
NASA Technical Memorandum 106723

AIAA-94-3095

//v -o'7

"_23 2-0

Object-Oriented Technology for
Compressor Simulation

C.K. Drummond and G.J. Follen

Lewis Research Center

Cleveland, Ohio

M.R. Cannon

Ohio Aerospace Institute

Brook Park, Ohio

Prepared for the

30th Joint Propulsion Conference

cosponsored by AIAA, ASME, SAE, and ASEE

Indianapolis, Indiana, June 27-29, 1994

National Aeronautics and
Space Administration

(NASA-TM-I06723) OBJECT-ORIENTED

TECHNOLOGY FOR COMPRESSOR

SIMULATION (NASA. Lewis Research

Center) 23 p

N95-11864

Unclas

G3107 0022320

Object-Oriented Technology for Compressor Simulation

Colin K. Drummond 1 and Gregory J. Follen 2

NASA Lewis Research Center

Cleveland, Ohio, 44135

M.R.Cannon a

Ohio Aerospace Institute

Brookpark, Ohio, 44142

Abstract

An object-oriented basis for interdisciplinary compressor

simulation can, in principle, overcome several barriers

associated the traditional structured (procedural) devel-
opment approach. This paper presents the results of a

research effort with the objective to explore the reper-

cussions on design, analysis, and implemention of a com-

pressor model in an object-oriented (OO) language, and
to examine the ability of the OO system design to accom-

modate computational fluid dynamics (CFD) code for

compressor performance prediction. Three fundamental
results are that:

1. The selection of the object-oriented language is not

the central issue; enhanced (interdisciplinary) anal-
ysis capability derives from a broader focus on

object-oriented technology.

2. Object-oriented designs will produce more effective

and reusable computer programs when the tech-

nolgy is applied to issues involving complex sys-

tem inter-relationships (more so than when address-

ing the complex physics of an isolated discipline).

3. The concept of disposable prototypes is effective for

exploratory research programs, but this requires or-
ganizations to have a commensurate long-term per-

spective.

This work also suggests that interdisciplinary simula-

tion can be effectively accomplished (over several lev-
els of fidelity) with a mixed-language treatment (i.e.,

FORTRAN-C++), reinforcing the notion that O0 tech-

nology implementation into simulations is a "journey" in

which the syntax can - by design - continuously evolve.

1Aerospace Engineer, Senior Member AIAA
2Softwaxe Manager, Member AIAA
3Currently at Reese Air Force Base

Introduction

Gas turbine engine simulations of elementary form be-

gan to appear about four decades ago, coinciding with
the time two-spool engine technology was introduced. At

that time, and with fuel-flow control problems as a back-

drop, the increased engine technological complexity de-
manded a more complete understanding of dynamic sys-

tem behavior, and there was a need for analysis methods

(mathematical models and their computer implementa-

tion) leading to improved system control and perfor-

mance (Fawke and Saravanamuttoo, 1971). Simulation
contributions to the understanding of dynamic systems

are as important today as they were in the 1950's. For

example, the recent work of Tryfonidis et.al.(1994) is an

excellent example of the use of simulation in the interpre-

tation of stall data, the development of signal processing
techniques, and stall model development (the original

goal of quantifying stall precursor data shed considerable
light on the path-dependent behavior of the transition to

surge).
It is important to note that, historically, advances in

simulation technology very closely follow refinements in

dynamic system modeling, the evolution of computer
languages, and improvements in computer hardware and

operations. In the last two decades, major simulation

software development paradigm shifts have been associ-

ated with the migration from analog to hybrid comput-

ers in the 1970's, a shift to digital computing platforms
in the 1980's and subsequent advances in object-based

compiler technology in the 1990%

To embark on the development of object-oriented sim-
ulation is not a casual exercise since the resources re-

quired to move in that direction can be significant. The
attraction, however, is the promise of software reuseabil-

ity that, if realized, can produce roughly a 20:1 return

on the investment (see; for example, Nordwall(1992));
the impetus for injecting object-oriented technology into
simulation is a business decision, not a technical one.

Interdisciplinary Influence

Most physical processes involve some coupling between

scientific disciplines, and a key issue in simulation de-

velopment strategy is the extent of the coupling, and
to what degree the coupling influences or dominates dy-

namic system behavior.
Simulations are derived largely along discipline lines

in which model development perspective often requires

simplifying assumptions about discipline decoupling. Of

concern is that, in the case of problems that are gen-

uinely interdisciplinary, to what extent accuracy is jeop-
ardized during the process of system decomposition, el-

ement analysis, then system reconstitution (Denning,

1990). In fact, decomposition strategy is even an issue

on a single discipline level, particularly with highly cou-
pled inlet-compressor problems (see the CFD discussion

on page 4).
More traditionally occuring in general simulation

practice is an (interdisciplinary) blend of control sys-

tem technology and aerothermodynamic cycle represen-
tations, typically directed at, for instance, the develop-

ment of integrated flight/propulsion control (IFPC) sys-

tems (Shaw, 1988; Akhter, 1989). IFPC applications

benefit from the ability to match time scales between
the disciplines very closely. Advanced compressor perfor-

mance requirements have brought to the forefront of in-

terest active control problems once relegated to academic

thought, but the challenge in matching the flow phy-

ics and control system time scales is aggravated. When
advanced control concepts are combined with stability

assessment techniques and CFD for multistage compres-

sor instability control, what was once a simple initial-

value problem is also now a boundary-value problem;

the length and time scale for the component-level model
is at least an order of magnitude lower than the CFD

calculation requirement (for stability).

Another aspect of interdisciplinary coupling is aeroe-

lasticity - aerodynamics coupled with structural dynam-

ics. Consider an engine simulation intended to incor-

porate compressor blade flutter. Figure 1, taken from

Carta(1989) presents the interdisciplinary nature of the

problem very clearly. As in the case for CFD, Aeroe-
lasticity transforms what was once an initial-value prob-
lem into what is now a combined initial-boundary-value

problem. Thus, in the interdisciplinary area, some fun-

damental implementation issues are:

1. The "raw" number crunching capability required to

solve unsteady aerodynamics and structures prob-

lems simultaneously,

2. Mismatched fidelity of the simulation modules

3. Developing effective (or standard) means to intro-

duce geometric data into the simulation, and

4. Software manageability.

Scope of Work

Object-oriented (OO) technology has the appealing po-

tential to bridge advanced computer technology and

high-fidelity mathematical problem formulations to ben-
efit interdisciplinary simulation and analysis of gas tur-

bine compressors. Although the O0 approach sounds

good in principle, what can we expect in practice? An

implementation exercise is an effective way to answer
this question. In the present work, exercises involving

the development of a prototype OO simulation (frame-

work) are discussed; this project was motivated by the

conspicuous absence of direct experience in assessing the

benefits of OO environment for gas turbine applications.
Activities to date include exercises in OO code develop-

ment, external (someone other than the code author) re-

view of subsequent software modules, post-development

code modification experience, and the exercise of devel-

oping a simple interface between a map-based compo-

nent level model (CLM) and a computational fluid dy-

namics (CFD) code.
Experiences with the prototype codes were intended

to focus primarily on the compressor portion of the tur-

bine engine, though at the outset the complete engine
had to be considered in the analysis and design process.

NASA Lewis Research on gas turbine OO programming

has been underway for approximately four years, from

which two prototype programs have been developed:

1. A prototype LISP OO code, developed for the com-

plete engine system, and,

2. A C++ code, developed to explore compression sys-
tem simulation issues.

Specific concepts of interest in code development in-

clude: creation of a traditional map-based compres-

sor model, development of a computational fluid dy-
namics interface model, and use of the OO inheritance

concept to create perturbations of these models. Ex-
ercises undertaken represent very specific attempts to

quantify the benefit of the object-oriented programming

approach (though largely from an aerothermodynamic
standpoint).

Of particular interest is the LISP exercise, in which
the prototype was instrumental in setting the stage for

subsequent object-based research activities; the disposi-

ble prototype mentality liberated individuals to pick and
choose modules from the LISP carcass.

In the discussion to follow, we first highlight some of

the recurring simulation issues that were the catalyst
for a look at the OO approach, and then consider is-

sues associated with typical compressor representations

(again, from a simulation point of view). After a brief

introduction to key object-oriented concepts, the analy-

sis and design of the prototype codes are presented and
discussed.

Simulation Issues

Traditional Simulation Process

Gas turbine engine simulations are normally intended to

mimic dynamic or steady-state engine behavior through

a computer solution to a mathematical representation of
the engine cycle. Figure 2, based on the work of Szuch

et. a1.(1982), illustrates seven key steps in the simula-
tion development process. First, the formulation of the

mathematical model involves the appropriate applica-

tion and tailoring of conservation laws (discipline spe-

cific) to the perceived system attributes (physics); the

complete mathematical method development includes

equation solver strategies. After mathematical methods

are established, it is then necessary to prepare data re-
fleeting specific engine design detail and operating en-

vironment characteristics. The next step, implemen-

tation, links the methods and data through the cre-

ation of a computer code based on a computer language

(syntax). Traditionally, implementation expectations are
highly coupled to formulation strategy.

The fourth step in the process, simulation evaluation

and validation, is where computed results are compared

with design/performance data. Inevitably, a diserepency
between calculated response and data occurs; this is usu-

ally attributable to either an error in the mathematical

method or in the formula translation. Again, with Figure

2 in mind, a modification is usually necessary (to resolve

the error) and the assessment of what is required may
take the analyst back to either the formulation or imple-

mentation stage. Once the simulation results have been

validated, documentation of the simulation design (and

related methods) then (hopefully) takes place. Finally,
if, for instance, the effect of design changes are of inter-

est, the simulation development process just completed

is repeated; it is often the intention for the simulation
framework to be robust and applicable to a new systems
with minimal effort.

Gas turbine simulation design usually evolves from
a convenient and natural decomposition of the en-

gine according to component functions (component level
model), e.g., an engine is represented as the assembly of a

compressor, burner, turbine, and interconnecting ducts.

As an example, the turbofan engine schematic shown in

Figure 3 has the component level model (CLM) repre-
sentation shown in Figure 4.

Mathematically, the objective of modeling is to re-

duce the system to a set of ordinary or partial differ-

ential equations that represent the dominant physics of

the system. For a typical real-time simulation, a vector

of state variables (spool speed, pressure, temperature)

is identified where generally the number of parameters
in the state vector is a function of the engine fidelity

(complexity) desired.

Four Key Issues

Numerous obstacles and limitations to existing sim-
ulation are described in the work of Drummond et.

a1.(1992), but only the following summary is essential
to repeat here:

1. Procedural code structures predominate existing

(large-scale) simulation codes and the ensuing ap-
proaches are constrained to be either general, sim-

ple, or accurate, but a simulation that is any com-

bination of these is not currently available (in the

public domain). Work-arounds to simulation con-

straints usually involve some compromise whereby,

for instance, diminished model fidelity is exchanged
for increased simulation execution speed, or where

simulation generality (flexibility) results in a lack of

program simplicity.

2. Discipline isolation is relatively predominant for

the'usual' simulation. Interactions between, for in-

stance, aerodynamics, structures and controls is ac-

tually fairly limited during mathematical modeling

of component characteristics. A requirement also
exists for the simulation to deal with a continuum of

time and length scales, and for component geomet-
ric characteristics to be introduced in a manageable
fashion.

3. Simulation languages and architectures tend to

assume a sinfle-processor hardware environment

which impedes software portability to modern par-

allel and distributed computing environments; this

leads to a "strategic fit" philosophy in which simu-

lation methods are not designed to exceed perceived

implementation limitations.

4. Simulation initialization and balancing is non-

trivial for arbitrary engine configurations, especially

for highly non-linear systems where a high fidelity
simulation is required. Tools for initialization and

balancing are never noticed (by the user) when the
simulation runs without error. The "inexact sci-

ence" needed to diagnose problems and take correc-

tive action is frequently an understated aspect of

system simulation.

Object-oriented technology can help alleviate the first
three of these simulation issues; initialization and bal-

ancing problems don't go away - they just have a new
look.

In the next section several issues specific to compresor
simulation are discussed.

Compressor Simulation Issues

Compressor simulation is always accompanied by em-

piricizm (for unresolved scales) due to the diverse range

of length and time scales associated with the governing
physics. At one extreme, the simulation engineer may

be interested in post-stall system behavior, for which

the fidelity offered by a compressor 'map' representation

will suffice. On the other hand, compressor performance
predictions reflecting the influence of detailed flow struc-

ture require 3-D CFD analyses and sophisticated flow

modelling. Traditional treatment has dealt with these

extreme situations separately, requiring different hard-

ware platforms and solution strategies for the effective
use of computational resources. It has been suggested
that advanced simulations should and can be structured

to accommodate both in a seamless fashion.

The essence of the present work is to explore meth-

ods which integrate what heretofore have been isolated
problem analysis techniques. More specifically, the con-

cept of zooming is proposed as a tool for spanning a

larger range of length and time scales in a problem than

previously achievable; zooming is a temporary excur-
sion to accomodate higer fidelity methods. The door to

managing the implementation of the zooming concept

opened when object-connector technology crossed paths

with distributed processing.
To accomplish the goal of prediction or advanced sim-

ulation of compressor operating characteristics requires

existing simulations entertain demanding new levels of
fidelity and interdisciplinary coupling.

Non-Dimensional Maps

A major task in turbofan engine modeling is predicting
the aerothermal performance of the major components

of the engine. An acceptable compromise to the descrip-

tion of turbofan component performance is a representa-
tion based on non-dimensional analysis. This approach

yields multivariate component "maps" which detail base

component performance over a wide range of operating
conditions.

To get an idea of component map implementation

logic, a sample fan logic diagram from an F100 simula-

tion is presented in Figure 5. Note the procedural nature

of information flow; the complete simulation logic dia-

gram represents a well-orchestrated (by the programmer,
not the compiler) integration of controls and aerother-

modynamic representations ... representations not easily
modified!

The non-dimensional performance map is a relatively

straight forward and an intuitively pleasing approach to

compressor performance modeling. However, as a prac-
tical modeling technique, the approach has some signif-

icant drawbacks. Traditional performance maps are not

easily scaled; therefore the maps are limited in their use

for modification of component performance to account

for new data and/or component sizing studies. Further-

more, modeling of component off-design performance

can require additional maps consuming large amounts of

computer memory. A key feature of hybrid simulation

was the storage of component maps on the digital com-
puter and the communication with and solution of the

differential equations on the hybrid computer (in addi-

tion, of course, to the real-time capabilities of the hybrid

computer).

The drawbacks in the traditional turbofan component
performance maps led to the development of alternative

methods of modeling component performance. Converse

and Griffin (1984) developed a "backbone" performance

fitting technique based on the physics of the component

rather than curvefits of nondimensional parameters. The
beauty of the approach is compromised by its complexity

(of course, this diminishes considerably through concept

familiarization). A very basic block diagram to describe

the backbone approach, Figure 6, belies the significant

additional procedural logic required for the backbone im-
plementation.

Performance maps and backbone representations are

appropriate techniques for the scope of many current

and future simulation efforts. However, they represent
static descriptions of component performance and cre-

ate difficulties in developing, for instance, a high-fidelity

dynamic system simulation study of rotating stall. Be-

cause this specific example is an active area of research,
work-arounds (in the form of modeling) are beginning to

emerge. Nevertheless, the traditional focus on aerother-

modynamic (or any isolated discipline) performance pre-
cludes interdiscipinary system simulation. The role of

component representations of a more fundamental na-

ture (based on theories of fluid mechanics or elasticity)
is becoming apparent.

CFD Predictions

An approach to component representation based on first

principles is desireable, but as a practical matter is dif-

ficult to accomplish on a typical (single processor) sim-

ulation computing environment. Another issue is that

several fundamentally different CFD approaches can be

entertained, so there is extensive OO analysis and design
work required before a transparent CLM-CFD handoff

process can be accomplished. Central to this is the defi-

nition of compressor geometry, and the implementation

of standards for blading. Modiano et. a1.(1994) have re-

cently explored object-oriented grid blocking techniques.
An innovative technique for effective CFD perfor-

mance predictions is given by recent research by

Tan(1994), in which methods are presented for assess-
ment of compressor performance degradation due to in-

let distortion. In that effort, an Euler solver is coupled
with a model for body force terms; this provides a fairly

computationally effective scheme that is currently being

examined for possible porting to an object-based con-
struct.

In exchangefor thesimplicityof the scheme, there

arises the need to match (numerically) the upstream
influence the compressor has on the 3-D inflow when

the compresor is assumed axisymmetric. Further, when

matching the distributed field solution with the lumped-
parameter CLM model, the exact field integration tech-

nique is not always evident (see, Wyss et. al. 1993).

The Object-Oriented Perspective

A fundamental question to ask is: What needs to be
changed in current simulation practice?

From a programming perspective the view of Schoef-

fler(1992) provides a good response:
1. Structure, structure, and more structure.

2. Modules that can be used like building blocks.

3. Modules which are application oriented.

4. Modules which can be reused.

5. Modules whose source code need not be changed to
reuse them.

Reusability is a central issue (Meyer, 1987). One can
begin to see that many of the conveniences associated

with the 'usability' of FORTRAN hinder, in the context

above, its 'reusability'. Furthermore, it starts to become

clear that a computer language that has the attributes

stated above would be the desired language for simu-
lation - object-oriented languages appear to fit the re-

quirements; specific features supporting this follow later.

In conjunction with the above, traditional (digital)

simulation developers find it impossible to resist cus-

tomizing code and tailoring solution techniques to the

specific problem and performance window at hand (the
"need for speed"); this has far-reaching manageabil-

ity effects that include documentation, reliability, main-

tainability, and re-useability of the subsequent code.

Application-driven efforts require flexibility in the multi-
fidelity simulation.

In this section, we try to answer three frequently asked

questions:

What is object-oriented programming?

How is the object-based approach different from a

subroutine-based FORTRAN program

Why do we need another programming language?

It is proposed that an object-oriented (OO) design
approach to gas-turbine simulation has the potential

to overcome many of the simulation obstacles outlined

above. In the OO approach, emphasis on modeling

objects (instead of proceses) and the relationships be-

tween objects, holds the key to developing and manag-

ing simulations for complex gas-turbine systems. Robust

strategies for implementing an OO perspective have been

made possible by the recent accessability of object-based

languages 2 and widespread availability of powerful com-

puting platformsZ: the enabling technology is ready and

waiting.

The Terminology

New terminology is usually introduced with any new

technology. Below are given our interpretation of the

key terms used in the analysis and design process.

61a88¢8

When looking at the actual code for an object-oriented

program, nowhere will one find mention of objects. Ob-

jects are merely instances of the more general concept of
a class. A class is usually described as a group of like

objects (classes may also be thought of as templates for

objects). A distinct object is created when a specific set

of "values" is assigned to the attributes, that is, when

an instance of an object is created (instantiated).

Objects

What is an object? Objects are defined in terms of

classes. A class is a group of objects that have the

same attributes (length, area, inlet pressure) and meth-

ods (equations for state variable time derivatives). The
individual values of the attributes of a particular class

are set by creating an instance of the class. For example,

Figure 4 illustrates that there are several intercomponent

ducts in the engine. The unique values of the duct's at-

tributes are what distinguishes one duct from another.
They are all members of the class of ducts and thus share

the same analytic model.

Objects are the building blocks of an object oriented

program. An object is a package containing a set of

variables, called attributes, and a set of functions, called

methods, that operate on the attributes. In an object-
oriented program, the code is organized around the data.

That is, data and functions to manipulate the data form

a complete unit to model real world objects. In contrast,

procedural codes are organized around the equations or

functions, with the data being passed to the function
when needed, or automatically via common blocks.

Attributes and Methods

Attributes and methods give the object its appearance

and behavior. An attribute is basically a variable. It

may be more appropriate to think of an attribute as a

piece of data that helps define the state of an object.
Methods are simply functions. However, they are very

tightly coupled to the attributes of the object in which

2Which has been directly influenced by advances in compiler

technology

ZFueled by the proliferation of inexpensive '486 computers and

the availability of inexpensive C++ software.

they reside. That is, methods exist to perform opera-
tions on the the attributes.

Messages and Associations

Objects communicate by sending messages through con-
nections called associations. A message is simply a call

to one of an object's methods. Associations are the

interactions between objects. The association defines

such things as how messages are passed between objects,

what knowledge an object has of other objects, and what
methods are accessible to other objects. Messaging is a

way of enforcing clarity in the realtionships between ob-

jects - "ask, don't touch" (Winblad et.al., 1990).

With the recent work of Schoeffier(1994) in mind, the

philosophy of messaging is an enabling mechanism for
distributed processing and the concept of "zooming."

Zooming is a process in which adjacent components can
communicate even when component fidelity levels are

different (pressure and temperature grid resolution dif-

ferences). Central to effective messaging in the present
work are the use of connectors for scale integration (dis-

cussed in more detail later).

Inheritance

Inheritance is the sharing of methods and attributes by
similar classes. When a class is drived from another, it

inherits the essence of the base (parent) class.

An emphasis in our previous discussion has been to

pose simulation obstacles in the context of a traditional
simulation development approach, ttere, we provide our

perception of what constitutes an object-oriented (OO)

approach, and remark on some differences between OO
and traditional procedural code features. Then, some

fundamental object representations are presented. Fi-

nally, the sections which follow provide the results of ex-
periences with the LISP and C++ project explorations.

A Remark on the References

Literature on object-oriented analysis, design, and lan-

guages is abundant 4 and continues to grow. The work

of, for example _, Shaw (1992), Smith (1991), Steele

(1984), Booch (1986), and Flaming (1991), provide a
window to the world of OO technology. Of the numer-

ous references consulted during the course of this re-

search project, especially noteworthy introductory dis-

cussions are given in the work of Ince (1988) as a per-

ceptive commentary on the 'software baroque', and by

the work of Taylor(1991) on the motivation and ratio-
nale behind the object-oriented philosophy. Germaine

to the present focus, however, are two reports. The first

is the report of Holt and Phillips (1991), which deals ex-

plicitly with a Lisp object-based implementation of the

4A trip to any major University bookstore is a stunning example
of just the textbooks that are available.

5To be sure, there are numerous other papers and books.

DIGTEM(DanieIe et. al., 1983) gas turbine engine code.

The second is the work of Cannon(1993) dealing explic-

itly with the construction of C++ compressor objects.

Designs Oriented to System Objects

The system and compressor codes each began with an

analysis of the system to be modelled and a design of
the model to represent the system.

Designs based on object-oriented principles differ from

traditional designs in the way the (perceived) system is
decomposed. A traditional approach identifies the ma-

jor steps in the overall process - a so-called functional

decomposition - while OO approaches involve a system
decomposition into physical entities, or objects _. Such a

view of the system has lead to the notion of OO design
and analysis as a way of 'modeling reality'; a more pre-

cise definition is evasive because the OO approach can be

characterized as a collection of concepts which together

describe a paradigm shift in software development (Tay-

lor, 1991; Winblad et. al., 1990).
Certainly, the object-oriented paradigm invloves con-

cepts which are not difficult to understand in themselves,

but they collectively do imply (require) a new way of

looking at and analyzing complex systems. Booch(1986)

provides a useful outlook:

"Read the specification of the software you

want to build. Underline the verbs if you are

after procedural code, the nouns if you aim for
an object-oriented program."

Again, the intent in departing from traditional methods

goes beyond the task of producing a working simulation
for a specific component - it is moreso an ongoing ef-

fort to provide an infrastructure which inherently has

the capability to rapidly produce a wide range of (new
and existing) system configurations involving multiple

disciplines and varying degrees of fidelity. The "correct"

design will not change the outcome, just the journey.

The Initial Prototype

The first attempt at an object-based view of a gas tur-

bine system was forged through a joint effort between GE

(Lynn, MA) and the NASA Lewis Research Center. This
effort was started in 1989 and contined for approximately

3 years. Although an operational code was developed,

the more lasting impact of the work was the following:

1. The proof-of-concept for an object-oriented pro-

gramming approach in gas turbine simulation.

2. A demonstration of the effectiveness of "shrink-

wrapping" FORTRAN code with an object-oriented

language.

6Generally speaking, object definitions are not restricited ex-
clusively to physical entities; objects can also be, for example ab-
stractions of events.

3. The identification and initial development of

connector-object technology.

Prior to this exercise, there were no known object-

based simulations (in the public domain) and the notion
that an object-based simulation methodology would be
successful was based simply on conjecture. To keep our

results in the public domain as much as possible, a non-

proprietary component level model (CLM) code was se-

lected as the baseline simulation. It is fairly straightfor-

ward in the CLM structure (recall Figure 2) tbat each

component of the system (i.e. fan, compressor, combus-

tor, etc), as well as the generic mixing volumes, can be
represented as an object. Each object has characteristics

(like state variables) and functions (equations for state

variable time derivatives) which are combined together
to create a complete definition of the object. In general,

when surveying a gas turbine, anything that is worth

talking about is probably an object.

Analysis and Design Effort

The result of connecting the components and mixing vol-

umes together with connector groups is a system, tlow-
ever, it is necessary to bring these objects together un-

der an umbrella system object. The system defined by

connecting components and mixing volumes together is

strictly a static description of the system. It is necessary

to define the system object (which contains the compo-
nents, mixing volumes, and connector-groups) in order

to provide the actual simulation methods (steady-state

or transient).

A non-proprietary engine model, DIGTEM (Daniele

et. al., 1983), was selected for decomposition and im-
plementation in the Common Lisp Object System. 7 A

graphical user interface was developed to simplify the

creation and execution of the system.

A class hierarchy, shown in Figure 7, was created to

provide a general framework for simulation model devel-
opment. In principle, the framework allows simulation

models across varying levels of fidelity and disciplines,
and a structures code was identified to be married with

the aerothermo cycle code (structural object definition

was not completed).

Code Structure

The process of transforming the original DIGTEM code

was a gradual effort. This suggests (correctly) one ap-

proach to object-oriented programming is that in which
the code is not written entirely in, for instance, Lisp or

C++. As mentioned earlier, the idea is not to assume

that an object-oriented language is synonymous with the

idea of object-oriented lechnology; although potentially

clumsy, many different languages can be used to imple-

ment an object-based design.

rThis novel use of Lisp resulted in this research sometimes being
referred to as the "Lisp Project"

To reduce development cost of the prototype develop-

ment, it was appropriate to reuse existing FORTRAN
code wherever possible, s Such an approach does require
some rehabilitation of the FORTRAN subroutines. For

instance, all COMMON, DATA, and EQUIVALENCE

statements must be removed if, within a given subrou-

tine, the data could otherwise be passed through the sub-

routine argument list. In the DIGTEM case the "general
cleanup" of the FORTRAN required:

1.

,

A cataloging of all variables in the code to identify

unnecessary variables, dummy variables repeatedly

reused for different purposes (at different points in

the procedural calculation sequence),

The eradication of all COMMON blocks, and mi-

gration of the effected variables to the subroutine

calling argument list, and

3. Identification of modules fundamentally redundant.

The effect of this action was threefold:

1. There was a large increase in the argument lists for
eash subroutine

2. The DIGTEM subroutines are now highly cohesive

and loosely coupled to one another.

3. The communication between the subroutines is min-

imized, only the appropriate arguments are passed.

Also, subroutine names were changed to represent the

actual components of the engine; this reflects a migration

of the code to an object-based system. It is revealing to

provide samples of actual code to reinforce these points.
Sample class definitions are given in Figures 8; the in-

stantiation and coupling of objects is shown in Figure 9.

The FORTRAN-Lisp mixed language approach to the

prototype is manifest in "foreign" object calls, as shown

in Figure 10. Rehabilitation of FORTRAN compressor

argument list - to eliminate COMMON and EQUIV-
ALENCE statements - produces a generic compressor

code, as illustrated in Figure 11.

An interesting feature of the prototype development

is that the conversion was evolutionary. The basic LISP

shell was operational, but a great deal more could be
done to adhere to the religion of object-oriented design.

Although inheritance and reuseability features were por-

trayed in the prototype to a limited extent, nonetheless,

reusability was, in fact, demonstrated. An important

message is that during the implementation of object-

oriented technology for simulation, a paradigm shift does
not mandate a software programming revolution (as long

as the appropriate heirarchy and object-definition road-

map are in place). A derivative of the original graphic

user interface, Figure 12, was, at the time, an impressive

aAgain, the idea was to shrlnk-wrap FORTRAN routines with
LISP

interfaceforthecodeoperation,andthedragingoficons
acrossthescreenwasanenjoyablealternativeto thetra-
ditionalprocedureinvolvingamanualinputdeckbuild.
Thisautomationofrelationshipdefinitiondid,however,
requirea significanteffortin theprototypeeffort. For
complexsystemsimulations,GUIdevelopmentis abso-
lutelyessential,notjust a"funandinteresting"thingto
do.9

Connector Groups

Although the components and mixing volumes are the

fundamental building blocks of the LISP simulation sys-
tem, connector groups are the means by which compo-

nents and mixing volumes communicate with one an-
other. Connectors are represented as objects in the sys-

tem; in the prototype simulation, key connector groups

defined are parameter groups, zoom processors, and feed-
back connectors. Parameter connectors are a means

to communicate individual parameters of a particular

discipline between components and mixing volumes. A

zoom processor connects component models of differing
fidelity. Feedback connector groups permit the creation

of closed-loop systems.
Parameter connectors allow for convenient interdisci-

plinary system definitions. Zoom processors assist in

creating system simulations accommodating a variety of
length and time scales (recall the mismatched fidelity is-

sue discussed earlier). Schoeffier(1994) has extensively

explored the connector concept, and his research de-
scribes the value of connectors as agents of message pass-

ing and scale integration - these concepts are relevant to

the development of zooming and distributed processing

capabilities.

Discussion

Different classes of objects in the LISP code share com-

mon methods and attributes through a mechanism called
inheritance. For example, a variable compressor inherits

most of its definition from the class of compressors. In

turn, compressors are a kind of rotating part and thus

inherit behavior from the class of rotating components.

The goal of this approach is to eliminate redundant code
development and maximize the generality of the model.

With this general approach in mind, it is necessary to

look for a generic starting point to define the system. In

the prototype engine cycle the most general object is a
fixed control volume. From this, components and mix-

ing volumes are established. Components are associated

with real physical entities (compressor, turbine) which

transform energy from one form to another. Unlike mix-

ing volumes, no energy can accumulate within the con-

trol volume. A more detailed description of the generic

mixing volume concept is given in Holt and Phillips

(1991).

9Again, see Windblad(1990) for further discussion

An extensive validation effort went into the original

DIGTEM model, so the relative success of the object-

based implemetation is manifest in the lack of differ-

ence between the original (FORTRAN) and Lisp state-
variable profile predictions. The icon-based graphic

user-interface simplifies system model development; it

is not required of the user to modify any source code

to create simulations of new configurations (really).

An interesting byproduct of this effort was the defi-
nition of a very robust set of subroutines for the de-

scription of the physics (any reminants of the "solver"

were removed from the subroutines). Subsequently, a

DIGTEM-ADPAC zooming exercise (Reed and Afjeh,

1993) was made possible by the LISP effort for subrou-
tine redefinition. An issue in that particular zooming
exercise was the manner in which the CFD result is most

appropriately integrated to match the CLM lumped-

parameter specification (again, the subtle integration
dilemmas presented by Wyss(1993) take on a new im-

portance!).

Figure 13 is a comparison of the baseline FORTRAN

and LISP code results for thrust, HP spool speed, and

LP spool speed variations, driven by scheduled ramp
changes in fuel flow and nozzle area. There is an offset
in the curves associated with the definition of the com-

pressor map data for the original FORTAN code that did
not have an exact translation in the object-based envi-

ronment. The map splits represented a mathematical

convenience for which the FORTRAN code procedures

were designed to accommodate. Object-oriented tech-
nology was pushing the fan to be treated - appropriately

so - as a single component.

The Compressor Object

Demonstration Exercise (CODE)

Two basic observations were the motivation for the

C++ project. First, the zooming concept could not be

tested within the framework of the LISP project, so an

alternate simulation path needed to be in place. Sec-

ond, in comparison to the widespread growth of C++

an object-oriented language, LISP programming was

viewed more of as an AI language which exhibited a
number of object-based characteristics.

Time did not permit a complete exercise in which com-

pressor performance predictions went from Map objects

to CFD, then back to the Map object, but a number
of essential object-based features were established. Re-

call that the zooming concept involved the transparent

replacement of the map-based compressor representa-

tion with a higher fidelity computational fluid dynamics

(CFD) numerical model.

Analysis

Analysis of the problem first determined the expected

function of the program: CODE would serve as a pro-

totype compressor simulation that would demonstrate

theabilityto beeasilymodified,andthereforebeposi-
tionedto addressnewsimulationissues.Forsimplicity,
thecodewouldbebasedon thedataandmapsof the
validatedDIGTEMsteady-statecompressormodel.

Manytechniquesexistforsystemanalysis;onealluded
to earlierwasto writedownastatementof theproblem
andpickingout thenounsto representobjectsandthe
verbsto representassociations.Objectsandassociations
for thecompressorareshownin Figure14;again,these
werebasedontheDIGTEMcomponentlevelmodelphi-
losophy.

Twobasickindsof associationswereusedin CODE.
The1:1and0:Msymbolsreferto theminimumandmax-
imumnumberof objectsthat canexistat theotherend
of theassociation.The1:1associationmeansthat the
compressormust be associated with one and only one up-
stream object (i.e. the fan). The 0:M association means

that the compressor can have many bleeds or not at all.

Design

Whereas the analysis phase of the project determined

what was to be simulated, the design phase determined

how was to be done. During the design phase, the fun-

damental representations and appearance of the compo-

nent objects and the structure of the associations were

determined. In essence, a "blueprint" for the system was
created.

The fundamental representation of a component ob-

ject refers to the way in which the mathematics are de-
scritized (organized) to represent the "real world". Ex-

tensive thought and discussion went into deciding on this

representation. The pitfall in adhering to the CLM for-
mat is, for instance, in the representation of the control

volumes. In the Lisp project, control volumes were re-

quired inbetween all (other) objects. Recalling that fun-
damental tenant of the object-oriented design philosophy
is to model the real world, it became clear this situation

was not satisfactory. The trap was a formulation based

on the procedural mindset. Thus, the object-based con-

trol volume representation shown in Figure 15 illustrates
the decision to eliminate a separate volume (in compar-

ison with Figure 12, for instance).
It is worth remembering that, traditionally ,volume

dynamics were moreoften included in simulations in or-
der to assist in the numerics of the problem, not for

resolution of the gasdynamics. This facet of simulation
went unchecked in the initial Lisp prototype develop-

ment, and thus volume elements had a prominent role

in the system description. Frequently, the volumes used
in the simulation had very little relation to the physical

size of the component, and numerical values for volumes

were often adjusted to ease numerical balancing or allow
an increase in characteristic time.

Treatment of the performance maps also brought into

question the basic architecture of the Lisp experiment.
At first it seemed natural to make the maps as objects

since there were both data and methods to operate on

that data. In fact, an early version of the program

employed map objects, but since the calculated perfor-

mance of the compressor (a map-based one) depends on

the map data, it appeared equally plausible that the data
should be a part of the compressor object, and the meth-

ods to manipulate the data should exist alongside those

for calculating such things as pressure. The latter repre-

sentation was ultimately used. Another approach would

be to make the maps objects, but to encapsulate them

within the compressor object - that is, instantiate them
within the compressor data. The essence of the system

design is contained in the Instance Diagram shown in
Figure 16. For brevity the attributes and methods are
not shown, though the associations that were used are

noted. A simple pointer was used to construct a 1:1 asso-
ciation. An unordered set object containing pointers to

component objects was selected for the 0:M associations.

Simulation Framework

A simulation framework - a hierarchy of classes as shown

in Figure 17 - was used to provide the necessary flexi-

bility and reusability to allow the design to deal with
advanced simulation issues.

The framework was structured such that class gener-

ality was commensurate with heirarchical position. For

instance, the EngineElement class was the most general
and contained all the characterisitcs common to all el-

ements of the engine. One level down, the engine el-
ements were divided into more specific classes of ob-

jects: those that rotate, those that resemble a control
volume, those that have variable geometry, and those

that have a performance map. Adding specificity to the
lower classes in the heirarchy amounted to adding new

methods and attributes to the basic features inherited

from the based class (parent class) to distinguish them
from other classes. For example, the MappedElement
class took the fundamental functionality defined in the

EngineElement class and added to it the ability to load,

print, and interpolate DIGTEM's performance maps.
Note that some methods were superseded (or overrid-

den) by methods in the derived class.
The basic principle behind the Simulation Framework

- a set of classes which define the appearance of ob-

jects but not their behavior - was derived from the
Object Windows Library marketed by Borland Interna-
tional. The Object Windows application framework was

designed to save developers of Microsoft Windows appli-
cations from having to define new methods to handle ba-

sic Windows tasks (like drawing windows on the screen)

each time a new application is developed. Classes in the
framework have the basic functionality needed to build

objects that will run under windows, but they do not
define specific behavior. The developer can derive a new
class from the framework and inherit the functionality,

then add methods to define the application's behavior.

Similarly,the compressor Simulation Framework was

created to avoid having to define new attributes and
methods to establish the basic functionality of new com-

ponent classes when they are created. A new compressor
class, which inherits the attributes and methods that re-

late it to a more general group of compressors, is derived

and given new methods to define its behavior, such as

the ability to calculate a new pressure.
Note the concept of multiple inheritance, deriving

from more than one class base, allows a new class to

take on an appearance resembling two other classes, such

as combining the ControlVolume and RotatingElement

classes to form a Compressor class. The use of multi-

ple inheritance does tend to increase the complexity of
the heirarchy, however, inheritance is central to avoiding

duplicating code. Consider the diagram in Figure 18.

Presumably, the methods necessary for handling map
data would be the same for the two map-based objects.

In panel A, the map routine must be duplicated in each

of the mapped component classes. In panel B, they are

defined once in MapElement and then inherited.
The Simulation Framework improved the reuseability

of the program by decoupling the distinct behavior of

the classes of objects from their basic functionality. Fur-

ther, by separating this functionality into classes, the

appearance of new classes can in effect be assembled as
desired.

Sample Implementation

Figure 19 shows how the MappedCompressor class was
derived from the Simulation Framework. Multiple in-
heritance was used to combine features nedded to define

the basic functionality of the class, such as how to deal

with performance maps. To give the new class its useful

behavior, methods were added to calculate the various

quantities associated with the compressor, such as pres-

sure, temperature, and mass flow. Each of these methods

was designed to calculate only one quantity. A complete
lisiting of the class' methods is given in detail in the

work of Cannon(1993). Some of the methods of the base

class, such as its constructor, had to be explicitly called

from the derived class to ensure proper operation. Fur-

ther, due to multiple inheritance, it was necessary to
declare from which base class a method was derived -

in effect, telling the computer what path to take when

searching for the method. This strategy is not unique

to the compressor and, for instance, can be used for the
construction of turbines.

A glimpse of the concept of encapsulation - hiding at-

tributes and methods from other objects - can be seen
in the fact that most of the calculation methods were

declared "protected." The effect is that only the object

itself can call those methods. The publicly declared Run-

Steady method takes care of calling the calculation meth-

ods in the proper order. This technique controls the ac-

cess to the object and its data by explicity declaring the

interface through which other objects may interact with
the MappedCompressor object. Figure 20 is an example

of C++ code illustrating the implementation of public

and private data.
To create an operation program, the necessary objects

- those defined back in the design phase - were instanti-

ated from the appropriate classes. Instantiation of an ob-

ject involves creation of a new object, and its preparation

for operation within the program by assigning pointers
and set objects to indicate the associations and calling

the initialization methods. Once instantiated, the ob-

jects can be manipulated by the main function to form

a functional program; in the present exercise, the main

function consists of a very simple menu-type user inter-
face.

Although the code is relatively simple in its operation,

it provides a concrete demonstration of how object-based

technology can be used to rapidly construct and inte-

grate new classes of objects into a working simulation.

Discussion

Outside of the obvious technical advance in simulation

practice the OO codes represent, three important lessons

reinforced in the development process are (a) the value

of the business decision to think in terms of disposable

prototypes (versus evolutionary prototypes) during soft-

ware development projects, (b) syntax complexity and
relationship generalizations demand significant attention

to code documentation, and (c) the time scale for intro-

ducing the object-oriented perspective into an organiza-

tion is much larger than the time scale for the learning
curve of the programming language itself. The failure to

advance an awareness of the nature of the prototyping

desired and the technology matriculation don't sound

like compressor technology issues, but if ignored, these

issues can be as difficult to overcome as the modeling of

the physics.

Some surprising aspects of the program concerned
what in hindsight might not seem exceptionally hard to

have predicted. First, the development of an graphic

user interface is an essential feature of the software sys-

tem, not just "a fun and interesting thing" to do. A rea-

sonable interface is transparent to the user - an interface
is often only noticed when it does not work well. Second,

the concept of'zooming" between differing levels of sim-

ulation fidelity (needed if the code is to truly be a bridge
for diverse time and length scales) brings into light the

benefit of standards (geometric and interface). Again,
these issues do not have an evident "fiuiddynamic" look

and feel to them, but represent the technology discipline

overlap one must deal with in attempting to "do things

differently."
Our exploration into this new method of simulating

compression system behavior is not marked by a signifi-

cant difference in predicted component performance (we

hoped it would be the same as before), but moreso by

10

anewpathto get there. In principle,this investment
(timeandmoney)is warrantedonlyif theworkto re-
produceexisting"dustycarddeck"capabilitiesresults
in methodsthat truly havethepotentialto bridgedis-
ciplinesandintegratecodesina seamlessfashionacross
moderncomputingplatforms.

Concluding Remarks

Object-orientedtechnologyhasbeenemployedin this
researchprojectto identifyan appropriatesimulation
frameworkfor gasturbinecomponents.Twoprograms
weredevelopedandwerevalidatedagainstDIGTEM.A
mixedlanguageimplementationof theobject-oriented
designwassucessful.Theconceptof zoomingwasex-
ploredfor theC++ compressor,but issuesassociated
flowfieldintegrationmustbeaddressedbeforethezoom-
ing conceptcanbe implementedwithin the necessary
connectorobjects.

Theobject-orientedapproachto thedynamicengine
representsa majorparadigmshiftforsystemandcom-
ponentsimulation;specificbenefitsare:

1. Object-orientedcodemodularityisamenabletodis-
tributedorparallelprocessinghardwareplatforms,

2. Methodsanddataaremorecloselyrelated,anda
rationalhierarchyexistsforthegasturbinesystem,

3. Strict(andenforceable)codesyntaximprovescode
maintainabilityandreusability.

It isproposedthatthisapproachtocodedevelopment,
whenexecutedonparallel/dlstributedprocessingenvi-
ronments(withtheappropriateoperatingsystems),now
providesarealisticbasisonwhichtoexploresimulations
withsub-systemcomponentmodulesofdifferingfidelity
(i.e.,differentlengthandtimescales).Thisprocessof
'zooming'(entertainingvariouslevelsof fidelitywith a
givencalculationsequence)holdsgreatpromiseforthose
dynamicsimulationswhere,forinstance,performanceat
'out-of-range'designconditionsareunknown,or where
anewcompressormodelbehaviorisof interest'in-situ'.

Theinitial implementationofintercomponentmixing
volumesfortheLISPcodedidnotstrictlyadhereto the
OO philosophy,but thesignificantlessonlearnedwas
theneedfor thecorrectlevelof componentabstraction
duringtheanalysisphase.Mixingvolumesfor tradi-
tionalsimulationderivefromtheconvenienceof proce-
duralmathematics,andwerenotselectedastheresult
ofarigorousOOanalysisanddesigneffort.In contrast,
a morerigorousOOapproachwas taken in the CODE
exercise, for which the fundamental premise for volume

definition emerged in the appropriate light. Further-

more, the disposable viewpoint on the Lisp prototype
allowed formulation errors to be viewed as lessons to be

carried forward; as such, subsequent simulation develop-
ment was not haunted by the need for software patches

and work-arounds.

Although the prototypes mentioned in this work are,

in fact, prototypes, it nonetheless has been instrumental
in successfully demonstrating the salient features of an

object-oriented perspective. Object-oriented design ap-
proaches for gas turbine system simulation do work ...

they are working now. t

References

[1] AGARD, 1994, "Turbomachinery Design Using
CFD," AGARD Lecture Series 195.

[2] Akhter,M.M, J.H.Vincent, D.F.Berg,
and D.S.Bodden, 1989, "Simulation Development

for US/Canada ASTOVL Controls Technology Pro-

gram," 20th Modeling and Simulation Conference,
May 4-5, Pittsburgh, Pennsylvania.

[3] Booch, G., 1986, "Object-Oriented Develop-
ment," IEEE Transactions on Software Engineering,

VoI.SE-12, No.2, pp.211-220.

[4] Cannon, M., 1993, "Compressor Object Demonstra-
tion Exercise," OAI Internship Final Report.

[5] Carta, F., 1989, "Aeroelasticity and Unsteady Aero-
dynamics," Aircraft Propulsion Systems Technology
and Design (G.C.Oates, editor), AIAA Educational

Series. p.390-391,394.

[6] Converse and Griffin, 1984, "Extended Parametric

Representation of Compressor Fans and Turbines,"
NASA CR-174645.

[7] Daniele,C.J., Krosel,S.M. and Szuch,J.R., 1983,
"Digital computer program for generating dynamic

tubofan engine models (DIGTEM)," NASA TM-

83446. (F100).

[8] Denning,P.J., 1990, "Modeling reality," American
Scientist, V.78, pp.495-498.(reference in text is to

p.497)

[9] Drummond,C.K., Follen, G.J, and Putt,C.W., 1992,
"Gas Turbine System: An Object-Orlented Ap-

proach," NASA TM-106044.

[10] Fawke, A.J. and Saravanamuttoo,H.I.H., 1971,
"Digital computer methods for prediction of gas

turbine dynamic response," SAE Technical Paper
710550.

[11] Flaming, B., 1991, Turbo C++, New York: Wiley
and Sons.

[12] Holt,G. and Phillips, R.E., 1991, "Object-oriented

programming in NPSS," Phase II Report for NASA
Contract NAS3-25951.

[13] Ince, D.,1988, Software Development: Fashioning
the Baroque, Oxford University Press.

11

[14]Meyer,B., 1987,"Reusability: The CaseFor
Object-OrientedProgramming,"IEEE Software,
March,pp.50-64.

[15]Modiano,D., Steinthorsson,E., andColella, P.,

1994, "Object-Oriented Development in Compu-
tational Fluid Mechanics," AIAA Third Northern

Ohio Technical Symposium, May 16, Cleveland,
Ohio.

[16] Nordwall, B.D., 1992, "Defense Department Ex-

pects New Strategy for Improving Software to Save
Billions," Aviation Week and Space Technology,

June 22, pp.59-60.

[17] Reed, J.A., and At_eh, A., 1993 "Development of

an Interactive Graphical Aircraft Propulsion Sys-
tem Simulator," AIAA 94-3216.

[18] Schoeffier, R., 1992, "Concepts and Applications

of Object-Oriented Programming," NASA Lewis
Technical Seminar, March 18.

[19] Schoeffier, R., 1994, "An Object-Oriented Ap-
proach to Distributed Simulation," AIAA Third

Northern Ohio Technical Symposium, May 16,

Cleveland, Ohio.

[20] Shaw,P.D., 1988, "Design Methods for Integrated
Control Systems," AFWAL TR-88-2601.

[21] Shaw,R.H., 1992, "Anatomy of a utility: Writing
applications with C++," PC Magazine, February
25, pp.361-370.

[22] Smith,J.T., 1991, C++ For Scientists and Engi-
neers, New York: McGraw-Hill.

[23]

[24]

[25]

[28]

[27]

[2s]

[29]

Steele, G., 1984, Common LISP, Digital Press, Bed-
ford, Massachusetts.

Szuch,J., Krosel,S.M. and Bruton,W.M., 1982, "Au-

tomated Procedure for Developing Hybrid Com-

puter Simulation of Turbofan Engine," NASA TP-
1851.

Tan, C.S., 1994, Inlet distortions on VSTOL Air-

craft, Final Report for NASA Grant NAG3-1567.

Taylor, D.A., 1991, Object-Oriented Technology: A
Managers Guide, Addison Wesley.

Tryfonidis,M., Etchevers,O., Paduano,J.D., Ep-

stein,A.lI, and tIendricks,G. (1994), ASME Gas
Turbine Conference, June.

Winblad, A.L., Edwards, S.D., and King, D.R.
(1990) Object-Oriented Software, Addison Wesley.

Wyss,M.L., Chima, R.V., and Tweedt,D.L., 1993,

"Averaging Techniques for Steady and Unsteady
Calculations of a Transonic Fan Stage," NASA TM-
106231.

SUPERSONIC STALL
FLUTTER

S_CE /

stnBsomc •, uT_

_7 \ h ttrssT_a.rm
\ / \ p ! suPzRso_c

C_OKE''''"r-'_A 'a' !" _\ b
FLtrrrER _ AO" " a \ 100%

I _" 75% SPEED
50%

Figure 1. Compressor map showing flutter boundaries (from Carta, 1989).

12

_ FORMULATE PREPARE

MODEL H DATA
EVALUATE & L._ DOCUMENT

IMPLEMENT H VALIDATE

Figure 2. Simulation development process.

HIGH-
PRESSURE
TLIRBINE-a

I,

%,

I-UTW-PRESSURE
t TIIRBINE
I
I
I
I AUC,MENTOR NOZZLE

,A. Y A

Figure 3. Turbofan flowpath.

-- 1 BYPASS DUCT]

ZWB3 ZWF36 E

C r ,

INLET _ _3 II

UNLNU :
1
!

..................... I HIGH'SPEEDIROTOR...................... !

LOW-SPEED... ROTOR
........ •,o.°,°., •

VENTRAL

ZETAB

mZ_

ZANG79
ZA78

Firgure 4. Propulsion system component level model (CLM).

13

Senild

pit ifneler I

IO_C oNfo4

Pt2-

KA1 j I N/,/_r

Control

Vl_eV4s

Tt2

(b ©
WFAN SMAF

TI?

3,1d

P

I-.--

¢1
=-

J

Fan

Average Ch_ldtcs

Wl qm,ep)

P_2 5 Fin - : I f |

--.. _ i Fan I0WICI - Wcol_

I_) i _-_
APt Vine

J'_ i _I.HIO " Illll pVlD)

I _ tl2.s. (Tin, aHI0. ql)

Nl/,r7

Fin TO_

EnIMllW Rie AH - t {Tt_.Pfl

Fin OO

WOO " WToeal - WCO M

HOO " IITI Prod)

Tt2,SG . F(TIn. &HOD. Ill}

.J

I
I

I
t

Fin Edt AP/P

® C,)

:

,._ I " I I

l I_ .1-.I

li
Pli.tlC

tlvi_'J (q

Figure 5. Typical map-based compressor module

Non-Dimensional ComponentRepresentation

Min Loss
Predctlons

Flow Coeff.

Work Coeff

Loss Coeff

t
Compdatlons I

Actual Inlet Energy
...- Adabatic Ef_.,loncy

-i i "-- Pressure Rati°

[St," _ $tal lVlmgin

-_ { lii-Corrceted Flow

.... °..,, , o.,°. ,....

Figure 6. Backbone concept.

14

ENGINE ELEMENT

CONTROL VOLUME

I CONNECTORS

MIXING-VO LUM E ENTITY

I
MECHANICAL-MIXING VOLUME

I
ROTOR SHAFT

NONSOURCE SOURC_

ROTATOR NONROTATOR

INLET NOZZLE DUCT

)UCT
COMBUSTOR

STORED-MASS DUCT LOW-MASS DUCT

TU/BINE COMPRESSOR

BLEED-COOLED TURBINE VARIABLE COMPRESSOR

AFTERBURNER

Figure 7. Baseline simulation heirarchy.

tte

;;; COMPRESSOR class

(defclass compressor (enthalpy-adding rotator)
((points-efficiency :initarg :points-efficiency

:accessor points-efficiency
:type list)

(design-efficiency :initform (make-it-array 0.0)
:initarg ;design-efficiency
=accessor design-efficiency
:type array)

(efficiency :initform (make-it-array 0.0)
:initarg :efficiency
:accessor efficiency
:type array)

(temperature-correction-coef :initform (make-it-array l.O)
=accessor temperature-correction-coef
:type array)

(temp-interpolation-const =initform (make-it-array 0.0)
:initarg :temp-interpolation-const
:accessor temp-interpolation-const
:type array)

(input-rotational-connector :initform nil
:accessor input-rotational-connector)

)
(:documentation "lne ¢un,pressor class"))

e t P

;;; VARIABLE-COMPRESSOR class

(defclass variable-compressor (variable compressor)
())

;;;
BLEED-C00LED-COMPRESSOR Class

(defclass bleed-cooled-compressor (bleed-cooled compressor)
())

Figure 8. Example code for Compressor Lisp Classes.

15

(add-component 'variable-compressor
:component-neme "LPC"
:points-mass-flow '(193.5 140.0 100.0 193.5 193.5)
:points-efficiency '(0.8270 0.8097 0.7098 0.7803 0.7807)
:points-varlable-stalor-angle '(-1.7004 -24.990 -24.990 -2.5004 -2.5)
d)las-vadable-slalor-angle 0.0
:base-I ed-map "/usr/npss/map-dbase/diglem.lpo.map"
._lriable-porf-map "/usr/npss/rnap-dbase/digtem.vlpo.map')

(add-component 'variable-compressor
:component-name "HPC"
:points-mass-flow '(107.0 72.5 50.0 107.0 107.0)
:points-efficiency '(0.8298 0.8249 0.7582 0.8189 0.8189)
.'points-varlable-stator.angle '(4.0 -4.8 -20.0 4.0 4.0)
:bias-vadable-stalor-angle 4.0
:base-perf-rnap "lusrlnpsslrnap-dbaseldtglem-hpo.map"
:varlable-perf-map "lusrlnpsslmap-dbaseldigtem.vhpc.map')

(connect-engine-elements "LPC-ROTOR" "LPC"
(connect-engine-elements "HPI" "HPT-ROTOR"
(connecl-englne-elemenls "HI T-ROTOR" "HP-SHAFT"
(connect-englne-elements "HP-SHAFT" "HPC-ROTOR"
(connecl-englne-elements "HPC-ROTOR" "HPC"

Figure 9. Example of instantiation and coupling

(defforeign "update-compressor-level2-digtem
:entry-point (¢onvert-to-lang "compressor n

:language :fortran)

=arguments "((simple-array szngle-float (1))
(simple-array single-float (1))
(simple-array szngle-float (1))
(simple-array szngle-float (1))
(simple-array single-float (1))
(simple-array single-float (1))
(simple-array szngle-float (1))
(simple-array single-float (1))
(simple-array single-float (1))

tsimple-srray singls-flol_ (1)) ;
(simple-array single-float (1))
(simple-array single-float)
(simple-array single-float)
(simple-array single-float)
(simple-array fixnum (5))
(simple-array single-float)
(simple-array single-float)
(simple-array single-float)
(simple-array fixnum (5))
(simple-array single-float (1))
(simple-array single-float (1))
(simple-array single-float (1))
(simple-array single-float (1))
(simple-array single-float (1))
(simple-array s;ngle-float (1))
(simple-array s;ngle-floet (1))
(simple-array single-float (1))
(simple-array single-float (1))
(simple-array s;ngle-floit (1)))

:return-type :void
:language :fortran)

UPDATE-COMPRESSOR-LEVELZ-DIGTEM
The foreign function call to DIGTEM subroutine COMPRESSOR (engl/eng2)

pressure-in
design pressure-in
pressure-out
design pressure-out
temperature-in
design temp-in
temperature OUt
rpm spool
design rpm spool

design mass flow in
enthalpy in
base map 1
base-map 2

,, base map 3 -in/output
,, base map q -in/output
,s vat map 1
,, vat map 2
,, vat map 3 -in/output
,, vat map 4 -in/output
_, vet input effect cvgp
_, correction mass flow
,, correction temperature

design efficiency
; temperature interpolation const
• ; mass flow -output
;" efficiency -output

; variable effect -output
; enthalpy-out -output

; energy term -output

Figure 10. Illustration of FORTRAN call from within Lisp.

16

Before

SUBROUTINE ENG2(P3,P22,XNH,T22,CVGP,HA22,ETAHC,CSHIFT)

PARAMETER (NXPZ=ll,NCV2=l_,NS2=2)
COHMON /MPCVG/FX2(NCV2),F2(NXP2,NCV2,NS2),FSV2(NS2),N2(6)

PARAMETER (NXP_=lZ,NCV_=l_,NS_=5)
COMMON /MPCPB/FX_(NCV_),F_(NXP_,NCV_,NS_),FSV_(NS_),N_(6)

COMMON /CONST/ AQL13,AQL6,V15,V3,Vq,Vql,V6,V7,XIH,XIL,BSFVGP,
w BSCVGP,CC(50),BETAHC,BETAB,BETAAB
COMMON/ENG22D/P22D,T22D,HA22D,ETAHCD
COMHON/ENG3D/P3D,T3D,NA3D,H3D,GM3D
COMMON/ENGQD/P_D,T_D,NG4D,HP_D,DHqD,XNHD,NBLHTD,HBLLTD,NBLOVD

After
SUBROUTINE COMPRESSOR(PIN,PIND, POUT,POUTD,TIN,TIND,TOUT,

XSPOOL,XSPOLD,HDOTID,HIN,PMAP1,PMAPZ,PMAP3,MAP_,
W PMAP1V,PMAPZV,PMAPSV,MAP_V,CVGP,HCORR,TCORR,ETACOD, BETACOM,
W HDOTIN,ETACOM,CSHIFT,HOUT,EOUT)

Figure 11. Rehabilitated FORTRAN subroutine.

mixing volume

mixing

combuStor

mixing mixin_

duct flow

Figure 12. Sample prototype GUI for system simulation.

17

12

_ B as_

8 Core Speed, Baseline y-"_

6 __ Proto_ype___ "Baseline

4

3

2 _ Thrust, Lbs (xl000)
'l t I I 1 I I I 1 I I | I I |

0 0.4 0.8 1.2 1.6 2 2.4 2.8

Time, seconds

Figure 13. Comparison of Lisp and baseline calculation results.

FAN _ 1"1

1:1

SUPPLIES

BLEED

1:1

0:M
SUPPLIES

C R 1:1 1:1OMPRESSO

SUPPLIES

1:1

ROTATES
1:1

ROTOR

_COMBUSTOR)

Figure 14. Objects and associations for C + + compressor.

18

eo

in

mblee d

I" I
I_lt,.- P_1_ I out

I I

Tin __ Compressor _ TOU t
I I

m I L_ID-- mm.
=n vn I out

I I

[
mbypass

Figure 15. Fundamental component representations.

C52D Component Object

Set Object

Pointer

(ASSOCIATIONS _ r

/ UPSTREAMI --[--" L

DNSTREAM I

(COMPRESSOR_3_ f BLEEDS

BLEEDHIBLEEDLO

(ROTOR _ ,BLEEDOV

Figure 16. Design instance diagram.

FAN)

COMBUSTOR_

2/_(_ BLEEDHI 3

--_ BLEEDLO 3

"_ BLEEDOV _

_ EngineElement

[
I I I

(RotatingElementl (controlVolumel (VarGeornElement_

Bleed

Figure 17. Simulation framework.

I I
I I
I I

' 1I

Turbine Compressor

] I
MapTurbine MapCompressor

A

(

I I l

', MapElement '0

MapTurbine MapCompressor

B

Figure 18. Multiple inheritance.

19

_nflineElement TM

nsmo

statoFilo

otatinoElemen

opeed

Rotor

speedDerivstive

inertia

1:1 Rotates

rContr!lVolum_

pressln

pressOut

tampln

tempOut
malsln

massOut

j

1: P_i:e_ :SS°f 1

bypassFIow

'_1DCompressoP

o

J

VarGeomElement

varGeomEffect

vorGeomB_as

Desired Result !!

I
rMaooed Elemen_

J

(" M_pp

nal'no

mapFile
p_nte

curves

Figure 19. Map-based compressor class.

2O

/I
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II
II

Map

Base Class: None

Base For: None

Description: Contains the map data and handling routines

ATTRIBUTES

mapFile : name of file containing map data

curves : number of curves on the map

points : number of points on the map

x : 2-D array of abcissa values

y : 2-D array of ordinate values

z : I-D array of values differentiating the curves

MEMBER FUNCTIONS

Map : constructor : loads map data

LoadMap : reads the map values from the .MAP file

PrintMap : prints the map values to the screen

InterpolateMap : performs bivariate interpolation on desired map

~Map : destructor

NOTES

Creation Date: 12/07/92

Last Update: 01/04/93

Compiler: Borland Turbo C++ Version 3.1

SGI UNIX C++ Compiler

// Class Definition:

class Map

{
protected:

char *mapFile;

int curves;

int points;

float x[20] [20] ;

float y[20] [20] ;

float z[20] ;

public:

};

Map(char*,int,int) ;

void LoadMap();

void PrintMap();

void InterpolateMap();

float InterpolateMap(float, float);

~Map () { } ;

// End Class Definition

C + + model is available from:

astovl@heifer.lerc.nasa.gov

Figure 20. C + + code illustrating public and private data.

21

Form Approved

REPORT DOCUMENTATION PAGE OMBNo.0704-0188
Public reportingburden for this collectionof informationis estimated to average 1 hourper response, includingthe time tot reviewinginstructions,searchingexisting data Ioumes,
gatheringand maintainingthe data needed, and completingand reviewingthe collectionof information. Send commentsregardingthis burdenestimateor any other aspect of this
collectionof information, includingsuggestions1or reducingthis burden,to WashingtonHeedquaders Services, Directoratefor InformationOperationsand Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington,VA 22202-4302, end to the Office of Managementand Budget,PaperworkReductionProject(0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

August 1994

4. TITLE AND SUBTITLE

Object-Oriented Technology for Compressor Simulation

6. AUTHOR(S)

C.K. Drummond, G.J. Follen, and M.R. Cannon

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

3. REPORT TYPE AND DATES COVERED

Technical Memorandum

5. FUNDING NUMBERS

WU-505-68-32

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-9089

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASATM-l_723

_AA-9_3_5

11. SUPPLEMENTARY NOTES

Prepared for the 30th Joint Propulsion Conference cosponsored by AIAA, ASME, SAE, and ASEE, Indianapolis, Indiana, June 27-29,
1994. C.K. Drummond and G.J. Follen, NASA Lewis Research Center; M.R. Cannon, Ohio Aerospace Institute, 22800 Cedar Point
Road, Brook Park, Ohio 44142. Responsible person, C.K. Drummond, organization code 2760, (216) 433-3956.

1211. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Categories 07, 02 and 59

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

An object-oriented basis for interdisciplinary compressor simulation can, in principle, overcome several barriers associ-

ated the traditional structured (procedural) development approach. This paper presents the results of a research effort with

the objective to explore the repercussions on design, analysis, and implementation of a compressor model in an object-

oriented (OO) language, and to examine the ability of the OO system design to accommodate computational fluid dynam-

ics (CFD) code for compressor performance prediction. Three fundamental results are that: 1. The selection of the object-

oriented language is not the central issue; enhanced (interdisciplinary) analysis capability derives from a broader focus on

object-oriented technology; 2. Object-oriented designs will produce more effective and reusable computer programs when

the technology is applied to issues involving complex system inter-relationships (more so than when addressing the

complex physics of an isolated discipline); and 3. The concept of disposable prototypes is effective for exploratory

research programs, but this requires organizations to have a commensurate long-term perspective. This work also sug-
gests that interdisciplinary simulation can be effectively accomplished (over several levels of fidelity) with a mixed-

language treatment (i.e., FORTRAN-C++), reinforcing the notion the OO technology implementation into simulations is a

"journey" in which the syntax can - by design - continuously evolve.

14. SUBJECT TERMS

Object oriented programming; Simulation; Compressors

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

23

16. PRICE CODE

A03

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

