synthesis filters to meet the perfect reconstruction property

[25]. One of the most popular perfect reconstruction filters is the quadrature mirror filter (QMF) introduced

by Croisier [4]. Figure 1 shows a typical pyramidal subband decomposition for image coding [8]. At the

first stage of decomposition, the original image is decomposed by using QMF's into four bands denoted by

LL, LH, HL, and HH. Then all four bands are decimated by a factor of 4 and the lowest band LL is

again decomposed into four bands by QMF's. Recursive applications of this procedure lead to the pyramidal

decomposition of desired stages. By reversing the decomposition procedure and using the synthesis filter

banks, one can reconstruct the image perfectly.

Recently, subband approaches using wavelet transforms [5] have been investigated by many researchers,

see, e.g., [1]. As discussed in [14], the QMF's are intimately connected with wavelet transform. In this paper,

the Daubechies wavelet analysis/synthesis filter banks [5] are used to perform the subband decomposition.
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Figure 2: A three-stage wavelet decomposition



The coding system is based on a three-stage decomposit.ion a.s shown in Fig. 2. Ten different image subbands

are generated and are denoted by LI_LH, LI_HL, LI_HH, L2_LH, L2_HL, L2_HH, L3_LH, L3_HL,

L3_HH, L3_LL, as shown in Fig. t.

The statistical properties and percepl.ual features of subband im_tges have been discussed in [13, 24,

30]. These properties, if exploited effectively, can result m significant performance improvement in image

coding. Among these properties, the self-similarity among subbands of "like" orientation has attracted

much attention recently [11, 15, 27]. Though uncorrelated or "almost" uncorrelated, subbands at "like"

orientations and different scales (resolutions) are generally not independent, since these subband signals

are generally not Gaussian distributed. Figure 3 shows tile subband images of "Lenna" after a three-stage

wavelet decomposition. It is clear from this pict.ure t.h_t subbands at "like" orientations and different scales

look very similar. Refer to Level 1 aml Level 2 of this decomposition as the upper bands. One may view the

upper bands of this decomposition as having the characterislics of t.he olJtput of a multiscale edge detector

[2]. The coefficients at Level 1 may be considered points of very fine edges, while the coefficients at Level 2

may be considered points of coarser edges.

Figure 3: Similarity within sets of subbands

A number of image coding techl_i,ines [11, 15. _7] haw_ exploited the redundancy among subbands,

namely, the inter-band dependency..lc_hHs,'ll _'t al. [ll] _lse_t a local measure of activity in the base-band

to classify the intensity of the samph'., ill the upp,'r t'r,'gtwHcy b;mds. The frequency components of the



upperbandsarethendividedintodifferentgroupswhereoptimalscalarquantizerisdesignedforeachgroup.

Recently,MohsenianandNasrabadi[15]extendedthisideato imageandvideocodingusinganedge-based

VQtechniquefor compressionof theupperbands.Similarly,BanhamandSullivan[2]suggesteda scheme

thatutilizedthemultiscaleedgecharacteristicsofthewavelettransformto describetherelationshipamong

coefficientsat differentscales.In [2],eachcoefficientin thesubbandswasconsideredascorrespondingto

a blockof pixelsin theoriginalimage.Forexample,in our3-stagewaveletdecompositionsystem(Fig.

2), a coefficientin Level3 correspondsto an8x 8 blockin theoriginalimage.Thesecoefficientscanbe

structuredintoquadtreesforeach8x 8 blockin theoriginalimage[2].Figure4 (redrawnfrom[2])shows

therelationshipbetweenblocksintheoriginalinaageandcoefficientsinathree-stagewaveletdecomposition.

A samplequadtreeis alsoshown,demonstratinghowthecoefficientsofdifferentlevelsfall naturallyintoa

quadtreestructure.In [2],edgesill Level1wereusedto predictthe locationandintensityof edgesin Level

2. Thecoarseredgeisconsideredasablurredversionofthecorrespondingfineredgesovera regionwhichis

twiceaslargeineachdimension.Thisfactisusedtopredictacoefficientofthewavelettransformat Level2

asalinearcombinationoffourcorrespondingcoefficientsat Level1plussomeerrorterm,therebyreducing

theaveragebit rateasin DPCMcoding.

Ingeneral,VQ isagoodtechniqueto exploitinter-pixelcorrelationsin thelowestsubband.Eventhough

pixelsin highersubbandsareusuallynothighlycorrelated,VQcanstill offerbetterperformanceoverSQ

dueto its flexibilityin choosingthecellshape.Moreimportantly,theexistenceof nonlineardependency

betweendifferentsubbandschallengestheconventionalscalarquantizationschemes.Thisnonlineardepen-

dencyisdifficultto bethoroughlyinvestigatedwithsuchscalarquantizationschemesasDPCMandPCM.

GeneralizingSQ,VQcanoffermoreflexibilityandthusmaybeanefficientwayto solvethisproblem.

Thispaperstudiestheapplicationof VQin thewavelettransformdomain.Specifically,threeVQ-based

subbandcodingschemesareproposedto exploitboththeintra-bandandinter-bandredundancy,especially

theself-similaritypropertyofsubbandimages.Themainobjectiveof thesethreeschemesis to exploitthe

inter-bandredundancytothefurthestextent.Thefirstschemetakesadvantageoftheedgefeatureseparation

propertyofsubbanddecompositionandemploysaproduct-code-likeVQapproachto fullyexploittheinter-

bandredundancy.Thesecondschemeaimsto reducethecomplexityof thefirstonebyusingasmallvector

dimension,whilereducingthebit ratebyeliminatingnon-edgeinformation.Takingadvantageof theshape

andgainfeatureof VQapproach,thethirdoneaimsto furtherreducetheinter-bandredundancy.It will be

shownthatVQis indeedquitesuitableandeffectiveforcoding upper subbands of a wavelet decomposition.



It will also be seen that the jump from one dimension to multiple dimension stimulates some new ideas,

concepts and techniques that often have no counterpart in the simple case of scalar quantization [6].

This paper is organized as follows: Section 2 introduces an efficient block-based edge estimation technique

to eliminate the "non-edge" information. Section 3 presents a quadtree-based variable rate VQ (VRVQ)

scheme which takes full advantage of the intra-band and inter-band redundancy. In Section 4, a more

easily implementable alternative based on the efficient block-based edge estimation technique is employed

to overcome the implementational barriers of the scheme proposed in Section 3. Finally, a finite state VQ

technique is proposed in Section 5 to further exploit the dependency among different subbands. Experimental

results are also shown in these sections to examine these proposed schemes in comparison to other existing

ones. Section 6 concludes this paper.
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Figure 4: Coefficients vs. block size in quadtree

2 Prediction of Edge Locations from Coarser Scales

The methods used in [11, 15] to extract the locations of edges are based on detecting the edges in the

base-band. These methods do not explicitly specify the orientations of the edges. Considering the fact

that edges of "like" orientation appear in corresponding locations in "like" orientation subbands of different

scales, it may be more efficient to estimate the edge locations in the current scale from the next coarser scale.

In this way, the orientations of the edges can be specified.

Intuitively, one may use one pixel value of the next coarser scale to estimate the values of the corresponding

four pixels in the current scale. For example, if the value of a pixel in the next coarser scale is less than a



threshold, one classifies the corresponding four pixels in the current scale as "non-edge" block and sets the

values of all four pixels zero (Predict_l_to_4). This, however, is not a good scheme due to the downsampling

nonlinearity. In particular, one pixel value of the next coarser scale may be very small while the corresponding

2 × 2 block in the current scale contains edge information. An alternative is to interpolate the next coarser

scale to the same size as tile current scale, then use the interpolated value of one pixel to estimate the value

of the corresponding pixel in the current scale (Predict_l_to_l). This is unfortunately not good either, as

the edge locations in the interpolated sub-image are just approximations of the edge locations in the current

scale. There may be one or two pixel units shifts.

We now propose a more accurate and reliable estimation scheme to deal with the problem. We still use

the interpolated version of the next coarser scale to estimate the edge locations of the current scale. However,

instead of using one pixe[ in the interpolated sub-image to estimate one pixe[ value in the current scale, our

estimation is based on a 2 x 2 block. If all the values in a 2 x 2 block of the interpolated sub-image are below

a threshold, we consider the corresponding 2 x 2 block of the current scale as containing no edge information

and set the values of all four pixels zero (Predict_4_to_4)".

To examine this proposed scheme, sinmlations have been done on a brain image and the results of the

three aforementioned methods are compared. We also show tile results of performing the "deadzoning"

by comparing the real value of one pixel of the current scale to a prescribed threshold (Same_l_to_l), and

by comparing the real values of 2 x 2 blocks of the current scale to a prescribed threshold (Same_4_to_4).

Each of these five schemes is performed for all three scales. To make a fair comparison, for a fixed scale,

the threshold for each scheme is chosen in such a way that the numbers of pixels classified as "non-edge"

are almost the same for all schemes. Table 1 shows that the proposed scheme, i.e., Predict_4_toA, yields

better results than both Predict_l_to_4 and Predict_l_to_l and is reasonably close to the result provided by

Same_l_to_l. Note that in these cases, about 45% of the pixels are eliminated. This is done without any

side information to be sent, since the edge location estimation is performed both at the transmitter end and

the receiver end. The substantial saving of bit rate using a similar strategy has been discussed in [15]. In

practice, the interpolated sub-image is based on the coded version of the next coarser scale. Therefore the

proposed block-based method is more reliable than the pixel-based methods, because the quantization errors

in the coded version of the next coarser scale have more severe effects on the pixel-based method than on

the block-based method.

2It has been noticed recently that similar idea has been introduced in [12] where a 2 x 2 block in the next coarser scale is

used to predict the importance of the corresponding ,l x 4 block in the current scale.



methods MSE

Predict_l_to_l 14.69

Predict_l_toA 38.06

Predict_4_toA 5.23

Same_4_to_4 2.46

Same_l_to_l 1.21

No. of pels eliminated

Level 3 Level 2 Level 1

748 4560 23776

744 4572 23788

748 4568 23792

744 4576 23788

748 4576 23808

Table 1: A Comparison of different estimation methods for the "brain" image

3 Quadtree VRVQ for Upper Subbands

The VQ scheme for coding the upper subbands to be described here is based on the quadtree structure

discussed in Section 1. The objective here is to exploit inter-band as well as intra-band redundancy. This may

be accomplished by taking each quadtree in the decomposition as a vector. In the three-stage decomposition

case, Fig. 4, one may take one pixel from Level 3, four pixels from Level 2, and sixteen pixels from Level

1. In fact, this quadtree structure naturally matches the perceptual features of the subbands. Note that the

sub-blocks of a quadtree belonging to coarser scales, which need finer quantization, have a smaller block size

which generally reduces the block effect in VQ.

It is interesting to note that this scheme is closely related to the product VQ technique [6]. Corresponding

to each 8 x 8 block in the original image, there are 64 coefficients in the transformed domain. Specifically,

there are three quadtrees each of which consists of 21 coefficients, for the vertical, horizontal and diagonal

direction respectively, plus one coefficient from the lowest frequency band. If one takes these 64 coefficients

to form a vector and uses a 64-dimensional vector quantizer to code it, the performance in terms of PSNR is

unlikely to be superior to that of directly coding the 8 x 8 block in the original image using a 64-dimensional

vector quantizer. However, the point here is that one need not take the 64 coefficients to form a vector

of "large" dimension. Observe that the information of each 8 x 8 block in the original image has been

partitioned into 4 vectors of different features. If these four feature vectors are approximately independent

of one another, then the coding complexity can be greatly reduced by coding them separately without a

substantial performance degradation [6]. The coefficient from the lowest frequency band can be considered



asthenormalizedweightedsumof thesamplesof theoriginal8 x 8 blockandcanoftenbe regardedas

statisticallyindependentoftheotherthreefeaturevectors.Theotherthreefeaturevectorsof dimension-21

representshapecharacteristicsfor threedifferentdirections.Theyarenot independentof oneanotherin

general.Forexample,if ahorizontaledgefeaturevector(quadtree)containshorizontaledge,it isoftentrue

thatthecorrespondingverticaledgefeaturevectorwillnotcontainanedge.Fortunately,aswillbeshownin

thefollowing,byapplyingtheblock-basededgeestimationtechniquediscussedinSection2,these"non-edge"

vectorswillbeeliminatedwithoutconsumingextrabits.Therefore,codingthesevectorsofdifferentfeatures

separatelywill not resultin substantialperformancedegradation.Meanwhile,sincethevectordimensionis

reducedandthefeatureshavebeenclassified,theimplementationalcomplexitywill begreatlyreduced.

3.1. Estimation of Important Quadtrees

Obviously, some of the quadtrees contain edge information while others do not. Therefore the "non-

edge" quadtrees can be eliminated without incurring much distortion. It would be beneficial to use the

edge information contained in the lowest band to extract the locations of important quadtrees for each of

the three orientations. This can be accomplished by using the block-based estimation method described in

Section 2. Specifically, we use the analysis filter to filter the lowest band and obtain three filtered versions of

sub-image of three different orientations. If all the values of the pixels in a 2 x 2 block of the filtered versions

of sub-image are below a threshold, the corresponding 4 quadtrees are treated as "zero" quadtrees.

In this case the block-based estimation method shows more advantages over pixel-based methods. Here

the estimation accuracy is more important because one estimation error will affect the whole quadtree instead

of only one pixel. Furthermore, if all the values of a 2 x 2 block in one scale are very small, it is very likely

that the values of the corresponding 4 x 4 block in the next finer scale are very small, too. On the contrary, if

one pixel in one scale is very small, it is often difficult to determine whether the values of the corresponding

2 x 2 block in the next finer scale is small or not. Table 2 shows the reconstructed errors resulting from

different estimation methods. The error images obtained by subtracting the reconstructed image from the

original image are shown in Figure 5. The advantages of the block-based estimation method are obvious.

3.2. Bit Allocation

The quadtrees can be naturally classified into three classes, with each class corresponding to one orien-

tation. To preserve edges well, it is necessary to construct three sub-codebooks for these three classes. As



Methods Predict_l_to_l Predict_l_to_4 Same_l_to_l Predict_4_to_4 Same_4_to_4

MSE 19.71 19.52 8.16 6.58 5.26

No. elim. 3602 3616 3602 3608 3604

Table 2: A comparison of different estimation methods for "Lenna" image

Figure 5: Error "Lenna" images resulting from different est, imation methods, a: Predict_l_to_l; b: Pre-

dict_l_to_4; c: Same_l_to_l; d: Predict_4_to_4.



discussed in [24, 30], each orientation may have different characteristics and need different numbers of bits

to code. Therefore an efficient bit allocation scheme should be employed here.

As discussed in [30], for a bit allocation problem with the subsource indices known by the receiver, the

asymptotically optimal solution is the one that results in the same average distortion for different subsources.

Using this as a guideline, we extend the variable rate VQ schemes proposed in [29] and propose the following

procedure, referred to here as Greedy Bit Allocation Procedure (GBAP), for effectively allocating an average

bit rate/_ bits per vector among subbands.

Step 0 The entire space is partitioned into three subspaces, i.e., vl, v2, va, one for each of the three

orientations. Calculate the average distortions for the three subspaces.

Step 1 Let v" be the subspace that has the largest average distortion and let bitrate=0, L=3.

Step 2 Calculate the mean y" for v'. Partition v" into two regions by the hyperplane H = {x :

u'T(x -- y') = 0}, where u" is the principal component of v* [9]. Let L=L+I, bitrate=bitrate+p*, where p"

is the probability of access of v'.

Step 3 If bitrate _> R, stop. Otherwise, set the partition VL = {vl, w, ..., VL}. Select the region v"

with the largest average distortion for the next partition. Goto Step 2.

A typical tree for this procedure is depicted in Fig. 6. Note that the root node has three children,

one for each orientation. The subtree rooted at each child is grown in the same way as in the variable

rate VQ schemes proposed in [29]. The point here is that we allow the selection of the node to split to

be performed interweavingly among the three orientations. Thus the bit allocation procedure can match

the characteristics of the source as much as possible. This whole process will be referred to as subband

Quadtree VRVQ Algorithm (SQVRVQA) in the sequel. Note that this scheme has little design and encoding

complexity due to its simple structure [29].

3.3. Simulation Results

In this experiment our training set consists of ten 512 x 512 black-and-white images, all of which are

human pictures or natural pictures. The 512 x 512 black-and-white "Lenna" image is used as the test image.

Both inside test, i.e., the "Lenna" image is inside the training set, and outside test are performed. The

4-taps Daubechies wavelet filter [5] is used to obtain the wavelet decomposition.

After three stages of decomposition, the lowest subband of the "Lenna" image is coded by DPCM and

10
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Figure 6: A typical tree structure for GBAP bit allocation procedure

Huffman coding [10]. To exploit both the vertical and horizontal pixel correlations, the neighboring three

pixels A, B and C as shown in Figure 7 are used for the prediction of the current pixel X. Then the

quadtrees containing the edge information from the 10 training images form the training vectors. The

codebook is generated using the GBAP procedure. Note that there are three sub-codebooks, one for each of

the three orientations. The "edge quadtrees" of the "Lenna" image are coded using the codebook, and then

reconstructed to form the full band coded image.

B C
Av Previous Row

•,_-- Present Row

Present Pixel

Figure 7: Configuration of pels used for prediction

The coding results are shown in Table 3 and Fig. 8. For the inside test, an excellent result with PSNR

of 34.95 dB is obtained at the bit rate of as low as 0.366 bpp. For outside test, however, degradation can be

observed and the PSNR also reduces to around 30 dB. But the visual quality is still good, compared to that

of other non-subband VQ approaches (see, e.g., Figure 9). This seems to suggest that wavelet transform

coding can provide better visual quality.

11



Bit Rate (bpp)

Method Case Lowest Band Upper Bands

Inside 0.076 0.290

SQVRVQA Outside 0.076 0.282

Inside

Ref. [27] Outside

Ref. [27] Ideal

total

0.366

0.358

0.418

0.418

0.437

PSNR (dB)

34.95

29.77

26.57

25.73

31.94

Table 3: Coding results for "Lenna" image by SQVRVQA and another subband-VQ scheme

Figure 8: SQVRVQA coded "Lenna" image for inside test (left, PSNR=34.95 dB, bpp=0.366) and outside

test (right, PSNR=29.77 dB, bpp=0.358), filter: 4-taps.

12



Figure9: Riskin-GrayVRVQ[20]coded"Lenna"imagewhenusing"Lenna"astile onlytrainingimage.
PSNR=30.10dB,bpp=0.41.

InTable3,theresultsobtainedfortileschemeproposedin [27]arebasedonusingVQtoencodevectors

of dimension16,withonepixelfromeachofthe16equallydividedsubbands.Forthesametrainingsetof

10images,theperformanceismuchworsethanthat of SQVRVQA.Evenwhenweusethetest imageas

theonlytrainingimage(idealcaseinTable3) for theschemein [27],theresultisstill worsethanthat of

SQVRVQAwhenthetestimage"Lenna"is insidethetrainingsetof 10images.A possiblereasonforsuch

performancedifferencesbetweenthesetwoschemesisthatSQVRVQAactuallyexploitsthecorrelationofthe

8x 8 blocksin theoriginalimage,whiletheschemeof [27]exploitsthecorrelationofthe4x 4blocksin the

originalimage.It iswellknownthatthelargerthevectordimensionis,thebetterthePSNRperformanceis

ingeneral.Ofcourse,largerdimensionoftenresultsin morecomplexity.However,inSQVRVQA,thevector

dimensionisreducedfrom64to 21.Thereforethecomplexityisnotsubstantiallyincreased.

Theperformancedegradationfor theoutsidetestof SQVRVQAis probablydueto thefact that the

statisticalcharacteristicsof thetest imagedonot matchthoseof thetrainingsetwell. This is an issue

that oftenoecurrsin theVQdesignproblem.Generallyspeaking,to evaluatetheperformanceof a VQ

techniquerealistically,it ispracticallypreferableto performanoutsidetest.However,if thecharacteristics

ofthetestimagedonotmatchthoseof thetrainingsetwell,thisevaluationmaynotbefair. Thisproblem

is morepronouncedwhenthevectordimensionis large,sinceit is usuallymoredifficultto find a setof

13



trainingvectorsof a largedimensionwithconsistentstatisticalcharacteristics.Toimprovetheoutsidetest

performanceofSQVRVQA,alargerandstatisticallymoreconsistenttrainingsetisneeded.This,however,

callsfor morememoryanddesigncomplexityandthusmaynotbefeasible.

4 An Alternative to Quadtree VRVQ for Upper Subbands

Last section showed a viable VQ technique for the coding of upper bands. However, its performance

is limited by the memory requirement and codebook design complexity. This section proposes an efficient

alternative with less complexity and storage requirement.

The practical limitation of the quadtree VRVQ is due to the large dimension of the quadtree vectors. If

one codes subbands of different scales separately, the vector dimension can be reduced. This, however, loses

the nice feature of the quadtree VQ scheme, i.e., the advantage of exploiting the inter-band dependency.

But, as will be shown in the following, the performance loss can be minimized if one carefully employs the

edge estimation technique (Predict_4_to_4) for subbands of each scale to exploit the inter-band redundancy.

It has been shown in Section 2 that edge estimation based on a 2 x 2 block is better than just one pixel.

Therefore it is convenient and natural to use VQ to code the 2 x 2 blocks which contain edge information. This

alternative will be referred to as Block-based Edge Estimation VRVQ (BEEVRVQ) later. The BEEVRVQ

has more flexibility than the quadtree VQ scheme, since one can use different deadzone thresholds for different

scales. This implies that one can take full advantages of the perceptual properties of the subbands. Notice

that even though a quadtree is classified as "edge quadtree', it is very likely that some sub-blocks of this

quadtree, especially those belonging to the finer scale, contain no important information. In BEEVRVQ,

one can choose appropriate thresholds to eliminate such sub-blocks.

4.1. Bit Allocation

The bit allocation procedure introduced in Section 3 can also be applied here. Here we have more than

three subsources from different scales and different orientations. One can generate all the sub-codebooks

concurrently as done in Section 3.

There is an "almost" equivalent alternative. Observe that the stopping criterion in the GBAP procedure

of Section 3, "stop if the actual bit rate is greater than the prescribed bitrate (Criterion 1)", is almost

equivalent to the criterion: "stop if the largest average distortion is less than a corresponding threshold

14



(Criterion2)". It is"almostequivalent"becausetheprescribedbitrateandthefinallargestaveragedistortion

arenotnecessarilyone-to-onecorrespondingto eachother.Thisisbecausethelargestaveragedistortionis

notnecessarilymonotonicallydecreasingduringthegrowingprocess.Also,noticethat "thelargestaverage

distortionfortheentiretreeis lessthanonethreshold"impliesthat"thelargestaveragedistortionfor each

subtreeof onesubsourceis "almost"just belowthesamethreshold".Thereforeonecansetthethreshold

fortheaveragedistortionanduseCriterion2in theconstructionofthetree,thusgrowsthesubtreeforeach

subsourceseparately.Thismayreducethememoryrequirementandsimplifytheprogramming.

4.2. Simulation Results and Discussion

In this experiment our training set consists of the same ten 512 x 512 black-and-white images as in Section

3. The 512 x 512 black-and-white "Lenna" image is used as the test image.

After three stages of decomposition, the lowest frequency subband of the "Lenna" image is coded by

DPCM and Huffman coding. To preserve better visual quality, the other three subbands in Level 3 are

coded by PCM plus Huffman coding, rather than by VQ. For each subband in Level 1 and Level 2, the

2 x 2 vectors containing the edge information from the 10 training images form the training sequences. The

sub-codebooks for the three subbands in Level 1 are generated concurrently, while the sub-codebooks for the

three subbands in Level 2 are generated concurrently. Then the "edge vectors" of the "Lenna" image are

coded using the codebook, and reconstructed to form the full band coded image.

The coding results are shown in Table 4 and Fig. 10. It is interesting to observe that the PSNR's for

both the inside test and outside test are very good and very comparable. Due to the reduced complexity and

memory requirement, this scheme can provide high outside test PSNR which seems unlikely to be achievable

in practice by the SQVRVQA scheme. Of course the price to pay here is a slightly higher bit rate.

It is clear from Table 4 and Fig. 10 that BEEVRVQ compares favorably to other existing schemes. In

Table 4 we first show results for some other subband-VQ approaches. For 512 x 512 "Lenna" image, Antonini

et al. [1] reported good visual quality images of PSNR of 32.10 dB using VQ-based wavelet transform coding

combined with entropy coding at 0.78 bpp. Westerink [27] obtained a PSNR of 32.0 dB at 0.63 bpp using

subband-VQ. Safranek et al. [21] used multistage FSVQ to selectively quantize the reconstruction noise in

the dominant subband and achieved a PSNR of 32.5 dB at 0.5 bpp. Mohsenian et al. [15] reported a PSNR

of 34.1 dB at 0.69 bpp without entropy coding (or 0.503 bpp with an entropy coding) for their edge-based
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Method

BEEVRVQ

Filter Case Level 3

16-taps Outside

Ref. [1] 9-taps VQ

Ref. [26] 32-taps VQ

a f. [211 VQ

Ref. [151 vq

Ref. [18] VQ(256 × 256)

Ref. [28] 32-taps SQ

Ref. [2] 16-taps SQ

Ref. [8] 16-taps SQ

Ref. [23] 16-taps SQ

Bit Rate (bpp)

Upper Bands

Inside 0.186 0.374

4-t aps Outside 0.186 0.373

Inside 0.176 0.319

6-taps Outside 0.176 0.319

Inside 0.177 0.311

8-taps Outside 0.177 0.311

Inside 0.180 0.316

10-taps Outside 0.180 0.315

Inside 0.177 0.326

12-taps Outside 0.177 0.322

Inside 0.177 0.329

0.177 0.328

total PSNR (riB)

0.560 33.55

0.559 33.00

0.495 33.82

O.495 33.22

0.488 33.75

0.488 33.20

0.496 33.71

0.495 33.09

0.488 33.45

0.488 33.01

0.488 33.76

0.488 33.19

0.78 32.10

0.63 32.0

0.50 32.5

0.69 34.1

0.67 34.27

0.67 30.9

0.54 32.17

0.55 33.95

O.5O 35.97

Table 4: Coding results for "Lenna" image by BEEVRVQ and other existing schemes
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Figure10:BEEVRVQcoded"Lenna"imageforinsidetest(left,PSNR=33.75dB,bpp=0.488)andoutside
test(right,PSNR=33.20dB,bpp=0.488),filter: 8-taps.

subband-VQtechnique.Raoet al. [18]appliedamultirateVQschemecalledthealphabet-andentropy-

constrainedvectorquantization(AECVQ)to codeimagepyramidandreportedaPSNRof34.27dBat 0.67

bppfor the256x 256"Lenna"image.Their resultappearsto beverygoodandis due,in part, to the

joint exploitationof VQandvariablelengthentropycoding.Butsomepracticaldisadvantagesstill remain.

Amongothers,a substantialincreasein computationalcomplexityandmemorystoragerequirementis a

majordisadvantage.In contrast,theBEEVRVQschemeproposedherehasmuchlessdesignandencoding

complexitydueto its simplestructure.

Comparingto theperformanceofsubbanddecompositioncombinedwithSQschemes,ourapproachalso

appearsto bebetterthanthoseof [2,11,28]andiscomparableto thatof Gharari[8].RecentlyShapiro[23]

reported a surprisingly good PSNR of 35.97 dB at 0.5 bpp by using an embedded wavelet hierarchical image

coder. Although VQ can outperform SQ theoretically, such is often not the case in practice. Notice that the

results obtained in [1] and [27] are not better than those of subband-SQ schemes. There are some possible

reasons for this. First, the performance of VQ depends on how the statistics of the test image matches that

of the training set. Notice that even when the test image is inside the training set, the performance still

depends on the size of the training set, as well as the statistical similarity among different training images.

Second, all the subband-SQ schemes employ entropy coding such as Huffman coding or arithmetic coding
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for eachsubband.Someevenusespecialstrategies,e.g.,a hierarchicalentropycodedquantizerin [23].

Consequentlytheymayprovidegoodperformanceat verylowbit rates.Alsonoticethat [23]usessix-stage

waveletdecomposition,whichismorethanthecommonlyused2or3stagedecomposition.Thismaybeone

reasonfor its lowbit rate.It isconceivablethat if entropycodingisappropriatelyincorporatedwithVQ,

andif thetrainingsetisgoodenoughto reflectthecharacteristicsof thetestimage,subband-VQcanvery

welloutperformthoseexcellentsubband-SQschemes.

Notethat thebit allocationinourapproachdependscriticallyonthestatisticsofthetrainingset.Thus

if thetrainingimagesdonothaveaconsistentstatisticalcharacter,or thestatisticsofthetestimagedoes

notmatchthat ofthetrainingsetwell,theperformancemaybeseverelyaffected.Someimprovementcan

beexpectedif thebit allocationschemecanbemodifiedto allocatequantizersto eachsubbandin thebest

waypossiblefor aparticularimage.Furthermore,notethatlargerthresholdincreasesthedistortionwhile

reducingthebit rate.Thisis indeeda trade-off between distortion and bit. rate and an optimal estimation

threshold may be desirable.

It is interesting to see how the performance changes when filters of longer length, which correspond to

wavelets of higher order regularity, are used. Table 4 shows that when the filter length increases from 4

to 6, a relatively large reduction in bit rate for the same PSNR is observed. However there is only small

improvement or no improvement when the filter length continues to increase. This observation is similar to

that made by Rioul [19] where scalar quantization is used to code the upper bands. This seems to suggest

that regularity may be relevant for still image compression, at least for short filters for which the regularity

order is relatively small, and that employing very regular filters is probably useless.

5 Subband Finite State Vector Quantization

In the last section, we tried to predict "non-edge" blocks from the coarser scale subimages. In this section,

this idea will be extended to predict any kinds of blocks in the current scale subimages from the next coarser

scale subimages. Because of the similarities among tile subbands of"like" orientation, the pattern of a block

in the current scale is likely to be similar to that of the corresponding block in the next coarser scale. In

other words, tile pattern of the corresponding block in the next coarser scale gives a prediction of what the

shape and gain of the block in the current scale are likely to be. This property can be exploited to further

reduce the bit rate. In this section we apply the concept of Finite State Vector Quantization (FSVQ) to
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furtherexploittherelationshipamongthesubbandsof any given directional pyramid.

5.1 The Subband-FSVQ Algorithm

An FSVQ is a recursive VQ with only a finite number of states [6]. In FSVQ, the current state determines

the codebook to be used for VQ on the input vector, i.e., it serves as a prediction of the input vector. The

next state of the quantizer is determined by both the current VQ index and the current state of the quantizer.

Naveen and Woods [16] use a scalar version of FSVQ, Finite State Scalar Quantization (FSSQ), to exploit

the relationship between various subbands of an image. The basic idea is similar to the one in [11]. In their

subband-FSSQ algorithm, they use finite state PCM for the coding of upper bands, where the state of the

quantizer at a given input sample determines the step size of the quantizer. They classify the quantizer

outputs based on local variance. The classes of the outputs of the current scale subimages serve as the states

for the quantizers when the samples in the next finer scale subimages are inputted to the finite state PCM.

Here we propose a subband-FSVQ (SFSVQ) algorithm to directly predict the pattern of a block in the

current scale from the corresponding block in the next coarser scale. In our subband-FSVQ algorithm, the

subbands are coded progressively, from coarser scales to finer scales. The quantizer output is naturally

classified according to the codeword index assigned to it. Tile class of the current output serves as the state

for the vector quantizer when the corresponding block in the next finer scale is coded, i.e., all the blocks in

the next finer scale whose parent blocks are mapped to the same codeword belong to the same class, and

therefore are coded using the same sub-codebook. Note that blocks belonging to the same class have the

same coded parent block, therefore are very similar to one another. So relatively smaller codebook or fewer

bits can be used to code them.

For the design of the state codebook, one approach is to use the blocks belonging to the same class as

the training set and use a VQ design technique to construct a sub-codebook for this class. This approach,

however, has some drawbacks. First, one has to construct a sub-codebook for each class. Therefore the design

complexity is too much due to the large number of classes. Second, even though the sub-codebook size may

be relatively small, the total number of codewords may still be very large, also due to the large number of

classes. Thus the required storage is large. Third, bit allocation may be a big problem because it is not

easy to decide the sub-codebook size for each class. With this consideration, we herein employ the following
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approachto dealwith theseproblems.Notethatthesub-codebooksmayhavesomeoverlapbetweeneach

other,i.e.,codewordsinonesub-codebookmayhaveverysimilarcounterpartsinothersub-codebooks.One,

therefore,canexploitthisoverlappropertyto reducethetotalnumberofcodewords.Hence,insteadofusing

differenttrainingsetsto constructdifferentsub-codebooks,onecanconstructa largecodebookfor each

subband,andthengeneratethesub-codebookforeachclassoutof thesubbandcodebookbygroupingall

codewordswhichhavebeenmappedtobyat leastoneof theblocksbelongingto thisclass.In thisapproach,

oneonlyneedsto constructafewsubbandcodebooks,thusreducesthedesigncomplexity.Thetotalnumber

of codewordsisalsoreducedbecausewetakeadvantageof thesub-codebookoverlapproperty,thereforethe

storagerequirementissmall.Alsothebit allocationproblembecomesrelativelysimplerbecauseoneonly

needsto allocatebitsamongsubbandsratherthanamongclasses.

At thereceiverends,thereceiversstorethecodebookforeachsubband.Thesubbandsarealsodecoded

progressively,fromcoarserscalesto finerscales.Whena channelsymbolis received,thereceiversfirst

identifywhichclassits parentblockbelongsto, andthenusethestatelabeltogetherwith thechannel

symbolto decidewhichof thecodewordsin thesubbandcodebookisselected.Thiscanbeaccomplished

usinga two-stageLook-upTable(LUT)techniqueasshownin Figure11. Thefirst stageLUT outputs

the indicesof the codewordsin thesubbandcodebooks,with thechannelsymbolandthestatelabelas

inputs.ThesecondstageLUTthenoutputsthedesiredcodeword.Notethat tile storagerequirementof

thetwo-stageLUT is much smaller compared to the case when one constructs a sub-codebook for each class

separately.

Codeword

Figure 11: Two-stage LUT for the decoding of subband-FSVQ

The state quantizer design procedure and the encoding and decoding procedures are outlined in the

following:
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5.1.1. State QuantizerDesign

A: For each directional pyramid and subband scale, design a VQ codebook according to some bit alloca-

tions based on a training set. Note that the block size increases by a factor of two along both vertical and

horizontal directions when one comes from one scale to the next finer scale.

B: Classify the sample blocks of training set in the parent subband of the current subband into S classes,

based on the codewords to which they are mapped. The classes serve as the states for the quantizers when

the blocks in the current subband are coded. The corresponding blocks in the current subband are then

divided into S groups, each corresponding to one state.

C: For each state s=l to S, group all codewords in the current subband which have been mapped to by at

least one of the blocks in this state, and use it as the sub-codebook for this state. Reindex this sub-codebook.

The indices will be sent out as channel symbols after the encoding phase.

5.1.2. Encoding Phase

After designing the quantizers as outlined above, the encoder does the following for each directional

pyramid and subband scale:

A: Encode the lowest upper bands using the codebooks designed for these subbands.

B: Go to the next finer subbands. For each block in these subbands, check the class of its parent block

to decide the state, and then select the corresponding sub-codebook to code this block.

C: Go to step B.

5.1.3. Decoding Phase

At the receiver end, decoding is performed progressively, from coarser scales to finer scales.

A: Decode the lowest upper bands using the codebooks designed for these subbands.

B: Go to the next finer subbands. For each block in these subbands, check the class of its parent block

to decide the state, and then select the corresponding sub-codebook to decode this block. The sub-codebook

can be found using the LUT shown in Figure 11.

C: Go to step B.

Note that in Step A of the state codebook design procedure, we state that the block size increases by a
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factorof twoalongbothverticalandhorizontaldirectionswhenonecomesfromonescaleto thenextfiner

scale.In practice,however,it maynotbepossiblebecausetheexponentiallyincreasingblocksizewill incur

untolerablecomplexity.In thiscase,onemaybreakthequantizedparentsubbandintoblocksof relatively

smallsize(say,2 x 2 ), categorizetheseblocksintoS classes by using an extra codebook. Therefore the

block size in the current subband is not too large (4 x 4 corresponding to 2 x 2 in the parent subband). In

this way, one can keep the block sizes in all scales reasonably large.

5.2 Simulation Results and Discussion

Our experiments are based on a training set that consists of seven 512 x 512 black-and-white images. The

512 x ,512 "Lenna" image is used as the test image. For simplicity, the codebook for each upper subband is

generated using a standard fixed rate GLA algorithm, and bits are allocated among the subband codebooks

using the high resolution quantizer theory as in [1]. The results reported here are to demonstrate how much

bit rate one can save by employing the SFSVQ scheme to further exploit the inter-band dependency.

As in Section 4, after three stages of decomposition, the lowest subband of "Lenna" image is coded by

DPCM and Huffman coding. The other three subbands in Level 3 are coded by PCM plus Huffman coding.

In our simulations, we have tested two cases of SFSVQ, i.e., one-stage SFSVQ and two-stage SFSVQ. In the

one-stage SFSVQ, each subband in Level 2 is coded by the subband codebooks, and then is used to predict

the blocks in Level 1. The block size is 2 x 2 in Level 2 and 4 x 4 in Level 1. In the two-stage SFSVQ, instead

of directly using the subband codebooks, tile coding of the 2 x 2 blocks in Level 2 is based on the prediction

from the parent block of size 1 x 1 in Level 3. Note that we also use Predict_4_to_4 technique described in

Section 2 to eliminate the "non-edge" information.

Tile coding results are shown in Table .5. We compare tile subband-FSVQ scheme with ordinary subband-

VQ scheme which codes different subbands "independently", except that the "non-edge" information is also

eliminated by Predict_4_to-4. Therefore the gain reported in the following is purely due to the prediction

strategy introduced in this section. For the one-stage SFSVQ case, we observe a reduction of about 10%

in the bit rate for coding the upper bands for both inside test and outside test, comparing to ordinary

subband-VQ. Equivalently, there is a reduction of about 0.5 dB in PSNR at an average bit rate of 0.6 bpp.

In the two-stage SFSVQ case, however, it turns out that the additional reduction in bit rate is negligible

while the constraint oil the codebooks causes loss of PSNR for the outside test. This could be explained
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asfollows:Onepixelin Level3cannotpredicttheshapeof the2x 2 blockin Level2. It cannotpredict

thegainof the2 x 2childblockwell,either,dueto thenonlineardownsamplingoperationin thesubband

system.Therefore,thisadditionalstageofpredictionalmostsavesnobits.Moreover,thisstageof prediction

placesconstraintonthecodingofsubbandsinLevel2,henceincursadditionaldistortion.

Thecasestestedhereareverysimpleones.It isseenthat in thecaseofone-stageSFSVQ,thebit rate

is reducedwithoutlossof PSNRperformance.In casesthat morestagesof decompositionareinvolved,

onemayhavemorethanonestagesof prediction.Thoughmorestagesof predictioncanreducebit rate

moreif appliedproperly,it mayalsoincursomelossof PSNRperformance.Thisisdueto thefactthatthe

classificationindeedputsa constrainton thesub-codebookto codeaninputblock. This constraint makes

it possible that the selected codeword may not be a very good representation for the input block, resulting

in extra distortion. _brse though, the error caused by the mismatch may propagate to the next stage

prediction where finer scale subbands are coded, and result in possibly very large distortion. The distortion

may depend on how good the prediction is. The effects of multi-stage prediction need more investigation.

One possible approach is to employ delayed decision encoding such as trellis encoding [6] to guarantee that

longer sequences of input and reproduction vectors have the minimum possible distortion for the particular

decoder.

Method

One-stage

SFSVQ

Two-stage

SFSVQ

SBVQ

Ca_e

Inside

Outside

Inside

Outside

Level 3

0.177

0.177

0.177

0.177

Bit Rate (bpp)

Upper Bands

0.418

0.418

0.414

0.414

Inside O. 177 0.470

Outside O. 177 0.469

Inside 0.177 0.419

Outside O. 177 0.419

total

0.595

0.595

0.591

0.591

0.647

0.646

0.596

0.596

PSNR (dB)

35.19

34.52

35.19

33.58

35.19

34.64

34.63

34.19

Table 5: Comparison of subband-FSVQ and ordinary subband-VQ for "Lenna" image. Filter: &taps.
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6 Conclusion

This paper proposed three VQ techniques which aim to exploit both the intra-band and inter-band

redundancy for coding the upper subbands. The first scheme is based on a quadtree structure in an effort

to take full advantages of the intra-band and inter-band redundancy. Attempting to alleviate the imple-

mentational complexity of the first scheme, the second scheme codes each scale separately while eliminating

the "non-edge" information by using a block-based edge prediction scheme. It is shown that this scheme

yields better performance than other existing subband-VQ approaches. The third scheme further exploits

the inter-band dependency by employing finite state VQ to predict blocks of any patterns in a scale from

those in coarser scales. Simulation results show that it results in further bit rate reduction and seems to be

a promising approach.
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