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Abstract
Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a
parameter, rather than an observable quantity like space. In relativistic Quantum Field
Theory, space and time are treated equally by reducing space to also be a parameter.
Herein, after a brief review of other measurements, we describe a third possibility, which
is to treat time as a directly observable quantity.

1 The Measurements of Space and Momentum

Here we postulate the existence of position eigenstates, such that their correspond-

ing eigenkets (defined by ._lx) = xlx ), where ._ is the position operator) resolve the iden-

tity operator
+_

L= faxlx)(xl" (1)

for the Hilbert space that they span, H x _ {Ix) : x c [-_,+_]}. Thus, any state II//) e H x

can be expressed as a weighted sum of position eigenstates:
+oo

Iv,)= j'axlx>IFIx 
--oo

where IF(x) = (x[I//) is Schrodinger's time independent wavefunction, the magnitude-

square of which gives the probability of obtaining the value x in what we call the

measurement of Yc.

An infinitesimal translation in physical space, denoted by 7_(Sx), is defined by its

mapping of the position eigenstates:

7_(_x)lx) = Ix + _x), (3)

and linear canonical momentum, denoted as /3, is defined to be the generator of these

translations:

lim f( _x)= Ix -i_x / h. (4)

It is important to note that in writing equation (3) we are assuming that space is un-

bounded, i.e. x c [-oo,+oo]. From equations (3) and (4) we can easily prove [1] that there

is a Fourier transform relation between IF(x) and _0(p)--(p] IF), where PIP) = PIP).

Rayleigh's theorem [2] then guarantees that Iq_(p)l 2 is a normalizable distribution and
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hence (since it must also be positive semi-definite) it corresponds to a probability distri-

bution function (pdf) that describes the "measurement of /3." This can also be seen by

virtue of the fact that a normalized I (p)l2 implies that the momentum eigenkets must

also resolve the identity operator:

_ dplp)(pl= L. (5)

In the case of the measurements of space and momentum our descriptions are complete in

the sense that both operators are Hermitian thereby ensuring that each has an orthogonal

set of eigenkets so that the corresponding wavefunctions can collapse.

2 "Time-like" Measurements

Time evolution, by an infinitesimal amount, &, denoted as U(&), is defined by

O( & )l o/,t) = l _,t + 6t), (6)

where [_,t) is the ket [_) when the time parameter takes on the value t. This is very dif-

ferent than the interpretation of equation (3), i.e. we are NOT postulating that I_,,t) is an

eigenket of a time operator. Thus, Schrodinger's time-dependent wavefunction,

o/(x,t) = (x] gt, t), still describes the measurement of space (not time) as is clear from the

fact that it is still the completeness of the position eigenkets that allows us to interpret

I (x,t)l 2 as a pdf for x so that at each instant in time we have
+oo

d_ I_,(x,t)l 2 = 1. (7)
--oo

We can obtain "time-like" information by performing this measurement of space (on

identically prepared systems) at different values of the time parameter, but we are only

inferring time information from the spatial measurement.

Similarly, we can perform measurements of other quantities, such as a spin com-

ponent (e.g. Sz) at different times, but here again we would be inferring rather than di-

rectly measuring the temporal information. For example, consider a particle of spin s. We

have an identity operator
S

is= z Im)(ml (8)
m=-s

for the spin part of our state space, 9¢s _ {Im)'m=-s,-s+l ..... s-l,s}, where

Szlm) = mhlm). Thus the measurement of Sz (performed at time t) is still described by a
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s

probability mass function for m, so that for every instant in time we have Y' Pt (m) = 1,

where Pt(m)=l(mlV, t)[ 2 m=-s

3 The Direct Measurement of Time

We can parallel the discussion of the spatial measurement given in section 1 under

the substitutions of t for x, the Hamiltonian /-) for/3, and _r(t_t) for 7_(Sx), thereby ob-

taining a temporal wavefunction [3], V(t), that is complementary to the energy represen-
F

tation: V(t)¢:* v(E), i.e.

V(t) = _dE v(E) e -iEtlh (9)
0

where vCe)-(elv) and  le)=Ele). As it stands however, this rather obvious

approach does not give a complete description of the measurement of time [4] due to the

existence of a lower bound on the energy eigenspectra (i.e. a "ground state").

For the sake of definiteness, consider a single harmonic oscillator of ("rigged")
1 ^

Hilbert space _c I <---_{[nl)'nl=0,1,2 .... oo}, where hllnl)=nllnl), l?tl=hOg(hl+-_ll),

and I1 = _ Inl)(nl l-The temporal wavefunction in this case is
n_=0

-inlq_ e-i¢12V(t)=e -i_/2 _ V, h e = IV(#), (10)
na=o

where #-rot, Vn _ -(nllV), and the gauge-induced topological phase, e -i¢/2, is not

observable without performing interference with another system since IV(t)[ 2 = Iv(c)[ 2.

Clearly the lower bound on photon number (n 1 > 0) prevents V(t) (or V(#)) from col-

lapsing to a delta-function. This implies that the underlying phase kets {[_)} are not

orthogonal, (#11_2) # t_(_ - _2 ) (where V(#) = (_1 V) ) and yet

E Inl)(nl[= il (11)
-z_ n_=0

that 3}-ff[IV(_) 12 is a perfectly valid pdf (as can also be seen from Parseval's theoremSO

[2]). This pdf must somehow correspond to a realizable quantum measurement (as can

also be seen from the formalism of probability operator measures or POMs [5]) and yet

our description of the measurement is "incomplete" in the sense that we do not have

wavefunction collapse (the {1¢)} is not an orthogonal set) and likewise, the non-

Hermitian operator associated with this measurement does not commute with its adjoint.
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4 The Complete Description of The Direct Measurement of Time

In order to get a complete description of the direct measurement of time we must

deal with a Hilbert space that is larger than H 1. For example, we can use the product

space for two oscillators, F/'I® 2 -= H 1 ® H 2. If we are willing to restrict our states to a

subset of HI® 2 where each value of the energy difference (m ---n1 - n2) occurs with a

unique value of the energy sum (j---n 1 +n 2) then there are an infinite number of

Hermitian time operators since there is an infinite number of such subsets (one such

example, where we restrict to H' c {Hi® 2 : nln 2 = 0}, is discussed in [6], [7], and [8]). If

we do not wish to restrict our states, then there are two physically reasonable alternatives.

We perform a relative time measurement that treats the different j states as either: (1)

distinguishable; or (2) indistinguishable. These two procedures also correspond to

performing: (1) a "marginal measurement" in which we average over all values of abso-

lute time; and (2) a "conditional measurement" in which we determine the relative time

distribution at an instant in absolute time, as we now demonstrate.

Complementarity suggests that for an arbitrary two-mode excitation, with number

representation Ig,h,,,2 - _(nll2(n2llg),®2,we take a two-dimensional Fourier transform

tlS(91,_2)=- 1(911 2(9211_)1®2 = _ _ _'..,._ e-intO' e-in_" (12)
nl=0 n_=0

Rewriting this in terms of Or. -- (91 + 92 )/2 and 9A - (91 - 02 )/2, we have

where

oo +j
19A,gY.)=- E _, Ij,m) eimcp"eij_

j=O m=-j

We see that the 9z part of _(96,9_.)

complement, the energy sum ( j > 0 ).

+ J _im¢A e-iJ_=_ _, Igj,me
j=0 m=-j

(13)

[ . (14)and Ij,m)-lnl)lln2)2 j=n,+n,,m=n,-n,

cannot collapse due to the boundedness of its

We can eliminate 9z to obtain a complete description of the measurement of 96

on Hl® 2 by applying an "absolute time average"to 19 ,9 )(gA,gzlresulting in

=(2_)dI_l'(ga)- " 2.
-/Z"

(15)

j_=O[( +m_=_jlJ'm)e_¢')(m+,_=_j(j'm'te-im'¢')] "
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Note that sinceboth of the inner sumsusethe samevalueof j, interference among the

different j states is excluded and we have (for pure states) the pdf

(PI(_A)= Tr pdl-Ii(_pa = v(J)(dpa (16)
.=

where: TrO denotes trace;/3 is the density matrix; and

+J -/m_,
Ig(J)(_A)- E IVj,me (17)

_=--j

This procedure treats the j states as distinguishable (adding the non-interfering

probabilities that each contributes to the measurement of Ca).

We can also eliminate _bx by conditioningl¢_x,¢z)(¢a,¢z [ to _br. =0 resulting in

1

(2_)ah_(¢_)-p(¢_=o)I¢_,¢_=o><¢_,¢_=oi =

1 I +J " "_(** / (18)P(¢_=O) _ E Ij, m)e'm¢'|[E _ (J',m'[e -ire'e"
j=0 m=-j Jl_,j' =0 m' =-f

where the renormalization constant is

2}=- j=0
(19)

Herein we are taking a "snapshot" in absolute time so that the inner sums use different

values of j thereby permitting interference among the different j states so that (for pure

states) we have the pdf

I r2P2(_'a) = ' _:_(J)(¢_) (20)
Tr'-dl_I2"¢a" = 2zr P(¢x =0)j=0

This measurement treats the j states as indistinguishable (adding the interfering

amplitudes that each contributes).

5 Discussion

It may be of interest to note that in the "marginal measurement" defined by

equation (15) (which reduces to equation (16) for pure states) we are directly measuring

the relative phase angle between our two "clock arms." Thus, two uniformly (randomly)

distributed clocks result in a uniform (random) distribution in _,x. This is different than

what one would obtain from the marginal pdfcalculated from the joint distribution of our

two clock arms. Rather than directly measuring a phase difference, the marginal pdf
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would describethe procedureof first measuring _1 and ¢2, and then subtracting the

results of these two measurements (resulting in a non-uniform distribution for the case of

two random clocks, due to the rood 2zr range of ¢1 and _2).

It may also be of interest to note that physical intuition regarding the connection

between the issue of distinguishability and "absolute time average" versus "snapshot" can

be reinforced by contrasting electromagnetic field moments with the angular

measurement (which is equivalent to the measurement of _A when the two oscillators are

the right and left circularly polarized modes of an electromagnetic wave [3]).

Furthermore, in the case of the "snapshot" (equations (18) and (19)) we determine the

angular distribution of the field vectors (and their quantum fluctuations) at a point in

absolute time, whereas the "absolute time average" (equations (15) and (16)) traces out

the quantum version of the polarization ellipse.
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