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ABSTRACT 
A prototype Lisp-based soft real-time object-oriented Graphical User Interface for control system 
development is presented. The Graphical User Interface executes alongside a test system in 
laboratory conditions to permit observation of the closed loop operation through animation, 
graphics, and text. Since it must perform interactive graphics while updating the screen in real 
time, techniques are discussed which allow quick, efficient data processing and animation. 
Examples from an implementation are included to demonstrate some typical functionalities which 
allow the user to follow the control system's operation. 

INTRODUCTION 
When developing a graphical user interface (GUI) to be used in conjunction with a real-time 
control system, several factors must be considered and balanced in choosing a platform. Speed, 
graphics capability, networking ability, development environment, and cost are all important 
features to be weighed in the decision. Whether the user interface must interact with the control 
system or simply monitor it affects the choice of platform. In the fIrst case, a hard real-time 
constraint is imposed which requires that the user always have access to the most recent data. 
In the latter case, when no immediate decisions are to be based upon the GUI's display, a soft 
real-time system will suffice by updating as time permits, allowing the user to see everything, 
but perhaps slightly delayed due to more urgent demands on the processor. 

The graphical user interface developed for the Reusable Rocket Engine's Intelligent Control 
System (ICS) [1] at NASA Lewis Research Center is a soft real time, object-oriented, Lisp­
based program. The platform chosen was a Texas Instruments Explorer II+ Lisp Machine which 
has a large, high-resolution, color screen, ethemet compatibility, a three-button mouse, and an 
extensive graphics support package containing functions ranging from primitives to detailed, 
highly complex development tools (fIgure 1). 
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The GU1 is part of the ICS test bed (figure 2), a setup to demonstrate control systems in a 
laboratory environment [2]. The basic test bed consists of the ADlOO simulation computer, the 
Control Interface and Monitoring (CIM) Unit [3] , and the Explorer. The other computers in the 
figure are specific to the ICS and would not necessarily be used in other test bed setups . The 
test bed is designed so that the simulation computer could be replaced by the actual system being 
modeled and no major changes would be required in the connections or the remaining hardware 
and software. 

In general, a closed loop system consists of a plant and a controller to regulate it. Depending 
on the complexity of the control system, other functions such as fault detection and sensor 
validation might be added but are not standard. In a research situation, however, the ability to 
monitor the closed loop system in some way is essential. The simplest method is to plot data 
using a strip chart recorder. A slightly less primitive method is to use a computer to capture the 
raw data and then plot it. While important capabilities as part of a larger monitoring system, by 
themselves these methods tend to limit the amount of data presented and thus the sophistication 
of the system itself. The relatively small number of channels available on the strip chart recorder 
and the inconvenience and delay associated with plotting data fIles make the testing and 
debugging of large systems difficult. Moreover, once the plots are created, the user is forced to 
interpret them off-line, out of the context of the real-time operation of the control system. For 
a relatively complex system such as the ICS, a detailed, customized, on-line interface is necessary 
to monitor the large number of variables and to allow the user to observe how the system 
performs under adverse conditions such as after component failures. An interactive GU1 was 
developed because it enables the user to see, symbolically, what is going on inside the ICS 
through plots, animation, interactive graphics, and text. 

AN OBJECT-ORIENTED GRAPIDCAL USER INTERFACE 
An object.:.oriented system is one consisting of entities possessing certain data and operations [4]. 
These entities or objects interact in predefined ways to give the overall system the desired 
qualities. By object-oriented graphics, one means a set of graphical entities which have certain 
properties. These properties might include position, color, and size, for instance. Items 
traditionally thought of as graphical objects-polygons, sprites, blinkers-are only a fraction of 
the total. Other graphical objects used in this GUI include windows, frames , and the mouse 
cursor. Specific instances of a class of objects are created from a template called a flavor which 
is a generic object of a particular type with certain default properties. The new object will 
automatically inherit those properties unless they are explicitly set to something else. New 
flavors can be built by combining several existing types and the new ones will cohtain the 
properties of their parents. Objects communicate by sending messages to each other which, when 
received, produce a certain action. For example, a sprite is a graphical object which can move 
along a desired path on the screen automatically, i.e., the tasks of saving the background, drawing 
the sprite, erasing the sprite, redrawing the background, saving the background in the new 
location, redrawing the sprite in its new location, and so on, are done by the processor without 
instruction from the GU1. These actions can be initiated and altered by sending a message to the 
sprite, which is accomplished by executing a special line of code. The sprite object itself 
contains the program to update the screen and has it simply by virtue of being a sprite-it is an 
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inherited property of all sprites. 

THE BASIC FRAME 
The GUI is made up of multiple screens which represent different aspects of the closed loop 
system a user may want to examine. Each screen consists of three windows built into a structure 
called a frame, an example of which is shown in figure 3. Since there exists a one-to-one 
relationship between screens and frames in this GUI, the words will be used interchangeably. 
The frames are arranged in a hierarchical, tree-like structure. The more general represent the base 
of the tree while the more specific represent its branches. Each frame contains at least one icon, 
a graphical object which symbolizes an action to be performed. In this case, clicking on the icon 
with the mouse exposes the frame corresponding to that icon. 

One of the development tools on the Explorer is the Constraint Frame Editor [5]. This utility 
allows the user to divide the screen into windows with the mouse and then create and save the 
code used to construct this frame. The code can be edited for user-designed applications. The 
basic frame used in the ICS GU! was developed with the Constraint Frame Editor. It consists 
of three windows of different types. After the general contents of the frame were created in the 
Constraint Frame Editor, the resulting code was edited for each frame so that every screen of the 
GUI was comprised of an individual frame containing three unique windows. 

The Mouse-Sensitive Graphics Window 
The upper window on each screen is mouse-sensitive (see figure 3). This means that there are 
objects on the screen which become highlighted when the mouse cursor is on them and that 
clicking on them causes some action to be performed. When the mouse cursor is placed over 
the selectable object, a box appears around the object. Additionally, a text string indicating 
which frame will be exposed if the object is clicked on appears in the extreme lower left of the 
screen. Both the box and the text string disappear when the mouse cursor is moved off the 
object. In this case, clicking on the icon will bring up the screen which corresponds to it. The 
mouse-sensitive graphics window contains a picture of the system or component so it is clear 
which icons might be selectable. To make it even clearer, whenever a failure occurs, the picture 
of the malfunctioning component starts blinking. With this type of screen it is natural to select 
particular objects creating a smooth flow through the GUI to observe the closed loop system's 
operation interactively. 

The Plotting Window 
Another graphics window is located at the lower right of each screen (see figure 3). These 
plotting windows are not mouse-sensitive. They are animated to display the values of the system 
variables in strip-chart form updated in simulation time. Each of these windows can contain 
several sets of coordinate axes displaying preselected variables appropriate to the picture in the 
mouse-sensitive graphics window on the same screen. Each set of axes can display up to 361 
data points. When the plot comes to the right edge of the time-axis, it shifts left half way (the 
point at the right edge moves to the middle of the time-axis) and continues plotting to the right. 
Time is displayed across the top of the window and is updated with each leftward shift. Variable 
name, units, and range are included by each set of coordinate axes (figure 4). 
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The plotting window assumes a user-specified number of samples per second will be transferred 
from the CIM Unit and sets itself up so that the time-axis corresponds to 361 of those time steps 
(the time-axis is 361 pixels long). Ideally, the time stamps associated with the data sets 
correspond one-to-one with the pixels of the time-axis. If the GUI does not receive variable 
v alues for each expected time step, either because samples are sent at a slower rate or because 
some data packets get lost, the GUI will plot the points at their appropriate location based on the 
time stamp and linearly interpolate between the previous and current data point in the plotting 
window so spaces are not left blank. If the GUI receives samples at a faster rate than 
anticipated, implying that more than 361 data sets are received in the time allotted for 361 , the 
array which saves the variable values will fill up prematurely causing a fatal error. 

The Output Window 
The output window is a Lisp Listener, an interactive text window located in the lower left comer 
of the screen (see figure 3). System bulletins such as announcements of failures are broadcast 
to all output windows for informational purposes. The output window accepts keyboard input, 
evaluates it and returns a value. Thus it can be used to examine or change variables within the 
GUI. To be able to type into the window, it must be selected with the mouse, i.e. the user must 
click on it. 

Adding Screens 
The GUI is modular. There are pieces of code corresponding to the creation of each frame. 
Copying the code and making minor changes such as to the names of the windows is all that is 
required to construct a new screen. To be able to expose the screen, it is necessary to put an 
icon in the mouse-sensitive graphics window of an existing screen which, when clicked on, will 
bring up the new frame. Once the window is created, a picture containing mouse-sensitive icons 
can be drawn in the upper window, and axes can be inserted in the lower right window. 

Using the existing code as a guide, it is straightforward to create additional screens. Thus the 
GUI can be extended as needed without a great deal of effort. The appendix contains the code 
used to create the frame (but not any of the graphics) shown in figure 3. Developing the detail 
required in the picture in the mouse-sensitive graphics window might entail a significant amount 
of work. 

PROGRAM FLOW 
Because of the large, complex structure and detailed graphics comprising the G UI, the startup 
procedure is time-consuming. During this procedure, the screens and the graphical objects which 
they contain are created and built, as are the other objects and data structures used in the 
operation of the GUI. Once the startup operation is complete, the GUI waits for a network 
connection to be established by the CIM Unit. After the connection is made, the GUI loops 
continuously, reading data from the eIM Unit and using this information to update the screen 
(figure 5). User inputs from the mouse or keyboard will temporarily interrupt this looping. 
Unless the user input causes a catastrophic error, program flow will continue immediately 
following the GUI's response. Mouse inputs are explicitly checked for in the loop but keyboard 
inputs are accepted whenever they are typed. Generally, the time required to make simple 
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responses, such as changing or returning the value of a variable, will not be noticeable to the 
user. 

Networking 
The Explorer can communicate over ethernet, using the TCP lIP protocol. It is well known that 
ethernet is not generally acceptable for real-time communication because of the open-ended delay 
time associated with it. However, in the case of the Reusable Rocket Engine ICS GUI this 
problem was minimized by having only two processors on the network, the Explorer and the CIM 
Unit." This, along with the fact that the communication was one-way (from the elM Unit to the 
Explorer) allowed it to be reliable and collision-free. 

At regular intervals, the CIM Unit transmits a data packet to the Explorer which includes a time 
stamp, variable values to be displayed, and an integer indicating the failure status of each piece 
of hardware. This data snapshot provides all of the essential infonnation about the ICS at a 
particular instant of time. 

A critical aspect of network programming is resource allocation. When the Explorer reads the 
input buffer, the receiving routine creates an array to store the incoming data packet. Each time 
a packet is received, it is copied from the newly created array to an array which the GUI can 
manipulate. The created array is not reused and not automatically deallocated. Thus, after a 
time, these arrays could use up all of the free memory and crash the computer. Therefore, it is 
required that the DEALLOCATE-RESOURCE function be called after each packet is read. 

Failures 
When the eIM Unit detects a failure , a flag indicating its occurrence is sent over the network 
along with the data snapshot. Once received, the flag sets off blinkers in the mouse-sensitive 
graphics windows and causes messages to be printed in the output windows of the GUI. 

The blinkers used are bitblt-blinkers which are raster images whose status may be :off (not 
visible), :on (visible), or :blink (alternately visible and not visible). Each blinker is created by 
rasterizing the image of a graphical object intended to blink. This blinker, whose status is 
initially : off, is inserted directly on top of the graphical object it resembles. When the 
appropriate failure flag is set, the blinker's status is set to :blink so the object appears to alternate 
rapidly between nonnal and abnonnal coloration, caused by the alu function (the arbiter of the 
resultant color when foreground and background colors combine), giving the impression of 
flashing. 

Since the closed loop system and the GUI are designed to work together in the test bed and the 
detectable failures in the system are known, it is possible to set up a failure signaling system 
between them. In the case of the Reusable Rocket Engine, there are 19 identifiable failures. The 
existence of each failure is represented by a logical flag, which, in turn, is represented by a 
binary digit, 0 or 1. The failures are ordered so that the sequence of failure flags can be 
represented as a 19-bit integer. Since the elM Unit sends a packet of real numbers over the 
network, it must convert the failure flag integer to a floating point value which is included as the 
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last element of each packet. Once received, the floating point number is converted back to an 
integer which is then compared to the previously received integer using a logical XOR operation. 
A nonzero result triggers a series of tests for individual nonzero bits. Each one causes blinkers 
to begin flashing and failure messages to be broadcast to all output windows. In general, 
signaling from the CIM Unit to the GUI can be accomplished for any number of prearranged 
events. If the number of possible events exceeds the number of bits in a single integer, 
additional integers can be added to the end of the data packet which is passed to the GUI. The 
number of flags represented by each integer is limited by the internal representation of integers 
and real numbers and the accuracy of the conversion between them. 

Operational Modes 
The GUI is capable of operating in networked or stand-alone mode. The system was designed 
and is intended to run networked as part of the ICS testbed. However, during the development, 
testing and debugging phases, it is critical that the GUI have the ability to run on its own, 
duplicating its networked behavior. The user chooses the mode at start-up by calling the GUI 
routine with a logical argument indicating whether or not the system is networked. If the GUI 
is networked, the data values are read directly from the input buffer. If not, they are set within 
the program to some predetermined values. The two different data acquisition functions are the 
only code which is not common to both modes. The stand-alone mode allows a user to check 
every aspect of the G UI except for the reading of the input buffer. This way, all changes can 
be tested and evaluated without requiring the use of the rest of the testbed system. 

An automatic reset option was built in to avoid having to stop and restart the GUI and ClM: Unit 
each time the control is reset to nominal conditions before a new simulation run. To prepare for 
the reinitialization of the simulation, a button on the elM: Unit is pressed, causing the time stamp 
value sent over the network to the TI Explorer to be reset to 0.0 and remain at that value as long 
as the button is depressed. When a time stamp value of 0.0 is first received by the GUI, the 
screens are all reset and all flags and internal variables reinitialized. The GUI loops, reading the 
buffer, mouse and keyboard input as usual but does not plot in the plotting window nor save past 
data values until the fITSt nonzero time stamp is received. Thus, only the data which are 
considered valid are plotted. This feature is also implemented in the stand-alone mode since the 
two modes are identical except for the data acquisition portion. When running stand-alone, the 
user can set a logical flag from any output window which will set and hold the time-stamp value 
at 0.0 and, likewise, the user can reset the logical flag to restart the progression of time. A block 
diagram of this automatic reset procedure is shown in figure 5. Note that as long as the time­
stamp is 0.0, the previous data values are overwritten with the new set of variable values as the 
program loops. This way, once time starts advancing, the values plotted corresponding to a time­
stamp of 0.0 are the ones received most recently. 

REAL· TIME CONSIDERATIONS 
Eliminating Overhead 
Any real-time system should be able to execute code efficiently. Lisp Machines are specifically 
designed to run Lisp code quickly. The Explorer is not as adept at running graphics routines as 
some specialized graphics computers but does an acceptable job for the current application. 
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Thus, it is necessary to program in such a way that the negative aspects of Lisp are minimized. 

memory management 
Lisp is notoriously cumbersome, requiring a tremendous amount of overhead and creating an 
immense quantity of garbage (the dynamically allocated memory not available to any executable 
code because the pointer to it is lost [6]). Eliminating garbage totally is nearly impossible, but 
fmding ways to reduce it is good programming practice and essential for real time applications. 
Like most reasonably powerful programming languages, Lisp allows the user to write subroutines 
with local variables and to pass arguments. Additionally, Lisp contains many constructs in which 
variables are bound or temporarily set to a value and released at the end of the function. 
Sometimes it is convenient to use these types of expressions but the allocation and de allocation 
of memory involved with temporary binding is time-consuming and it is wise to avoid it if 
possible. A good way to get around this problem is to use global variables wherever possible. 
A global variable is deImed in advance outside a specific function so it exists in memory and any 
function can access it. 

drawing methods 
Associated with each window is a world. A window provides a view into the world. Each world 
has information about itself including a property-list which contains the name of every object in 
that world. When a new object is placed into the world using the :insert method, its name is 
added to the property-list and, if it's location is suitable, it will appear in the window when either 
the :draw or :refresh method is used. The object remains in the world until it is explicitly deleted 
from the property-list. In contrast, there are :draw methods which merely write a picture on the 
window without inserting a graphical object into a world. Thus, when the window is refreshed, 
the image is lost. This is not only faster but also extremely convenient for situations where the 
screen should be wiped clean regularly. Using the most basic :draw methods can result in even 
faster execution of the graphics routines. Generally, screen output is one of the slowest 
procedures anyway, and, coupled with the fact that the drawing methods can be extremely long 
and complex because of multiple consistency checks, drawing becomes a time-consuming 
operation. Since the source code for all methods and functions is readily available, it is simple 
to inspect it to determine what is the most basic drawing function and call it directly, thus 
bypassing the expensive overhead. In the plotting windows of the GUI, the primitive :draw­
clipped-line method was used instead of the much more complicated :draw-line or :draw-polyline. 
Since the data were preprocessed anyway, there was not much likelihood of any of the data 
causing trouble for the plotting routine. Because both the time values and the plots displayed 
are temporary and must change every time the time-stamp exceeds the right end of the time-axis, 
sending the plotting window the :refresh message erases everything that is not in that world's 
property-list. Only the axes, variable names, ranges and units remain. The new time values as 
well as the left half of each plot are immediately drawn in the window and the right half of the 
plots, the new values, are drawn as they are received from the CIM Unit. 

Data Transfer 
As the data transfer rate is increased, a trade-off develops between the need to plot sufficient data 
points to show the response in detail, and the need to keep the display on the screen long enough 
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to see it properly. Another consideration is that if the data transfer rate becomes too high, the 
Explorer might not be able to read all of the data packets and lose some when the input buffer 
overflows. 1bis is especially likely to happen when a new screen is selected using the mouse 
since there is a lot of software overhead associated with exposing a different frame. Exposing 
a new screen might take a second or two while the CIM Unit continues to send data. Because 
of the linear interpolation feature of the plotting window, even if some data are lost, the 
remaining po~ts are connected by straight lines which masks the fact that some are missing. 
During transients , however, this has the potential to be misleading because the sampling process 
fIlterS out some high frequency information. For the IeS example, the reusable rocket engine 
simulation is slowed down to run ten times slower than real time in order to accommodate some 
of the slower IeS hardware and software. The CIM Unit sends data over the ethemet to the GUI 
at a rate of 20 packets per second (real time) which is sufficient to display the transient plots of 
the slowed down IeS simulation. With this transfer rate, the graphs which appear in the plotting 
window are displayed for nine seconds (180 points divided by 20 points per second equals 9 
seconds) between each leftward shift. 

Note that the user -specified data transfer rate corresponds to the simulation time rather than real 
time if they are different. It allows the time axis to be set up to plot the appropriate number of 
data points based on the time stamp value. That is why, in figure 4, half of the time axis is 0.9 
seconds but is displayed for 9.0 seconds. 

It is important to select the data transfer rate to the GUI which allows the important frequencies 
to be displayed, and balance this against the ability of the Explorer to receive data packets 
without its buffer overflowing. If the data transfer frequency is low enough that the plot can be 
read easily, the transfer rate should be well within the range the Explorer can accept without a 
problem. 

Array Representation 
In Lisp there are many data types. A type refers to the data structure, amount of memory 
required and properties of the datum. Examples include lists, atoms, and arrays. A powerful 
feature of Lisp from a programming point of view but a serious drawback for real time execution 
is that variables need not be declared a particular type; thus a variable can be set equal to an 
array and later set equal to an atom. If the data type is not known in advance, memory cannot 
be preallocated as with traditional languages, it must be allocated dynamically as data structures 
are created. Additionally, since the variable ' s type can change, the variable must point to its 
value rather than contain it (indirect addressing). In fact , each variable has several cells 
associated with it to help interpret its value. The cells hold information about the variable such 
as location in memory, type, etc. A locative in Lisp is an object which points to a cell and is 
used to access a variable. If a variable has associated locatives, it means that there is a lot of 
overhead involved with retrieving its value. Worse, when an array is declared, locative cells are 
created to describe each of its elements. 

numeric 
Efficiency can be greatly increased through knowledge of an array 's contents. If the array will 

8 



+i )' 

only hold numbers of a particular type (integers, 32-bit reals, etc.), and it is declared that way, 
the exact size is known. Thus, the memory will be preallocated and can be accessed directly 
without locatives. TIlls saves both memory and overhead. In the Ies GUI, the large array used 
to store the received data snapshots for plotting purposes was declared this way since the time 
stamps and dependent variables are all real numbers. 

offset 
A large rectangular (two-dimensional) array (number of variables x 361) is used to store the data 
snapshots as they are received (figure 6). The values are copied, as a column, into the fIrst free 
column of the array. There are situations where it is convenient to manipulate a large array 
containing all measured variable values. On the other hand, sometimes it desirable to work with 
a sequence of only a single variable's values. From the programmer's point of view and from 
a readability standpoint, the use of offset arrays simplifies the job of accessing data by defining 
one-dimensional arrays corresponding to individual rows of the large ' data array. An offset array 
is an array defined to overlap some of the same contiguous memory locations as a previously 
defmed array. These row arrays allow the programmer to deal with a sequence of data points 
for a single variable using its name rather than having to manipulate a large array of many 
variables using indices. 

Offset arrays may also be used to convert from one data type to another implicitly. In the GUI, 
the data packet from the CIM Unit is read in and saved, element-by-element, as an array of 8-bit 
bytes. In reality, however, the data transferred are single-precision real numbers , each four bytes 
long. The problem of accessing the variables is not in reading their values but, rather, knowing 
how to interpret them. Thus, an offset array of single precision real numbers was defmed at the 
same location in memory as the four-times-as-many-elements-Iong byte-array into which the data 
are copied (fIgure 7). TIlls defInition carries with it all of the information on how to interpret 
the array elements. Therefore, reading the fIrst element of the real-array returns the four-byte­
long, single-precision real number corresponding to the value of the first variable. No explicit 
type conversion is required and the offset array is defined in the GUI startup time rather than 
during run time so the conversion process is instantaneous. 

Animation 
Every effort was made to speed up the looping of the GUI program so that it had the potential 
to accept data snapshots from the CIM Unit at a rate appropriate for real-time operation. The 
screens and the functions of the graphical displays they were to contain were determined and 
implemented initially without regard to execution speed. Once running, ways to increase the 
execution speed were investigated. If the graphics depend on the value of variables from the 
simulation and their full range can be adequately represented by a limited number pictorial 
representations , graphics can be created in advance. For instance, on the mouse-sensitive 
graphics window of the valve screen of the IeS GUI (figure 8), the valve positions are animated 
so the stems appear to rotate to the correct angle. Originally this was accomplished by redrawing 
the circles, lines, and arcs-approximately ten different shapes--{)ver a valve stem every time 
its angle changed, but this proved to be extremely slow, especially with six valve stems to 
update. In general, it is faster to draw a raster image than create a shape. A raster image is a 
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pattern of pixels captured and stored in an array. The flows through the valves are represented 
by either red or green, thus two sets of rasters were needed. The raster creation is part of the 
preprocessing or start-up of the GUI so the time it takes is not critical. Into a blank: screen were 
inserted as many valves as could fit, each with the stem turned a slightly different amount from 
fully open to fully closed. This screen was rasterized and stored and the process was repeated 
with the other flow color. Once these rasters are created, the appropriate rectangle containing 
the valve stem from the rasterlzed image, corresponding to a particular valve angle, can be drawn 
over the appropriate valve stem in the valve screen using a single :draw-raster message. This 
drawing is done so quickly that the valves appear to turn with a smooth, continuous motion. 
Previously, using the shape-drawing technique, only one valve stem was updated each time 
through the read-and-update-data loop. By replacing the shape-drawing portion of the valve 
animation routine with a raster-drawing procedure, it was demonstrated that the update time could 
be reduced. Using rasters, all six valve stem angles can be updated in each loop and it is still 
faster than the other method. This type of animation is used when the GUI must have complete 
control over what is illustrated, such as with the valve angles which depend on measurements. 

When repetitive movements or ones that are independent of variables ' values are to be depicted, 
it is convenient to use sprites. Sprites are graphical objects which move across the screen based 
on some preset parameters such as speed and direction. The GUI and the programmer do not 
have to worry about a sprite's movement once it is set. The calculations required to move the 
sprite are done automatically by the CPU and no intervention by the user or GUI is required. 
However, since the CPU must perform calculations to move the sprite, there is a noticeable 
slowdown in the GUI's speed. This occurs only when a screen which contains sprites is 
displayed, otherwise the calculations are suspended. Thus, if a screen would benefit from being 
animated and the movements should repeat while the screen is displayed, and not a lot of other 
activity is taking place on the screen (such as if the number of variables to plot is small) sprites 
are a reasonable option. 

CONCLUSIONS 
A prototype object-oriented Graphical User Interface was developed to monitor the real-time 
operation of a control system in a laboratory test bed. The GUI can be used as a research tool 
to aid in the development of complex control systems. Through plots, animation, interactive 
graphics, and text, the user can watch the closed loop system's performance to any level of detail 
the developer chooses. The tools and techniques used to create the GUI are described to allow 
a similar system to be constructed or for additions to be made to the current one. Using the basic 
structure of the existing GUI as a template, a programmer can fairly easily write the code for a 
new GUI, albeit without detailed pictures . Progranuning the code for the pictures in the mouse­
sensitive graphics window is by far the most time consuming aspect of the GUI development. 
The hints given for speeding up the GUI's execution are simple and, if used from the initial 
design phase, will not increase development time. 

There are numerous aspects to consider when planning to build a Gill, many of which are 
discussed here. If the GUI is modular and can be tested in a stand-alone mode, the development 
is greatly simplified. The Texas Instruments Explorer II+ used in the ICS application provided 
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good graphics capability with convenient development tools, the networking capability and speed 
required for the IeS application, and a good interactive development envirorunent. 
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APPENDIX: Lisp code used to create SSME frame 

(defflavor mouse-sensitive-graphics-window () ; f1avor of upper window in frame 
(w:basic-mouse-sensitive-items 
gwin:graphics-window» 

(defvar my-constraint-list ; constraint 1ist created by Constraint Frame Editor 
, «t (pane2 dummy3) «pane2 0.48» 

«dummy3 :horizontal (:even) (pane4 paneS) «pane4 0.5» 
«paneS :even»»») 

(defvar ssme-pane-list ; description of each window in the SSME frame 
, «paneS gwin:graphics-window 

:bottom 753 
:left 512 
: right 1023 
:top 361 
: label "SSME VARIABLE PLOTS") 

(pane4 w:lisp-listener 
:bottom 753 
: left 1 
: right 511 
:top 361 
: label "INTERACTIVE") 

(pane2 ics:mouse-sensitive-graphics-window 
:item-type-alist ; item-type-a1ist is a 1ist of mouse-sensitive 
; items, function to execute when item is se1ected, and text to 
; disp1ay at bottom 1eft of screen when mouse is over item 
«hpotp-item (prepare-hoftp-window) 

"HIGH-PRESSURE OXIDIZER TURBOPUMP") 
(hpftp-tip-seal-item (prepare~hpftp-tip-seal-window) 
"HIGH-PRESSURE FUEL TURBOPUMP") 

(lpftp-item (prepare-lpftp-window) 
"LOW-PRESSURE OXIDIZER TURBOPUMP") 

(opov-item (prepare-valve-window) 
"OXIDIZER-PREBURNER OXIDIZER VALVE") 

(opfv-item (prepare-valve-window) 
"OXIDIZER-PREBURNER FUEL VALVE") 

(mov-item (prepare-valve-window) "MAIN OXIDIZER VALVE") 
(ccv-item (prepare-valve-window) "CHAMBER COOLANT VALVE") 
(mfv-item (prepare-valve-window) "MAIN FUEL VALVE") 
(fpov-item (prepare-valve-window) 

"FUEL-PREBURNER OXIDIZER VALVE") 
(sensor-item (prepare-sensor-window) "SENSOR SCREEN"» 

:bottom 361 
:left 1 
: right 1023 
:top 1 
:label "SPACE SHUTTLE MAIN ENGINE FULL VIEW" 
:expose-p t») 

(defvar my-edge-list ' (0 0 1024 754» ; outside edges of the frame 

(defun make-frame (pane-list constraint-list) function used to create a frame 
(make-instance 'w:bordered-constraint-frame 

:save-bits t 
:edges my-edge-list 
:panes pane-list 
:constraints constraint-list 
:expose-p t» 

(make-frame ssme-pane-list my-constraint-list) ca11 to create SSME frame 
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