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EXECUTIVE SUMMARY

J.L. Volakis, L.C. Kempel, R.J. Sliva, H. Wang and A. Woo

Project Goal

The goal of this project was to develop analysis codes for computing
the scattering and radiation of antennas on cylindrically and doubly
conformal platforms. Available techniques and codes can only treat
antennas on planar surfaces whereas in most cases (missile and
aircraft platforms), the printed antennas are situated in cylindrical of
doubly curved surfaces. Modern vehicle platforms are also composite
and/or coated with dielectric materials and this presents an
additional challege in the analysis.

Progress Summary

Because of our previous experience in finite element and boundary
integral methods, a hybrid finite element-boundary integral(FE-BI)
method was employed for the analysis of patch antennas on planar
and cylindrical platforms. The main challenge in this implementation
was the efficient evaluation of the cylinder's Green's function in a
form useful for the FE-Bl method. After 4 months of preparatory
work, both the FE-BI formulation and the Green's function evaluation
were completed and programmed in a rather general purpose
computer code. This is the first code of its kind for the analysis of
antennas on cylindrical platforms and because of its future utility,
several user-oriented features were included with it. The code is
referred to as FEMA-CYL (Finite Element Method for Antennas on
Cylinders) and has already been delivered to NASA and Navy users
along with a test case and users manual. To validate the code,
measurements were performed by J. Silva at the Naval Weapons
Center, China Lake and these overlaid the calculations.

Over the last few months of the project period, we concentrated on
the extension of the FEMA-CYL code to antennas on coated and
possibly doubly conformal platforms. Such a requirement precludes
use of the boundary integral method for terminating the mesh
because integral equations are inefficient for modeling doubly
conformal surfaces. Consequently, we examined a class of new
absorbing boundary conditions(ABCs) for terminating the finite
element mesh. These ABCs proved quite accurate for antenna



applications and their performance and capability is described in the
first section of this final report. Also, an earlier report describes a
comparison of the computational advantages associated with ABC and
boundary mesh terminations(see U-M Radiation Laboratory report
031173-1-T). The implementation of the finite element-ABC
formulation resulted in the code FEMA-CYLA and we are currently
preparing a users manual for this code. Note that this code is capable
of analyzing antennas embedded in coated platforms and results are
included at least for one of those situations. In addtion, we began the
development of a finite element formulation for modeling non-
rectangular printed antennas on doubly conformal platforms. This
formulation employs prismatic elements which are most suitable for
coupling with triangular surface meshes in generating the volume
mesh. For typical patch antennas we anticipate that the mesh
generation will be done without a need to use a external meshing
facilities.

A total of three reports and 4 journal papers were published as a
result of this consortium agreement:

REPORTS

"A comparative study of an ABC and an artificial absorber for
truncating fintie element meshes” Univ. of Michigan Radiation
Laboratory Technical Report 031173-1-T

This report compares three different techniques for
terminating the finite element mesh in modeling conformal
patch antennas and slot arrays. 15pp.

"Radiation and scattering from cylindrically conformal printed
antennas” Univ. of Michigan Radiation Laboratory Technical Report
031173-2-T, 166pp.

This is an extensive report desribing the theory and
capabilities of the FEMA-CYL code. Many results for scattering
and radiation by cylindrically conformal antennas are included
along with mesurements.

"Radiation and scattering from antennas in coated conformal
platforms” Univ. of Michigan Radiation Laboratory Technical Report
031173-3-T (this report)



This is the final report and contains several sections which
highlight the research activity over the length of the
project/consortium agreement. The report contains the
following sections:

1. FE-ABC formulation for patch antennas on a coated circular
cylinder--describes the formulation of the FEMA-CYLA code.

2. Radiation by cavity-backed antennas on a circular cylinder--
describes the performance of the FEMA-CYL code for antenna
radiation analysis and includes the measured results collected
by J. Silva at the Naval Weapons Center, China Lake, CA. This
section has been submitted as a paper to /EE Proceedings-Pt. H
The paper is co-authored with J.Silva

3. Scattering by cavity-backed antennas on a circular cylinder-
-describes the performance of the FEMA-CYL code for
computing antenna scattering. This section is a reprint of the
journal paper which appeared in IEEE Trans. Antennas &
Propagat., Vol. 42, Sept. 1994, pp. 1268-1279.

4, A Hybrid finite element-boundary integral method for the
analysis of cavity-backed antennas of arbitrary shape--
describes the basics of the finite element-boundary integral
formulation for modeling conformal antennas. This section is a
reprint of the journal paper which appeared in /[EEE Trans.
Antennas & Propagat. Vol. 42, Sept. 1994, pp. 1233-1242. It is
co-authored with A. Woo (NASA-Ames) and H. Wang(Naval
Weapons Center)

Journal Papers

J. Gong, J.L. Volakis, A.C. Woo and H.T. G. Wang, "A hybrid finite
element method for the analysis of cavity-backed antennas of
arbitrary shape,” IEEE Trans Antennas Propagat., vol. 42, Sept.
1994, pp. 1233-1242.

L.C. Kempel and J. L. Volakis, "Scattering by cavity-backed
antennas on a circular cylinder," IEEE Trans. Antennas &
Propagat., Vol. 42, Sept. 1994, pp. 1268-1279.



L.C. Kempel, J.L., Volakis and J. Silva, "Radiation by cavity-
backed antennas on a circular cylinder,” submitted for
publication /EE Proceedings, Pt. H.

T. Ozdemir and J.L. Volakis, "A comparative study of an ABC
and an artificial absorber for truncating finite element meshes,”
Radio Science, to appear in 1995



FE-ABC FORMULATION FOR PATCH ANTENNAS ON A CIRCULAR
CYLINDER
Leo C. Kempel and John L. Volakis
The University of Michigan
Radiation Laboratory
1301 Beal Ave.
Ann Arbor, MI 48109-2122

Abstract

The finite element-boundary integral (FE-BI) method has been shown to
accurately model the scattering and radiation of cavity-backed patch anten-
nas. Unfortunately, extension of this rigorous technique to coated or doubly
curved platforms is cumbersome and inefficient. An alternative approximate
approach is to employ an absorbing boundary condition for terminating the
finite element mesh thus avoiding use of a Green’s function. In this report,
a FE-ABC method is used to calculate the radar cross section (RCS) and
radiation pattern of a cavity-backed patch antenna which is recessed within
a metallic surface. It is shown that this approach is accurate for RCS and
antenna pattern calculations with an ABC surface displaced as little as 0.3X
from the cavity aperture. These patch antennas may have a dielectric overlay
which may also be modelled with this technique.

1 Introduction

Recently, a Finite Element-Boundary Integral (FE-BI) formulation was pro-
posed by the authors [1] for modeling the scattering and radiation of cavity-
backed patch antennas recessed in a cylindrical platform. The use of the
boundary integral for terminating the FE mesh renders the FE-BI method
numerically exact but leads to a partially full and partially sparse matrix. To
obtain a fully sparse system, we must use approximate local boundary con-
ditions for terminating the FE mesh and this is usually done by employing
absorbing boundary conditions (ABCs).

In this report, a new conformal ABC recently introduced by Chatterjee
and Volakis [2] will be used for scattering and radiation paramcter caleu-
lations in connection with cavity-backed antenna elements on a cylindrical



platform. This second order conformal ABC allows the closure surface to
be brought quite close to the cavity aperture. As a result, the required de-
grees of freedom are significantly less than the number typically used with
traditional spherical surface/boundary condition such as the one proposed
by Peterson (3] or the one introduced by Webb and Kanellopoulos [4]. The
accuracy of this FE-ABC method will be established along with guidelines
for the distance between the structure and the ABC boundary. In addition,
this new FE-ABC approach will be used to compute the radiation pattern
and input impedance of conformal patch antennas with a dielectric overlay.

2 Formulation

Consider the computational domain shown in Figure 1. There are two volume

Figure 1: Typical coated cavity-backed patch antenna with ABC mesh ter-
mination.

regions: an exterior region, V', which includes any radome overlay and an
interior region, V/. Both regions may be inhomogeneous and are separated
by the aperture surface, S°7, and the surface metallization surface, S°™ both
of which lie on the surface of the metallic cylinder (p = a). Thus, the
exterior region is defined by p > a while the interior region has p < a.
The computational domain is bounded by the union of the metallic surface,
ST = $9 4 57 where S™ is the metallic walls of the cavity and the

ABC surface, S,



Within the computational volume, the total electric fields may be written

E@ = E'")+EY() FeV!
= E'(r) Fe vl (1)

where E%(7) = E'(f) + E7(F) as before. The total magnetic fields are
likewise written

HF = H(@+HY(F) 7eV!
= H"(7) revi (2)

where HV(7) = H'(7) + H' (7). The boundary conditions are readily written
in terms of the electric and magnetic fields. Within the cavity, the tangential
electric field vanishes on the metallic walls

Aax ENF) = 0 Fes™ (3)
while on the aperture, the total tangential fields are continuous
A x EI(7) = ax E'®) 7 e S
ax (7)) = ax HI@F —ax HY() 7e s (4)
On metallic surfaces, all tangential electric fields vanish, i.e.
ix EWF) = axENf) = axENF) =0 Fesm (5)
while & x E%(7) also vanishes over the aperture
Ax EV(@F) = 0 7e S (6)

since it contains both the incident and reflected fields. Thus, the only non-
zero electric fields on the surface of the metallic cylinder correspond to the
unknown fields within each region which are continuous across the surface
aperture as implied by (4).

The FE equations may be developed by considering the inhomogeneous
vector wave equation.  Einploying the wethod of weighted residuals and



Green’s first vector identity, the weak form of the vector wave equation

~/VXEw,z)-va(mz)

(p, ¢, 2) papagdz
—k2/ &(p,6,2)E(p, 6,2) - Wilp, 8, 2)pdpds dz
~ikoZy § i(p,6,2) % H(p,6,2) Wilp,6,2)dS = [ (1)

where 72(p, ¢, z) indicates the outward pointing normal of the element surface
associated with the zth unknown, S; is the surface area of that element, and
ﬁ(p, #, z) is the total magnetic field. It can be shown that the surface integral
of (7) vanishes for all elements which do not border the cavity aperture.
Furthermore, their non-zero contribution is limited to the portion of their
surface which coincides with the aperture. The interior source functional,
fint is once again given by

int M'(p,d,z) : o =
i = - ko 0o y @, 2 ) t y @y 2 d d
fi /{ Lrp,qs, )]H Z,J'(p, ¢ )} Wi(p, ¢,2)pdpdé d8)

where M* and J* are impressed currents within the cavity.
A domain decomposition is accomplished by substituting the total field

relationships (1) and (2) into (7) and after some manipulation we get the
FE-ABC equation

Gl V. L

/ |:VXE VXW’—kZCTEI'VV.' dV+

v Hr

I

/ V x EY.V % W k2 EII m dV +

v Hr
/ (fszxE‘")-W,-dSzf-‘"‘+j%/ (b x HY) - W, dS —

S?bc ¢ urc SI_GP

kj/ [l——e,}ﬁw’-W;dV—jkoZo[i— 1]/ ﬁ-[WixﬁW’] ds

and Br Hri Hre S!d

(9)

where S denotes integration of the aperture associated with the :** un-
known, S7¢ is associated with integration over the bounding surface of any
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dielectric elements in the exterior region, u,, is the relative permeability of
the elements interior to S/¢ whereas u,. is the permeability exterior to that
surface.

This set of FE-ABC equations may be written as a linear system of equa-

tions
[Afc—abc] EE;W} - {ffrt(abC)} (10)

E;jnz} {f;‘nt}

where the FE matrix [Aﬂ__”_J] may be written as a sum of the FE matrix

used in the FE-BI formulation [1] and a second term attributed to the ABC
surface

[Ag-w] = 1A+ [aY] (11)

The new FE-ABC equation (9) is comparable to (7) except that the lat-
ter utilizes a total field formulation throughout the computational domain.
However, previously we utilized an integral expression for the total magnetic
field across the aperture which resulted in the FE-BI equation used in [1].
Such an integral expression provides an exact relationship between the total
tangential electric and magnetic fields over the aperture surface which also
formed the computational domain boundary. Alternatively, we may employ
an approximate relationship between these two fields with the goal of re-
taining the sparsity of the resulting linear system. Additionally, as shown in
(9), this FE-ABC formulation may be used for coated as well as uncoated

geometries. In the next section, we will develop an approximate relationship
suitable for mesh closure.

3 Conformal ABCs

Traditional three-dimensional vector ABCs [3, 4] require a spherical outer
boundary which results in an excessive number of unknowns. New conformal
ABCs have recently been proposed by Chatterjee and Volakis [2] which have
an outer boundary that follows the contour of the enclosed geometry resulting
in a minimal number of unknowns. In this section, the specific expressions
required by this new ABC for a cylindrical-rectangular box boundary will be
derived. A definition of ABC order will be given and subsequently the first
and second-order ABC expressions will be presented.



For the purposes of discussion, we define a secondary field as the field
which is a consequence of equivalent currents that are supported by some pri-
mary source which is either external or internal to the computational domain.
Thus for scattering problems, the scattered field is the secondary field while
the incident and reflected fields are considered primary fields. Likewise, for a
radiation problem, the radiated field is the secondary field whereas the source
field due to an impressed current is the primary field. In (9), we recognize
that an ABC must supply a relationship between the tangential components
of magnetic and electric secondary fields on the absorbing boundary, S2b.

The secondary field may be expressed as a Wilcox expansion

ekon  POEs(ty,t))

1
471\/17 Pl—l:lolo Z uP

p=0

E’(n,tl,tg) (12)

where u = /R Ry, R; = p; + n and p; is a principal radius of curvature.
In this form, the curvature of the non-spherical wavefront is explicitly used.
The point of observation is given in Dupin coordinates as

r = nfz+fo(t1,t2) (13)

where 7 is the unit normal and &,(t;,t;) denotes the surface of the reference
phase front and therefore, ¢, and t; denote tangential coordinates on that sur-
face. Absorbing boundary conditions annihilate outward propagating waves
up to a certain order. A zeroth-order (P = 0) ABC represents the usual
Sommerfeld radiation condition. A first-order ABC (P = 1) annihilates all
fields with up to a u~! dependency while all higher order fields are reflected
back into the computational domain. For a cylindrical surface, u = ,/p, thus
the zeroth-order ABC is simply the geometrical optics spread factor while
the first order ABC annihilates fields up to O(p~>). Evidently, as the ABC
order increases, the reflected fields have an increasingly higher attenuation
factor and hence the boundary may be placed closer to the geometry without
inducing erroneous reflections.

We present the second order conformal ABCs attributed to Chatterjee
and Volakis[2]. In particular, the appropriate expressions for a cylindrical-
rectangular box boundary will be given.

Absorbing boundary conditions provide a local relationship between the
electric field and its curl which may be approximated as

AxVxE = @ E+B8-Vx[a(n-VxE)+5 V. (r-E)(14)

\0



where V, denotes the tangential surface gradient operator. Unfortunately.
use of (14) would result in an asymmetric system .A"U] due to the last
term which possesses only one differential operator. An asymmetric system
requires an iterative solver which utilizes two vector-matrix products such
as the conjugate gradient squared (CSG) solver such as the one presented
by [5]. A symmetric system requires only one matrix-vector product if the
BiCG solver is used. Additionally, for symmetric systems, only the upper or
lower triangle of the matrix need be computed and stored.
The gradient in (14) may be approximated by

V. (V-E) = jkV. (- E)+0(\77) (15)

With both a gradient and a divergence operator present, one operator can
be transferred to the test vector while the other may remain with the source
vector. Hence, the resulting matrix may be symmetric since both the test
and source fields are differentiated. With (15), (14) may be written

AxVxE = @ E+B-Vx[a(h VxE)|+7-V.(V-E;)(16)

For the basis vectors used in [1], V - Ef is always zero on S°° and hence
the third term of (16) will not contribute to this form of the ABC. For
surfaces with a common constant curvature for both tangential directions
on a surface, this new vector ABC (16) will lead to a symmetric FE system
[A"U]. However, if the principal curvatures on a surface are unequal, the

system will be asymmetric. For either (14) or (16), the three coefficient dyads
are given by
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2 1 ) K “a
Z{(D—An—?n;) [Jko+3nm— K,_g_2m] b 1} (17)

where k£, = K1ky. Ak = Ky — kp and D = jko + 5k, — 59— In the case of
(16), ¥ must be divided by jk, due to (15). ‘
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It is advantageous to consider the second-order ABC for singly curved and
flat surfaces separately. For a singly curved surface, the unit normal direction
and curvature parameters are n = p, K; = —% and k; = 0 as before. After
some manipulation, we find that (17) becomes

= 2p 2 2p 1 : Ax
= — Dk, — | =+ jk,D| 22
“ j2kop+1[p * (J ¥ )}"’“Jzkop—rs[p?“ }
= 2p "n 20 ..
b= 1%t ks
7 = [66+ 3] (18)
where D = jk, — 5p Note that ﬁ is not symmetric unless p — oo

For the second-order ABC, it is advantageous to segment the matrix entry
[.A"U] into three parts. After some vector manipulation, these contributions
are given by

e = [ Wi [ ds
10 = [ o x W] 29 x (B W)] ds
J@abe /quc [7 Vt( )] (lg)

where 1(3)2%¢ is only used for the original, asymmetric ABC (14). Closed form
expressions for these three integrals may be readily found by utilizing the vec-
tor basis functions given in [1]. As mentioned previously, since the principal
radii of curvature are not identical for a cylindrically curved surface, I(?)2%
will not be symmetric. However, these terms are asymptotically identical as
the radius of the ABC surface becomes large since the surface will then be
approximately planar. A symmetric ABC may be obtained by dividing both
the numerator and the denominator of I(¥%¢ by the ABC radius, p, which
results in a symmetric operator.

4 Radiation Integral

Not surprisingly, since the FE-ABC method is being proposed for modelling
more complex geometries than the FE-BI method presented previously by the

12



authors 1], some support task such as computation of the far-zone radiated
fields must become necessarily more complex.

The radiation integral for computing the far-zone radiated fields previ-
ously was confined to the surface of the cylinder for uncoated antennas. This
field was solely due to radiating magnetic currents in the aperture of the
cavity due to the use of a second kind dyadic Green’s function (see [1] for
details). However, when a overlay or a protruding element is present, the
radiation integral must contain such material. Thus, for this work, the ra-
diation integration surface is deformed to contain any material above the
cavity. To do so, both electric and magnetic currents over this blister must
be used along with both the first and second kind dyadic Green’s functions.

5 Results

The aforementioned FE-ABC has been implemented and in this section, it
will be used to examine the radiation and input impedance properties of con-
formal patch antennas with dielectric overlays. However, the formulation’s
accuracy must first be established via comparison with the FE-BI method
presented previously by the authors [1].

Consider a 2 cm x 3 cm patch antenna residing atop a 5 cm x 6 cm X
0.07478 cm dielectric filled cavity. This substrate has a dielectric constant
of 2.17 and the cylinder radius is 15.27887 cm. The patch antenna is fed as
to excite a pure axial mode (¢, = 0°,z, = —0.375 cm). Figure 2 compares
the FE-ABC and FE-BI formulations. In this, data was taken from 3.0 GHz
to 3.2 GHz every 5 MHz. The agreement is quite good and we find that the
resonant frequency is 3.11 GHz. At this frequency, the H-plane radiation
pattern is shown in figure 3.

The previous example involved a single antenna element placed within
a discrete cavity with a minimal ABC surface. Since no superstrate was
present, the exterior region of the computational domain was limited to the
immediate vicinity of the cavity. However, if a dielectric coating is used, a
continuous wraparound exterior region is desirable. In this way, the physics
involved in substrate mode guided waves is included explicitly in the finite
element analysis. The next example utilizes such a computational domain
where the exterior region extends a full 360° around the cylinder while its
axial length 1s limited. Furthermore, the discrete cavity which contains the

13



antenna element is minimized.

To consider the effect of a dielectric overlay, Ke and Wong [6] examined
the antenna used by Dahele et. al. in [7] which is 3 cm x 4 cm and fed to
excite a pure axial mode (¢, = 0°,2, = 1.0 cm). The substrate is 0.0795 cm
thick with a dielectric constant of 2.32. Figure 4 compares the H-plane pat-
tern of this antenna for uncoated and with a 0.3975 cm dielectric cover which
is identical in material parameters with the substrate. In this, each antenna
was excited at their resonant frequencies, 3.0 GHz and 2.91 GHz, respectively.
Note that, as one might expect, there is no change between the antenna pat-
tern associated with the coated and uncoated antennas. The agreement with
the corresponding E-plane pattern is shown in figure 5. However, a slight
beam broadening is observed rather than narrowing as predicted by Ke and
Wong [6]. The differences may likely be due to the finite cavity aperture in
our calculations whereas in [6] the coating and substrate were assumed to
cover the entire cylinder. Further communication will be conducted with the
authors of [6] to clear up this area of disagreement.

In the previous example, the resonance frequency was seen to shift due
to the presence of the dielectric overlay. Such a shift is illustrated in figure
6 which shows the input resistance of 2 2 cm X 3 cm patch antenna (see
figure 2) with different overlay thickness. In this example, the substrate and
superstrate are identical material (e, = 2.17).

6 Comments

In this report, we have presented a new application for the FE-ABC method
which has been developed at the Radiation Laboratory: radiation analysis
of conformal antennas mounted on an infinite cylinder. We have sketched
the formulation and presented some initial validation results. Currently, this
new FE-ABC formulation has matched data generated by a FE-BI method
for uncoated patch antennas. We have presented some preliminary data for
patch antennas with dielectric overlays and are currently seeking appropriate
measured data. In this report, only axial polarization was considered. Cir-
cumferential polarization should also be studied with emphasis on dielectric
overlay effects.

Initial results are promising and correspond to exnectation. It should be
stressed that this new FE-ABC approach is considerably more flexible than

14



previously developed FE-BI methods since it permits material or protruding
elements in the exterior region of the cylinder. We will explore the utility
of this approach for inhomogeneous coatings, complex protruding antennas,
etc. in future reports.
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Figure 2: Input impedance for the axially polarized patch antenna which is
2cm X 3cminabcm X 6 cm x 0.07874 cm cavity. The frequency range is
3.0 to 3.2 GHz with data taken every 5 MHz.
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Figure 3: Radiation pattern for a patch antenna whichis2 cm x 3 cmin a
5 cm x 6 cm x 0.07874 cm cavity operated at 3.11 GHz.
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The dielectric constant of the overlay and the substrate is 2.32 and the feed
point is (¢, = 0°.z, = 1.0 cm).
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Abstract

Conformal antenna arrays are popular for deployment on curved
aircraft, spacecraft and land vehicle platforms due to their inherent
low weight, cost and drag properties. However, to date there has
been a dearth of rigorous analytical and numerical solutions to aid the
designer. In fact, it has been common practice to use limited mea-
surements,;and planar approximations in designing such non-planar
antennas. In this paper, we extend the finite element-boundary inte-
gral method to radiation by cavity-backed structures recessed in an
infinite, metallic cylinder. The accuracy of the developed FE-BI code
for a microstrip patch arrays is established by comparison with mea-
surements. The formulation is then used to investigate the effect that
the finite aperture has on the radiation pattern. In addition, the ef-
fect of curvature on resonant frequency, gain, input impedance and
pattern shape is examined.
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1 Introduction

Modern aircraft and missile designs seek to utilize conformal antenna arrays
rather than conventional protruding antennas due to their low weight. low
drag, low cost and flexibility. Although most useful aircraft surfaces possess
some curvature, the vast majority of available design information assumes
planar elements. Indeed, the literature is rich with approximate [1], nu-
merical (2] and experimental [3] design and characterization data for planar
structures. The most common antenna element is a microstrip patch printed
on a dielectric coated groundplane. Dielectric coated cylinders have also been
investigated using approximate [4] and numerical [5] approaches.

Often, it is desirable to enclose each radiating element within a metallic
cavity to suppress parasitic substrate coupling [6]. Approximate methods,
such as the cavity model (1], do not include finite aperture effects since the
radiating currents are restricted to the immediate vicinity of the patch. Most
integral equation formulations such as the one proposed by Pozar and Voda
[2] utilize a grounded slab Green’s function in their construction which pre-
cludes practical finite aperture simulations. Recently, Aberle [6] proposed an
integral equation formulation which partitions the geometry into an exterior
half space and an interior homogeneously filled cavity. This approach deter-
mines the electric field attributed to the patch and feed currents and the two
regions are coupled by enforcing field continuity across the finite aperture.
Unfortunately, as with all integral formulations, the linear system requires
O(N?) storage and considerable computational effort due the fully populated
system and the slowly converging cavity Green’s function. The simulation
of large finite cavity-backed arrays using such an approach is therefore not
practical.

An alternative formulation, utilizing the Finite Element-Boundary Inte-
gral (FE-BI) method, was proposed by Jin and Volakis {7]. This approach is
also suitable for inhomogeneously filled cavity-backed antennas recessed in a
metallic ground plane. As with all partial differential equation formulations,
this approach is associated with a highly sparse system which requires only
O(N) storage. Additionally, when coupled with a Conjugate or Biconjugate
Gradient-Fast Fourier Transform (BiCG-FFT) solver, the computational bur-
den is significantly reduced. The FE-BI method has been successfully used
for scattering and antenna performance analysis involving planar platforms.

A similar FE-BI method was proposed by the authors [8] for scattering
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by cvlindrical-rectangular and wraparound patch antennas. New divergence
free. high fidelity edge-based elements were presented along with an efficient
solution strategy which exploited an asymptotic evaluation of the appropriate
dyadic Green's function as well as a BiCG-FFT solver. The resulting com-
puter code was shown to accurately compute the scattering by both planar
and highly curved elements. This paper investigates the accuracy and utility
of such a FE-BI formulation for antenna performance analysis. The radiation
pattern of a single element as well as that of a wraparound array is compared
with measured results. The importance of modelling finite apertures is exam-
ined and in addition, the effect that curvature has on the resonant frequency,
gain, driving point impedance and pattern shape is quantified.

2 Formulation

In this section, the FE-BI formulation appropriate for radiation analysis is
developed for cavity-backed antennas recessed in an infinite metallic cylinder
(see figure 1). As usual, the finite element formulation permits substantial
modeling flexibility, including cavity inhomogeneities, lumped loads and mi-
crostrip feeding lines.

The FE-BI formulation begins with the weak form of the -vector wave
equation followed by specification of appropriate vector shape functions and
dyadic Green’s function. The resulting FE-BI equations are then used to
solve for the total electric fields within the cavity and on the aperture (for
further details, see Volakis et al. [9]). The weak form of the wave equation
can be written as

1 [V xWip,,2) -V x Wilp, 6,2)
ZJ:EJ{-/-[ Mr(P,¢,Z)

~k2e.(p, &, 2)W;(p, 6, 2) - Wilp, ¢, z)]pdp dé dz
+koa6,(N80) [ [ [Wila,6,2)- pla, 6,2)

Geala,8,2) x p(a,,7) - Wia, ¢, 2)] d¢ dz’d¢dz} ="

In this, W; are vector basis functions with support limited to the finite el-
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Figure 1: Illustration of a typical cavity-backed antenna situated on a metal-

lic cylinder and the associated coordinate system.
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ement volume V; which is associated with the i** degree of freedom. and in
a similar fashion. S, and S; represent aperture surfaces associated with the
i** and j'* degrees of freedom, respectively. The appropriate dyadic Green's
function is denoted by G.; and it has convolutional (0 = @ — ¢, =z — )
form when evaluated on the surface of the cylinder, p = a. The unprimed
coordinates represent the test point while the primed ones denote the source
point and (p, ¢, z) are the usual cylindrical coordinates. The free-space prop-
agation constant is given by ko = i—z, where Ag is the free-space wavelength.
The cavity is filled with an inhomogeneous material having relative consti-
tutive properties ¢, and u.. The function 8,(1)d.(7) identifies when both
the source and test unknowns belong to the aperture and accordingly con-
tribute to the boundary integral sub-matrix. The FE-BI equation (1) may
be rewritten in matrix form as

A {lgﬁ 1% }51} - )

where the entries of [.A] are due to the FE portion of the formulation and [G]
is the boundary integral sub-matrix. In (2), E5* and E;™ denote degrees of
freedom associated with the aperture and interior fields, respectively. In (2),
fint represents the internal excitation and for this paper, a radially oriented
probe feed is considered.

The vector elements, dyadic Green’s function evaluation, matrices [A]
and [§] and the far-zone field formulae are given in (8] and are therefore not
repeated here. The interior source function is given by

- Mﬁ“ s Py . Tin 1
f,-mt = —A {V X [TT(’ET)TT] +.7koZoJ t(Pa¢72)} ’ W,‘(p,d),z)pdpd(f)dz
(3)

where J™ and M are the impressed electric or magnetic current densities.
For a radially (5) directed probe feed, the impressed current located at (¢,, z,)
is given by

ﬁnt = ,3106(¢ - ¢a) (Z - za)

p (4)
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and (3) becomes

ot = _jkoZoloZ:/;: In (Z—:) (e =0.) (24 - 2]

if the edge-based elements introduced in (8] are used.

Having computed the finite element and boundary integral matrices as
well as the internal excitation, the BiCG method is used to solve for the
unknown electric fields throughout the computation domain. Given that the
FE matrix is highly sparse and symmetric, the BiCG method is a well-suited
choice among iterative solvers. It is also important to note that the matrix-
vector product associated with the boundary integral can be performed using
FFTs resulting in a reduced storage and computational burden. The com-
puted electric field within and on the aperture of the cavity may now be used
to compute antenna parameters such as the gain and the input impedance.

The radiated magnetic field is computed by integrating the aperture fields
with the far-zone dyadic Green'’s function given in [8]

H(r.6,6) = jYokoa [Cualr,0,6i0,6,2)
#(a,8,2) x E(a,,)| d¢' dz' (6)

where (r,0,¢) indicates the observation point in spherical coordinates. The
far-zone electric field may be obtained from (6) in the usual manner. The
radiation pattern, directive gain and other useful antenna parameters may
be calculated using (6). For example, the antenna gain may be computed
from the far-zone electric field as

Gap(6,4) = 10log, [4W|Ef(o, ¢)|2] +10log,, [ (7)

7l
ZOIZin
where R;, is the input resistance which is given below and ET is the radiated
electric field as r — oo.

In addition to the antenna gain, designers are concerned with the in-
put impedance of an antenna for feed line matching purposes. The input
impedance is comprised of two contributions [10]

Zin = Zp+2p (8)
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where the first term is the probe’s self-impedance and the second term is
the contribution due to the presence of the patch. The probe self-impedance
accounts for the finite radius of the probe and hence can be omitted when a
zero-thickness probe is assumed. Accordingly, the driving point impedance
may be found by calculating the voltage between the patch and the cavity
base

1 ~ - ‘
Zin=2p = ./v E(p,¢,2) J™(p, 0, z)pdpdddz (Y)

I
where the impressed current is given by (4), V; refers to the volume of the
finite element which contains the probe-feed, E(p, &, z) is the interior field
and I, is the constant current impressed upon the probe. Substituting (4)
into (9), for the cylindrical edge elements presented in [8], it follows that the
input impedance if given by

4
Zin = Y Z, (10)
=1

where

; E(:) 3ip} - N
z, = -E0L(2) (6,8 m-n]

is the contribution due to one of the four radial edges of the element con-
taining the probe.

3 Results

Two types of antenna elements are considered in this paper and they are
shown in figure 2 where each patch is aa® x b in size with a denoting the
radius of the cylinder. Although the FE-BI method permits mixed-mode
feeding, for this paper it is convenient to consider only the two lowest order
non-hybrid modes. A patch whose radiating side walls are axially oriented
is termed an axially polarized patch and is fed at ¢, = §. Circumferentially
(or azimuthally) polarized patches have radiating walls forming constant z-
surfaces and are typically fed at 2, = % The 6 = 90° cut is the E-plane
for circumferentially polarized patches and the H-plane for axially polarized
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Figure 2: Illustration of (a) a circumferentially polarized-patch element; and
(b) an axially polarized patch element. The radius of the cylinder is denoted
by a.
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elements. Observation is considered in the § = 90° cut/plane since creeping
wave effects are a primary interest of this paper.

Several computed and measured antenna patterns have been published
for patches printed on a coated cylinder. One such patch, which is 3.5 cm x
3.5 cm, was used by Sohtell {11] to compare the accuracy of the cavity model
[4] to a surface current integral equation [5]. The measured data was taken at
2.615 GHz for a metallic cylinder which was 63.5 cm long and had a radius of
14.95 cm. The cylinder was coated with a 0.3175 cm uniform dielectric having
relative permittivity of ¢, = 2.32. Data was taken for —180° < ¢ < 180° in
the # = 90° plane. Figure 3 compares these measured patterns with data
generated using the FE-BI method for an identical patch placed within a
360° x 7 cm cavity. This wraparound cavity was chosen to simulate the
coated physical test body. Note that the H-plane patterns are symmetric
due to the symmetric placement of the feed, whereas the E-plane patterns
are not symmetric. The placement of the feed was not specified in [11}];
however, the agreement for the E-plane pattern shown in figure 3 indicates
that the position used in the FE-BI model (a¢, = -1 cm) is reasonable. The
feed was placed at z, = -1 cm for the axially polarized (H-plane) case.

We next consider patch arrays. Being a rigorous method, the FE-BI
formulation accounts for mutual coupling and cavity termination effects. The
H-plane pattern of a four element array was measured to gauge the accuracy
of the FE-BI approach. Each element is 2 cm x 3 cm and placed within a
5 cm x 6 cm x 0.07874 cm cavity which is filled with a dielectric having
¢, = 2.17. The cylinder is 91.44 cm long and has a radius of 15.24 cm.
The cavities are placed symmetrically around the cylinder (e.g. a patch is
centered at 0°, 90°, 180° and 270°). Only the patch centered at 0° was excited
while the remaining patches were terminated with a 5002 load. The driven
patch was axially polarized and the feed was located at z, = —0.375 cm.
Figure 4 illustrates the excellent agreement between the FE-BI formulation
and the measured data.

In a previous paper (8], discrete wraparound cavity arrays were found to
have a significantly lower radar cross section (RCS) compared to a continuous
wraparound cavity array. Thus, the size of the cavity had a significant effect
on the scattering properties of the array. The two antennas presented by
Sohtell [11] were placed within individual cavities which were 7 cm high and
approximately 30°, 50°, 90°, 180°, 270° or 360° in angular extent. Figure
5 illustrates that the azimuthal cavity size has little effect on the radiation
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Figure 3: Comparison of measured and computed data for a circumferentially
polarized element (E-plane) and an axially polarized element (H-plane). The
antenna (3.5 cm x 3.5 cm ) was printed on a 14.95 cm cylinder with a 0.3175
cm coating (¢, = 2.32). The probe feed was place at (ad,, 2,) = (-1.0,0.0)
for the circumferentially polarized patch and at (a¢,, z,) = (0.0,-1.0) for the
axially polarized antenna.
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Figure 4: H-plane pattern for a four element patch array. Each patch is 2
cm X 3 cm and the patches are placed symmetrically around the cylinder.
Only the patch centered at 0° is fed while the other patches are terminated
with 500 loads.
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pattern for a circumferentially polarized element and a similar comparison for
the axially polarized patch is shown in figure 6. The back lobe of the antenna
(near © = 180°) is very small for cavities less than 180° but increases for larger
cavities. For cavities which lie solely on the forward face of the cylinder, the
substrate modes apparently diffract off the cavity walls; an effect which has
little influence on the main lobe of the pattern. However, for wraparound
cavities and cavities which extend into the back side of the cylinder, the
substrate modes either shed like creeping waves or diffract strongly behind
the cylinder thus giving rise to the back lobe.

Having examined the effect of cavity size on the radiation patterns, we
will now look at the effect of curvature on the gain of patch antennas on
cylindrical platforms near resonance. Each of the two antennas used above
were separately placed within 10.5 cm x 10.5 cm cavities which were em-
bedded in cylinders with increasing radius. The frequency was allowed to
vary from 2.4 GHz to 2.7 GHz and the gain (7) was recorded every 5 MHz.
Figure 7 illustrates that the gain decreases with increasing element curvature
for a circumferentially polarized patch. Since the input impedance is only
slightly affected by curvature as shown in figure 8 the resulting decrease in
gain implies a decreased radiated power which is expected since the effective
aperture area observed normal to the patch is reduced as the curvature in-
creases. The axially polarized patch exhibits a greater decrease in gain with
increasing curvature as shown in figure 9. For this polarization, the input
impedance is affected by curvature as shown in figure 10. The enhanced
sensitivity of the axially polarized antenna is due to the combined effects
of a decreased radiated power and driving point impedance. Both antennas
exhibit a small decrease in resonant frequency (less than 1.5 percent) with
increasing curvature as illustrated by the rotation of the curves in figures 8
and 10.

The radiation pattern of a circumferentially polarized antenna at res-
onance exhibits reduced creeping wave interactions with decreasing curva-
ture due to attenuation as shown in figure 11 when excited at a resonant
frequency. For circumferentially polarized E-plane observation, the radiat-
ing surface fields are aligned along the ¢-axis which results in little pattern
broadening. The radiation pattern of the axially polarized antenna broadens
as the curvature increases which is illustrated in figure 12. Since the radiat-
ing aperture fields are aligned along the 2-axis for axially polarized H-plane
observation, the pattern exhibits broadening due to the orientation of the
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Figure 10: Input impedance of an axially polarized patch antenna for various
cylinder radii. The frequency range was 2.4 GHz to 2.7 GHz and the cavity
size was 10.5 cm x 10.5 cm.
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surface field with respect to the observation direction.

4 Conclusions

In this paper, we presented a rigorous analysis of the radiation by individual
and arrays of patches placed in a cavity recessed in a cylindrical platform. A
finite element-boundary integral code was developed and the data generated
by this code for a typical cylindrical-rectangular patches were found to com-
pare favorably with measurements. Since the cavity model does not include
mutual coupling and the usual integral equation formulations requires large
storage and computational resources, the FE-BI formulation is especially
attractive for array analysis.

This FE-BI method was used to study the radiation properties of circum-
ferentially and axially polarized patch antennas. The finite cavity size was
found to have little effect on the circumferentially polarized E-plane pattern.
However, for the H-plane pattern of an axially polarized element, the back
lobe is significantly larger for cavities which extend from the front side to the
back side of the cylinder. A wraparound antenna exhibited the largest back
lobe implying that this lobe is a result of creeping wave shedding rather than
diffraction off the lateral metallic walls of the cavity. The presence of a back
lobe must be considered when designing low observable, jam-resistant anten-
nas or antennas on complex platforms (e.g. an antenna near an obstruction).
Thus, as was the case for scattering reduction, it is advisable to configure
the patch antenna in the smallest possible cavity.

The effect of curvature on resonance, gain, radiation pattern shape and
input impedance was studied. Both circumferentially and axially polarized
antennas were considered and was found that the resonant frequency in-
creased with increasing curvature for both antennas. The gain of both types
of patch antennas decreased with increasing curvature with the axially po-
larized antenna exhibiting greater sensitivity attributed to the orientation
of the radiating surface fields and the decreasing driving point impedance.
The radiation pattern for axially polarized antennas broadens with increasing
curvature while the corresponding patterns for circumferentially polarized an-
tennas does not broaden; however, creeping wave interactions are reduced for
the latter element with decreasing curvature as expected. We conclude that
axially polarized antennas exhibit more sensitivity to curvature as compared
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to their circumferentially polarized counterparts.
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Abstracs—Conformal arrays are popular antennas for aircraft,
spacecrafl, and land vehicle platforms due to their inherent
low weight, drag, and observables. However, to date there has
been a dearth of rigorous analytical or numerical solutions to
aid the designer. In fact, it has been common practice to use
limited measurements and planar approximations in designing
such nonplanar antennas. In this paper, we extend the finite
element-boundary integral method to scattering by cavity-backed
structures in an infinite, metallic cylinder. In particular, we
discuss the formulation specifics, such as weight functions, dyadic
Green’s function, implementation details, and particular difficul-
ties inherent to cylindrical structures. Special care is taken to
ensure that the resulting computer program has low memory
demand and minimal computational requirements. Scattering
results are presented and validated as much as possible.

I. INTRODUCTION

ONFORMAL antenna arrays are attractive for aircraft,
Cspacecraft. and land vehicle applications since these
anienna systems have low weight, low drag, flexibility, and
cost advantages over conventional protruding antennas. The
majority of previous studies pertaining to nonplanar conformal
antennas has been conducted experimentally due to a dearth of
rigorous analysis techniques. Traditional rigorous techniques
involve an integral equation and are limited in terms of radius
of curvature and structural complexity. Some approximate
methods have been considered, but these are restricted in
accuracy and element shape.

Recently, the finite element-boundary integral (FE-BI)
method was successfully employed for scattering analysis
of large cavity-backed planar arrays [1]. The resulting system
1s sparse due to the local nature of the finite element method,
whereas the boundary integral submatrix is fully populated.
However, by resorting to an iterative solver such as the
Biconjugate Gradient (BiCG) method. the boundary integral
subsystem may be cast in circulant form, allowing use of the
Fast Fourier Transform (FFT) in performing the matrix-vector
products. This BiCG-FFT solution scheme ensures O(N)
memory demand for the entire FE-BI system and minimizes
the computational requirements.

In this paper. the FE-BI formulation is extended to scatter-
ing by aperture antennas conformal to a cylindrical metallic
surface. In contrast to the planar aperture array, the imple-
mentation of the cylindrically conformal array requires shell-
shaped elements rather than bricks, and the required external
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Green's function must satisfy the boundany conditions on the
surface of the cylinder. In 1ts exact form. this Green's funcuon
is an infinite series that imposes unacceptable computational
burdens on the method. However. for large-radius ¢y linders.
a suitable asymptotic formula is available and herein used ftor
an efficient evaluation of the Green s funcuon. In addition.
the resulting Bl system is again cast 1n circulant form to
ensure an O(N) memory demand and 10 take advantage
of the FFT's efficiency when carrving out the matnx-vector
product.

A pnmary difficulty in studying cavitv-backed antennas
mounted on curved surfaces is the lack of reference data.
In this paper. scattering calculations based on the FE-BI
method are compared with data based on different techniques.
Although such validation is necessanly himited. 1t provides
confidence in the formulation's accuracy so that this ap-
proach may be used in extending the available reference
data.

An alternative approach for terminating the FE mesh is to
use an absorbing boundary condition rather than the exact
boundary integral used herein. The finite element-absorbing
boundary condition (FE-ABC) method is associated with
a higher CPU cost because of its enlarged computational
domain; however, it is more flexible than the FE-BI method
presented in this paper since it may include a complex
radome as well as the cavity-backed antenna elements. Such
an FE-ABC formulation will be the subject of a future

paper.

II. FE-BI FOR CIRCULAR CYLINDERS

In this section, the FE.BI formulation 1s developed for
cavities recessed in an infinite metallic cylinder. having walls
that coincide with constant p-, ¢- or z-surfaces (see Fig. |).

As usual. the finite element formulation permits substantial
modeling flexibility. including cavity inhomogeneities. lumped
loads. super/substrate antenna configurations. or microstrip
lines and so on.

The FE-BI approach possesses both low memory and
computational demand when implemented with a BiCG-
FFT solver. Although the svstem of equations associated
with the FE formulation is sparse. the boundary integral
submatrix is fully populated. However. if the aperture mesh
is a uniform grid. the BiCG-FFT solver may be emploved
for that portion of the system. thus retaining O1.\') memory
demand for the entire system. In addition. the solver has
low computational demand since the sparse matrnx-vector
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g
oy

;- 1. Dlustration of a typical cavity-backed antenna situated on a metallic
imder and the associated coordinate system.

dducts require O(N) operations per iteration and the
icrete convolutions that utilize FFTs require only O(NlogN)
erations per iteration.

The FE-BI formulation begins with the weak form of the
stor wave equation followed by specification of appropriate
stor shape functions and a dyadic Green's function. The
ulting FE-BI equations are then used to solve for the total
ctric fields within the cavity and on the aperture (see, for
imple. Volakis er al. [2]). For the specific configuration at
id, the weak form of the wave equation can be written

/ Vx W(p.0.2)- Y x W(p.6.2)
1 e p. OZ)

-

- kler(p. 0. Z)W',(p.cv. z)- W,(p.o.z)}pdpdgb dz

+ (koa>2énu>é,,(z‘>/ /
S,

s,
Eg(a.éi) xpla.o.z ) W](a.cbr.z')]dcb' dz‘dd>dz
= fz"" + fle.rl‘ (l)

this, W, are vector basis functions with support over
volume Vi, which is associated with the ith degree of
dom. and in a similar fashion, S, and § , represent aperture
aces associated with the ith and jth degrees of free-
1. tespectively. The appropriate dyadic Green's function
enoted by G,. and it has convolutional (¢ = ¢ - .

[W’,(a.é. 2) - pla. ¢.2)x

£ = z-:) form when evaluated on the surface of the
cylinder p = a. The unpnimed coordinates represent the test
point. while the pnmed ones denote the source point. The
free-space propagation constant is given by Ak = =§ where
Ao 1s the free-space wavelength. The cavity is filled with an
inthomogeneous material having relative constitutive properties
€ and u,. The function é,(t)é,(j) is the product of two
Kronecker delta functions. Hence. it identifies which pairs of
unknowns belong to the aperture and accordingly contnibute to
the boundary integral submatrix. The nght-hand side contains
an internal source (f!™) and an external source (f*') term
The former is used only for radiation analysis and 1» omitted
for this paper. The latter is used for scattenng analysis and v
discussed later.

The FE-BI equation (1) may be rewritten in matnx form as

AJ {E}?} +[[G} [O]J{Ef”} _Ue

{7} Loy o] [{E™} = o)

where the entries of [A] are due to the FE portion of the
formulation and [G] is the boundary integral submatrix. In (2).
ET? and E}™* denote degrees of freedom associated with the
aperture and interior fields. respectively.

An important factor in choosing the finite elements for
gridding the cavity is the element’s suitability for satisfving
the mathematical requirements of the formulation as well as
the physical features of the antenna system. Traditional node-
based finite elements associate the degrees of freedom with
the nodal fields and have proven unsatisfactory for three-
dimensional electromagnetics applications since they do not
correctly represent the null space of the curl operator, and
hence spurious modes are generated [3]-[4]. In contrast. edge-
based elements correctly model the curl operator and therefore
the electromagnetic fields. In addition. edge-based elements
avoid explicit specification of the fields at comers where
edge conditions may require a singularity. Jin and Volakis [6]
presented edge-based brick elements, which are convenient for
rectangular-type structures and cavities. For cavities residing
in a circular cylinder. shell elements are the natural choice.

Cylindrical shell elements possess both geometrical fidelity
and simplicity for cylindrical-rectangular cavities. Fig. 2 illus-
trates a typical shell element. which has eight nodes connected
by twelve edges: four edges aligned along each of the three
orthogonal directions of the cylindrical coordinate system.
Each element is associated with twelve vector shape functions
given by

Wixp.6.2) = Wolp. 0.2 0, 2. +).
Wilp.¢.2) = Woip.o.20.00. 2. )
WSG(P-‘D-Z) = W'p(p.o I @y Zp — )
W%?(p.gp.:) =W, (p.0.2:. 00 2. +)
qu(p.q.‘).z) =Wo(p. 0. 2:pp. .20, +).
W-za(p.o )= Wo(p. 0.2 pa . 2. —)
Was(p.w 2) = Wolp.0.2:pp. . 2. — ).
‘-.'67(/)-0 2) = Wolp. 0.2 pa. - 25+
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Fig. 2. Cylindrical shell element.
Wis(p.¢.2) = W.(p. 0. 2: py. ¢, -, +).
Wae(p.d.2) = W (p, 6. 2; pa, #r,-, —)
w”48(pv¢‘z) = 2(pv¢$z;pbv¢li'1-‘)»
u‘37(p,¢.2) = W'Z(p‘ ¢vz;pa‘ ¢1v"+) (3)

where W’,k 1s associated with the edge which is delimited
by local nodes (1. k), as shown in Fig. 2. As seen from (3),
three fundamental vector weight functions are required for the
complete representation of the shell element. They are

Wolo.6.2:5.6.5,5) = L2 (2= DNz = 2)

ah p
Wolp.6.2:5.6.5.5) = (o= 5)(z - 2)é
Wolp¢.2:5.¢.5.5) = %(p - 5)(¢ - )2 @)

where the element parameters (p,, pp, @1, r, 2, 2;) are shown
in Fig. 2.t = py — p,, @ = o — ¢, and h = z, ~ z,.
Each local edge is distinguished by . ¢, z, and § as given
in (3). The 1-term, which appears in the definition of the p-
directed weight (4), is essential in satisfying the divergence
free requirement, ie. so that V- W, = 0.! Note that as
the radius of the cylinder becomes large, the curvature of
these elements decreases, resulting in weight functions that
are functionally similar to the bricks presented by Jin and
Volakis [6]. Having specified the vector basis functions, we
may proceed to develop the matrix entries for the system (2).

The FE-BI system is composed of two parts: a sparse FE
matrix and a fully populated BI submatrix, as shown in (2).

‘lf'l(p. ©. =) will sausfy this requirement only within the volume of the
element. These weighting functions introduce artificial charges on the faces of
the element and are not divergenceless at clement interfaces. This is allowable
since these elements do not guarantee normal fieid continuity across the
-element faces.

The FE matrix entnes are represented by

) :2

l \ ) L 2}
A, = u—z,}’” - kle LM (5

where constant material properties have been assumed within
cach element. The subscripts i1. ;) refer to the row and column
of the matrix entry and correspond to the test and source edges.
respectively. The auxiliary functions

I = /‘ Cx Wep.0.2:4,.0,.5,.5))
U x Wy(p.0.2:5,.6,. 5. 5,)pdpdo d:

e =/‘_ Wip.0.2:5,.0;.5,.5,)
We(p.0.2:5,.6,. 5.5, )pdpdo d: 6)

are identically zero unless both test and source edges share
at least one element in common, resulting in a highly sparse
system. Physically, such a system is a consequence of the
locality property inherent in a partial differential equation
formulation. In (6), the direction of the source and test edges
are represented by (s.t) € {p.4.z}, respectively. Since
the edges of the mesh are aligned along three orthogonal
directions, only six unique combinations of (s.t) are required
for IV, and only three such combinations for J(2). Since (6)
is symmetric with respect to source and test edges, the FE
matrix will also be symmetric. Evaluations of (6) using (4)
are presented in the Appendix.

A lumped impedance post may be included in the formula-
tion by adding a term to (1) and equivalently to (5); surface or
subsurface metallization layers may also be modeled. Radially
oriented lumped loads are approximated in the FE-BI formu-
lation by a filamentary load located at (¢, . z; ) [2]. Such posts
have length [, cross-sectional area s and impedance Z;. The
contribution to [A] is given by

. { 6(d —d1)6(2 — z1)
Aijz]koZoE/V ( L:,(z zr
-Wilp, ¢, 2)W;(p, ¢. 2)pdpdpd: (7

which may be readily evaluated in closed form. In addition,
infinitesimally thin metallization layers may be represented
by simply fixing a priori the weight coefficients to zero for
weights associated with edges which are tangenual to the
metal. This is a consequence of using a total electric field
formulation. The symmetry and sparsity of the FE system [A]
is maintained after the addition of these loads. while the Bi
system [G] remains fully populated and symmetric.

The boundary integral provides an exact boundary condition
for mesh closure, and its construction relies on a cyhndncal
dyadic Green's function. The entries of the boundan tntegral
submatrix are

G, = (koa)? /

5. Js,

(x]

[ﬁ(a-¢-2) X Ez(a.ci.z') % [)(a.o'.

'“’s(a.tbl.z‘:ﬁ].éj.éj.51)dw’ dz ded. %)

47




KREMPEL AND VOLAKIS SCATTERING BY CAVITY.BACKED ANTENNAS

Fig. 3. Geodesic paths on a circular cylinder.

where the weight functions are given by (4) and evaluated
at the surface p = a. In (8). the dyadic Green’'s function
(G2) satisfies both the radiation condition, and the Neumann
boundary condition at p = a. This dyadic Green's function
may be expressed exactly (8]

G**(a.¢.3)
1 > = (k,\°1 HP () J(né—k, 5)
(2m)? n:z_x/.x (k_) YHP () *
G°(a.0.3)
1 & <k, \ H®() oo,
=~ > = )| el (no=kid) g
(2m)2 n;x /-x (kﬁaw) H P (4)
G°%(a.9.3)
1 = *1
- (23‘&')2 n;’c./—:x :
124 . . 2 (2) ~
. an‘l v ) _ nk. H’" ‘(q) e](no—k_.f)dk: (9)
Hy (=) koaky ) H (%) ()

where v = kyaand k, = \/k2 — kZ. However, for large radius

cylinders (e.g., ka > 3). (9) is computationally prohibitive. In

these cases. which are of main concern in this paper. it is

advantageous to employ an asymptotic expression for G [9)-

[12]. These employ a creeping wave series expansion of which

only the two direct path contributions (see Fig. 3) are retained.
The formula due to Pathak and Wang [9]

- ik,
G*la.0.z) ~ -

qe—Jkos

2m

. {iL'Us:(i - q:’l — q»f‘) — etk 3 }

G>a.¢.3 ~

-sinﬁ(‘ost‘){'l =3¢l g }

k gk~

- - J | _
G°la. 0.5 ~ _4)_‘(1(

: {(317729-'- gil = @2 = Bensr

+q[s€(‘29(ui.3b - l'id))j} (104

3 — cos?e ¥ _ .
where 3 = ks[m and ¢ = L has proven quite

accurate. In the definition of J. s is the usual geodesic path

length (s = (/(a®)? + 22) and 6 is the direction of the
geodesic trajectory (9 = tan~! [QD Depending on which
of the two direct paths (shown in FJig. 3)is used. d = o or
$ = 27 — ¢. The soft and hard Fock functions. u(J} and
v(3). respectively, are characteristic of on-surface creeping
wave interactions and have been extensively investigated by
Logan [13]. These functions are also presented in the appendix
of this paper. Although computation of the Green's function
(10) is now tractable, evaluation of (8) must be done so that a
discrete convolutional system is maintained and the singulanty
of (8) at s = 0 is properly treated.

Care must be taken in evaluating (8) so that the overall
storage requirement remains O(N') and the singular integrals
of (8) are accurately computed. If uniform zoning is used, the
resulting submatrix ([Q]) is block Toeplitz and hence amenable
to solution using the BiCG-FFT method. For the nonself-
cell contributions. midpoint integration may be used whiie a
regularization procedure must be employed for the self-cell.
Bird [12] noted that (8) recovers the metallic screen Green's
function when 3 = 0 within the available approximation
order. This suggests that (8) may be regularized by adding
and subtracting from (10) the function
= ¥V

I+ 3

P_Jk"R

_ (11
2r R

R=|f-7]

which is the free-space dyadic Green's function multiplied
by two. The resulting regularized Green's function (curvature
contribution) is given by

2z, = k., . 2
G (a.0.7) ~ _',2—‘qp—1k”“{(r'os'ﬂ +qll =g}
7

(2 - 300520})[1'(JD - 1]}

2%

e(3) - l}}

qor, T h .
G (a.0.3) ~ J 2 geIkes sin{icost‘){(l ~ 3q(1 — ¢y}
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k, .
(o -N—J‘)—qr”k'{cwn‘ﬁ-—q']-qv
42 - .'5,*171391‘):!‘1.1‘ -1
—-qfsec"ﬁ(u(.is—z-n.iujj} (12)

and since 1t 15 no longer singular it may be evaluated numen-
cally. The planar contribution may be calculated in the manner
descnbed previously by Jin and Volakis [5]. The FE-BI matnx
has now been fully developed and it remains to specify the
excitaton function for external sources.

III. PLANE WaAVE EXCITATION

Plane wave excitation of the geometry is considered in this
section for scattering analysis. The use of the exact boundary
condition in (1) allows coupling of an exterior excitation
field into the cavity. We will describe the form of the source
function f7*' and discuss its numerical implementation.

The forcing function. due to exterior sources ( fS7") ts given
by

frot :J'Zokoa/ Wia.o.: )ﬁ(a‘o‘.:')

S,

Xf-{'ryl(a.a)'.z,)do‘d:' (13)

where W, (p. 0. 2) is the testing weight for the ith row of the
matrix and H°¥' represents the magnetic field on the cylinder's
surface in the absence of the cavily. A plane wave

E' = él{—]kn(k: )

A =Y, [/j(sin ~ cos#, cos o, — cos ~ sin o)
- é(sin v cos ¥, sin 0, + cos v cos ?,)
_ ;;Sill"y sin 6,} e]ko[asm& cos:.:n‘:cosﬁ,] (14)
is assumed to be incident on the cylinder from the direction

(#,.0,). where ~ is the polarization angle and é' = é‘cos:v +
o'sin~ is the electric field polarization. In these. the difference
between the observation and incidence angles is denoted by
@, = 0 — o,. The total surface field is given by the sum of
the incident and corresponding scattered field from the infinite
metallic cyvlinder [14]. Specifically.

HYa. 0.2y = H'a. o. D+ Hylao.2)
. I
=oH¥ + iHY (15)
where
gk co~f < AR ~
ol iy F CcOos ~
H_“’ut.c';.:lz—.’),,ﬁ.— E 2
~h,asiné, n=— | Hn '(koasiné,)
i Sl cosf Zec—a
"'_/A' ] 2 - e””: e
csiné, priz (koasind,)
in =
. LAy e SIS ¢ 8, :
_H_Wl(l.o.:‘=J2)0—(,JknCos . §
: Thoa
n=-—x
r -
| ’7,” T |
. . - (16)
H,~ (k,using,)
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is obtained from tradiuonal modal analysis These expressions
may be approximated by retaining only a few term« of
the senes if k,asmé, 1s small. However. as ths parameter
becomes large (e.g.. for large a and 6, — 90°, (16 may
be replaced with equivalent asymptouc representations similar
1o those considered earlier. Utilizing Watson's transformation
and Fock theory [14] in connection with (16). we find that
HM ~ —Y, sin~sin §,e7%- cost.

"

. E (,—Jkoasmﬂ.@p {91() HTIQ’X Ny

p=1

2

2k, cos A, -

cyl G
HY ~ j2Y, cos~ e

koasind,

2

. § e—)koasme.(b,[f(Ow”n(bPJ]j

p=1 )

- Y, sin~cos §,e7%e cos6: =

2
. Z(_l)pe—]kcu siné, ¢, [g(ﬂ)(mq)p}
p=1

_ s m (1)
]koasinﬁ,g (m(bp)}

N}

)

(1
in which &; = 3£ — (0 - 3,), & = (¢ - 0,) - z.
m = [keasind,] § and complex conjugation is denoted by an
asterisk. The appropriate far-zone Fock functions (', g1,
and ) are given by Logan [13] and are also presented in
the appendix of this paper.
The asymptotic formulas (17) are quite accurate except
in the geometrical optics region (¢ = @;). In this case,
Gonainov's [15] expressions

HY ~

_ Yo sin asin giejk,, cos 8,2 {e—)k‘,a sin 8, d, [9(0)(m¢1)J

+ ¢2keasinb. <0880 (G _m cos (¢ - @))J‘}
2

U oy
HY ~ j2Y,cos a -
ocasinf,

. CJk" cosﬂ,:{e—1k0u51n9.¢, [f(O)(mq)l)}

+ glkeasinb, c°s("""")[1-'(—mcos(o— o,))}'}

+ Y, sina cos §,e7*0 C“”--’{e-)koasino,% {g[o,(mq)“

—jm—sniln_&gm(mq)l)J.

— g7koasmé. Cos(""_c")[G(—rncos(d)— ©,))

—jk—o%mG“’(—mcos(o—o.))}.} (18)
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have been found to be more accurate and can be used instead
of (17). The Fock functions (G. G'* and F) are again defined
in Logan [13] and given in the appendix. These surface field
expressions may be used to calculate the entries of the column
vector { f¢*¢} efficiendy via a numenical evaluation of (13). In
particular. the modal senes (16) is used when k,asinf, < 10
and either (17) or (18) for k.asinf, > 10. as appropriate. With
the excitation function and the FE-Bl matnix now specified.
the BiCG-FFT method [16]-[17] may be used to determine
the unknown electnc fields within the cavity.

Iv.
Once the cavity aperture and volume electric fields have
been determined by solving (2) for an external excitation, the
radar cross section (RCS) may be calculated. The far-zone
fields may be computed by integrating the aperture fields with
a suitable Green’s function. In this section we present the
relevant formula for calculating the far-zone fields and hence
the RCS due to excitation by a plane wave (14).
To determine the far-zone fields. we begin with the integral
representation for the scattered magnetic field in terms of the
aperture fields. We have

SCATTERING

He(r.0.0) =j}:,koa/Ez{na.o;a.o'.:')-
)
[ﬁ(a.o’.z’) x E(a.d.:’)]das' d: (19

with (r. 6, ¢) indicating the observation point in spherical
coordinates. When the observation point is very far from the
cylinder, the dyadic Green's function in (19) can be replaced
by its far-zone representation

52(7'. 8.0:0.0 .2 )
o= ikor

~

[G"@é&)' + G5 + G'”ém}'] (20)

oT
where the unprimed unit vectors are functions of the ob-
servation position and the primed ones are functions of the
integration point in (19). The components of this far-zone
Green’s function

GO@ ~ J 2k, cos 6 jko cos bz’
(27)2 (koasinf)?
> ‘
) M mii~te=e )
o
n=-—-x Hn(”(koasinﬂ)
G% ~ J g Jkocos Oz
(271 u
jo 4
z _e_i—ejn1§*(0—o'J)
e H, “'(kousin8)
Goo ~ ] 2 €]k° coséf:‘
(2m)? asinb
oc 1 ,
Y —m——nEteme 2l
S Hy(keasind)

are determined by a mode matching procedure. As one might
expect, these series converge rather slowly for large k,asin 6.
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They must therefore be recast in another torm by mploy-
ing Watson's transformation and Fock theory. a~ was done
previously (17). In doing so. we obtain

k,cos¥b . , i
Geo ~ o.‘1 e)k(.cotd. § ‘__1‘.;'—11\ PRSI LN
™ o
: (g'ol(m‘b \—_]—Lq Comd
[_ F k.,asin#’ !
>
. k,sinf oo O wy i
Ge_ - _ 04 t_Jkrunﬂ_ E ’—)l\ a s Ly " n/‘l’{
7 / . .
p=.
) 2
o0 m*- Jk.cosbz —jk.asinvd 1 -
G°® ~ ———— /7T E ¢ IR i f e,
2arnsinf S ’

p=1
ey
where the Fock functions are the same as those used with
(17) due to reciprocity. As was the case for the plane wave
source. Goriainov's {15] approximations are more accurate 1n
the geometrical optics region (¢ = ©) and similar expressions
may be obtained for (22). as was found for (17). The tar-zone
scattered field can be computed numenically by using (19) and
either the series or asymptotic formula as appropnate. Having
done so. the RCS is calculated from
L ES(r. 6.0

o(f.9) = lim 47r-—

) (23
T |E(r. 6. 0)

Above we presented a FE-BI formulation suitable for mod-
eling cavity-backed structures embedded in a circular cylinder.
Next, we consider a few numerical calculations aimed at
validating this formulation and giving us an appreciation
on how the cylinder’'s curvature influences the scattenng
parameters.

V. RESULTS

Having solved for the electric fields induced by an incident
plane wave, the resulting RCS data must be validated with
known results. As previously mentioned. available measured
or computed data is rather scarce. and as a consequence we are
forced to rely on limiting cases.in order to validate this work.
As the radius of curvature decreases. a cylindrical-rectangular
cavity will approximate a planar-rectangular cavity. Another
limiting case involves comparison of an elongated 3-D cavity
with a corresponding 2-D cavity for normal incidence (¢, =
90°). Finally, we may compare our infinite cylinder results
with a finite body of revolution (BOR) model for certain
polarizations and angles of incidence. We begin with the
quasiplanar case.

The first validation effort for scattering by cavity-backed
patch antennas relies on the fact that a small patch on a very
large radius cylinder is quasiplanar and approximates rather
well an equal sized planar paich. For our test we chose as a
reference a planar 3.67% cm x 2.75 cm patch residing on a
7.34cm x 5.334 cm x 0.1448 cm cavity filled with a dielectne
having €. = 4. The equivalent patch on a 32.6 cm cyhnder 1»
6.46°x 2.75 cm residing on a 12.90°x 5.334 em x 0.144>
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Fig. 4. Comparison of RCS for a planar paich (3.678 cm x 2.75 ¢m)
residing on a T.34 cm x 5.334 ¢m x 0.1448 cm cavity filled with ¢, = 4
dielectric and a corresponding quasi-planar patch on a large radius (32.6 cm)
cylinder. The operanng frequency is 9.2 GHz.

Cm cavity. At the operating frequency of 9.2 GHz, the cylinder
has an electrical radius of 10A,.

Fig. 4 shows the results for the patch on a large radius
cylinder with corresponding data for the planar cavity-backed
patch. Clearly, the two RCS patterns are in excellent agree-
ment, and although Fig. 4 illustrates only monostatic scattering
in the ¢ = 0° plane, additional runs for normally incident
monostatic scattering and various bistatic situations yield
similar agreement,

Comparisons may also be made for elongated cavities and
2-D MoM results. Long narrow cavities have very little axial
interaction for principal plane (§ = 90°) excitation and
therefore results based on this formulation should compare
well with corresponding 2-D data. It is well known that the
RCS of a 3-D scattering body of length L > ) is related
to the corresponding 2-D scattering of the same cross section
via the relation

L 2
o3p =2(/\—) J2p. (24)
0

Such a comparison is shown in Fig. 5 for monostatic
scattering by a 45° x 5 x 0.1\ cavity recessed in a cylinder
with a radius of 1), for both principal polarizations. Once
again the agreement between the two results is excellent,
thus providing a partial validation of the formulation for
ughly curved geometries. We remark that similar agreement
1as been observed for bistatic scattering in the § = 90°
Jlane.

The planar approximation eliminates the effects of curva-
ure, which is a primary interest in this work, and the 2-D
omparisons done above are only valid for normal incidence
nd observation. To consider oblique angles and a highly
urved structure. we resort to comparisons with a body of
:volution (BOR) code for wraparound cavities. Since the
OR code can only model finite structures, we simulate an
finite cylinder by coherently subtracting the far-zone fields
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Fig. 5. Companson of 2.D MoM results and FE-BI RCS results tor 4
43° x 5Xp x 0.1A¢ aur-filled cavity that is recessed in s cyvhinder with a
radius of 1A,
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Fig. 6. Comparison of the RCS computed via the FE-Bl method and a BOR
code for a 3Ap x 0.1\ air-filled wraparound cavity recessed in a cylinder with
a radius of 1), that is excited by a normally incident H-polarized (o = 90°)
plane wave.

of the finite structure without a cavity from similar data
which includes the cavity. Such an procedure mimics common
measurement practices and was found suitable for near normal
incidence and quite acceptable near grazing incidence in the
case of H-polarization (o = 90°). An example calculation for
the former case is given in Fig. 6. where a bistatic scattering
pattern is presented in the ¢ = (¢ plane due to a plane
wave incident at (6, = 90°.0, = (°). Clearly. there is good
agreement between the FE-BI results and data based on the
BOR formulation.

The previous comparisons serve to validate the formulation.
Having done so, it is instructive 1o examine the effect that
curvature has on the scattering properties of cavity-backed
patch antennas. Consider a 2 cm x 3 cm patch residing on a
cm x 6cm x 0.07874 cm cavity that is filled with a dielectnc
having ¢, = 2.17. The cylinder has a radius of 15.2% cm. Figs
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10.0 " ' T T

RCS (on}) (dB)

Frequency (GHz)

ig. 7. RCS frequency response for a 2 cm x 3 cm patch residing in a 5
m x 6 cm x 0.07874 cm cavity with ¢, = 2.17 as a funcuon of curvature
r E-polanzation (a = 0°).

and 8 illustrate the behavior of this geometry as a function
f frequency and curvature.

Evidently, the resonance behavior of this patch is sensitive
> curvature for both principal polarizations. The frequency
esponse for E-polarization is more sensitive to curvature since
ne radiating surface field component is parallel to the long side
f the patch and cavity. If the patch and cavity were oriented
o that the long side is in the ¢ direction, the response to H-
wlarization would exhibit greater sensitivity. Such an effect
s important to low observable antenna designers since they
vant to operate the antenna in the region of lowest RCS. This
ow return region is a consequence of delicate cancellations
lue to the physical layout of the aperture. Such cancellations
re not as complete for highly curved structures as they are
or planar cavities.

Conformal antenna designers often use wraparound an-
ennas to achieve omnidirectional coverage. Two different
:onfigurations are typically used: a continuous cavity where
he cavity is filled with a single continuous collar of dielectric,
ind discrete cavities symmetrically placed around the circum-
erence of the cylinder. These two configurations are shown
n Fig. 9.

Since near resonance the radiation properties of these two
ypes of antennas are similar, any RCS advantage one might
»ossess could govern the appropriate choice of arrays. Fig. 10
sompares the E-polarized monostatic scattering at 3 GHz in
he 6 = 90° plane for a wraparound cavity and four discrete
:avities. where the patches and cavities are identical to those
1sed in the previous example. The radius of the cylinder
s 15.28 cm. and the four patches are centered at 0°, 90°,
{80°, and 270°. Not surprisingly, the wraparound structure
1as a higher return due to coupling within the substrate.
Jowever, since in this case the scattered field is due to
he : component of the surface field (¢-directed magnetic
surrents), both cavities yield large scatiered fields in the four
jirectional lobes. Fig. 11 is the corresponding comparison for
H-polarization.
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Fig. 8. RCS frequency response for a 2 cm x 3 cm patch residing 104 G

cm x 6 cm x 0.07874 cm cavity with e, = 217 as a tunction of curvature
for H-polarizaton (o = 90°).

In this case. the scattered field is attnbuted to the o
component of the surface fields (z-directed magnetic currents).
Therefore. substrate modes diffract near the patch. resulting
in discrete lobes for the discrete array while creeping waves
shed isotropically for the continuous wraparound cavity. Low
observable designs will favor discrete cavity arrays over
continuous cavities since the scattering may be channeled
in preferred directions and the overall scattering level is
consistently lower. A final example is shown in Fig. 12. where
we observe that other than the expected higher scattering from
the wraparound cavity, the scattering behavior of the two
arrays is very similar.

V1. CONCLUSIONS

In this paper, we have presented a finite element-boundary
(FE-BI) integral technique suitable for electromagnetic scatter-
ing calculations involving cavities embedded within a circular,
metallic cylinder. This formulation is analogous to the FE-
BI approach used by Jin and Volakis [1], {5]. [6] and may
accordingly be used for the analysis of scattering by a large
array of cavity-backed patch antennas. These cavities need not
be identical, periodically spaced, or homogeneously filled and
may in fact may possess lumped impedance loads or surface
metallization layers. The FE approach employs vector finite
elements that properly represent the electromagnetic fields and
possess high geometrical fidelity for cylindncal-rectangular
cavities. Such elements were presented and are analogous to
the bricks used for modeling rectangular cavities. In addition.
we presented an efficient method for evaluating the on-surfuace
and far-zone dyadic Green's functions. The presented tormu-
lation is amenable to solution using the BiCG-FFT method
provided uniform zoning is used across the aperture. and as
a consequence this implementation has low computational
and memory demand. We have presented some valhidaton
of this work with approprate limiting cases that provides
further archival reference data. In addition. we showed hew
this formulation may be used to influence conformal untenna
designs.
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Fig. 9. Dlustration of two types of arrays: (a) continuous wraparound array; (b) discrete wraparound cavity array.
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Fig. 10. Comparison of E-polarized monostatic RCS at 3 GHz for a
four-patch array placed on a wraparound collar or in four discrete cavities.
The cylinder radius is 15.28 cm. The patches and cavities are identical to the
one used in Fig. 7. The observation plane is § = 90°.

APPENDIX:
Fock FUNCTIONS

The asymptotic form of the dyadic Green’s function with
observation both on the surface of the cylinder and in the
far field involves Fock functions. These have been extensively
studied and tabulated by Logan [13]. The numerical evaluation
of these functions is performed for either small arguments or
large arguments.

The on-surface Fock functions used in this paper are

1 £ [~ wa(T) _
) = _pm/4,. /5 b3
v(€) 5€ \/;/me_ﬂw3 o) dr

we) = o3 EL [T ()

\/7? cce=I3n/3 w?(T)

e €7 dr

(A-1)

00 100 200 300 400 500 600 700 800 90.0

Angle (¢) [deg]

Fig. 11. Comparison of H-polarized monostatic RCS at 3 GHz for a four

paikch array placed on a wraparound collar or in four discrete cavities. The
cylinder radius is 15.28 cm. The patches and cavities are identical to the one
used in Fig. 8. The observation plane is 6 = 90°.

where w;(7) and its derivative u:é(-r) denote Airy functions
of the Second Kind. For small arguments (£ < 0.6). the
asymptotic expansion of (A-1) is given by

: v(f) ~1.0- g£§.+J6;053 + —’—\/;P-Jif%’ -+ .

312
iy ) 5 5 -
u(é) ~1.0 - \/T_e'”f% +_}%53 + é\/’;.(”TET + .
(A-2)

while a rapidly converging residue series is used for £ > 0.6:

10 . ,
V() ~= U7 \/EZ (?,;) eI

n=1
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12. Companson of H-polarized monostatic scattering at 3 GHz by a
-patch array placed on a wraparound collar or in four discrete caviues.
cylinder radius 1s 15.28 cm. The paiches and cavities are identical to the
used in Fig. 8. The observation plane is 0 = 0°.

TABLE 1
Table B-1
Zeros of the w;(7) and w,(7)
1o = rale=3 and 7. = Ir. e~}
n |7n] '7:1
1 | 2.33811 1.011879
2 | 4.08795 3.24819
3 | 5.52056 4.82010
4 | 6.78661 6.16331
5 | 7.94413 7.37218
6 | 9.02265 8.48849
7 | 10.0402 9.53545
8 | 11.0085 10.5277
9 | 11.9300 11.4751
10 | 12.8288 12.3848

10
u(€) ~= 265 e} Z (1n) e €™ (A-3)
n=1

xre 7, and 7, are zeros of wp(7) and w,(T), respectively.
yse zeros are given in Table L
“he far-zone Fock functions are given by

ghe) = i/ M
VT 1(7)
g "Je?
f) f/
Ghg) = g (f)el‘f
Fi(e) = fO(E)es (A-4)

xre «;{7) and its derivative U';(T) denote Airy functions of
First Kind and the integration contour is given by Logan
| These functions. ¢‘®/(€). ¢'1/(€), and £(9)(£). may be

TABLE 11

| Table B-2 i

| Constants for (A-5) and (A-6)

| m c(m) a{m) : Ai(m)
1 | 0.7473831 | 1.01879297 | 0.5356566
2 | -0.6862081 | 3.2481975 | -0.41901548
3 | -2.9495325 | 4.82009921 0.38040647
4 | -3.4827075 | 6.16330736 | -0.35790794
5 | 8.9378967 7.37217726 | 0.34230124
6 | 56.1946214 | 8.48848673 | -0.33047623
7 9.53544905 | 0.32102229
8 10.52766040 | -0.31318539
9 11.47505663 | 0.30651729
10 12.38478837 | -0.30073083

calculated using
3
g@(£) = 2.0e775 5 <-13
= 1.39937 + Z nf) -13<£<05
m=1
10 elmetme] m (m)E]

= 0.5<€<4.0

FM

[-(0.5823—;0,5094)5-) 533-]

= 1.8325¢ £>4.0 (A5
. 0.25 025\ _
g6 = —12.0(52 i A ) 5 < -28
e c(m)k™
=3 —(6"! -28<€£<05
m.
m=]
10 elra(m)e) 05 40
= _— . < 4.
Km:l Az(m) < 6 B

~1.8325(0.8823 — j0.5094 + j€?)

3
—(0.8823—-30.5094)¢ - ]
~e[ ( ’ 5] 6540 (A-6)
‘ 025 05\ _
f“”(£)=12§(1-—63 £6> o< -1
—yn/3 C(m eym
=0.77582 4+ ¢~ 7" Z - (K6) 116505
10 pixal m)zl
= ¢=Im/3 Z £ 0.5 < £<4.0
~00 €5 10 (A-7)

with constant x = ¢~75%/6 and the coefficients for (A-5) and
(A-6) given in Table II.

The corresponding constants for (A-7) are given as shown
in Table III.
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TABLE M

T Table B-3

i Constants for (A-7)

[mT  cm) a(m) At (m)

[ 1] 1.146730417 | 2.33810741 0.70121082 ||
2 | 0.86284558 | 4.08794944 | -0.80311137 !
3 1 -2.0192636 | 5.52055983 | 0.86520403
4| -9.977776 | 6.78670809 | -0.91085074 |
5 | -14.59904 | 7.94413359 | 0.9473357] ff
6 | 49.0751 9.02265085 | -0.97792281 |
7 10.04017434 | 1.00437012 !
8 11.00852430 | -1.02773869
9 11.93601556 | 1.04872065
10 | 12.82877675 | -1.06779386

FE MATRIX ENTRIES

TAACIUNY ON ANTENNAS AN PRUFAGATIUN VUL 42 N

! S
TP = 00) = 30~ e -

04

1o 5 L] c- . .

+ ;Pspr(pb _pa}‘? x (C’_C’.-HC"—O,HI'O
2 o,

4

Each of the above unevaluated integrals is of the form

[ (e-e)(e-é)as - -4)

+

(L7 =02y,

S Bl YR

© SEPTEMBER o

tB-1

(03— L3~ 60—

(B-2)

The integrals I,‘,l "2 are used in the assembly of the FE portion

({A]) of the system.

The matrix entries for the FE portion of the system (5)

are given in this appendix assuming that the cylindrical shell

elements (4) are used in (6). These integrals are given by

10 = 5 L (2 [0 )0 - 1)do
e (ah)? b Pa o ’ .
afp o .
+ E(é‘ )[ (z—z,)(z-zt)d;’J

(1) _ 848 i . Db
fro “m‘z(”’“ﬂ(z)“"( -2)]

W= - ;p”/ (0~ 0,)(6 — ¢, )do
7]

[0
(1) _ §,§ta l 4 3
o0 — (th)? {h(4(pb pa)
1 . 1_ .
+3(0s +p0) (03 — 07) + 5Pabr (0] — pi))

+ (Q(pf = P2) = 2t(py + pe) + Bope In (ﬂ»

/ r(: -z, )(z - fr)dZJ

533 P : N
P=- ,f_,'/ (0= ps)p = pe)dp
Pa
b o S, S (08 = 52) ~ t(5, + 6e) + psfeIn | 2
z (ta)? 2 P a s T Pt s Pt Py
| P -
+§(Pb—/)a)/ (0= 0.)(0 — ¢)do
¢ a. a2 o,
vy SsStD} Pb - -
, = ——=In{ = (0 — o )0 - ¢p)do
(ah)? (m) ./m g !

/ (2= 3,)(z - 5,)d=
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A Hybrid Finite Element—Boundary Integral
Method for the Analysis of Cavity-Backed
Antennas of Arbitrary Shape

han Gong. Suddent Member [EEE. John L. Volakis. Semior Member. [EEE. A. C. Woo. and H T. G Wang

Abstract—An edge-based hybrid finite element-boundary inte-
gral (FE-BI) formulation using tetrahedral elements is described
for scattering and radiation analysis of arbitrarily shaped cavity-
backed patch antennas. By virtue of the finite element method
(FEM). the cavity irregularities, the dielectric super/substrate
inhomogeneities. and the diverse excitation schemes inside the
cavity may be readily modeled when tetrahedral elements are
used to discretize the cavity. On the aperture, the volume mesh
reduces to a triangular grid allowing the modeling of non-
rectangular patches. Without special handling of the boundary
integral system. this formulation is typically applicable to cavity-
backed antenna systems with moderate aperture size. To retain
an ()i \'\ memory requirement. storage of the full matrix due
to the boundary integral equation is avoided by resorting to a
structured triangular aperture grid and taking advantage of the
integral’s convolutional property. If necessary, this is achieved
by overlaving a structured triangular grid on the unstructured
triangular grid and relating the edge field coefficients between the
two grids via two narrow banded transformation matrices. The
combined linear system of equations is solved via the biconjugate
gradient (BiCG) method. and the FFT algorithm is incorporated
to compute the matrix-vector product efficiently. with minimal
storage requirements.

[. INTRODUCTION

ICROSTRIP antennas have been extensively investi-

gated expernimentally. analyucally. and numencally for
decades. By and large. numerical methods have been serving
the engineers and researchers in the analysis and design of
these conformal antennas for many years. Among them the
moment method in conjunction with various integral equation
(IE) tormulations plaved a major role [1}-[3]. However. IE
methods are associated with feld representations in which the
appropriate Green's funcuon for the specific geometry must
be emploved. and this limits their versatility. Moreover. IE
techniques are usuually formulated on the assumption of an
infinite substrate. a model that obviously deviates from the
practical configuration, leading to inaccuracies for larger band-
width antennas. Furthermore. in the context of 1E methods.
antenna exciiations are represented using simplified models
that differ more or less from the actual configurations. Also.
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Fig. I Ilustration of a cavity-backed patch antenna and the different com-
putauonal regions

due 10 the singulanty of the current distribution near the patch-
probe junction(s). special measures must be taken {4]. not to
mention additional IE complexities due to possible substrate
anisotropies or inhomogeneities in the antenna substructure. In
contrast. the hybrid finite element-boundary integral (FE-BI
technique alleviates these difficulties. and this was demon-
strated recently when the method was applied to rectangular
patch antennas [5].

In this paper. we present an edge-based hybnd FE-BI
formulation using tetrahedral elements for a charactenzaton
of arbitrarily shaped cavity-backed antennas. An example of
such a configuration is shown in Fig. 1. where a cavity is
recessed in a metallic ground plane enclosing the FEM volume
and the antenna elements on the aperture may be excited by
different schemes. such as a simple probe. a magnetic fnli
generator. a practical coaxial cable. microstrip lines. slots. or
a CPW line. In the context of the FEM. the cavity is first
discretized into a number of tetrahedral elements that naturaliz
reduce to triangles on the cavity's aperture. For nonrectangular
patches this trianguiar gndding is. in general. nonuniform.
and the exact boundary integral formulation based upon this
mesh applies to any patch shape. As a result. the hybnd
FE-BI technique is capable of modeling arbitranty <haped
cavity-backed antenna configurations. ditferent substrate in
homogeneities. anisotropies. and vanous practical excitation
schemes.

As is well known. the boundary integral (Bl) equation
subsystem leads 1o a fully populated matrix whose ~ize o
determined by the number of aperture mesh edges. For liruce
apertures. this analysis becomes impractical tn terms of starayy
and computation time requirements. and 1o overcome nis
inefficiency a uniform zoning of the aperture 15 requacs
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By resorting to the structured mesh. the boundary integral
matnx can be cast into a discrete convolutional form. thus
permitung the computation of the matrix-vector products via
the discrete Founer transform (DFT). avoiding a need to
store the full Bl mamx This memory-saving scheme has
already been applied to IE soluuons involving rectangular
[6]. [13] and tnangular [7} surface grids. and in this paper
we descnbe how the BiCG-FFT solver is implemented for
tnangular meshes. The differences between the rectangular and
tnangular meshes are also described. and results are presented
that demonstrate the method's versatility in computing the
scattening and input impedance of various nonrectangular
pnnted antennas.

II. FORMULATION

In this section, we present the edge-based hybrid FE-BI
formulation using variational principles. where the matrix
algebra notation is employed so that one can readily extend
the formulae to the general anisotropic case. As derived in
[5]. the complete functional pertinent to the scartering and
radiation by a cavity-backed configuration (shown in Fig. 1)
may be written as

F(E) =% /// {(\- x E)- pi(\‘ x E) - kgc,E-E} dv
v r

+2jk020//(ExF)-éd5+///E
5 v

1
4 (]koZoJ, + T x —M,) dv - 2k§//(E x %)
Hr s

: {// (E x 3) - <I+ %vv) Go(r.r’)dS’} ds
s 0

(1

where J, and M, represent interior electric and magnetic
current sources within the cavity V; H' is the incident field,
if any, from the exterior region; the surface S emcompases
the cavity aperture excluding the portion occupied by the
antenna elements: ¢, and u, denote, respectively, the relative
permittivity and permeability; ko is the free space wave
number. I the unit dyad. and Gy(r. r’) the free space Green’s
funcuon with r and =’ denoting the observation and integration
points.

A. Caviry Volume Modeling

In proceeding with the discretization of (1), it is convenien
to reexpress it as '

F=F +Fs (2)

where Fi- denotes the volume integral contributions and,
similarly. F's accounts for the surface integral contributions.
The cavity volume is subdivided into N tetrahedral elements
Ve e = 1.2..-- N). and within each tetrahedron the field is
expanded using edge-based elements as

E=[VIT{E}. (3)
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with

in which V3, isthe u (u = r.yor 2) component of the volume
vector basis functions along the :th edge. The unknown \ector
{E}, has six entries. one for each tetrahedron edge. (In this
paper. we use square brackets for matrices and curly brackets
for vectors.) Inserting (3) into (2). and taking the first variation
of Fy- with respect to {E},. vields

5F\=Z{[‘4]€{E}r*{]\}z} (5
where
.= f]] {iwmwwz R T } i
v, LHr
(61}
Jl.‘r
{K}€=/// V0ed jkoZo | Juy
i Jy:
M.,
+V x — 1 M, dv (M
HrA M,
3 3
iy § 04 v,
ay{ -} 0,{ y}
[DV)T = g{x;}—%{v;} . (8)
) 8
- V,
81'{ y} ay{ 1'}

To carry out the above integrations, it remains to introduce the
volume expansion or shape functions V.. For our implemen-
tation we employed the linear edge-based shape functions for
tetrahedral elements given in {8] and [9].

B. Aperture Modeling

To discretize the surface integrals in (1). the aperture 1s
subdivided into triangular elements since these correspond 1o
the faces of the tetrahedrals. Within each triangle. the field is
represented as

E = [S|]T{E,}. (9)
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where

S =[{S: 1S e
Sul
Su?
5u3

Esl
E,,

EAB

{Su} = u=1zI.y (10)

{Es}w =

€

in which S, is the u(u = r.y) component of the surface
vector basis functions along the ith edge. On substituting (9)
into the surface integrals of (2) and taking the first variation
of Fs with respect to {E,},, we obtain

6Fs = Y ([Ble{Eu}e +{L}} an

where

5= | / / | { — 2k2[S.S.]T

+ 2[%{&} - C%{s,}} [%{sy}f - aiy,{s,}f]}

-Golr.r")dSdS' (12)

and

(13)

(L}. = j2koZo //Sc[s,](_’ﬁ;) ds.

Note that in (12) the elements of the array [S,] are functions
of the observation vector r, whereas the elements of [S,]7 are
with respect to the integration point r’. A suitable set of linear
edge-based surface basis functions is

Lo
S’(r)={2‘4€~x(r—r.)e(r) res. (14)

0 otherwise.

In this expression. [, denotes the length of the ith edge and r,
is the position vector of the vertex opposite to the ith edge.
Since each edge shares two triangles, one is defined as the plus
and the other as the minus triangle. Therefore, ¢(r) is given by

er) = {1_1

where S, = §7+ S . The constant A, in (14) denotes the area
of the plus or minus triangle depending on whether r € S
orr € 57. We note that S,(r) x 3 vields the basis functions
used by Rao er al. [10] in their moment method solution of
boundary integral eguations.

reS”

resS- (15)
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C. Svstem Assembly

To construct the final system for the solution of the electrc
field components we combine (5) and (11). and after assembl
we obtain the system

{IAHE} + {K}} +{[BUE.,} + {L}} =0. (16

In this, {K} and {L} are the excitation vectors due 1o the
interior current sources and the exterior excitation, respec-
tvely. The unknown electric field vector { £} consists of all
field expansion coefficients with respect to the element edges
except those coinciding with perfectly electrically conducting
(PEC) walls, PEC antenna element(s). or PEC pins inside
the cavity. Finally, the vector {E,} represents the unknown
surface fields whose entries are part of those in {E} with
their corresponding edges on the aperture. The explicit ex-
pressions for the matrices and vectors in (16) can be readily
extracted from (6), (7), and (12) (see also {11]). It is evident
that {A] and [B] are symmetric as a result of the assumed
isotropic medium and reciprocity. In addition, [A] exhibits
high sparsity due to the FEM formulation, whereas [B] is fully
populated. Two approaches may be followed in carrying out
the solution of the combined subsystems when an iterative
solver is employed. such as the biconjugate gradient (BiCG)
method [13]. These two approaches differ in the manner used
for the evaluation of matrix—vector products called for in the
iteration steps. One could sum the coefficient matrices [ 4] and
[B] by adding up the corresponding matrix entries prior to
the execution of the BiCG algorithm, or instead the resulting
vectors may be summed after carrying out the individual
matrix-vector products. We observed that the first approach
is more efficient in terms of computation time after reordering
the combined matrix and storing only the nonzero elements.
This is because, in the context of this scheme. the combination
of the two matrices is performed only once outside the
iteration. However, the second approach is compatible with
the BiCG-FFT scheme, where the FFT algorithm is emploved
to exploit the convolutional property of the integral operator,
thus eliminating a need to explicitly store the entire Bl matrix.
Below, we discuss the implementation of the matrix-vector
product of the boundary integral system for the BiCG-FFT
solution. ’

D. Implementation of the Boundary Integral
Matrix Vector Products Using FFT

We refer to Fig. 2. which shows an overlay of a uniform
gnd over a nonuniform mesh. The boundary integral equation
1s implemented using the structured triangular grid. and the
relation between the unstructured and structured mesh is
described in the next section. We recognize that the tnangular
grid consists of equal right triangles and thus involves three
different classes of edges (classes 1. 2, and 3). These include
the z directed, y directed. and the diagonal edges. all of which
are uniformly spaced. For the FFT implementation. each class
of edges is independently numbered in accordance with their
geometric location. Specifically, the ith class will carry the
numbering (m.n) if the edge is the mth along the r direction
and the nth along the y direction. The indices (. 1) take the
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Fig. 2. Overlay of a structured thangular aperture mesh over an unstructured mesh. shown here 1o conform to 4 circular paich
values matrix-vector product can now be calculated as

m=0.1.2.... M
n=012. . N

with 7 = 1 for the y directed edges. : = 2 for the diagonal
edges. and ¢ = 3 for the r directed edges. Consequently, we
find that

M-2 =] N-1 i=1
M=L{M-1 (=2 Ni=(N-1 1=2 am
M-1 i=3 N-2 =3

where M and N denote the numbers of elements along the r
and y directions. respectively.

To perform the integrations for the evaluation of the bound-
ary integral matrix elements, it is now convenient to rewrite
the basis functions (14) in terms of the new indices (m.n).
We readily find that the edge-based basis functions associated
with each of the aforementioned class of edges can be rewritien
as shown in (18)—(20) at the bottom of the page, where the

{BI subsystem} = [B]{E.}
3 [ A N
= Zl Z Z B:'r{n‘m n
J=

1
m =0n'=it

in which (m.n) are the geometric location indices for the ith
class observation edges. whereas (1n’. 1’} are the same for the
Jth class edges belonging to integration elements. Thus. the
specification of the indices . 7. and n completely defines
the entry k, = nM' + Af of the column resulting after the
execution of the boundary matrix—vector product. It is readily
found that

E_l

moon

2h

B}

mn.m'n’

- 2k2 // // Sn Shon Golror'yde dy dir’ dy’
s.JJs;
“8 11
" (Aray)? J /s, J /s, Glriotritl,

superscripts refer to the edge class. Each entry of the boundary Golr.v')dr dydr' dy (22
(nAy — y)f + (r — mAD)y (r.y)es-
Sho(ry) = = Y=+ DAY)F+((m+2)Ar —0)§ (r.y)€ S- (18)
1o otherwise.
5 A — YT+ (e~ U+ 1)Ar)y €58-
A 2 + A 2 (n Yy b . " .
5,2,,,,(1.3/) = (37) (Jy) (y—(n+DAy)i +(mAr-ryy € S” (19)
Aridy
0 otherwise.
((n+2)Ay —y)F + (or — (m + DAryy (royre s-
Smnlry) = — (¥ — nAy)r + (mAr — 1)y lr.yle S~ (20
Ay )
0 otherwise.
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with

Ay 1
VAT + (Ay)?
.

Ar

l, =

1
2 23
3.

More important. it can be shown that the BI subsystem exhibits

the convolutional property B ... = B _ . _ . and
thus we can rewnite (21) as
3
[B{E,} =) _ BYsE (24)

=1

where the = denotes convolution. It is now seen that the
computation of the boundary matrix—vector product can be
performed by employing the 2-D discrete Fourier transform
(DFT), thus avoiding a need 1o store the BI matrix other than
those entries that are unique. When the symmetry property of
B is also invoked. implying

(m—-m' . n-n')

BY

{m—-m’' n—n’

_BJ"
)=

m'—-m.n’'—-n
(

(25)

t is concluded that the total nonredundant entries in the BI
natrix are

3
Y S M+ M-,

1=1 =1

N, (26)

2
Chis should be compared to the ( 3°°_, M*N*) entries whose

torage would normally be required if the BI system was not
‘ast in convolutional form. We remark that N,, is nevertheless
:qual to twice the number of entries required for uniform
ectangular grids (6] for one class of edges. To avoid aliasing,
t is necessary that B('fn_m,‘"_n,) = By’(m,n) be castin a
-D array that has the usual periodic form, and zero padding
nay also be required to make use of the standard FFT routines.
pecifically. the matrix—vector product (21) is executed by
sing the MFTxNFT array (27), shown at the bottom of the

age, with the corresponding field vector given by

E2 (. 7) = {El(ﬁx.ﬁ) O<m<M, 0<n< NI
P 0 otherwise.
(28)
nd MFT and NFT must be powers of 2 if a radix 2 FFT

lgorithm is used.
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In the BiCG-FFT algonthm the Bl subsvstem vector 1s
computed as

3
{BI subsystem} = Z S{DFT~*{DFT{B!'} DFT{E/}},

=1

129
The presence of the operator S indicates the necessan reorder-
ing of the 2-D array that results after the inverse FFT operation
into a single column with the proper indexing for addition to
the FEM subsystem. It should be remarked that in contrast
to [7] the integrals (22) are evaluated without introducing
any approximation. This is necessary to preserve the global
combined system symmetry.

IIl. MESH OVERLAY SCHEME FOR
NONRECTANGULAR PATCHES

As described above. the BiCG-FFT solver requires uniform
aperture gridding so that the Bl subsystem can be put in
block circulant form. This can always be achieved during mesh
generation whenever the patches are rectangular in shape or
in case of radiators that are placed at some distance (usually
small) below the aperture. However, for circular, triangular,
or other nonrectangular patches on the aperture. it is not
possible to construct a uniform mesh using the mesh generator.
Typically. the aperture mesh is necessary to conform to the
patch shape, leading to an unstructured free surface grid. In
this case. to make use of the efficient. low-memory BiCG-
FFT algorithm, an approacn is proposed to overlay on the
unstructured aperture grid another coincident structured grid.
as shown in Fig. 2. The boundary integral subsystem is then
constructed using the overlaid uniform grid. whose edge fields
can be related to those on the unstructured grid via two sparse
transformation matrices. That is, it is necessary to append to
the system (16) the relations

{E,}, = [TF){E, }

{E.},.. = (TB){E.}, (30)
where the subscripts u« and nu refer to the field coefficients
of the uniform and nonuniform aperture grids, respectively.
Also, [Tr] and [Tg] refer to the forward and backward trans-
formation matrices, respectively. with N, and N, , denoting
the numbers of the uniform and nonuniform mesh edges on
the cavity aperture.

By (m.n) = { Bu(m. 7 - 1 — NFT),

L0 otherwise.

O0<m< A
NFT - N7 +1 <n < NFT

BY (i - 1 -~ MFT.7 — 1 — NFT).

(R _~ = O0<m<M

B (=m. Tl). 0<n< N7
‘ - o~ MFT - M'+1<m < MFT
(— -

BY(-m.-n). 0<i<N

(27

MFT - M'+1 <m < MFT
NFT - N7 +1 <n < NFT

OMGINAL PAGE 18
OF POOR QUSRI
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overlaid unstructured
mesh tangies

Fig. 3

[llustration of the
transformation matnx elements between the structured and unstructured mesh.

parameters and geometry used in construcung the

To derive the elements of [TF]. we begin with the expansion
(9) and enforce it at three points on each edge belonging to
the uniform grid. We conveniently place these three points at
the center and ends of the edge (see Fig. 3). Given the fields
at these points, we can interpolate the field along the (m.n)
edge of the uniform gnd using the weighted average

AVnnd 1

Z E:u(rendl )
k=1

-led
k
Enu (Tmid )
=1

1

1.
(Ev)im.n) 76u- N
1

-+

1
A"mxd k

‘\.end 2

Z E:u(rendg )

k=1

(3n

1
+
24‘\‘end2

in which ¢, denotes the unit vector along z, y or the diagonal,
depending on the class of edge being considered. The quanti-
ties EX represent the fields in the nonuniform grid triangles
with the superscript k being a sum variable in Case feng,,
Tend,- OF T'nyig Specify a point shared by more than one triangle.
Obviously, Nend,« Nmia. and Nend, denote the number of
nonuniform grid triangles sharing the node at Tend,» Tmid. and
Tend,. respectively, and will typically be equal to unity.

After assembling (31) into (30), we find that the elements
of the forward transformation matrix are given by

Nend,

3
Z Z 61](Sf(rendl )

k=1 £=1

. 1
56u - -
2 2j\end)

(TF)U =

1 . 'mnd

hY 3
Z Z Ez)zszf("mid)

k=1 ¢=1

—_—

-\’—m 1d

Nend,

1
+ 2 ZEIJ[S?(rEndJ)

Nend, k=1 ¢=1

(32)
in which

e =41 J=Je
‘i 0 otherwise
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and the global indices ; and J correspond to the (th un:;
gnd edge and the jth nonuniform gnd edge The subsenp

1s the global index used 1 numbenng the nonuniform el
edges. whereas the subscnipt ¢ 1= 1. 2 or 31 1s the local edge
index used in the definition of the basis funcuions S, iwev
(14)). We remark that the explicit computanion and sorugy
of the transformation matix elements results 1n a substantiy!
increase in efficiency because it avoids the usual assembly
process during each interanon step and that the proposed
overlay scheme allows the analysis ot large nonrectangular
patch arrays because storage of a fully populated Bl syvalem
matrix is avoided. The user needs onls to provide an addinonal
data file that flags the uniform gnd edges lving on a PEC
element. and this is an important user-onented feature of the
formulauon. Following the same procedure. we can obtain
the expression for the entries of the backward transtormauon
matrix. It shouid be noted that assuming each uniform gnd
edge traverses three or Jess nonuniform gnd tnangles. the
nonzero entries in each row of [7r] will be 9 or less. How ever.
they can reach a maximum of 18 if the midpoint and endpoints
reside on an edge of the nonuniform gnd. The maximum
nonzero entries in each row of [T5! will be 15. but the typical
number will be much less.

IV. NUMERICAL CONSIDERATIONS

Based on the presented FE-BI formulation, a computer
program was writien for the analysis of the radiation and
scattering by cavity-backed patch antennas of arbitrary shape.
The antenna geometry is supplied to this program 1n an
nput file that, as a minimum. must contain lists of 1} the
nodes and their (z.y.z) coordinates. 2) the nodes forming
each tetrahedron, 3) the nodes on the cavity aperture. and
4) the nodes on metallic boundaries. For arbitrarv antenna
geometries, it is necessary to employ a sophisticated volume
mesh generation package, and a number of these are available
commercially. Typically. each of these packages generates a
“‘universal file’' that can be readily preprocessed 1o extract
the aforementioned input lists.

A major effort was devoted to writing the program in a
manner that minimizes the storage and computational require-
ments. Specifically, the boundary conditions on the metallic
surfaces are enforced a priori to obtain a system that in\olves
only nonzero field components. The sparse fnite element
matnx was stored as a single array of length .\ N.,. where
N, is the total number of unknowns within the ca i volume
and N;,denotes the maximum number of nonzero row entres,
The BI matrix was stored in different wavs. depending on
whether the FFT was to be emploved for the e\valuation of
the matrix—vector products. If the BiCG solution wus 1o be
carried out without the FFT. then the \'_ » N. Bl integral
matrix was added to the FE array. resulting in 4 1-D array
about N, Ny, + N2 long. For siot antennas. including cavity -
backed spirals, and moderately sized svstems. 11 wus found
preferable not to use the FFT. thus avoiding any intemalation
errors. In that case the generation of a single Conmoned FE-
BI matrix before execution of the BiCG ulzor reduces
the computational requirements. This i because © wumber

URIGINAL PAGE 18
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of operations associated with the repeated combinations of
the FE and Bl subsystems within the BiCG iteration is
avoided.

When the FFT is to be used as part of the BiCG solver.
the FE and Bl matrices must be kept in separate arrays
throughout the execution process. In this case, the FE matrix is
again stored as a single array. and similarly the nonredundant
elements of the BI matrix are stored in another single array
of length 9N(2M ~ 1). The factor of nine is due to the
three classes of edges. and as usual M and N denote the
number of elements along the r and y directions, respectively.
Because of the storage and computational efficiency of the
BiCG-FFT algorithm, it is necessary to resort to uniform
aperture gnds for conformal antennas involving a substantial
number of aperture edges. Of course, one should always use
uniform triangular grids when the patches on the aperture are
rectangular or if the array supports a superstrate. In the case
of nonrectangular patches it will be necessary o overlay a
structured triangular grid over the unstructured grid generated
by the mesh generator. This must be done in the preprocessing
stage, and should be taken into account when constructing
he FE matrix. For scattering computations, the overlay of
he structured grid is almost always the preferred approach
secause it does not, generally, compromise the accuracy of
he computed scattering cross section. However, for antenna
)arameter computations, the interpolation scheme between the
tructured and unstructured grid edges may be of concemn.
lepending on the specific antenna geometry. Generally, thin
nnular slots and plannar spirals should be treated without
esorting to structured grids, and to our experience this does
ot cause a large computational burden because these antennas
re associated with small apertures. In the case of circular,
1angular, or other nonrectangular patches. the structured grid
/as not seen to compromise the computational accuracy. Of
ourse, conclusions based on one type of antenna do not
ecessarily apply to others. and thus the suggested alternatives
wust be examined separately for each antenna before choosing
ne approach over the other. Of importance here is that the
»rmulation s suitable for modeling any antenna shape and
:ed structure.

V. RESULTS

We present below some representative numerical results for
€ purpose of validating and demonstrating the robustness
" the tetrahedral formulation for scattering and radiation by
fferent configurations of cavity-backed antennas. In each
se the computed results via the FE-BI method are compared
ith reference measured or calculated data.

Scattering and radiation by a circular patch: Fig. 4 illus-
ites a circular patch residing on the surface of a 0.406 cm
ick substrate having a relative dielectric constant of ¢, = 2.9.
le patch’s diameter is 2.6 cm, and the substrate is enclosed
a circular cavity 6.292 cm wide. This cavity and the patch
rre recessed in a low cross section body for measuring its
-S. A comparison of the measured and calculated backscatter
# RCS as a function of frequency is also shown in Fig. 4.
r this computation. the direction of the incident plane wave
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Fig. 4. Companson of the computed and measured a.,, back scatter RCS
as a funcuon of frequency for the shown circular paich. The incidence angle
was 30° off the ground plane.

1.0

Fig. 5. Comparison of the computed and measured input impedance for the
circular path shown in Fig. 4. The feed was placed 0.5 cm from the center of
the paich. and the frequency was swept from 3 GHz to 3.8 GHz

was 60° from normal. and as seen the agreement between
measurements and calculations is very good throughout
the 3-9 GHz band. Input impedance measurements and
calculations for the samé patch are displaved in Fig. §.

The probe feed in this case was placed (.5 cm from the

patch’s center, and it is again seen that the measurements and
calculations are in good agreement.

Radiation by & one-arm conical spiral: We considered the
modeling of this radiator to demonstrate the geometrical
versatility of the FE-BI method. Two projections of the spiral
radiator and surface mesh are illustrated in Fig. 6. The top
and bottom edges of the strip forming the spiral follow the
linas p = (0.0503 .\ exp(0.221{0£2.66)]. = = a= expi0.22]10 .
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where (p.¢.z) denote the standard cylindrical coordinates.
a- are equal to 0.0832) and 0.0257A. respectively, and
0 < @ < 27. This spiral arm resides on an inverted cone (9.24
cm tall) whose bottom cross section has a diameter of 1.6%
cm and the top cross section has a diameter of 21.7& cm. For
our calculations A = 30 cm (f = 1 GHz) and the spiral was
situated in a circular cavity 10.01 cm deep. The computed £
principal plane radiation pattern taken in the ¢ = 90° plane,
using a probe feed at the cavity base, is given in Fig. 7. It
is seen that this pattern is in good agreement with the data
given in [12]. As can be expected. the Ej pattern (not shown)
differed from the measured data near the horizon because of
interference from the finite circular cavity housing the spiral
that was included in the analytical model. The latter was not
part of the measurement configuration. which consisted of the
spiral antenna on a large circular plate.

Anmuar slor impedance: Fig. 8 shows a narrow circular
(0.75 cm wide) annular slot situated in a circular cavity 24.7
cm wide and 3 cm deep. Because the annular slot is narrow.
the implementation of the BI subsystem is verv small for
this application. and as a result there is no need to invoke
the FFT in the BiCG algorithm. The FE-BI method is basi-
cally quite effective in modeling small aperture configurations
without a need for special computational considerations. Input
impedance calculations as a function of frequency for this
radiator. excited by a probe placed across the slot. are shown
in Fig. 8. and agree well with the values calculated via a
modal-boundary integral method [14]. For these calculations.
the frequency was swept trom 700-1000 MHz. The diclectnic

Iustration of the configuration and mesh of the one-arm conical spiral used for the computation of Fig. 7.

Radiation Pattem in dB
8
|

-30. F Eq (FE-BD) E
Ey (measured [12))

40. b 3

-50. L L i 1 L L L

Fig. 7. Companison of the calculated radiation patiern (E .y taken in the
¢ = 90° plane. with data in reference [12] for the one-arm comical spiral
shown in Fig. 6.

constant of the material filling the cavity was set to ¢, = 1.37
as in (14]). and this is an effective value to account for
the presence of a dielectric slot cover used as part of the
measurement model for holding the piate.

V1. CONCLUSION

We presented a hvbrid finite element-boundary integral
(FE-BI) formulation that incorporates linear tetrahedrals. The
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1=1235cm
b=075cm
Po=T17cm

07<f<1GHz

Fig. 8. Companison of input impedance calculations for the illustrated cav-
ity-backed slot.

method was specifically developed for the radiation and scat-
tering analysis of cavity-backed printed antennas, where the
FEM is used for modeling the cavity region and the BI
equation acts as a global boundary condition for terminating
the mesh on the cavity aperture. The FE-BI formulation is
particularly suited for the analysis of complex configurations.
and much emphasis was given here in developing a solution
technique requiring O(N') storage in spite of the resulting
fully populated BI subsystem. The latter was achieved by
making use of the convolutional property resulting from the
structured mesh. thus permitting use of the FFT in the BiCG
iterative solver for computing the matrix-vector products. For
nonrectangular patch geometry. a novel numerical scheme is
proposed to overlay on the unstructured free mesh a uniform
triangular grid. avoiding the storage of the large BI subsys-
tem. For scattering calculations associated with large aperture
structures, use of the FFT proved essential in minimizing the
computational requirements.

A number of patches. slots. and planar and nonplanar spiral
antennas were analyzed for the purpose of demonstrating the
versatility and accuracy of the FE-BI technique. Certainly.
the need to use a sophisticated mesh generation package is
deterrent to the application of the technique for the analysis
of simple antenna configurations. However. this is unavoid-
able when dealing with complex geometries and. moreover.
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the pervasive use of such commercial packages on desktop
computers makes the techmque quite attractinve
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