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Ku-BAND HIGH EFFICIENCY GaAs
MMIC POWER AMPLIFIERS

I.  SUMMARY

This interim report covers the first 12 months of a 30-month contract
for the development of Ku-band high efficiency GaAs MMIC power amplifiers.
The objective of this program is to develop high efficiency, high power, high
gain, wide bandwidth monolithic GaAs amplifiers for future NASA space
communications applications. Specifically, three amplifier modules operating
over the 13 to 15 GHz frequency range are to be developed. The first MMIC is
a 1 W variable power amplifier (VPA) with high efficiency over a wide range
of output power levels. On-chip digital gain control is to be provided. The
second MMIC is a medium power amplifier (MPA) with an output power goal of 1
W (at saturation) and 40% power-added efficiency. The third MMIC is a high
power amlifier (HPA) with 4 W output power goal (at saturation} and 40%
power-added efficiency. The gains are to be equal to or greater than 15 dB
over the design bandwidth. In addition to the baseline GaAs MESFET
amplifiers, amplifiers using advanced hetercstructure devices such as
Al1GaAs/GaAs heterojunction MESFETs and Al1GaAs/GaAs heterojunction MISFETs are
also to he fabricated and tested.

Discrete single-gate MESFETs were fabricated on MOCVD, MBE, and ion-
implanted wafers for Ku-band optimization. An output power of 0.7 W/mm with
40% efficiency, 0.5 W/mm with 39% efficiency, and 0.36 W/mm with 49%
efficiency has been obtained on MOCVD, MBE, and ion implanted material. Low
value I4q¢ (Tow pinchoff) devices have demonstrated best efficiencies with
little sacrifice in output power.

A mask set containing one-stage, two-stage, and three-stage amplifiers
(MPA and HPA) was designed and fabricated. The measured small signal
performance of these amplifiers is extremely close to predicted values. A
single-stage 600 uym amplifier with an efficiency of 40% and 0.4 W/mm output
power was obtained.

A four-stage dual-gate variable power amplifier was modified to operate
at Ku-band frequencies. An output power of 500 mW with 20 dB gain was



measured at 17 GHz. A dual gate FET scribed from the amplifier was capable

of an output power of 0.42 W/mm with 27% efficiency.

A four-bit digital-to-analog converter was designed and fabricated.

Sixteen states with a -3 V to +1 V swing were obtained.



[T. INTRODUCTION

This interim report covers the first 12 months of a 30-month contract
for the development of Ku-band high efficiency GaAs MMIC power amplifiers.
The chjective of this program is to develop high efficiency, high power, high
gain, wide bandwidth monolithic GaAs amplifiers for future NASA space
communications applications. Specifically, three amplifier modules operating
over the 13 to 15 GHz frequency range are to be developed. The first MMIC is
a 1 W variable power amplifier (VPA) with high efficiency over a wide range
of output power levels. On-chip digital gain control is to be provided. The
second MMIC is a medium power amplifier (MPA) with an output power goal of
1 W (at saturation) and 40% power-added efficiency. The third MMIC is a high
power amplifier (HPA) with 4 W output power goal (at saturation) and 40%
power-added efficiency. The gains are to be equal to or greater than 15 dB
over the design bandwidth, In addition to the baseline GaAs MESFET
amplifiers, amplifiers wusing advanced heterostructure devices such as
A1GaAs/GaAs heterojunction MESFETs and Al1GaAs/GaAs heterojunction MISFETs are
also to be fabricated and tested.

The optimization of channel structures of single- and dual-gate FETs is
discussed in Section III. At 15 GHz a power-added efficiency as high as 56%
was demonstrated using FETS with gate lengths of 0.25 uym. A 1200 um gate
width FET has achieved a power density of 0.7 W/mm with 40% efficiency at 15
GHz. The amplifier module development is described in Section IV. A mask
set containing various multistage MMIC amplifiers for the MPA and HPA was
designed and fabricated. Single-stage amplifiers with power-added
efficiencies of up to 40% were demonstrated. Technical achievements during
this report period are summarized in Section V. Plans for the remaining
contract period are given in Section VI.

-



[I11. DEVICE OPTIMIZATION
A. Single-Gate FET
Discrete 1200 ym FETs with the source-overlay structure were chosen for

Ku-band FET optimization. These FETs have the source fingers air-bridged
over the gates to via grounding pads. Figure 1 is a photograph of a 1200 um
FET. A unit finger width of 60 um and a source/drain spacing of 3 um were
used. This is the same type of FET used at higher frequencies (20 GHz).

Material and gate channel structure were the two variables chosen for
optimization to achieve maximum FET performance at Ku-band. A goal of 0.7
W/mm with 50% efficiency from a discrete FET was set to meet the high power
amplifier specifications, and a goal of 0.5 W/mm with 50% efficiency was set
to meet the medium power amplifier specifications. Material optimization
included investigating MOCVD, MBE, and ion implant material with varying
doping densities. Channel structure optimization included varying the wide
and narrow recesses of the FET channels.

Initially, we had difficulties fabricating the double reces. structure
shown in Figure 2. The etch undercut the resist for the wide recess. leaving
the recess excessively large. Experiments showed that toco large a wide
recess degrades rf performance, and these FETs would generate little power (<
0.2 W/mm).

Two devices, one with high power density (167-24) and one with low power
density (167-23) were characterized by S-parameter measurements over the
frequency range from 1 to 26 GHz. The S-parameters were deembedded using the
through-short-delay (7SD) method. The eilement values of the equivalent
circuit shown in Figure 3 were then fitted to the measured data using the
SUPER-COMPACT program. Tablz ! shows the values obtained for the equivalent
circuits of the two devices. In general, the fit was excellent ove" the
frequency range from 1 to 26 GHz.




(b)

Figure 1. SEM photographs of 1200 um gate width FET with source overlay
grounding.
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Table 1.

Modeled Element Values cf 1200 um FETS

rorameter | S2v1%5 | S
Rg (ohms) 0.67 0.65
R; (ohms) 0.91 0.93
Cgs (pF) 1.59 2.03
Cdgq (pF) 0.060 G.077
Ce (pF) 0.020 0.022
9, (mS) 98 168
T4 (ps) 7.3 ! 4.4
R (ohms) 1.00 0.96
Ryqs (ohms) 272 136
Cys (PF) 0.17 0.30
Ry {ohms) -3 0.98
Le (nH) 0.015 0.012
Ly (nH} 0.029 6.G59
Ly (nH) 0.036 0.075
Cge (pF) 0.031 0.031
Cqe (PF) 0.033 0.032
fy (GHz) 9.8 13.4
8




Figures 4(a)-(c) and 5(a)-(c) compare the measured and modeled S-
parameters of thc two FETs. To plot the modeled and measured S-parameters on
the same graph, the two sets of S-parameters were constructed as unconnected
four-port in the SUPER-COMPACT input file. The pert 3 (input) and port 4
(output) are identified as the two-port with the measured S-parameters.
These results indicate that the fixture design and the deembedding scheme
work well in the measured frequency range. Table 1 shows that the two
devices differ in transconductance (dp)» delay time (T4)» drain-source
capacitance (C4¢), and drain resistance (Rg). It should be noted that device
167-23 needs a negative drain resistance of 3 ohms for the Sy, to fit well at
high frequencies. Examination of the stability factors shows that the device
with poor large-signal performance (167-23) has a very strong tendency to
oscillate (with stability factor less than 1). The poor power performance is
attributed to a nonoptimum wide recess with a gradual slope. We know from
past experierce that the gate recess shape is critica! to obtaining good
output power. From this modeling effor: we have been able to determine the
effects of process variations on equivalent circuit element values. A
nonoptimum recess coupled with the particular channel doping level and the
active layer thickness under the gate can result in Gunn-type instability,
which will degrade the FET power performance.

The e-beam exposure was adjusted so that no undercutting of ‘ne resist
was visible. Figure 6 is SEM photograph of a properly exposed double-recsss
channel structure.

Table 2 1lists the best performance of 1200 um FETs fabricated on MBE,
MOCVD, and ion implant wafers. The dopings were approximately 2 x 1017 cm‘3,
and the gate length was 0.4 pum.  The best performance was obtained from an
MOCVD wafer with Al1GaAs buffer. An output power of 0.8 W/mm with 35%
efficiency and 3.8 d8B gain was achieved. When this device was tuned for
maximum efficiency, it achieved an efficiency of 40% with 5.2 dB gain and
0.72 W/mm power. The MBE and ion implanted wafers had similar efficiencies,
but lower output powers. MOCVD wafers with standard GaAs buffers performed
poorly. Figures 7 through 9 show saturation responses of the MBE and MOCVD
devices.
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Table 2. 1200 um FET Performance

MOCVD

MBE (A1GaAs) MOCVD Implant
Doping 2.5 x 1017 f2.0 x 1017 |2.0 x 1017 |2.0 x 1017
Small Signal Gain 7.3 dB 8 dB 8 dB 10.3 dB
Maximu:m Power 0.6 W/mm 0.8 W/mm 0.37 W/mm ]0.42 W/mm
Efficiency 29% 35% 15% 34%
Gain 3.5 dB 3.8 dB 3.3 dB 6.9 dB
Power 0.5 W/mm 0.72 W/mm §-- 0.36 W/mm
Maximum Efficiency 39% 40% -- 49%
Gain 5 db 5.2 dB - 6.3 dB

Table 3. 800 um

X 0.25 um MESFET

Doping 3.5 x 1017
Small Signal Gain 7.6 dB
Maximum Power 0.38 W/mm
Efficiency 56%

Gain 6.9 dB

17
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On another program a 0.25 pm FET with higher doping was tested at Ku-
band. The results are shown in Table 3. An efficiency of 56% was obtained
with 0.38 W/mm. The saturation response is plotted in Figure 10.

The Idss varied considerably across an ion implanted wafer. This
enabled us to correlate rf performance with IdSS’ The low IdSS devices had
pinch-off voltages near 2 V, and the high I4gs devices had pinch-off voltages
near 5 V. Table 4 summarizes the performance of discrete 6G0 pm and 1200 um
FETs tuned for maximum power and for maximum efficiency. Maximum power-added
efficiencies have a direct correlation on Iqgs:  the lowe~ the current, the
higher the efficiency. The increase in efficiency is at oniy a small expense
of lower output power. An efficiency of 49% with an output power of 0.36
W/mm was obtained from a 1200 pm FET, and an efficiency of 40% with an output
power of (.41 W/mm was obtained from a 600 um FET at jow lqgs- Efficiencies
decreased to 30% at high Igss-

MOCVD wafers occasionally had leaky buffers, and the results with AlGaAs
buffers were not reproducible. Since etching vias in wafers with thick
AlGaAs buffers also presented problems, we discontinued work on MOCVD
material. Work is continuing on MBE and ion implant material optimization,
particulariy at higher dopings.

B. Dual-Gate FETs

The dual-gate FETs used for this program were initially identical to
those used on the NASA 20 GHz variable power amplifier program (Contract No.
NAS3-22886). These FETs have an integrated second-gate capacitive
termination. However, 300 um gate width devices showed a resonance behavior
that caused reduced gain at lower Ku-band frequencies.

The dual gate FETs used for the Ku-band four-stage variable power
amplifier were subsequently modified from the NASA 20 GHz variable power
amplifier design. The source/drain spacing was reduced from 7.5 um to 5 um,
and the active area under the gate feed was removed. Figure 11 is a SEM of
the dual gate FET with the two changes. Figure 12 is an enlarged view of the
gate area. The gates are 0.3 um long.
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Figure 11. New mesa and source/drain ievels for VPA,
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Figure 12,

0.3 um dual gates in a & Hm source-drain spacing.
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The fy of the dual gate FETs improved from 10 GHz to 18 GHz with these

Figure 13 is a power saturation curve of a discrete 300 um

modifications.
ciency of 27% was

dual gate FET. An output power of 0.42 W/mm with an effi

obtained.
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IV. AMPLIFIER MODULE DEVELOPMENT

A. Single-Gate FET Amplifiers (MPA, HPA)
The medium-power amplifier (MPA) and the high-power amplifier (HPA) are

of a low-pass circuit topology similar to that used in the design of the 2.5
W module (developed under Contract No. NAS3-23781) shifted to the 13 to 15
GHz frequency range. Ffor the 1 W MPA, FETs with gate widths of 0.6 mm, 1.2
mm, and 2.4 mm were cascaded; for the HPA, FETs with 1.2 mm, 2.4 mm, and 6.0
mm gate widths were cascaded. To further aid in the development of the
amplifiers, single-stage amplifier circuits were designed around the 0.6 mm
and 1.2 mm FETs, and a two-stage 1.2 mm to 2.4 mm FET amplifier was included
The designs were created utilizing a device mode! based on measurements of
FETs of similar size produced in the past, and the circuit topology realized
in microstrip on GaAs was modeled using SUPER-COMPACT. Figure 14 shows the
circuit topology of the amplifiers, and Figure 15 shows their predicted
microwave performance.

The three-stage, two-stage, and single-stage amplifiers for the MPA and
HPA have been designed and completed. Figure 16 is a CALMA slot of the mask
layout. The circuits are, starting from the upper left corner in the figure
and proceeding clockwise, the three-stage MPA (C.6 mm - 1.2 mm - 2.4 mm); the
single-stage 1.2 mm circuit; the single-stage 0.6 mm circuit; discrete 2.4
mm, 1.2 mm, and 0.6 mm FETs with both 3.5 pm and 5.0 um source/drain
spacings; the process test bar; the two-stage 1.2 mm - 2.4 mm circuit; and
the three-stage HPA (1.2 mm - 2.4 mm - 6.0 mm). The bar size is 370 mils by
370 mils. Nine photomask levels are used for this design (mesa,
source/drain, bond pad/inductor, capacitors, nitride etch, air bridge post,
air bridge plate, via, and scribe). The gates are exposed by direct-write e-
beam lithography. Figure 17 shows a photomicrograph of the HPA/MPA circuits
on GaAs.

The first slice of MPAs and HPAs had poor power performance, although

small-signal performance was close to that predicted for the ore-, two-, and
three-stage amplifiers measured (Figures 18 through 21). When the gates were
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Figure 15. Predicted gain-frequency responses. (a) Single-stage 1200 pm and
(b) single-stage 600 um.
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examined under the microscope, the wide recess was found to be
excessive, It had been noted earlier, in device optimization of discrete
FETs, that a poor gate recess can severely limit output power.

The second slice showed a marked improvement gver the first slice in
output power ang efficiency. This slice had the proper width for the wide
recess. The single-stage 600 pm amplifier had an output power density of 0.4
W/mm and 40% efficiency. The saturation characteristics of this amplifier
are shown in Figure 22. An efficiency of 49% with an output power of 0.36
W/mm was obtained from the single-stage 1200 um amplifier. The small signal
performance data for the amplifiers were nearly identical to the data for the
first slice (Figure 18 through 21)

Two MBE slices were then processed. The first of these was comparable
to the second slice in gain-frequency response (Figure 23) and power
performance (Figure 24); the second was low in gain and mismatched at small-
signal levels, although power rerformance was good when the device was
retuned (Figure 25).

The latest two slices processed were ion implanted. Initial indications
are that they are also comparable to the second slice in performance although
they are lower in efficiency. This is possibly due to current levels on the
high end of the range of [ .. values for that slice.

B. Dual-Gate FET Amplifiers (VPA)
1.  Amplifier Design
Dual-gate FET models obtained from a previous NASA contract (NAS3-
22886) were used for the initial amplifier design. The modeling effort was
continued throughout this report period to aid in device optimization and
amplifier design.

Using a 300 um dual-gate FET on a VPA amplifier with ion-implanted
material, an equivalent circuit model was derived from the measured S-
parameters using SUPER-COMPACT. Figure 26 shows the equivalent circuit, and
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Figure 27 shows the measured and modeled S-parameters. Over the frequency

range from 1 to 26 GHz, excellent agreement was obtained between the measured
and modeled values. In the model in Figure 26 the second gate was terminated
by a parallel combination of inductance and capacitance. It was found that
the parallel resonant frequency of this termination causes a drastic output
impedance change and a drop in available gain and current gain of the device.
Simulations of different resonant frequencies (by changing the terminating
capacitance value) verified this theory. For Ku-band operation it is only
necessary to increase the capacitance values (by decreasing the nitride
thickness) to move the resonant frequency below 10 GHz. This modeling
capability of dual-gate FETs will allow us to optimize the device structure
and perform rapid design iterations of MMIC amplifiers.

2. Amplifier Fabrication and Evaluation

Modifications were made with bond wires to a 20 GHz, four-stage
variable power amplifier developed under Contract Nc. NAS3-22886. Figure 28
shows the gain control characteristics of this amplifier as the second-gate
voltages are varied. A gain of 23 dB was obtained with O dBm input. When
the amplifier was tuned for a higher output power, 450 mW with 26 dB gain was
obtained.

The inductor mask level of the four-stage 20 GHz variable power
amplifier was modified to shift the operating frequency band down to 13 i~ 15
GHz. Figure 29 is a CALMA plot of the four-stage amplifier with the modified
indu~tors. The four stages consist of 300 um, 300 pum, 600 pym, and 1500 um
dual gate FETs.

Figure 30 is a photograph of the Ku-band variable power amplifier. Its
dimensions are 254 mils x 83 mils. Due to the resonance of the dual-gate
FETs at lower Ku-band frequencies (see the section on discrete dual-gate
FETs), the four-stage amplifier had lower gain than expected. To improve
amplifier performance, the source/drain spacing of the FET was reduced and
the mesa level modified. To date, one wafer has been processed with these
modifications. Figure 31 . .is the gain plot of the four-stage VPA. The
amplifier generated 5C0 mW of power with 20 dB of gain., However, the
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Figure 30. Dual-gate variable power amplifier (VPA).
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frequency is high at 17 GHz. The
modified.

interstage matching networks need to be

C. D/A Converter

The D/A converter design shown in Figure 32 was proposed initially. The
voltage drop at node ! is 1/8 x R, 1/4 x R, 1/2 x R, and I x R when Q, Q,
Q3, and Qq, respectively, are turned ON by a high TTL input. Figure 33 shows
the design we used under Contract NAS3-22886. The digital inputs are
connected to the gates of transistors Q) to Q4. The sources of these FETs
are as biased at 3 V. Thus, a TTL logical 0 pinches them off, and a logical
1 drives them into a forward-biased maximum current mode. The gate widths of
Q to Qq are scaled by a power of twn. The current develops a voltage across
resistor R{ sc the digital-to-analog conversion can be performed.

Both designs are sensitive to the value of resistors R and Ry,
respectively, and to the saturation current of the FET. The first design has
an advantage when a large number of bits are needed, since the switching FETs

have the same gate width. Above 4 bits, the gate width of the switching FETs
in the second design becomes prohibitive,

Because of its simplicity, we chose the design of Figure 33. The
initial parameters are the resistance Rl and the saturation current of Q to

Q- In this design we will trim Ry if necessary. An extra mask level will
be used.

To have a reproducible saturation Current, selective ion implant
will be used for Q; to Qy.

current.

Gate recess will be used only to fine-adjust the

The digital-to-analog converters fabricated are shown in Figure 34,
Figure 35 shows the out

0000.

put voltage when the input word counts from 1111 to
The 16 states aliow a voltage between -3 V and +i V to be chosen. (A

larger voltage swing can be obtained by increasing the resistor
circuit.)

in the
Several circuits were tested from the two wafers fabricated, with

little to no variation. The two wafers were ion-implanted with a peak doping

concentration of ~ 2 x 1017 cm'3.
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Figure 35. Four-bit digital-to-analog converter output voltage.
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SUMMARY
Achievements 1in this program for the first 12-month period are
summarized below.
° Single Gate FETs
- 0.7 W/mm output power with 40% efficiency for MOCVD with
A1GaAs buffer.
- 0.5 W/mm output power with 39% efficiency for MBE.
- 0.36 W/mm output power with 49% efficiency for implant.

. Dual Gate FETs
- 0.42 W/mm output power with 27% efficiency for implant.

. D/A converter
- Fully functional with -3 V to +1 V swing.

° VPA
- 500 mW output power with 20 dB gain at 17 GHz.

° MPA/HPA
- Single stage, 600 ym amplifier with 0.4 W/mm output power and
40% efficiency.
- One-, two-, and three-stage amplifiers with small signal gain
and frequency as predicted.
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VI. PLANS
Plans for the remaining contract period are summarized below.
° D/A converter
- Increase resistor value to increase output voltage swing.

° VPA
_ - Reduce frequency of amplifier with interstage modifications.
- - Optimize power and efficiency of dual-gate FET.
. MPA/HPA
- Evaluate higher doped material
- Determine optimum large signal match of amplifiers for maximum
efficiency and power.
-

ol e v

",
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Abstract
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