
(NASA-CR-196491) NONLINEAR N95-13162
STRUCTURAL RESPONSE USING ADAPTIVE
DYNAMIC RELAXATION ON A
MASSIVELY-PARALLEL-PROCESSING Unclas
SYSTEM (Clemson Univ.) 43 p

G3/39 0027812

NASA-CR-196491 / ~ *—

«2 2

NONLINEAR STRUCTURAL RESPONSE USING ADAPTIVE DYNAMIC

RELAXATION ON A MASSIVELY-PARALLEL-PROCESSING SYSTEM

David R. Oakley * Norman F. Knight, Jr. **
Clemson University Old Dominion University
Clemson, SC 29634-0921 Norfolk, VA 23529-0247

"Abstract - A parallel adaptive dynamic relaxation (ADR) algorithm has been developed for nonlinear

structural analysis. This algorithm has minimal memory requirements, is easily parallelizable and scalable

to many processors, and is generally very reliable and efficient for highly nonlinear problems. Performance

evaluations on single-processor computers have shown that the ADR algorithm is reliable and highly vector-

izable, and that it is competitive with direct solution methods for the highly nonlinear problems considered.

The present algorithm is implemented on the 512-processor Intel Touchstone DELTA system at Caltech,

and it is designed to minimize the extent and frequency of interprocessor communication. The algorithm

has been used to solve for the nonlinear static response of two- and three-dimensional hyperelastic systems

involving contact. Impressive relative speedups have been achieved and demonstrate the high scalability of

the ADR algorithm. For the class of problems addressed, the ADR algorithm represents a very promising

approach for parallel-vector processing.

1. INTRODUCTION

Use of the finite element method to solve structural problems of increasing computational size and

complexity continues to be the focus of intense research. Yet even on current high-speed vector computers,

solution costs, especially for transient dynamic analyses, are often prohibitive. Emerging high-performance

computers offer tremendous speedup potential for these types of applications, provided an optimal solution

strategy is implemented. Existing sequential solution procedures may be adapted to operate on these com-

puters. However, these procedures have been developed and customized for sequential operation and may

not be the best approach for parallel processing. To exploit this potential fully, problem formulations and

solution strategies need to be re-evaluated in light of their suitability for parallel and vector processing. As

such, the overall goal of this research is to develop an adaptive algorithm for predicting static and dynamic

response of nonlinear hyperelastic structures which exploits these emerging high-performance computing

systems,

* Dean's Scholar, Department of Mechanical Engineering

** Associate Professor, Department of Aerospace Engineering

The basic formulation for the adaptive dynamic relaxation (ADR)-algorithm for hyperelastic structures

is given by Oakley and Knight [1]. Dynamic relaxation is a technique by which the static solution is obtained

by determining the steady-state response to the transient dynamic analysis for an autonomous system. In this

case, the transient part of the solution is not of interest, only the steady-state response is desired. Since the

transient solution is not desired, fictitious mass and damping matrices which no longer represent the physical

system are chosen to accelerate the determination of the steady-state response. These matrices are redefined

(using existing equations) so as to produce the most rapid convergence. For highly nonlinear problems where

stiffness changes significantly during the analysis, adaptive techniques exist which automatically update the

integration parameters when necessary [6].

An ADR algorithm represents a unified approach for both static and transient dynamic analyses, and is

known to be very competitive for certain problems with high nonlinearities and instabilities [6,7,8]. Reliability

is ensured by integration parameters which are adaptively changed throughout an analysis to accommodate

these nonlinear effects. It is based on an explicit direct-time integration method and a very small time step

is generally required to ensure numerical stability; however, the computational cost per time step is very low

and is mostly associated with evaluation of the internal force vector.

The present paper builds on a study which was begun to evaluate the potential of the ADR algorithm

for solving complex structural problems on parallel-vector computers. The formulation of an ADR algorithm

with application to nonlinear hyperelastic structures is presented in reference [1] including a complete deriva-

tion of the algorithm and the problem adaptive scheme used to ensure reliability and improve performance.

Finite element equations are derived for the nonlinear analysis of elastic and hyperelastic solids subject to

large deformations. A very simple and efficient algorithm based on solver constraints is developed to enforce

frictionless contact conditions.

The performance of a sequential implementation of the ADR algorithm is evaluated in reference [2] using

a Convex C240 minisupercomputer. A new organization of the finite element computations is implemented

to exploit vector processing. Two- and three-dimensional test cases are used to assess the analysis and

performance capabilities of the algorithm. Performance of the ADR algorithm for the nonlinear static analysis

of each test case is compared^with that of an existing finite element code which employs the Newton-Raphson

procedure and a highly optimized Cholesky skyline solver. Relative speedups due to vectorization are also

presented. This algorithm is found to be reliable and highly vectorizable, and it outperforms the direct

solution method for the highly nonlinear problems considered.

The performance of a parallel implementation of the ADR algprithm is evaluated in reference [3] on a

cluster of 16 Sun SPARC IPX workstations using PVM [10] and on a 128-processor Intel iPSC/860 hypercube.

The parallel implementation is designed such that each processor executes the complete sequential algorithm

on a subset of elements. One-dimensional strip partitioning and two-dimensional block partitioning are used

to divide the problem domain among the available processors. Load balancing is ensured by using structured

meshes of one material. Efficient schemes are implemented to accomplish the required nearest-neighbor and

global communication. Relative speedups are presented for the nonlinear static analysis of the 2-D and

3-D test cases developed and analyzed in reference [2]. Impressive relative speedups are achieved on the

Hypercube and demonstrate the high scalability of the ADR algorithm. Good relative speedups are also

achieved using PVM on a cluster of networked workstations.

The objective of this paper is to evaluate the performance of a massively parallel implementation of the

ADR algorithm using the 512-processor Intel Touchstone DELTA system. Relative speedups are presented

for the test cases evaluated in reference [3]. Final results and completion times for each test case are also

given.

The remainder of this paper is organized as follows. In Section 2, the formulation and sequential imple-

mentation of the ADR algorithm are reviewed, then the general parallel-processing approach is described.

In Section 3, the Intel Touchstone DELTA system is described, a general flowchart for the complete parallel

algorithm is presented, and interprocessor communication details are discussed. In Section 4, the test cases

are reviewed and performance results are presented and evaluated. Conclusions are given in Section 5.

2. PARALLEL-PROCESSING APPROACH

This section begins with a review of the basic formulation and sequential implementation of the ADR

algorithm. Afterwards, the general parallel-processing approach is described. The partitioning strategy is

presented, load balancing characteristics are discussed, and details of the parallel solution process are given.

2.1 Formulation of the ADR Algorithm

The ADR algorithm is based on the following semi-discrete equations of motion governing structural

dynamic response for the n"1 time increment

"MD+ C I) + F(D") = P" (2.1)

where M is a diagonal mass matrix, C is a damping matrix, F is the internal force vector, and P is a vector

of external loads. The vectors D,D, and D represent the acceleration, velocity, and displacement vectors,

respectively. The internal force vector F is a function of the displacements and may be assembled on an

element-by-element basis [1].

The ADR algorithm involves the use of an explicit numerical time integration technique to solve equa-

tion (2.1). In the current algorithm, a half-station, central-difference technique is used which provides the

following approximations for the temporal derivatives

r(D"+1 - D") (2-2)h

D" = (Dn+i - D"-*) (2.3)
h

where h is a fixed time increment, and D" is averaged over a time step as

D" = (Dn+3 + D"-') (2.4)

Substituting equations (2.3) and (2.4) into equation (2.1) and assuming mass-proportional damping (C = cM)

yields the fundamental time marching equations for advancing the velocity and displacement vectors to the

next time step. Thus,

°"+i = (sra) *"-* + (£3) M"(p" - F"> <2-5>

= D»+ /,D" + i (2.6)

Using an explicit time integration technique, the resulting system of equations are linear, even for nonlinear

problems. Also, if a diagonal mass matrix is used, the matrix inverse of M is a trivial computation and

these equations represent an uncoupled system of algebraic equations in which each solution component

may be computed independently. For transient dynamic analysis, a time history of displacements (system

response) is sought. Mass and damping vectors which best model the physical properties of the system are

used. Techniques for estimating the maximum allowable time step size are available, such that the time

step size may change during the transient dynamic analysis. As such, explicit time integration methods are

attractive candidates for implementation on high-performance computers. They generally have low memory

and communication requirements but are also only conditionally stable numerically.

The objective of a static analysis using the ADR algorithm is to obtain the steady-state solution of

the pseudo-transient response. Thus, each time step is in fact an iteration or pseudo time step. The mass

and damping parameters generally do not represent the physical system. Instead, they are defined so as

to produce the most rapid convergence, where convergence herein is based on a relative error of the force

imbalance or

_ HP - F"|| _ HR-II(— ypii — w - "" (}

where P is the static load and R" is the residual force vector for time step n. Note that when convergence

(i.e., steady-state response) is obtained, the internal forces balance the external forces, and the inertial forces

vanish.

A derivation of the fictitious mass and damping equations for the ADR algorithm is given in reference

[1]. Based on Gerschgorin's theorem, this new mass matrix is denned as

M» * T £ lKijl or M - Ts (2'8)

j=i

where S represents a lumped stiffness which may be computed on an element-by-element basis as follows

nelem ndof

S = ^ se where (s,-,-)e =]JT |*y|e (2.9)
e=l j=l

The quantities fc,-;- in this expression correspond to the entries in the element stiffness matrix ke (see reference

[1]). As shown in equation (2.8), the fictitious mass M and time step size h are not independent. However,

once either is specified, the other value may be readily computed. Herein, the time step size is arbitrarily set

to one. Numerical experiments with other values (e.g., 10, 100, 1000) confirm that this choice is arbitrary and

no change in algorithm performance or convergence characteristics is observed. The new damping coefficient

c is computed using

c = 2 where \a ^ • , • . (2-10)
- - '

The parameter X0 represents the lowest eigenvalue estimated from the mass-stiffness Rayleigh quotient shown.

The vector S" is a diagonal estimator -of the directional stiffness after step n, the components of which are

given by

""1

(2'u)

The new damping coefficient c is updated every time step since it only involves minimal computations.

The new mass matrix must be evaluated at the beginning of the analysis, and in addition, subsequent up-

dates are sometimes necessary to maintain numerical stability. Stability is determined using the perturbed

apparent-frequency error indicator [6] where values of e, greater than one represent potential unstable nu-

merical conditions. This error indicator is given by

2.2 Solution Process

A flowchart of the sequential implementation of the ADR algorithm is shown in Figure 1. It begins with

initialization of time step (or iteration) counter n, and the two key flags istif and tend. The istif flag controls

evaluation of lumped stiffness matrix S (equation 2.9) and fictitious mass matrix M (equation 2.8). After

the first iteration, these quantities are only updated as necessary to maintain numerical stability. The lend

flag controls exits from the solution process. It is activated when convergence is achieved, when numerical

problems (such as collapsing elements) are detected, or when the number of time steps (or iterations) has

reached the user-specified limit.

As shown in Figure 1, a four-phase process is executed for each time step. Phase 1 consists of finite

element computations in which internal force vector F and possibly the lumped stiffness matrix S are

evaluated on an element-by-element basis. Phase 2 is the adaptive stage in which integration parameters

of the ADR algorithm are updated. If necessary, S may be used to re-evaluate M based on equation

(2.8). Scalar quantities DTSD and DTMD are computed and used to evaluate the damping coefficient c

in accordance with equation (2.10). Phase 3 is the solution step for the n + 1 step in which displacements

for the next time step are computed from equations (2.5) and (2.6). Contact conditions are also enforced in

this phase using the solver-constraints technique described in reference [1]. If unstable conditions exist as

determined from equation (2.12), istif is reset to 1. Phase 4 evaluates the force imbalance and convergence.

The scalar quantity ||R|| is computed and then the error is determined using equation (2.7). The scalar

quantity ||P|| in equation (2.7) is constant for the test cases considered herein and is evaluated once at the

beginning of the analysis.

2.3 Parallel Implementation

The ADR algorithm is very amenable to parallel processing. All vector quantities needed for the solu-

tion step may be computed on an element-by-element basis. The calculations required for each element are

completely independent, and the system of equations for computing the displacement solution at the next

time step are completely uncoupled. The primary objective for developing a parallel implementation is to

maximize performance (in terms of relative speedup) by minimizing the frequency and extent of interpro-

cessor communication and maximizing load balancing. To accomplish this objective, the ADR algorithm is

parallelized by having each processor execute the complete sequential algorithm on a subset of elements.

Two different partitioning schemes are used to divide the problem domain among the available pro-

cessors. The first is referred to as one-dimensional strip partitioning and views the system topology as a

1-D array of m processors. As described in reference [9], the finite element mesh is partitioned along the

longest element-wise dimension into m strips, and the elements within each strip are assigned to a particular

processor. The strip partitions of a cantilever beam test case are illustrated in Figure 2a for the case of

16 processors. The 1-D array view of the" system topology is shown in Figure 2b, and the corresponding

processor assignments for each partition are indicated. The test cases used in this research are very amenable

to this type of partitioning as they all have one dominant dimension in terms of the number of elements in

one direction. This method is relatively simple to implement and, as shown in Figure 2a, limits the neighbors

of each partition to two.

One-dimensional strip partitioning is only feasible if the maximum number of available processors is

less than or equal to the number of elements along the longest element-wise dimension. If a large number of

processors are used such that this condition is no longer satisfied, then a second partitioning scheme, referred

to as two-dimensional block partitioning, becomes necessary. This method views the system topology as an

n x m array of processors, where n is the number of rows of processors and m is the number of processors per

row. As described in reference [9], the finite element mesh is first partitioned along the longest element-wise

dimension into n strips. Each strip is then partitioned along its length into m blocks, and the elements

within each block are assigned to a particular processor. The block partitions of a cantilever beam test case

are illustrated in Figure 3a for the case of 16 processors. In this example, the system topology is viewed as a

4x4 array of processors as shown in Figure 3b. It can be seen from Figure 3a that with this method, each

partition has at most eight surrounding neighbors.

Balancing the workload among the processors of a concurrent computer is central to achieving high

performance. Overall relative speedup is generally limited by the maximum CPU time required for any

processor to complete its assigned work. Since identical processors are typically available oh a given parallel

processing system, the amount of computations or work assigned to each processor needs to be nearly the

same in order to avoid processors being idle. Thus, an important consideration is to ensure that each

processor performs the same amount of work. As noted in Section 1, only structured meshes of uniform

size, type, and material are considered herein. Therefore, load balancing is primarily a function of the

number of elements assigned to each processor. As such, the partitioning is performed so that each processor

receives the same number of elements. A more sophisticated mapping or partitioning strategy (e.g., domain

decomposition) would have to be employed to achieve sufficient load balancing with an unstructured mesh

or if different materials are involved in the same finite element model.

A flowchart of the solution procedure executed on a given processor is shown in Figure 4. All com-

putations are now for the elements assigned locally to that processor. As shown, the algorithm is very

similar to the sequential solution procedure given in Figure 1 with just a few important differences related

to interprocessor communication.

Nearest-Neighbor Communication

One nearest-neighbor communication sequence is required for each time step (in Phase 1 of Figure 4).

This may be illustrated in reference to Figures 2 and 3 which show the finite element mesh for a cantilever

beam partitioned among 16 processors. Considering any two adjacent partitions, nodes along the interface

are shared by elements that are allocated to two different processors. As a result, the internal force vector

F and lumped stiffness matrix S computed for the interface nodes on a given processor are only partially

complete. Contributions must be obtained from the neighboring processors before the solution process can

continue.

For 1-D strip-partitioned domains, each partition may have a left and right neighbor. The required

nearest-neighbor communication can be accomplished in two steps as follows. In the first step, each processor

sends F and S values for the left interface to its left neighbor and then receives the corresponding values being

sent from its right neighbor as shown in Figure 5a. The second step consists of repeating this process in an

analogous fashion for the right interface nodes (see Figure 5b). The end result is an exchange of the interface

values between neighboring processors. This approach synchronizes the communication sequence among the

processors, thereby improving efficiency and avoiding the possibility of deadlock (e.g., two processors sending

different variables simultaneously, and each waiting for the other's variable to be sent before proceeding).

For 2-D block-partitioned domains, each partition may have eight surrounding neighbors. Even so, the

nearest-neighbor communication can be accomplished in four steps [4]. First, the left and right interface

values are exchanged in the horizontal direction as shown in Figure 6a. This is accomplished using the two-

step sequence described earlier for strip-partitioned domains. After each processor has updated its left and

right interface values with contributions received from its horizontal neighbors, the upper and lower interface

values are exchanged in the vertical direction using the same two-step sequence as before (see Figure 6b).

The end result is an exchange of interface values, first in the horizontal direction, and then in the vertical

8

direction. Using this procedure, interface values for the corner nodes of each block (along with the other

left and right interface values) are updated after the horizontal exchange to include the contribution from

horizontal neighbors. Since the vertical exchange operates on these updated values, communication between

neighboring diagonal partitions is automatically satisfied.

Global Communication

Two global communication sequences are required for each time step. The first is needed for computation

of the scalar damping coefficient c. Recall from the sequential implementation that c is evaluated for each

time step or iteration based on the vector products DTSD and DTMD. These quantities may be expressed

as

np ndof np

At (2.13)

np ndoj np

Bi (2.14)

where np refers to the number of processors and ndof denotes the degrees of freedom associated with the

elements on a given processor (it is understood that contributions from the interface degrees of freedom are

included only once).

Each processor must use the same value of the damping constant c, and this value must be the same

as that computed in the sequential solution (i.e., it must be based on global D,S, and M vectors). To

accomplish this, the following strategy is used. Each processor computes the local vector products A and

B given by equations (2.13) and (2.14), respectively. A global sum of A and B is then performed across all

processors such that they all end up with the same complete values for DTSD and DTMD. The correct

damping coefficient may then be computed and utilized by each processor.

A second global communication sequence is needed after computation of the new local displacements

(i.e., during Phase 4). Several events must occur at this point as discussed for the sequential implementation.

Convergence must be evaluated based on the current residual force imbalance error, and flags must be set

to control continuation of the solution process and updates of the fictitious mass.

The error computation given by equation (2.7) needed to assess convergence is similar to that of the

damping coefficient. It must be based on global system response, and the final result is needed by each

processor. In this case, the same global summation procedure is used to supply each processor with complete

identical values for the vector product RTR. As mentioned earlier, the quantity PTP is constant for static

analysis, therefore it is computed once and provided as input for each processor.

Flags tend and istif represent local conditions on each processor, however the actions they initiate must

be performed by all processors. If one processor detects the need for a fictitious mass update, all processors

must perform this update. Similarly, if collapsing elements occur on one processor, all processors must exit

the solution process. This information is also communicated by a global sum procedure. The appropriate

actions are then taken by each processor if the final summation result for each flag is greater than or equal

to one.

Summary

In summary, the primary difference between the sequential and parallel solution process is that the

parallel algorithm requires one nearest-neighbor and two global communication sequences each time step.

For a given partitioning scheme, the nearest-neighbor communication is independent of the number of pro-

cessors but is dependent on problem size as larger problems would imply more interface nodes. The global

communication is independent of problem size, since it only involves scalar quantities, but is dependent on

the number of processors. For large problems, the global communication time should represent only a small

fraction of the total communication cost. Additional implementation details for nearest-neighbor and global

communication is topology dependent and will be discussed in Section 3.

3. PARALLEL ALGORITHM

The parallel ADR algorithm is developed for implementation on the Intel Touchstone DELTA system

referred to herein as simply the DELTA. The unvectorized code is used as the baseline code. Vectorization

can be accomplished on the DELTA; however, it is not as straightforward to implement as on a Convex

computer [2]. Thus, the effect of vectorization on parallel performance will not be investigated in this paper.

This section begins with a description of the DELTA. Afterwards, a general description of the complete

parallel algorithm is given and communication details are discussed.

3.1 Intel Touchstone DELTA System

The Intel Touchstone DELTA system is a multiple-instruction multiple-data (MIMD) type computer.

The processor interconnection network represents a two-dimensional mesh topology rather than a hypercube

topology and is illustrated for 12 processors in Figure 7. This architecture is advantageous for large finite

element computations in two ways. First, it is scalable (i.e., its communication performance does not degrade

as the number of processors is increased). This feature is important as the size of finite element problems

10

continues to increase, requiring more and more processors to achieve results in a reasonable time frame.

Secondly, its use of local memory alleviates many of the problems and losses in efficiency associated with

memory contention on shared-memory computers.

The DELTA system consists of a total of 512 numeric processors. Each processor is an Intel i860

processor with a 40 MHz clock speed and 16 megabytes of local nonshared memory. A peak performance of

60 MFLOPS per processor is attainable for double-precision floating-point computations. A diagram of the

system is shown in Figure 8. The parallel processors are configured in a 16 x 32 array with a two-dimensional

mesh interconnection network. In contrast to the hypercube interconnection topology in which each processor

is directly connected to n neighbors for an n-dimension cube, with the mesh topology of the DELTA, each

processor is directly connected to at most four neighbors regardless of the total number of processors being

used (see Figure 3.11). This results in a lower interprocessor connectivity than the hypercube topology.

Interprocessor communication is accomplished with mesh routing chips which enable messages to go directly

to the receiving processor without interrupting any of the others. The mesh routing chips are designed to

be faster than the routing modules of the Intel iPSC/860 hypercube, in order to make up for the additional

distance messages may have to travel due to the lower connectivity of the mesh topology. The DELTA

system has two gateway processors Deltal and Delta2 which act as interfaces between the parallel processors

and the ethernet network. These two systems may be viewed as two Unix systems on the network, and they

serve as a base from which applications may be run on the system. The system is networked to remote

workstations which are used for editing, compiling, and linking the parallel algorithms and also for any pre-

and post-processing.

3.2 Complete Parallel Algorithm

A general flowchart for the complete parallel algorithm is shown in Figure 9. It consists of sequential

pre- and post-processing programs which run on a remote workstation and a node program which runs on

each of the parallel processors. The pre-processing program reads the input data required for the analysis

and prepares this data for the parallel solution process. The input data is first mapped into the appropriate

arrays needed for finite element computations. The resulting information is then partitioned and written

out in the form of an input file for each processor. These files are transferred to one of the two gateway

processors Deltal or Delta2. From the gateway processor, an n x m array of parallel processors is allocated,

and the node program is loaded and started on each. On a given processor, the node program reads its input

data file and then cycles through the ADR solution process for its subdomain of elements. When the solution

process is complete, each processor writes its local results to a file. These result files are then transferred

11

back to the remote workstation, and the post-processing program is executed. The post-processing program

reads the result files for each processor, assembles the global results, and then writes these results to a file.

Nearest-Neighbor Communication

Depending on the partitioning method being employed, nearest-neighbor communication is accomplished

using one of the two message-passing sequences described in Section 2. To implement this communication

effectively on the DELTA, the domain-to-processor mapping must account for the number of rows and

columns of processors to be utilized and the associated numbering scheme. The DELTA permits allocation

of an n x m array of processors, where n is the number of rows of processors (1 < n < 16) and m is the

number of processors per row (1 < m < 32). The numbering scheme is illustrated in Figure 7. As shown,

processors are numbered sequentially from left to right in each row, starting at the upper left-hand corner

of the n x m array.

For 1-D strip-partitioned domains, the mapping strategy may be illustrated by considering a cantilever

beam to be analyzed using 16 processors. If a single row of 16 processors is allocated as shown in Figure 2b,

the processors are assigned to each strip in consecutive order as illustrated in Figure 2a. If multiple rows

of processors are allocated (such as a 4 x 4 array), they are viewed as a 1-D array with the configuration

shown in Figure lOa. Based on this convention, the processors are assigned to each strip following the

order indicated in Figure lOb. Regardless of whether a single row or multiple rows of processors are used,

the mapping schemes just described ensure that neighboring domains are always allocated to neighboring

processors.

To illustrate the mapping strategies employed in conjunction with 2-D block partitioning, consider again

a cantilever beam to be analyzed using 16 processors. If a 4 x 4 array of processors is allocated (see Figure

3a), the beam is normally partitioned into a 4 x 4 array of blocks, and processors are assigned as indicated

in Figure 3b. To utilize the maximum number of processors, some test cases are partitioned into n x 64

blocks. For example, if a test case is discretized as an 8 x 64 element mesh, and 8 x 64 block partitioning is

desirable in order to utilize all 512 processors. Since the DELTA is configured as a 16 x 32 processor array,

the following modified 2-D mapping scheme becomes necessary. In this scheme, an n x m array of processors

is allocated, but viewed as an ^ x 2m array. For example, if a 4 x 4 array of processors is allocated, the array

of 16 processors is viewed as a 2 x 8 array with the numbering scheme shown in Figure lla. The resulting

processor assignments are shown in Figure lib.

Global Communication

12

As already mentioned, two stages in the ADR algorithm require global sums, representing the addition

of partial sums located on each processor. This operation may be easily and efficiently accomplished by

using the high-level global-sum construct which the DELTA provides. This construct takes advantage of the

two physical links between connected processors to overlap communication in two directions. For an n x m

array of 2P processors, its application yields the complete sum on each processor after only p communication

steps.

The global sum process may be illustrated in reference to the 2x2 mesh shown in Figure 12. In the

first step, partial sums are simultaneously exchanged between processors PQ and PI, and between processors

PI and Pa. The second step is analogous to the first except now results are exchanged between processors

PQ and P-2, and between processors PI and PS. Thus, after two communication steps the partial sums are

present on all four processors.

4. NUMERICAL RESULTS

First, a description of the test cases used for evaluating performance. Next, an overview of the evaluation

procedure is given. The primary factors which affect performance are then reviewed. Finally, parallel-

processing results for the DELTA are discussed.

4.1 Test Cases

Thirteen test cases representing both straight and curved 2-D and 3-D geometries with elastic and

hyperelastic materials are used to evaluate performance. They were developed and analyzed in reference [2]

and are intended to represent some of the problems which occur in tire modeling and analysis. As such, they

are designed to include contact, large deformations, and nonlinear hyperelastic materials. The key features

of each test case are summarized in Table 1. Additional modeling details, including contact conditions, may

be found in reference [2].

The straight test cases correspond to the 2-D plane stress and 3-D analysis of elastic and hyperelastic

cantilever beams subjected to tip loading and frictionless contact with an inclined surface (see Figure 13).

Two discretizations are considered for each problem - one with 1024 elements and another with 8192. The

discretization is uniform such that all elements in a given mesh are the same size. Figure 14 shows the 8192

element test case of the 3-D hyperelastic beam in-its final "steady-state" deformed configuration.

The curved test cases represent a 3-D hyperelastic circular arch, a 3-D elastic cylindrical thick shell

or "tunnel," and a 3-D elastic and hyperelastic torus subjected to line load at the summit (see Figure 15).

Similar to the straight test cases, two discretizations of the arch are considered consisting of 128 and 1024

13

8-node solid elements. Figure 16 shows the 1024 element circular arch in its deformed state. The tunnel is

shown in Figures 17a and 17b in its undeformed and deformed configurations, respectively. The deformed

configuration of the torus test case when loaded against a flat surface is shown in Figure 18.

4.2 Evaluation Procedure

The parallel performance of the ADR algorithm is evaluated (where possible) on all 512 processors of

the DELTA. The elapsed time required to complete a fixed number of pseudo time steps or iterations for

static analysis is determined for each test case. Relative speedup S and efficiency E are computed as

S = Ti/Tn (4.1)

E = S/n * 100% (4.2)

where Ti and Tn represent the elapsed time for a single processor and for n processors. Relative speedup

and efficiency are both indicators of the extent to which unitary linear relative speedup is achieved, which

implies relative speedups equal to the number of processors and an efficiency of 100 percent.

Correctness of the parallel algorithm is verified in two ways. The displacement results obtained for each

test case after the specified number of time steps are compared to ensure that they are independent of the

number of processors used. In addition, all test cases are executed to completion on the DELTA, and the

final results are compared with those obtained in reference [2] using a single processor.

In preface to discussing parallel performance of the ADR algorithm, the interacting factors which govern

this performance should be considered. A review of the primary factors is given next.

4.3 Performance Factors

Best performance (in terms of relative speedup) is achieved when the ratio of communication time to

computation time is minimized, and when the computational load among the processors is balanced.

Computation time

The material and dimensionality of the elements affects computation time. Hyperelastic elements are

more computationally demanding than elastic elements. For a given mesh, the hyperelastic test cases should

lead to higher relative speedups than the elastic test cases due to increased computations relative to com-

munication. Trilinear elements require more computations than bilinear elements, however they also require

more communication since they have four nodes (as opposed to two) on each face.

14

The number of processors affects computation time. As the number of processors increases for a given

problem, the number of elements (and therefore the computational load) per processor decreases. This

decrease is mostly linear, although there is a small amount of computational cost associated with adding

more processors, due to an increase in redundant computations. Since each processor executes the complete

ADR algorithm, the kinematic variables (displacements, velocities, and accelerations) for the nodes on a

given interface are computed by both processors sharing that interface. This redundant computational effort

is increased as more processors (and therefore more interfaces) are added.

Communication Time

The time for nearest-neighbor communication is only a function of message length, which is defined for

the ADR algorithm by the number of nodes on a given interface and the degrees of freedom associated with

each node. For 1-D strip partitioning, the message length is mesh dependent and remains fixed regardless of

the number of processors added. However, for 2-D block partitioning, the message length depends on both

the mesh and the number of processors utilized. As described earlier, only two send-receive operations (in

the case of 1-D strip partitioning) or four send-receive operations (in the case of 2-D block partitioning) are

needed to implement all nearest-neighbor exchanges in each time step regardless of the mesh or number of

processors. The time for global communication is a function of the number of processors. As mentioned

previously, for an n x m array of V processors, the number of associated messages is equal to p. These

messages only involve scalar quantities, and the message lengths are independent of problem size.

Load Balance

Relative speedup may be reduced due to load imbalances in which one or more processors are waiting on

others to finish. For the applications considered here, load balancing is primarily a function of the number of

elements assigned to each processor as discussed in Section 2. However, some degree of load imbalance may be

introduced from the following two sources. Processors with elements which form the boundaries of the given

mesh in the XY plane (elements along the left and right ends or top and bottom surfaces of the cantilever

beams, for example) have fewer neighboring processors, and therefore perform less of the nearest-neighbor

communication process. In addition, the contact enforcement algorithm represents additional computations

for some processors.

4.4 DELTA Results

Parallel performance results for the DELTA are presented in Table 2, and plots of relative speedup versus

number of processors are shown for each test case in Figure 19. For each test case, results were obtained

using an increasing number of processors (i.e., a single processor, 16, 32, 64, 128, 256, and 512 processors)

15

to obtain the data in Figure 19. Two-dimensional block partitioning was used in all cases, therefore the

total processor numbers given are expressed in the n x m format, where n denotes the number of rows of

processors and m denotes the number of processors per row. The relative speedups shown are based on a

total of 512 processors with five exceptions. The small 3-D arch test case is limited to 64 processors when

2-D block partitioning is used, since it represents a 2 x 32 element mesh in the XY plane. Likewise, the

small 3-D beam test cases, the large 3-D arch and tunnel test cases represent 4 x 64 element meshes in the

XY plane and are therefore limited to 256 processors. The message lengths shown in Table 2 refer to the

total number of internal force values each processor must exchange for nearest-neighbor communication each

time step. The number of time steps or iterations executed is also indicated. Some general trends are now

discussed.

The small 2-D beam test cases and the 3-D 128-element arch test case exhibit the lowest relative

speedups. These test cases have a small number of elements and therefore do not entail significant com-

putational effort. As a result, even though the message lengths are short, the overall communication-to-

computation ratios are relatively high. The relative speedup achieved for the arch test case using 64 pro-

cessors represents a parallel-processing efficiency of 39 percent. That is, the relative speedup is 39 percent

of the theoretical or linear-relative-speedup limit of 64. The beam test cases exhibit an average efficiency of

50 percent for 64 processors, 18 percent for 256 processors, and 9 percent for 512 processors. Accordingly,

scalability beyond 64 processors is very low for these test cases, as reflected by the slope of the relative

speedup curves in Figure 17.

Much higher relative speedups are exhibited by the large 2-D beam test cases, as well as by the small

3-D beam test cases and the 3-D 1024-element arch test case. The communication-to-computation ratio for

the large 2-D beam test cases is very low due to the large number of elements and relatively small message

lengths. The small 3-D beam test cases have the same number of elements as the small 2-D beam test cases,

but the messages are now much longer. Even so, these test cases achieve higher relative speedups due to

increased computations associated with the trilinear element. The small hyperelastic 3-D beam test case has

the same material, message length, and number of elements as the 1024-element arch test case and exhibits

equivalent performance. The relative speedups achieved for all five of these test cases represent an average

efficiency of 53 percent for 256 processors. For 512 processors, the large 2-D beam test cases exhibit an

average efficiency of 43 percent. These results indicate moderate scalability through 512 processors as shown

in Figure 17. The potential exists for even higher relative speedups beyond 512 processors, although the

parallel processing efficiency measure may become small in this range.

16

The highest relative speedups are exhibited by the large 3-D beam, tunnel, and torus test cases. These

test cases have the lowest communication-to-computation ratios because of the large number of elements

and the increased computational cost associated with the trilinear element. The two cantilever beam test

cases achieve the highest relative speedups within this group since they have the shortest message lengths.

The relative speedups achieved for all five of these test cases represent an average efficiency of 84 percent

for 256 processors. For 512 processors, the beam and torus test cases exhibit an average efficiency of 75

percent. Thus, the scalability of the ADR algorithm for these test cases remains high through 512 processors

(see Figure 17), and efficient execution on many more processors (leading to much higher relative speedups)

should be possible.

As expected, the hyperelastic versions of each test case exhibit higher relative speedups than their elastic

counterparts. The hyperelastic test cases require more computations due to material, and as such achieve

better performance. The effect of the partitioning method on performance has been investigated. Relative

speedup results for several different partition or processor arrangements are presented in Table 3 for the

large 3-D elastic beam. As shown, the effect is minimal (less than three percent).

All thirteen test cases were run to completion on the DELTA in order to demonstrate correctness of the

parallel implementation of the ADR algorithm. The nonlinear static analysis results are given in Table 4.

As shown, each test case was analyzed using the maximum number of processors allowed with the present

2-D block partitioning scheme. The number of time steps (or iterations) is given, as is the elapsed time to

completion. The Y values are maximum vertical displacements for the free end of the beam and for the

summit of the arch, tunnel, and torus. The X values are the corresponding horizontal displacements for the

free end of the beam. The results shown are consistent with those of the single-processor implementation

[2]. For some of the test cases involving contact, differences exist in the number of iterations and small

differences exist in the final displacements when compared with the results given in reference [2]. This is

because all aspects of the final contact formulations given in reference [1] were not in place at the time the

results in reference [2] were generated.

The completion times for all of the test cases are less than one hour and demonstrate both the' computing

power of the DELTA and the ability of the ADR algorithm to exploit this capability fully. As mentioned

earlier, these results were achieved using unvectorized, baseline code. As shown in reference [2], a vectorized

version could further increase the speed of execution by a factor of the 0(5), assuming that the problem size

is such that each processor has enough elements to achieve efficient vectorization.

5. CONCLUSIONS

17

The overall goal of this research is to develop efficient single-processor and multiprocessor implementa-

tions of the ADR algorithm and evaluate their performance for the static analysis of nonlinear, hyperelastic

systems involving frictionless contact. For problems of this nature, the ADR algorithm may represent one

of the best approaches for parallel processing. Performance evaluations on single-processor computers have

shown that the ADR algorithm is reliable and highly vectorizable, and that it is competitive with direct

solution methods for the highly nonlinear problems considered. In contrast to direct solution methods, it

has minimal memory requirements, is easily parallelizable, and is scalable to more processors. It also avoids

the ill-conditioning related convergence problems of other iterative methods for nonlinear problems. The

objective of the present paper is to evaluate the performance of a massively parallel implementation of the

ADR algorithm.

A parallel ADR algorithm is developed for nonlinear structural analysis and implemented on the 512-

processor Intel Touchstone DELTA system. It is based on the sequential code described in reference [2] and is

designed such that each processor executes the complete sequential algorithm on a subset of elements. One-

dimensional strip partitioning and two-dimensional block partitioning are used to divide the problem domain

among the available processors. Load balancing is ensured by the use of structured, uni-material meshes.

Efficient schemes are developed to accomplish the required nearest-neighbor and global communication. The

parallel algorithm is used to solve for the nonlinear static response of 2-D and 3-D cantilever beam problems

and 3-D arch, tunnel, and torus problems.

Correctness of the parallel algorithm is verified by running all test cases to completion on the DELTA.

Final results are consistent with those obtained using a single-processor. Completion times for the large 3-D

test cases are minimal and demonstrate both the computing power of the DELTA and the ability of the ADR

algorithm to fully exploit this power. Moreover, the current multiprocessor implementation is not vectorized.

A vectorized version should lead to further increases in performance. The minimal memory requirements of

this method are again demonstrated as the largest test case runs successfully on a single DELTA processor

equipped with 16 megabytes of memory. Relative speedups are based on a fixed number of time steps, during

which contact does not occur. However, the contact algorithm used in this study is very simple and efficient

[1]. As such, its effect on performance would most likely be negligible since the additional computations it

represents are trivial.

Impressive relative speedups are achieved using the DELTA, especially for the large 3-D test cases. This

performance may be attributed to the minimal interprocessor communication required by the ADR algorithm

relative to computations and the efficient schemes with which this communication is accomplished. These

relative speedup results demonstrate the high scalability of the ADR algorithm and show that the algorithm

18

can be implemented on at least 512 processors without significant performance degradations. Thus, the ADR

algorithm provides the potential for efficiently exploiting large numbers of processors to substantially reduce

the solution time of highly nonlinear problems. In this context, it represents a very promising approach for

parallel-vector processing.

Acknowledgement

This research was performed in part using the Intel Touchstone DELTA System operated by Caltech

on behalf of the Concurrent Supercomputing Consortium. Access to this facility was provided through

NASA Grant NAG-1-1505 and Mr. Ronnie E. Gillian was the technical monitor. The authors gratefully

acknowledge this support. In addition, the first author gratefully acknowledges the support provided by the

Dean's Scholar Program at Clemson University.

19

REFERENCES

1. D. Oakley, N. Knight [1994]. Adaptive Dynamic Relaxation Algorithm for Nonlinear Hyperelastic
Structures - Part I. Formulation, (in review).

2. D. Oakley, N. Knight [1994]. Adaptive Dynamic Relaxation Algorithm for Nonlinear Hyperelastic
Structures - Part II. Single-Processor Implementation, (in review).

3. D. Oakley, N. Knight, D. Warner [1994]. Adaptive Dynamic Relaxation Algorithm for Nonlinear
Hyperelastic Structures - Part III. Parallel Implementation, (in review).

4. P. Sadayappan, F. Ercal [1987J. Nearest-Neighbor Mapping of Finite Element Graphs onto Processor
Meshes, IEEE Transactions on Computers, Vol. 36, pp. 1408-1424.

5. G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, D. Walker [1988]. Solving Problems on Con-
current Processors, Volume 1, Prentice Hall, New Jersey.

6. P. Underwood [1983]. Dynamic Relaxation, Computational Methods for Transient Dynamic Analysis,
T. Belytschko and T.J.R. Hughes, editors. North Holland, Amsterdam, pp. 246-265.

7. M. Papadrakakis [1981]. Post-Buckling Analysis of Spatial Structures by Vector Iteration Methods,
Computers and Structures, Vol. 14, pp. 393-402.

8. M. Papadrakakis [1982]. A Family of Methods With Three-Term Recursion Formulae, International
Journal for Numerical Methods in Engineering, Vol. 18, pp. 1785-1799.

9. C. Aykanat, F. Ozguner, F. Ercal, P. Sadayappan [1988]. Iterative Algorithms for Solution of Large
Sparse Systems of Linear Equations on Hypercubes, IEEE Transactions on Computers, Vol. 37, pp.
1554-1568.

10. V. Sunderam [1990]. PVM: A Framework for Parallel Distributed Computing, Department of Math-
ematics and Computer Science, Emory University, Atlanta, GA.

20

Table 1. Test Case Characteristics

test
case
2D beam

3D beam

3D arch

3D tunnel
3D torus

total
elems
1024

8192

1024

8192

128
1024
8192
8192

total
dof

2304

17408

4800

31104

855
4775

31515
27744

mesh
128 x 8

512 x 16

64 x 4 x 4

128 x 8 x 8

32 x 2 x 2
64 x 4 x 4
64 x 4 x 32
32 x 16 x 16

mat
E
H
E
H
E
H
E
H
H
H
E
E
H

contact
Y
Y
Y
Y
Y
Y
Y
Y

Y
Y

instab

Y
Y
Y
Y
Y

E = elastic, Hookean material

H = hyperelastic

Table 2. Parallel Performance Results Summary

model
2D beam

3D beam

3D arch

3D tunnel
3D torus

total
elems
1024

8192

1024

8192

128
1024
8192
8192

mat
E
H
E
H
E
H
E
H
H
H
E
E
H

message
lengths

20
20
48
48
120
120
270
270
72
120
792
408
408

time
steps
400
400
200
200
200
200
100
100
400
200
100
100
100

no. of
procs

8 x 6 4
8 x 6 4
8 x 6 4
8 x 6 4
4 x 6 4
4 x 6 4
8 x 6 4
8x 64
2x 32
4x 64
4x 64

16 x 32
16x32

speedup
S
43
50

210
228
119
127
382
391
25
127
211
381
389

efficiency
E
8
10
41
45
46
50
75
76
39
50
82
74
76

21

Table 3. Relative Speedup versus Partitioning

model
3D beam

total
elems
8192

mat
E

message
lengths

486
432
432
594

time
steps
100
100
100
100

no. of
procs
1 x 128
2 x 6 4
4 x 3 2
8x 16

speedup
116.48
117.05
116.68
114.23

Table 4. Nonlinear Static Analysis Results

model
2D beam

3D beam

3D arch

3D tunnel
3D torus

total
elems
1024

8192

1024

8192

128
1024
8192
8192

mat
E
H
E
H
E
H
E
H
H
H
E
E
H

procs
8x64
8 x 6 4
8 x 6 4
8x64
4 x 6 4
4x64
8 x 6 4
8 x 6 4
2 x 3 2
4 x 6 4
4 x 6 4

16x32
16 x 32

ADR
steps
5258
5755

19854
24291
2958

36069
5805

57281
14492
22199
3782
1824

17651

Time
(sees)

64
66

443
558

66
883
285

3481
199
471
328
90

1039

*maf
(mm)
43.26
40.57
43.26
40.64
42.97
40.41
43.28
40.76
18.59
18.87
17.24
80.23
13.04

X-max
(mm)
14.79
12.84
14.77
12.85
14.63
12.76
14.80
12.97

—
—
—
—
—

22

n — 1 istif F 1 ientf = 0

Phase I

for eac& element^
^ compute^ fe

^
, \ \computexSe;

-- endif * " "--"v
continiie^ , ^ .^

Phase 2
if (isti£^
compute

istif 0

Phase 3
compute

ust B | : :andJDf ttt for contact

if '(unstable) istif » 1 '

Phase 4
compute force imbalance
compute error measure £, (2.7) -
if (convergence or it ** nmax) lend .. , *

tf (iend = 0) tt.*=n
true

false

Figure 1. Sequential ADR Algorithm. Numbers in parentheses refer to equation numbers in the text.

1-D strips (16 elements each)

v\ interface nodes

(a) 1-D Strip Partitioning Example for Cantilever Beam

(b) 1-D Array of Processors

Figure 2. Illustration of 1-D Strip Partitioning

interface nodes

\ \
2-D blocks (16 elements each)

(a) 2-D Block Partitioning Example for Cantilever Beam

(b) 4 x 4 Array of Processors

Figure 3. Illustration of 2-D Block Partitioning

; istif « 1> lend =^

Phase 1

for eaclr local, element
- .compute

;, ,
v->x compute-$e and,$,(2.9),
/, endif

continue -^

exchange F| (and Sj if istif « I)
with nearest neighbors % ' .

Phase 2

- 1)? uidate
computelocal;
do global sum^
compute %c (2110)

istif a» 0 "^

(23) ~, ' \ -•-
13> and &?MD (2,14)
and f>TMD

Phase 3
compute
adjust
evaluate %stability (2»11)
if (unstable) istif - 1

* (15) and D*** (2.6)
and D*4ifbr contact

Phase 4

compute local RTR (R a F — F)
do global, sum of RTR> lend* istif
compute error, measure e (2*7)
if,(istif > 0) istif « 1 - "

if (convergence OK tr «* nmax) iend — 1

[if (iend =* 0) n ±» a
true

false

[STOP

Figure 4. Parallel ADR Algorithm. Numbers in parentheses refer to equation numbers in the text.

(a) Left Interface Values Sent to Left Neighbors (Step 1)

(b) Right Interface Values Sent to Right Neighbors (Step 2)

Figure 5. Nearest-Neighbor Communication for 1-D Strip-Partitioned Domains

/
/ iv.

(a) Horizontal Exchange of Interface Values (Steps 1 and 2)

(b) Vertical Exchange of Interface Values (Steps 3 and 4)

Figure 6. Nearest-Neighbor Communication for 2-D Block-Partitioned Domains

Figure 7. 3x4 Processor Example of DELTA Mesh Topology

"temote ,
workstation

remote \ ,
workstation

Ethernet bus

Figure 8. Intel Touchstone DELTA System Diagram

SEQUENTIAL PROGRAMS NODE PROGRAM

. • • . . .

I Read input data | ; { ^\\VxA"f iV"
- ^t- .-- •• ^ -•• T\ -"% x ^ vsx 7" * ̂ \ ^ " *• • ' s

Prepare input data for parallel
solution process

] Write input file for each processoif ;;

Read result file for each processor^

I Assemble and ouput global results

VI Read input data file [: Cv
% ^l I 't X-.

Execute ADR solution process
on subset of elements

| Write local results to a file[
• •^^•^^^^^^^^^•^••^^WI^^^^BMMBWBî MM^B^^^^* ,

Figure 9. General Parallel Algorithm Flowchart

(a) 1-D View of 4 x 4 Processor Array

(b) Corresponding Processor Alignments for Cantilever Beam

Figure 10. Example of 1-D Strip Partitioning Using a 2-D Processor Array

PO Pi — P2 P3

1 1 1 1

P4 PS — P6 P7

1 1 1 1

PS P9 PIO PH
1 1 1 1

Pl2
mmmi PIS — Pl4 PIS

(a) 2 x 8 View of 4 x 4 Processor Array

"•

^ :

,••

• s

s -

-

t

-

0
••

\

':•

'--
"•

v

0

-.

--

"-

- ^ .

%

\

\

••

" "

•.,. ;

.. .

* -

l

5
,-

%

^,
^ "

-*
;--

••

; s

5 ,
";

-
"

-,

«

••

(
4

2
s.^

^

,s-

V
v

'

^

k

,-

•.

*

"*

*•

^ "

* ^

"•

•

- -

J

••

7

•••

V

-
^

s

, ^

"• x

'
11

15

-

,-

-

,

10

14

: :

9

13

••

: ••

-

^

8

12 -
*•

(b) Corresponding Processor Assignments for Cantilever Beam

Figure 11. Example of % x 2m Partitioning Using an n x m Processor Array

step 2

step 1

step 1

step 2

Figure 12. Global Communication Illustration for 2 x 2 Processor Array

W k
(a) 2-D Geometry (Dimensions: L x W)

(b) 3-D Geometry (Dimensions: L x W x H)

Y 1 60 rnm

40 mm

contact nodes

Y = - 0.125X -I- 4.5

(c) Contact Problem

•*• x

•*• X

Figure 13. Straight Test Cases

Figure 14. Deformed Configuration of the Large 3-D Cantilever Beam Test Case

(a) 3-D Circular Arch

(b) 3-D Cylindrical ThickShell or Tunnel

(c) 3-D Circular Torus with Rectangular Cross-Section

Figure 15. Curved Test Cases

Figure 16. Deformed Configuration of the 3-D Circular Arch Test Case

Figure 17a. Undeformed Configuration of the 3-D Tunnel Test. Case

Figure 17b. Deformed Configuration of the 3-D Tunnel Test Case

Figure 18. Deformed Configuration of the 3-D Torus Test Case

600

500

400
Q.

T3
<0
0>
0.

«
<D

i
<D

DC

200

100

100 200 300 400
Number of Processors

linear
speedup

large 3-0

large 2-0

small 2-0

500 600

Figure 19. Relative Speedup versus Number of DELTA Processors

