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Abstract

The phase-space approach to classical and quantum systems demands for advanced an-

alytical tools. Such an approach characterizes the evolution of a physical system through a
set of variables, reducing to the canonically conjugate variables in the classical limit. It often

happens that phase-space distributiol3s can be written in terms of quadratic forms involving

the above quoted variables. A significant analytical tool to treat these problems may come

from the generalized many-variables Hermite polynomials, defined on quadratic forms in 7"/".
They form an orthonormal system in many dimensions and seem the natural tool to treat the

harmonic oscillator dynamics in phase-space. In this contribution we discuss the properties

of these polynomials and present some applications to physical problems.

1 Introduction

Classical special functions play a central role in both pure and applied mathematics. Usually

conceived for the solution of very specific problems, they gave rise to a far-reaching theory, being
part of, and frequently motivation for, important general theories.

The trigonometric functions, for instance, originally introduced to deal with specific problems

of astronomy and navigation, are the basis for the theory of Fourier series and Fourier integral,
which have applications to many parts of physics.

Similarly, Bessel functions firstly appeared in mathematical physics in the 1738 Bernoulli's

memoir, containing enunciations of theorems on the oscillations of heavy chains. Then, they

reappeared in mechanical problems as the vibration of a stretched membrane or the symmetrical

and unsymmetrical propagation of heat in solid cylinders and spheres, as well as in astronomical

problems, related for instance to the elliptic motion of a planet about the sun. Presently, Bessel

functions have a very wide field of applications, from abstract number theory and theoretical

astronomy to concrete problems of physics and engineering [1].
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Correspondingly, classicalorthogonal polynomials (Jacobi,Legendre, Hermite), alsointroduced

in connection with astronomical problems, are now of great importance in mathematical physics,

approximation theory as well as in the theory of mechanical quadrature. In addition,they find

significantapplicationsin quantum mechanics on the determination of discreteenergy spectra and

the corresponding wave functionsinfundamental problems [2].Orthogonal polynomials are indeed

essentialtool to deal with the problems of the harmonic oscillatorand the motion of particlesin

a central field.Furthermore, the classicalorthogonal polynomials of a discretevariable axe of

interestin the theory of differencemethods [2].

Theory of classicalspecial functions is rather well settled[3]. Recursion relations,addition

thcorerns,intcgralrepresentations,generating functions,asymptotic formulae, differentialequa-

tions are collectedin an organic body, which ishowever continuously refinedand enriched by new

investigationsand new theoreticalapproaches [4].

Let us recallfor instance the method illustratedin ref.[I],which suggests a generalizationof

the Rodriguez formula for the classicalorthogonal polynomials, thus allowing to obtain explicit

integralrepresentationsof allthe specialfunctions and to derivetheirbasic properties.Similarly,

the possibilityof framing specialfunctions within the context of group theory [4,5] revealed a

powerful tool permitting derivationof new resultsand a rationalclassificationof old results,as

well as suggesting to introduce new classesof functions,relatedto the recentlydiscovered algebraic

systems, such as the supergroups and the quantum groups [6].

Furthermore, we note the descriptionof orthogonal polynomials by theirrecursion relations,

which once regarded as eigenvalue equations allow to look at orthogonal polynomials from the

viewpoint of scatteringtheory [4,7].

Recently, interestin specialfunctionshas greatly increased in connection with the possibility

of generalizingthc wellknown functionsof mathematical physicsto more than one variableand/or

more than one index. In thisregard, the generalizationamounts to introducing functions with

properties analogous to those of the one-variable counterpart. Generating functions axe usually

the key-note for many-variable generalizationsof specialfunctions.

Thc multivariable Bessel functions,for instance, originallyintroduced by Appell [8]in con-

nection with the problcrn of the ellipticmotion of planets [9],have revealed a wealth of possible

applicationsto physical and/or purely mathematical problems, as the scatteringof laserradia-

tion by freeor weakly bounded electrons,the emission of e.m. radiation by relativisticelectrons

passing through magnctic undulators [10]as well as problems related to the queuing theory [11].

Also, they proved theirrclevancein multiphoton emission and absorption processes by quantum

systems, which are of interestfor the investigationof squeezed states,the relevant Hamiltonian

operator containing indeed powers of the annihilationand creationoperators [12].

Correspondingly, the multivariablc generalizationof orthogonal polynomials has attracted a

great amount of interest.In particular,as to the Hermite polynomials, letus recallthat in ref.

[13]a procedure has been developed, which generalizingthat proposed by Gould and Hopper [14]

allowsto definemultivariablegeneralizedHermite polynomials, providing a complete orthonormal

set in E.2(R'_)space of square sommable functionswith n variables.

The present paper concerns with the classicalmany-variable functions introduced by Hermite

[15],whose application within the context of the phase space approach to physical problems is

suggested. Accordingly, in Sec. 2 a general view on the many-variable Hermite polynomials is

presented. The possibilityof exploitingthe developed formalism within the context of the phase
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space picture, which is becoming the context where many physical problems axe naturally flamed,

is investigated in Sec. 3. In particular, the basic model of the harmonic oscillator is considered.

General considerations and extensions are presented in Sec. 4.

2 Many-variable Hermite polynomials

One-variable Hermite polynomials 7-/,(x)1 can be defined by means of the relation

c-_ (_-')a = e-T _V.VT"/.(X) , (1)
_,m-0 "

where they appear as the coefficients of the series expansion of the exponential of a quadratic form
defined on the real domain.

The above expression can also be recast in the more usual form

n

_" n X ,

"

(2)

from which, exploiting the series development of the exponential function and appropriately rear-

ranging the summation, the well known expression of the Hermite polynomials in form of a finite

sum can be easily drawn:

I-/21 (_)_x.-2_

_.(x) = n! _ t!2,(n- 2t)! ' (3)
1=0

where [v] denotes the largest integer < v.

Also, according to the formula for the Taylor expansion, (2) provides the Rodriguez formula:

7_.(x)= (-)"ex_/_--_-x_/2 . (4)

Taking the derivatives of both sides of (1) or (2) with respect to x and t, it is easy to infer the
recursion relations

"]-[n+l ---- XT'[n -- r_7"[n-1

n" = nn._x, (5)

linking the polynomial of order n to the contiguous ones. The prime denotes derivative with

respect to x.

It is immediate to get from the above relations the differential equation obeyed by 7-/,_'s:

-_-_ + x_ 7-I. = nT-/. , (6)

which allows to understood 7-/. as eigenfunction of the operator

79= d2 d
- d_---_+ _ ' (7)

1The use of the script _,, to denote the Hermite polynomial is in order to avoid confusion with the more common
polynomial Hn : H.(x) = 2n/2_.(Vt2x).
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n being the corresponding eigenvalue.

The operator 7:) is not self adjoint; the adjoint operator

/5 + = d 2 d
dz 2 z_ - 1 (8)

admits the eigenfunction 7"/+, explicitly given as

7/+.(z) = 7/,,(z)e-x2/2 (9)

belonging to the same eigenvalue as 7t,. Accordingly, the functions (7/,, 7/+) form a biorthogonal

set in the usual sense that they satisfy the orthogonality relation

= (10)

Generalizing the relation (1) to involve a bilinear form defined in R n, Hermite introduced many-

variable functions [15]. Adopting a matrix notation, we can write down

e____rM(___ _;xrM_ h]_' h_"
= _ _-- _--_-'-- E ml! ... m------_'7/ErLl,...,r;7.n(X), (11)

where _x_and h axe elements of the vector space R'_:

z= , h= , (12)
n n

the superscript T meaning transpose.

Accordingly, _ is a real n x n matrix: M = (aij), i, j = 1,...,n, which is required to be

symmetric: aij = aji, not degenerate, i.e. det___M > 0 and positive definite: aii> 0, i = 1,... ,n.

The expression (11) can be rewritten in the alternative form

h_ 1 h_"_

_-TM-_h--Ih-TM---h-- E T_I! ""' _._n! 7/ml ,''',TrLT*(--x) ' (13)

which is the n-variable analog of (2).

In passing, it is worth noticing that the above expression suggests considering the more general

bilinear form

¢(x__,h) = xTAh - 2hTB h (14)

with the matrices A,/3 being symmetric but in general different from each other. In this respect,

let us recall that the Grassman Hermite functions have been introduced using the above quadratic

form, with A and B being antisymmetric matrices and x_, h anticommuting variables. A further

extension of--(14) have been considered in ref. [6], with the intent of obtaining a class of functions,

related to quantum groups.
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In full analogywith the one-variablecase,taking the derivative of (11) or (13) with respect to

the components of both vectors x and h, we get the recursion relations satisfied by "k/,_l,...,,_ . (x):

(15)

with i ranging from 1 to n.

Since corresponding to any quadratic form ¢(x) = xTMx we can associate the adjoint form

defined in terms of the inverse matrix, i.e. ¢(_) = __M--r-__, it is possible to associate with the

7_,_,...,,_'s the adjoint polynomials _ml,...,,_.(x). The definition resembles the relation (11), but

involves the transformed vectors:

__=Mx, k=Mh.

Explicitly, we have indeed

e__(____T_-,(___= e__T_-,{ _ kp' k._g_,,...,_.(z_)
ml] .... mn I

_1 ,...,yrt_

If M is the identity matrix, the two polynomials coincide: 7"imp,...,,,,. = _._i..... ,_.

they turn into the product of n one-variable Hermite polynomials, i.e.

(16)

(17)

Furthermore,

n

7"/'m,..-,m- (-x) ----1-] 7_,_,(x_) . (18)
i----1

Taking the derivative of (17) with respect to x and k, the following set of recursion relations can
be obtained:

1
_._ A,_qjGq_,...,qj_, .....q., (x) ,g_,,...,_,+,,...,_,(x) = =,g_,....._. - E .

0

Ox aq,,...,q,,(x) = q,{}q,,...,q,_,,...,q, (x), (19)

with A = detM and A_j the minor relevant to the element a_j.

The relevance of the polynomials Gq_,...,q. is clarified by the orthogonality relation, which can

be proved in the form

1 fl rr_!x/,_-_5,m,q '
/to dxe--_x--TM-'_x--"_m,,...,m,.,(X__)_qx,...,q n (_X) -- _ i=1

(20)

For the explicit derivation of the above relation the reader is addressed to ref. [8].

The orthogonality relation (20) can be conveniently exploited to express a given n-variable

function p(_x) in form of a series involving "Hm,,...,,_, and G,_I .....m.. Accordingly, let us put

p(_)= _ A,,,,,...,,,.U,,,,..,,,,.(z), (21)
_i i...tY't"tn

261



or

f'tl' l I '" I'tlr_n

with the coefficients Am1 .....,_,., Bm_,...,m,, being specialized according to (20) into

v_" 1 1 f

(2-73-;-)=/__-_!..._-!J_
4_ 1 1 f

B_I,..,_-- (2_J__-,! _! I_

d.ze-_'-T"t_-p(:r,)O,,,,...,_(:r,),

c___e-l=--T_==-p(_)_,,,,,...,,,,,,(x) .

(22)

(23)

The explicit values of the entries of the matrix M should be suggested by the specific problem

under study.

It is needless to say that the theory of many-variable Hermite polynomials is very rich. How-

ever, the above considerations represent all the machinery we need for testing the possibility of

using these functions as basis for the phase-space analysis of physical problems. For a more

detailed discussion the interested reader is addressed to refs. [8, 15].

3 Two-variable Hermite polynomials and phase space

picture of dynamical problems

Phase space picture is becoming the unifying language for both classical and quantum mechanics.

Phase space formalism is indeed basic to the Hamiltonian formulation of classical mechanics. In

this connection, the evolution of a dynamical system is described by a number n of independent

coordinate variables and on the same number of canonically conjugate momenta. The cartesian

space of these 2n coordinates is just the phase-space.

Correspondingly, phase space picture of quantum mechanics is becoming increasingly popular.

Although, the concept of phase-space is not compatible with quantum mechanics, _ and/_ being

noncommuting operators, the Wigner phase-space representation allows to overcome this prob-

lem, since in this representation both the coordinate and momentum variables are c--numbers.

Accordingly, it is possible to perform phase-space canonical transformations as in the case of

classical mechanics, which correspond to unitary transformations in the SchrSdinger picture of

quantum mechanics.

Phase space concept appears therefore as the unifying context, where classical as well as

quantum mechanics can be naturally framed, thus suggesting the possibility to transfer concepts

and methods from quantum to classical mechanics and viceversa.

Furthermore, as discussed in ref. [16], phase-space picture provides the natural language for

quantum optics as well, offering a geometrical view to coherent and squeezed states as circles

and ellipses respectively. In this connection, taking advantages from the symmetry of the rele-

vant Wigner phase space distribution function it is possible to calculate expectation values and

transition probabilities for the above quoted states [16].

Finally, let us recall that phase space is the context where the dynamics of electron beams

moving through magnetic channels is studied and the Hamiltonian optics can be conveniently

reformulated.
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As already remarked, the paper is aimed at investigating the possibility of using the many-

variable Hermite polynomials, briefly discussed in the previous section, as analytical tool in the

phase-space approach to dynamical problems.

In the quantum framework, one--variable Hermite polynomials are intimately related to the

harmonic oscillator dynamics. It is therefore natural to analyse, as first step for our investigation,

the harmonic oscillator dynamics in the phase-space representation.

Let us consider therefore the quadratic Hamiltonian

12 ½H= _p -}- k(s)q 2 (24)

the variable s playing the role of time. It is needless to stress the relevance of the above Hamilto-

nian as basic model for many physical problems as well as approximation in many of the existing
theories.

As already stressed, in quantum mechanics the Hamiltonian (24) rules the evolution of a

harmonic oscillator of unit mass and time-dependent frequency k(s), _ and _ being the position

and momentum operators. In classical mechanics, it describes for instance the betatron motion of

a charged particle through a magnetic quadrupole, as in the ray optics it governs the propagation

of an optical ray through a nonhomogencous medium with a quadratic profile of the refractive
index.

It is interesting to notice that in the configuration space picture the evolution of the system

described by the Hamiltonian (24) is analysed within the context of conceptually and formally

different approaches: the SchrSdinger equation for the quantum wave function and the Hamilton

equation of motion for the canonically conjugate variables q and p. Conversely, the Von Neumann

equation for the Wigner distribution function and the classical Liouville equation for the phase-

space distribution are of the same form, so long as the Hamiltonian of the quantum system is

quadratic. Hence, time evolution of the Wigner function can be obtained directly from the solution

of the equation of motion of the corresponding classical system. Harmonic oscillator provides a

unique example in which classical and quantum phenomenology overlap to a large extent.

Let us approach the problem within the context of classical mechanics. Accordingly, the

Liouville equation for the phase space distribution function p(q, p; s) is immediately written down
as

p(q,p;s) = -p q + k(s)q p(q,p;s) , (25)

with an assigned initial condition: p(q, p; s) = P0(q, P).

As introduction to the forthcoming discussion, let us recall that an invariant quadratic form

I = xTT(s)z (26)

can be associated to any dynamics described by quadratic Hamiltonians-in canonical coordinates

and momenta. In passing, it is worth stressing that within a quantum context the quadratic

form (26) is reported as the Ermakov-Lewis invariant [17], the vector x containing obviously the

position and momentum operators, whilst in classical mechanics it is reported as the Courant-

Snyder invariant [18], firstly introduced in the analysis of electron beam motion through magnetic

channels. In the above expression, the two component vector x-(q) is acted by the real 2 x 2
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matrix T, which furthermore is required to be symmetric and unimodular: det T -- 1. Just to

share the language of accelerator physics, we refer to T as the Twiss matrix 2 and report it in the

form

The entries a,_,% usually named as Twiss parameters, play an important role in designing

transport channels.

The quadratic form (26) can be depicted in the phase space as an ellipse, whose size and

orientation are determined by the Twiss coefficients. The area of the ellipse, which is just the

value of the invariant I, is usually denoted in accelerator physics as I = re, e being named as

the beam emittance. It plays a crucial role in characterizing the quality and the dynamics of the

e-beam. In a single particle analysis, a,/3, 7 defines the contour of the particle trajectory, as

in an ensemble analysis they define the second order momentum of the phase space distribution

function, thus providing information on its extent and maximum localization. Explicitly,

2 = &)_

= -6_ = Uqq

2 -((qp)- (q)(p)) , (28)6(2 = --(TOp

the averages being understood on the distribution function. Accordingly, the emittance e can be

given the further meaning:
e_ 2 2 _(T2 (29)

= (Tqq(Tpp j qP •

Let us stress now that the Liouville equation admits as particular solution the distribution function

p(q,p;s) = 2--_eexp - x__TTx , (30)

shaped indeed in form of a Gaussian and therefore with a maximum localization within the ellipse

of area 6.
• --_xTTxThe above considerations suggest to use the functions rt,n,ne - =- as basis in the phase-

plane, the entries of the matrix T being chosen as the second order momentum of the distribution.

In other words we can use the above quoted functions to approximate a generic function defined in

the phase space by means of two-variable Gaussians, further modelled by the Hermite polynomials

7-/,_,_, which give a different maximum localization. The process is perfectly similar to that used

for one-variable functions using the Hermite functions.

Let us consider therefore generic distribution function p(q,p; s). According to the results of

Sec. 2, we can express p(q, p; s) in form of a series:

p(q,p; s) = _ am,.(s)pH,.(q,p) , (31)

2The quadratic form (26) can also been regarded as the transcription in phase space of the quantum invariant,
the vector x_ being formed by the expectation values of the position and momentum operators and the matrix T

being linked to the covariance matrix.
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with a,,_,,_(s) and p_,,,(q,p) being explicitly given as

am,n(s) = / dq f dpp(q,p;s)_m,a(q,p) ,

1 Tlm,n(q, p)e -_x-rT---z- •
PH'n (q' P) = 2veto!n! (32)

The superscript H specifies that the polynomials 7-&,. have been used in the series expansion.

The alternative expansion in terms of the adjoint polynomials Qm,,,(q, p) can be also used, thus

leading to

p(q,p; s) = _ cbm,nPm,,_(q,P) , (33)
YD, jn

b,n,n(s) =/dqf dpp(q,p;s)7-lm,n(q,p),

1 _ . . __xrTx
P_"_(q' P) = 2_rem!n! Om,,_(q, p)e ..- =-, (34)

with

and the superscript G specifying that the adjoint polynomials _m,n have been used.

The entries of the Twiss matrix appearing in the above expression can be conveniently chosen,

according to the previous discussion, as the second-order momenta of the distribution function

P0(q, p) at the initial time. Then, the emittance _ is just obtained according to (29).

Inserting the expression (31) into the Liouville equation (25), we get the set of equations for

the coefficients a,_,n (s), namely

d
-- (a_ - 2 a_[m(m - 1)a,__2,,_ kn(n - 1)a,_,._21kaqq)mnam_ l,n- 1 +

+ '/72am--l,n+l -- krtam+l,n-1 , (35)

where the relations

0_ H 0 H UpH,,_ = --(m + 1)pm+,,,_ , _ppp,_,. = --(n + 1)pro,.+ , (36)

and

= 1)pro,.+1 ,PPm,n Pm,n-I + aav(m + 1)Pm+l,n + +

H H a_(m 1 H a_(n HqPm,,, = Pro-X,,, + + )P,_+l,n + + 1)Pm,n+a (37)

have been used, obtained from the recursive relations obeyed by H,,,,,, (see Appendix A).

Let us consider for instance the particular case where the quadrupole strength does not change

along the direction of motion: k(s) = k; and the initialdistribution function po(q,p) has the form

po(q,p) = 27reexp - xT__Tx (38)

The coefficients am,n(O) are then given as

a._,.(O) = &,o&,o • (39)
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In addition, assumingthat the electronbeam is matchedto the quadrupole,namely

=0, - = 0, (40)

it is easy to prove that the distribution function does not change during the motion:

p(q,p; s) = Po(q,P) • (41)

More general situations require the numerical handling of eq. (35), from which the evolution of

p(q,p; s) can be inferred according to the expansion (31).

4 Concluding remarks

The analysis developed in the previous sections has been aimed at testing the possibility of using

many-variable Hermite polynomials as analytical tool, within the context of phase-space picture

to dynamical problems.

The discussion has been limited, for illustrative purposes, to the harmonic oscillator dynamics.

However, it can be easily realized that Hamiltonians containing higher order terms, accounting

for non linear forces, can be treated by means of the same formalism as well.

Also, within a quantum mechanical context, the formalism developed might be used in con-

nection with the Von Neumann equation, which, as already noticed, rules the evolution of the

Wigner distribution function W(q, p; s) according to [19]

1 +1. 0 _1. 0
_-_W(q,p;s) = {-p_q +-_ [V (q -_h--_p) - V (q _h--_p)]} W(q,p;s) . (42)

Furthermore, let us say that, although in Sec. 3 we have considered I-dimensional dynamics,

problems with more than one degree of freedom can be analysed, as, for instance, the motion of

electron-beams along magnetic channels with transverse coupling. In that case, the radial and

vertical motions cannot be separated and the dynamics should be analysed in a 4-dimensional

phase-space, the relevant elements consisting of the conjugate variables x, px, y, p_.
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APPENDIX A

Two-variable Hermite polynomials

This Appendix is devoted to discuss with some details the properties of the two-variable

Hermite polynomials, which are used in Sec. 3 as illustrative of the usefulness of such functions

within the context of the phase--space formalism.

Firstly, let us write down the explicit form of the recursion relations, reported in (15) for the

general case of many-variable polynomials:

7"{m+l,n(q,p) = (aq + bp)7-lm,,_(q,p) - amT"lm-l,n(q,p) - b'nT"l,n,n-l(q,p) ,

7"{,,,,,,+,(q,p) = (bq+cp)7-lm,n(q,p)-bmT"l,,__,,n(q,p)-c'nT-l,,_,,__,(q,p) , (A.1)

0

_q_,,,,.(q,v) = am_,,,_,,,,(q,v)+ _7"t,,,,._,(q,v),
0

_n,,,,,,(q,v) = bmT"tr,,_,.,,(q,v)+ _n,,,,,_,(q,v) .

From the above relations after some algebra the following partial differential equation can be
deduced

02 02 0' 0 + P_PP 7-/,_,n = A(m + n)7"/m,n , (A.2)- - +2_0--_ +A
in some sense reminiscent of eq. (6), which can be recovered in correspondence with ___M= I.

Consequently, the polynomials 7"/m,,_ can be understood as eigenfunctions of the op--erator

0202 02 (0 0)7_ = -c_-Sq 2 - a_-_p2 + 2b0--_ + A q_qq + p_pp , (A.3)

with eigenvalue A(m + n).

Let us consider now the adjoint polynomials G,,,,,(q,p), for which the general relations (19)
specialize into

Gm+l,n(q,P) = q{7,-,,,,_(q,p) -- cm{7__l,n(q,p) + bn_m,n-l(q,p) ,

Gm,n+l(q,P) = PGm,n(q,P) + bmGm-l,n(q,p) - an_m,n-l(q,p) ,

0
---_gm,,_(q,P) = mGm-x,,_(q,p) , "_Dgm,,_(q,P) = nGm,,_-l(q,p) ,

which provide the differential equation

-C-_q_-a-_+2bO--_+", N+vN _,.=ZX(m+_)_m,.,

the same as for 7"/m,n.

as

(A.4)

(A.5)

Finally, let us note that the orthogonality relation (20) in the case we are considering specialize

f dqf dpT"lm,n(q,p)G,.,_(q,p)exp{--lxTMx} = 27r I " "_ =- ---_m.n!o,_,,.o,,,, . (A.6)
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