PRESENTATION OF COMPUTER CODE SPIRALI FOR INCOMPRESSIBLE, TURBULENT,
PLANE AND SPIRAL GROOVED CYLINDRICAL AND FACE SEALS

Jed A. Walowit
Jed A. Walowit, Inc.
Clifton Park, New York

OVERALL CAPABILITIES OF PROGRAM

- Computes rotordynamic coefficients, flow and power loss for cylindrical and face seals
- Treats turbulent and laminar, Couette and Poiseuille dominated flows
- Fluid inertia effects included
- Rotordynamic coefficients in 3 (face) or 4 (cylindrical) degrees of freedom
- Includes effects of spiral grooves
- User definable transverse film geometry including circular steps and grooves
- Independent user definable friction factor models for rotor and stator
- User definable loss coefficients for sudden expansions and contractions
Coordinate system for seal analysis.
Figure 1: Diagram showing high pressure at the top and low pressure at the bottom. The figure illustrates the principle of a face seal with inward pumping grooves.

- High pressure
- Low pressure
- Rotor motion
- Groove land
- Region 2 (grooved)
- Region 1 (ungrooved)

Face seal stator with inward pumping grooves
ASSUMPTIONS

• Incompressible and isothermal flow

• Film thickness small in comparison with other geometric parameters

• Bulk flow turbulence model

• Loss coefficients used to treat inertia effects at film discontinuities

• Axisymmetric primary flow with small perturbations theory used for transient and circumferential effects

• Narrow groove theory used for spiral grooves with inertia treated globally

• No cavitation

Parameters for characterizing quadratic film variation.
BULK FLOW EQUATIONS FOR TURBULENT FLOW

integrated momentum

\[\rho_h \left(\frac{\partial u}{\partial t} + v \frac{\partial u}{\partial s} + u \frac{\partial u}{\partial \theta} + \frac{uv_l}{r} \right) = -\frac{h}{r} \frac{\partial p}{\partial \theta} + (\tau_b - \tau_a) \cdot \mathbf{I} \]

\[\rho_h \left(\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial s} + u \frac{\partial v}{\partial \theta} + \frac{u^2 l}{r} \right) = -\frac{h}{r} \frac{\partial p}{\partial \theta} + (\tau_b - \tau_a) \cdot \mathbf{J} \]

integrated continuity

\[\frac{1}{r} \frac{\partial}{\partial s} \left(rvh \right) + \frac{1}{r} \frac{\partial}{\partial \theta} \left(uh \right) + \frac{\partial h}{\partial t} = 0 \]

Velocities and forces on a differential element in the \(\theta \) direction.
SHEAR STRESS AND FRICTION FACTOR RELATIONSHIPS

\[\tau_a = \frac{1}{2} \rho |\bar{u} - \bar{u}_a| f_a\left(\frac{2h \rho |\bar{u} - \bar{u}_a|}{\mu} \right)(\bar{u} - \bar{u}_a) = \frac{1}{4} h R_a R_a f_a(R_a) (\bar{u} - \bar{u}_a), \]

\[\tau_b = -\frac{1}{2} \rho |\bar{u} - \bar{u}_b| f_b\left(\frac{2h \rho |\bar{u} - \bar{u}_b|}{\mu} \right)(\bar{u} - \bar{u}_b) = -\frac{1}{4} h R_b R_b f_b(R_b) (\bar{u} - \bar{u}_b), \]

\[R_a = 2h |\bar{u} - \bar{u}_a| \rho / \mu, \quad R_b = 2h |\bar{u} - \bar{u}_b| \rho / \mu. \]

\[f_a(R_a) = n_o R_a^{m_o}, \quad f_b(R_b) = n_o R_b^{m_o}, \quad \text{Hirs - Blasius} \]

\[f_{a,b} = 0.001375 \left[1 + \left(\frac{10^4 K_{a,b}}{h} + \frac{10^6}{R_{a,b}} \right)^{\frac{1}{3}} \right], \quad \text{Moody} \]

\[p_j, \nu_j, h - \Delta h \quad \begin{array}{c} p, \nu, h \end{array} \quad \begin{array}{c} -\Delta h \end{array} \quad \text{s flow direction} \]

\[p_j + \frac{1}{2} \rho v_j^2 = p + \frac{1}{2} \rho v^2 (1 + \xi) \quad \text{at} \quad s = s_j. \]

\[\xi = \begin{cases} \zeta(R, \bar{h}, \bar{v}) & , \Delta \bar{h} < 0 \text{ (contraction)} \\ \left(1 - \frac{\bar{h}}{\bar{h} - \Delta \bar{h}} \right)^2 & , \Delta \bar{h} \geq 0 \text{ (expansion)} \end{cases} \]
Schematic of spiral groove parameters, global and local pressures.

Flow diagram for overall logic used in computations
(CASE 1) Cylindrical seal with grooves, laminar, no press, grad.

&INPUTS
TITLE = 'Cylindrical seal with grooves, laminar, no press, grad.'
IFACE = 0
ISIUN = 0
IGROT = 0
NOI = 2
IFLOW = 1
RO = 1.0000E+00
EL = 5.0000E-01
C = 1.0000E-03
RPM = 5.0000E+04
RPMO = 2.5000E+04
RPMD = 0.0000E+00
PLEG = 0.0000E+00
PRIG = 0.0000E+00
FZD = 0.0000E+00
VISC = 3.0000E-08
DENS = 0.0000E+00
EMA = -2.5000E-01
ENA = 7.9100E-02
EMB = -2.5000E-01
ENB = 7.9100E-02
HTAP = 0.0000E+00
HBRL = 0.0000E+00
TOLH = 1.0000E-04
TOLV = 1.0000E-05
DUT = 1.0000E-06
IHOME = 0
NITH = 10
NITV = 30
NREG = 2
NRSUB = 50
ELFR = 5.0000E-01
ALPI = 5.0000E-01
BETI = 2.5000E+01
DELT = 2.0000E-03
ZET = 0.0000E+00

Cylindrical seal, Inertia neglected

Length, Diameter, Clearance = 5.0000E-01, 2.0000E+00, 1.0000E-03 (in)
Rotor, Swirl and Dist. Speeds = 5.0000E+04, 2.5000E+04, 0.0000E+00 (rpm)
Pressure at start, end Axial Boundaries = 0.0000E+00, 0.0000E+00 (psi)
Viscosity = 3.0000E-08 (psi-sec), Density = 0.0000E+00 (lb-sec/in^4)
Error Code = 0, Iterations in Primary Flow = 2
Flow = 1.1506E+00 (in^3/sec)
Torque = 4.3909E-01 (in-lb), Film Power Loss = 3.4835E-01 (hp)
Axial Reynolds Number = 0.0000E+00
Circ. Reynolds Numbers for Rotor at Seal Ends = 0.0000E+00, 0.0000E+00

Dynamic Coefficients (Force Unit / Disp. Unit)

<table>
<thead>
<tr>
<th>DISP.</th>
<th>x (IN)</th>
<th>y (IN)</th>
<th>phi (RAD)</th>
<th>psi (RAD)</th>
<th>FORCE UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kx</td>
<td>2.7021E+04</td>
<td>1.3511E+04</td>
<td>-6.3081E+02</td>
<td>-1.2959E+03</td>
<td>LB</td>
</tr>
<tr>
<td>Ky</td>
<td>-1.3511E+04</td>
<td>2.7021E+04</td>
<td>1.2959E+03</td>
<td>-6.3081E+02</td>
<td>LB</td>
</tr>
<tr>
<td>Kphi</td>
<td>2.3387E+02</td>
<td>-6.5242E+01</td>
<td>1.6699E+02</td>
<td>8.6419E+01</td>
<td>IN-LB</td>
</tr>
<tr>
<td>Kpsi</td>
<td>6.5242E+01</td>
<td>2.3387E+02</td>
<td>-8.6419E+01</td>
<td>1.6699E+02</td>
<td>IN-LB</td>
</tr>
<tr>
<td>Bx</td>
<td>5.1297E+00</td>
<td>7.8477E-11</td>
<td>-2.0242E+02</td>
<td>1.3973E-01</td>
<td>LB-SEC</td>
</tr>
<tr>
<td>By</td>
<td>-7.8477E-11</td>
<td>5.1297E+00</td>
<td>-1.3973E-01</td>
<td>2.0242E+02</td>
<td>LB-SEC</td>
</tr>
<tr>
<td>Bphi</td>
<td>-2.0242E-02</td>
<td>-1.3973E-01</td>
<td>3.0437E-02</td>
<td>3.8319E-13</td>
<td>IN-LB-SEC</td>
</tr>
<tr>
<td>Bpsi</td>
<td>1.3973E-01</td>
<td>-2.0242E-02</td>
<td>-3.8319E-13</td>
<td>3.0437E-02</td>
<td>IN-LB-SEC</td>
</tr>
<tr>
<td>Ay</td>
<td>-4.0552E-18</td>
<td>4.7708E-19</td>
<td>1.7891E-19</td>
<td>7.4544E-20</td>
<td>LB-SEC</td>
</tr>
<tr>
<td>Aphi</td>
<td>1.1927E-19</td>
<td>5.4045E-20</td>
<td>-1.8636E-20</td>
<td>3.3545E-20</td>
<td>IN-LB-SEC</td>
</tr>
<tr>
<td>Apsi</td>
<td>-5.4045E-20</td>
<td>1.1927E-19</td>
<td>-3.3545E-20</td>
<td>-1.8636E-20</td>
<td>IN-LB-SEC</td>
</tr>
</tbody>
</table>
Comparison with results published by D. W. Childs (1983)

<table>
<thead>
<tr>
<th></th>
<th>SPIRALI</th>
<th>Childs</th>
<th>SPIRALI</th>
<th>Childs</th>
<th>SPIRALI</th>
<th>Childs</th>
<th>SPIRALI</th>
<th>Childs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q) (cm³/s)</td>
<td>4006.</td>
<td>4019.</td>
<td>1771.</td>
<td>1779.</td>
<td>3989.</td>
<td>4019.</td>
<td>1767.</td>
<td>1779.</td>
</tr>
<tr>
<td>(K_{xx}) (MN/m)</td>
<td>18.90</td>
<td>18.65</td>
<td>10.79</td>
<td>9.756</td>
<td>18.58</td>
<td>18.52</td>
<td>13.25</td>
<td>12.48</td>
</tr>
<tr>
<td>(K_{yy}) (MN/m)</td>
<td>4.127</td>
<td>4.213</td>
<td>91.78</td>
<td>94.05</td>
<td>-3.027</td>
<td>-3.000</td>
<td>75.18</td>
<td>77.61</td>
</tr>
<tr>
<td>(B_{xx}) (KN-s/m)</td>
<td>21.89</td>
<td>22.35</td>
<td>487.2</td>
<td>500.6</td>
<td>21.89</td>
<td>22.47</td>
<td>489.5</td>
<td>502.2</td>
</tr>
<tr>
<td>(B_{yy}) (KN-s/m)</td>
<td>1.140</td>
<td>1.206</td>
<td>102.9</td>
<td>107.5</td>
<td>.8518</td>
<td>.8832</td>
<td>89.26</td>
<td>93.39</td>
</tr>
<tr>
<td>(A_{xx}) (kg)</td>
<td>3.020</td>
<td>3.200</td>
<td>272.6</td>
<td>285.3</td>
<td>3.003</td>
<td>3.186</td>
<td>272.1</td>
<td>285.3</td>
</tr>
</tbody>
</table>

DEFINITIONS OF COEFFICIENTS

Overall Seal Discharge Coefficient

\[
C_d = \frac{\Delta P}{\frac{1}{2} \rho V^2}
\]

Radial Force Coefficient

\[-f_r = K + c_0 \omega - M_0 \omega^2 = K_{ef} - M_{ef} \omega^2\]

Tangential Force Coefficient

\[-f_\theta = C_\omega - k = C_{ef} \omega\]
TITLE = 'Childs, Nolan & Kilgore Stator 1, 25% swirl, 1000 RPM'
IFACE = 0 ISIUN = 1
IGROT = 0 NOI = 0 IFLOW = 0
RO = 5.0800E-02 EL = 5.0800E-02 C = 3.5600E-04
RPM = 1.0000E+03 RPMO = 2.5000E+02 RPMD = 0.0000E+00
PLEG = 0.25000E+06 PRIG = 0.00000E+00 FZD = 0.00000E+00
VISC = 1.5400E-04 DENS = 1.5700E+03
EMA = -2.5000E-01 ENA = 7.9100E-02
EMB = -2.5000E-01 ENB = 7.9100E-02
HTAP = 0.00000E+00 HBRL = 0.00000E+00
TOLH = 1.0000E-04 TOLV = 1.0000E-05 DUT = 1.0000E-06
IHOME = 0 NITH = 10 NITV = 30
NREG = 19
NRSUB = 5
ALPI = 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
BETI = 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
DELT = 0. 3.8E-4 0.
ZET = 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

Dimensionless axial flow rates

RPM

Exp.

1000
4000
7200

ΔP (bar)
Extraction of effective stiffness and added mass

Tangential force coefficients
Radial force coefficients

Comparison between K and K_{el} at various rotating speeds
Comparison between $C - k/\omega$ and C_{ef} at various rotating speeds

Effect of circumferential inertia on pressure disturbance
Effect of local pressure discontinuities on predicted axial flow rates